

Advanced Reactors

John E. Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies Office of Nuclear Energy U.S. Department of Energy

April 22, 2013

Advanced Reactor Technologies

Nuclear Energy

Research and Development that supports safe, economical and proliferation resistant advanced reactor technologies (Generation IV)

Major Thrusts:

- Advanced reactor technologies and components
- Development of a regulatory framework
- Development of industry codes and standards
- Development and maintenance of critical expertise and facilities
- International collaboration

Programs:

- Advanced Small Modular Reactor R&D (AdvSMR)
- Advanced Reactor Concepts (ARC)
- Next Generation Nuclear Plant (NGNP)*

Advanced SMR Program

Nuclear Energy

- Performs research that supports licensing and deployment of advanced non-light water SMR designs
- Focus Areas:
 - Instrumentation, Controls and Human-Machine Interface
 - Materials, Components and Technology Development
 - Safety, Regulatory Framework, and Safeguards
 - SMR Assessments (Performance and Economic Analysis and Evaluation)

Advanced Reactor Concepts

Nuclear Energy

Research to develop advanced reactor technologies and subsystems to improve nuclear power performance including sustainability, economics, safety and proliferation resistance

Focus Areas:

- Fast Reactor Research and Development
- Advanced Energy Conversion
- Fluoride Salt High-Temperature Reactor (FHR) Concept
- International Collaboration
 - Bilateral and tri-lateral agreements
 - Generation IV International Forum (GIF)
- Industry Engagement (Technical Review Panel Process, multiple application of technologies)

Supercritical CO₂ Brayton Cycle

Next Generation Nuclear Plant

Nuclear Energy

- Demonstrate high-temperature gas-cooled reactor (HTGR) technology to produce electricity and high temperature process heat
- Focus Areas:
 - Provide non-electric applications
 - Fuels Development R&D
 - Materials Development R&D
 - Design and Safety Methods Development
 - NGNP Licensing Framework Development

Kernel Forming and Drying

Industrial Scale 6 inch CVD Coating (2 kg charge)

Dry Mix and Jet Mill Matrix

Hot Press

Compact

Carbonize + Heat Treat in a Sequential Process

Advanced Reactor Experimental Facilities

Nuclear Energy

Facilities that support testing of multiple advanced reactor concepts

- Mechanisms Engineering Test Laboratory (METL) (Sodium) – ANL
- Delta Loop (Lead Bismuth) LANL
- Advanced Test Reactor (ATR) INL

ATR

METL

DOE & NRC Areas of Coordination

Nuclear Energy

NGNP Licensing Framework

- NRC/DOE cooperation supported by 2005 EPACT
- NRC/DOE MOU to support licensing and R&D
- NRC approved applicable portions of NGNP Quality Assurance Program Description

High Temperature Test Facility

- Co-Funding Cooperative Agreement (CA) university consortium (9/08).
- Completion scheduled for summer of 2013 and followed by experiments

HTTF at OSU

HTGR Reactor Vessel Concept

International Collaboration via Generation IV Program

Nuclear Energy

	0		*	*‡									**** **** ****
Generation IV Systems	Argenti na	Brazil	Canada	China	France	Japan	Korea	Russia	South Africa	Switzer - Iand	U.K.	U.S.A.	EU
Sodium- cooled Fast Reactor (SFR)				0	0	•	0	0				0	0
Very-high Temperature Gas-cooled Reactor (VHTR)				•	0	0	0			0		0	0
Gas-cooled Fast Reactor (GFR)					•	0				0			0
Supercritical -water cooled Reactor (SCWR)			0			0		0					•
Lead-cooled Fast Reactor (LFR)						0		0				w w	0
Molten Salt Reactor (MSR)					0			咳 咳				しょう	0

Chairing country O Participating Country
Seever Country