1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	MEETING WITH THE ADVISORY COMMITTEE
5	ON NUCLEAR WASTE
6	+ + + +
7	NUCLEAR REGULATORY COMMISSION
8	1 White Flint North
9	Rockville, Maryland
10	+ + + +
11	Wednesday, March 20, 2002
12	+ + + +
13	The Commission met in open session, pusuant
14	to notice, at 9:30 a.m., the Honorable RICHARD A.
15	MESERVE, Chairman of the Commission, presiding.
16	COMMISSIONERS PRESENT:
17	RICHARD A. MESERVE, Chairman
18	GRETA J. DICUS, Member
19	NILS J. DIAZ, Member
20	EDWARD McGAFFIGAN, JR., Member
21	JEFFREY S. MERRIFIELD, Member
22	(This transcript produced from electronic
23	caption media and audio and video media provided by
24	the Nuclear Regulatory Commission.)

1	STAFF AND PRESENTERS SEATED AT THE COMMISSION TABLE:
2	GEORGE M. HORNBERGER, CHAIR, ACNW
3	B. JOHN GARRICK, ACNW
4	RAYMOND G. WYMER, VICE CHAIR, ACNW
5	MILTON N. LEVENSON, ACNW MEMBER
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

1	C-O-N-T-E-N-T-S
2	Presentation by George Hornberger 5
3	Presentation by B. John Garrick16
4	Presentation by Raymond G. Wymer32
5	Question and Answer Period Advisory
6	Committee on Nuclear Waste41
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

- 1 P-R-O-C-E-E-D-I-N-G-S
- 2 CHAIRMAN MESERVE: The Commission is
- 3 meeting this morning to hear from the Advisory
- 4 Committee on Nuclear Waste on the status of the
- 5 Committee's activities conducted over the past year.
- 6 As I'm sure everyone in the audience knows,
- 7 the Committee advises the Commission on a wide variety of issues related
- 8 to radioactive waste disposable and site decommissioning.
- 9 The Commission was last briefed by the
- 10 Committee in March of last year.
- 11 Since that meeting, there are a number of
- 12 events that have occurred in the national scene that
- 13 impacted the Committee's activities.
- Perhaps, the one that has attracted the
- 15 greatest attention is the fact that DOE has made its
- 16 site recommendation to President Bush, and the
- 17 President has forwarded the recommendation on to
- 18 Congress.
- 19 Congress could conceivably act in this
- 20 session to resolve the issue and that's the matter
- 21 that will be before us, possibly for licensing.
- The Committee's briefing today focuses on
- 23 Yucca Mountain matters and it's particularly timely
- 24 in light of the events that are underway.
- We are very interested in hearing the

1 Committee's views.

- 2 Dr. Hornberger, why don't we proceed?
- 3 DR. HORNBERGER: Thank you. Good morning.
- 4 Chairman Meserve and Commissioners.
- 5 I'm George Hornberger, Chairman of the
- 6 ACNW, and with me are the other members of the ACNW
- 7 are Raymond Wymer, the Vice Chairman, Milton Levenson
- 8 and John Garrick. And we will be presenting several
- 9 things today.
- 10 As Chairman Meserve said, we will be
- 11 focusing on high level waste issues, the high level
- 12 waste issue resolution program and key technical issues. And we
- 13 will in fact be giving you some highlights from
- 14 several more recent letters.
- 15 I know that we have heard from the
- 16 Commissioners interested in our perspective on the
- 17 key technical issues. I may slip and use KTI for key
- 18 technical issue.
- 19 I will try for Commissioner Merrifield's
- 20 benefit to not use any acronyms, but --
- 21 COMMISSIONER DICUS: Did you give us a list
- 22 of acronyms?
- DR. HORNBERGER: We try very hard not to
- 24 use very many at all. But I may slip and use things
- 25 like KTI, NRC and DOE.

- 1 COMMISSIONER MERRIFIELD: As long as you fully
- 2 explain it.
- 3 I appreciate your consideration of my request.
- 4 DR. HORNBERGER: We also have at the end of
- 5 our presentation observations from our review of the
- 6 NRC research program.
- 7 I am going to start off and go through some
- 8 of our information on the issue resolution and issue
- 9 resolution process and the sufficiency review that we
- 10 did.
- 11 The ACNW undertook our review in parallel
- 12 with the staff. Of course we're a really small
- 13 committee and so we had to choose -- pick and choose
- 14 how we did our review and we basically decided to do
- 15 what we refer to as a vertical slice review.
- We picked four topics, each of us took a
- 17 topic, and we focused on chemistry issues, on thermal
- 18 hydrology, on saturated and unsaturated and on TSPA.
- 19 Basically, it was very similar to the
- 20 review that we carried out for the -- I want to say
- 21 VA off of the --
- 22 CHAIRMAN MESERVE: Viability.
- 23 DR. HORNBERGER: Thank you, I couldn't
- 24 think of viability -- viability assessment.
- 25 At any rate, our focus in the review was on

- 1 the NRC staff and not so much DOE, and what we did was reviewed DOE's site
- 2 recommendation documents but really with the backdrop
- 3 of the NRC's issue resolution process and our aim was
- 4 to evaluate staff's tools, guidance and their
- 5 capability to performing views.
- 6 The main message -- main messages that we
- 7 have from our review is that we basically think that
- 8 the issue resolution process undertaken by the NRC
- 9 staff has in fact exposed the important technical
- 10 issues of DOE's work at Yucca Mountain.
- The staff argued as you know that they
- 12 think that DOE has obtained or they have agreed to
- 13 obtain sufficient in-depth characterization in waste
- 14 form information for the -- to make a license
- 15 application and the ACNW does agree with staff's
- 16 findings in that light.
- We however do see that there is much of
- 18 importance in the agreed to obtain category in that
- 19 information.
- 20 For example, information on corrosion of
- 21 alloy 22 as an example the effects of trace, medals
- 22 like lead in waters on corrosion of alloy 22. That
- 23 really demands some further in-depth information.
- 24 And so we do recognize that DOE will have
- 25 to provide additional information.

- 1 Our observations on the staff capabilities,
- 2 we think that the staff is in fact well equipped to
- 3 conduct reviews of DOE products, and including
- 4 possible license application.
- We were I think guite impressed by the
- 6 issue resolution process as part of our vertical
- 7 reviews. Each of us attended I think at least one of
- 8 the technical exchanges.
- 9 I think that we have told you before that
- 10 we found these to be quite valuable. We think that
- 11 the information exchange between the NRC and DOE was
- 12 very good and these for the most part, the meetings
- 13 that we attended we thought were very well run,
- 14 organized and very effective.
- 15 Continuing on our observations, we think
- 16 that in our review of the sufficiency, that the staff
- 17 in conversations with us, private conversations, told
- 18 us that they were using their integrated assessment.
- They were integrating their assessment,
- 20 that they were using risk insights that they had
- 21 developed as part of developing the Yucca Mountain
- 22 review plan. And we think that it's quite important
- 23 in our letter to you.
- 24 In our letter to you, we urge that the
- 25 staff make the Yucca Mountain review plan publicly

- 1 available as soon as possible and also the integrated
- 2 issue resolution status report and we continue to
- 3 think that the Yucca Mountain review plan is ready
- 4 for public release and we urge the staff to expedite
- 5 the release of the integrated issue resolution status
- 6 report as well.
- 7 We think that -- we have a copy -- we have
- 8 received a copy of the Yucca Mountain review plan --
- 9 the draft Yucca Mountain review plan.
- We have not yet had time to fully review
- 11 it.
- 12 In fact, we are scheduled to have a
- 13 briefing on the Yucca Mountain review plan by staff
- 14 tomorrow as an initiation of our full briefing on the
- 15 subject.
- We will be looking for an illustration at
- 17 the Yucca Mountain review plan as risk informed. And
- 18 also we have asked staff that -- we thought that
- 19 staff needed to clarify in guidance to the
- 20 Department of Energy how conservatism, the
- 21 appropriate uses of conservatism. And we will be
- 22 looking at in particular these issues along with
- 23 others as we review the Yucca Mountain review plan.
- Let me go on and give some comments about
- 25 -- having gone through this process for the --

- 1 looking at these issues for the -- our vertical
- 2 slices for sufficiency comments, let me transition
- 3 and go on and talk about our views on the status of
- 4 the key technical issue, the KTI program.
- 5 We think that -- we had a briefing I think
- 6 in January by the staff on key technical issue
- 7 resolution process. We also have continued to be
- 8 updated by staff informally since then.
- 9 We think that the nine key technical issues
- 10 definitely capture the important technical aspects of
- 11 the -- of Yucca Mountain and so we continue to
- 12 believe that and not just on the basis of the four
- 13 vertical slices that we did, but on the full briefing
- 14 that we have had.
- 15 I suppose our one lingering concern, if you
- 16 will, and this has been a long standing concern of
- 17 the ACNW and that is that whenever -- it's true any
- 18 categorization, by categorizing the key technical
- 19 issues, we are always concerned about the cross
- 20 linkages amongst the KTI's.
- 21 And we think we know from staff that they
- 22 are working very hard on integrating at the subissue
- 23 level and making sure that the KTI's are fully
- 24 integrated, but we still want to keep tabs on that.
- We think that the work is progressing in

- 1 the right direction, but we still have some lingering
- 2 -- perhaps concerns is too strong of a word, I have
- 3 concerns on the slide. But we want to keep tabs on
- 4 that.
- 5 As you know, the key technical issue
- 6 resolution process resulted in 293 agreements between
- 7 the Department of Energy and the NRC.
- 8 As I said, we think that the issue of
- 9 resolution process, these technical exchanges where
- 10 the agreements were made worked in general, they
- 11 worked amazingly well. We think that this was a very
- 12 sound process.
- Of the two hundred ninety three agreements,
- 14 when we were briefed at the meeting, we asked staff
- 15 about some further refinement on these as to how many
- 16 of these were really required DOE to do significant
- 17 work.
- 18 DOE had given us their quick breakdown and
- 19 DOE had said that there were 11 issues that they saw
- 20 for testing -- that required testing analysis and 41
- 21 that required further analyses.
- 22 Many of the rest of the agreements that the
- 23 DOE categorization, they had, for example, 188 of
- 24 them in documentation, and it was really more along
- 25 those lines.

- 1 The NRC staff subsequently provided us with
- 2 their thinking about -- their categorization.
- 3 At the first level, they thought that
- 4 something on the order of 65 percent of the 293
- 5 agreements were basically for documentation.
- 6 But the areas where there were considerable
- 7 effort required by DOE were in a waste package -- the
- 8 analysis waste package, the analysis of igneous activity
- 9 effects, the performance of barriers and also
- 10 demonstration of model confidence.
- 11 These agreements do vary widely in scope.
- We don't -- the ACNW was not tremendously
- 13 startled by the number, 293. We don't see this as a
- 14 huge stumbling block. In fact, we believe the
- 15 resolution process is working, that we should expect
- 16 to have these kind of agreements in a first of a kind
- 17 repository design like this.
- And as I said, many of these are
- 19 documentation for DOE to provide data bases that are
- 20 already in existence. Some of them are for work and
- 21 in fact some of them are for work that will very
- 22 likely go into the performance confirmation period.
- 23 For example, there is no reason that I
- 24 think we would even want DOE to stop doing testing of
- 25 alloy 22 when they submitted a license.

- 1 It just didn't make sense. We should
- 2 continue to collect information. And if we learn more
- 3 in a performance confirmation period, that's so much
- 4 the better.
- 5 We were asked to give some thought to what
- 6 we considered to be the most important of the key
- 7 technical issues and I will give you the ACNW's top
- 8 four, that they are not rank ordered.
- 9 They are not the product of a deep
- 10 systematic analysis. Rather, they are the product of
- 11 our experience in reviewing all of these issues and
- 12 basically our knowledge -- our belief as to how NRC
- 13 and DOE need to proceed.
- 14 And really of course they are based on a
- 15 lot of knowledge that we have about subissues beneath
- 16 the key technical issue level.
- 17 The other thing that I would say is that
- 18 each of these is I think different from the other,
- 19 that is, that they're -- that each of them didn't
- 20 appear on our list for exactly the same reasons. So,
- 21 I'll try to give you a little bit of background as to
- 22 why each of these appears on the list.
- The first one we have is the container life
- 24 and source term and I think that that one is pretty
- 25 obvious, that the DOE safety case relies relatively

- 1 heavily on the performance of the barrier and there's
- 2 considerable information that we need to get on
- 3 things like corrosion of alloy 22, the long-term
- 4 persistence of passive films to avoid corrosion,
- 5 things like that.
- 6 And so, I think the container life and
- 7 source term in terms of being an important KTI is, I
- 8 think, pretty obvious.
- 9 The second one that appeared on our list is
- 10 igneous activity.
- 11 This one I think appears on our list
- 12 because it is going to be an issue that has to be
- 13 addressed for -- certainly for public confidence.
- 14 It's an issue that has come up, the NRC
- 15 staff and in conjunction with the staff at the Center
- 16 for Nuclear Waste Regulatory Analyses have pushed
- 17 DOE, that is, they have continued to ask DOE to
- 18 provide information on igneous activity.
- And, in truth, I think that DOE basically
- 20 put these studies on a back burner. They had other
- 21 things going. They knew that they were, I think,
- 22 going to have to provide this information. But it's
- 23 been relatively recent that they have made agreements
- 24 with the NRC staff to provide such information.
- 25 I think that these agreements in my

- 1 estimation are appropriate and they are appropriately
- 2 listed as several of them as in closed pending, that
- 3 is, DOE provides the requisite information.
- 4 I think that this will be sufficient. DOE
- 5 should be able to provide information sufficient for
- 6 a license application.
- 7 The third one is listed as the unsaturated
- 8 and saturated flow under isothermal conditions and
- 9 although the Department of Energy, under their
- 10 current analysis does not list this as one of their
- 11 most important aspects of their safety case, we know
- 12 that -- we all know that water is quite important,
- 13 both from the standpoint of being the agent to
- 14 dissolve or to corrode the canisters and the waste
- 15 form itself and also to transport the radionuclides
- 16 downgrading to the accessible environment.
- 17 And so it's hard to think about geological
- 18 repository without thinking that this saturated and
- 19 unsaturated flow is not an important consideration.
- The final one on our list is total system
- 21 performance assessment and that's obvious. This is a
- 22 critical tool for the integration of the KTI's as
- 23 well as for establishing the safety case.
- 24 This was one of our vertical slice issues
- 25 and John Garrick is going to go into this in more

- 1 detail because I think that it will give you some
- 2 insight not only on to our vertical slice approach,
- 3 but give you a feel for why we think that this issue
- 4 belongs on our top four. And if you like, we can
- 5 just proceed. If there are questions, we can break
- 6 at any time.
- 7 CHAIRMAN MESERVE: Why don't we hold the
- 8 questions until the end of the presentations?
- 9 Dr. Garrick?
- 10 DR. GARRICK: Thanks, George.
- 11 If your exhibits are numbered like mine, we
- 12 are on number fourteen. Is that correct?
- 13 I would like to talk about the vertical
- 14 slice review we did of the performance assessment
- 15 activity. I should say that we spent a good deal more
- 16 time studying the DOE documents and its performance
- 17 assessment than we did of the staff's, but we did
- 18 spend enough time to form some important opinions,
- 19 which we will share with you.
- The underlying drivers for the vertical
- 21 slice review as far as the performance assessment was
- 22 concerned are exhibited on Exhibit 15 and they
- 23 include being focused very much on what are
- 24 considered to be the principal drivers of
- 25 performance.

- 1 It's a massive undertaking as you
- 2 know, and one of the greatest challenges in reviewing
- 3 a study such as this is being able to be focused and
- 4 be satisfied that you are moving in the right
- 5 direction as it relates to safety, as it relates to
- 6 performance analysis.
- 7 So we very much looked at what the bottom
- 8 line results were and tried to, as best we could,
- 9 first satisfy ourselves that those results made
- 10 sense.
- And then second, peel the onion so to
- 12 speak, backwards and satisfy ourselves that they
- 13 evolved in an appropriate manner.
- 14 The second item here on this exhibit is the
- 15 extent to which results are risk informed and
- 16 evidence-based.
- 17 The one aspect of the regulatory process
- 18 that is undergoing substantial change is the
- 19 transition to risk informed process. And therefore
- 20 we decided that it might be very useful to use this
- 21 particular vertical slice as some sort of a measure
- 22 of what kind of progress we are making and how DOE
- 23 and NRC are interpreting the risk informed concept
- 24 and I'll have much more to say about that.
- 25 An issue that we have talked about before

- 1 with you and that is very important and something
- 2 that is sometimes as abstract and complicated as a
- 3 risk assessment or a performance assessment is the
- 4 matter of transparency, how visible is the work, how
- 5 understandable it is, how traceable it is.
- 6 And this is all essential in being able to
- 7 defend the results and we certainly were looking at
- 8 that.
- 9 The main message, Exhibit 16 of our review
- 10 is that we are convinced that the TSPA is pretty much
- 11 the backbone of the safety case. It is the one place
- 12 that things are tied together.
- 13 And as I like to describe it, it is the
- 14 place where the so what question is dealt with.
- 15 There are hundreds, perhaps thousands of
- 16 individual analyses that are performed. Some of them
- 17 are performed on a conditional basis.
- Some of them are performed with a very
- 19 restricted set of boundary conditions. And so, the
- 20 most important issue that faces people in reviewing
- 21 one of these is to put all of these in context and
- 22 that's what a risk assessment is supposed to do.
- 23 It is supposed to answer the question, what is risk?
- So what we did spend a considerable amount
- 25 of time in that arena for the reasons I have stated.

- 1 The other message here is that the
- 2 performance assessment provides one of the missing
- 3 links of the key technical issue list and that is how
- 4 do they relate to each other and how do we make
- 5 judgments as to their relative importance.
- 6 And of course as is the case here, it's not
- 7 so much the integration at the level of the KTI as a
- 8 descriptor, but the subissues associated with the
- 9 KTI's and the more detailed structure behind the
- 10 KTI's is where you begin to see the alignment with
- 11 issues and algorithms and analyses that are actually
- 12 performed in the total performance assessment.
- 13 Exhibit 17, and continuing with the main
- 14 message of our review, was that we were very anxious
- 15 to get a better handle on the two performance
- 16 assessments, the one developed by the Nuclear Regulatory
- 17 Commission and the one developed by the Department of
- 18 Energy.
- And I think it's important here to fully
- 20 appreciate the different perspectives of these two
- 21 models.
- DOE, of course, is faced with building
- 23 models from the ground up that are responsive to the
- 24 regulatory requirements, whereas, the NRC model is --
- 25 has to have some -- to have some capability to

- 1 independently analyze specific phenomena and specific
- 2 events and features and processes.
- 3 But it's primary purpose is to evaluate,
- 4 confirm the results of the licensee's analysis. And
- 5 therefore you would expect the models would be
- 6 different, which is quite healthy, and you would
- 7 expect that the emphasis would be difference in the
- 8 models.
- 9 Now, there's a -- there's not many subjects
- 10 that are more controversial than risk assessment,
- 11 performance assessment, particularly if by
- 12 performance assessment you mean probabilistic
- 13 performance assessment. And it's not a discipline
- 14 that has been around long enough to establish an
- 15 intricate set of standards by which you can measure
- 16 its quality. So, it's pretty much at this point a
- 17 case-by-case review.
- And the ACNW is very much a supporter of
- 19 the risk assessment thought process, the quantitative
- 20 risk assessment thought process and probabilistic
- 21 risk assessment thought process and therefore of the
- 22 probabilistic performance assessment thought process.
- We think it is essential to deal with the
- 24 questions of how to importance rank issues. But there
- 25 are some things that are very fundamental and

- 1 important to qualifying a performance assessment.
- We list a few of those here.
- The first one is that the performance
- 4 measures need to be well defined. Well, the
- 5 performance measures are for the most part defined in
- 6 the regulations. And as we know, there are three NRC
- 7 performance measure, the individual protection
- 8 requirement, the ground water protection requirement
- 9 and the human intrusion.
- 10 And in the EPA adds to that the time and
- 11 magnitude of the peak dose and the performance assessments
- 12 are addressing all of the -- all of these issues.
- Now, the regulations do not require a
- 14 performance assessment except for the individual
- 15 protection requirement, but the performance
- 16 assessments are being employed to address the
- 17 questions, or at least the elements.
- 18 Analysis models are realistic.
- This is maybe one of the most discussed and
- 20 debated attributes of the performance assessment or
- 21 the risk assessment.
- The view here is that if the results are not
- 23 realistic, if you don't have as a benefit of the
- 24 decision-making process, the real expert's best shot
- 25 of what they really believe to be the risk, then you

- 1 don't have a baseline from which to view the
- 2 application of conservatism or what have you.
- 3 So, it's a calibration process and that in
- 4 one sense is why risk assessment was invented -- was
- 5 not to be a conservative analysis, but to be an
- 6 effort that gives on the basis of an integrated set
- 7 of algorithms and analyses, an estimate of what is
- 8 believed to be the real risk.
- 9 And of course that means inevitably
- 10 addressing of uncertainties, results need to include
- 11 uncertainties.
- We talk about the quantification of the
- 13 uncertainties and that quantification is generally
- 14 done in the form of probability distributions about
- 15 the critical measures to convey exactly how much is
- 16 known and how much is unknown about the parameters
- 17 that we have chosen as our measures of risk.
- The other thing we have talked a lot about
- 19 is the concept of analyses being evidence-based as
- 20 opposed to assumption based.
- 21 And what we have seen in the different
- 22 generations of the risk assessment is an encouraging
- 23 progression from assumption-based analyses to
- 24 evidence-based analyses, and it is inevitable that
- 25 you will never escape having to make assumptions on

- 1 any model.
- 2 You can do the modeling in such a way that
- 3 that dependency is reduced with experience and with
- 4 gathering the site characteristic information.
- 5 And then in the final analysis, there are
- 6 assumptions that have been to be made. Those
- 7 assumptions have to be defended.
- 8 Our conclusions, we have been quite
- 9 favorable in our review of the NRC's performance
- 10 assessment.
- We think it is adequate as a confirmatory
- 12 tool.
- 13 It is different than what DOE has to do.
- 14 It has some advantages over the TSPA, that
- 15 is to say, that DOE's performance assessment in that
- 16 it has flexibility to look at issues such as the
- 17 consideration of different scenarios and the
- 18 examination of sensitivities and what have you.
- And since it generally is a simpler model,
- 20 it provides some efficiencies for doing that. There
- 21 are improvements that are continuing and we have
- 22 talked about those to some extent in the past.
- Now, as far as the TSPA site recommendation
- 24 we observe here on our conclusions that DOE
- 25 complexity inhibits confidence in the results. And again I have to

- 1 point out that what we are focusing on here, among
- 2 other things, is the extent to which risk informs the
- 3 safety case.
- 4 And I think that that's very important to
- 5 understand.
- 6 In order for it to be a risk informed
- 7 analysis, the assumptions set has to be reasonably
- 8 consistent, particularly those that are the important
- 9 contributors to the risk.
- By consistent, that is to say you can't
- 11 have some assumptions that are probabilistic have a
- 12 probabilistic character, and other assumptions that
- 13 are bounding if in fact these are as assumptions that
- 14 are important to the bottom line results and satisfy
- 15 yourself that is indeed risk in base, and there is
- 16 some of that.
- 17 There is a mix of conservative and
- 18 nonconservative elements. It's not always obvious
- 19 that some of the elements that have been identified
- 20 are indeed conservative or nonconservative.
- 21 Examples of conservative elements, and
- 22 again, we focus pretty much on the -- more on the
- 23 first line of defense, namely the waste package than
- 24 we did on the backup defense, namely the natural
- 25 system although we did some review there for sure.

- 1 But in the case of the first finding, the
- 2 SPASR had some very -- what appears to be
- 3 conservative assumption having to do with the
- 4 degradation rate of the waste package. And these
- 5 were locked up in the corrosion model that was used
- 6 that made some very simplifying assumptions about the
- 7 waste -- or the chemistry inside the waste package,
- 8 the transport, and so forth.
- 9 And the exclusion for example of in package
- 10 transport packs and not taking into account the
- 11 secondary phases of corrosion, that is, to say when
- 12 we had our workshop on engineered barriers, the point
- 13 was made very emphatically that one of the most
- 14 important aspects of the science of corrosion is the
- 15 role of the corrosion products and how they enter
- 16 into the degradation process of the facilities.
- Well, the SR model does not take into
- 18 account these secondary formations, does not take
- 19 into account the possibility of hold-up time might
- 20 come from reducing chemical environment in the waste
- 21 package, and so on. These are just a couple of
- 22 examples.
- Another one might be the assumptions on
- 24 solubilities of critical radionuclide in the case of
- 25 the site recommendation TSPA, there was a high

- 1 solubility assumed for neptunium. It is not an
- 2 important contributor to the dose during the time of
- 3 compliance period. It is a very important contributor
- 4 with respect to the time and magnitude of the peak
- 5 dose.
- 6 Also on the disruptive case, the igneous
- 7 activity case, there were some assumptions that
- 8 really were contrary to what would be an approach
- 9 that you would take if you were looking at this as a
- 10 risk assessment and these had to do with the biosphere
- 11 dose conversion factors and the assumption of such
- 12 things as the wind direction that was a hundred
- 13 percent of the time towards the critical group, and
- 14 also some assumptions about the ash and erosion rates
- 15 appeared to be quite arbitrary and quite conservative.
- On the other hand, there are some other
- 17 assumptions and other issues that were not
- 18 necessarily conservative and these had to do
- 19 with such things as the treatment of a couple of
- 20 processes by which we mean the interaction of
- 21 mechanical, chemical, hydrogeological and thermal
- 22 processes at the individual analysis level and it
- 23 appeared that these processes were addressed quite
- 24 independently.
- But in the abstraction process, and the

- 1 abstraction process is the transition from these
- 2 individual analyses models and process models to the
- 3 performance assessment.
- 4 In that part of the analysis, I call that
- 5 kind of a mapping process from the individual models
- 6 to the risk assessment, these were somehow combined,
- 7 these coupled processes. And it's not clear how they
- 8 were combined and we don't know what the impact was,
- 9 conservative or nonconservative, but it's something
- 10 that needs to be addressed.
- 11 But modeling abstracting process in general
- 12 is something that has been of great interest to the
- 13 Commission staff and to us and how that works, and
- 14 there's still a number of questions that relate to it
- 15 as it pertains to the establishment of a risk
- 16 perspective.
- 17 And another area where it is not obvious
- 18 that they're conservative is in the effectiveness and
- 19 interaction of multiple barriers.
- So those are what we mean when we talk
- 21 about assumptions, a mix of conservative, and so on.
- 22 On Exhibit 21, we talk about the linkage
- 23 between assumptions and supporting evidence lacks
- 24 transparency. And there is a number of analyses
- 25 performed where conservative analyses are made to

- 1 look at performance under different conditions.
- 2 But they are not accompanied in as many
- 3 instances as we think they should be with the
- 4 supporting information for making those analyses.
- 5 And so, the bottom line is that from a risk
- 6 perspective, the margins of safety are obscured and
- 7 it does not in general past the test of a risk
- 8 informed presentation.
- 9 And as we say on Exhibit 22, therefore it
- 10 does not answer the question of what is the risk.
- Now, the good news is that there appears to
- 12 be full recognition of this on the part of the
- 13 Department of Energy and the documents which we have
- 14 not reviewed in detail but we have had access to that
- 15 followed the TSPA-SR are addressing most of these
- 16 issues that we have identified if not all.
- 17 They are taking a much harder look at
- 18 structuring the model to be more realistic. They are
- 19 paying a great deal more attention to things like
- 20 radionuclide solubility and the treatment of it on
- 21 the basis of what the evidence can support. And
- 22 therefore treating it in many cases probablistically.
- 23 And so, the supplemental science and
- 24 performance analysis report that you have heard
- 25 about, there are a couple of other reports, a site

- 1 evaluation report, there is a technical update
- 2 report.
- 3 These are all reflecting acknowledgment, if
- 4 you wish, of the shortcomings of the site
- 5 recommendation TSPA and addressing the issues. And
- 6 we'll have to report to you later as to just how
- 7 complete and successful they are.
- 8 So I think that -- you know, I haven't --
- 9 we wrote you a letter on this and we didn't
- 10 articulate the perspectives here as well as we would
- 11 have liked to and I have been thinking about that
- 12 since.
- And in the middle of the night, I finally
- 14 came up what I think is, what I call a singular point
- 15 that I am trying to make and that the Committee is
- 16 trying to make in their letter.
- 17 Let me just read it to you and I think it
- 18 clarifies where we are and where we're coming from.
- 19 "The vertical slice review of the TSPA-SR,
- 20 and now we are talking about the Department of
- 21 Energy's total system performance assessment resulted
- 22 in two overarching findings -- And this is not on
- 23 your view graphs.
- 24 First, there is considerable evidence that
- 25 DOE safety case for the proposed Yucca Mountain high

- 1 level waste repository can be developed to meet the
- 2 prescriptive requirements of the regulation.
- 3 I chose the word prescriptive.
- 4 Some might choose the word deterministic or
- 5 whatever.
- 6 But I think that that's an important
- 7 observation that maybe we didn't articulate as
- 8 succinctly and clearly as we should have in our
- 9 report.
- The second one and the one that's the basis
- 11 for most of what we have been saying is however in
- 12 the opinion of the Committee, the TSPA site
- 13 recommendation does not risk inform the safety case
- 14 in the manner of the traditional meaning of
- 15 quantitative risk assessment."
- And that says its as well as I can say it
- 17 at this point.
- 18 So what does that mean with respect to our
- 19 recommendations?
- Well, it just sort of turns the findings
- 21 around and suggests that the NRC take whatever action
- 22 they can to encourage corrective action. And on
- 23 Exhibit 23, we start delineating those.
- 24 And we say the NRC should ensure that DOE
- 25 performs realistic analysis and maximizes the extent

- 1 to which those analyses are evidence-based as opposed
- 2 to arbitrary assumption based, realizing that there will
- 3 always be assumptions.
- 4 That the NRC ensure that DOE improves the
- 5 traceability of the analyses.
- 6 There's a massive number of documents.
- 7 You have to go way beyond the performance
- 8 assessment itself to provide the linkage that's
- 9 necessary to understand what goes on. And I think
- 10 that there is some great opportunities for
- 11 improvements in that area.
- The third thing we have here is abstracts,
- 13 ensure that the abstract is a simplified model.
- 14 This analyses in our opinion lends itself
- 15 very nicely to a simplified physics based model. And
- 16 the reason we say this is there is some 250 to 300
- 17 different fission products and several dozen
- 18 actinides and if we had to calculate the
- 19 dose of all of them, a simplified model might
- 20 constitute an overwhelming task.
- 21 But when it turns out that only three or
- 22 four of these dominate the risk, it seems to me that
- 23 it manifests a path that one could take to develop a
- 24 highly simplified, but very transparent model of why
- 25 things are what they are and how the barriers enter

- 1 into their contributions to risk.
- 2 And so, we say as a final recommendation
- 3 here that we believe that the TPA code, that is to
- 4 say the NRC code, should be used principally to
- 5 establish credibility of the analyses that becomes a
- 6 part of any license application and in such
- 7 particular areas of sensitivity analysis, the
- 8 enhancement of realism and the quantifying of
- 9 uncertainties.
- And so that's kind of where we are.
- 11 We look forward to reviewing the post SR
- 12 documents and look forward to reporting to you how
- 13 some of these issues that we have identified have been
- 14 handled.
- Now, I'm just going to go from here since
- 16 you want to hold on the questions to our next
- 17 presentation -
- 18 CHAIRMAN MESERVE: I wondered if they don't
- 19 want to --
- Why don't we finish the research and then
- 21 we'll do a round of questions?
- 22 DR. WYMER: In anticipation of the large
- 23 interest in the topics you have just heard discussed,
- 24 we have kept the research presentation I hope brief
- 25 and maybe we'll allow enough time for discussion, but

- 1 as you know, we review and report annually on the
- 2 research activities within the NRC and we have just
- 3 finished writing a letter on our deliberations, which
- 4 you have a great deal more detail to you about the
- 5 research program and what we think about it, that
- 6 we'll be able to give you here this morning in the
- 7 time alloted.
- 8 We have based our report to you on
- 9 presentations that we have heard from the staff
- 10 during the past year on the report written by an
- 11 expert panel that the report came out just this past
- 12 summer on discussions that we have had with the
- 13 Center for Nuclear Regulatory Waste Analysis, both
- 14 members of the center came here and we have gone down
- 15 there once during the year to review programs.
- Our review down there was mainly focused on
- 17 the interest to the Yucca Mountain repository and
- 18 igneous activity for example and source terms. And
- 19 we did sponsor a workshop on the research program
- 20 this past November which we thought was useful in
- 21 helping to identify research needs and there was a
- 22 great deal of discussion on the general philosophy of
- 23 research that came out during the course and what
- 24 research should be done by the NRC that came out
- 25 during this workshop.

- 1 The focus of the programs are two areas
- 2 involved. One is the work sponsored by the Office of
- 3 Nuclear Regulatory Research. The other is work
- 4 sponsored by the Office of Nuclear Materials Safety
- 5 and Safeguards.
- 6 The latter is research work in our view of
- 7 what research is although, it is not formally called
- 8 research and it is in support primarily over the
- 9 Yucca Mountain -- almost exclusively with the Yucca
- 10 Mountain repository.
- 11 The work by the nuclear regulatory Research
- 12 organization, the Office of Nuclear Regulatory
- 13 Research has emphasized modeling of flow on
- 14 radionuclide transport and a very good program has
- 15 been put together in this area.
- 16 I had the opportunity to attend a meeting
- 17 of the participants in this program --
- 18 representatives from U.S. Geological Survey, Sandia Laboratories,
- 19 and the Center, and it was my view that it was -- the work is
- 20 of high quality and it is -- is directed an
- 21 appropriate question because transport is fundamental
- 22 to dose almost throughout the entire business that
- 23 the NRC is concerned with.
- 24 And it served to bring together and
- 25 integrate the activities in this area of the

- 1 participants so that they all understood what was
- 2 being done in the various parts and potential
- 3 duplication was avoided and information was
- 4 exchanged.
- 5 So the work that's being done there is
- 6 good.
- 7 We did address the issue at some length,
- 8 both in the workshop with working group and among
- 9 ourselves of prioritization of research.
- We have had presentations from the staff on
- 11 research prioritization and in our view that
- 12 addresses to a point the question of are we doing the
- 13 right research? And my short answer is, yes, at the
- 14 moment we are doing the right research. We are just
- 15 not doing enough of it.
- 16 But what's being done is directed at a very
- 17 important problem.
- But we do believe, and I anticipate
- 19 questions on this point, that there's too little
- 20 anticipatory research, research that looks ahead to
- 21 the possible future of potential problems that might
- 22 arise, not yet surfaced, but where there might be
- 23 indications that there is a potential for problems.
- 24 And the anticipatory research would try to
- 25 see what some of those problems might be and they

- 1 might be of such a nature that the lead time to solve
- 2 the problems would be too long for a timely solution,
- 3 if you waited until the problem was certain, until it
- 4 had surfaced and there was a clear understanding of
- 5 what the problem was.
- 6 So that's the nature of anticipatory
- 7 research, that you try to anticipate the problems and
- 8 get a start on them so that you are not caught short
- 9 and don't have the information when you need it.
- 10 We think that the -- and with respect to
- 11 prioritization, that the analytical hierarchy process
- 12 which is called the AHP process is a useful tool
- 13 for setting priorities within the program as it's
- 14 currently manifested in the research program, the RES
- 15 activities. Office of Nuclear Research activities.
- 16 It's not very sophisticated and we believe
- 17 it could be improved by more attention paid to
- 18 decision-making, more formal decision-making
- 19 procedures.
- But we do not believe that any of these
- 21 kinds of processes like the analytical hierarchy
- 22 process can address the most fundamental issue with
- 23 respect to prioritization and that is what's the
- 24 split between the resources that are devoted to waste
- 25 safety and reactor safety.

- 1 And it is our opinion that that's your
- 2 problem, that the Commission level that that decision
- 3 must be a policy decision.
- 4 And I've covered that slide.
- 5 So under observations -- I mentioned the
- 6 office of regulatory research program, radionuclide
- 7 transport, they have prepared a -- prepared a draft
- 8 plan for that program.
- 9 It contains some 28 individual research
- 10 projects, which is a large number, considering
- 11 the resources they have to put on it.
- 12 The plan is well done.
- 13 I haven't a chance to go through it.
- 14 I think it's in final form or very nearly
- 15 in its final form.
- 16 I have gone through the draft of it.
- 17 It's a comprehensive plan and should go a
- 18 long way toward optimizing it at the moment the
- 19 use of resources are available to RES.
- 20 In association with that, the NRC has
- 21 joined a group formed by a memorandum of
- 22 understanding between various agencies on modeling of
- 23 transport processes, which is headed up by Bill Aug
- 24 who gave us a presentation on that.
- 25 Bill is a current chairman of that activity

- 1 so that it's maiden efforts are guided by a chair
- 2 from the NRC.
- 3 And that should be very useful and it
- 4 should integrate a wide spectrum of activities that
- 5 are taking place across many federal agencies to try
- 6 to bring some uniformity into this complex issue,
- 7 radionuclide transport.
- 8 And I have mentioned that we do think that
- 9 there should be a modest compliment of anticipatory
- 10 research.
- 11 With respect to the workshop, I would like
- 12 to return to that, we had last November.
- 13 There were some lessons learned, there were
- 14 a number of things that came out of that workshop at
- 15 all levels from a very broad discussion of how NRC in
- 16 general should conduct its research program down to a
- 17 detailed list of specific research areas that was
- 18 prepared by the workshop members, that they thought
- 19 were worthy of pursuit.
- 20 It was far too long a list to -- for the
- 21 NRC to tackle. And some of the issues were of less
- 22 importance than others.
- 23 But one of the things that did come out was
- 24 that there is a great deal of information, we
- 25 believe, in the workshop and members believe

- 1 available at sites that have been closed or are
- 2 presently undergoing decommissioning, information of
- 3 the kind that would provide input to the transport
- 4 modeling of studies.
- 5 There is a lot of samples that have been
- 6 taken, a lot of analyses have been made. Additional
- 7 samples and monitoring could be done on a very
- 8 carefully selected basis for a couple of sites that
- 9 had -- they were quite complex and had a lot of the
- 10 attributes that play an important part in
- 11 radionuclide transport and potential dosage to the
- 12 public.
- We can capitalize on that information and
- 14 augment it with a modest additional effort by the
- 15 research activity. And some of these others are sort
- 16 of obvious.
- We said that rather than NRC trying to do
- 18 everything, they should certainly go out and look for
- 19 what has been done exhaustively.
- They do that.
- 21 I don't mean to say they don't do that.
- 22 But it should be a front-burner issue that
- 23 they should keep current on what research is going on
- 24 elsewhere. And where necessary, then maybe add to
- 25 that research by carefully chosen studies.

- 1 We think that the limited resources that
- 2 are available for research and NRC could be leveraged
- 3 by collaboration and some of that is taking place and
- 4 none of these things are new thoughts, but we want to
- 5 emphasize the importance of the thoughts in this
- 6 presentation.
- 7 And that collaboration both nationally and
- 8 internationally with organizations that are doing
- 9 research that are related to NRC's interest, these
- 10 should be actively sought.
- And then finally, we think that for the
- 12 credibility that it brings to the research being done
- 13 by NRC and for the recognition that it gives to the
- 14 researchers and for the improvement of the work
- 15 that's carried out, the research done at NRC should
- 16 be peer reviewed, both by publication and peer
- 17 reviewed high quality technicals journals and by
- 18 panels and experts that would be brought in to
- 19 perform peer reviews periodically of the work that's
- 20 going on.
- 21 Finally, I will restate, I think that our
- 22 view is that the nuclear regulatory research work
- 23 that's supported right now is very high quality and
- 24 it's aimed at appropriate, an appropriate problem,
- 25 that's radionuclide transport.

- 1 The Nuclear Materials Safety and Safeguards supported work at
- 2 the Center for Nuclear Waste Analysis is -- we think is very
- 3 well managed, both here at the NRC and at the Center.
- 4 It's of high quality and it does address
- 5 important issues and focuses on the Yucca Mountain
- 6 problems and it has addressed issues that we think
- 7 are at the heart of this NRC decision-making process.
- 8 That's what I have to say about that.
- 9 DR. HORNBERGER: That's our presentation.
- 10 So we can proceed to address any questions
- 11 if you have them.
- 12 CHAIRMAN MESERVE: Thank you very much. As
- 13 always, this has been a very helpful presentation for
- 14 us.
- 15 Let me go quickly to the issue of what
- 16 bottom line you would like to have us draw and I
- 17 think that -- let me summarize what I think the
- 18 bottom lines are as to the Yucca Mountain activity.
- 19 First I said the NRC's activities you are
- 20 basically satisfied and on track and we are doing the
- 21 things that we should be doing.
- 22 DR. HORNBERGER: Yes.
- 23 CHAIRMAN MESERVE: With regard to DOE, you
- 24 have concerns in particular with regard to its
- 25 performance assessment and it's risk based but that

- 1 you are seeing some progress by DOE in addressing the
- 2 issues that you have raised?
- 3 DR. HORNBERGER: Yes.
- 4 And furthermore, you may have observed that
- 5 the TRB -- the technical review board has also urged
- 6 DOE to move in this direction.
- 7 So I think that we will also get some
- 8 muscle from the DOE side.
- 9 CHAIRMAN MESERVE: You have indicated that
- 10 the igneous activity KTI you believe is one of the most
- 11 important KTIs, partly you did it because of the public
- 12 conference issues.
- 13 I have just seen a recent letter from the
- 14 NWTRB on that issue in which they state that they
- 15 believe the NRC model for igneous activity may be overly
- 16 conservative and it's a quote from the letter.
- 17 Have you looked into that model and given
- 18 your views on conservatism versus realism?
- 19 Do you have any views on it?
- DR. HORNBERGER: We just read that letter
- 21 as well and unfortunately, I did not have time to go
- 22 to the NWTRB site and get the documentation, so we
- 23 have not yet had a chance to review that.
- We did note that the TRB, who is not known
- 25 for dismissing things out of hand, thought that -- or

- 1 thinking things that were too conservative.
- 2 They did note that in their letter, and so
- 3 we think that we do have to look at this, we think
- 4 that we have to take a deeper look to make sure that
- 5 things are as they appear to be.
- 6 The NRC staff certainly are pretty up front
- 7 about their assessment of the analyses that have been
- 8 done and they recognize that there are simplified
- 9 analyses for the reflection of the shock wave and the
- 10 drifts, and so forth and so on.
- 11 So I don't think that the NRC staff or the Center
- 12 staff would necessarily disagree that there are some
- 13 conservative aspects of the model.
- And in fact, I think that they also agree
- 15 that there has to be further work done in this area.
- 16 CHAIRMAN MESERVE: Turning to the research
- 17 presentation, this is an issue, as I'm sure you know,
- 18 has been of great interest to the Commission,
- 19 research more generally throughout the Commission.
- Your slide 28 indicates that the allocation
- 21 of resources between reactors and waste arenas needs a high
- 22 level policy decision.
- Could you tell me exactly what you mean?
- 24 Is it your view that there is an imbalance in support
- 25 between the reactor and the waste arenas or is that

- 1 that both need to be upped or how would you frame a
- 2 policy issue that you think we need to address?
- 3 MR. WYMER: Well, one point is that we
- 4 don't believe that the people in RES, for example,
- 5 have the clout to make any decision as to how this
- 6 split is made.
- 7 Therefore, it has to be made above RES and
- 8 NMSS -- pardon me -- and so this kicks it up to the
- 9 level of the Commissioners.
- 10 And so whether or not the split is
- 11 appropriate is your decision.
- 12 You know, it's --
- 13 DR. HORNBERGER: Right.
- We think that certainly the total research
- 15 program in the of Office of Research is fairly
- 16 resource limited or tightly resource limited.
- And so it's not that we would say that
- 18 reactor research is over-endowed.
- 19 I think that probably our concern comes as
- 20 to how one can make readjustments, if readjustments
- 21 are necessary.
- And we don't see that the analytical
- 23 hierarchy procedure will necessarily lead to
- 24 adjustments, again, should they be necessary.
- We certainly don't have the perspective on

- 1 important reactor research versus important
- 2 waste-related research to decide whether those
- 3 readjustments should be made.
- 4 Our concern is more if they -- if somebody
- 5 judges that they do have to be made, how would they
- 6 do it?
- 7 And it's hard for us to see how that would
- 8 be done within the office of research itself.
- 9 MR. LEVENSON: I might add a comment that
- 10 obviously this committee has a little bit of a bias,
- 11 but historically, the allocation of funds between
- 12 reactors and waste, we think was heavily weighted
- 13 towards reactors properly.
- 14 There weren't any serious waste questions.
- With Yucca Mountain coming up, we think
- 16 it's time for a reassessment of the historical
- 17 division and that could really only be done by the
- 18 Commission.
- MR. GARRICK: And I think the thing that
- 20 really got us on this track is when we were briefed
- 21 on the prioritization process and if you look at the
- 22 details of the prioritization process, it is very
- 23 evident that it emanated from a reactor research,
- 24 thought process, not from a waste research thought
- 25 process.

- 1 That the terms that are defined, the whole
- 2 approach was pretty much geared to reactors and
- 3 that's what got us to thinking that there needed to
- 4 be some sort of a structure that was specialized to
- 5 needs of the waste business and as a -- to provide
- 6 insight on the research requirements for waste.
- 7 CHAIRMAN MESERVE: Can you be more specific
- 8 about what sort of things that you would change in
- 9 the prioritizations?
- 10 MR. GARRICK: Well, I think that the
- 11 reactor prioritization was very much geared to what
- 12 it takes to solve the such things as the unresolved
- 13 safety issues and the safety problems associated with
- 14 reactors.
- 15 The safety issues associated reactors was
- 16 driving the prioritization, even when it was applied
- 17 to some extent to the waste business.
- And all we're suggesting is that the waste
- 19 field is by very much different factors such as the
- 20 end states, the final disposition of the waste and
- 21 what have you.
- Then are reactors, which is how do we
- 23 reduce the core damage frequency, how do we reduce
- 24 the frequency of occurrence of a large early release
- 25 and so forth.

- 1 And those differences were not evident in
- 2 the briefings that we received as to applying the
- 3 example applications of prioritizing.
- 4 DR. HORNBERGER: Now, in fairness, the RES
- 5 staff recognized this and a year ago, they had put
- 6 forward suggestions for changing, making changes in
- 7 these ranking numbers and which we supported and
- 8 these were implemented and we were told by staff that
- 9 the numbers game now, at least gets the waste related
- 10 research to some level of comparability with reactor
- 11 related research.
- 12 So this is all well and good.
- 13 We still don't think that that necessarily
- 14 resolves the issue that I had mentioned as to how
- 15 internal decisions can be made in terms of
- 16 allocation.
- We just don't have any confidence that that
- 18 would be the right way, the expectation.
- 19 CHAIRMAN MESERVE: You mentioned that
- 20 emphasizing you think that anticipatory research is
- 21 missing.
- 22 Is there some specific areas that you have
- 23 in mind where you don't think that there is
- 24 sufficient work that's on the way?
- 25 MR. WYMER: Well, let me approach it just a

- 1 little different from a direct answer to that
- 2 question and let's take the Yucca Mountain example
- 3 and pose a hypothetical problem.
- 4 Let's say that alloy 22 is found downstream
- 5 somewhere, not to really meet the expectations or for
- 6 some reason it doesn't guarantee the doses that DOE
- 7 would like to see at the 18 kilometer site boundary
- 8 and therefore you need to look somewhere else to get
- 9 the safety margin that you want on the dose and so if
- 10 you would -- and that's not out of the question in
- 11 light of the -- of the relative recent invention of
- 12 alloy 22 and the limited amount of work that's been
- 13 done and the ten thousand year horizon which it has to
- 14 survive and so let's just take hypothetically suppose
- 15 that it fails and you might anticipate what, not with
- 16 any assurance, but with some misgiving that it might
- 17 fail.
- So you say, well, maybe we need to do some
- 19 anticipatory research because it will be downstream a
- 20 ways before we learn that it's not adequate, if we in
- 21 fact learn that, and therefore we have to take some
- 22 protective steps.
- Now, a couple of things that the DOE might
- 24 propose might lead to situations where the NRC could
- 25 not get its confirmatory -- confirmatory research

- 1 done fast enough in order to proceed with the license
- 2 application, if they waited until the problem became
- 3 obvious.
- 4 And the kind of thing that would occur to
- 5 me is, for example, maybe DOE is going to say we are
- 6 going to step back and say we are going to
- 7 investigate more closely this radionuclide transport
- 8 or we are going to investigate more closely the
- 9 problem of source term how much is released from a failed fuel
- 10 element, fuel container.
- 11 What can we do there to decrease the dose
- 12 that the boundary? What sort of thing will we
- 13 propose? And it may be up to NRC to evaluate that
- 14 proposal.
- The kind of thing that DOE might say and
- 16 this is something that we actually mention in our
- 17 chemistry white paper a while back is that well, you
- 18 might -- let's say look at the elements that are the
- 19 key elements, neptunium, plutonium, iodine and technetium.
- So these are the elements that you would
- 21 worry about or concerned about reducing the rate of
- 22 transport.
- 23 All of these have a variety of chemical
- 24 states and you can say that it would be possible in
- 25 the repository, and this is all hypothetical, it

- 1 would be possible in the repository to change the valent
- 2 state of these elements.
- 3 Neptunium is a monovalent ion, moves very
- 4 rapidly through the environment in the modeling
- 5 studies
- The protactinium ion is a monovalent ion moves very
- 7 rapidly through the environment relative to other things.
- 8 The plutonium is tetravalent, tends to form colloids moves fairly
- 9 rapidly because it's not ionic, through the environment.
- 10 All you would have to would be to reduce
- 11 these things chemically from a higher balanced state
- 12 to a lower balanced state you would expect that you
- 13 would have a dramatic reduction in the rate of
- 14 transport and the reduction mechanism hypothetically
- 15 might be due to all the iron that's present in the
- 16 repository, both in the waste container and the bolts
- 17 that hold the ceiling in place and all kinds of
- 18 material at construction and this could potentially
- 19 reduce these elements at lower valent state and they
- 20 would move more slowly.
- 21 That's one hypothetical type of
- 22 anticipatory research. And another one is and give
- 23 one more example and I'll quit, is you could work on
- 24 the source term.
- 25 You can say what can we do -- DOE can say

- 1 what can we do to change the rate at which the
- 2 package releases these elements that we are concerned
- 3 with providing the dose?
- 4 A thing that has been proposed is you might
- 5 put uranium dioxide in the waste containers. Get
- 6 your uranium dioxide as the form of the fuel.
- 7 You put it uranium dioxide in there and
- 8 therefore there's very little driving force for the
- 9 fuel to dissolve. It's already saturated with the
- 10 solution products.
- And from a totally
- 12 different point of view, the Department of Energy is
- 13 looking for some way to get rid of 700,000 metric
- 14 tons of UF 6, the uranium in UF 6.
- 15 It turns out that that's just about the
- 16 amount that you would need to fill out waste
- 17 containers, with 70,000 metric tons of waste.
- So the point of setting that example is to
- 19 say when you look upon anticipatory research, you
- 20 ought to look broadly, you ought to cast your net a
- 21 little broader than is customary and look afield at
- 22 what's going on around you to see if there are
- 23 symbiotic things that is can be introduced in this
- 24 anticipatory research.
- 25 MR. MESERVE: My final question is just to

- 1 follow up on your slide, talking about slide 31 in
- 2 talking about perhaps abstracting more information
- 3 from the waste facilities than we are.
- 4 Now, I know from a licensee point of view
- 5 that if you have a problem, there is hundreds of
- 6 thousands of dollars that are spent on drilling wells
- 7 and being able to assess the ground water
- 8 circumstances and chemistry and so forth fed into its
- 9 often 3D models. But that whole effort is largely
- 10 driven by it not being a research project.
- 11 You try to use the standard models.
- 12 You try not to do anything that would be
- 13 viewed as cutting edge because there are questions
- 14 that can be asked about it.
- 15 You are trying to demonstrate that you are
- 16 handing the ground water circumstances in a way that
- 17 is going to be acceptable for compliance purposes.
- DR. HORNBERGER: Environmental lawyers do
- 19 this to us, right?
- 20 CHAIRMAN MESERVE: That's right.
- 21 The environmental lawyers do this
- 22 traditional stuff so you can get it through the
- 23 regulatory agency. And I'm curious about what
- 24 additional information you think you can extract from
- 25 those kinds of sites, given what the licensees are

- 1 doing is a kind of different objective than research
- 2 objectives.
- 3 MR. WYMER: It should be possible to get
- 4 quite a bit of information about the movement of
- 5 radionuclide to a wide spectrum of geological
- 6 settings because there are a lot of sites in a lot of
- 7 different parts in the country that have radioactive
- 8 contaminations that is in fact moving, groundwater is carrying it
- 9 through the environment.
- 10 So it should be possible to check the
- 11 models a lot better by going after this kind of
- 12 information which is already there to a certain
- 13 extent and which could be supplemented probably
- 14 fairly modestly, certainly a lot easier than
- 15 instituting a new program to try to seek out this
- 16 kind of information and that's what was meant there.
- 17 DR. HORNBERGER: Some of the participants,
- 18 at least one or two of the participants in our
- 19 workshop were familiar with work that US Geological
- 20 Survey has done even at Superfund sites. So even
- 21 where all of these kind of restrictions that you lay
- 22 out apply and yet by participating in the data
- 23 collection, they find that the scientists can use the
- 24 information, not necessarily in ways that make their
- 25 way to the regulators, but sort of off to the side,

- 1 in addition, over and above meeting the clean-up
- 2 requirements and they found that to be very effective
- 3 in their own research. And so I think that --
- 4 MR. LEVENSON: I think that, as you
- 5 mentioned, generally the data is collected for a
- 6 specific purpose, used for a specific purpose and
- 7 tends to die there.
- 8 And our view is that collection of all of
- 9 that data in some sort of central way gives you a
- 10 much broader view and can be valuable for other uses
- 11 without huge investments of funds as you would have
- 12 to --
- 13 CHAIRMAN MESERVE: Thank you.
- 14 You're next.
- 15 COMMISSIONER DICUS: Thank you.
- Well, based upon the bottom lines that the
- 17 Chairman started out with and my own observation, the
- 18 comments you have made, et cetera, you seem to
- 19 believe that the NRC staff is doing what they're supposed to be doing
- 20 working in the right direction.
- 21 If I heard you right, you're pleased with
- 22 the Yucca Mountain review plan,
- 23 you're pleased with the resolution
- 24 processes for the KTI's, et cetera?
- DR. HORNBERGER: By the way, we have not

- 1 reviewed the Yucca mountain review plan formally.
- 2 COMMISSIONER DICUS: What you know about
- 3 it.
- 4 DR. HORNBERGER: We are getting a briefing
- 5 tomorrow and that will be our first briefing.
- 6 COMMISSIONER DICUS: Okay.
- 7 Then you might be leading right into my
- 8 question.
- 9 You have expressed also your concern about
- 10 the adequacy of what we might see in a DOE license
- 11 application.
- 12 Although you think that might be improving. And
- 13 at least in some ways and I want to come back to that
- 14 question of what is risk in a little bit.
- We are in a very unique situation with this
- 16 entire process, the first time to do something of
- 17 this magnitude and of this type.
- 18 And I know we have some concerns about
- 19 where the line is between our role as a regulator and
- 20 that we are not a consultant to DOE, even though we
- 21 are providing documents. We do that in other
- 22 licensing arenas.
- 23 Of course, if you haven't looked in detail
- 24 at the review plan, then perhaps you're not quite
- 25 ready to answer this question. But is some of the

- 1 inadequacies that you are concerned about with might
- 2 be in the license application from DOE, what have we
- 3 not provided or should provide as a regulator in that
- 4 regard?
- 5 DR. HORNBERGER: In fact, we are not ready
- 6 to give a definitive answer to that question.
- 7 But this is exactly the framework that I
- 8 think we are going to use in our review of the Yucca
- 9 Mountain review plan.
- Having said that, our indications are that
- 11 the staff have in fact really risk informed the Yucca
- 12 Mountain review plan. We believe that, now again, we
- 13 haven't looked at it in detail.
- 14 But from our interactions with them as they
- 15 were developing it, we think that's the direction
- 16 they have gone. But we will be addressing exactly the
- 17 questions that I believe is part of our viewing.
- 18 COMMISSIONER DICUS: That's fair enough.
- 19 I'll look forward to that.
- I want to go now to the issues that you
- 21 have raised, it's in your slides. It's also in your
- 22 September 18 letter on the question -- the comparison
- 23 of DOE's TSPA-SR is driven more by an attempt to
- 24 demonstrate compliance with the standards than by the
- 25 need to provide an assessment designed answer what is

- 1 risk.
- 2 And then we in November responded to that
- 3 statement -- and DOE responded to it and said the DOE
- 4 is able to use the flexibility afforded by the NRC's
- 5 risk informed performance-based regulations to
- 6 develop a realistic performance assessment or to
- 7 introduce conservatism.
- 8 As long as their approach is able to
- 9 demonstrate compliance, the staff has no basis to
- 10 require DOE to use any particular approach.
- And you're very much familiar with that
- 12 response, et cetera. So based on this, your concern
- 13 seems to remain the same in regard to what you talked
- 14 about today.
- So, is there a disconnect between what we
- 16 are saying, what we are doing, demonstrate compliance
- 17 to where you are going?
- 18 And if so, what is the disconnect?
- 19 MR. GARRICK: You want me to answer that?
- DR. HORNBERGER: Sure.
- 21 MR. GARRICK: Well, I think that one of the
- 22 things that we are saying is that while the language
- 23 of the Yucca Mountain review plan, to the extent that
- 24 we have seen it and the work that's been going on in
- 25 the issue resolution process and including the

- 1 technical exchange meetings seemed to be very tuned
- 2 in to dealing with issues, from a risk perspective.
- 3 This is the first time that we have really
- 4 practiced this in this manner.
- 5 It's not only the first of a kind license
- 6 application, but there is some first of a kind
- 7 applications of techniques having to do with
- 8 convincing ourselves that the process is risk
- 9 informed.
- 10 And I know what you are saying and that is
- 11 that if they comply with the regulations, what else
- 12 is there?
- And I won't answer this as a regulator, but
- 14 as an analyst and say that I am a great believer in
- 15 not relying totally on regulations for the
- 16 demonstration of safety and I think that that's one
- 17 of the attributes of the risk assessment thought
- 18 process.
- 19 I think it's extremely valuable.
- 20 It does not necessarily anchor itself to
- 21 regulations. It just keeps asking the question what
- 22 can go wrong and how likely is it and what are the
- 23 consequence. And I think that's an extremely valuable
- 24 adjunct to the whole process.
- So, I don't think it's criticism of the

- 1 regulations or a conflict between the issue of what
- 2 is risk and the issue of compliance as much as it is
- 3 an important tool for continually testing the
- 4 compliance process.
- 5 And I think that we have seen on the
- 6 reactor side and we have seen in many other
- 7 regulations an evolution of the regulatory process
- 8 that has been very much influenced by what we have
- 9 learned from trying to be risk informed about these
- 10 things.
- So I don't have a real problem with it.
- 12 But as an analyst, if I'm going to be
- 13 guided something, I'm frankly going to be guided more
- 14 by trying to answer the risk question than I am by
- 15 complying with the regulations.
- 16 COMMISSIONER DICUS: Okay.
- 17 And I don't necessarily disagree with you
- 18 on that point. I think where I'm trying to go to is,
- 19 and maybe when you do an in-depth of the review plan,
- 20 you can give more feedback on whether or not that is
- 21 sufficiently risk informed -- that the applicant or potential
- 22 applicant can truly use it to begin to answer your
- 23 question on the question that the Advisory Committee
- 24 has on answering the issue of risk.
- 25 My question comes from being sure that we

- 1 are not that we are going off and that we are coming
- 2 to some point together.
- 3 Okay. Let me ask about this integration
- 4 across the KTI's.
- 5 Could you give me a for example?
- 6 I'm battling to -- I'm trying to understand
- 7 what that means.
- 8 DR. HORNBERGER: Ray, do you have a ready
- 9 example in terms of coupled processes? You know,
- 10 we'll try to give you an example that isn't too
- 11 technical. Ray tends to give chemistry lectures,
- 12 but --
- 13 MR. WYMER: It's not all bad.
- 14 SPEAKER: I thought we were
- 15 going to get through this without the word valiance.
- 16 SPEAKER: Go ahead if you want to.
- 17 DR. HORNBERGER: I think some of the things
- 18 have to do with, for example, with the issues in near
- 19 field interactions between the rock and water and
- 20 waste products, separate from thermal effects because
- 21 these are dealt with in the thermal hydrology area.
- 22 And again I don't want to say that these
- 23 are not being considered by the staff because the
- 24 staff is well aware of all of these things and they
- 25 really are moving in what we think is the appropriate

- 1 direction. That is why I sort of cringed because I
- 2 saw a concern on my slide. It's less than that. We
- 3 just was to keep tabs on it.
- 4 COMMISSIONER DICUS: Are you comfortable
- 5 that the staff knows what you are talking about here?
- 6 DR. HORNBERGER: Oh, yes, we have had all
- 7 sorts of interaction with the staff.
- 8 MR. WYMER: The same thing comes to my mind
- 9 has to do with the coupling process. We tend to list
- 10 that our nine KTI's in their nice neat little
- 11 separate categories, but in fact they do. The issues
- 12 that arise in these individual KTI's do interact with
- 13 each other.
- 14 And in some cases and the interaction is
- 15 not necessarily carried across the boundary. We tend
- 16 to discuss each of these KTI's in terms of their
- 17 subissues and yet there are interrelations among
- 18 them, everything is interconnected. And so with the
- 19 kind of examples that would occur to me are those
- 20 that have to do with coupling of processes and
- 21 coupling of things across the KTI's.
- 22 COMMISSIONER DICUS: Slide 13, you noted
- 23 that what you thought were high public confidence
- 24 issue is that among the highest public confidence
- 25 issues -- let me go back to slide 13 -- igneous

- 1 activity I think it was.
- 2 DR. HORNBERGER: Igneous activity? Yes, I
- 3 think so.
- 4 I suppose if we were going in terms of
- 5 public confidence, we might list transportation
- 6 somewhere in there.
- 7 But I think that igneous activity.
- 8 Don't get me wrong, I think that that there
- 9 are -- there are some definite technical issues that
- 10 the NRC staff has raised that really need to be
- 11 addressed and so I think that there is a need to
- 12 address these and that's why it's on that.
- 13 COMMSSIONER DICUS: Okay. And you
- 14 mentioned that the unsaturated and saturated flow
- 15 that this was not high on DOE's list.
- 16 Is that a problem? Are there other
- 17 examples?
- 18 DR. HORNBERGER: No, if you look at the --
- 19 if you go all the way back to the viability
- 20 assessment, it turns out that it was one of the
- 21 critical issues for the Department of Energy.
- 22 And then -- well, what happened?
- What happened is we got to alloy 22 and all
- 24 of a sudden alloy 22 is robust enough so that the
- 25 flow of water no longer appears as an important

- 1 issue.
- 2 Nevertheless, it is the vehicle by which
- 3 radionuclides potentially get transported to the
- 4 critical group and so we think that it can't be
- 5 dismissed. And so, it has to appear on our list.
- 6 But it's not one of the top-ranked things
- 7 in DOE safety case right now.
- 8 COMMISSIONER DICUS: Okay. Thank you very
- 9 much.
- 10 CHAIRMAN MESERVE: Commissioner Diaz?
- 11 COMMISSIONER DIAZ: Thank you,
- 12 Mr. Chairman.
- 13 Let me just go back on the issue of
- 14 integration.
- 15 When I heard you talking about it, I
- 16 thought you were talking about something other than
- 17 couple processes. You were actually flip looking at
- 18 the actual carryover or the connection between one
- 19 solution for KTI and the other one and how they
- 20 actually stack.
- 21 Is that correct, integration means every
- 22 one of those issues and once you get to a resolution
- 23 how they impact on the resolution?
- 24 DR. HORNBERGER: That is correct and that's
- 25 really the context that we think is really important

- 1 from the total system performance assessment
- 2 standpoint.
- 3 COMMISSIONER DIAZ: And couple process
- 4 means something different.
- 5 DR. GARRICK: Those are the things that
- 6 occurred to me.
- 7 COMMISSIONER DIAZ: I'm sorry.
- 8 I just wanted to make sure I understood.
- 9 Let me -- an easy question and then I'm
- 10 going to have some fun.
- 11 First thing you talk about the adequacy of
- 12 information and we have the 293 agreements that you
- 13 thought were adequate.
- 14 Are there any particular areas where in
- 15 this agreements that you believe we need better
- 16 information? If so, do you know them or could you
- 17 get back to us with this what is any specific areas
- 18 that you think that are weaker than others?
- 19 DR. HORNBERGER: Well, I think in general
- 20 terms we certainly agree that the issue of the container
- 21 license and there are agreements there for DOE to
- 22 provide information on corrosion rates for alloy 22
- 23 in particular and how the quality of waters affect
- 24 that corrosion -- things like that.
- These are, as you well know, these aren't

- 1 experiments that one does over a span of tree days
- 2 that these take some time to develop. And so it's
- 3 quite important for the information to be developed.
- 4 I also think there are some issues down the
- 5 line for performance confirmation that need to be
- 6 addressed.
- 7 CHAIRMAN MESERVE Yes.
- 8 DR. GARRICK: And actually that has a tie
- 9 also with the research when we come from certain
- 10 issues such as monitoring -- that's pretty much a
- 11 wide open field and we are not only a thinking here
- 12 of preclosure monitoring but postclosure as well.
- 13 And not much has been done there.
- 14 To carry on with your comment,
- 15 Commissioner Diaz, I think that if you
- 16 look at the waste package itself and if you continue
- 17 to take a position that the first line of defense is
- 18 what we really want to be assured of that it's going
- 19 to get us through the compliance period with a couple
- 20 of exceptions, one is the contribution that comes
- 21 from the igneous events and the other is the
- 22 contribution that comes from defective waste
- 23 packages.
- 24 But there it may turn out that there we
- 25 will need to be a more mechanistic model if you wish

- 1 all the in package condition of the products.
- 2 You heard Dr. Wymer talk about the
- 3 implications of reducing environment rather than
- 4 contributing to the holdup time of radionuclides and
- 5 the current models that do not take much advantage of the in
- 6 package conditions.
- 7 There is not really a transport model as
- 8 the end package condition of the DOE TSPA is a
- 9 saturated water environment, a condition that is not
- 10 very realistic when it really comes to trying to deal
- 11 with the question of how the waste mobilizes and
- 12 combined with assumptions about aggressive water
- 13 chemistry.
- 14 These are examples as I cited earlier of a
- 15 departure from a risk informed approach.
- 16 And I think that if there is a desire to
- 17 enhance the case of the first line of defense here
- 18 namely the waste package, it's probably going to have
- 19 to be considerably more attention given to the modeling of the end package
- 20 conditions.
- 21 COMMISSIONER DIAZ: I understand. Thank
- 22 you.
- 23 MR. LEVENSON: I might give a little more
- 24 general comment or answer on this matter do we think
- 25 more information is needed?

- 1 NRC doesn't design the repository.
- We evaluate the DOE design.
- 3 We have not seen the final DOE design so
- 4 that if there are significant changes, there will
- 5 certainly be a request for additional information.
- 6 By the same token, many of 293 may become
- 7 irrelevant and not need to be answered, depending on
- 8 what the final design looks like.
- 9 COMMISSIONER DIAZ: I know that.
- 10 I was thinking at this moment have you
- 11 found any witnesses.
- 12 All right.
- 13 Let's see, I guess we talk a lot about
- 14 anticipatory research.
- 15 I'm fascinated by anything that decreases
- 16 defusion out of a package, including saturation of
- 17 component -- something that we used in many cases.
- So in this case, you know, I think I would
- 19 be interested if the Committee you would think a
- 20 little bit ahead and maybe provide us with some, you
- 21 know, suggested anticipatory research.
- 22 I know you talk about radionuclide
- 23 transports, source terms, a few of those, but are there issues even if it's
- 24 brainstorming I think it certainly would be
- 25 interesting.

- 1 I know you have attended some of the
- 2 meetings on the Yucca Mountain and we are always
- 3 interested in how well we are doing with the public
- 4 as far as are we communicating well.
- 5 Do you have any feedback to us and how
- 6 those meetings have gone and can we do something
- 7 better?
- 8 DR. HORNBERGER: Ray, you probably were.
- 9 Why don't you take that?
- 10 DR. WYMER: First off, I would say that our
- 11 meeting is out there each and every year attended by
- 12 the same people.
- DR. HORNBERGER: I think Commissioner Diaz
- 14 was talking about technical exchange between NRC and
- 15 DOE.
- 16 MR. WYMER: Oh, I'm sorry.
- 17 I totally missed the point.
- 18 I was thinking about what I would ask.
- 19 The technical exchange meetings take place in two
- 20 forums really.
- There is a joint meeting where both the NRC
- 22 staff and the Center staff, and the DOE people are
- 23 there. And then the NRC staff splits off, goes off
- 24 and caucuses about what they heard and they say here
- 25 are additional things that we need to know, and

- 1 that's very frank, gloves off discussion.
- 2 I mean, it's just like it should be and
- 3 then they go back into DOE and say here is a bunch of
- 4 things that we have come up with.
- 5 And DOE comes back and say, well, we'll do
- 6 that, and that and that, but we don't think that one
- 7 is important, we have already done that one.
- 8 In their opinion, they have. So that's the
- 9 nature of the meetings. And the one I attended was I
- 10 thought very productive.
- 11 MR. GARRICK: I wanted to comment on that
- 12 too, Ray.
- 13 I attended one and obviously the one on the
- 14 performance assessment. And the reason I cut in here
- 15 and wanted to say something, it is in fact one of the
- 16 most impressive activities I have observed at the NRC
- 17 since I have been on the committees and I didn't
- 18 expect it to be that efficient and that well managed.
- 19 I think that -- I was always suspicious
- 20 that a meeting in an environment such as we are
- 21 required to hold these technical exchange meetings
- 22 they didn't lend themselves to real intimate
- 23 interaction among technical people on serious issues.
- 24 But I found the meetings given those
- 25 conditions to be run extremely well and very

- 1 efficient. And I was especially impressed that -- of
- 2 the staff members taking full advantage of today's
- 3 technology because the reports were done on line in
- 4 real time and it was possible to review questions and
- 5 agreements just about as quickly as they came up.
- 6 I think it's a very efficient operation.
- 7 I found it superior to what we had in the
- 8 earlier days and the reactor field in technical
- 9 exchanges.
- And I think that the staff has done a very
- 11 commendable job of structuring a process here that is
- 12 very effective, very efficient.
- So that's one area I would really give
- 14 praise to, and I don't know whether the technical
- 15 exchange meeting I went to was representative of all
- 16 of them. But I know the one I went to was very
- 17 impressive.
- 18 COMMISSIONER DIAZ: That's very high praise
- 19 for our staff and we thank you.
- 20 Let's go for fun.
- 21 Let's go to risk performance, performance based, risk
- 22 informed performance based.
- 23 First let me start by saying that you have
- 24 supplied me with some words that I will use quite
- 25 frequently with the staff regarding how you do

- 1 research or how you analyze an issue and this
- 2 evidence-based versus assumption based.
- 3 And I think that is fundamental and this is
- 4 independent of whether this is going to be risk
- 5 informed.
- 6 I have lately been surprised that people
- 7 use assumptions as we all do to simplify but those
- 8 assumptions get carried farther than what they are
- 9 intended and they are not based on evidence.
- 10 So I appreciate the term and I appreciate
- 11 the intellect behind it. I think it's very good.
- Let me go from there to some of the concerns I have, and they are
- 13 very basis on some of the areas that you touch on risk informed and performance
- 14 based and I just want to make sure that we are using
- 15 this term in the same manner, you know, we of course
- 16 steer away from risk based and I have been trying to
- 17 use a definition myself just to make sure and that
- 18 is, you know, risk inform.
- 19 You know, it's a set of tools and resource
- 20 that have elements of experience and deterministic
- 21 and probabilistic and we get the best set of those
- 22 and use them.
- Are you using that in the same context when
- 24 you talk about risk informing the process by which we
- 25 are going to analyze the DOE Yucca Mountain?

- 1 MR. GARRICK: I think so.
- 2 You know, I have never seen -- I have never
- 3 appreciated the debate of deterministic versus
- 4 probabilistic assessments because I don't think that
- 5 you can do a very good probabilistic analysis
- 6 without first doing a very good deterministic
- 7 analysis.
- 8 So I think we are on the same wave length
- 9 as far as these terms are concerned. There is as you
- 10 know a severe language problem in the whole risk
- 11 arena.
- 12 And there is different risk communities
- 13 that have their own sets -- their own language sets.
- 14 The health sciences have their terms, physical
- 15 sciences have their terms and others -- the financial
- 16 world has theirs.
- 17 So this discipline has got a long ways to
- 18 go to reach a level where a lot of those languages
- 19 can be standardized.
- 20 COMMISSIONER DIAZ: Well, that's precisely
- 21 my concern, is that we and the Commission, you know,
- 22 defined years ago what we meant about it and what we --
- 23 you know, how we intend to use the term and what does
- 24 it means and how -- but I'm not sure that this
- 25 carries all the way.

- 1 Are we trying to make that when we talk
- 2 about risk informed, you are actually talking in the
- 3 same --
- 4 MR. GARRICK: Yes, we are trying to avoid
- 5 the concept of risk based as well and I think we are.
- 6 As we get into the serious review of a license
- 7 application, it's going to become clear.
- 8 COMMISSIONER DIAZ: But it is important
- 9 that people realize that there is really not possible
- 10 to do everything on a risk basis, that we need to get
- 11 it, you know, induce evidence based versus just
- 12 assumptions whenever we can to form a better,
- 13 stronger case and what always attract me from
- 14 evidence-based is that in a sense it diminishes the
- 15 degrees of freedom because you are establishing from
- 16 the beginning the base from which you can go forward
- 17 and in many ways it of course decreases the
- 18 complexity but in a matter that you can justify it,
- 19 rather than based from assumption.
- And this was the way you are using it and
- 21 the way you are looking at it?
- DR. HORNBERGER: I will say that the ACNW
- 23 completely embraces the Commission white paper on
- 24 risk that you refer to.
- We are well aware of that.

- 1 It's a wonderful document.
- 2 MR. GARRICK: We thought that was a very
- 3 major break through when the Commission went out on a
- 4 limb so to speak and wrote down what they thought.
- 5 COMMISSIONER DIAZ: Good.
- 6 Then let me get to the next issues and it
- 7 is, you know, you insist and rightly so, on quantification of
- 8 uncertainties and of course I agreed, you know, if
- 9 you have a result, you need to know what the
- 10 uncertainty of the result is.
- 11 Quantification of the uncertainty is
- 12 sometimes more difficult than quantification of the
- 13 result itself and it takes you to the next higher
- 14 intellectual level.
- 15 And I wonder whether you can clarify
- 16 whether, you know, quantification of uncertainty
- 17 carries on to what level of importance?
- 18 You know, I was concerned whether it effect
- 19 a first significancy, second significancy or a third
- 20 significancy. And I think we need to be careful
- 21 because sometimes when we say uncertainty, and it
- 22 gets published. People see it as, you know, you
- 23 don't know what the heck you are doing and actually
- 24 quantification of uncertainty is when you really know
- 25 what you are doing very well.

- 1 And so, could you give me some sense of how
- 2 you dealing with quantification?
- 3 MR. GARRICK: Well, the uncertainty issue
- 4 is the one issue that causes a great deal of anxiety
- 5 among a lot of people because they see with it the
- 6 need for huge quantities of information and data and
- 7 they see it as a statistical concept and we don't
- 8 think it has to be that. We think that the issue of
- 9 uncertainty is something that's important.
- 10 But you need to be reasonable and rational
- 11 about how you approach it and in particular, you
- 12 shouldn't get yourself hung up on quantifying the
- 13 uncertainty of a parameter that doesn't make any
- 14 impact on the result that you are trying to achieve.
- 15 So in practice and from an analysis
- 16 standpoint, the idea has been to do analyses that
- 17 give you some insight relatively quickly as to what
- 18 the most important contributors are and its most
- 19 important issues are and then as you refine that, you
- 20 do that perhaps in a point estimate basis.
- Then you begin to turn up the microscope on
- 22 what you have identified as important and that
- 23 includes the quantifying of the uncertainties. And
- 24 there is a great deal of miscommunication and
- 25 confusion on this whole business of uncertainty

- 1 analysis.
- 2 And I have always thought that one thing we
- 3 ought to know pretty well is what we don't know and
- 4 that's part of the quantification process.
- 5 The problem there is that analysts don't
- 6 like to, you know, admit that they don't know a
- 7 parameter and perhaps very well and they don't like
- 8 to represent the parameter on the basis of what is
- 9 really known about it, which usually means, if it's
- 10 now become a very important contributor to what we
- 11 are trying to calculate, which usually means the
- 12 erection of a property distribution about that parameter.
- So I don't think it's a show stopper in
- 14 terms of utilizing the concepts of quantifying
- 15 uncertainty to support our analyses. I think it's
- 16 more a matter of relying on first principles and
- 17 getting some sense of what is important and screening
- 18 out things that you know are not important and there
- 19 is a lot of progress that's been made in that whole
- 20 arena.
- 21 And then you find yourself generally in
- 22 most cases with not so many things to worry about in
- 23 terms of doing an uncertainty analysis.
- 24 But then you need to do the uncertainty
- 25 analysis because it is the uncertainty that is the

- 1 risk.
- 2 COMMISSIONER DIAZ: How good are we doing
- 3 in this respect?
- 4 MR. GARRICK: I think we are making
- 5 progress.
- 6 I think that we have come a tremendous way
- 7 in the last couple of years, so -- but it is -- but
- 8 it is -- it hasn't stabilized yet as to what the
- 9 approaches are.
- 10 But we are making lots of progress.
- 11 COMMISSIONER DIAZ: Still uncertain?
- 12 MR. GARRICK: Yes.
- 13 CHAIRMAN MESERVE: Commissioner
- 14 McGaffigan.
- 15 COMMISSIONER McGAFFIGAN: Let me try to
- 16 pick up in a different place.
- 17 Some of you had experience with WIPP
- 18 certifications and it strikes me that I saw a lot of
- 19 that process when I was working for Senator
- 20 Bingerman. A lot of it was completed by late 1996.
- 21 I don't remember anything like the
- 22 complexity that is involved in our process, I don't
- 23 remember DOE -- I mean, EPA, excuse me, having a WIPP
- 24 review plan that was encyclopedic in length.
- 25 I don't remember EPA producing a safety

- 1 evaluation report that will probably stretch from
- 2 Karen Cyr to me when the staff finishes it.
- 3 Why is our process so much more complex
- 4 when the standard is the same?
- 5 The standard is a reasonable expectation
- 6 that over a ten thousand year period, the reasonably
- 7 maximum exposed individual will not receive more than
- 8 15 millirems per year and there are a couple of
- 9 others, human intrusion, ground water, but it's the
- 10 same standard.
- So why do we have to have -- you are just
- 12 talking about it, you know, discipline process that
- 13 focuses on the real things.
- 14 How do you figure out in the encyclopedias
- 15 where the real things are? And again striking from
- 16 my experience, EPA was working on the real issues the
- 17 entire time. And the little group that was in New
- 18 Mexico that was for the State of Mexico watching what
- 19 DOE was doing and focused on the real issues and I'm
- 20 not sure whether our process gets focused on the real
- 21 issues.
- 22 So what's different?
- 23 MR. GARRICK: Well, I'm not sure I can give
- 24 you the answers you're looking for, but I feel that I
- 25 have to because I was chairman of the National

- 1 Academy Committee on WIPP, and I lived through about
- 2 ten years of that certification process.
- 3 And by the way, the certification documents
- 4 that ended up being the basis for the repository
- 5 being certified, did cover from there to there in
- 6 terms of the documentation and it went through a
- 7 tremendous amount of evolution as far as --
- 8 COMMISSIONER McGAFFIGAN: That was the
- 9 input documents from DOE.
- 10 The input documents from DOE I think will
- 11 fill this room.
- MR. GARRICK: Let me get to your point.
- 13 I think that first off we are talking about
- 14 an entirely different waste that we are trying to
- 15 dispose of. It's very different in terms of what's
- 16 driving the risk in the case of WIPP.
- 17 It was platonium, it's basically the driver
- 18 of the risk and it has a half life of the 10,000,
- 19 20,000 years.
- Whereas, here what's driving the risk is --
- 21 are four isotopes of iodine, technetium, plutonium,
- 22 which is common to both of them in the colloid form,
- 23 and neptunium and make half lives of those four go
- 24 from 10 to fourth years to 10 of the seventh years. So
- 25 we are talking about an entirely different material.

- 1 COMMISSIONER McGAFFIGAN: Why are the half lives relevant when
- 2 the performance standard is a 10,000 year performance standard?
- We are supposed to make a judgment
- 4 over 10,000 years whether recently maximum exposed
- 5 individual is going to get more than 15 milirem.
- 6 I understand there's a peak dose that's going
- 7 to be out there at a 100,000 to a
- 8 million years, that higher, but for purposes of making a judgment
- 9 about the repository, our standard, which is an EPA
- 10 standard, is a 10,000-year standard.
- So we have a few longer lived -- iodine 129 neptunium
- 12 that are going to go out in a million years and a
- 13 peak contributor in a million years, I guess.
- MR. GARRICK: And the dilutions are much
- 15 different.
- 16 The concentrations are very much different
- 17 between the two.
- The other thing of course is that the WHIP
- 19 did not attempt to utilize the container as a first
- 20 line of defense so much as in the case of Yucca
- 21 Mountain and in the case of spent nuclear fuel and
- 22 defense waste.
- 23 If their drums and the drums deteriorate
- 24 pretty rapidly, and so it is a material that is
- 25 exposed quite differently.

- 1 And then the other thing too is there are
- 2 some people, including the National Academy, that
- 3 believes that a salt repository is much more
- 4 favorable than any other type.
- 5 COMMISSIONER McGAFFIGAN: If you don't want
- 6 to retrieve it.
- 7 MR. GARRICK: Yeah, if you don't want to
- 8 retrieve it.
- 9 But even there, a former member of our
- 10 Committee who was a mining engineers said that
- 11 retrieving is no problem. That's something that can
- 12 be -- it's just a matter of cost.
- So I do think there are a number of
- 14 fundamental differences that make the two cases very
- 15 different.
- 16 COMMISSIONER McGAFFIGAN: But isn't there a
- 17 volume -- I mean, as I say, there may have been a
- 18 large volume of material and I remember parts of it
- 19 that went into the application, but EPA's analysis,
- 20 they didn't have a center for nuclear waste.
- 21 They had a limbed number of staffers who
- 22 over a very limited number of years three or four
- 23 -- it was ten, but in terms of the final product --
- 24 it was three or four, breached their certification
- 25 decision and their final reports were, you know, the

- 1 length of our Yucca Mountain review plan in terms of
- 2 what was presented to us to Congress.
- 3 So have we made this -- are we introducing
- 4 a lot of extraneous factors that, you know, in
- 5 searching for perfection and total system performance
- 6 estimates and whatever?
- 7 DR. GARRICK: Yeah, I want the other
- 8 members to comment on this, too, but I think this
- 9 does relate to an underlying issue, an undercurrent
- 10 that this committee has been for a long time, that we
- 11 really ought to be worrying about the low level and
- 12 intermediate waste than we are, that the public is
- 13 very focused on high level waste.
- 14 There is a -- the coverage of the high
- 15 level waste issues have been far greater than the low
- 16 level waste, the very descriptor itself tend to
- 17 connote images that are not as much of a problem.
- So part of the answer has to be that it is
- 19 probably a bigger problem and a bigger issue than we
- 20 are making it out to be, except that in the case of
- 21 the true waste, the transatlantic waste and the
- 22 repository approach to which disposal is very much
- 23 different than the disposal process that have been
- 24 generally employed for what we classify in this
- 25 country as low level waste, where we put it in

- 1 trenches and vaults just a few feet under the
- 2 surface.
- 3 And that's the one that a lot of the
- 4 experts are saying that we are probably going to have
- 5 to deal with in a more deliberate and systematic
- 6 fashion down the road.
- 7 But I think that part of the answer to what
- 8 you are saying is the perception that transurantic
- 9 waste is a low level waste and that's just not the
- 10 same kind of problem.
- 11 DR. HORNBERGER: Commissioner, I think that
- 12 Milt also has -- let me interject my own answer.
- 13 I didn't serve for years on the WIPP
- 14 Committee, but perhaps what you are driving at is
- 15 that WIPP is a certification and Yucca Mountain will
- 16 be a licensed facility and EPA does not have the
- 17 licensing board --
- 18 COMMISSIONER McGAFFIGAN: That's part of it
- 19 perhaps.
- 20 But EPA -- and that may be related to the
- 21 degree they did not have to document every microscopic element of
- 22 their decision.
- 23 MR. GARRICK: Commissioner, there is one very different
- 24 thing that people might argue is why should WIPP be
- 25 put through that when Yucca Mountain is not and that

- 1 is that WIPP has to be recertified every five years
- 2 which is a very short time cycle and they have to go
- 3 through some form of this exercise. And they are
- 4 going through it right now about because three of the
- 5 five years are up -- every five years.
- 6 Now, whether or not that will continue, I
- 7 don't know.
- 8 But that's certainly a complexity.
- 9 MR. LEVENSON: Well, if you don't know it
- 10 by now, you will find out that you have a committee
- 11 that doesn't necessarily agree on everything.
- 12 I was on the WIPP committee with John for a
- 13 few years and I'm on the currently on the current
- 14 committee and including things like this
- 15 recertification -- the recertification is quite a
- 16 different thing and the only thing it requires is to
- 17 assure that there is no new information that would
- 18 void what you have done in the past. You don't have
- 19 to make lots of new arguments.
- 20 I think a significant difference in what's
- 21 being done arises from the regulations and the
- 22 policies of the agencies involved.
- 23 I don't think there is orders of magnitude
- 24 different between tons of plutonium separated from
- 25 fission products and plutonium still with fission

- 1 products which could have solved got a lot of
- 2 different things.
- 3 But I think the bulk of the differences do
- 4 not arise from technical resources at all, but from
- 5 legal regulatory tradition and what have you.
- 6 COMMISSIONER McGAAFIGAN: Thank you.
- 7 Let me go on to another question and it may
- 8 parallel something that Commissioner Dicus asked
- 9 about.
- 10 You know, as I said earlier, our goal is to
- 11 figure out at the end of this licensing process
- 12 whether the reasonable maximum exposed individual
- 13 over a 10,000-year period is going to receive 15 milirem or
- 14 less and it strikes me some of your push for perfection
- 15 in the performance assessment may or may not be
- 16 relevant to that.
- 17 I mean, this group has a history, I mean,
- 18 we had a letter from your on part 70 back in January,
- 19 the staff did -- where you continued to push for
- 20 using probabilistic risk assessments for the ISA.
- 21 And we made a policy decision as a Commission that
- 22 we were not going to require PRAs for ISAs, that
- 23 the tools short of a full blown PRA for a chemical facility, we are going to
- 24 be adequate to our regulatory purpose. And I'm just
- 25 wondering whether your being, you know, -- you are

- 1 seeking perfection standard where the standard is a
- 2 reasonable expectation standard and you are also
- 3 wanting to quantify risk.
- 4 It doesn't say it's a reasonable
- 5 expectation with an error band of X.
- We didn't get into trying to quantify risk
- 7 nor did EPA.
- 8 So aren't you pushing us into space -- it's
- 9 well beyond anything that requires compliance with
- 10 our rules.
- 11 DR. GARRICK: I think that's a good question
- 12 and I also want to point out that the letter that you
- 13 are referring to was a joint ACRS, ACNW letter.
- 14 COMMISSIONER McGAFFIGAN: We have got a
- 15 bunch theoreticians in both groups of people in the
- 16 group.
- 17 I wouldn't want to spend a sum of money --
- 18 MR. GARRICK: I don't that that's what's
- 19 happening.
- 20 I don't think the PRA thought process has
- 21 any intention of achieving level of precision that are
- 22 unreasonable and I think one of the things that we
- 23 haven't learned how to do is what I would call
- 24 simpler PRA's, PRA's that don't involve the
- 25 complexity, for example, of a nuclear power plant and

- 1 all of the activities that go on subsequent to a melt
- 2 down and accident progression analysis and
- 3 complexities that arise from trying to model
- 4 something such as that.
- Now, I have seen PRA's done on systems that
- 6 can be done rather efficiently and with time probably
- 7 as efficient in the integrated safety assessment
- 8 process because the integrated safety assessment
- 9 process involves many of the tasks associated with
- 10 the PRA.
- 11 They do scenario analysis, they address the
- 12 issue of frequency of occurrence and at the scenario
- 13 level.
- 14 They just don't integrate --
- 15 COMMISSIONER McGAFFIGAN: They don't make a
- 16 judgment. I don't want to go too much more here and
- 17 leave it. But you guys say I don't have a total risk
- 18 number then because I have --
- 19 MR. GARRICK: I think the concept of
- 20 uncertainty analysis allows you to have a great deal
- 21 of flexibility on your risk assessment.
- 22 COMMISSIONER McGAFFIGAN: But I think both
- 23 you ACRS in that area and I'm afraid you might be
- 24 doing in this area and pressing beyond the rules --
- 25 beyond what is required by the rules by any

- 1 reasonable interpretation of the rules. And I worry
- 2 about that and I worry about how costly it's likely
- 3 to be.
- In the case of ISA I think the staff answered you and I'm in
- 5 agreement with the staff's answer.
- 6 Here, we have this tremendously complex
- 7 process, we have a tremendously complex task before
- 8 us in regulatory space, even if we tried not to make
- 9 it complex, then I think at times we make it more
- 10 complex.
- 11 But I used my fifteen minutes.
- 12 But I have other questions but I think I'll
- 13 ask them another day.
- MR. GARRICK: I would only end that with
- 15 the comment that I think the whole idea of risk is
- 16 not to make it more complex, but to make it simpler
- 17 and I think we have a
- 18 great deal to learn about the application of the
- 19 risk assessment thought process on nonreactor
- 20 facilities.
- 21 And we are beginning to see that and we
- 22 keep putting the reactor template on other facilities
- 23 and that's not the way to do it.
- 24 DR. HORNBERGER: And for the record, I
- 25 would just like to say our intent is not to strive

- 1 for perfection as you said.
- 2 I really don't think that that's an issue
- 3 at all.
- 4 In fact, we are much in favor of fairly
- 5 simple models to address these questions.
- 6 I personally believe that our push in terms
- 7 of the Yucca Mountain really aims at making sure that
- 8 we -- that the NRC and the staff will get the
- 9 information that it needs to make a decision and it's
- 10 actually beyond my comprehension that this will be
- 11 doable unless we have a reasonable assessment of the
- 12 risk to the facility.
- 13 I just don't think it's going to be able to
- 14 be done with confidence without that.
- 15 So technically, maybe we are pushing a
- 16 little beyond the letter of the regulation, but I
- 17 don't think we are pushing beyond the spirit of the
- 18 regulation.
- 19 It's not our intent, certainly.
- 20 CHAIRMAN MESERVE: Commissioner Merrifield?
- 21 COMMISSIONER MERRIFIELD: Thank you,
- 22 Mr. Chairman.
- Our Chairman is given an opportunity where
- 24 various Commissioners get to go first and that means
- 25 we are in rotation, which means in this particular

- 1 circumstance I am last.
- 2 It also means that most of the questions
- 3 that I have wanted to ask have already been asked.
- 4 Now, Commissioner McGaffigan may have more.
- 5 He wants to ask -- but given the time, I'm not going
- 6 to give my time back to him.
- 7 For the sake of our audience both here and
- 8 on video screen, I would adhere to that request.
- 9 I have got a couple of comments I want to
- 10 make and there is one area I want to approach a
- 11 little bit.
- 12 First comment is I do want to thank the
- 13 ACNW for being generous in terms of its time and
- 14 flexibility of its time as well as the nature of its
- 15 presentation in order to accommodate what the
- 16 Commission desires and perhaps earlier in the year
- 17 you had some thought about a different presentation,
- 18 but this one for me has been useful.
- 19 So I want to thank you for that.
- The other thing I would want to
- 21 acknowledge, you went through some pains today and I
- 22 appreciate the comment earlier about trying to make
- 23 sure we not get down into the use of too many
- 24 acronyms.
- 25 I made that comment for a variety of

- 1 reasons.
- 2 One of which I think most importantly, now
- 3 that we are videostreaming all of our meetings such
- 4 as this and given the importance of what we discussed
- 5 today, particularly, the individuals out in Nevada
- 6 who may be viewing this on their computer screens, I
- 7 think it's important for us to remember that audience
- 8 in the presentation not merely the folks sitting here
- 9 at the table.
- 10 So while there was some merriment to that,
- 11 there was some seriousness to the purpose.
- 12 I guess my question is, and we -- Dr. Wymer
- 13 went into the issue of research and anticipatory
- 14 research and this is the one we have debated guite
- 15 frequently here at this table and outside of this
- 16 table over the course of the last few years and I
- 17 have always been somewhat troubled by that particular
- 18 term.
- 19 I think a different way of looking would be
- 20 user directed versus nonuser directed research
- 21 because I would hope that irrespective of whether it
- 22 was NRR, NMSS, or Research that came up with the
- 23 notion of a particular item needed to be researched and
- 24 hopefully would have some degree of anticipation in
- 25 it.

- 1 So I think anticipatory research is
- 2 somewhat of an ill-fitting term.
- 3 At the end of the day, it seems to me
- 4 whether it is defined by the user, I.E., NRR, NMSS or
- 5 a nonuser defined, I.E, through research, at the end
- 6 of the day, it should be directed toward the
- 7 Commission making decisions.
- 8 Is the research going to result in the
- 9 Commission being able to make a regulatory decision?
- 10 And what troubles me a little bit and I
- 11 know where you're coming from in your question.
- 12 You used a couple of examples.
- Gee, here are some things if DOE does X, we
- 14 should be thinking about Y.
- And when we start getting into that territory,
- 16 it's difficult to bound what all those possible
- 17 things are, and I think it is very dangerous
- 18 territory for the Commission to try to read the mind
- 19 of the Department of Energy.
- 20 And so I would -- I'd like you to think
- 21 about that a little bit in terms of -- and perhaps
- 22 you may want to come back to the Commissioner at some
- 23 later point.
- 24 I think it's useful as you review our
- 25 research program to try to help us identify either

- 1 some areas where the Commission will have to make a
- 2 decision down the line and for which we will need
- 3 additional research versus things that are more
- 4 curious in nature that may or may not get us there.
- 5 And so I don't know if you want to follow
- 6 up on that one at all.
- 7 But we have -- the point I want to make, we
- 8 have a limited amount of money.
- 9 The five of us have to make hard budget
- 10 decisions and we have got to make budget decisions
- 11 based on things that may potentially come in front of
- 12 us and in simply answering permeation of various
- 13 questions isn't going to help us make those hard
- 14 budget decisions.
- MR. WYMER: We didn't mean to take the
- 16 position, I certainly didn't, that we want to decide
- 17 or can decide what we call anticipatory research
- 18 might be.
- We think that's something that the staff is
- 20 best qualified to do. They are closer to the
- 21 problems and understand what the NRC's needs are,
- 22 perhaps better than we do, they are there day after
- 23 day, day in and day out. So they are closer to the
- 24 details.
- 25 But nonetheless, there should be some

- 1 discretionary money to look forward to some of things
- 2 that are not obvious needs but are probable needs.
- 3 And admittedly, it's a very tough decision
- 4 in light of limited resources to make the decision,
- 5 but there should be some ability to reach out to
- 6 areas, several areas like this, just to cover yourself
- 7 and be sure that you are not caught up short and you
- 8 have to carefully examine where NRC is going, what's
- 9 coming, what's on the horizon, what problems areas
- 10 are likely to rise.
- Some day the repository will drop below the
- 12 horizon and there will be other things coming up.
- 13 And at that time it would be desirable to have some
- 14 system in place, some method in place to decide what
- 15 problems are likely out there which are not
- 16 certainties but which are probable or there is a
- 17 reasonable expectation that there might be a problem
- 18 there and just spend some modest resources in
- 19 addressing those, especially in cases where if the
- 20 problem does arise, at the time it arises for sure,
- 21 there is not enough time left to get the information that
- 22 you need.
- 23 It is a very tough line, a tough decision.
- We understand that.
- 25 But there should be some allowance made for

- 1 a little of that.
- 2 I certainly understand what you're --
- 3 COMMISSIONER MERRIFIELD: I'm going to come
- 4 back to you on that just because one doesn't want to
- 5 have too much about words, but the notion of
- 6 discretionary monies.
- 7 I'm going to jump on that one and you got
- 8 to give me a second.
- 9 Congress does not want us to have
- 10 discretionary monies. We are not going to have a
- 11 kitty or a pool -- we are not going to have a kitty
- 12 of money of research to do things they may think may
- 13 be interesting to do.
- 14 If our Office of Research or any of our
- 15 offices identify areas that they think we ought to
- 16 look into because we need to make a regulatory
- 17 decision and they come up with a good explanation why
- 18 they should do it, then, yes, this Commission should
- 19 fund those kind of things.
- 20 This Commission has done that when we have
- 21 been provided with an articulate reason by the Office of
- 22 Research why they should do that.
- 23 And this is something for future
- 24 consideration, if there are items that our offices
- 25 have missed for which you think the Commission would

- 1 have to make a regulatory decision or if our Office of Research
- 2 or otherwise are not doing the research efforts necessary to help
- 3 us make that decision, then I think it will be my
- 4 expectation that you will provide us with specifics
- 5 about what those are. And you don't need to respond
- 6 to that.
- 7 MR. WYMER: And that is a judgment call, in
- 8 some cases whether or not this area meets the
- 9 criteria to make the expenditure funds in those
- 10 areas.
- 11 COMMISSIONER MERRIFIELD: Well, that's the
- 12 hard budget choice that we get to make.
- But you get to make the recommendations.
- MR. WYMER: Certainly any research like
- 15 that that you suggest has to pass certain credibility
- 16 tests.
- 17 There has to be something that there is a
- 18 reasonable expectation that there will be needed.
- 19 But it doesn't have to absolutely be proved that it
- 20 would be needed. That is an anticipatory research.
- 21 MR. HORNBERGER: If I could give just a
- 22 very quick, different spin.
- As you probably know,
- 24 Commissioner Merrifield, former Commissioner Ken
- 25 Rogers when he was a Commissioner, articulated a

- 1 somewhat different position on research within the
- 2 NRC.
- 3 And his view, if -- well, I should be careful.
- 4 My interpretation of his view -- I don't
- 5 want to speak for Commissioner -- former Commissioner
- 6 Rogers, was that he thought that the NRC to make
- 7 informed decisions it was absolutely essential that
- 8 they have research, credible research venture and to
- 9 keep researchers happy, one has to allow them to do a
- 10 certain amount of anticipatory research and I think
- 11 that's another side of the argument that's perhaps
- 12 more pragmatic than identifying individual research topics.
- 13 COMMISSIONER MERRIFIELD: I had the
- 14 discussion with former Commissioner Rogers and I
- 15 think there is a way of achieving both by having --
- 16 and we did.
- We need to keep the high quality, very high
- 18 quality research people, keep them interested in
- 19 doing useful things.
- 20 But we are not in a position -- my personal
- 21 view and I can't speak for any of the former members
- 22 of this Commissioner, it is not the expect of
- 23 Congress since I been here that we are going to be
- 24 funding research projects for the sake of funding
- 25 research projects.

- 1 And my standpoint is, you know,
- 2 Commissioner Rogers' background is working is
- 3 university research and so that colors his
- 4 recommendations. And my background is having worked
- 5 on Capitol Hill for 13 years and that colors my
- 6 background.
- 7 So you can take either one.
- 8 CHAIRMAN MESERVE: I would like to thank you
- 9 all for a very helpful briefing.
- 10 As always, we have had a spirited exchange.
- That's the conclusion of the presentation.
- We have gained a great deal from that and
- 13 we hope it was helpful to you as well.
- With that, we're adjourned.
- 15 Thank you.
- 16 (Concluded at 11:45 a.m.)

17

18

19

20

21

22

23

24

25