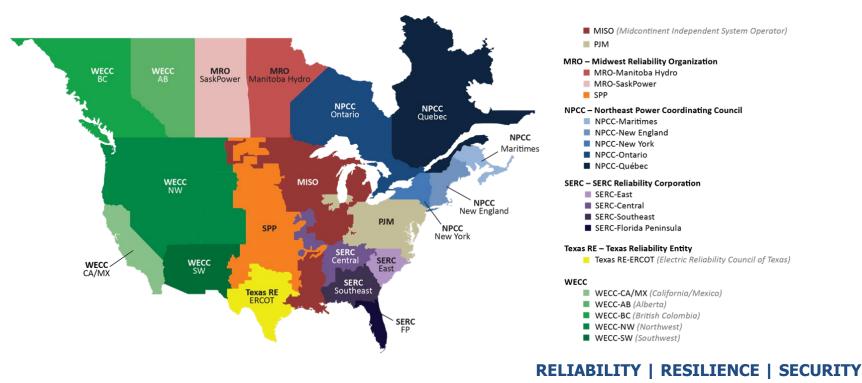
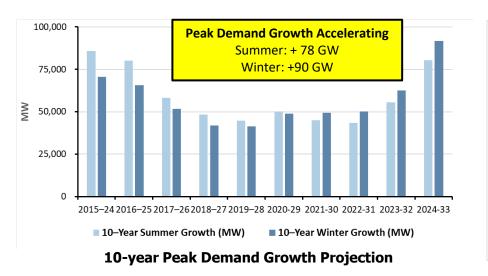
NERC

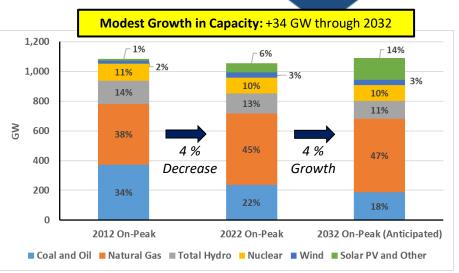
2023 Long-Term Reliability Assessment Overview


Mark Lauby, Senior Vice President and Chief Engineer Joint Meeting of the FERC and NRC January 25, 2024

Public


- 10-year assessment of resource capacity and energy risks
- Uses industry's demand and generation forecasts and transmission projections
- Coordination and Review with Regions and Stakeholders
- Includes emerging issues that can impact future reliability

Summary


Past...Present...Future

Demand

- Highest demand and energy growth rates in recent years
- Northeast and Southeast become winter peaking in late years
- New load behavior is changing daily load profile, challenges operational forecasting

Public

Generation On-Peak Capacity

<u>Supply</u>

- Total capacity growth of 34 GW over next 10 years (additions – retirements)
- Most additions are Solar (69 GW)
- Retirements: 83 GW through 2033
- Anticipated additions and
 retirements reflect current planning
 RELIABILITY | RESILIENCE | SECURITY

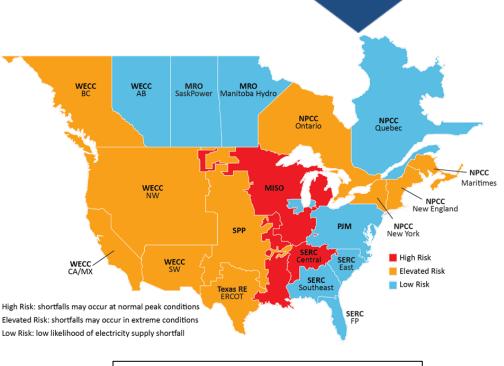
NERC

Resource capacity and energy risks are assessed for Years $1 - 5^*$ in all assessment areas using the following criteria:

- Supply shortfall can occur in forecast conditions
 - Historical peak demand and resource performance
- Indicators
 - Reserve margins fall below RML
 - Loss of Load Expectation (LOLE) exceed 1-day-in-10 years
- Extreme conditions are also likely to result in shortfall

Elevated Risk

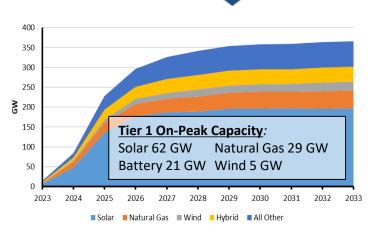
- Supply shortfalls are likely in extreme conditions only
 - Extreme high demand or abnormal low resource output
- Indicators
 - LOLE expected but less than 1day-in-10 years
 - Unserved energy expected
 - Supply risks found in studies of extreme conditions


*Resource adequacy trends are reported for years 6 - 10

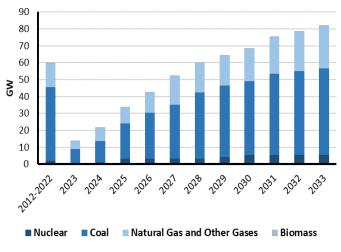
2023 LTRA Findings

- Growing number of areas face capacity and energy risks in the next 10 years
 - Generator retirements expected before sufficient replacement resources will be in service
 - Energy risks identified in areas where future resource mix is not balanced between dispatchable and variable energy resources
- Higher demand forecasts, additional generator retirements, and changing resource mix contribute to expanding risk area

Public



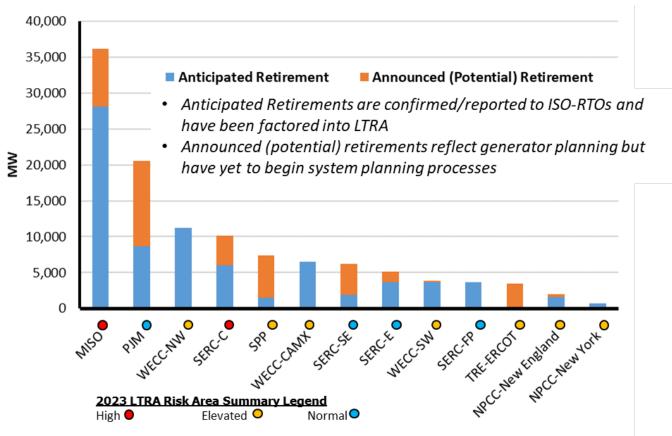
Risk Area Summary 2024-2033



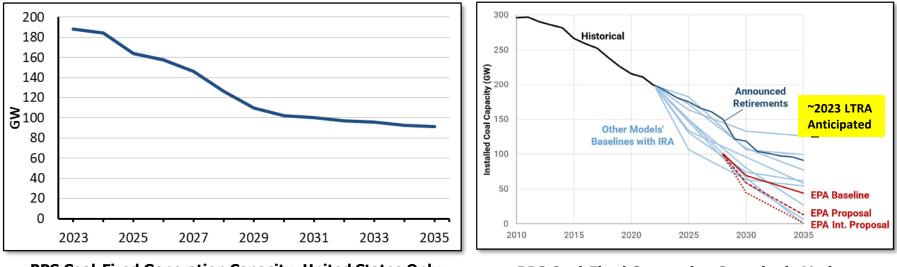
Changing Resource Mix

- Resource changes in the LTRA Risk Assessment (through 2033):
 - 117 GW of new resource additions (Tier 1)
 - 83 GW of fossil-fired and nuclear generator retirements
 - Reflects additions and retirements with the highest confidence
- More resources in early planning (Tier 2)
 - Solar, battery, and wind
- More fossil-fired retirements are likely
- Imbalance of generator retirements and resource additions challenges the ability to serve growing demand

Tier 1 and 2 Resource Additions

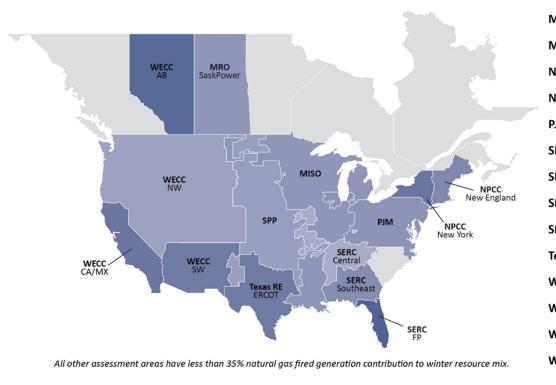

Anticipated Generation Retirement Capacity

6


 Many areas where future capacity and energy shortfalls are projected are facing additional generator retirements

Anticipated and Potential Generator Retirement Capacity through 2033

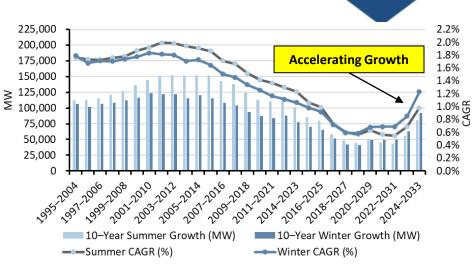
- Proposed EPA regulations under Clean Air Act Section 111 to address carbon emissions from fossil-fired generators would result in an increase in generator retirements
- Regulations that have the potential to accelerate generator retirements or restrict operations must provide flexibility to support grid reliability



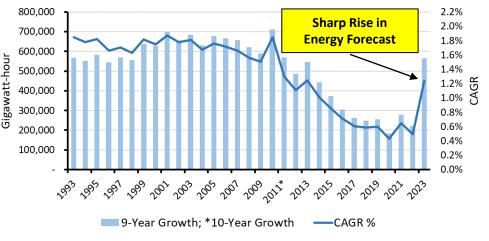
BPS Coal-Fired Generation Capacity in Various Scenarios–United States Only (Source: EPRI Comments on US EPA GHG Rule, 2023) RELIABILITY | RESILIENCE | SECURITY

Public

- Natural gas fuel is essential for winter reliability
- Weather-related generator and fuel system failures can widen the reliability impact of extreme winter events


	Natural-Gas-Fired Generation	
	Peak Winter Capacity	Contribution to Total Winter Resource Mix
MISO	67.5 GW	46%
MRO-SaskPower	2.1 GW	46%
NPCC-New England	17.3 GW	54%
NPCC-New York	24.5 GW	66%
MI	84.9 GW	47%
SERC-Central	22.7 GW	44%
SERC-Florida Peninsula	50.6 GW	79%
SERC-Southeast	31.5 GW	51%
SPP	27.4 GW	41%
exas RE-ERCOT	54.2 GW	62%
WECC-AB	11.4 GW	75%
WECC-CA/MX	39.9 GW	65%
WECC-NW	31.0 GW	39%
WECC-SW	18.2 GW	62%

Natural-Gas-Fired Generation Capacity Contributions to 2023–2024 Winter Generation Mix RELIABILITY | RESILIENCE | SECURITY



Rising Demand and Energy Needs

- Sharp Rise in Demand and Energy Growth Forecasts since 2022 LTRA
- Forecasts are being shaped by electrification, growth in electric vehicles (EV), and commercial/industrial loads
- Resource and transmission system planners must anticipate potential for accelerating growth

10-year Summer and Winter Peak Demand Growth

Net Energy for Load Growth

The 2023 LTRA contains actionable recommendations to meet accelerating demand growth as grid transformation continues

- 1. Add new resources with needed reliability attributes, manage retirements, and make existing resources more dependable
- 2. Expand the transmission network to deliver supplies from new resources and locations to serve changing loads
- 3. Adapt BPS planning, operations, and resource procurement markets and processes for a more complex power system
- 4. Strengthen relationships among policymakers and reliability stakeholders

Public