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ABSTRACT

Simulation results obtained using Yankee Atomic Electric Company's BWR
analysis methods are presented along with comparison to the results of other
workers for a turbine trip without bypass transient. This work was requested
by the United States Nuclear Regulatory Commission to aid in its review of

Yankee Atomic Electric Company's BWR analysis methods.
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1.0  INTRODUCT ION

An analysis of a turbine trip without bypass event is perforamed for the
Peach Bottom Atomic Power Station, Unit 2. This aralysis was requested by the
United States Nuclear Pogulatory Commission to aid in its review of Yankee

Atomic Electric Company's BWR analysis methods.

The analysis emp.oys the lattice physics, steady state physics,
transient physics, and system transient methois described in References 1-4.
The specific models used a~e described in Section 2. The primary results of
the analysis are transient predictions of reactor neutron power and core
pressure. These resu.is along with comparisons to the results of other

workers [5] are presented in Section 3. Conclusions regarding the analysis

are given in faction 4.



2.0 METHODOLOGY EMPLOYED

- % | Steady State Physics

For the transient analysis, the steady state calculations included: 1)
vodelling the Peach Bottom Urit 2 (PB2) core with SIMULATE [2], 2) depleting
PBZ Cycles 1 and 2, and 3) simulering the initial conditions of the
tronsient. This final step provided the input for the reactivity calculations

and initial conditions for RETRAN.

Based on information from EPRI [6])_ the PBR2 model was formulated.
CASMO [1] was employed to calculate the two group cross sections for three
bundle types. These bundle layouts, shown in Figure 2.1, were the most ccmmon
fuel types in Peach Bottom during Cycles 1 and 2. The cross section data in
table format were input to SIMULATE along with a quarter core Cycle 1 loading
pattern. The model of Cycle 1 was then depleted to EOC using the Haling
option and was shuffled into the quarter core loading pattern of Cycle 2.
Finally, the Cycle 2 model was depleted to EOC with the Haling option. Both
loading patterns are shown in Figure 2.2. The EOC2 calculations provided the
transient physics base state case with its exposure distribution and void
history. There were two basic inconsistencies between the plant operation and
the SIMULATE model: 1) The plant did not have the quarter symme*ric loading
pattern as was specified in the model. 2) By using the Haling depletion
option, the model assumed that all rods were out (ARO) at EOC and that each
entire cycle ran at full power-full flow which was not the case for either

cycle.

The initial conditions for the transient as described in Reference 5
were input to the SIMULATE Peact Bottom model (See Table 2.1). This case was
restarted from the EOC2 case anu "ne resulting core average axial power
distribution, shown in Figure 2.7 wae similar to that case's Haling shape.
The goal was to provide an initial couJition which was consistent with GE's
and BNL's calculations. The only known measure for this consistency was the
core average axial power distrihution. Comparing the three power
distributions, SIMULATE ::arstivity production was weaker in the bottom of the

core. To adjust the SIMULA”T model, a negative thermal absorber which varied
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2.3 Core Wide Transieni. Analysis Model

The model used for the licensing transien: simulation is essentially
the same as the model used to rerform the Peach Bottom turbine trip test
gsimulations and is described in Section 3.1.1 of Reference 4. Two minor
changes were made to the Pesach Bottom model t¢ make 1t even more consistent
with th> Vermont Yankee ..odel [4]. These changes are the following: 1) the
bypass system piping up to the valve chest was lumped into the steam line
control volume upstream of the turbine stop valve and 2) the vecir.iiation
system junction inertias were recalculated in a manner consiuten! with the
Vermont Y:nkee model. The setpoints and flow capa iri.s of the safety relief

and safety valves are based on the information provided in the Brookhaven

report [5].
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TABLE 2.1

PEACH BOTTOM UNIT 2 INITIAL CONDITIONS

Reactor Power (MAt)

Core Flow Rate (Mlb/hr)

Core Pressure (psia)

Core Inlet Subcooling (Btu/lb)
Core Average Exposure (MWd/ST)

Control Rod Inventory

3440.4

101.0

1050.0

28.9

12776.0

0

[A11l Rods Out!



TABLE 2.2

PEACH BOTTOM 2
TRANSIENT PHYSICS PARAMETERS

Calculated Parameter Value
Axial Shape Index'l’ -0.1990
Moderator Density Coefficient 23.5

)
(Pressurization), éd}u(z’
Pressure = 1055 psia

Inlet Enthalpy - 525 Btu/lbm

Fuel T¢mpersture Coefficient -0.28

at 1100%, ¢/°F

Effective M luyed .005375

Neutron Fraction

Prompt Neutron Generation 42.34

Time, microseconds

Yotes:

(1) Axial Shape Index (ASI) =

(2) Au = change in raletive density (percent)
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ANALYSIS OF TURBINE TRIP W'THOUT BYPASS EVENT

LS
p—

Inicial Conditions

In initializing the model, we tried to make the initial state as

consistent as possible with the conditions described in the Brookhaven report

[5] while still employing Yankee Atomic Electric Company methods. The core

» axial power distribution i1s based on the 3-D SIMULATE prediction (Section

2.1) C

. The bvpass flow is based on.a FIRWR [7] prediction consistent with the

SIMULATE power distribution. Core inlet enthalpy is set so chat the amount of

carryunder from the steam separators and the quality in the liquid region >
outside the separators is as close to zero as possible. This is done to #
maximize the initial pressurization rate. A summary of the initial operating
B staiLe is prov.Jed in Table 3.1.
;
5; ol Analysis Results
i The transient is initiated by a rapid closure (0.1 sec. closing
- time) of the turbine stop valves. It is assumed that the steam bypass valves,
. .
! which normall ypen to relieve pressure, remain closed. A tor protection
signal is generated by the turbine stop valve closure switches.

section comparisons

between the system models of Yankee Atomic Electric Company (YAEC),

(CE) National Laboratory (BNL). These

General Electric Brookhaven

comparisons are made to aid the Nuclear Regulatory C

e

evaluation of YAEC methods and do not constitute a critique of either worker's i

K}

methodology. The GE and BNL results presented were obtained by manual scaling poe

from figures in Reference 5. Comparisons of neutron power, core average heat a

’

flux, core pressure, and core inlet flow are presented in Figures 3.7 thLrough

3.10. In general, the YAEC results indicate a more severe transient than the

results of either GE or BNL.
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4.0 CONCLUSIONS

The methods used in analyzing the transient here are the same as
those used in our recent analysis of the Vermont Yankee Nuclear Power Station
[8) except that no artificial adjustments to the 3-D simulator input data were
made in the Vermont Yankee :aalysis. Comparison to the results of other
workers showed szimilar t:>nds with the largest difference being in the neutron
power prediction. Here, the YAEC simulation predicts a larger amount of
energy release than the other two workers. This is evidenced in the YAEC
simulation's prediction of the initial peak in core average heat flux, which
is higher than that of the other workers. Not knowing all the input data used
by the other workers, it is difficult to conclude the precise reascns for the

differences in the predictions.
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