VOLUME V

AN
 INDEPENDENT ASSESSMENT OF EVACUATION TIMES FOR

LIMERICK

NUCLEAR POWER PLANT

Prepared for
FEDERAL EMERGENCY MANAGEMENT AGENCY

$$
\begin{aligned}
& \text { PERSONAL PRIVACY INFORMATION } \\
& \text { DELETED IN ACCORDANCE WITH THE } \\
& \text { FREEDOM OF INFORMATION ACT }
\end{aligned}
$$

Wilbur Smith and Associates
JUNE, 1980

ACKNOWLEDGEMENT

The independent assessment of the evacuation times contained in this report was performed under the techr ical direction of John C. Cosby. Mr. William V. Sheppard, Vir President, was the principal-in-Charge of the Project. The prancipal contributors to the individual volumes of the report were:

| Volume I - Program Report | - John C. Cosby |
| :--- | :--- | :--- |
| Volume II - Bailly | - James R. Bancroft |
| Volume III - Beaver Valley | - Richard A. Day |
| Volume IV - Enrico Fermi | - Elbert I. Waters |
| Volume V - Limerick | - George S. Coulter, Jr |
| Volume VI - Maine Yankee | - Robert P. Jurasin |
| Volume VII - Midland | - James R. Bancroft and |
| Volume VIII - Millstone | - Frank LaMagna |
| Volume IX - Shoreham | - H. Dean Browner |
| Volume X - Three Mile Island - Welbourne E. Thompson | |

All reports were revised and edited by John C. Cosby and II. Dean Browner. All of the above personnel are permanent employees of Wilbur Smith and Associates.

TABLE OF CONTENT

Introduction
Page
Evacuation Time Assessment Versus 2
Evacuation Plan
General Assumptions 3
Description of site 6
Emergency Planning Area 7
General Regional Characteristics 9
Support Organizations 11
Summary of Emergency Planning To Date 12
Area Characteristics 13
Topography 13
Meteorology 13
Demography 17
Concept of Evacuation 29
Notification of Evacuation 29
Public Response Time 30
Evacuation Link/Node Network 32
Evacuation Time Assessment 50
Normal Weekday 50
Sumpertime 50
Adverse Weather 50
Nichtetime 51
Sector Evacuation 51

ILIUSTRATIONS

FIGURE PAGE
1 Study Site Location 8
2 Wind Rose 15
3 Special Problem A;eas 28
4 Special Problem Areas 28
5 Special Problem Areas 28Special Problem Areas28
Evar dation Network 28
Evacuation Network 32
Evacuation Network 32
10 Evacuation Network 32

TABULATIONS

TABLE PAGE
1 Climatological Summary Data 15
2
Percentage Frequency of wind Speed 16
Summary of 1985 Projected population of the Planning Zones 19
Schools Within 10 -Mile Radius 21
Hospitals Within $10-$ Mile Radius 25
Nursing Homes Within 10-Mile Radius 26
Population Gathering Points Within 10-Mile Radius 27
Network Description 33
Vehicle on Each Link 40
Evacuation Route Link/Node Description 44
Evacuation Times by Centroids 52

An independent assessment of evacuation times around nine nuclear power plant sites was made for the Federal Emergency Management Agency. The results of this three-month study are contained in ten volumes, as follows:

Volume	Program Refort - Evacuation Time Asses of Nine Nuclear Power Plant Emergency Planning Zones (EPZ's)
Volume II	- Bailly Nuclear Power Plant Evacuation Time Assessment
Volume III	- Beaver Valley Nuclear Power Plant Evacuation Time Assessment
Volume IV	- Enrico Fermi Nuclear Power Plant Evacuation Time Assessment
Volume V	- Limerick Nuclear Power Plant Evacuation Time Assessment
Volure VI	- Maine Yankee Nuclear Power Plant Evacuation Time Assessment
Volume VII	- Midland Nuclear Power Plant Evacuation Time Assessment
Volume VIII	- Millstone Nuclear Power Plant Evacuation Time Assessment
Volume IX	- Shoreham Nuclear Power Plant Evacuation Time Assessment
Volume X	- Three Mile Island Nuclear ?ower Plant Evacuation Time Assessment

In addition, an Executive Summary is also available.

This volume contains a technical discussion and evacuation times assessment for Limerick Nuclear Power Plant. The evaluation of four scenarios and the discussion of evacuation of
special problem areas are included. The scenarios evaluated are those expected when evacuation takes place at night (the optimum time from the standpoint of evacuation time), during a normal workday, during bad weather (the worst case condition), and, where applicable, the evacuation with summertime resident and transient population.

Evacuation Time Assessment Versus Evacuation Plan

The assessment employs available demographic data and transportation facility information to predict the public response time to an evacuation warning on the assumption that such a warning is made within 15 minutes of an on-site nuclear incident warranting such emergency action.

The assessment must provide for estimates of public response time to these wamings, assembly of family and other groups, preparation for departure, travel time on the network including consiceration of capacity limitations on the network possibly forming queues which add to delays, and clearance of the $10-\mathrm{mile}$ radius around the site. It must consider the evacuation of special problem areas and groups. These would include schools, nursezies, nursing and retirement homs, hospitals, penal facilities, beaches and recreational areas, and other activities which may provide periodic or seasonal concentrations of people. Population groups without access to thei $=$ own transportation or unable to provide the special transportation facilities required for evacuation must be included in the evacuation time assessment.

Evacuation time assessment methodology combines selected techniques of traffic management anc planning, land use planning and operational analysis. Because some conditions prevailing during an evacuation are not well documented, modifications to
some established principles may be required to meet evacuation requirements. Assumptions may be required in lieu of well formulated relationships because of the highly specialized problems being addressed. These assumptions must be founded on best professional judgement and/or extrapolation from existing knowledge. The assumptions must be specifically identified. The bases upon which the assumptions are founced should be appropriately discussed.

Evacuation time assessments contain basic methocology common to evacuacion plan development. However, the assessment is not an evacuation plan. The major distinction between the assessment and a plan is the extent to which the elements have been coordinated with all pr-ticipant agencies and jurisdictions. For example, the assessment may assume that a specific traffic management element is established to optimize traffic operations at a specific location along an evacuation network. The feasibility of such an element in the assessment would be based upon established technical principles. However, the element would not be coordinated with specific law enforcement agencies to establish what agency would exercise the element control and management nor identify the type and number of personnel to be required. The scudy time allotted makes such coordination impossible. Tie assessment must identify what is required for the evacuation time to be realized, and assume that such an element would be implemented.

General Assumptions

In the assessment of evacuation times, certain general assumptions were mandatory. More important of these are summarized as follows:

1. Emergency evacuation of the general public from the EPZ will be performed largely from the home by the family as a united
group. This assumpcion is prefaced by the following quote: ". . . peopie will not evacuate an area, regardless of the danger, if their family group is separated, unless they know that members of their family are safe, accounted for, and that arrangements have been made for them to evacuate." It was felt that this psychological pressure is so prevalent and strong that the above assumption appears to be justified. In addition, to assure that segments of the family are safe and accounted for would have required the establishment of she ter locations and the development of a shelter support plan. In view of the next assumption and due to the short time period of the study, this was not done.
2. Public use of shelters in previous mass evacuation experience related to natural disasters appears to be a very small percentage of total evacuees. Examples cited in literature include: (2) "In a California 5100 , only 9,260 out of 50,000 persons evacuated registered in the 38 Red Cross shelters; during Hurricane Carla, 75 percent of the evacuees went to other than public shelters; and during Hurricane Betsy, on ${ }^{7} y 20$ percent requested assistance. Generally, shelter centers are used only if nothing else is available or if one cannot financially care for himself." In this evacuation time assessment study, it was assumed that the predominant traffic, after leaving the 0 -mile $E P Z$, went diverse routes rather than to a shelter destination. Tierefore, the evacuation time assessment ended at the EPZ bcundary. An analysis of route capacities and service levels of highway facilities beyond that boundary was made to assure that delays or problems were unlikely to occur.
(1) EVACUATION RISKS - AN EVALUATION, U.S. Envizonmental Protection Agency, Office of Radiation Programs, EPA-520/6-74002, June, 1974 , P. 49.
(2) Ibid., p. 52 .
3. Experience gained in a large range of evacuations indicates that private vehicles ${ }^{(3)}$ ". . . were the predominant mode for evacuation (more than 99 percent). Population density ranged from approximately 15 persons per square mile to 20,000 persons per square mile." It was assumed that this was applicable to this time assessment study. It was further assumed that persons without private vehicle transportation would be provided, at their telephone request, adequate transportation in high occupancy vehicles (HOV's). The additional vehicle volumes on the network would therefore be small, could be affected during the general public evacuation time, and would not affect the computed evacuation times of the general population.
4. It has been observed that not all persons will evacuate the EPZ. "In many cases, even when presented with a grave threat, people efuse to evacuate." (4) This source continues, "Results of this study indicate that approximately six percent of the total population refused to evacuate. Other reports indicate this figure can run as high as 50 percent. There is no reason to believe that because the disaster agent is radiation rather than some other agent. . . will provide sufficient motivation to leave. Rather the opposite viewpoint should be taken--people will hesitate to leave." (弓) It is believed that a majority of this hesitance is based on fear of exposing their property to looting and vandalism. Notwithstanding this evidence, this time assessment study assumed that all persons evacuate.
5. It has been assumed that the traffic network within the EPZ has been isolated so that no through traffic is permitted to enter it within 15 minutes after the evacuation warning has been issued.
(3) Ibid., P. 52.
(4) Ibid., p. 48.
(5) Loc. cit.
6. Traffic management by appropriate law enforcement officers will be performed at selected intersection where evacuation traffic flow is given priority.
7. All persons in the EPZ have been provided, in advance, sufficient information regarding the assigned evacuation route from their place of residence (referred to as the "centroid" in the report).
8. It was assumed that the public zesponse to an evacuation order can be defined as a combination of up to four categories of statistically distributed responses: receive warning leave work, travel home, and evacuate home. It was assumed that these responses are time-distributed following a normal distribution curve. The details and applications of this assumption are more fully discussed later in this report.

Additional assumptions were made which are summarized at the back of the report under this heading.

Description of site

Location - The site of the Limerick nuclear generating station is in Limerick Township of Montgomery County, Pennsylvania, on the northeast bank of the Schuylkill River approximately four miles downriver from pottstown, 35 river miles upriver from Philadelphia, and 49 river miles above the confluence of the Schuylkill with the Delaware River.

The site is situated in the roliing countryside of Montgomery County, Pennsylvania. The area included within a $10-m i l e ~ r a d i u s ~$ of the station includes parts of three pennsylvania counties Montqomery, Chester, and Berks.

In 1985, it is estimated that there will be 171,876 people
 have 102,510 people (60 percent), Chester County 49,701 people (29 percent), and Berks County 19,665 peop.e (11 percent).

Licensee - The licensee for Limerick is the Philadelphia Electric Company. The General Electric Company is responsible for the nuclear steam supply system (NSSS) and is designing and supplying the reactors, the reactor fuel, and the associated turbine - generator system with the Chicago Bridge and Iron Company supplying the reactor vessels. All other systems of the station are being designed, procured, and constructed by the Bechtel Corporation which is the architect/engineer/constructor for the project.

Type of Plant - The " marick Generating Station will procuce electrical power using two turbine-generator units, each driven by steam produced by its own boiling water nuclear reactor (3WR). Each unit will have a rated thermal power level from its associated NSSS of 3293 MWT. The net station output from each of the generators will be 1055 MWE . The date of initial criticality for unit one is scheduled for January, 1985 with the date for commercial operation being scheduled for April, 1985. The scheduled dates for initial criticality and commercial operation for unit two are January, 1987 and April 1987, respectively.

Emergency Planning Area

The area within a 10 -mile radius surrounding a nuclear plant is zecommended for the delineation of the emergency planning zone (EPZ). The area within the $10-m i l e ~ r a d i u s ~ a r o u n d ~ t h e ~ L i m e r i c k ~$ generating plant encompasses all or part of 34 townships and 9 boroughs in three counties.

The EPZ is defined as the area enclosed by a circle of 10-mile zadius. For purposes of confirmation of evacuation of the EPZ, boundaries were delineated to just outside the perimeter of the 10 -mile circle to coincide with readily identifiable landmarks such as rivers, political jurisdictional boundaries, roadways, and other easily identified topographical features. Although the roadway network developed for evacuation purposes stops at the 10 -mile circle, the peripheral boundaries will assist the agenzies implementing the evacuation plans and the people affectea by evacuation to idertify the cuter boundaries of the planning area. Eigure 1 presents a map of the Emergency Planning Area around Limerick and shows the 10 -mile radius circle which depicts the EPZ for the plant.

The following description of the evergency planning area starts at the junction of the Montgomery and Chester county lines in the Schuylkill River and goes counter-clockwise around the perimeter of the EPZ. The Emergency Planning area boundary in Montgomery County generally follows the Schuylkill River, LR 46065, LR 46064, SR 363, US 422, T 386, T 340, T 397, Shippack Creek, T 354, SR 113, T 367, T 131, SR 63, SR 29, LR 46013, T 477, T 380, New Hanover Co., Line, and LR 46012 to the Berks county line.

In addition to the 34 townships that the EPZ affects, there are part of two additional townships in the Montgomery County emergency planning area that is not within the ERZ. These are Towamencin and Worester Townships.

In Berks County the boundary generally follows LR 06033, T 341, LR 06026, LR 06098, T 652, Colebrookdale County Line, SR 73, T 626, LR 06034, SR 562, SR 662, LR 06108, T 464, T 443,

STUDY SITE LOCATION evacuation time assessment

LR 06059, LR 06179, LR 06097 and the western boundary of the U.S. Federal Park into Chester County.

After crossing into Chester County along the Federal Park boundary, the emergency planning area boundary generally follows SR 345, T 533, SR 23, T 410, T 513, T 514, T 512, T 510, T 452, SR 100, T 464, T 461, SR 401, I 76, the Charlestown County Line, and the Schuylkill County Line to the river and Montgomery County.

General Recional Characteristics

The Limerick site is in the Triassic lowland sections of the Piedmont Physiographic Province, which is part of the Appalachian Highlands. Although Montgomery County is the third most populous in the state, there is a fairly high level of agricultural activity, principally dairying. In 1971, chester and Berks were ranked in the top ten counties of Pennsylvania in the procuction of corn, oats, hay, potatoes, apples, peaches, poultry and milk.

There are several manufacturing plans located within the 10-mile circle along the Schuylkill River. Boyertown, Trappe, and Collegeville, also have small manufacturing facilities. There are several employers within the EPz which employ over 1,000 people. West Comapny in Phoenixville employs 3,200 people. Mrs. Smith pie Company in pottstown, employs 2,400 and Telellex Inc., in Royersford has over 1,400 employees.

Population Distribution - Within the 10 -mile radius of the Limerick plant there are 34 townships and 9 borouchs. The nearest populations center within the lo-mile circle is pottstown in Montgomery County with a 1985 projected population of 27,720 ,
six smaller communities within the $10-$ mile circle with 1935 projected populations of 2,010 to 15,000 include Phoenixville, Trappe, Collegeville, Spring City, Boyertown, and Roversford. The largest populated township is Upper Providenze in Montgomery County which will have close to 10,000 people in 1985. Other townships with a 1985 projected population of over 5,000 include Douglass, Limerick, Lower Pottsgrove, Lower Providence and Shippack in Montgomery County, North Coventry Township in Chester County and Amity Township in Berks County.

Map - Planingg zones - As mentioned previously, Figure 1 presents a map of the planning area around the Limerick Nuclear Plant with the station being at the center of the map. The Erz is shown as a circle with a 10 -mile zadius and the Emergency Planning Area boundary is depicted around the perimeter of the circle. The map shows the Schuylkill River running in a Nw-SE direction through the EPZ with county, township, and borough boundaries identified as such.

Maior Transportation Facilities - There are several highways within relatively short distance from the site. US 422 is $1-1 / 2$ miles north and runs in a NW-SE direction. PA 100 is 4 miles west through Fottstown and runs $N-S$. PA 724 is $1-1 / 4$ mile west accross the Schuylkill river and runs in a NW-SE direction. An extension of the Schuylkill Expressway (NW-SE) is presently under construction and is being routed within 4 miles of the eastern boundary of the site.

Other highways within the 10 -mile radius include PA 23 which is 4 miles south across the Eiver and runs $W-E$. PA 73 is $6-1 / 2$ miles north and zuns NW-SE. PA 29 is $7-1 / 2$ miles east and zuns $\mathrm{N}-\mathrm{S}$ while PA 663 is 3 miles west and zuns $N E$ from pottstown.

The are is also served by Conrai_ Railroad which has track within one mile of the site along the Schuylkill River. The Pottstown airport is a general aviation airport located about 5-1/4 miles north-west of the station, but at present it accommodates no scheduled commercial or commuter Elights.

Support Organizations

In cases of an emergency at the facility, close coordination between federal, state, and local agencies is imperative to provide the responsibility necessary to ensure implementation of an evacuation plan. Philadelphia Electric Company will have categories of incidents defined including criteria for determining when protective measures should be considered and for notification of off-site support groups. Agreement, liaison, and communications will be established with appropriate agencies that have responsibilities for coping with emergencies.

Support agencies expected to coordinate activities in the Limerick area are:

1. Pennsylvania Zmergency Management Agency (PEMA)
2. Montgomery County Office of Emergency Preparedness
3. Chester County Office of Emergency Preparedness Service
4. Berks County Office of Emergency Preparedness Service
5. Nuclear Requiation Commission (NaC)
6. Bureau of Radiation Protection
7. National Guard
8. Pennsylvania State Police
9. Local Municipalities, such as, police, Eize, and others necessary to implement an evacuation plan.
```
Licensee Evacuation Pla? - As a result of a request by NRC that Philadelphia Electric do an evacuation time study, the utility contracted with NUS Corporation to perform the study. The study being done by NUS is presently in draft form and has not yet been submitted to NRC.
```

Other Evacuation Plans - The Pennsylvania Emergency Management Agency in conjunction with the Pennsylvania Department of Transportation, will develop an evacuation road network and an estimate of evacuation time, for the Limerick area.

These estimates will be done in conjunction with the actual evacuation plans being developed at the county levels. As is the case with other nuclear plants in Pennsylvania, evacuation ti e scenarios for populations within a $2,5,10$ and 20 mile radius of the station will be developed. Since the first unit at Limerick does not come on line until 1985, Pennsylvania's priority for developing evacuation times for Limerick is lower than for other Pennsylvania nuclear plants such as TMI.

AREA CHARACTERISTICS

The area characteri:tics were nbtained by field inspection, from information contained in the Limerick Generating Station Environmental Statement supplied by the Licensee, and from information obtained from the various Planning Commissions of Montgomery, Chester, and Berk counties.

Topography * (6)

As mentioned earlier, the Limerick site lies in the upper part of the region known as the piedmont Providence. In the area around the plant, four distinct habitats are forest, successional areas (urban and rural), cultivated areas and wetlands.

Commerical woodiands in the Montgomery County area of Pennsylvania occupy about 13 percent of the total county area. A large portion of the cultivated areas in southeastern Pennsylvania produces grain, hay, fruit, and vegetables. The wetlands of the araa include the Schuylkill River, smaller streams, small artificial ponds, marshes, and swamps. The station is on the northeast side of the river at a mean elevation of 210 feet above sea level (MSL). Throughout the immediate site area the land slopes upward from the river from an elevation of roughly 100 to 280 feet (MSL).

Meteorology *(6)

Temperature - The climate of Montgomery and Chester counties and the southeastern portion of Berks County is characterized by
*(6) Source:
U.S. Atomic Energy Commission (now the Nuclear Regulatory Commission), 1973, Environmental Statement for Limerick Generating Station.
warm, humid summers and moderately cold winters. The average temperature $0 f$ the three-county area is approximately $55^{\circ} \mathrm{F}$. Temperatures below $0^{\circ} \mathrm{F}$ and above $100^{\circ} \mathrm{F}$ are rare; average daily maximum termperatures range from $87^{\circ} \mathrm{F}$ in July to $40^{\circ} \mathrm{F}$ in January, and average daily minimum temperatures range from $23^{\circ} \mathrm{F}$ in January and February to $65^{\circ} \mathrm{F}$ in July and August. The average annual precipitation is 45 inches and is rather uniformly distributed throughout the year, with only small differences between the wettest and driest months. Table 1 gives an average of the data from 1931 to 1960 from the West Chester, Coatesville, and Phoenixville weather scations. These weather cenditions are due in large measure to the protection given by the Allegheny Mountains to the west.

```
    Precipitation - In the period of December through the early
part of March, part of the precipitation falls in the form of snow
produced from storms that are more extensive and frequent than
those occurri-g during the warm seasons. Occasionally, moisture-
laden storms moving along the Atlantic Seaboard produce heavy snow, creating near-blizzard conditions. The average annual snowfall is \(29.5^{*(7)}\) inches, while the record maximum annual snowfall received at Reading, according to available records, was \(58.8^{*(7)}\) inches, in the winter of \(1960-61\). The record minimum annual snowfall occurred during the winter of 1972-73, totalling less than \(6^{*(7)}\) inches.
```

Winds - Winds in the Limerick area are predominantly from the NW. The wind rose in Figure 2 shows the percentage of time that the wind comes from each section at the Limerick weather station. Table 2 gives the percentage frequency of wind speeds at Peach Bottom, a similar site whose data can be used with substantial confidence.
*(7) Source: $\frac{\text { U.S. Department of Commerce, } 1968 \text { Local Climatological }}{\text { Data. Total depth, Mot water equivalent. }}$

TABLE 1

Month	Temperature data							Precipitation data			
	Mean temperature ($\left.{ }^{\circ} \mathrm{F}\right)^{\text {d }}$			Mean degre days. ${ }^{3}$ based on $65^{\circ} \mathrm{F}$	Nean number of days ${ }^{\text {a }}$			$\begin{gathered} \text { Mean } \\ \text { n-sipitation } \\ \text { (in. }^{b} \end{gathered}$		Mean deys of 0.1 in . or more procipitation	
				Max temp	$\begin{gathered} \text { Min } \\ \text { temp } \\ 32^{\circ} \mathrm{F} \\ \text { and } \\ \text { below } \end{gathered}$						
	$\begin{aligned} & \text { Daily } \\ & \text { max } \end{aligned}$	$\begin{aligned} & \text { Daily } \\ & \text { min } \end{aligned}$	Monthly			$90^{\circ} \mathrm{F}$ and above	$\begin{aligned} & 32^{\circ} \mathrm{F} \\ & \text { and } \\ & \text { below } \end{aligned}$	Rain	$\begin{aligned} & \text { Snow } \\ & \text { and } \\ & \text { sieet } \end{aligned}$		
Jan.	40.9	23.7	32.3		1023		5	26	3.34	5.9	6
Feb.	42.1	23.1	32.9	857		3	23	2.85	7.4	6	
Mar.	51.0	30.2	40.6	734		1	20	4.13	5.5		
Apr.	63.3	39.9	51.9	364			4	3.48	0.4	8	
May	74.1	50.2	62.3	147	1			4.15		7	
June	32.7	59.0	71.0	23	5			4.00		7	
Juiy	87.2	63.8	75.6	1	11			4.49		6	
Aug.	34.9	61.3	73.3	4	7			5.07		7	
Sept	78.3	55.0	66.7	73	2			3.61		5	
Oet.	67.5	43.9	55.3	309			4	3.18	0.2	5	
Nov,	54.8	34.2	4.7	640			15	3.73	1.4	6	
Dec.	42.3	25.1	34.1	955		5	23	3.39	4.3	6	
Year	54.1	42.5	53.4	5180	26	14	115	45.42	25.1	77	

${ }^{\text {a }}$ Modification of Chester County Panning Commiswion's abuiation from United States Weather Bureau's officiai records (averages from thrse stations: Castesvile. Thoenixville, asd West Chester).
${ }^{5} 30$ years of iscord.
${ }^{c} 10$ years of record.

Source: U.S. Atomic Energy Commission (now the Nuclear Regulatory Commission), 1973, Environmental Statement for Simerick Generating Station.

Fig. 2. Six-month wind zose (1971), Jimerick weather station No. 1; location $N-11$ (temporary pole), nominal $30-f t$ level, el. 280 MSL . Shaded areas show percentage of time that wind comes from each 10 sector, during all hours for which data are available.

```
Source: U.S. Atomic EnergY Commission (now the Nuclear Regulatory Commission), 1973, Environmental Statement for Limerick Generating Station.
```

TABLE 2

Percentage frequency of wind speeds, Peach Bortom weather station No. 2. iocadion W - t (nominal 320-ft levei, ei. 688 ft MSL)

Penod: August 1967-July 197 .

Turbuience ciass	Frequency (\%) of winds of specified speeds					
	1-3 noh	4-7 mph	3-12 mph	13-18 mph	$19+$ mph	All speeds
1	0.5	0.2	0.1	0.0	0.0	0.7
[1	1.1	6.1	13.0	17.2	10.4	47.7
I	0.6	0.3	0.6	0.1	0.0	1.7
,	0.0	0.1	2.1	7.3	9.4	19.4
	3.2	6.9	10.2	8.5	0.8	29.6
						0.9
All ciasses	5.3	13.7	26.0	33.6	20.5	100.0

Source: U.S. Atomic Energy Commission (now the Nuclear Regulatory Commission), 1973, Environmental Statement for Limerick Generating Station.

Surface Water - In the Schuylkill River, there are high flows in late winter and early spring when the snows are melting, but the highest flows are caused by rains from hurricanes which occasionally make their way inland. In June 1972 , heavy rains caused by tropical storm Agnes caused record floods on the Susquehanna and Schuylkill Rivers in Pennsylvania. The peak flow rate produced by the storm has been estimated as approximately 110,000 cfs at Pottstown, about 4 miles above t. Limerick site. Preliminary estimates are that the water level in the vicinity of the plant reached elevations between 129.5 and 130 feet above mean sea level, which are well below the station elevation (about 210 feet above msl). The highest flow previously recorded was $53,900 \mathrm{cfs}$ at pottstown in 1902. The average annual flood flow is $21,000 \mathrm{cfs}$ and the 100 -year $f 100 \mathrm{~d}$ flow is computed to be 99,000 cEs. The probably maximum $5 l o 0 d$ flow is estimated to be 356,000 cts. Failure of any maximum flood flow is estimated to be 356,000 cfs. Failure of any upstream dams would not add materially to the level of the probably maximum flood which is calculated to be 158 feet above mean sea level.

Demography

Demographic data was collected within the $E 2 Z$ by townships and boroughs to identify populations and other pertinent factors which affect evacuation. Townships and boroughs were used as planning zones; however, in many instances, the planning zones were subdivided to avoid overloading of roadway networks, when this occurred, the subzones were divided by some early -dentifiable basis to permit the aisign.nent of persons residing in these areas to a logical and definite evacuation route.

The EPZ for Limerick includes townships and boroughs in three counties. Each of the 34 townships within the EPZ was given a letter designation for identification purposes. Where a township was subdivided, the letter designation was suffixed with a number. The nine boroughs were assigned alpha-numeric
designations using the letter of the nearest township or townships, in cases where a large borough was subidivided.

Table 3 lists all the political subdivisions within the EPZ, namely counties, townships and boroughs and gives the projected 1985 population of each. Population projections for 1985 in Berks County were extrapolated from census numbers for 1970 and 1977. In Montgomery and Chester counties, the 1985 projections were interpolated from the 1977 and 1990 census numbers.

Table 4 lists all the schools in the three county area along with their locations and associated enrollment. Likewise hospitals and nursing homes in the EPZ are listed by county in Table 5 and Table 6, respectively, along with their location and associated populations. Table 7 lists all other potential population gathering points by county and location. This list includes such facilities as prisons, parks, campgrounds, and recreation areas. Fiugers 3, 4, 5, and 6 present quadrant maps that depict the location of schools, hospitals, nursing homes as listed in the above tables. Key numbers in tables refer to the accompanying location on the maps.

TABLE 3
SUMMAFY OF 1985 RROJECTED POPULATIOL OF THE PLANNING ZONES

POPULATTON CENTER
 Montgomery County
 Townships

SUB-2ONE
POPULATION

```
Douglass
Limerick
Lower Frederick
- Lower pottsgrove
Lower Providence
Lower sulford
Marlborough
New Hanover
Pezkiomen
Skippack
Upper Frederick
Upper Hanover
Upper Pottsgrove
Upper Providence
Upper Salford
Nest Pottsgrove
```

 Borouchs
 .Collegeville B-5 3405
Green Lane
Pottstown
Reyersford
Schwenksville
Trappe
Montgomery County Total: 102,510
Chester County
Charlestown
East Coventry
East Nuntmeal
East Pikeland
$\mathrm{CK}-1$
348
F-2 690
M-3...M-7;
$\mathrm{N}-2 \ldots \mathrm{~N}-4$;
0-2..0-4 27720
C-5, C-6 4956
I-3 876
3-4 2202

Townships
 Townships

East Coventry
$z-1 \ldots z-3 \quad 4470$
$\mathrm{CE}-1$ 471
CG-1. . . CG-3
4470

TABLE 3 (cont'd)

Chester County Continued

East Vincent	CB-1...CB-3	4335
North Coventry	$\mathrm{Y}-1 . . . \mathrm{y}-3$	7326
Schuylkill	$\mathrm{CJ}-1, \mathrm{CJ}-2$	4770
South Coventry	CA-1	1089
Warwick	CF-1	1203
West Pikeland	$\mathrm{CH}-1$	1650
n. st Vincent	CC-1...cC-3	1914
Upper Uwchlan	CD-1	27
Boroughs		
Phoenixville	$\mathrm{CJ}-3 . . . \mathrm{CJ}-7$	13869
Spring City	C3-4	3759

Chester County Total: 49,701
3erk; County
Townsh.ips

Amity	T-1...T-3	5277
Colebrookdale	$\mathrm{V}-1, \mathrm{~V}-2$	3750
Douglass	s-1...s-3	3912
Ear1	U-1	1338
Union	$\mathrm{X}-1, \mathrm{X}-2$	2286
Washington	$\mathrm{W}-1$	498
Borouchs		
Boyertown	$\mathrm{V}-3 \ldots \mathrm{~V}-5$	2604

Serks County Total: 19,665

TABLE 4

```
SCHOOLS WITHIN A \(10-\mathrm{MILE}\) RADIUS OF THE LIMERICK SITE
```


MONTGOMERY COUNTY

PERKIOMEN VALLEY SCHOOL ETSTRICT

KEY	SCHOOL	LOCATICN	ENROLIMENT
S-1	Kulp Elementary	Perikomen Twp.	944
S-2	Collegeville-Trappe Elementary	Collegeville	463
S-3	Skippuzk Elementary	Skippuck Twp.	369
S-4	Perkiomen Valley Sr. High	Perkiomen Twp.	944
S-5	Perkiomen Valley Middle	Collegeville	444
POTMSTOWN SCHOOL DISTRICT			
KEY	SCHOOL	LOCAIION	ENROLEMENT
S-6	Edgewood Elementary	Pottstown	273
S-7	Franklin Elementary	Pottstown	229
S-8	Jezferson Elementary	?ottstown	388
S-9	Rupere Elementary	Pottstown	209
$5-10$	West End Elementary	Pottstown	309
s-11	Pottstown Senior High	Pottstown	1050
S-12	Pottstown Jこ. High	Pottstown	571

SPRING-FORD AREA SCHCOL DISTRICT

KEY SCHOOL

S-13 Consolidated Elementary
S-14 Limerick Elementary
S-15 Mont Clare
S-15 Spring Cicy
S-17 Oaks
s-18 Royersford
S-19 Spring-Ford Area Sr. High
s-20 Spring-Ford Area Jr. High

LOCATION	ENRCLIMENT
	147
Royersford	485
Upr.Providence Twp.	185
Limerick Twp.	268
Upr.Providence Twp.	409
Royersford	333
Royersford	950
Royersford	855

METHALTON SCHOOL DISTRICT

KZY SCHOOL

s-21 Audubon Elementary

SOCATION
ENROLLMENT
Lwr.providence Iwp. 420

TABLE 4
BOYERTOWN SCHOOL DISTRICM
(Cont'd)

| KEY SCHOOL | LOCATION | ENROLLMENT |
| :--- | :--- | :--- | ---: |
| S-22 Conge Elementary | Doug...ass Twp. | 92 |
| S-23 Gibertsville Elementary | Douglass Twp. | 314 |
| S-24 New Hanover Upr. Frederick Elem. New Hanover Twp. | 676 | |
| S-25 Junior High East | New Hanover Twp. | 816 |

PRIVATE SCHOOLS

KZY SCHOOL

ENROLIMENT

S-26 Hill School 194
S-27 St. All.sius School 512
S-28 St. Peter's 103
S-29 St. Pius' 684
S-30 Winderoft
S-31 St Gabriel's 95
S-32 Sacted 222

| 277 |
| :--- | :--- |

S-33 Kripaul Ashran N/A
S-34 St. Eleanor's 256
$\begin{array}{ll}\text { S-35 St. Mary's } & 183\end{array}$
S-3. St. Philitp Neri 290
S-3: Franconia Day School N/A
S-33 New Life 3oy's Ranch 55
S-39 Jennview Chzistian 596
S-40 Lower Providence Kindergarten
and Nursery School
N/A
UNIVERSITIES AND COLLEGES

PHOENIXVILIE

```
KEY SCHOOL
S-43 East Pikeland Elementary
S-44 Schuylhill Elementarv
S-45 Mason Street Elementary
S-46 Second Avenue Elementar!
S-47 Barkley Elementary
```


LOCATTON

East Pikeland Twp. 370
Schuylhill Two. 575
Phoenixvilie Twp. 125
rhoenixville Two. 160
shcenixville tiwo. 400

TABLE 4
(Cont'd)

PHOENIXVILILE

KEY	SCHOOL	LOCATION	ENROLLMENT
S-48	Phoenixville Senior High	Schuylnill Twp.	725
S-49	Phoenixville Junior High	Schuylkill Twp.	950
S-50	Norchern Chester County Vocational-Technical	Schuylkill Twp.	500
S-31	$\begin{aligned} & \text { Liberty Forge School } \\ & \quad \text { (Special Education Center) } \end{aligned}$	Schuylki:1 Twp.	N/A
OWEN J. ROBERTS SCHOOL DISTRICT			
KEY	SCHOOL	LOCATION	ENROLLMENT
S-52	Warwick Elementary School	Warwick, Twp.	212
S-53	French Creek Elementary	East Nantmeal Twp.	313
S-54	East Coventry Elementary	East Coventry Two.	232
S-55	Vincent Elementary	East Vincent Two.	397
S-56	West Coventry Elementary	North Coventry Twp.	591
S-57	Owen J. Roberts High	South Coventry Twp.	1236
S-58	Owen J. Robezts Middle	South Coventry Two.	1067

KEY SC::OOL

LOCATION
S-59 St. Anre schocl
s-60 St. Basi? Schocl
ENROLLIENT
-51 Sacred eart School 125
S-62 Holy Trinity school 100
S-63 St. Mary
150
S-64 Valley Forge Church Academy
120
UNIVERSITIES AND COLLEGES

KEY SCHOOL	LOCATION	ENROLLMENT
S-65	Valley Forge Christian College	N / A

BERKS COUNTY

DANIEL BOONE SCHOOL DISTRICT

| KEY SCHOOL | LOCATION | ENROLLMENT |
| :--- | :--- | :--- | :---: |
| S-66 Amity Elementary School | Amity TNP. | 600 |
| S-67 Monocacy Elementary | Union Twp. | 200 |

TABLE 4
(Cont'd)

BOYERTOWN SCHOOL DISTRICT


```
TABLE 5
HOSPITALS NITHIN A
TEN-MILE RADIUS OF TGE LIMERICK SITE
```

KEY	HOSPITAL	LOCATION	CAPACITY
3-1	Pottstown Memorial Medical Center	Pottstown Bovo	275
$\mathrm{H}-2$	Eagleville Hospital and Rehabilitation Center	Lower Providence Twp.	126

CHESTER COUNTY

KEY	HOSPITAL	LOCATION	CAPICITY
H-3	Pennhurst State Hospital		East Vincent
	TWD.	Phcenixville Hospital	
H-4	Phoenixville	139	

BERKS COUNTY
KEY $\frac{\text { HOSPITAL }}{\text { There are no hospitals within a } 10 \text {-nile radius. }}$ CAPACITY
ThicN

```
TABLE 6
NURSING HCMES NITHIN A TEN-MIIE RADIUS OF THE LIMERICK SITE
```

MONTGOMERY COUNTY

KEY	NURSING HOME	LOCATION	CAPACITY
$\mathrm{N}-1$	Leader Nursing and Rehabilitation Center	Pottstown Boro.	159
$\mathrm{N}-2$	Manatawny Manor and Residential Care	pottstown Boro.	99
N-3	Frederick Mennonite Home	Uper Frederick Twp.	143
N-4	Montgomery County Geriatric and Rehabilitation Center	Upper Providence Twp.	600

CHESTER COUNTY

KEY	NURSING HOME	LOCATION	CAPACITY
N-5	Coventry Manor	South Coventry Twp.	41
N-6	Mary Hill Rest Haven	$\begin{aligned} & \text { Schuylkill } \\ & \text { Twp. } \end{aligned}$	17
N-7	Phoenixville Manor	Phoenixville	135
N-3	Manatawny Manor	East Coventry Twp.	100
BERKS COUNTY			
KEY	NURSING HOME	SOCATION	CAPACITY
N-9	Douglassville Home	Union Two.	40
N-10	River Road Home	Union Two.	25

TABLE 7

POPULATION GATHERING POINTS (NOT OTHERWISE
 CLASSIFIED) WITHIN A TEN-MILE RADIUS
 OF THE LIMERICK SITE

MONTGOMERY COUNTY

KEY NAME LOCATION

Parks and Camp Grounds

$0-1$	Lakevi-w Amusement Park	Limerici: Twp.
$0-2$	Evansburg State Park	Skippack Twp. and
$0-3$	Lower Perkiomen Valley	Lower Providence Twp.
$0-4$	County Park Sunrise Mill County Park (Under Development)	Limerick Twp.
$0-5$	Upper Perkiomen Valley	Upper Frederick Twp.
$0-6$	County Park	
	Upper Schuylki:1 Valley	Upper Providence Twp.

Governmental Facilities

0-7	Eastern State Game Farm	Limerick two.
0-8	Montgomery County Geriatic and Rehabilitation Center	Upper Providence Twp.
0-9	Montgomery County Prison Farm	Lower Providence Twp.
0-10	Pennsylvania State Correctional Institution	Skippack Twp.

3ERKS COUNTY

KEY
NaME
LOCATION
Parks and Camp Grounds

0-11 Schlegel's Grove	Colebrookdale TNp.
0-12	Pottstown Community Center

TABLE 7

 (Cont'd)| KEY | NAME | LOCATION |
| :--- | :--- | :--- |
| $0-13$ | French Creek State Park | Union Twp. |
| $0-14$ | Church of God Camp Ground | Colebrookdale Twp. |
| $0-15$ | Ironstone Campsite | Douglass Twp. |
| $0-16$ | YMCA Camp | Douglass Twp. |
| $0-17$ | Camp Shilo (Special Children) | Douglass Twp. |
| | | |
| NOTE: | Facilities listed in the table are not depicted on | |
| | Figures 3, 4, 5, and 6. | |

Evacuation Time Assessment Study


```
The concept of evacuation in this assessment of the Limerick evacuation times assumes that everyone in the \(10-m i l e ~ r a d i u s ~ w i l l ~\) be evacuated outside of that \(10-\mathrm{mile}\) radius. There is no assessment of the time to evacuate within the two- or the five-mile radius. It is assumed that all people that live within the 10mile radius will be evacuated along a specified route known to them. The evacuation time will include the time from notification until the last vehicle crosses the \(10-\) mile radius.
```


Notification of Evacuation

There are two distinct events which are necessary to initiate the evacuation. One event is the direct notification of public agencies, schools, major employees and other locations of large population concentrations. The second event is the dissemination of the evacuation warning to the general population. Btoh of these events must include instructions regarding the sectors to be evacuated. The first event is assumed to be accomplished by telephone from the Emergency Operating Center to the affected group. Ideally the second event would be implemented by a public warning system, which would combine an acoustical warning system by sirens or horns, supplemented by instructions over selected radio and T.V. Broadcast stations. In the particular site, no advanced system of this type is in place. Therefore, the predominant mode of this notification is by use of vehicles and helicopters with mounted loudspeakers. A specified message from these vehicles would indicate that an evacuation has been recommended and to turn on their radios for
additional information. Radio stations must be provided with complete, accurate and current information. They should have prior zone descriptions and repeat recommended routing information. They should have phone numbers people can call should these people require special evacuation assistance or additional information.

Public Response Time

There can we up to four activities preceding the evacuation from the home which car be statistically distributed in time: (1) Receive warning; (2) Leave work; (3) Travel home; and, (4) Evacuate home. Each of the response times may have different distributions, depending upon the particular scenario being assessed.

Receipt of Notification - Receipt of notification is assumed to approach a normal distribution in time; therefore, the accumulated probability approaches an " S " curve. This distribution can be approximated by three straight lines. One line, passing through the 50 percent, 16 percent and 84 percent distributions, represents two time increments. One straight line from zerc to 16 percent represents one time inurement. The third straight line from 84 to 100 percent represents one time increment. Ir is assumed that the time increments are five minutes, so the total time for receipt of notification is 20 minutes.

This distribution means that 16 percent will have been notified within the first five minutes, 50 percent will have been notified in ten minutes, 84 percent will have been notified in 15 minutes, and 100 percent will have been notified in 20 minutes. (See Volume I for more detail.)

Departure From Place of Work - Departure from the place of work is assumed to approach a normal distribution curve in the same manner as receipt of notification. Distribution is approximated by three straight lines and four five-minute time increments. The distribution assumes that 16 percent will depart from their place of work in five minutes, 50 percent will depart in ton -inctes, 84 percent w. 11 depart in i5 minutes, and 100 percent will depart in 20 minutes (see Volume I for more detail.)

Travel From Work to Home - The time of travel to the home approaches nomal distribution of time in the same manner as the two previous responses. Under normal conditions this distribution assumes that 16 percent will travel to home in five minutes, 50 percent in 10 minutes, 84 percent in 15 minutes, and 100 percent will travel to home in 20 minutes. This distribution is expanded in certain scenarios, specifically that of the adverse weather scenario (see volume I for more detail).

Departure From Home - Departure from home also approaches a normal distribution in time and the accumulated probability approaches and "S" curve. The distribution is approximated by three straight lines in the same manner as the above three responses. The activity is distributed over eight five-minute periods for a total of 40 minutes. The distribution indicates that eight percent will depart from home in the first five minutes, 16 percent in ten minutes, 33 percerit in 15 minutes, 50 percent in 20 minutes, 67 percent in 25 minutes, 84 percent in 30 minutes, 92 percent in 35 minutes, and 100 percent will have departed home within 40 minutes (see volume I for further details.)

Evacuation Link/Node Network

The evacuation routes for each centroid has been manually established and coded for computer evaluation. Figures 7, 8, 9, and 10 indicate the coded network and the evacuation route for each centroid.

Table 8 contains the network descriptions. The table contains two node numbers for each end of a given link, the distance between nodes in miles, the assumed speed for that link, its total capacity in vehicles per hour in the direction of evacuation, and the identiry of the roadway. For example, the finst link in Table 8 is from Node 11 to Node 201 . The distance is 0.10 miles, the assigned speed is 35 miles per hour, the capacity is 1,500 vph, and the roadway segment is on Egypt Road. The values assigned to each link represent the best judgement of these Eactors considering roadway geometry, width, terrain and other factors.

Many of the evacuation zones are rather large and may have several centroids. These centroids associated with population centers and are located to provide for a logical evacuation of the zone.

The capacities established for each link are not the capacities that could be expected under nommal circumstances. The evacuation of a ten-mile area has all the vehicles headed in the same direction, with the possible exception of emergency vehicles coming into the area. Because of the directional Elow and controlled routings, lane capacities are generally larger than could be expected under normal circumstances. Another important factor that contributes to smoother flow and greater capacities is that all drivers of vehicles on any roadway segment are of one accord and are headed for the same location. Generally, they are probably the most seasoned, experienced of the drivers in a household. All drivers know that they must evacuate the area and cross the ten-mile zone.

TABLE 8
NETWORX DESCRIPTION

	$\times \ldots$	0：3：	35	CAP	4 COE ： 23^{+}	SPGE	CAF	ROADWAY IDENTITY
．	：．	O．：	\％．${ }^{\text {\％}}$	1500				Egypt Road
\cdots	．	．．．	， 2 ）	3500				Ridge Pike Road
IS	\because	5．：9？	18．0	3000				Ridge P Road
－	\therefore	0.80	5.6	1500				Twp．K． 08
：	：．，	B．．	\＃：．	1500				SR 345
：	？	\therefore ，－	7．2	1500				US 422
：	29	\therefore ， 8	35.0	：500				US 422
\therefore	\therefore	1．－	（\％）	： 500				SR 29
2	\％	：． 5	3．）	1500				Egypt Road
\because	（u）	6．	（\％．）	4002				Schuylkill Expressway
2．	：27	$\therefore 3$	5．4．	4000				Schuylkill Expressway
\because	\cdots ？	入．．	．．． 0	15vo				Ramp to Schuylkill Exp．
\therefore	：	6．3．	\％	15c0				US 422
\therefore	，	C． 2	is．	1．200				US 422
\therefore	\because	\therefore	－．${ }^{\text {a }}$	（50）				Ramp to Schuylkill Exp．
－	\％	，	：．	120i				Ramp to US 422 Bypass
2v	4	：	3 B	1．0．0				Fruitville Rd．
：	－	Q．7：	\＃．．	！				Swamp Pike
2	\checkmark	2．7．	35．）	15：0				Swamp pike
\because		A．$\%$	\therefore 人 ${ }^{\text {a }}$	1050				Salford Rd．
12	？	S．． 3	：5．）	150				Gravel Pike
37	－	0．．．	（．）	1000				Snyder Rd．
54	\cdots	2.8	Z．0	： 50				Gravel Pike
\％	c	：	（．）	18.0				Gravel Pike
76	3	C．v	\because \％．	1800				Gravel Pike
37	\therefore	6．	X，	：000				Salford Rd．
35	\therefore	\therefore ，	\＃．，	18 cv				Gravel Pike
！2	－	．\dagger	天．	1800				Gravel Pike
－	\cdots	0.94	3．	1800				Gravel Pike
\because	＊	0.78	\％，，	．500				Patato kd．
4	\therefore	Q．．．	\％． 2	1500				Perkiomendile Rd．
47	＜．．	\therefore, \cdots	（．）	1500				SR 113
：2	－7）	$\therefore .80$	38．	：500				SR 29
4	8	：．Av	20．	： 500				SR 113
4	4	2．00	\＃\％	：500				SR 29
47	＊	0.35	\％\％	1500				SR 73 （Skippack Pike）
48	5	1．50	\％．：	1509				SR 73 （Skippack Pike）
5	\because	1．2．	\％	：500				SR 73 （Skippack Pike）
5	？	2．ov	\％	：500				SR 73 （Skippack Pike）
\％	8	0，3）	没．	： 508				Bergeys Mili Rd．
\％	\％．	1.30	J®．	：500				SR 113
\％	56	0.50	3 Li	1060				Skippack Creek Rd．（TWp．
\％ 0	？	0.2	3．，	1000				Skippack Creek Rd．（Twp．
5	－12	），it	河，	3000				Ridge Pike Road
5	3	$2+4$	58．）	$400{ }^{\circ}$				US 422 3ypass
81	21	1．：0	¢0，	＋000				US 422 Bypass
0 ：	：4：	0，4）	\％	＋000				US 422 Bypass
52	114	0.36	二． 3	： 500				Yost Rd．
5	24	7．a．	\because \％ 0	1506				SR 663
84	$2)$	：	3．6	1500				SR 663

TABLE 8 （Continued）

2m0 20	＊02E	21ST	\＄PGE	Caf	vCLE	2TST	SP5E：	248	ROADWAY IDENTITY
：．	$2: 3$	$\therefore: 10$	35.2	1500					SR 562
． 3	！17	$2 . .0$	35.0	1500					SR 562
\because	：．．	： 3 3r	35.0	：500					SR 652
． 2	27	2．90	35.0	1506					SR 73
： 2	41.	． .50	35．${ }^{\text {d }}$	1500					LR 284
． 4	\％	0.30	JE．${ }^{\text {2 }}$	．500					SR 100
．	12\％	\therefore 人	75． 0	$\therefore 500$					SR 100
\bigcirc	315	．． 30	35.2	1500					SR 100
\because	2．4	，40	35．0	：500					SE 73
\therefore	こ2	入．： 0	15．0	：500					Pawling Rd．
． 3.	：3．	$\therefore 20$	35.0	1500					SR 724
I．	2：	：．vi	35．2	：300					SR 724
\％ 3.	108	\ldots	50.0	4000					US 422 Bypass
． 3	134	3． 20	35.1	：500					LR 15131
．3－	4 C ：	： 2 2？	15．）	1500					LR 15131
． 35	． 58	（，4）	15， 0	1500					SR 100
． 3	13．	2，$)^{2}$	35.0	：500					SR 724
J	$17:$	$\therefore 40$	50.6	4000					US 422 Bypass
	13 ：	．．20	35.0	：500					SR 724
． 3	：3	$\therefore .30$	70.0	＋000	198	2.20	20．0	： 500	US 422 Bypass／Eamp to SR 100
（－）	：3ic	2．36	35.9	$: 500$	：43	0.40	55． 3	：500	SR 724／SR 663
${ }^{4}$	13；	\ldots ， 0	50.8	4000					US 422 Bypass
：$:$	$4: 6$	$\therefore .30$	35．v	1500					SR 724
＋ 4	430	：．+6	35.2	1500					3R 663
：44	145	$\therefore .40$	35.0	：500					SR 23
\cdots	\％ 84	\therefore こ\％	5．${ }^{5}$	（5：0）					SR 23
． 40	：48	A， 30	TE：	：500					SR 724
．4＊	148	2.20	35．${ }^{\text {\％}}$	1500					SR 724
． 46	¢03	$\therefore .50$	35．0	1500					SR 724
44	150	3， 32	こ，	1500					SR 100
： 5	173	$\therefore 30$	35.0	1500					SR 100
\％	144	． 40	75．6	：500					Twp．R． 512
（5：	149	$\therefore 20$	35.0	1500					SR 100
$\therefore 3$	． 5	0.40	55.0	： 200					Pughtown Rd．
134	125	0.70	\％5． 0	1200					SR 23
\because	158	0.50	35.0	1500	156	2． 30	35.2	2500	SR 100／SR 23
Es	1 T	3．20	JE． 0	1500					SR 100／SR 23
： 7	175	2.20	35.9	． 500					countryville Rd．off Hwy． 23
153	157	7，30	JE． 0	：500					Countryville Rd．off Hwy． 23
：5\％	\％ 5	3.29	35．2	1500					Pughtown Rd．
¢06	： 5 ：	， 30	35．	： 500					SR 724
． 31	178	$\therefore 20$	25．0	：500					SR 724
102	： 00	$\therefore .50$	75．0	≤ 500					SR 724
－ 05	152	．． 50	25.0	：500					SR 724
124	： 53	．．al	J\％0	1500					Penniturst Rd．
1.5	15.	．${ }^{0} 0$	JT， 6	1500					Twp．R． 513
． 23	132	0.30	35.0	：500					TWp．R． 561
（2）	120	1，30	： 2.0	：500					Twp．R． 514
： 23	139	2.30	35.0	$: 500$					SR 100
．2i	3：8	2.78	：5．\％	：500					SR 100

Table 8 （Continued）

AFODE	vODE	2IST	3PCED	CAP	NODE	ग1ST	SPEE	CAP	ROADWAY IDENTITY
17．	227	0.10	35.0	1500					Twp．R． 464
：72	： 27	：1．20	30.2	1000					TWP．R． 514
［73	108	0.30	35.2	：500					SR 100
8.74	：$\%$	0.30	35．	1500					SR 23
：75	：74	2.80	35．）	1500					SR 23
：76	$: 7$	0.30	35． 2	1500					Township Ling Rd．
． 17	［87	1.70	\％．8	：500					SR 23
． 78	T7	：． 50	35.0	1500	190	2.60	35.0	1800	SR 724／Hareshill Rd．
17	132	0，\％	J5．	1500					SR 113
河	13：	（．4）	35．	1500					SR 113
18.	． 92	0.36	35.0	1500					SR 113
．22	：93	0.20	35．	1500					SR 113
15：	154	（．：${ }^{\text {d }}$	35：	1500					SR 113
［34	\because	1．09	35，	500					SR 113
：37	43	0.30	\％	1500					SR 113
38	17	J． 2 ？	jE．	1800					ER 19
3＊	2．：	1．30	J\％	1800					SR 23
\％	3.	2.30	\％${ }^{\text {\％}}$	$\therefore 200$					SR 29
． 6	：$/ 2$	2．50	3ミ．	1500					SR 29
92	ง	1．36	35：	1500					Whitehorse Rd．
． 97	24	2．50	35．0	1500					Whitehorse Rd．
192	－）	1．40	$3 \mathrm{~S}, 0$	1500	223	0.20	35.0	1800	Egypt Rd．／SR 29
Se	81	0．，	20．）	1800					Ramp to Schuylkill Exp．
；	2	6． 2.	E0．	4000					Schuylkill Exp．
：77	21	2,00	52．2．	200．）					Schuylkill Exp．
． 3	4.9	9．30	T3， 0	3000					SR 100
－iv	43	0.20	35．：	1500					SR 113
\cdots	159	：， 7%	35．	1500					TWP．R． 470
402	$2 / 3$	0.59	J．	1500					LR 06154
－0．${ }^{3}$	$+4$	0.50	35.0	1500					LR 06101
20）${ }^{4}$	4）	2．70	3.8	：500					LR 06102
40\％	4） 2	$\therefore .20$	35.0	1500					SR 06155
106	：／7	2．30	55．${ }^{\text {P }}$	： 500					LR 06102
107	12：	\therefore 人20	5．）	1500					Countryclub Rd．
4×9	－ 59	0.20	35，	：500					LR 06103
40°	1.0	：．10	J5，	1500					LR 06104
410	： 2	0．30	35.0	：500					LR 06026
41.	27	2，90	35.4	－500					LR 46191
412	412	$0 . \because$	35.0	1500					Firestone R d．
413	414	0.10	2s．＊	1500					Yost Rd．
414	0	3．20	82.2	：500					Ramp to US 422 3ypass
415	33	0.30	10．8	1000	7	0.70	35.2	：850	Snyder Rd．／Mangerly Mill
4 \％	14	4．20	30.0	IEVC					Ramp
＋17	［． 2	＋．22	J．：	1500					Hoffmansville Rd．
413	79	0.30	5\％	：800					SR 73
41 ？	13 J	2．：0	20．	1500					Ramp to SR 724
120	＇9	0.83	\％	1550	421	2.10	20.0	： 200	SR 100／Ra－z to SR 100
42 E	： 5	1.30	\＃5．${ }^{\text {\％}}$	1300					SR 100
422	$\because / 4$	3．10	35.9	200					Ramp
123	424	2．10	－5．0	1500					Bridge St．

TABLE 8 (Continued)

2w) $\%$	NCDE	2te	FFED	inf	WOEE JIST	\$PEE]	Cap	ROADWAY IDENTITY
4			\% 2.9	1500				SR 29
4\%		0.60	5.0.	1500				SR 73 (Skippack Pike)
\% 01	129	0.20	15.0	:500				Centrcid Connector
\%	:	2,76	15.)	1500				Centroid Connector
0	:	0.4.4	:5.0	:500				Centroid Connector
300	:	2.ai	:5.0	1500				Centroid Connector
\%	. 3	4	:5.\%	1500				Centroid Connector
8	:	.. 0^{0}	15.)	1500				Centrold Coniector
:us	2	0.4.	15.0	:500				Centroid Connector
507	29	1.4)	15.4	1500				
*:	3	2, +0	15.9	:500				Centroid Connector
	-	2.3.	15.4	:500				Centroid Connector
	$41:$	6.70	15.4	:500				Centroid Cornector
\%18	3	1.2	18.0	1000				Centroid Connector
\%1	J	..Jiv	(5.9	1800				Certroid Connector
1%	36	1.0.	18.2	1500				Certrold Connector
: 2	2	2,	5.)	.800				Centroid
\because	20	:...	(5.)	:500				Centroid
: 3	2:	.. ${ }^{\text {a }}$	15.9	1500				Centroid Connector
: $\%$	3.	..3:	.5.0	:000				Centrcid connector
:	4.5	O.-	15.0	:200				Centroid Connector
8.	3	0, 3.	18.0	:500				Centroid Connector
\%	39	\%\%	15.0	. 800				Centroid Connector Centroid connector
\because	40	0.8	15. ${ }^{\text {d }}$:502				Centroid Connector
-	4	2.20	18.0	1200				Centroid Connector
\because	\bigcirc	0.30	15.0	1500				Centroid Connector
\because	4	..	15.0 is.0	(500				Centroid connector
-	--	2, 3	15.0	:500				Centroid Connector
\%	52	. 20	15.0	1500				Centroid Connector
\%.	Es	3.30	15.0	1000				Centroid Connector
\%	50	2.06:	15.8)	1500				Centroid Connector
4:	54	0.5	15.:	1500				Centroid Connector
	58	0.7\%	(5.)	1500				Centroid Connector
36)3	2.70	15.)	1800				Centroid Connector
55\%	22	0.30	:5.)	1500				Centroid Connector
838	5	2,10	.ร.	.500				Centroid Connector
\%39	${ }^{8}$	0.20	15.0	1500				Centroid Connector
46	80	0. 20	15.0	1500				Centroid Connectur
54.	7	$\therefore 30$	is. 0	:500				Centroid Connect,
84	\%	0,30	15.0	1500				Centroid Connectior
S 4	7	0.10	15.9	:500				Centroid Connector
${ }_{-4}+4$	51	..20	15.0	1500				Centroid Comr-ctor
\%45	30	0.40	15.0	:500				Centroid Connector
340	54	\% 34	15.)	1500				Centroid Connector
54	3	-3.30	15.0	S00				Centroid Connector
519	32	3.20	15.1	1800				Centroid Comnector
\%	92	:.00	15.0	:500				Centroid Connector
\%	93	:.,0	:8.0	1500				Centroid Connector
5	${ }_{5}$	2.30	15.2	1500				Centroid Connectur

fABLE 8 (Continued)

- Cl E	NCTE	(t:	SPEED	Q20	vose Jist	\$FEE	Caf	ROADWAY IDENTITY
\%	:-	$0 .: 5$:5.0	150				Centroid Connector
\%54	1.2	i.,	15.0	ISvC				Centroid Connector
\pm	is.	8.80	:5.0	1500				Centroid Connector
Se	12d	(i)	15.0	1500				Centroid Connector
\%	$1: 10$	(.3)	:5.0	1500				Centroid Connector
38	143	$6 .$.	15.0	1500				Centroid Connector
: 5	1.2	0.8	15.9	1500				Centroid connector
©ov	:	,3)	15.5	:500				Centroid Connector
¢:	118	6.2.	18.0	:500				Centroid Connector
-23	!	.	:5.0	1500				Centroid Connector
\cdots	1.5	c.:\%	15.2	:500				Centroid Connector
35	:12	2...	:5.7)	1500				Centroid connector
\cdots	123	$\therefore 3$	15.)	1500				Centroid Connector
\therefore	$12:$	2...	15.1	. 500				Centroid Connector
\%	:-	0.1	:5.0	:500				Centroid Connector
2^{8}	:	:	18.)	:500				Centroid Connector
\%	13.	ग.3)	:5.0	1500				Centroid Connector
	13]	©,	5. 0	1500				Centroid Connector
	: 3	\therefore	15.9	1280				Centroid Connector
	4.	3.8)	.5.)	:500				Centroid connector
	:4 4	0.5	15.)	1500				Centroid Connector
\because	: 4 s	0.vo	-5, 6	1500				Centroid connector
	147	2, 3	15.6	:5co				Centroid Connector
	158	:-	S.	1500				Centroid Connector
\%	159	9.7)	(5.)	:500				Centroid Connector
:	184	:...	5.	. 200				Centroid Connector
	164	. .4	:5.0	1500				Centroid Connector
\cdots	:a\%	2.5	.5.0	: 500				Centroid Connector
\because	:35).	:5.0	1500				Centroid Connector
	${ }^{18}$	[.3"	15.4	:500				Centroid Connector
¢:	169	\because	15.0	1500				Centroid Connector
\%	171	0,	15.0	:560				Centroid Connector
S30	172	0.3\%	15.0	:000				Centroid Connector
03	174	0.79	15.0	1500				Centroid Connector
588	176	0.80	:5.0	1500				Centroid Connector
54.	179	3,30	S. 50	1500				Centroid Connector
540	131	0.50	15.0	1500				Centroid Connector
\%	184	0.50	15.0	1500				Centroid Connector
\%83	407 191 90	0.50	28.0	1500				Centroid Connector
\%9\%	191 190	0.36	1.8 8.0	1800				Centroid Connector
5%	192	二.36	\%. 5.0	1800				Centroid Connector
597	. 89	0.:	.5.)	:500				Centroid Connector
899	: 88	$0 .$.	8. 0	:500				Centroid Connector
590	:37	2, 2	S. 0	1200				Centroid Connector
200	:94	0.36	:5.0	1500				Centroid Connector

Table y incicates the vehicles on each link. The number of vehicles is determined by the population to be evacuated and is based upon the assumption that each vehicle will evacuate 3.0 people. It has been observed in other actual evacuations that about 99 percent of the evacuees leave by private automobile. Therefore, this is a conservatiive assumption that all people are to be evacuated by automobilı. The number of vehicles on each link is a summation of all the vehicles from the different centroids that use any specific link of roadway.

Table : ? describes the evacuation route with a link-node description by centroid. This table gives the numbers of each node through which each evacuation route passes. Table 8 describes each link in this evacuation route and Table 9 indicates the number of vehicles on each link.

Directional Flow - All network routings will operate as twoway facilities. In the case of two-lane roadway, the outbound lane is for evacuation with the inbound lane used for emergency vehicles. A three-lane facility assumes two evacuation lanes and one inbound lane. A four-lane facility assumes two evacuation lanes and two emeraency lanes.

Travel Speeds - Speeds were assigned to each link depending on the character of the roadway. Freeway speeds were assigned at $50 \mathrm{~m} . \mathrm{ph}$. with rarp speeds at $20 \mathrm{~m} . \mathrm{p} \cdot \mathrm{h}$. For two lane roadways, State Highways were assigned at $35 \mathrm{~m} . \mathrm{p} \cdot \mathrm{h}$. and $30 \mathrm{~m} . \mathrm{p} \cdot \mathrm{h}$. for roadways of lesser quality. Some downtown streets in potestown were assigned speeds of $25 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Centroid connectors were considered as local streets and assigned a speed of $15 \mathrm{~m} . p . \mathrm{h}$.

Capacities - Capacities were assigned to the evacuation network to reflect emergency conditions with traffic flowing in one direction, occasional emergency vehicles opposing the traftic flow and problem areas controlled by special traffic features. Under these conditions the following capacities were assigned.

TABLE 9
VEHICLES ON EACH IINK
Normal Weekday

A Node	node	Veh.	A Node	$\begin{gathered} \text { Node } \end{gathered}$	Veh.
15	30	45	5_{5}	51	1199
11	201	70.2	E*	56	$\because 7$
12	202	1309	50	17	-37
13	202	320	ジ	412	1236
1	226	100	59	20	+60
12	216	30.	So	31	2335
t\%	17	1867	61	1.41	2355
:?	208	2:80	62	414	\%
:7	194	1300	63	34	-472
20	195	273:	84	90	2472
$2:$	20	64*)	\bigcirc	97	1473
22	177	1793	20	67	:242
23	197	.85:	- 27	38	:473
-4	:5	T34	5	36	1042
35	$\therefore 2$	1867	\% 3	09	-337
\%	196	1793	97	140	1837
\because	39	400	70	23	122
S6	29	460	\because	70	122
8	89	1385	?	74	74.)
30	19	982	74	415	740
$3:$	37	30	-	16	2383
π	39	1.06	76	77	$0 \cdot 3$
33	34	129	78	420	:472
34	40	17:4	\cdots	408	913
35	36	8:3	78	29	:470
36	38	110 a	79	75	$\bigcirc 30$
37	So	350	80	79	730
38	32	1:68ิ	81	50	700
39	34	1585	as	33	500
40	203	1944	83	34	500
41	42	544	84	35	292
42	204	544	35	402	982
43	205	1246	80	87	2353
44	400	969	87	38	3212
45	54	969	88	104	3212
48	44	549	89	90	1362
47	48	292	90	71	9472
48	50	292	90	92	1382
50	It	577	91	418	24\%
$5:$	207	1746	92	93	21.34
32	43	1246	93	94	2734
52	207	:000	94	209	273

TABLE 9
 (Cont'd)

P100R

TABLE 9
 (Cont'd)

A Node	$\begin{gathered} 3 \\ \text { Node } \end{gathered}$	Veh.
: 73	180	\$35
.79	180	1088
. 30	191	162\%
. 81	:82	1823
. 32	183	1973
, 33	184	1973
:34	220	222\%
187	423	950
1.88	17	1300
199	\cdots	3849
1\%	19.	1.374
+1	194	145]
$\therefore 2$	193	355
195	2 2 4	355
194	Q	1300
194	223	:5s7
195	21	278\%
196	2	:797
197	\because	3644
198	41.	999
400	45	969
40 :	158	300
$40:$	403	792
403	404	992
404	405	992
$4 \mathrm{C5}$	406	982
406	107	982
407	22:	:513
408	409	913
409	$1: 10$	913
410	1.24	100
41.	27	400
412	415	:230
413	4.4	1236
414	00	2235
415	33	129
415	7	740
410	141	300
417	102	1250
418	96	2472
419	138	999
420	78	:470

A	B	
Node	Node	Veh.
420	-2:	5525
421	135	2525
422	114	3412
423	424	950
124	188	950
\%	30°	2726
\%01	129	100
302	11	700
503	12	1369
504	13	300
505	13	20
507	20	10.
508	20	300
509	23	:35:
5:2	24	734
\$11	25	1135
$5: 2$	41.	400
5.3	28	400
814	30	400
515	30	382
516	25	1473
517	20	179
\%.3	$\therefore 2$:41
517	31	350
\%20	415	129
\#21	J5	918
$5: 2$	39	417
523	$4)^{1}$	230
524	41	544
525	52	1246
525	44	400
527	46	569
328	47	292
230	52	1000
531	55	¢57
532	50	285
533	54	200
535	59	1236
536	53	1250
53	22	999
518	6^{2}	1473
539	$\underset{8}{ }$	j04

TABLE 9

（Cont＇d）

A Node	$\begin{gathered} \text { Bode } \end{gathered}$	Veh．	A Node	B Node	Veh．
540	os	74.	571	133	300
\％4：	＇	12.2	572	136	590
542	75	3.3	573	143	1052
243	73	74.	574	144	400
\％44	31	700	575	146	300
34\％	30	7%	57.	147	790
5－0	84	482	577	15	363
：＋7	37	359	¢78	159	400
\％+3	36	71.	579	160	535
S49	42	Su0	580	1．4	510
\％	92	72	581	！ 62	1253
\％	93	50.	532	165	－ 28
55.2	95	20	583	160	．50
\％	77	135	584	1.9	250
\％${ }_{4}$	102	$33-$	535	171	－
ご\％	104	：00	580	172	157
EE6	：08	532	587	174	401
\％	110	55.	588	176	202
ミ\％8	1.3	－00	584	179	：083
$5 \geq$	112	500	591	181	300
56	116	559	\＄91．	184	250
Sol	118	200	593	407	1513
583	127	${ }_{85} 0$	594	191	77
Cot	135	400	595	190	1374
305	122	468	590	192	355
500	123	100	597	189	1094
St？	121	300	598	188	T50
Зeo	14	100	599	187	950
587	：5	362	500	194	110
570	131	400			

TABLE 10
EVACUATION ROUTE
LINK NODE DESCRIPTION

By Centroid

Limerick


```
*. \.. ..% 3...
```

¥ 3: $\quad 1 \quad 30$
A3 20: .
4. \quad :. $\quad \therefore \quad$:.:

$3: 3 \pi \quad 20 \quad \therefore \quad 20$

$\begin{array}{lllllllll}\because & \vdots 15 & 29 & \because 3 & 99 & 90 & 72 & 93 & 34 \\ 209\end{array}$

13	18	30	29	39	99	92	93	94	209

$\begin{array}{llllllllll}\text { i4 } & 5: 5 & 30 & 29 & 39 & 90 & 92 & 93 & 94 & 209\end{array}$
$\begin{array}{llllllll}32 & \text { Eis } & \text { is } & 19 & 22 & 197 & 21 & 200\end{array}$
Co $\begin{array}{lllllll}17 & \text { as } & 1 / 2 & 22 & 197 & 2: & 200\end{array}$
$\begin{array}{llllllll}07 & 513 & 2 & 29 & 20 & 197 & 21 & 300\end{array}$
$\begin{array}{lllllllllll}3! & 8: 4 & 31 & 37 & 36 & 33 & 32 & 39 & 34 & 40 & 203\end{array}$
$\begin{array}{lllllll}22 & 36 & 45 & 33 & 34 & 40 & 203\end{array}$
$\begin{array}{llllllllll}51 & 521 & 35 & 30 & 38 & 35 & 39 & 34 & 40 & 203\end{array}$
$\begin{array}{llllll}1 & 522 & 39 & 34 & 40 & 203\end{array}$

TABLE 10
 (Cont ${ }^{\text {d }}$


```
# 223 40 \:?
1. %4 %: 42 2%4
* #% S. 4] 205
```



```
1. 5:7 5% 40 44 400 4% 54 51 2n7
```



```
%. \0% -.% 207
4. 531 53 5% 17 203
*:3% 50 \% 207
M2 533 54, 5: 20%
```



```
* S30 35 24 90 9% 4,3 is 417 102 <..
```


TARLE 10
(Cont'd)


```
\[
\therefore \quad \therefore \quad 92 \quad ; 3 \quad 94 \quad \pi \%
\]
\[
\therefore \therefore \therefore \quad \text { 93 } \quad \therefore \quad: 09
\]
\[
\therefore \text { : } \because \because
\]
\[
\text { i: } \begin{array}{lllllll}
E \pi & 7 \% & \text { ig } & 100 & \text { i. } & 1: 7 & 14
\end{array}
\]
\[
\because \approx \pi \quad \quad: 2 \quad \text { i. }
\]
```

```
\[
\begin{array}{llllllll}
\text { F } & 37 & 110 & \text {.id } & 109 & 116 & 1.7 & 213
\end{array}
\]
\[
\because \quad \pi 5 \quad 113 \quad \text {.. }
\]
\[
: 750 \quad: 12 \quad: .:
\]
\[
\because \quad: 00 \quad 116 \quad \therefore:
\]
\[
\begin{array}{llll}
: & \text { Sol } & 18 & . .7
\end{array} 213
\]
\[
\therefore \quad \therefore \quad 127 \quad 2.4
\]
\[
\because: 504 \quad: 25 \text { ins } 215
\]
\[
\begin{array}{llll}
3 & \text { So: } & : 22 & 117 \\
214
\end{array}
\]
\[
14 \text { 560 } \quad 123 \quad 4: 2 \quad 124 \quad 125 \quad 126 \quad 125
\]
\[
\begin{array}{ccccccccc}
45 & 56 & 121 & 115 & 110 & 108 & 109 & 1.18 & 1.7 \\
& 215
\end{array}
\]
```


table 10

(cont'd)

1. Freeway - 2,000 vehicles per lane per hour; therefore, two evacuation lanes would he 4,000 per hour.
2. Two-lane Facilities - A capacity of 1,500 vehicles per lane per hour was assigned to State Highway , and other high type roadways and 1,000 vehicles per lane per hour for a roadway of lesser quality.
3. Interchanges and Ramps - 1,500 vehicles per hour.

Special Traftic Control Strategies - In order to attain maximum capacity on the network, control critical intersection movements and provide direction for complex evacuation routings, special traffic control strategies are imperative.

In some instances major population centers were split to avoid overloads to the network and produce abnormally long delays. These locations will require special handling to ensure that motorists utilize their assigned routing for evacuation. A case in point is node 67 at the junction of High Street and Hanover Street in downtown Pottstown. All west bound traffic on High Street will be required to turn left onto Hanover Street and cross the bridge. All south bound traffic on Hanover Street will have to turn right onto High Street and proceed out of town on U.S. 422.

Interchanges and ramps which affect the capacity that can be loaded to the main line will need special control strategies.

Special Transportation Requirements - Transportation requirements for special problem groups, such as non-car owning families, hospitals, schools, jails, etc., were not included in the evacuation time assessment. The assumtpion was that all families would evacuate as a unit from home. This would preclude the recuirement for evacuating school students from school to outside the risk area.

```
Evacuation times have been considered for four different scenarios. The scenarios are:
1. Normal weekday - workers at work, children in school
2. Ideal conditions - nighttime, most everyone at home
3. Adverse weather conditions - storms, fog, or flood
4. Summertime recreational peak
```

The assessment was performed by computer to a process described in some detail in Jolume I.

Normal Weekday

Table 11 lists the evacuation times by centroid for the four scenarios listed above. The maximum evacuation time is three hours and nine minutes for centroid $z-3$ during the nomal weekday. This centroid is in East Coventry Township. These evacuation times include receipt of warning, leaving work, travel home, departure from home, network travel and delay time.

Summestime

There are no major recreation areas within the $E P z$ and the summertime population is the same as other seasons. Therefore, the evacuation times are the same as nomal weekday.

Adverse Weatner

If the weather were adverse to the extent traffic could not move on the roadway system, then the plant would probably have to be shut down. The probability of that happening is very remote. A more likely occurrence is icy, slick roads during a winter storm.

The second column of Table 11 assumes an ice $s t o r m$, or ice and snow combination, where roadways are not impassable but are much slower to travel. Under these conditione, travel from work to home would be distributed over 40 minutes instead of $20 \mathrm{~min}-$ utes. Network travel during evacuation would probably be reduced to one-half of normal speed.

With these conditions, the maximum evacuation time would be three hours and 10 minutes for centroid $z-3$. Generally, the adverse weather times are longer than the evacuation times for summer.

Nighttime

This scenario provides the shortest evacuation times of all. People are home from work and children are home from school. With the Eamily all at home, the mobilization time is less. There is a time distribution for receiving the warning and a time distribution for preparing to l.eave. The time distributions for preparing to leave work and travel from work to home does not apply.

Under these conditions, the maximum evacuation time would be two hours and 54 minutes for centroid $z-3$. The third column of Table 11 gives the evacuation time at night.

Sector Evacuation

Evacuation Plans are usually set up on a sector or quandrant basis. This assessment has not been concerned with segmenting the 10 -mile radius. The assessment looked at total evacuation from the EPZ. However, this does not preclude evacuation by quadrants. Quadrants can be examined from the data in this report. Sector evacuation can be approximated by the selection of appropriate planning zones.

POOR
 ORPERNAT

TABLE 1．
EVACUATION TIMES
BY CENTROID

CEATROID	TME
Al	76
A2	78
AJ	30
A 4	7
25	76
31	132
32	132
83	102
34	108
35	105
C：	75
8	i40
63	148
S4	147
0	76
Cb	\％ 5
87	92
01	． 04
02	35
E．	102
F.	99
$F \%$	do
31	78
41	78
！．	94
12	97
：3	94
$\therefore 1$	90
$\times 2$	91
43	91
K 4	91
41	123
12	． 33
43	127
44	．51
45	． 02
＊＊	130
47	： 64
41	130
V_{2}	： 5
43	131
14	152
01	117

ADVERSE NEATHER
NIGHTTIME

CENTROID	TTME	くごTROTD	
A1	103	41	21
A2	106	A2	＊3
43	108	A3	36
A 4	105	24	2.
A5	1.02	25	6.
31	143	31	11.
32	141	？2	117
33	123	33	39
84	121	34	97
35	117	35	4．）
Cl	138	31	80
$C 2$	174	8	13 ！
\％	177	03	33
C4	175	64	18
\％	：19	US	81
Co	124	\therefore	7
6	$1: 8$	67	\％
01	：22	21	80
22	108	22	80
E：	119	E1	87
F：	112	81	97
52	104	$\because 2$	7
31	107	31	03
－1	106	－1	63
I！	119	－1	79
12	124	$\because 2$	82
13	116	13	7
K！	110	k 1	93
K2	： 3	12	76
K 3	112	$: 3$	76
K4	112	＜4	76
41	143	41	108
12	154	12	118
43	148	43	112
44	177	4	136
${ }_{4} 5$	132	T5	35
46	：46	＊	$1: 5$
47	132	47	149
41	145	$\cdots 1$	$1: 5$
12	1．9	N2	136
43	148	v］	1.6
14	159	＊ 4	1.57
01	：3i	21	102

