MIRION TECHNOLOGIES

Sensing Systems Division

Fission Counter Chamber Dual-Range

1.4 to 1.4 x 10^5 nv Counter Range 6 x 10^5 to 1.4 x 10^{10} nv Chamber Range 300°F (150°C) Operation 0.7 cps/nv Counter Sensitivity 1.4 x 10^{-13} A/nv Chamber Sensitivity Meets MIL-S-901 & MIL-STD-167 (Type 1)

Tube Number: WL-6376A

Application

The WL-6376A fission chamber is designed to detect thermal neutrons in the range of 1.4 to 1.4×10^5 neutrons/cm2/second when operated as a counter and in the range of 6×10^5 to 1.4×10^{10} neutrons/cm2/second when operated as a chamber. The detector is extremely rugged in construction, meeting MIL-S-901 for shock and MIL-STD-167 (Type 1) for vibration, and may be operated in any position at temperatures up to 300°F (150°C).

The WL-6376A is constructed of aluminum, with high purity alumina ceramic insulators throughout, including those used in the type HN connector. In typical operation as a fission counter the WL-6376A has a thermal neutron sensitivity of approximately 0.7 counts/neutron/cm² throughout a wide range of applied voltage. When connected for service as an ionization chamber, the thermal neutron sensitivity is approximately 1.4×10^{-13} amperes/neutron/cm²/second with a gamma sensitivity of approximately 4.2×10^{-11} amperes/R/hour.

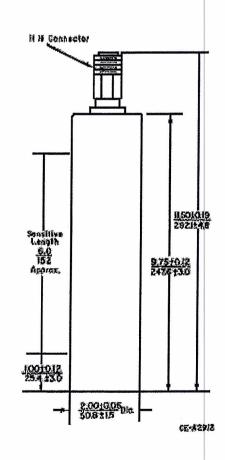
Mechanical

Diameter	(50.8 mm) 2.00 Inches
Overall Length	(292 mm) 11.5 Inches
Approximate Sensitive Length	(152) 6 Inches
Net Weight	
Shipping Weight	(5.4 kg) 12 Pounds

Materials

Outer Case	Aluminum
Electrodes	Aluminum
Insulation	A1 ₂ 0 ₃
Sensitive Material:	
Amount of U235 in U308	
Thickness	2.0 mg/cm2
Gas Fill	Ar-N
Gas Pressure	

Impedance


Resistance (minimum) (At Max.	к. Тетр.)	10 ⁻⁹ Ohms
Capacitance		150 pF

Maximum Ratings

Voltage between Electrodes	1000 Volts
Temperature	(150°C) 300 °F
External Pressure (Note 1)	(7.0 kg/cm ²)100 psig
Thermal Neutron Flux	3 x 10 ¹⁰ nv

Typical Operation as a Counter (at approx. 25°C)

Operating Voltage	
Operating Voltage Plateau	
Thermal Neutron Flux Range	1.4 to 1.4 x 10 ⁵ Volts
Sensitivity (Note 2)	0.7 ny
Output Pulse Characteristics:	
Amplitude (unloaded)	
Inherent Rise Time (average)	

Typical Operation as a Chamber (at approx. 25°C)

Operating Voltage (Note 3)	300-1000 Volts
Thermal Neutron Flux Range (Note 4) 6 x10'5	to 1.4 x 10 ¹⁰ Nv
Thermal Neutron Sensitivity	1.4 x 10 ⁻¹³ A/nv
Gamma Sensitivity	
Alpha Background Current	1.6 x 10 ⁻⁸ A

Notes

1. The pressurizing atmosphere must be dry and non-corrosive.

- The sensitivity given is with the alpha background counting rate of the naturally radioactive uranium adjusted to 5 counts/second. By varying the pulse height selector on the associated circuitry, or by use of high resolution circuitry, other sensitivities are available. 2.
- The minimum voltage required for saturation is dependent upon the incident neutron flux level. The lower limit of operating range is determined by an inherent alpha background current. 3.

4.

Document information is subject to change without notice and contains proprietary information which may not be accurate.

Data Sheets - Marketing\6376A

Scanned 07/13/09

1275-VEL

Sensing Systems Division

Uncompensated Ionization Chambers 3" Diameter - Guard Ring

Tube	Maximum	Sensitivity
Туре	Temp. °F	A/nv
WL-6937A	300	7.6 x 10 ⁻¹⁴
WL-7606	575	7.6 x 10 ⁻¹⁴
WL-8075	300	7.6 x 10 ⁻¹⁴
WL-23272	300	3.3×10^{-13}

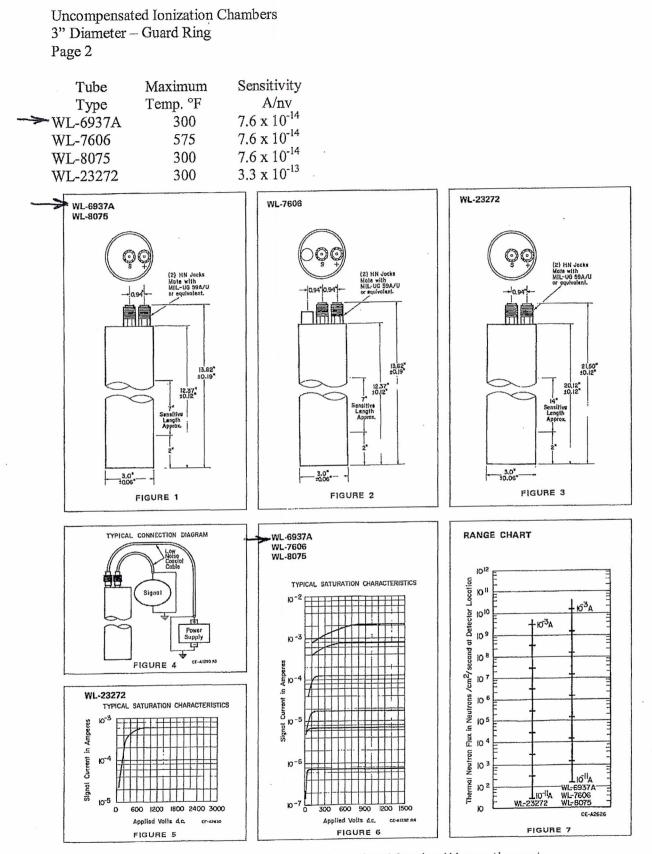
Application

This group of uncompensated ionization chambers is designed to operate in a thermal neutron to gamma flux ration of 10⁴ nv to 1 R/hr or greater. These chambers feature guard-ring construction to minimize the effect of interelectrode leakage currents. They are extremely rugged and may be operated in any position up to their rated temperature. The materials used in construction of the detector, including those of the type HN connectors, have been selected for low activation properties. This reduces the magnitude and duration of activation currents and facilitates handling after exposure to high neutron fluxes.

-		· · ·	-		
Mechanical	Units	WL-6937A	WL-7606	WL-8075	WL-23272
O.D., Nominal	Inches	3.00	3.00	3.00	3,00
Length, Nominal	Inches	13.62	13,62	13.62	21.50
Sensitive Length, Nominal	Inches	7.0	7.0	7.0	14.0
Net Weight	Pounds	2.5	2.5	2.5	3.75
Shipping Weight	Pounds	10.0	10.0	10.0	11.5
Materials					
Outer Case	-	Aluminum	Aluminum	Aluminum	Aluminum
Electrodes	-	Aluminum	Aluminum	Aluminum	Aluminum
Insulation	-	Al ₂ 0 ₃			
Neutron Sensitive Material:					
Content	-	Boron (B ¹⁰)	Boron (B ¹⁰)	Boron (B ¹⁰)	$B^{10}F_3$
Thickness	mg/cm ²	0.8	0.8	0.8	-
Gas Fill	-	Ar-N ₂	Ar-N ₂	Ar-N ₂	B ¹⁰ F ₃
Impedance					
Resistance, Minimum:					
Signal Electrode to Case	Ohms	10 ¹¹	1011	1011	1011
H.V, Electrode to Case	Ohms	1011	1011	1011	1011
Capacitance (Note 1):					
Signal Electrode to Case	pF	170	170	170	180
H.V. Electrode to Case	pF	250	250	250	275
Maximum Ratings					
Voltage Between Electrodes:	Volts d.c.	1500	1500	1500	2500
Temperature	°F	300	575	300	300
External Pressure (Note 2)	PSI	180	180	180	180
Thermal Neutron Flux	nv	2.5×10^{11}	2.5 x 10 ¹¹	2.5 x 10 ¹¹	2.5 x 10 ¹¹
Gamma Flux	R/hr	10 ⁷	10 ⁷	107	107
Typical Operation					
Operating Voltage (Note 3)	Volts d.c.	200-1000	200-1000	200-1000	200-2000
Saturation Characteristics	-	See Fig. 6	See Fig. 6	See Fig. 6	See Fig. 5
Thermal Neutron Flux:					
Lower Limit	nv	2.5×10^2	2.5×10^2	2.5×10^2	3.0×10^{1}
Upper Limit	nv	5.0×10^{10}	5.0 x 10 ¹⁰	5.0 x 10 ¹⁰	5.0 x 10 ⁹
Thermal Neutron Sensitivity:					
Reactor (Note 4)	A/nv	4.4 x 10 ⁻¹⁴	4.4 x 10 ⁻¹⁴	4.4 x 10 ⁻¹⁴	-
Source Box (Note 5)	A/nv	7.6 x 10 ⁻¹⁴	7.6×10^{-14}	7.6 x 10 ⁻¹⁴	3.3 x 10 ⁻¹³
Gamma Sensitivity: (Note 6)	A/R/hr	4.0 x 10 ⁻¹¹	4.0×10^{-11}	4.0×10^{-11}	1.3 x 10 ⁻¹⁰

Notes

Capacitance is measured between an electrode and case with all other electrodes grounded to the case. 1.


2. The pressurizing atmosphere must be dry and non-corrosive.

3. The saturation voltage varies with current level. See saturation characteristics for proper operating voltage.

4. The reactor sensitivity was determined experimentally, however perturbation effects may alter the effective neutron sensitivity.

5. The Thermal Neutron Sensitivity is determined in a Pu-Be source box. Reactor environments often produce significant flux perturbation which may alter the effective neutron sensitivity.

6. The gamma sensitivity is determined in a Co69 flux.

Document information is subject to change without notice and contains proprietary information which may not be accurate

Data Sheets - Marketing\6937A 7606 8075 23272

Scanned 07/28/11

No Contraction

WL-23084

Sensor and Control Division

APPLICATION

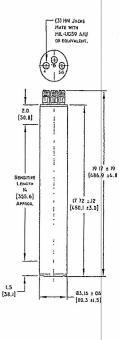
The WL-23084 Compensated Ion Chamber is designed to operate in a thermal neutron to gamma flux ratio of 500 nv to 1 R/hr with 95% compensation. This chamber employs guard-ring construction to minimize the effect of inter-electrode leakage current, permitting operation from 230 nv to a maximum of 5×10^{10} nv. The chamber materials, including those of the type HN connectors, have been selected for their low activation properties. The use of such materials reduces the magnitude and duration of the activation currents and facilitates handling of the chamber after it has been exposed to high neutron fluences. This chamber is extremely rugged and may be operated in any position up to the rated temperature; however, operation in an end-on flux will shift the chamber's compensation characteristic and may alter its effective neutron sensitivity.

MECHANICAL

Outside Diameter (nominal)	
Length (nominal)	
Sensitive Length (nominal)	14.0 Inches (355 cm)
Net Weight	5.7 Pounds (2.6 kg)
Shipping Weight	

MATERIALS

Outer Case	Aluminum
Electrodes	Magnesium and Aluminum
Insulation	
Neutron Sensitive Material Content	B-10 Enriched Boron
Thickness (Approx.)	0.8 mg/cm^2
Gas Filling	Nitrogen (with Helium Trace)


IMPEDANCE

Resistance, minimum (Note 1)	
H.V Electrode to Case	10 ¹² Ohms
Signal Electrode to Case	10 ¹³ Ohms
Compensating Electrode to Case	10 ¹² Ohms

Approximate Capacitance (Note 2)	290 pF
Signal to Case H.V. to Case	330 pF
Compensating Electrode to Case	182 pF

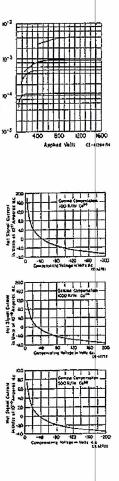
MAXIMUM RATINGS

Voltage between Electrodes	1500 Volts DC
Temperature	400°F(205°C)
Thermal Neutron Flux	$5 \times 10^{11} \text{ nv}$
External Pressure (Note 3)	$180 \text{ psig} (12 \text{ kg/cm}^2)$

Compensated Ionization Chamber

WL-23084

Page 2


TYPICAL OPERATION

Operating Voltage	300 to 1500 Volts DC
Compensating Voltage	-10 to -80 Volts DC
Saturation Characteristics (Note 4)	See Figure 1
Thermal Neutron Flux Range	
Thermal Neutron Sensitivity	
Source Box (Note 5)	7.6 x 10" ¹⁴ A/nv
Reactor (Note 6)	. 4.4 X 10~ ¹⁴ A/nv
Gamma Sensitivity (Note 7)	
Total Compensation	0 A/R/hr
Uncompensated	. 2.3 x 10" ¹¹ A/R/Hr
-	2

NOTES

I

- 1. The detector is not designed for immersion in water. High humidity environments may degrade performance.
- 2. Capacitance is measured between an electrode and case with all other electrodes grounded to the case.
- 3. The pressurizing atmosphere must be dry and non-corrosive.
- 4. Saturation voltage varies with current level. See saturation characteristics for proper operating voltage.
- 5. Thermal neutron sensitivity is evaluated using an AmBe source. Reactor environments often produce significant flux perturbation which may alter the effective sensitivity.
- 6. The reactor sensitivity was determined experimentally. However, perturbation effects and reactor spectrum may alter the effective neutron sensitivity.
- 7. The gamma response is determined using a Co^{60} source.

Mrs we

10-31-2007