EVALUATION OF PRESSURIZED THERMAL SHOCK EFFECTS DUE TO Small break loca's with loss of feedwater For The Arkanas Nuclear One--Unit 2 reactor vessel

Prepared for

ARKANSAS POWER AND LIGHT COMPANY

NUCLEAR POWER SYSTEMS DIVISION DECEMBER, 1981

8201130492

CEN - 189 APPENDIX G

50-368

LEGAL NOTICE

THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED BY COMBUSTION ENGINEERING, INC. NEITHER COMBUSTION ENGINEERING NOR ANY PERSON ACTING ON ITS BEHALF:

A. MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED INCLUDING THE WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, WITH RESPECT TO THE ACCURACY, COMPLETENESS, OR USEFULNESS OF THE INFORMATION CONTAINED IN THIS REPORT, OR THAT THE USE OF ANY INFORMATION, APPARATUS, METHOD, OR PROCESS DISCLOSED IN THIS REPORT MAY NOT INFRINGE PRIVATELY OWNED RIGHTS; OR

B. ASSUMES ANY LIABILITIES WITH RESPECT TO THE USE OF, OR FOR DAMAGES RESULTING FROM THE USE OF, ANY INFORMATION, APPARATUS, METHOD OR PROCESS DISCLOSED IN THIS REPORT.

ABSTRACT

This Appendix to CEN-189 provides the plant-specific evaluation of pressurized thermal shock effects due to small break LOCA's with extended loss of feedwater for the ANO-2 reactor vessel. It is concluded that crack initiation would not occur for the transients considered for more than 32 effective full power years, which is assumed to represent full plant life.

CEN-189 Appendix G

TABLE OF CONTENTS

ECTION	TITLE	PAGE
	ABSTRACT	
G1.	PURPOSE	Gl
G2.	SCOPE	Gl
G3.	INTRODUCTION	Gl
G4.	THERMAL HYDRAULIC ANALYSES	Gl
G5.	FLUENCE DISTRIBUTIONS	G2
G6.	MATERIAL PROPERTIES	G3
G7.	VESSEL INTEGRITY EVALUATIONS	G5
G8.	CONCLUSIONS	G9

ę

G1.0 PURPOSE

This Appendix provides the plant-specific evaluation of pressurized thermal shock effects of the SB LOCA + LOFW transients presented in the main body of the CEN-189 report for the ANO-2 reactor vessel.

G2.0 SCOPE

The scope of this Appendix is limited to the evaluation of the SB LOCA + LOFW transients presented in CEN-189, as applied to the ANO-2 reactor vessel.

Other C-E NSSS reactor vessels are reported in separate Appendices.

G3.0 INTRODUCTION

This Appendix to CEN-189 was prepared by C-E for Arkansas Power and Light for their use in responding to Item II.K.2.13 of NUREG-0737 for the ANO-2 reactor vessel.

This Appendix is intended to be a companion to the CEN-189 report. The transients evaluated in this Appendix are those reported in Chapter 4.0 of the main report. Chapter G5 of this Appendix reports the plant-specific fluence distributions developed as described in Chapter 5.0 of the main report. Chapter G6 reports the plant-specific material properties and change of properties due to irradiation, based on the methods of Chapter 6.0 of the report. Chapter G7 reports the results of comparing the fracture mechanics results of Chapter 7.0 of the report, to the material properties discussed in Chapter G6.

G4.0 THERMAL HYDRAULIC ANALYSES

The pressure-temperature transients used to perform the plant-specific vessel evaluation reported in this Appendix are those reported in Chapter 4.0 of CEN-189. As discussed in the body of the report, there are several plant parameter conservatisms included in the analyses to develop these transients due to the reference plant approach used which could be eliminated by performing more detailed plant-specific thermal-hydraulic system analyses. Removal of these available conservatisms by additional analyses was not performed due to the favorable conclusion achieved.

G.5.0 FLUENCE DISTRIBUTION

Arkansas Nuclear One - Unit 2

is in operation, but has not yet completed a surveillance capsule evaluation. Since the vessel beltline materials are low copper content, detailed fluence profiles were not necessary for demonstration of acceptable PTS capability. Accordingly, the FSAR end of life peak fluence prediction was used to estimate end of life material properties. Also, in order to evaluate the sensitivity of the fluence prediction value, material properties were also determined assuming an end of life fluence twice the FSAR prediction value.

APPENDIX G ARKANSAS NUCLEAR ONE UNIT #2

G.6 MATERIAL PROPERTIES

The chemistry and initial (pre-irradiation) toughness properties of the Arkansas Nuclear One - Unit #2 reactor vessel beltline materials are summarized in Table G6-1. The most controlling material in terms of residual chemistry (copper and phosphorus) and initial RT_{NDT} based on Regulatory Guide 1.99* is plate C-8009-1 from the intermediate shell course. The predicted RT_{NDT} shift based on the maximum design fluence, $3.47 \times 10^{19} n/cm^2$ (E>IMeV) at the inside surface of the reactor vessel is 168F using Regulatory Guide 1.99. This will result in an adjusted RT_{NDT} at end-of-life (32 effective full power years) of 173F at the vessel inside surface. If the design fluence was increased by a factor of two to $6.94 \times 10^{19} n/cm^2$, the RT_{NDT} shift is predicted to be 237F for an adjusted RT_{NDT} of 242F.

*Note that plate C-8009-3 is the plate selected for the surveillance program on the basis of the C-E design curve presented in the ANO-2 FSAR.

TABLE G5-1

ARKANSAS HUCLEAR ONE - UNIT #2 REACTOR VESSEL MATERIALS

Desident.	Matorial	Dron Weight	Initial ^e	Ch	nemical Con	itent (%)
Form	Identification	NDTT (°F)	RTNDT (°F)	Nickel	Copper	Phosphorus
Plate	C-8009-1	-30	5	0.63	0.12	0.010
Plate	C-8009-2	0	10	0.59	0.03	0.009
Plate	C-3009-3	-10	35	0.60	0.03	0.009
Plate	C-8010-1	-20	10	0.59	0.03	0.006
Plate	C-8010-2	- 30	-20	0.66	0.07	0.003
Plate	C-8010-3	-30	-20	0.65	0.07	0.003
Weld	2-203 A,B,&C ^a	NZAd	<10	<0.20	0.05	0.013
Weld	3-203 A.B.&C ^b	N/A	<10	<0.20	0.04	0.011
Weld	9-203 ^C	-40	-40 ^f	0.03	0.04	0.004

- a Intermediate shell course longitudinal seam weld
- b Lower shell course longitudinal seam weld
- c Intermediate to lower shell girth weld
- d N/A Not Available

54

- e Determined using Branch Technical Position MTEB 5-2
- f Surveillance Program Data

¥.

G.7.0 ANO-2 Vessel Integrity

The fracture mechanics analysis is performed using upper bound data for fluence and material properties in the ANO-2 vessel. The peak vessel fluence is considered to occur at the point of highest RT_{NDT} . The material toughness properties K_{IC} and K_{Ia} are determined from the calculated temperatures for the SBLOCA + LOFW transients using the method described in Section 7.3.3 and the predicted RT_{NDT} values through the depth of the wall. Critical crack depth diagrams are constructed from the applied K_{I} vs crack depth curves at the mid-core level of the vessel and the calculated material toughness curves. In this manner the integrity of the ANO-2 vessel is evaluated for the SBLOCA + LOFW transient.

G.7.1 Summary of Physics and Material Data Input to Fracture Mechanics Analysis A nominal design fluence value of $3.47 \times 10^{19} \text{ n/cm}^2$ (E>1 MeV) was used to approximate the end-of-life fluence for the ANO-2 vessel, as well as a conservative upper bound of $6.94 \times 10^{19} \text{ n/cm}^2$ or double the predicted end-of-life value. The peak fluence is considered to be uniform around the vessel. A conservative radial fluence attenuation was used such that:

 $\frac{F}{F_0} = \exp(-8.625 \text{ in x .33 in.}^{-1}) \cdot (a/w)$ $= \exp(-2.85) \cdot (a/w)$

where F = point fluence in wall
F = peak fluence at surface
a/w = fractional wall depth

Controlling plate material properties were used in the analysis, which are as follows:

PCT.	Cu	z	.12
PCT.	P	=	.010
Initial	RTNDT	=	5°F

The shift in the value of the RT_{NDT} was determined using the method

of Reg. Guide 1.99. This produces an end-of-life prediction for the surface RT_{NDT} of $173^{\circ}F$ using the nominal design fluence. A predicted surface RT_{NDT} value of $242^{\circ}F$ is determined for a fluence double the nominal design fluence.

G.7.2 Results of Fracture Mechanics Analysis for SBLOCA + LOFW Restoration of Feedwater (Case 5)

The stress analysis for this case is presented in Section 7.8.2 of the report. The fracture mechanics analyses were performed using upper bound properties for the ANO-2 vessel and conservative end-of-life fluence levels. The critical crack depth diagram is constructed using the stresses in the transient at the mid-core level coincident with the peak fluence and material properties. Figure G.7-1 shows the critical crack depth diagram for a nominal design fluence of $3.47 \times 10^{19} \text{ n/cm}^2$. The calculated shifts in RT_{NDT} are relatively low, and for this transient loading condition the initiation toughness level is not exceeded. Therefore, no crack initiation would occur for this combination of loading, fluence, and material properties.

Figure G.7-2 shows the critical crack depth diagram for the same transient loading and upper bound material properties, but twice the nominal design fluence. From the figure it is apparent that no crack initiation would occur for this transient even with fluence levels greatly exceeding the nominal design fluence.

-G.7.3 Conclusion

These results demonstrate that the integrity of the ANO-2 vessel would be maintained throughout the assumed life of the plant for SBLOCA + LOFW transient with recovery of feedwater.

. 90004+000				
. 4000£.00	a first state of the second state of the second state of the second state of the second state of the	and the second where we want the second second second	And the party of the second second first	in the second
• 00+3000**				
. 000E+00				
· • • • • • • • • • • • • • • • • • • •		and and a second as		
C .78005++0 +				
×				
н "5000£+00 +				
			- al and a second	1
* 000++00 *				
. 20004.000 .				
. 10006 - 00 -				
. 11056-14 American	.2000E+02	• • 0 0 0 E • 0 2	. BOUDE + 02	.1000£+03
FLUENCE356.20 N/SU. CM I RINUI * 5. UEG. F PCI. CU * .12	AND - 2			
PCT. P = .010	Figure 6.7-1	the second s		

8-1 8-1

(A)

· · ·

Con S

•

A. S.

A. C. M. M. M. M.

100

~ D

CHITICAL CHACK DEPTH VS. TIME

3

0

0

10001 401				******************	
. YOUDE + 30 +					
. 0005.00					
C .1000E+00 +					••••
× *6000£+00 *					
H \$5000£+00 +					
× •00001.00 •					
. 3000t +00 +					
.2000t.00 .					
.1000£.00 .					
.71054-14 A					
0.	.2040£+02	.+000E+02	+6009E+02	*8000E+02	*1000E+03
FLUENCE = .64E+20 N/SU. CM I RINUI = 5. UEG. F		AND - 2			
PCT. CU = 12 PCT. P = 010		Figure 6.7-2			the state of the s

(¹ Ka

G8.0 CONCLUSIONS

This Appendix to CEN-189 provides the results of analytical evaluations of pressurized thermal shock effects on the ANO-2 reactor vessel for cases of a SBLOCA + LOFW, in response to the requirements of Item II.K.2.13 of NUREG-0737. Two different scenarios were chosen for evaluation based on remedial actions to prevent inadequate core cooling:

- 1. SBLOCA + LOFW + PORV's opened after 10 minutes
- 2. SBLOCA + LOFW + Aux. FW reinstated after 30 minutes

Thermal-hydraulic system transient calculations were performed on a reference-plant basis, as reported in CEN-189 with the parameter variations over the range representing all operating plants. Four different cases were analyzed for each of the two different scenarios defined above, for a total of eight cases. The most challenging of the two different scenarios was analyzed using linear elastic fracture mechanics methods to determine the critical crack tip stress intensity values for comparison to plant specific materials properties at various times in plant life. The effect of the warm prestress phenomenon is identified where applicable for each transient, and credited where appropriate.

In this Appendix, the results of plant specific peak neutron fluence predictions are superimposed on plant sepcific material properties to define vessel capability versus plant life. The results of the generic LEFM analyses were evaluated using the plant specific material properties. It is concluded that crack initiation would not occur due to the SBLOCA + LOFW transients considered, for more than 32 effective full power years of operation, which is assumed to represent full plant life.

COMBUSTION ENGINEERING, INC.