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I
This document was prepared by Yankee Atomic Electric Company on behalf

o f Vermont Yankec Nuclear Power Corporation. This document is believed to beI completely true and accurate to the best of our knowledge and information, It
is authorized for un specifically by Yankee Atomic Electric Company, Vermont
Yankee Nuclear Power Ccrporation and/or the appropriate subdivisions within
the Nuclear F gulatory Cecnitaion only.
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ABSTRACT

Simulation results obtained using Yankee Atomic Electric Company's BWR

analysis methods are presented along with comparison to the results of other

workers for a turbine trip without bypass transient. This work was requested

by the United States Nuclear Regulatory Commission to aid in its review of

Yankee Atomic Electric Company's BWR analysis methods.
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1.0 INTRODUCTION

An analysis of a turbine trip without bypass event is perforced for the
Peach Bottom Atomic Power Station, Unit 2. This analysis was requested by the

United States Nuclear Pegulatory Commission to aid in its review of Yankee
Atomic Electric Company's BWR analysis methods.

I The analysis employs the lattice physics, steady state physics,
transient physics, and system transient methods described in References 1-4.
The specific models used sre described in Section 2. The primary results of

the analysis are transient predictions of reactor neutron power and core
pressure. These results along with comparisons to the results of other
workers [5] are presented in Section 3. Conclusions regarding the analysis

are given in Section 4.
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I
2.0 METHODOLOGY EMPLOYED |

l
1%

L 2.1 Steady State Physics
;

h.
For the transient analysis, the steady state calculations included: 1)

nodelling the Peach Bottom Unit 2 (PB2) core with SIMULATE [2], 2) depleting
PB2 Cycles 1 and 2, and 3) simuleeing the initial conditions of the

transient. This final step provided the input for the reactivity calculations

and initial conditions for RETRAN.

Based on information from EPRI [6], the PB2 model was formulated.

CASMO [1] was employed to calculate the two group cross sections for three
bundle types. These bundle layouts, shown in Figure 2.1, were the most cccmon

fuel types in Peach Bottom during Cycles 1 and 2. The cross section data in
table format were input to SIMULATE along with a quarter core Cycle 1 loading

pattern. The model of Cycle 1 was then depleted to EOC using the HalingI option and was shuffled into the quarter core loading pattern of Cycle 2.

Finally, the Cycle 2 model was depleted to EOC with the Haling option. Both

loading patterns are shown in Figure 2.2. The EOC2 calculations provided the

transient physics base state case with its exposure distribution and void

history. There were two basic inconsistencies between the plant operation and
the SIMULATE model: 1) The plant did not have the quarter symmetric loading
pattern as was specified in the model. 2) By using the Haling depletion

| option, the model assumed that all rods were out (ARO) at EOC and that each
i

: I * " ' ' ' ' " ' ' ' " ' " " " ' ' " " " " * ' - ' " " ' ' " " " ' ' " " " " " ' ' " * " " " * ' ' * * * " * '
;* cycle.

|

The initial conditions for the transient as described in Feference 5

were input to the SIMULATE Peach Bottom model (See Table 2.1) . This case was

restarted from the EOC2 case ano r.he resulting core average axial power

i distribution, shown in Figure 2.3 was similar to that case's Haling shape.
1
'

The goal was to provide an initial condition which was consistent with GE's

and BNL's calculations. The only known measure for this consistency was the
core average axial power distribution. Comparing the three power

distributions, SIMULATE reactivity production was weaker in the bottom of the-

core. To adjust the SIMULAM model, a negative thermal absorber which varied

i

-2-| g
| 5
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E

I axially was added to the core. Figure 2.4 shows the emount of absorber needed
to obtain an axial power distribution similar to GE's and BNL's. The

result e t average axial power distribution is compared to those of the other
workers in Figure 2.5. This case was used as input for the reactivity

calculations.

2.2 Transient Physics

Reactivity and kinetics data required as input to the RETRAN model wereI generated in accordance with the methods detailed in the Trepsient Core
Physics Report [31. The pretransient conditions and confi:::cration were as
detailed in Reference 5; the base state SIMULATE model at the pretransient

conditions used in the generation of reactivity and kinetics data was created

by the steady state physics analysis as presented in Section 2.1.

RETI<AN data was spt .ifically generated for a single 12 region and 12
volmne active core channel model. Feedback reactivity data as described in
Peference 3, consisted of volume fuel temperature, volume moderator density

|

and volume relative poderator density reactivity functions. The procedure for

the generation of these reactivity functions is detailed in Figures 2.1 and

2.2 of the given reference. These generated functions are analogous to those

graphically presented in Figures 3.7, 3.10 and 3.11 of said report. The scram

reactivity curve was generated by the reported procedure detailed in Figure
2.3 at base seate conditions. This scram curve is provided as Figure 2.6 in

this report. Kinetics parameters - effective delayed neutron fraction,

precursor cecay e s tante, and prompt neutron generation time - were
calculated at pret re.usient conditions.I

In order to characterize a core reactor state, core average reactivi ty

coefficients are calculatcJ. These coefficients are not intended for use in

the transient analysis, but provide indices which may be used for comparative
purposes. Table 2.2 provides the characterization of the Peach Bottom core at
the pr3 transient conditions. In addition t> the core average reactivity

coefficients, the axial shape index, the effective delayed neutron fraction,

and prompt neutron generation time characterize the core.

-3-
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I
I 2.3 Core Wide Transient Analysis Model

"Ihe model used for the licensing transient simulation is essentially
the same as the model used to perform the Peach Bottom turbine trip test

simulations and is described in Section 3.1.1 of Reference 4. Two minor

changes were made to the Peach Bottom model to make it even more consistent
with the Vermont Yankee nodel [4]. These changes are the following: 1) the

bypass system piping up to the valve chest was lumped into the steam line

I control volume upstream of the turbine stop valve and 2) the recireciation

system junction inertias were recalculated in a manner consistent with the
Vermont Yankee model. The setpoints and flow capaciths of the safety reliet
and safety valves are based on the information provided in the Brookhaven
report I5).

I
I

I

,

1

|
'

|

I
1I
|

| -4-

---e



. , . _ _ _ - - - _ -

>

TABLE 2.1

PEACH BOTTDM UNIT 2 INITIAL CONDITIONS

i
'

Feactor Power (Wt) 3440.4

Core Flow Rete (M1b/hr) 101.0
t

Core Pressure (psia) 1050.0

Core Inlet Subcooling (Blu/lb) 28.9

Core Average Exposure (Wd/ST) 12776.0

Control Rod Inventory 0 [All Rods Out]

I
I
I
I'

1

I
I
I
I

,I
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TABLE 2.2

PEACH BOTTOM 2

I TRANSIENT PHYSICS PARAMETERS
.

1

Calculated Parameter Value

Axial Shape Index(I) -0.1990*

Moderator Density Coefficient 23.5
,i (Pressurization) , 4/Au(2)

Pressure = 1055 psia

Inlet Dithalpy - 525 Btu /lbm

Fuel Troperature Coefficient -0.28

at 1100 f, // F

I Ef fective Peleyed .005375

Neutron Fraction

Prompt Neutron Generation 42.34

Titre, microseconds

|B
|

|

!
|

| P -P
T B

!!ote s : (1) Axial Shape Index (ASI) =
| p p

(2) Au = change in relctive density (percent)

I
I

1

,I
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I

'I Bundle Iype 1

With 80 mil channels |

2 Fuel Type I - 133 w/o U235'

11
112 Fuel Type 2 - 0.71 w/o U235
1222
11222
112221*

1111111,

I Bundle Type 2
With 80 mil channels

4 Fuel Type 1 - 2 93 w/o U235I 32 Fuel Type 2 - 1 94 w/o U235
315 Fuel Type 3 - 1.6. w/o U235
2111 Fuel Type 4 - 1.33 w/o H235

1 21115 Fuel Type 5 - 2 93 w/o U235 with 3 w/o Gd 023
215111
3211122

.

Bundle Type 4
,

With 100 mil channels

4 Fuel Type 0 - Water Rod

32 Fuel Type 1 - 3.01 w/o U235I 211 Fuel Type 2 - 2.22 v/o U235
2511 Fuel Type 3 - 1.87 w/o U235

,

21110 Fuel Type 4 - 1.45 w/o U235
211111 Fuel Type 5 - 3 01 w/o U235 with 3 w/o Gd 023
2151115
32111112

I
->

I
Figure 2.1

PEACH BOTTOM 2 EUNDLE ITPES

I
-7-
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I
I

Loading Pattern - Cycle 1

I 221122112211212
221122112211212
222222222222222

I 222222222222222
221122112211212
221122112211212
222222222222222I 2222222222-2222
2211221122112
2211221122222

I 22222222222
2222222222
2211221122

I 22222222
2222222

I Loading Pattern - Cycle 2
22422242'2242242

5 222222222222242
424242424242422
222222222222242

g 224242424242422
g 222222222222242 -

424242424242422
22222222222422
2242424242422
2222222224222
42424242422

I 2222222422
2242424222
44242422
22222'2I

I
Figure 2.2

PEACH BOTTOM 2 SIMULATE INPUT DATA
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3.0 ANALYSIS OF TURBINE TRIP W' THOUT BYPASS EVENT

E
3.1 Initial Conditions

r
| In initializing the model, we tried to make the initial state as

consistent as possible with the conditions described in the Brookhaven report

{ 5] while still employing Yankee Atomic Electric Company methods. The core ;

axial power distribution is based on the 3-D SIMULATE prediction (Section

2.1). The bypass flow is based on a FIBWR [7] prediction consistent with the
SIMULATE power distribution. Core inlet enthalpy is set so that the amount of |

carryunder from the steam separators and the quality in the liquid region

outside the separators is as close to zero as possible. This is done to

maximize the initial pressurization rare. A summary of the initial operating

state is provlJed in Table 3.1.

!
'

3.2 Analysis Results

|

The transient is initiated by a rapid closure (0.1 sec. closing

time) of the turbine stop valves. It is assumed that the steam bypass valves,
,

which normally open to relieve pressure, remain closed. A reactor protection

system scram signal is generated by the trbine stop valve closure switches.
,

Control rod drive motion is assumed to occur 0.27 seconds af ter the start of
turbine stop valve motion. Predictions of the system parameters of main

interest are shown in Figures 3.1 through 3.6.

I 3.3 Compariscns to Pesults of Other Workers

This section presents comparisons of predictions for the described
>

transient between the system models of Yankee Atomic Electric Company (YAEC),
General Electric (GE) and Brookhaven National Laboratory (BNL) . These
comparisons are made to aid the Nuclear Regulatory Commission in its
evaluation of YAEC methods and do not constitute a critique of either worker's

methodology. The GE and BNL results presented were obtained by manual scaling
from figures in De ference 5. Comparisons of neutron power, core average heat

B flux, core pressure, and core inlet flow are presented in Figures 3.7 through

3.lb. In general, the YAEC results indicate a more severe transient than the

results of either GE or BNL.

-13-
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|I
TAoLE 3.1

I
| SUMMARY OF SYSTEM TRA6SIENT cf0 DEL INITIAL CONDITIONS
!

|I
Core Thermal Power (MWth) 3441.2

Turbine Steam Flow (% NBR) 105.0

6Total Core Flow (10 1bm/hr) 102.5

6Core Bypass Flow (10 1 bra /hr) 7.3>

Core Inlet Enthalpy (Btu /lbe) 521.7

Steam Dome Pressure (psia) 1034.0

Turbine Inlet Pressure (psia) 983.3

6Total Recirculation Flow 10 1bm/hr) 35.6

Core Plate Differential Pressure (psi) 18.7

2Average Fuel Cap Cot.luctance (Btu /hr-f t -F) 1000.0

Ncrrow Range Water Level (in) 29.0

I
I
I
I
I
I

lI
-14-
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4.0 CONCLUSIONS

The methods used in analyzing the transient here are the same as
those used in our recent analysis of the Vermont Yankee Nuclear Power Station ,

[8] except that no artificial adjustments to the 3-D simulator input data were

made in the Vermont Yankee t aalysis. Comparison to the results of other

workers showed similar tr3nds with the largest difference being in the neutron

power prediction. Here, the YAEC simulation predicts a larger amount of
energy release than the other two workers. This is evidenced in the YAEC
simulation's prediction of the initial peak in core average heat flux, which

is higher than that of the other workers. Not knowing all the input data used

by the other workers, it is difficult to conclude the precise reasens for the

dif ferences in the predictions.
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