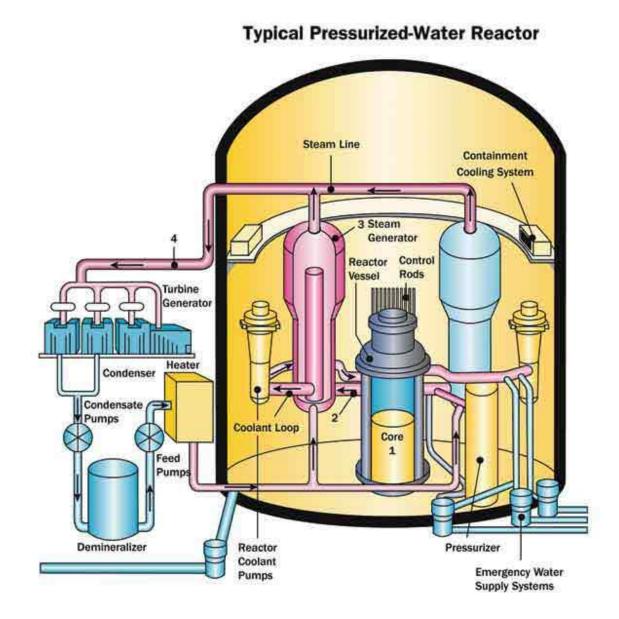


United States Nuclear Regulatory Commission

Protecting People and the Environment

Steam Generator Tube Degradation


Bill Borchardt Executive Director For Operations February 7, 2013

Agenda

- Opening Remarks
 - Bill Borchardt, Eric Leeds
- Accident Analysis
 - Chris Jackson
- Operating Experience/Oversight
 - Ken Karwoski

Accident Analysis

Chris Jackson Branch Chief Reactor Systems Branch, NRR

Safety Analyses

- Final Safety Analysis Report
- Anticipated Operational Occurrences and Accidents
- Objectives for Design Basis Accidents
 - Fuel Design Limits
 - RCS Pressure Boundary
 - Containment Design
 - Dose Consequences

Safety Analyses

- Steam generator tubes transfer heat from the reactor to the turbine
- Steam generators form a barrier between the reactor coolant and steam system

Safety Analyses

- Steam generators provide an input to many important accident analyses
 - RCS flow, heat removal, steam pressure, core inlet and exit temperature, power
- Failure of steam generator tube is an accident (SGTR)

Steam Generator Tube Rupture is a Design Basis Accident

SRP Section 15.6.3

- Dose Perspective
- Not limiting
 - Fuel Design
 - Containment

Steam Generator Tube Rupture is a Design Basis Accident

- Reactor Operators Play an Important Role in plant Recovery
- Operators are Trained and Tested on this event

Ginna Event

- In 1982 a tube rupture occurred at Ginna
 - Steam side of steam generators filled with water
 - Water entered the steam lines
 - Water was discharged through steam relief valves into atmosphere

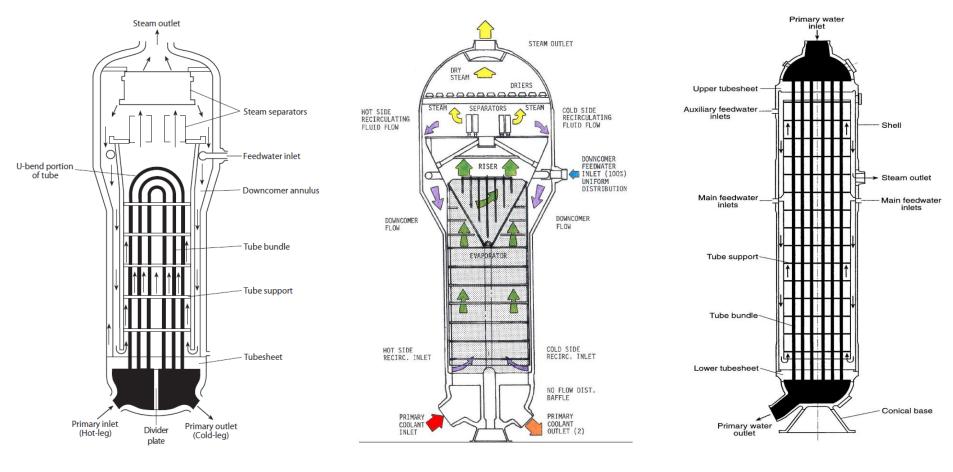
Ginna Event

- NRC issued GLs 1982-07, 08, 11
- Licensees took action through Owners Group initiative to improve SGTR recovery capability

- WCAP-10698-P-A (ML071430455)

Safety Analyses - Conclusion

- SGTR is not a limiting event from a fuel damage or containment pressure perspective
- SGTR accident analysis demonstrates that dose consequence are within the regulatory limit

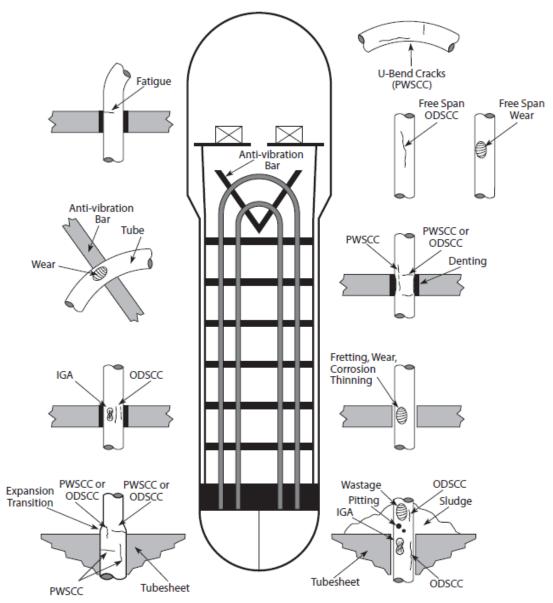

Steam Generator Operating Experience and Oversight

Ken Karwoski Senior Level Advisor Division of Engineering, NRR

Steam Generator Designs

- 2 major types of steam generators
 - Recirculating: "U-shaped" tubes
 - Once-through: Straight tubes
- Steam generator tube materials
 - Mill Annealed Alloy 600 (600MA)
 - Thermally treated Alloy 600 (600TT)
 - Thermally treated Alloy 690 (690TT)

Recirculating and Once Through Steam Generators

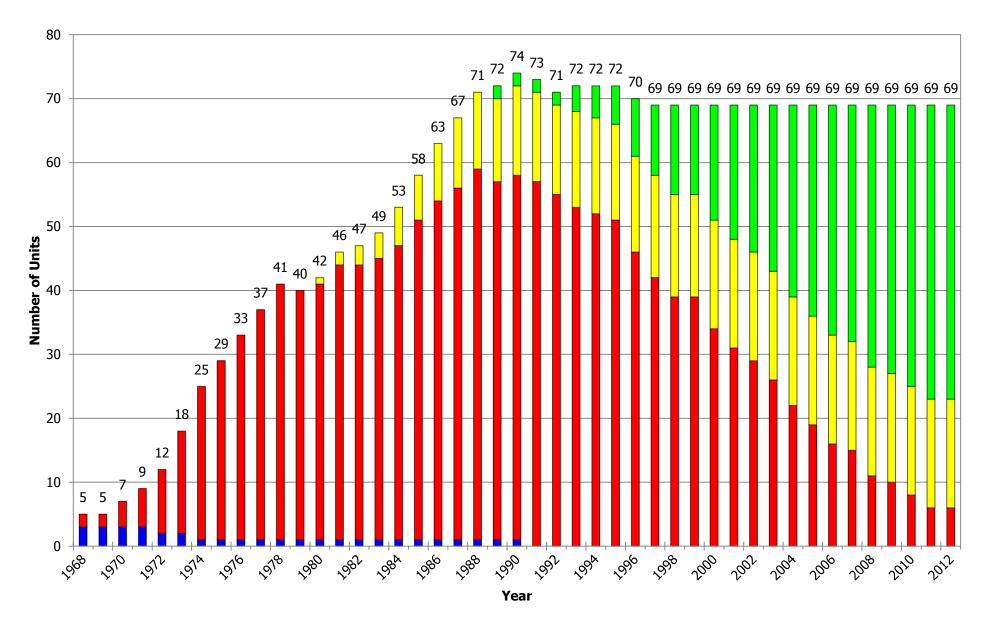


Recirculating

Recirculating

Once Through

Types of Tube Degradation


Managing Tube Degradation

- Degradation has led to industry proposals to implement various tube repair criteria and methods
- Operating conditions and maintenance can affect steam generator lifetime
- Staff's focus is on tube integrity

Steam Generator Replacements

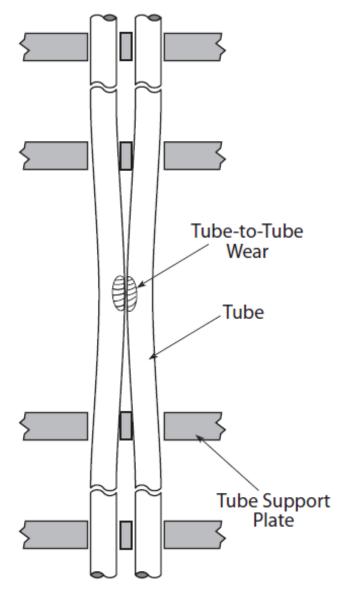
- 57 of 69 units have replaced
- Incorporated design enhancements to address degradation
- Replaced using 10 CFR 50.59 process since 1989
 - Regional Inspections

Units in Operation: 1968-2012

■ 304SS ■ 600MA □ 600TT ■ 690TT

Cracking in Alloy 600TT Tubing

- First instance of cracking detected in 2002 (2nd generation tube material)
- Since 2002, cracks detected at several locations along tube length
- Number and severity of cracks, to date, has been minor


Steam Generator Tube Wear

- Detected in both original and replacement steam generators
- Number of indications of detected wear varies from none to thousands
- Severity of wear determines the safety significance not the number of indications

Tube-to-Tube Wear - Replacement Once Through Steam Generators

- Indications attributed to tube-totube contact in Fall 2011
- Wear is shallow and slow growing
- Root cause evaluation underway

Tube-to-Tube Wear – Once Through Steam Generators

San Onofre Tube Wear

- Mitsubishi replacement
 recirculating steam generators
- Unit 2 wear
 - Loose parts/foreign objects
 - Tube supports and retainer bar
 - Tube-to-tube wear
- Unit 2 operated full cycle and maintained tube integrity

San Onofre Tube Wear (cont.)

- Unit 3 shut down half way through cycle due to primary-to-secondary leakage
- Unit 3 wear
 - Tube supports and Retainer bar
 - Tube-to-tube wear
- 8 tubes did not have adequate tube integrity in Unit 3

Regulatory Framework

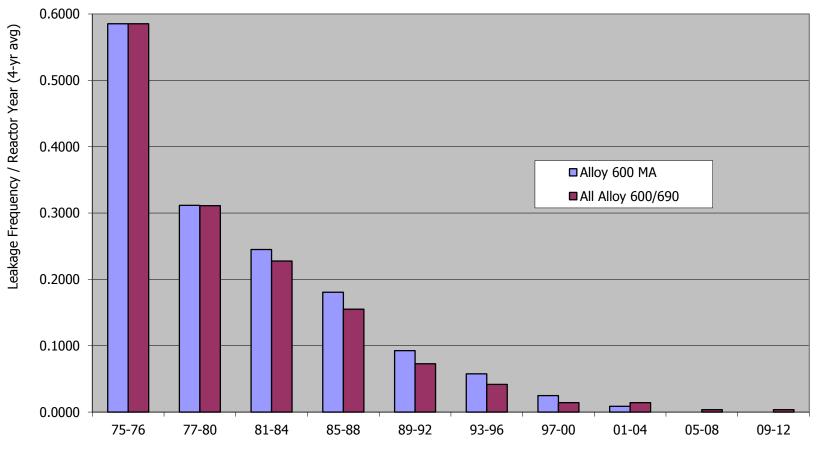
- Inspection/Repair of tubes governed by plant technical specifications
- Original technical specifications developed in 1970s
- Improved specifications are risk informed, performance based
- All plants have adopted

NRC Oversight/Monitoring

- Multi-Tiered approach
 - Regional activities
 - Headquarters activities
 - Industry interactions
- Public Transparency

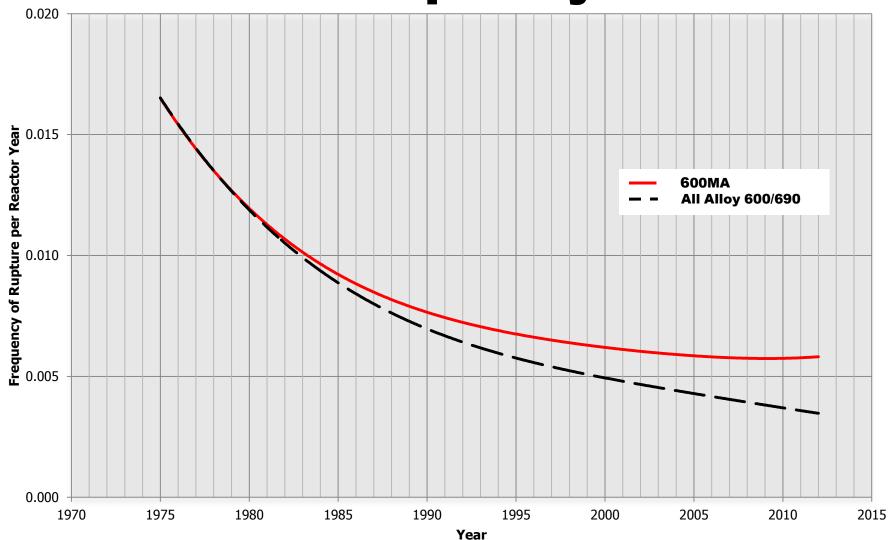
NRC Research Activities

- Steam generator research
 performed since 1970s
 - Inspection
 - Integrity
 - Corrosion
- International Steam Generator
 Tube Integrity Program


Industry Program

- Industry responded to emerging degradation
- Industry standardized programs for addressing steam generator issues
 - Water Chemistry Guidelines
 - Inspection and Integrity Guidelines
 - Primary-to-Secondary Leakage
 Guidelines

Steam Generator Performance


- Performance has improved since 1970s
- Prior to 2012 last time a plant did not have adequate tube integrity was 2003

Forced Outage Frequency: Primarv-to-Secondarv Leakage

Year

Steam Generator Tube Rupture Frequency

Defense-in-Depth

- Design
- Design Basis Accident
- Operator Training
- Tube Inspections and Assessments
- Operational Programs
- Risk Significance

Summary

- Steam generator tubes may degrade
- Degradation can be managed
- Staff monitors steam generator operating experience
- Staff's focus is on tube integrity
- Performance has improved

Acronyms

- avg. average
- CFR Code of Federal Regulations
- cont. continued
- GL generic letter
- IGA intergranular attack
- MA mill annealed
- NRC Nuclear Regulatory Commission
- NRR Office of Nuclear Reactor Regulation
- ODSCC outside diameter stress corrosion cracking
- **PWR** pressurized water reactor

Acronyms (cont.)

- **PWSCC** primary water stress corrosion cracking
- RCS reactor coolant system
- SG steam generator
- SGTR steam generator tube rupture
- SRP standard review plan
- SS stainless steel
- TT thermally treated
- yr year