

231 W Michigan PO Box 2046 Miwaukee W 53201

(414) 221-2345

VPNPD-89-564 NRC-89-133

October 26, 1989

U. S. NUCLEAR REGULATORY COMMISSION Document Control Desk Mail Stop P1-137 Washington, D.C. 20555

Gentlemen:

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION RELOCATION OF THE ALTERNATE EMERGENCY OPERATIONS FACILITY FOR POINT BEACH NUCLEAR PLANT, TACS 71760 AND 71761

By letter dated December 14, 1988 we requested permission to relocate our Alternate Emergency Operations Facility (AEOF) from its present location at the Wisconsin Public Service district office in Two Rivers, Wisconsin, to the Wisconsin Electric Power Company corporate headquarters in Milwaukee, Wisconsin. The attachment to this letter responds to the questions you included in your request for additional information dated June 23, 1989.

If you have any additional questions or require clarification on any item, please contact us.

IE35

Very truly yours,

8911030143 89 PDR ADOCK 05

C. W. Fay Vice President Nuclear Power

Attachments

 Provide exact straight line and highway distances from the plant site to the proposed backup EOF at The Corporate Emergency Center (CEC) in Milwaukee, Wisconsin.

The straight line distance from the primary EOF to the Wisconsin Electric Power Company corporate office is approximately 88 miles. The driving distance is 100 miles. (See map, attachment 2)

 Provide the transit time using a motor vehicle between the CEC and the plant site under normal daylight and weather conditions, typical traffic patterns, and observing posted speed limits.

The driving time from the primary EOF to the CEC is approximately 1 hour 50 minutes under normal traffic and weather conditions.

 Indicate the anticipated modes of transport, other than motor vehicle, if any, to be used to transport emergency personnel between the CEC and the plant site and the typical transit time for each mode of transport.

The primary mode of transport used at this time is motor vehicle, either private or company owned. At least one four-wheel drive company vehicle is available for transport in Milwaukee; several four-wheel drive vehicles are available at Point Beach. In addition, a number of private four-wheel drive vehicles are available at both locations. Helicopter and fixed-wing aircraft are available for charter at Mitchell Field in Milwaukee (10 miles south of corporate headquarters). However, we have not established any standing arrangements for aircraft charter for two reasons: (1) the time required for aircraft preparation and for travel between the airport and corporate headquarters substantially offsets the time saved by air travel; and (2) under adverse weather conditions, motor vehicles are more reliable. Please refer to the answer to number two above for the typical transit time by motor vehicle.

4. Provide a description of the system to be used to make plant information available in the CEC including a list of emergency data acquisition system variables, and the installation and set-up time if it is not a permanent, full-time system.

Plant data is available in the CEC (proposed alternate EOF) on the Remote EOF Data System (REDS) via a terminal link by modem with the Plant Process Computer System at PBNP.

The software which implements REDS is resident on the PBNP Plant Process Computer System (PPCS). The time for terminal setup and access to the PPCS is approximately 10 minutes. It is our practice to activate the CEC at the same time the EOF is activated. Therefore, under conditions where EOF functions would be transferred to the alternate EOF located in Milwaukee, the REDS would already be in operation.

A list of the REDS variables is included as attachment three.

5. Provide a map illustrating the locations of the Point Beach plant site, the CEC, the Kewaunee County Emergency Operations Center, the Manitowoc County EOC, the State of Wisconsin EOC, and the principal highways and topographical features between these locations.

The Kewaunee and Manitowoc County EOCs are located in the cities of Algoma and Manitowoc respectively. The State of Wisconsin EDC is located in Madison, Wisconsin,

See attachment 2.

6. Provide a detailed description of how the dispatch, resupply, communications and data coordination of offsite radiation monitoring teams will be handled if the EOF function is moved to the CEC.

In the event that EOF functions are moved to the corporate offices in Milwaukee, the Offsite Health Physics Facility would also require evacuation. The Offsite Health Physics Director will report to the Technical Support Center. He will coordinate the dispatch and actions of offsite monitoring teams from the TSC via FM radio. He will relay information to the Radcon/Waste Manager in Milwaukee via telephone.

The offsite monitoring teams will transfer operations to the Kewaunee Autlear Plant Site Access Facility located approximately 6.9 miles north of the PNNP Offsite Health Physics Facility. This transfer of operations is andraianged from present practice and is described in PBNP Emergency Plan Implementing Procedure EPIP 6.4.4, Offsite Health Physics Facility (OSHPF) Evacuation. A procedure change will be required to direct the Offsite Health Physics Director to report to the TSC in the event of an OSHPF evacuation.

7. Provide an estimate of the time required to move the EOF functions from the primary EOF at the plant site to the backup EOF at the CEC and provide a detailed description of how the EOF functions will be performed during the relocation.

Prior to evacuating the primary EOF, the Emergency Support manager (ESM) will formally turn over the EOF function to a qualified ESM in the CEC. Therefore, there will be no disruption of EOF functions. Turnover will be expeditious, since CEC personnel normally monitor the functions of the plant and EOF and are cognizant of plant conditions and emergency response actions.

Under typical circumstances, at least one qualified ESM and one qualified RadCon Waste Manager are available at the CEC. Therefore in most circumstances, since the CEC is itself already operational, turnover could occur in less time than required for the present AEOF. We estimate turnover could occur in about 30 minutes; and, if desired, the original ESM and RadCon Waste Manager could resume their roles after the 1 hour and 50 minute drive time.

Describe how the Emergency Director, located in the backup EOF will be able to effectively coordinate Wisconsin Electric Power Company activities with state, local, and federal officials who will be located near the site.

The Emergency Director, as defined in the PBNP Emergency Plan, coordinates companywide activities and is normally located at the corporate office. However, we assume that Emergency Director in the context of the question means the Emergency Support Manager (ESM) in the EOF, as defined in our Emergency Plan. The ESM will coordinate company and government activities by telephone as he presently does from the primary EOF.

Note that present procedures in state and local plans place primary reliance on telephone and radio communications rather than on face-to-face communications. These communication links can be continued regardless of EOF location. Federal officials relocating to the CEC would continue face-to-face communication; those electing to relocate to the County Emergency Center, JPIC, or other location would be accommodated by telephone.

 Provide copies of letters from Kewaunee and Manitowoc Counties, as well as State of Wisconsin officials, indicating their acceptance or approval of the proposed relocation of the backup EOF to the CEC.

See attachments 4, 5, and 6.

8.

Attachment 2

ECREEN + SI SPDS SERVER

Point Id	Description	Row	Column
5Y5A137	PROC REACTOR VES LEV (NAR RNG)	4	3
EYEA148	PROL REACTOR VES LEV (WIDE RNG)	4	11
SYSA134	PROC PRESSURIZER WATER LEVEL	4	20
EYEA133N	PROC RCS PRESSURE (NORMAL)	4	31
SYSA15F	PROC HOT LEG TEMP (LOOP A)	4	40
SYSA159	PROC HOT LEG TEMP (LOOP B)	6	48
SYSA160N	PROC COLD LEG TEMP (LOOP A) NORM	4	61
EYEA1/JN	PROC COLD LEG TEMP (LOOP B) NORM	4	69
SYSA138	PROC SUBCOOLING	9	4
SYEA176	PROC SG AUX FEED FLW (LOOP A)	9	18
SY5A177	PROC SG AUX FEED FLW (LOOP B)	9	26
SYSA144	PROL HE HEO LEV (LOOP A) NAR RNG	9	40
SYSA150	PROL SG H20 LEV (LOOP B) NAR RNG	9	48
SYEA153	PROC B.G. PRESSURE (LOOP A)	9	60
SY5A154	PROC S.G. PRESSURE (LOOP B)	9	69
5.YEA136	PROC RCH FORE EXIT TEMPERATURE	14	4
SYSA141	PROC CONTAINMENT SUMP LEVEL	14	15
EYBA143	PEOL CONTAINMENT RADIATION	14	26
SY54151	PROC SG HOO LEV (LOOP A) WID RNG	14	40
SYEA152	PROC SG HZO LEV (LOOP B) WID RND.	14	48
SYSAS8 !	LOOP A STEAMLINE RAD	14	59
FYEADBN	LOOP & STEAMLINE PAD	14	70
SYSA179	PROC POWER RANGE POWER LEVEL	17	40
EYEALAG	PROC AIR EJECTOR RADIATION	18	65
62055	UNIT 1 GENERATOR GROSS MW	20	40
SYEACAL	COLOR CDE FOR CSF SUBCRITICALITY	17	23
SYSAC47	COLOR CDE FOR COF CORE COOLING	18	28
SYSAC49	COLOR CDE FOR COF HEAT DINK	19	23
SYGAC4H	COLOR COE FOR COF RCS INTEGRITY	20	23
SYSACSO	COLOR CDE FOR CSF CONTAINMENT	21	23
SYSAC61	COLOR CDE FOR CSE RCS INVENTORY	27	23

SCREEN = M; Me Rad

Point ld	Description		Row Column
METWS	WIND SPEED	15 MIN AV	VG 5 16
METIAT	INLAND AIR TEMP	15 MIN AN	15 5 61
METWD	WIND DIR	15 MIN AV	16 6 16
METLAT	LAKE SHORE AIR T	EMP 15 MIN AN	16 6 63
METWOSD	WIND DIR STANDRO	DEVIATION	7 16
METLWT	LAKE WATER TEMP	15 MIN AN	16 7 63
METLBREZ	LAKE BREEZE C	ONDITIONS FLAG	3 9 27
METSTAB	ATMOSPHERIC S	TABILITY CLASS	5 11 31
METRAIN	RAINFALL SINCE M	IDNIGHT	9 62
METLAPSE	AIR TEMP LAPSE R	ATE (TOWER 1)	10 23
RMSAUXB	AUX BLOG VENT	15 MIN AN	16 16 21
RMSDRUM	DRUMMING AREA V	ENT 15 MIN AN	G 16 62
RMSSTRIP	GAS STRIPPER V	ENT 15 MIN AN	VG 17 21
RMBEJECT	COMBINED AIR EJ	15 MIN AN	VG 17 62
RMS1PURG	U1 PURG EXHAUST	15 MIN AN	15 21 2
RM52PURG	U2 PURG EXHAUST	15 MIN AN	/G 21 17
RMS1STEM	UI STEAM LINE A	TMOS 15 MIN AN	VG 21 38
RM525TEM	UZ STEAM LINE A	THOE 15 MIN AN	VG 21 51

SCREEN = 1; Core

Point 1d	Description	Row	Column

SYEA134	PROC PRESSURIZER WATER LEVEL	6	8
RTO	REACTOR THERMAL OUTPUT	6	34
5Y5A179	PROC POWER RANGE POWER LEVEL		63
SYSA180	PROC INTERMEDIATE RANGE PWR LEV	7	62
SYSA165	PROC SOURCE RANGE POWER LEVEL	B	62
SYSA148	PROC REACTOR VES LEV (WIDE RNG)	9	9
SYSA133N	PROC RCS PRESSURE (NORMAL)	9	33
SYSA137	PROC REACTOR VES LEV (NAR RNG)	10	10
SDBANKA	SHUTDOWN BANK A STEP COUNT	11	64
SDBANKB	SHUTDOWN BANK B STEP COUNT	12	64
F1925	HIGH HEAD SI FLOW 1-PISA	13	B
FT924	HIGH HEAD SI FLOW 1-P15B	14	8
TCAVG	INST VALUE OF AVERAGE INCORE TO	14	39
BANKA	CONTROL ROD BANK A STEP COUNT	15	63
TCHIGH	INST VALUE OF HOTTEST INCORE TO	16	39
BANKB	CONTROL ROD BANK & STEP COUNT	16	63
SYSA965	PROC CHARGING FLOW	17	B
TCHIID	1D OF HOTTEST INCORE T/C	17	45
BANKC	CONTROL RUD BANK C STEP COUNT	17	63
BANKD	CONTROL ROD BANK D STEP COUNT	18	63
F7134	LETDOWN LINE FLOW	20	B
SYSA138	PROC SUBCOOLING	20	35

SCREEN = 2: Containment

Point Id	Description	Row	Column
5Y5A168	PROC CONTAINMENT HYDROGEN	6	9
13283	CONTMT AIR TEMP EL 71 FT	6	41
T3274	CONTMT VENT 1A REC AIR TEMP	6	61
13285	CONTMT AJR TEMP EL 71 FT	7	41
13270	CONTMT VENT 18 REC AIR TEMP	7	61
13292	CONT TEMP AIR EL 66	8	41
13276	CONTMT VENT 1C REC AIR TEMP	8	61
SYSA143	PROC CONTAINMENT RADIATION	9	B
13272	CONTMT VENT 1D REC AIR TEMP	9	61
13284	CONTMT AIR TEMP EL 51 FT	10	41
13293	CONT TEMP AIR EL 46	11	41
T322D	CR SHROUD SUCTION HDR TEMP	12	10
SYSA141	PROC CONTAINMENT SUMP LEVEL	12	56
13286	CONTMT AIR TEMP EL 38 FT	13	41
T3287	CONTMT AIR TEMP EL 35 FT	14	41
13277	CAVITY COOLER DISCH TEMP	15	10
13294	CONT TEMP SUMP B	15	61
T3295	CONT TEMP SUMP B	16	61
LT931	CONT SPRAY ADD TANK LEVEL 1-T36	18	7
SYSA14D	PROC CONTAINMENT PRESSURE	18	41
PT968	CONT WR PRESSURE RED	19	40
PT969	CONT WE PRESSURE YLW	20	40
M1320A	CONTAINMENT HUMIDITY UNIT NO.1	20	56
FT962	CONT SPRAY FLOW 1-P14A	21	12
FT963	CONT SPRAY FLOW 1-P14B	22	12

SCREEN = 3: Reactor Coplant System

Point Id	Description	Row	Column
SYSA160N	PROC COLD LEG TEMP (LOOP A) NORM	6	5
SYSA161N	PROC COLD LEG TEMP (LOOP B) NORM	•	14
ADT	RC LOOP A DELTA T 1/2 AVG	6	27
BDT	RC LOOP & DELTA T 1/2 AVG	6	36
SYSA158	PROC HOT LEG TEMP (LOOP A)	6	47
SYSA159	PROC HOT LEG TEMP (LOOP B)	6	56
SYSA96D	PROC RCS LOOP A FLOW	6	64
EYEA961	PROC RCS LOOP & FLOW	6	72
T425	PRZR VAPOR TEMP	9	7
7421	PRZR SURGE LINE TEMP	9	34
T422	PRZR SPRAY TEMP LOOP 1-A	10	58
T423	PRZR SPRAY TEMP LOOP 1-B	10	68
PRZRP	PRESSURIZER PRES 1/2/3/4 AVG	13	6
T424	PRZR LIQUID TEMP	13	34
SYSA134	PROC PRESSURIZER WATER LEVEL	13	60
1439	PRZR RELIEF TANK LIQUID TEMP	16	7
LT442	PRZR RELIEF TANK LEVEL	16	32
PT440	PRZR RELIEF TANK PRESEURE	16	61
SYSA133N	PROC RCS PRESSURE (NORMAL)	19	6
SYSA148	PROC REACTOR VES LEV (WIDE RNG)	19	35
RTO	REACTOR THERMAL OUTPUT	19	61

SCREEN = 4: Secondary System

Point Id	Description	Row	Column	
			EFREELF	=
5Y5A155	PROC S.G. FRED FLOW (LOOP A)	5	2	
SYSA156	PROC 5.G. FEED FLOW (LOOP B)	5	10	
5Y5A176	PROC SG AUX FEED FLW (LOOP A)	5	30	
SYSA177	PROC 5G AUX FEED FLW (LOOP B)	5	38	
5Y5A149	PROC 56 H20 LEV (LOOP A) NAR RNS	5	58	
SYEA150	PROC EG H20 LEV (LOOP B) NAR RNG	5	66	
SYSA146	PROC S.G. STEAM FLOW (LOOP A)	9	2	
SYSA147	PROC S.G. STEAM FLOW (LOOP B)	9	9	
SYSA166	PROC SG STM FLW/FD FL MSMCH(LPA)	9	28	
SYSA167	PROC SS STM FLW/FD FL MSMCH(LPB)	9	36	
SYSA151	PROC SG HZO LEV (LOOP A) WID RNG	9	60	
5Y5A152	PROC 56 HI20 LEV (LOOP B) WID RNG	9	6.8	
SYSA158	PROC HOT LEG TEMP (LOOP A)	13	2	
SYSA159	PROC HOT LEG TEMP (LOOP B)	13	9	
SYSA160N	PROC COLD LEG TEMP (LOOP A) NORM	13	31	
SYSA161N	PROC COLD LES TEMM (LOOP B) NORM	13	38	
T2105	SG 1A FEEDWATER TEMP	13	62	
12104	BG 18 FEEDWATER TEMP	13	70	
SGATO	STM GEN & THERMAL OUTPUT	17	12	
SGBTO	SIM GEN & THERMAL OUTPUT	17	21	
#2E231	UZ STEAM RELEASE LINE A RAD	17	45	
R7E232	UP STEAM RELEASE LINE B RAD	17	55	
SGAP	STM GEN A STM P 1/2/3 AVG	21	16	
EGEP	ETM GEN B ETM P 1/7/3 AVL	21	23	
P12289	SG 1A FEEDWATER PRESSURE	21	48	
PTTTE	ER ID FARMUATER PRESSURE	21	5.5	

SCREEN = 5: Volume Control & RHR

Point 1d	Description	Row	Column
SYSA134	PROC PRESSURIZER WATER LEVEL	6	6
SYSA148	PROC REACTOR VES LEV (WIDE RNG)	6	40
T126	REGEN HX CHARGING OUTLET TEMP	6	64
T630	RHR HX INLET (RHR FR RCS)	9	10
T127	REGEN HX LETDOWN TEMP	9	39
SYSA965	PROC CHARGING FLOW	9	64
PT135	LOW PRESSURE LETDOWN PRESS	12	B
T145	NON REGEN HX LTDN OUTLET TEMP	12	39
FT134	LETDOWN LINE FLOW	12	65
PT139	VOLUME CONTRL TANK PRESS	15	9
T14D	VOLUME CONTROL TK OUTLET TEMP	15	38
LT112	VOLUME CONTROL TANK LEVEL	15	63
FT626	LOW HEAD SI / RHR FLOW 1-P1D	A :3	12
1622	RHR HX OUTLET TEMP 1-HX11	A 18	41
F1928	LOW HEAD SI FLOW 1-P1D	6 19	12
T623	RHR HX OUTLET TEMP 1HX11B	19	41

SCREEN = 6: Balance of Plant

Point 1d	Description	Row	Column
XD2	UNIT 1 MAIN AUX MW 1X02	6	34
SYSA153	PROC S.G. PRESSURE (LOOP A)	7	7
EYSA154	PROC S.G. PRESSURE (LOOP B)	7	14
SGASE	STM GEN A CORR ST F 1/2 AVG	7	58
SGBSF	STM GEN B CORR ST F 1/2 AVG	7	65
PT485	TURBINE 1ST STAGE PRESS TREF	10	7
PT486	TURBINE 1ST STAGE PRESS STM DUMP	10	59
PT2115	CONDENSER PRESSURE	13	5
GROSS	UNIT 1 GENERATOR GROSS MW	13	32
ETL19	CC HX CCW RETURN	19	60
TREIN	CIPCULATING LITE INLET TEMP	13	59
TTEOR	EODEDAY LIATED I FUEL	14	7
L13070	FOREDRI WHIER LEVEL	19	1
1621	CON PUMP CUSTION UDD TEMP	10	22
1616	LUC FUMP SUCTION FUR TEMP	17	94

SCREEN = 7: RMS Containment/Facade

Point 1d	Description	Row	Column
	UNIT 1 CONTAINMENT PADIATION	5	4
RICIUZ	UNIT 2 CONTAINMENT PADIATION	-	18
R2E102	UN FEAL TABLE PADIATION	5	49
RIELUT	UP CEAL TABLE RADIATION	ě	67
RZELUY	UL CONT CAR PADIATION	ě	
RIEZIZ	UP CONT GAR BADIATION		17
RZEZIE	US CONT CAR RACKEROUND RADIATION	9	52
RIEZIID	UP CONT CAR BACKGROUND RADIATION	é	11
RZEZIIB	UZ CONT AND BACKGROUND RADIATION	11	41
R1E211	UI CONT AJR PARTICULATE RAD	::	
R2E211	UZ CONT AIR PARTICULATE RAD	11	
R1E222	UI BLOWDOWN TANK OUTLET RAD	16	10
R2E222	UZ BLOWDOWN TANK OUTLET RAD	16	23
R1E231	UI STEAM RELEASE LINE A RAD	16	52
R2E231	UZ STEAM RELEASE LINE A RAD	16	65
RE214	AUX BLDG EXHAUST VENT GAS RAD	19	16
R1E232	U1 STEAM RELEASE LINE B RAD	20	53
R2E232	UZ STEAM RELEASE LINE B RAD	20	66
RE224	GAS STRIPPER BUILDING RADIATION	22	11

SCREEN = 8; RMS Aux Building Unit 1 & 2 Areas

Point Id	Description	Row Column	
R1E104	U1 CHARGING PUMP ROOM RADIATION	5 34	
RZE1D4	UZ CHARGING PUMP ROOM RADIATION	5 57	
R1E134	U1 CHARGING PUMP ROOM HI RNG RAD	6 34	
R2E134	UZ CHARGING PUMP ROOM HI RNG RAD	6 57	
R1E106	U1 SAMPLING ROOM RADIATION	8 34	
R2E106	UZ SAMPLING ROOM RADIATION	8 57	
R1E136	U1 SAMPLING ROOM HI RNG RAD	9 34	
R2E136	UZ SAMPLING ROOM HI RNG RAD	9 57	
R1E216B	UI CONT FAN CLRS LIG BACKGND RAD	12 34	
RZEZ16B	UZ CONT FAN CLRS LIQ BACKGND RAD	12 57	
R1E219B	U1 S/G BLOWDOWN LIQUID BKGND RAD	15 34	
R7E219B	UZ 5/6 BLOWDOWN LIQUID BKGND RAD	15 57	
R1E229B	U1 SERVICE WATER DISCH BKGND RAD	18 34	
R7E2298	UZ SERVICE WATER DISCH BKGND RAD	18 57	
R1E109	UI SAMPLE LINE RADIATION	20 34	
R2E109	UZ SAMPLE LINE RADIATION	20 57	

SCREEN = 9; RMS Aux Building Common Area/Aux Building Water

Point Id	Description	Row	Column	
	DANIOCUEMIETEVIAD DADIATION	2	24	
REIUS	EASETY INTECTION BUND BOOM BAD		21	
REIIU	SAFETT INJECTION FUMP ROUM RAD	2	24	
RE116	VALVE GALLERY RADIATION	4	24	
RE140	S.I. PUMP ROOM HI RANGE RAD	4	61	
RE111	C-59 PANEL RADIATION	5	24	
RE112	CENTRAL PAB RADIATION	5	61	
RE113	AUX BUILDING SUMP RADIATION	6	24	
RE114	CVCS HOLDUP TANK RADIATION	6	61	
RE223B	WET DIST OVRBRD LIQ MON BKGD RAD	B	42	
REZIBB	WASTE DISP SYST LIQ BKGND RAD	9	42	
RE218	WASTE DISPOSAL SYSTEM LIQUID RAD	13	47	
RE223	WASTE DIST OVRBRD LIG MON RAD	14	47	
R1E216	U1 CONT FAN COOLERS LIQUID RAD	18	5	
R2E216	UZ CONT FAN COOLERS LIQUID RAD	18	24	
R1E217	U1 COMPONENT CLNG LOOP LIQ RAD	18	44	
R2E217	U2 COMPONENT CLNG LOOP LIQ RAD	18	62	
R1E229	UI SERVICE WATER DISCHARGE RAD	21	62	
R1E219	U1 S/G BLOWDOWN LIQUID RAD	22	4	
R2E219	UZ S/G BLOWDOWN LIQUID RAD	22	21	

SCREEN = A: Drumming Area/Spent Fuel Pool

Point Id	Description	Row	Column

REIDA	DRUMMING STATION RADIATION	З	31
RE221	DRUMMING AREA VENT GAS RADIATION	4	31
RE105	SPEND FUEL PIT RADIATION	10	41
RE135	SPENT FUEL PIT HIGH RANGE RAD	11	41
RE220	SPENT FUEL PIT LIQUID RADIATION	12	41
PE220B	SPENT FUEL PIT LIQUID BKGND RAD	13	41

SCREEN = B: Control Room/Turbine Hall

Point Id	Description	Row	Column
R1E306	UI CONT PURGE AREA MONITOR RAD	3	58
P2F306	UZ CONT PURGE AREA MONITOR RAD	4	58
PE316	AUX BLOG EXH AREA MONITOR BCKGND	5	58
PEZRA	CTRL RM VENT LODINE MONITOR RAD	9	39
DE234R	CTRI RM VENT LODINE ON BKGD RAD	10	39
DETTE	CTRL RM VENT NOBLE GAS MON RAD	11	39
DE224	COMBINED AIR EJECTOR HI RNG RAD	15	45
DEST	LIGHTE RETENTION POND DISCH RAD	16	45
002300	LIO PETN POND DISCH BKEND RAD	17	45
B25220	12 SEBUICE WATER DISCHARGE RAD	18	45
R46447	12 SERVICE WATER DISCH BKGND RAD	19	45
RZEZZ7D	US CONDENSER ATE E JECTOR GAS RAD	20	53
RIEZIO	UT CONDENSER AIR EJECTOR GAS RAD	21	53
RZEZIO	UZ CUNDENDER MIR EJECIUR DAD RAD		

SCHMILING. RECTOR

KEWAUNEE COUNTY DIVISION OF EMERGENCY GOVERNMENT 416 FREMONT ST ALGOMA, WISCONSIN 54201

HARVEY ZIMMERMAN UR DEMUTY

Mr. C. W. Fay Vice President, Nuclear Power WISCONSIN ELECTRIC POWER COMPANY P.O. Box 2046 231 West Michigan, P377 Milwaukee, Wisconsin 53201

Attachment 4

Dear Mr. Fay:

As participants in the radiological emergency planning efforts for the Point Beach Nuclear Plant, you requested our approval to relocate the Alternate Emergency Operations Facility (AEOF) for PBNP from the Wisconsin Public Service District Office in Two Rivers, Wisconsin, to the Wisconsin Electric Power Company corporate offices in Milwaukee. This move is desirable since the present facility is no longer used as an Emergency Operations Facility by Wisconsin Public Service and that the space may be needed by them for future use.

We agree with the proposed relocation of the AEOF to the corporate offices, and understand that this move will take place only upon the approval of the Nuclear Regulatory Commission.

Very truly yours,

Lyle E. Schmiling Director Kowaunee County Emergency Government

d.

Harold Reckelberg Board Chairman Kewaunce County

SEP 0 1 1989

Copies to Lipke, Zach - CWF 8/15/89

ATTACHMENT 5

Emergency Government

DOCUMITHT RET	DOCUMENT RETENTION	
1571019	14.	
ON-PERMANENT		
TILE NO. A9.	22	

NANCY H CROWLEY Emergency Government Director Manitowoc County

1025 South Ninth Street Manitowoc, Wisconsin Phone 414-583-4207

August 14, 1989

C. W. Fay Vice President, Nuclear Power Wisconsin Electric Power Company P.O. Box 2046 Milwaukee, WI 53201

Dear Mr. Fay:

Manitowoo County has no objection to Wisconsin Electric Power Company establishing an Alternate Emergency Operations Facility (AEOF) at WEPCO's corporate offices in Milwaukee. It is our understanding the move is desirable since your present AEOF, located at the Wisconsin Public Service Company District Office in Two Rivers, is no longer used as an Emergency Operations Facility by WPS and it may be needed for other use by that company in future.

Manitowoc County officials feel comfortable with the fact excellent communications exist between your on-site EOF and the County. We are confident that would most assuredly also be the case between a relocated AEOF, even if it is located more than 20 miles from the plant site and the County EOC.

We understand this move will take place only upon the approval of the Nuclear Regulatory Commission.

Sincerely,

MANITOWOC COUNTY EMERGENCY GOVERNMENT

Crowley

NAC/DAR mlp

corr\cvfay

PlA. BA

Donald A. Rehbein, Chairman Manitowoc County Board

RECEIVED NUCLEAR ENGINLERING

AUG 1 5 1989

Tommy G. Thompson Governor James R. Klauser Secretary

Mailing Address Post Office Box 7865 Madison, WI 53707-7865 Phone 608 266-3232

ATTACHMENT 6

State of Wisconsin Department of Administration

4802 Sheboygan Avenue, Room 99A . Madison, Wisconsin

August 23, 1989

DOCUMPUT 11-	
LIFETIKS	117
NON-PERMANENT	YT.:
FILE NO.	

Mr. C. W. Fay Vice President, Nuclear Power Wisconsin Electric Power Company P.O. Box 2046 231 West Michigan, P377 Milwaukee, WI 53201

8 /25 /89

Dear Mr. Fay:

As participants in the radiological emergency planning efforts for the Point Beach Nuclear Plant, you requested our approval to relocate the Alternate Emergency Operations Facility (AEOF) for PBNP from the Wisconsin Public Service District Office in Two Rivers, Wisconsin, to the Wisconsin Electric Power Company corporate offices in Milwaukee. This move is desirable since the present facility is no longer used as an Emergency Operations Facility by Wisconsin Public Service and that the space may be needed by them for future use.

We agree with the proposed relocation of the AEOF to the corporate offices, and understand that this move will take place only upon the approval of the Nuclear Regulatory Commission.

Very truly yours,

WISCONSIN DIVISION OF EMERGENCY GOVERNMENT

Cider Fixan

Richard I. Braund Administrator

11k2

NUCLEAR ENGINE AUG 28 1989