Duquesne Light Company Beaver Valley Power Station

PO. Box 4 Shippingpon, PA 15077-0004

JOHN D SIEBER Vice President - Nuclear Group

10125 3883-8:2466

JULY 27, 1990

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

Reference: Beaver Valley Power Station, Unit No. 1 and No. 2 BV-1 Docket No. 50-334, License No. DPR-66 BV-2 Docket No. 50-412, License No. NPF-73 SBO - Alternate AC Load Management

Gentlemen:

By letter dated June 27, 1990, we provided a supplemental response to Station Blackout (SBO) relative to our Alternate AC (AAC) load management methodology. Based on our telecon of July 20, 1990, with the staff reviewers, we were requested to revise the AAC load management tables of our enclosure to demonstrate the design capability of our existing Class 1E emergency diesel generators as an AAC source for our dual unit For analysis purposes, the following loads have been added site. to Table 1:

- Turbine Bearing Oil Lift Pump
- Turbine Generator Bearing Lube Oil Pump -
- Turbine Turning Gear Drive

9008060059 900727 PDR ADOCK 05000334

Residual Heat Release (RHR) Pump

The charging pump at the SBO unit, identified as a discretionary load, has been dropped from Table 1, and will be procedurally addressed. As stated in our March 30, 1990 submittal, the expected rates of reactor coolant system inventory loss of 25 gpm per pump under SBO conditions will not result in core uncovery during a SBO of 4 hours. Our concern for the potential inconsistency between the design capability documented in the tables and our operating procedures was acknowledged by the staff. The reviewers re-iterated their position that discretionary loads may be procedurally addressed to allow for operator flexibility via load management. We understand that the safety evaluation report will acknowledge the provision for procedurally addressing discretionary loads, as noted above.

Beaver Valley Power Station, Unit Nos. 1 & 2 Docket No. 50-334, License No. DPR-66 Docket No. 50-412, License No. NPF-73 SBO - Alternate AC Load Management Page 2

Enclosure 1 "AAC Load Management Scheme for Beaver Valley" provides the revised methodology for achieving AAC for both Beaver Valley Unit 1 and Unit 2. The proposed load management scheme ensures the non-blacked out unit is brought to and maintained in a safe shutdown condition which meets the SBO regulatory requirements. Differences in the assumptions for loss-of-offsite power loads from those currently specified in the UFSAR have been identified with justifications provided in the enclosure.

If there are any questions on this matter, please contact my office.

Very truly yours,

J. D. Sieber Vice Flesident Nuclear Group

cc:

Dr. T. Murley, Director of Office of NRR Mr. J. Beall, Sr. Resident Inspector Mr. T. T. Marti, RPC Region I Administrator Mr. A. W. DeAgazio, Project Manager Mr. R. Saunders (VEPCO) NUMARC

ALTERNATE AC LOAD MANAGEMENT SCHEME FOR BEAVER VALLEY

The revised Alternate AC (AAC) load management scheme is summarized in this enclosure. The AAC power system is adequately sized to carry the required shutdown loads for the required coping duration maintaining voltage and fraquency within limits consistent with the established industry standards. Also, the loading arrangement will not degrade the performance of any shut down systems or components.

Loads Available During The First Hour

During the first hour of the event, all applicable loads identified in the FSAR table may be powered. This includes all loads that are automatically loaded onto the diesel generators as indicated in Table 8.5-1 of the FSAR.

Loads Available After One Hour and Before Four Hours

After the first hour, a degree of load management is necessary to ensure adequate Alternate AC power is available to the blacked out unit. These loads fall into three categories: (a) loads that are not generally powered within the expected duration of the station blackout, (b) loads that are not required to ensure safe shutdown capability, and (c) loads that do not have a safety function.

a. Loads that are not generally powered within the expected duration of the station blackout

It is important to note that some safe shutdown loads are only normally needed during the first hour of the transient, or considerably after four hours. These loads include motor operated valves, and the spent fuel pool cooling system.

Power for motor operated valves, will only be needed during the first ten minutes to realign safety systems. Since these components are not normally energized after the first hour of the event, they do not need to be powered after the first hour.

The spent fuel pool cooling pumps will not need to be powered until after the coping period for a loss of off site power. Thus, it is not necessary to consider this load during the four hour duration of a station blackout.

ALTERNATE AC LOAD MANAGEMENT SCHEME FOR BEAVER VALLEY

The Leak Collection exhaust fans, although automatically loaded on the EDG for a loss-of-offsite power event, are primarily to prevent radioactive leakage from the containment and contiguous areas following a DBA. The system provides ventilation to the Aux FW pump room which was analyzed for a loss of ventilation under SBO criteria. Therefore, this load is not needed for normal safe shutdown following a loss-ofoffsite power event with no concurrent failure or DBA type events.

b. Loads that are not required to ensure safe shutdown capability

Several loads are not needed for normal safe shutdown following a loss of off site power. These include the containment air recirculation fans, and the containment instrument air compressors. The unavailability of these systems during this period will not reduce the information available to the operators to monitor the safety related conditions of the plant, nor will it impair or damage the non-blacked out (NBO) unit in any way.

- b.1 Containment ventilation cooling water is not safety related at Beaver Valley. Thus, the containment recirculation fans would not serve their cooling function and would only add to the heat generation. This condition has been analyzed and verified during plant operation.¹ Containment temperatures have been shown to not increase beyond 110°F during the first four hours of the event. This temperature is considerably below the EQ operability limit of 135°F.
- b.2 Similarly, cooling water for the containment instrument air compressor is not safety related, and consequently is normally unavailable during a loss of off-site power. For this reason, the compressor must be disabled since operation without cooling results in an electrical trip of the component. Existing plant procedures for coping with a LOOP event direct operators to disable the compressor for a loss of cooling water resulting from the loss of off-site power. This system is not required to ensure safe shutdown capability.

¹LER 84-07 Loss of Containment Cooling

ALTERNATE AC LOAD MANAGEMENT SCHEME FOR BEAVER VALLEY

Loads Available After Four Hours

The station blackout rule only requires Alternate AC power to be provided for the station's required coping duration. Thus, after four hours, Unit 1 no longer needs to supply AAC power to Unit 2. However, as discussed above, the proposed loading arrangement is sufficient to maintain the station in a safe condition for an extended duration beyond four hours.

EOP Development and Methodology

Procedures (EOP's) will be developed to allow for discretionary loads for operator flexibility of load management dependent on sufficient EDG capacity. The addition of a high-head charging pump to the blacked-out unit would be one such example.

Both Beaver Valley units are equipped with 100% capacity turbine driven AFW purde. Irrespective of the turbine driven AFW pump, sufficient design capability is available to power the motor-driven AFW pump at the NBO unit during this event. (See Table 1)

Summary and Conclusion

The load management scheme discussed above ensures the NBO unit is brought to and maintained in a safe shutdown condition for an extended period well beyond four hours. No component is permanently disabled or in any way degraded. In fact, load management is needed to ensure long term operability of equipment. On this basis, we find that this arrangement meets the current SBO requirements. TABLE 1

Alternate AC Load Hanagement Scheme For Beaver Valley (Total Load+ on Unit 1 EDG)

		UNIT 1		UNIT 2
COMPONENT		LOADS (KW)		LOADS (KW)
		NBO Unit		BO Unit Remarks
	0 to	1 hour to	After	1 hour to
	1 hour	4 hours	4 hours	4 hours
Charging-Hi Head Safety Injection Pump	442.0	442.0	442.0	
River Water Pump	338.0	338.0	338.0	(+) + Cross-tie RWS
Steam Generator AFV Pump	302.0	302.0	302.0	Construction of the second
THE PURD *	0	218.0	218.0	* 4 hour delay
Primery Plant Component	221.0	221.0	221.0	and a second
Turbine Bearing Oil	13.0	13.0	13.0	
Bater Operated Valves	53.0	0.0	0.0	See Section a
Laconacy Diesel	28.0	28.0	28.0	
Austitation				
Turbine Generator	39.0	39.0	39.0	
Turbine Turning Gear	39.0	39.0	39.0	
Drive			370 0	** 1 hour delay
Pressurizer Reaters	0.0	270.0	270.0	1 1001 99191
Boric Acid Transfer Puep	13.0	13.0	13.0	
Boric Acid Tenk Heaters	15.0	15.0	12.0	11.1
Bettery Chargers	38.0	38,0	20.0	19.19
Emergency Lighting	5.0	5.0	5.0	
Supplemental Emergency Lighting	28.0	28.0	28.0	
Supplementel				
Containment Air	283.0	0.0	0.0	See Section b.1
Control Room Air	48.0	48.0	48.0	
Control Room Air Return	25.0	25.0	25.0	
Lans			41.0	and a second and a second s
Compressors	61.0	81.0		
Control Room AC Condenser Circulating	4.0	4.0	4.0	
Leak Collection Exhaust	115.0	0	0	See Section a
Safeguards Area Sump	4.0	4.0	4.0	
Emergency Sugr & Battery Room Exhaust	8.0	8.0	8.0	
Emergency Sugr & Battery Room Supply	13.0	13.0	13.0	
Fuel Pool Cooling Pump	17.0	0.0	17.0	See Section a

**Intermittent Load; Pressurizer heaters to be de-energized when starting discretionary load (charging pump) at BV-2. To be procedurally addressed.

TABLE 1 (Cont.)

Alternate AC Load Management Scheme For Beaver Valley (Total Loads on Unit 1 EDG)

	UNIT 1			UNIT 2	
COMPONENT		LOADS (EV)		LOADS ((W)
		NBO Unit		BO Unit	Remarks
	0 to	1 hour to	After	1 hour 1	0
	1 hour	4 hours	4 hours	4 hours	
Control Rod Cooling	81.0	81.0	81.0	56.0	5
Ean					
Hiscellaneous Fans,	13.0	13.0	13.0		
Dampers, and Pumps					
Hiscellaneous Fans,	10.0	10.0	10.0		
Dempers, end Pumps					
Pipe Heat Tracing	60.0	60.0	60.0		
Pipe Reat Tracing	60.0	60.0	60.0		
Vitel Bus Loads	50.0	50.0	50.0		
Miscellaneous Heaters	62.0	62.0	62.0		
Hiscellaneous Heaters	12.0	12.0	12.0		
Esergency AC	11.0	11.0	11.0		
Distribution Penels					
Emergency AC	22.0	22.0	22.0		
Distribution Panels					
Containment Instr. Air	17.0	0.0	0.0	5 4	e Section b.2
Compressor					
Computer Inverter	17.0	17.0	17.0		idi ta da
48 Volt Battery Charger	5.0	5.0	5.0		
Additional SBO loads					
for BO Unit					
Control Room HVAC				27.4	Fan only
Unit (BV-2)			Later Still Store		
Load & Cooling System				49.0	
Losses AC Dist. Transf.					
AC Dist. Transf.			energy and the	0.3	
AC Dist. Trensf.				3.1	
AC Dist. Trensf.				0.3	
AC Dist. Trensf.				5.1	
Vital Bus Rect. 2-3				8.8	
Vitel Bus Rect. 2-1				14.0	
Battery Room Exhaust				6.2	
Fen					
AC Distr. xmfr				2.9	
AC Distr. xofr				2.1	
TOTAL LOADS	2572.0	2575.0	2592	189.8	
TOTAL LOADS ON					
UNIT 1 EDG	2572.0	2764.8	2592		

NOTE: Diesel generator 168 hour rating = 2950 kw.(Ref. UFSAR-1, Fig. 8.1-1).

¹ A single CRDN shroud fan is sufficient during the first four hours for upper head cooling per EOPs and engineering evaluation. Reference EN No. 22241.

TABLE 2

Alternate AC Load Management Scheme For Beaver Valley (Total Loads on Unit 2 EDG)

		UNIT 2		UNIT 1	
COMPONENT		LOADS (KW)		LOADS (KW)	
		NBO Unit		BC Unit	Remorks
	0 to	hour to	Atter	1 hour to	
	1 hour	4 hours	4 hours	4 hours	
Cherging-Hi Head Safety	477.0	477.0	477.0	***	
Injection Puep					
Service Vater Pubp	696.0	696.0	696.0		
Stess Generator AFV	320.0	320.0	320.0		
PURD			24.1 0		
			241.0		• nour delay
Primary Plant Component	310.	310.0	516.0		
cooling vater Pusp		150.0			
test colot. Filter	150.0	150.0	150.0		
CACE, FORS	E.O. 4	50 4	50 4		
taure. sour. supply	50.4				
Laos fuer freit	44.0	11.0	44.0		
terry. seyr. tach.	••••	••••	•••		
Note Block from	4.9. 0	1.7. 0	4.2. 0		
Fant Air Basies Fans	154 0	<u> </u>			
Long Fire Fire Has	211 0			2.2. £.	Section D.1
Leok Sys. Clec. Vir.	<u> </u>	270 0	271.0		
CROM Checoud Las	<u> </u>	<u> </u>	270.0		1 NOUP Deley
CROM SHEOUG FOR	20.0	20.0	20.0	<u>61.9</u>	ee wote 1
Lond & CIU. Sys.	• • . •	• • . 0			
AF BLAS TRANS	0.1	······································			
AC DISC. (PBRST. (2-5)	<u> </u>	······································	0.3		
ser Lube voter strainer			<u> </u>		
Intere supply ran					-
AC DIST. IRONST. (E.3)					
CONTROL RO. AC UNIT	27.4	27.4	27.4	61.0	
Refrig. Cond. Unit	50.0	50.0	50.0		
AC DIST. IFORST. (E-Y)	0.3	0.3	0.3		
Elec. Heat Kimr.	2.1	2.1	<u> </u>		
notor operated valves	110.6	0	0		ee Section a
(totel)					
Fuel Pool Cooling Pump		<u> </u>	14.4	§	pe Section .
Cont. Bidg. Air Exch	25.0	25.0	25.0		
and Supply Fan					
Chg. Pump C_b.	18.0	18.0	18.0		
Exch. Fan					
AC DISt. Transf. (E-1)	5.1	5.1	5.1		
MCC Cub. Exch. Fen	2.8	2.8	2.8		
DG Fuel Oil Xfr. Pumps	0.7	0.7	0.7		
DG Bldg. Supply fan	33.0	33.0	33.0		
(270A)					
DG Crank Case	1.1	1.1	1.1		
Vacuum Pump					

** Intermittent Load

. . .

. . . .