

Palo Verde Nuclear Generating Station 5871 S. Wintersburg Road Tonopah, AZ 85354

102-07955-MDD/TMJ July 22, 2019

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Subject: Palo Verde Nuclear Generating Station Units 1, 2, and 3 Docket Nos. STN 50-528, 50-529, and 50-530 Unit 1 Core Operating Limits Report Revision 27 Unit 2 Core Operating Limits Report Revision 22 Unit 3 Core Operating Limits Report Revision 25

Dear Sirs:

Pursuant to Palo Verde Nuclear Generating Station (PVNGS) Technical Specifications, Section 5.6.5d, enclosed are the Units 1, 2, and 3 Core Operating Limits Report (COLR), Revisions 27, 22, and 25, respectively, which were made effective July 1, 2019.

The changes implemented by these revisions are to the Table in the Analytical Methods section of each unit's COLR. Previously, documents referenced in that Table did not list all the reference information required by the NOTE contained in Technical Specification 5.6.5b (Reporting Requirements - Analytical Methods). No technical changes are necessary.

These changes affect several pages in the respective COLRs. Revision bars have been applied to those pages which contain changes.

No commitments are being made to the Nuclear Regulatory Commission (NRC) by this letter. If you have any questions about this submittal please contact Michael D. DiLorenzo, Nuclear Regulatory Affairs, Department Leader, at (623) 393-3495.

Sincerely,

Duckinter for

Di Elkintor Michael D. DiLorenzo Nuclear Regulatory Affairs Department Leader

MDD/TMJ/mg

Enclosures: Unit 1 Core Operating Limits Report, Revision 27 Unit 2 Core Operating Limits Report, Revision 22 Unit 3 Core Operating Limits Report, Revision 25

cc:

S. A. Morris	NRC Region IV Regional Administrator
S. P. Lingam	NRC NRR Project Manager for PVNGS
M.M. O'Bannion	NRC NRR Project Manager
C. A. Peabody	NRC Senior Resident Inspector for PVNGS

A member of the STARS Alliance LLC Callaway • Diablo Canyon • Palo Verde • Wolf Creek Enclosure

Unit 1 Core Operating Limits Report Revision 27

PALO VERDE NUCLEAR GENERATING STATION (PVNGS)

UNIT 1

CORE OPERATING LIMITS REPORT

Revision 27

Effective July 1, 2019

Responsible Engineer Date	Bodnar, Walter S(Z06432)	Digitally signed by Bodnar, Walter S(Z06432) DN: cn=Bodnar, Walter S(Z06432) Reason: I am the author of this document Date: 2019.06.28 07:34:15 -07'00'
Independent Reviewer Date	Arias, Joseph	Digitally signed by Arias, Joseph R(V02724) DN: cn=Arias, Joseph R(V02724) Reason: I have reviewed this
	R(V02724)	Date: 2019.06.28 08:24:00 -07'00'
Responsible Section Leader	Karlson,	Digitally signed by Karlson, Charles F(V55086)
Date	Charles	F(V55086) Reason: I am approving this
	F(V55086)	Date: 2019.06.28 09:14:35 -07'00'

Table of Contents

Description		Page
Cover Page		1
Table of Conten	ts	2
List of Figures		3
List of Tables		4
Affected Techni	cal Specifications	5
Analytical Meth	nods	6
CORE Operatin	g Limits	
3.1.1	Shutdown Margin (SDM) - Reactor Trip Breakers Open	11
3.1.2	Shutdown Margin (SDM) - Reactor Trip Breakers Closed	11
3.1.4	Moderator Temperature Coefficient (MTC)	11
3.1.5	Control Element Assembly (CEA) Alignment	11
3.1.7	Regulating CEA Insertion Limits	11
3.1.8	Part Strength CEA Insertion Limits	12
3.2.1	Linear Heat Rate (LHR)	12
3.2.3	Azimuthal Power Tilt (Tq)	12
3.2.4	Departure From Nucleate Boiling Ratio (DNBR)	12
3.2.5	Axial Shape Index (ASI)	13
3.3.12	Boron Dilution Alarm System (BDAS)	13
3.9.1	Boron Concentration	13

List of Figures

Description		<u>Page</u>
Figure 3.1.1-1	Shutdown Margin Versus Cold Leg Temperature Reactor Trip Breakers Open	14
Figure 3.1.2-1	Shutdown Margin Versus Cold Leg Temperature Reactor Trip Breakers Closed	15
Figure 3.1.4-1	MTC Acceptable Operation, Modes 1 and 2	16
Figure 3.1.5-1	Core Power Limit After CEA Deviation	17
Figure 3.1.7-1	CEA Insertion Limits Versus Thermal Power (COLSS in Service)	18
Figure 3.1.7-2	CEA Insertion Limits Versus Thermal Power (COLSS Out of Service)	19
Figure 3.1.8-1	Part Strength CEA Insertion Limits Versus Thermal Power	20
Figure 3.2.3-1	Azimuthal Power Tilt Versus Thermal Power (COLSS in Service)	21
Figure 3.2.4-1	COLSS DNBR Operating Limit Allowance for Both CEACs Inoperable In Any Operable CPC Channel	22
Figure 3.2.4-2	DNBR Margin Operating Limit Based on the Core Protection Calculators (COLSS Out of Service, CEAC(s) Operable)	23
Figure 3.2.4-3	DNBR Margin Operating Limit Based on the Core Protection Calculators (COLSS Out of Service, Both CEACs Inoperable In Any Operable CPC Channel)	24

List of Tables

Description		Page
Table 3.3.12-1	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Keff> 0.98	25
Table 3.3.12-2	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for $0.98 \ge \text{Keff} > 0.97$	26
Table 3.3.12-3	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for $0.97 \ge \text{Keff} > 0.96$	27
Table 3.3.12-4	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for $0.96 \ge \text{Keff} > 0.95$	28
Table 3.3.12-5	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Keff ≤ 0.95	29

This Report has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Core Operating Limits have been developed using the NRC approved methodologies specified in Section 5.6.5 b of the Palo Verde Technical Specifications.

AFFECTED PVNGS TECHNICAL SPECIFICATIONS

- 3.1.1 Shutdown Margin (SDM) Reactor Trip Breakers Open
- 3.1.2 Shutdown Margin (SDM) Reactor Trip Breakers Closed
- 3.1.4 Moderator Temperature Coefficient (MTC)
- 3.1.5 Control Element Assembly (CEA) Alignment
- 3.1.7 Regulating CEA Insertion Limits
- 3.1.8 Part Strength CEA Insertion Limits
- 3.2.1 Linear Heat Rate (LHR)
- 3.2.3 Azimuthal Power Tilt (T_q)
- 3.2.4 Departure From Nucleate Boiling Ratio (DNBR)
- 3.2.5 Axial Shape Index (ASI)
- 3.3.12 Boron Dilution Alarm System (BDAS)
- 3.9.1 Boron Concentration

ANALYTICAL METHODS

The COLR contains the complete identification for each of the Technical Specification referenced topical reports (i.e., report number, title, revision, date, and any supplements) and correspondence that provide the NRC-approved analytical methods used to determine the core operating limits, described in the following documents:

<u>T.S</u> <u>Ref#</u> a	<u>Title</u>	<u>Report No.</u>	Rev	Date	<u>Suppl</u>
1	CE Method for Control Element Assem- bly Ejection Analysis (N001-1301-01204)	CENPD- 0190-A	N.A.	January 1976	N.A.
2	The ROCS and DIT Computer Codes for Nuclear Design (N001-1900-01412)	CENPD- 266-P-A	N.A.	April 1983	N.A.
	Safety Evaluation Report related to the Final Design of the Standard Nuclear Steam Supply Reference Systems	NUREG- 0852	N.A.	November 1981 March 1983	N.A. 1
3	50-470			September 1983	2
				December 1987	3
4	Modified Statistical Combination of Uncertainties (N001-1303-01747)	CEN- 356(V)-P-A	01-P-A	May 1988	N.A.
4	System 80 TM Inlet Flow Distribution (N001-1301-01228)	Enclosure 1-P to LD- 82-054	N.A.	February 1993	1-P
5	Calculative Methods for the C-E Large Break LOCA Evaluation Model	CENPD- 132P	N.A.	August 1974	N.A.
5	Calculational Methods for the C-E Large Break LOCA Evaluation Model	CENPD- 132P	N.A.	February 1975	1
5	Calculational Methods for the C-E Large Break LOCA Evaluation Model	CENPD- 132-P	N.A.	July 1975	2-P
5	Calculative Methods for the C-E Large Break LOCA Evaluation Model for the Analysis of C-E and <u>W</u> Designed NSSS	CENPD- 132	N.A.	June 1985	3-P-A

<u>T.S</u> <u>Ref</u> # ^a	<u>Title</u>	<u>Report No.</u>	Rev	Date	<u>Suppl</u>
5	Calculative Methods for the CE Nuclear Power Large Break LOCA Evaluation Model (N001-1900-01192)	CENPD- 132	N.A.	March 2001	4-P-A Rev. 1
5	Calculative Methods for the CE Nuclear Power Large Break LOCA Evaluation Model (N001-0205-00046)	CENPD- 132	N.A.	August 2007	4-P-A Adde- ndum 1-P-A
5	Revision 4 to the Supplement to Appen- dix A of CENPD-132 Supplement 4-P-A (N001-0205-00229)	CENPD- 132	N.A.	December 2008	SUPP 4-P-A APP A- REV 004
6	Calculative Methods for the C-E Small Break LOCA Evaluation ModeL	CENPD- 137-P	N.A.	August 1974	N.A.
6	Calculative Methods for the C-E Small Break LOCA Evaluation Model	CENPD- 137	N.A.	January 1977	1-P
6	Calculative Methods for the ABB C-E Small Break LOCA Evaluation Model (N001-1900-01185)	CENPD- 137	N.A.	April 1998	2-P-A
7	Letter: O.D. Parr (NRC) to F. M. Stern (CE), (NRC Staff Review of the Combustion Engineering ECCS Evaluation Model). NRC approval for: 5.6.5.b.6.	N.A.	N.A.	June 13, 1975	N.A.
8	Letter: K. Kniel (NRC) to A. E. Scherer (CE), (Evaluation of Topical Reports CENPD 133, Supplement 3-P and CENPD-137, Supplement 1-P). NRC approval for 5.6.5.b.6.	N.A.	N.A.	September 27, 1977	N.A.
9	Fuel Rod Maximum Allowable Pressure (N001-0201-00026)	CEN-372- P-A	N.A.	May 1990	N.A.

<u>T.S</u> <u>Ref#</u> ^a	<u>Title</u>	Report No.	Rev	Date	<u>Suppl</u>
10	Letter: A. C. Thadani (NRC) to A. E. Scherer (CE), ("Acceptance for Reference CE Topical Report CEN-372- P"). NRC approval for 5.6.5.b.9.	N.A.	N.A.	April 10, 1990	N.A.
11	Arizona Public Service Company PWR Reactor Physics Methodology Using CASMO-4/SIMULATE-3 (NFM-005)	NFM-005	1	August 2007	N.A.
12	Technical Description Manual for the CENTS Code Volume 1 (CENTS-TD MANUAL-VOL 1)	CE-NPD 282-P-A Vols. 1	2	March 2005	N.A.
12	Technical Description Manual for the CENTS Code Volume 2 (CENTS-TD MANUAL-VOL 2)	CE-NPD 282-P-A Vols. 2	2	March 2005	N.A.
12	Technical Description Manual for the CENTS Code Volume 3 (CENTS-TD MANUAL-VOL 3)	CE-NPD 282-P-A Vols. 3	2	March 2005	N.A.
13	Implementation of ZIRLO TM Cladding Material in CE Nuclear Power Fuel Assembly Designs (N001-1900-01329)	CENPD- 404-P-A	0	November 2001	N.A.
13	Optimized ZIRLO TM (N001-0203-00611)	CENPD- 404-P-A Addendum 1-A	0	July 2006	N.A.
13	Westinghouse Clad Corrosion Model for ZIRLO and Optimized ZIRLO TM (N001-0205-00006)	CENPD- 404-P-A Addendum 2-A	0	October 2013	N.A.
14	HERMITE, A Multi-Dimensional Space-Time Kinetics Code for PWR Transients (HERMITE-TOPICAL)	CENPD- 188-A	N.A.	July 1976	N.A.
15	TORC Code, A Computer Code for Determining the Thermal Margin of a Reactor Core (N001-1301-01202)	CENPD- 161-P-A	N.A.	April 1986	N.A.

<u>T.S</u> <u>Ref#</u> a	<u>Title</u>	<u>Report No.</u>	Rev	Date	<u>Suppl</u>
16	CETOP-D Code Structures and Model- ing Methods for San Onofre Nuclear Generating Station Units 2 and 3 (N001-1301-01185)	CEN- 160(S)-P	1-P	September 1981	N.A.
17	"Safety Evaluation related to Palo Verde Nuclear Generating Station, Unit 2 (PVNGS-2) Issuance of Amendment on Replacement of Steam Generators and Uprated Power Operation, (September 29, 2003) and "Safety Evaluation related to Palo Verde Nuclear Generating Station, Units 1, 2, and 3 – Issuance of Amendments Re: Replacement of Steam Generators and Uprated Power Operations and Associated Administrative Changes, (November 16, 2005)."	N.A.	N.A.	September 29, 2003 November 16, 2005	N.A.
18	CPC Methodology Changes for the CPC Improvement Program (N001-1303-02283)	CEN-310- P-A	0	April 1986	N.A.
19	Loss of Flow, C-E Methods for Loss of Flow Analysis (N001-1301-01203)	CENPD- 183-A	0	June 1984	N.A.
20	Methodology for Core Designs Contain- ing Erbium Burnable Absorbers (N001-0201-00035)	CENPD- 382-P-A	0	August 1993	N.A.
21	Verification of the Acceptability of a 1- Pin Burnup Limit of 60 MWD/kgU for Combustion Engineering 16 x 16 PWR Fuel (N001-0201-00042)	CEN-386- P-A	0	August 1992	N.A.
22	CE 16x16 Next Generation Fuel Core Reference Report (N001-0203-00614)	WCAP- 16500-P-A	0	August 2007	N.A.

<u>T.S</u> <u>Ref#</u> a	Title	<u>Report No.</u>	Rev	Date	<u>Suppl</u>
22	Application of CE Setpoint Methodol- ogy for CE 16x16 Next Generation Fuel (NGF) (N001-0205-00063)	WCAP- 16500-P-A	0	December 2010	1 Rev. 1
22	Evolutionary Design Changes to CE 16x16 Next Generation Fuel and Method for Addressing the Effects of End-of-Life Properties on Seismic and Loss of Coolant Accident Analysis (N001-0205-00048)	WCAP- 16500-P-A	0	June 2016	2-P-A
23	VIPRE-01 Modeling and Qualification for Pressurized Water Reactor Non-LOCA Thermal-Hydraulic Safety Analysis (N001-0205-00002)	WCAP- 14565-P-A	0	October 1999	N.A.
23	Addendum 1 to WCAP-14565-P-A Qualification of ABB Critical Heat Flux Correlations with VIPRE-01 Code (N001-0205-00003)	WCAP- 14565-P-A, Addendum 1-A	0	August 2004	N.A.
23	Addendum 2 to WCAP-14565-P-A, Extended Applications of ABB-NV Cor- relation and Modified ABB-NV Correla- tion WLOP for PWR Low Pressure Applications (N001-0205-00004)	WCAP- 14565-P-A, Addendum 2-P-A	0	April 2008	N.A.
24	ABB Critical Heat Flux Correlations for PWR Fuel (N001-0205-00042)	CENPD- 387-P-A	0	May 2000	N.A.
25	Westinghouse Correlations WSSV and WSSV-T for Predicting Critical Heat Flux in Rod Bundles with Side-Sup- ported Mixing Vanes (N001-0203-00615)	WCAP- 16523-P-A	0	August 2007	N.A
26	Implementation of Zirconium Diboride Burnable Absorber Coatings in CE Nuclear Power Fuel Assembly Designs (N001-0205-00226)	WCAP- 16072-P-A	0	August 2004	N.A.

a. Corresponds to the reference number specified in Technical Specification 5.6.5

The cycle-specific operating limits for the specifications listed are presented below.

3.1.1 - Shutdown Margin (SDM) - Reactor Trip Breakers Open

The Shutdown Margin shall be greater than or equal to that shown in Figure 3.1.1-1.

3.1.2 - Shutdown Margin (SDM) - Reactor Trip Breakers Closed

The Shutdown Margin shall be greater than or equal to that shown in Figure 3.1.2-1.

<u>3.1.4 - Moderator Temperature Coefficient (MTC)</u>

The moderator temperature coefficient (MTC) shall be within the area of Acceptable Operation shown in Figure 3.1.4-1.

3.1.5 - Control Element Assembly (CEA) Alignment

With one or more full-strength or part-strength CEAs misaligned from any other CEAs in its group by more than 6.6 inches, the minimum required MODES 1 and 2 core power reduction is specified in Figure 3.1.5-1. The required power reduction is based on the initial power before reducing power.

3.1.7 - Regulating CEA Insertion Limits

With COLSS IN SERVICE, regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limits¹ shown in Figure 3.1.7-1²; with COLSS <u>OUT</u> OF SERVICE, regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limits¹ shown in Figure 3.1.7-2.² Regulating Groups 1 and 2 CEAs shall be maintained \geq fully withdrawn^{1, 3} while in Modes 1 and 2 (except while performing SR 3.1.5.3). When \geq 20% power Regulating Group 3 shall be maintained \geq fully withdrawn.^{1, 3}

¹ A reactor power cutback will cause either (Case 1) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with no sequential insertion of additional Regulating Groups (Groups 1, 2, 3, and 4) or (Case 2) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with all or part of the remaining Regulating Groups (Groups 1, 2, 3, and 4) being sequentially inserted. In either case, the Transient Insertion Limit and withdrawal sequence specified in the CORE OPERATING LIMITS REPORT can be exceeded for up to 2 hours.

 2 The Separation between Regulating Groups 4 and 5 may be reduced from the 90 inch value specified in Figures 3.1.7-1 and 3.1.7-2 provided that each of the following conditions are satisfied:

a) Regulating Group 4 position is between 60 and 150 inches withdrawn.

- b) Regulating Group 5 position is maintained at least 10 inches lower than Regulating Group 4 position.
- c) Both Regulating Group 4 and Regulating Group 5 positions are maintained above the Transient Insertion Limit specified in Figure 3.1.7-1 (COLSS In Service) or Figure 3.1.7-2 (COLSS Out of Service).

³ Fully withdrawn (FW) is defined as \geq 147.75" (Pulse Counter indication) and \geq 145.25" (RSPT indication). No further CEA withdrawal above FW is required for CEAs' to meet the Transient Insertion Limit (TIL) requirements.

3.1.8 - Part Strength CEA Insertion Limits

The part strength CEA groups shall be limited to the insertion limits shown in Figure 3.1.8-1.

3.2.1 - Linear Heat Rate (LHR)

The linear heat rate limit of 13.1 kW/ft shall be maintained.

<u>3.2.3 - Azimuthal Power Tilt (T_q) </u>

The AZIMUTHAL POWER TILT (T_q) shall be less than or equal to 10% with COLSS IN SERVICE when power is greater than 20% and less than or equal to 50%. Additionally, the AZIMUTHAL POWER TILT (T_q) shall be less than or equal to 5% with COLSS IN SERVICE when power is greater than 50%. See Figure 3.2.3-1.

3.2.4 - Departure From Nucleate Boiling Ratio (DNBR)

COLSS IN SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Maintain COLSS calculated core power less than or equal to COLSS calculated core power operation limit based on DNBR decreased by the allowance shown in Figure 3.2.4-1.

COLSS OUT OF SERVICE and CEAC(s) OPERABLE - Operate within the region of acceptable operation of Figure 3.2.4-2 using any operable CPC channel.

COLSS OUT OF SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Operate within the region of acceptable operation of Figure 3.2.4-3 using any operable CPC channel with both CEACs INOPERABLE.

3.2.5 - Axial Shape Index (ASI)

The core average AXIAL SHAPE INDEX (ASI) shall be maintained within the following limits:

COLSS OPERABLE -0.18 \leq ASI \leq 0.17 for power \geq 50% -0.28 \leq ASI \leq 0.17 for power >20% and < 50%

COLSS OUT OF SERVICE (CPC) -0.10 \leq ASI \leq 0.10 for power >20%

3.3.12 - Boron Dilution Alarm System (BDAS)

With one or both start-up channel high neutron flux alarms inoperable, the RCS boron concentration shall be determined at the applicable monitoring frequency specified in Tables 3.3.12-1 through 3.3.12-5.

3.9.1 - Boron Concentration

The boron concentration of all filled portions of the Reactor Coolant System and the refueling canal shall be maintained at a uniform concentration \geq 3000 ppm.

Page 14 of 29

- 201 % KATED THERMAL FOWER FOR SERVICE
 COLSS IN SERVICE AND CEACS IN SERVICE
 AZIMUTHAL POWER TILT IS LESS THAN 3.0 %
 ALL CEAS REMAIN ABOVE 142.5" WITHDRAWN BY PULSE COUNTER AND ABOVE 140.1" WITHDRAWN BY RSPT INDICATION

FIGURE 3.1.7-1 CEA INSERTION LIMITS VERSUS THERMAL POWER

Fully Withdrawn (FW) is defined as \geq 147.75" (Pulse Counter) and \geq 145.25" (RSPT). * No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

Fully Withdrawn (FW) is defined as \geq 147.75" (Pulse Counter) and \geq 145.25" (RSPT). * No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

Table 3.3.12-1

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $K_{eff} > 0.98$

OPERATIONAL	Number of Operating Charging Pumps				
MODE	0	1	2	3	
3	12 hours	0.5 hours	ONA	ONA	
4 not on SCS	12 hours	0.5 hours	ONA	ONA	
5 not on SCS	8 hours	0.5 hours	ONA	ONA	
4 & 5 on SCS	ONA	ONA	ONA	ONA	

Table 3.3.12-2

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $0.98 \ge K_{eff} > 0.97$

OPERATIONAL	Number of Operating Charging Pumps				
MODE	0	1	2	3	
3	12 hours	1 hour	0.5 hours	ONA	
4 not on SCS	12 hours	1.5 hours	0.5 hours	ONA	
5 not on SCS	8 hours	1.5 hours	0.5 hours	ONA	
4 & 5 on SCS	8 hours	0.5 hours	ONA	ONA	

Table 3.3.12-3

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $0.97 \ge K_{eff} > 0.96$

OPERATIONAL	Number of Operating Charging Pumps			
MODE	0	1	2	3
3	12 hours	2.5 hours	1 hour	ONA
4 not on SCS	12 hours	2.5 hours	1 hour	0.5 hours
5 not on SCS	8 hours	2.5 hours	1 hour	0.5 hours
4 & 5 on SCS	8 hours	1 hour	ONA	ONA

Table 3.3.12-4

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $0.96 \ge K_{eff} > 0.95$

OPERATIONAL	Number of Operating Charging Pumps			
MODE	0	1	2	3
3	12 hours	3 hours	1 hour	0.5 hours
4 not on SCS	12 hours	3.5 hours	1.5 hours	0.75 hours
5 not on SCS	8 hours	3.5 hours	1.5 hours	0.75 hours
4 & 5 on SCS	8 hours	1.5 hours	0.5 hours	ONA

Table 3.3.12-5

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $K_{eff} \leq 0.95$

OPERATIONAL	Number of Operating Charging Pumps			
MODE	0	1	2	3
3	12 hours	4 hours	1.5 hours	1 hour
4 not on SCS	12 hours	4.5 hours	2 hours	1 hour
5 not on SCS	8 hours	4.5 hours	2 hours	1 hour
4 & 5 on SCS	8 hours	2 hours	0.75 hours	ONA
6	24 hours	1.5 hours	ONA	ONA

Enclosure

Unit 2 Core Operating Limits Report Revision 22

PALO VERDE NUCLEAR GENERATING STATION (PVNGS)

UNIT 2

CORE OPERATING LIMITS REPORT

Revision 22

Effective July 1, 2019

Responsible Engineer Date	Bodnar, Walter S(Z06432)	Digitally signed by Bodnar, Walter S(Z06432) DN: cn=Bodnar, Walter S(Z06432) Reason: I am the author of this document Date: 2019.06.28 07:35:49 -07'00'	
Independent Reviewer	Arias,	Digitally signed by Arias, Joseph R(V02724) DN: cn=Arias, Joseph	
Date	Joseph	R(V02724) Reason: I have reviewed this	
	R(V02724)	document Date: 2019.06.28 08:26:05 -07'00'	
Responsible Section Leader	Karlson,	Digitally signed by Karlson, Charles F(V55086)	
Date	Charles	F(V55086) Reason: I am approving this	
	F(V55086)	document Date: 2019.06.28 09:16:12 -07'00'	

Table of Contents

Description	<u>1</u>		Page
Cover Page	e		1
Table of Co	ontent	S	2
List of Figu	ures		3
List of Tabl	les		4
Affected Te	echnic	cal Specifications	5
Analytical 1	Metho	ods	6
CORE Ope	erating	g Limits	
3.	.1.1	Shutdown Margin (SDM) - Reactor Trip Breakers Open	11
3.	.1.2	Shutdown Margin (SDM) - Reactor Trip Breakers Closed	11
3.	.1.4	Moderator Temperature Coefficient (MTC)	11
3.	.1.5	Control Element Assembly (CEA) Alignment	11
3.	.1.7	Regulating CEA Insertion Limits	11
3.	.1.8	Part Strength CEA Insertion Limits	12
3.2	.2.1	Linear Heat Rate (LHR)	12
3.2	.2.3	Azimuthal Power Tilt (Tq)	12
3.2	.2.4	Departure From Nucleate Boiling Ratio (DNBR)	12
3.2	.2.5	Axial Shape Index (ASI)	13
3.	.3.12	Boron Dilution Alarm System (BDAS)	13
3.	.9.1	Boron Concentration	13

List of Figures

Description		<u>Page</u>
Figure 3.1.1-1	Shutdown Margin Versus Cold Leg Temperature Reactor Trip Breakers Open	14
Figure 3.1.2-1	Shutdown Margin Versus Cold Leg Temperature Reactor Trip Breakers Closed	15
Figure 3.1.4-1	MTC Acceptable Operation, Modes 1 and 2	16
Figure 3.1.5-1	Core Power Limit After CEA Deviation	17
Figure 3.1.7-1	CEA Insertion Limits Versus Thermal Power (COLSS in Service)	18
Figure 3.1.7-2	CEA Insertion Limits Versus Thermal Power (COLSS Out of Service)	19
Figure 3.1.8-1	Part Strength CEA Insertion Limits Versus Thermal Power	20
Figure 3.2.3-1	Azimuthal Power Tilt Versus Thermal Power (COLSS in Service)	21
Figure 3.2.4-1	COLSS DNBR Operating Limit Allowance for Both CEACs Inoperable In Any Operable CPC Channel	22
Figure 3.2.4-2	DNBR Margin Operating Limit Based on the Core Protection Calculators (COLSS Out of Service, CEAC(s) Operable)	23
Figure 3.2.4-3	DNBR Margin Operating Limit Based on the Core Protection Calculators (COLSS Out of Service, Both CEACs Inoperable In Any Operable CPC Channel)	24

List of Tables

Description		<u>Page</u>
Table 3.3.12-1	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Keff> 0.98	25
Table 3.3.12-2	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for $0.98 \ge \text{Keff} > 0.97$	26
Table 3.3.12-3	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for $0.97 \ge \text{Keff} > 0.96$	27
Table 3.3.12-4	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for $0.96 \ge \text{Keff} > 0.95$	28
Table 3.3.12-5	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Keff ≤ 0.95	29
This Report has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Core Operating Limits have been developed using the NRC approved methodologies specified in Section 5.6.5 b of the Palo Verde Technical Specifications.

AFFECTED PVNGS TECHNICAL SPECIFICATIONS

- 3.1.1 Shutdown Margin (SDM) Reactor Trip Breakers Open
- 3.1.2 Shutdown Margin (SDM) Reactor Trip Breakers Closed
- 3.1.4 Moderator Temperature Coefficient (MTC)
- 3.1.5 Control Element Assembly (CEA) Alignment
- 3.1.7 Regulating CEA Insertion Limits
- 3.1.8 Part Strength CEA Insertion Limits
- 3.2.1 Linear Heat Rate (LHR)
- 3.2.3 Azimuthal Power Tilt (T_q)
- 3.2.4 Departure From Nucleate Boiling Ratio (DNBR)
- 3.2.5 Axial Shape Index (ASI)
- 3.3.12 Boron Dilution Alarm System (BDAS)
- 3.9.1 Boron Concentration

ANALYTICAL METHODS

The COLR contains the complete identification for each of the Technical Specification referenced topical reports (i.e., report number, title, revision, date, and any supplements) and correspondence that provide the NRC-approved analytical methods used to determine the core operating limits, described in the following documents:

<u>T.S</u> <u>Ref#</u> ^a	<u>Title</u>	<u>Report No.</u>	<u>Rev</u>	Date	<u>Suppl</u>
1	CE Method for Control Element Assem- bly Ejection Analysis (N001-1301-01204)	CENPD- 0190-A	N.A.	January 1976	N.A.
2	The ROCS and DIT Computer Codes for Nuclear Design (N001-1900-01412)	CENPD- 266-P-A	N.A.	April 1983	N.A.
	Safety Evaluation Report related to the Final Design of the Standard Nuclear Steam Supply Reference Systems CESSAR System 80, Docket No. STN	NUREG- 0852	N.A.	November 1981 March 1983	N.A. 1
3	50-470			September 1983	2
				December 1987	3
4	Modified Statistical Combination of Uncertainties (N001-1303-01747)	CEN- 356(V)-P-A	01-P-A	May 1988	N.A.
4	System 80 TM Inlet Flow Distribution (N001-1301-01228)	Enclosure 1-P to LD- 82-054	N.A.	February 1993	1-P
5	Calculative Methods for the C-E Large Break LOCA Evaluation Model	CENPD- 132P	N.A.	August 1974	N.A.
5	Calculational Methods for the C-E Large Break LOCA Evaluation Model	CENPD- 132P	N.A.	February 1975	1
5	Calculational Methods for the C-E Large Break LOCA Evaluation Model	CENPD- 132-P	N.A.	July 1975	2-P
5	Calculative Methods for the C-E Large Break LOCA Evaluation Model for the Analysis of C-E and <u>W</u> Designed NSSS	CENPD- 132	N.A.	June 1985	3-P-A

<u>T.S</u> <u>Ref#</u> a	Title	<u>Report No.</u>	Rev	Date	<u>Suppl</u>
5	Calculative Methods for the CE Nuclear Power Large Break LOCA Evaluation Model (N001-1900-01192)	CENPD- 132	N.A.	March 2001	4-P-A Rev. 1
5	Calculative Methods for the CE Nuclear Power Large Break LOCA Evaluation Model (N001-0205-00046)	CENPD- 132	N.A.	August 2007	4-P-A Adde- ndum 1-P-A
5	Revision 4 to the Supplement to Appen- dix A of CENPD-132 Supplement 4-P-A (N001-0205-00229)	CENPD- 132	N.A.	December 2008	SUPP 4-P-A APP A- REV 004
6	Calculative Methods for the C-E Small Break LOCA Evaluation ModeL	CENPD- 137-P	N.A.	August 1974	N.A.
6	Calculative Methods for the C-E Small Break LOCA Evaluation Model	CENPD- 137	N.A.	January 1977	1-P
6	Calculative Methods for the ABB C-E Small Break LOCA Evaluation Model (N001-1900-01185)	CENPD- 137	N.A.	April 1998	2-P-A
7	Letter: O.D. Parr (NRC) to F. M. Stern (CE), (NRC Staff Review of the Combustion Engineering ECCS Evaluation Model). NRC approval for: 5.6.5.b.6.	N.A.	N.A.	June 13, 1975	N.A.
8	Letter: K. Kniel (NRC) to A. E. Scherer (CE), (Evaluation of Topical Reports CENPD 133, Supplement 3-P and CENPD-137, Supplement 1-P). NRC approval for 5.6.5.b.6.	N.A.	N.A.	September 27, 1977	N.A.
9	Fuel Rod Maximum Allowable Pressure (N001-0201-00026)	CEN-372- P-A	N.A.	May 1990	N.A.

<u>T.S</u> <u>Ref</u> # ^a	<u>Title</u>	Report No. Rev		Date	<u>Suppl</u>
10	Letter: A. C. Thadani (NRC) to A. E.N.A.N.A.Scherer (CE), ("Acceptance for Reference CE Topical Report CEN-372- P"). NRC approval for 5.6.5.b.9.NRC		N.A.	April 10, 1990	N.A.
11	Arizona Public Service Company PWR Reactor Physics Methodology Using CASMO-4/SIMULATE-3 (NFM-005)	NFM-005	1	August 2007	N.A.
12	Technical Description Manual for the CENTS Code Volume 1 (CENTS-TD MANUAL-VOL 1)	CE-NPD 282-P-A Vols. 1	2	March 2005	N.A.
12	Technical Description Manual for the CENTS Code Volume 2 (CENTS-TD MANUAL-VOL 2)	CE-NPD 282-P-A Vols. 2	2	March 2005	N.A.
12	Technical Description Manual for the CENTS Code Volume 3 (CENTS-TD MANUAL-VOL 3)	CE-NPD 282-P-A Vols. 3	2	March 2005	N.A.
13	Implementation of ZIRLO TM Cladding Material in CE Nuclear Power Fuel Assembly Designs (N001-1900-01329)	CENPD- 404-P-A	0	November 2001	N.A.
13	Optimized ZIRLO TM (N001-0203-00611)	CENPD- 404-P-A Addendum 1-A	0	July 2006	N.A.
13	Westinghouse Clad Corrosion Model for ZIRLO and Optimized ZIRLO TM (N001-0205-00006)	CENPD- 404-P-A Addendum 2-A	0	October 2013	N.A.
14	HERMITE, A Multi-Dimensional Space-Time Kinetics Code for PWR Transients (HERMITE-TOPICAL)	CENPD- 188-A	N.A.	July 1976	N.A.
15	TORC Code, A Computer Code for Determining the Thermal Margin of a Reactor Core (N001-1301-01202)	CENPD- 161-P-A	N.A.	April 1986	N.A.

<u>T.S</u> <u>Ref#</u> a	<u>Title</u>	<u>Report No.</u>	Rev	Date	<u>Suppl</u>
16	CETOP-D Code Structures and Model- ing Methods for San Onofre Nuclear Generating Station Units 2 and 3 (N001-1301-01185)	CEN- 160(S)-P	1-P	September 1981	N.A.
17	"Safety Evaluation related to Palo Verde Nuclear Generating Station, Unit 2 (PVNGS-2) Issuance of Amendment on Replacement of Steam Generators and Uprated Power Operation, (September 29, 2003) and "Safety Evaluation related to Palo Verde Nuclear Generating Station, Units 1, 2, and 3 – Issuance of Amendments Re: Replacement of Steam Generators and Uprated Power Operations and Associated Administrative Changes, (November 16, 2005)."	N.A.	N.A.	September 29, 2003 November 16, 2005	N.A.
18	CPC Methodology Changes for the CPC Improvement Program (N001-1303-02283)	CEN-310- P-A	0	April 1986	N.A.
19	Loss of Flow, C-E Methods for Loss of Flow Analysis (N001-1301-01203)	CENPD- 183-A	0	June 1984	N.A.
20	Methodology for Core Designs Contain- ing Erbium Burnable Absorbers (N001-0201-00035)	CENPD- 382-P-A	0	August 1993	N.A.
21	Verification of the Acceptability of a 1- Pin Burnup Limit of 60 MWD/kgU for Combustion Engineering 16 x 16 PWR Fuel (N001-0201-00042)	CEN-386- P-A	0	August 1992	N.A.
22	CE 16x16 Next Generation Fuel Core Reference Report (N001-0203-00614)	WCAP- 16500-P-A	0	August 2007	N.A.

<u>T.S</u> <u>Ref#</u> a	<u>Title</u>	<u>Report No.</u>	Rev	Date	<u>Suppl</u>
22	Application of CE Setpoint Methodol- ogy for CE 16x16 Next Generation Fuel (NGF) (N001-0205-00063)	WCAP- 16500-P-A	0	December 2010	1 Rev 1
22	Evolutionary Design Changes to CE 16x16 Next Generation Fuel and Method for Addressing the Effects of End-of-Life Properties on Seismic and Loss of Coolant Accident Analysis (N001-0205-00048)	WCAP- 16500-P-A	0	June 2016	2-P-A
23	VIPRE-01 Modeling and Qualification for Pressurized Water Reactor Non-LOCA Thermal-Hydraulic Safety Analysis (N001-0205-00002)	WCAP- 14565-P-A	0	October 1999	N.A.
23	Addendum 1 to WCAP-14565-P-A Qualification of ABB Critical Heat Flux Correlations with VIPRE-01 Code (N001-0205-00003)	WCAP- 14565-P-A, Addendum 1-A	0	August 2004	N.A.
23	Addendum 2 to WCAP-14565-P-A, Extended Applications of ABB-NV Cor- relation and Modified ABB-NV Correla- tion WLOP for PWR Low Pressure Applications (N001-0205-00004)	WCAP- 14565-P-A, Addendum 2-P-A	0	April 2008	N.A.
24	ABB Critical Heat Flux Correlations for PWR Fuel (N001-0205-00042)	CENPD- 387-P-A	0	May 2000	N.A.
25	Westinghouse Correlations WSSV and WSSV-T for Predicting Critical Heat Flux in Rod Bundles with Side-Sup- ported Mixing Vanes (N001-0203-00615)	WCAP- 16523-P-A	0	August 2007	N.A
26	Implementation of Zirconium Diboride Burnable Absorber Coatings in CE Nuclear Power Fuel Assembly Designs (N001-0205-00226)	WCAP- 16072-P-A	0	August 2004	N.A.

a. Corresponds to the reference number specified in Technical Specification 5.6.5

The cycle-specific operating limits for the specifications listed are presented below.

3.1.1 - Shutdown Margin (SDM) - Reactor Trip Breakers Open

The Shutdown Margin shall be greater than or equal to that shown in Figure 3.1.1-1.

3.1.2 - Shutdown Margin (SDM) - Reactor Trip Breakers Closed

The Shutdown Margin shall be greater than or equal to that shown in Figure 3.1.2-1.

<u>3.1.4 - Moderator Temperature Coefficient (MTC)</u>

The moderator temperature coefficient (MTC) shall be within the area of Acceptable Operation shown in Figure 3.1.4-1.

3.1.5 - Control Element Assembly (CEA) Alignment

With one or more full-strength or part-strength CEAs misaligned from any other CEAs in its group by more than 6.6 inches, the minimum required MODES 1 and 2 core power reduction is specified in Figure 3.1.5-1. The required power reduction is based on the initial power before reducing power.

3.1.7 - Regulating CEA Insertion Limits

With COLSS IN SERVICE, regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limits¹ shown in Figure 3.1.7-1²; with COLSS <u>OUT</u> OF SERVICE, regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limits¹ shown in Figure 3.1.7-2.² Regulating Groups 1 and 2 CEAs shall be maintained \geq fully withdrawn^{1, 3} while in Modes 1 and 2 (except while performing SR 3.1.5.3). When \geq 20% power Regulating Group 3 shall be maintained \geq fully withdrawn.^{1, 3}

¹ A reactor power cutback will cause either (Case 1) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with no sequential insertion of additional Regulating Groups (Groups 1, 2, 3, and 4) or (Case 2) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with all or part of the remaining Regulating Groups (Groups 1, 2, 3, and 4) being sequentially inserted. In either case, the Transient Insertion Limit and withdrawal sequence specified in the CORE OPERATING LIMITS REPORT can be exceeded for up to 2 hours.

 2 The Separation between Regulating Groups 4 and 5 may be reduced from the 90 inch value specified in Figures 3.1.7-1 and 3.1.7-2 provided that each of the following conditions are satisfied:

a) Regulating Group 4 position is between 60 and 150 inches withdrawn.

- b) Regulating Group 5 position is maintained at least 10 inches lower than Regulating Group 4 position.
- c) Both Regulating Group 4 and Regulating Group 5 positions are maintained above the Transient Insertion Limit specified in Figure 3.1.7-1 (COLSS In Service) or Figure 3.1.7-2 (COLSS Out of Service).

³ Fully withdrawn (FW) is defined as \geq 147.75" (Pulse Counter indication) and \geq 145.25" (RSPT indication). No further CEA withdrawal above FW is required for CEAs' to meet the Transient Insertion Limit (TIL) requirements.

3.1.8 - Part Strength CEA Insertion Limits

The part strength CEA groups shall be limited to the insertion limits shown in Figure 3.1.8-1.

3.2.1 - Linear Heat Rate (LHR)

The linear heat rate limit of 13.1 kW/ft shall be maintained.

<u>3.2.3 - Azimuthal Power Tilt (T_q) </u>

The AZIMUTHAL POWER TILT (T_q) shall be less than or equal to 10% with COLSS IN SERVICE when power is greater than 20% and less than or equal to 50%. Additionally, the AZIMUTHAL POWER TILT (T_q) shall be less than or equal to 5% with COLSS IN SERVICE when power is greater than 50%. See Figure 3.2.3-1.

3.2.4 - Departure From Nucleate Boiling Ratio (DNBR)

COLSS IN SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Maintain COLSS calculated core power less than or equal to COLSS calculated core power operation limit based on DNBR decreased by the allowance shown in Figure 3.2.4-1.

COLSS OUT OF SERVICE and CEAC(s) OPERABLE - Operate within the region of acceptable operation of Figure 3.2.4-2 using any operable CPC channel.

COLSS OUT OF SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Operate within the region of acceptable operation of Figure 3.2.4-3 using any operable CPC channel with both CEACs INOPERABLE.

3.2.5 - Axial Shape Index (ASI)

The core average AXIAL SHAPE INDEX (ASI) shall be maintained within the following limits:

COLSS OPERABLE -0.18 \leq ASI \leq 0.17 for power \geq 50% -0.28 \leq ASI \leq 0.17 for power >20% and < 50%

COLSS OUT OF SERVICE (CPC) -0.10 \leq ASI \leq 0.10 for power >20%

3.3.12 - Boron Dilution Alarm System (BDAS)

With one or both start-up channel high neutron flux alarms inoperable, the RCS boron concentration shall be determined at the applicable monitoring frequency specified in Tables 3.3.12-1 through 3.3.12-5.

3.9.1 - Boron Concentration

The boron concentration of all filled portions of the Reactor Coolant System and the refueling canal shall be maintained at a uniform concentration \geq 3000 ppm.

Page 15 of 29

- 201 % KATED THERMAL FOWER FOR SERVICE
 COLSS IN SERVICE AND CEACS IN SERVICE
 AZIMUTHAL POWER TILT IS LESS THAN 3.0 %
 ALL CEAS REMAIN ABOVE 142.5" WITHDRAWN BY PULSE COUNTER AND ABOVE 140.1" WITHDRAWN BY RSPT INDICATION

FIGURE 3.1.7-1 CEA INSERTION LIMITS VERSUS THERMAL POWER

Fully Withdrawn (FW) is defined as \geq 147.75" (Pulse Counter) and \geq 145.25" (RSPT). * No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

* Fully Withdrawn (FW) is defined as \geq 147.75" (Pulse Counter) and \geq 145.25" (RSPT). No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

Table 3.3.12-1

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $K_{eff} > 0.98$

OPERATIONAL	Number of Operating Charging Pumps				
MODE	0	1	2	3	
3	12 hours	0.5 hours	ONA	ONA	
4 not on SCS	12 hours	0.5 hours	ONA	ONA	
5 not on SCS	8 hours	0.5 hours	ONA	ONA	
4 & 5 on SCS	ONA	ONA	ONA	ONA	

Table 3.3.12-2

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $0.98 \ge K_{eff} > 0.97$

OPERATIONAL	Number of Operating Charging Pumps				
MODE	0	1	2	3	
3	12 hours	1 hour	0.5 hours	ONA	
4 not on SCS	12 hours	1.5 hours	0.5 hours	ONA	
5 not on SCS	8 hours	1.5 hours	0.5 hours	ONA	
4 & 5 on SCS	8 hours	0.5 hours	ONA	ONA	

Table 3.3.12-3

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $0.97 \ge K_{eff} > 0.96$

OPERATIONAL	Number of Operating Charging Pumps				
MODE	0	1	2	3	
3	12 hours	2.5 hours	1 hour	ONA	
4 not on SCS	12 hours	2.5 hours	1 hour	0.5 hours	
5 not on SCS	8 hours	2.5 hours	1 hour	0.5 hours	
4 & 5 on SCS	8 hours	1 hour	ONA	ONA	

Table 3.3.12-4

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $0.96 \ge K_{eff} > 0.95$

OPERATIONAL	Number of Operating Charging Pumps				
MODE	0	1	2	3	
3	12 hours	3 hours	1 hour	0.5 hours	
4 not on SCS	12 hours	3.5 hours	1.5 hours	0.75 hours	
5 not on SCS	8 hours	3.5 hours	1.5 hours	0.75 hours	
4 & 5 on SCS	8 hours	1.5 hours	0.5 hours	ONA	

Table 3.3.12-5

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $K_{eff} \leq 0.95$

OPERATIONAL	Number of Operating Charging Pumps					
MODE	0	1	2	3		
3	12 hours	4 hours	1.5 hours	1 hour		
4 not on SCS	12 hours	4.5 hours	2 hours	1 hour		
5 not on SCS	8 hours	4.5 hours	2 hours	1 hour		
4 & 5 on SCS	8 hours	2 hours	0.75 hours	ONA		
6	24 hours	1.5 hours	ONA	ONA		

Enclosure

Unit 3 Core Operating Limits Report Revision 25

PALO VERDE NUCLEAR GENERATING STATION (PVNGS)

UNIT 3

CORE OPERATING LIMITS REPORT

Revision 25

Effective July 1, 2019

Responsible Engineer Date	Bodnar, Walter S(Z06432)	Digitally signed by Bodnar, Walter S(Z06432) DN: cn=Bodnar, Walter S(Z06432) Reason: I am the author of this document Date: 2019.06.28 07:37:15 -07'00'
Independent Reviewer Date	Arias, Joseph	Digitally signed by Arias, Joseph R(V02724) DN: cn=Arias, Joseph R(V02724) Reason: I have reviewed this document
	R(VU2724)	-07'00'
Responsible Section Leader	Karlson,	Digitally signed by Karlson, Charles F(V55086) DN: cn=Karlson, Charles
Dute	Charles	F(V55086) Reason: I am approving this
	F(V55086)	Date: 2019.06.28 09:17:22 -07'00'

Table of Contents

Description	<u>n</u>		<u>Page</u>
Cover Page	e		1
Table of Co	ontent	ts	2
List of Fig	ures		3
List of Tab	oles		4
Affected T	echnic	cal Specifications	5
Analytical	Meth	ods	6
CORE Ope	erating	g Limits	
3	.1.1	Shutdown Margin (SDM) - Reactor Trip Breakers Open	11
3	.1.2	Shutdown Margin (SDM) - Reactor Trip Breakers Closed	11
3.	.1.4	Moderator Temperature Coefficient (MTC)	11
3.	.1.5	Control Element Assembly (CEA) Alignment	11
3.	.1.7	Regulating CEA Insertion Limits	11
3.	.1.8	Part Strength CEA Insertion Limits	12
3	.2.1	Linear Heat Rate (LHR)	12
3.	.2.3	Azimuthal Power Tilt (Tq)	12
3	.2.4	Departure From Nucleate Boiling Ratio (DNBR)	12
3.	.2.5	Axial Shape Index (ASI)	13
3.	.3.12	Boron Dilution Alarm System (BDAS)	13
3.	.9.1	Boron Concentration	13

List of Figures

Description		<u>Page</u>
Figure 3.1.1-1	Shutdown Margin Versus Cold Leg Temperature Reactor Trip Breakers Open	14
Figure 3.1.2-1	Shutdown Margin Versus Cold Leg Temperature Reactor Trip Breakers Closed	15
Figure 3.1.4-1	MTC Acceptable Operation, Modes 1 and 2	16
Figure 3.1.5-1	Core Power Limit After CEA Deviation	17
Figure 3.1.7-1	CEA Insertion Limits Versus Thermal Power (COLSS in Service)	18
Figure 3.1.7-2	CEA Insertion Limits Versus Thermal Power (COLSS Out of Service)	19
Figure 3.1.8-1	Part Strength CEA Insertion Limits Versus Thermal Power	20
Figure 3.2.3-1	Azimuthal Power Tilt Versus Thermal Power (COLSS in Service)	21
Figure 3.2.4-1	COLSS DNBR Operating Limit Allowance for Both CEACs Inoperable In Any Operable CPC Channel	22
Figure 3.2.4-2	DNBR Margin Operating Limit Based on the Core Protection Calculators (COLSS Out of Service, CEAC(s) Operable)	23
Figure 3.2.4-3	DNBR Margin Operating Limit Based on the Core Protection Calculators (COLSS Out of Service, Both CEACs Inoperable In Any Operable CPC Channel)	24

List of Tables

Description		<u>Page</u>
Table 3.3.12-1	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Keff> 0.98	25
Table 3.3.12-2	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for $0.98 \ge \text{Keff} > 0.97$	26
Table 3.3.12-3	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for $0.97 \ge \text{Keff} > 0.96$	27
Table 3.3.12-4	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for $0.96 \ge \text{Keff} > 0.95$	28
Table 3.3.12-5	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for Keff ≤ 0.95	29

This Report has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Core Operating Limits have been developed using the NRC approved methodologies specified in Section 5.6.5 b of the Palo Verde Technical Specifications.

AFFECTED PVNGS TECHNICAL SPECIFICATIONS

- 3.1.1 Shutdown Margin (SDM) Reactor Trip Breakers Open
- 3.1.2 Shutdown Margin (SDM) Reactor Trip Breakers Closed
- 3.1.4 Moderator Temperature Coefficient (MTC)
- 3.1.5 Control Element Assembly (CEA) Alignment
- 3.1.7 Regulating CEA Insertion Limits
- 3.1.8 Part Strength CEA Insertion Limits
- 3.2.1 Linear Heat Rate (LHR)
- 3.2.3 Azimuthal Power Tilt (T_q)
- 3.2.4 Departure From Nucleate Boiling Ratio (DNBR)
- 3.2.5 Axial Shape Index (ASI)
- 3.3.12 Boron Dilution Alarm System (BDAS)
- 3.9.1 Boron Concentration

ANALYTICAL METHODS

The COLR contains the complete identification for each of the Technical Specification referenced topical reports (i.e., report number, title, revision, date, and any supplements) and correspondence that provide the NRC-approved analytical methods used to determine the core operating limits, described in the following documents:

<u>T.S</u> <u>Ref#</u> a	<u>Title</u>	<u>Report No.</u>	<u>Rev</u>	Date	<u>Suppl</u>
1	CE Method for Control Element Assem- bly Ejection Analysis (N001-1301-01204)	CENPD- 0190-A	N.A.	January 1976	N.A.
2	The ROCS and DIT Computer Codes for Nuclear Design (N001-1900-01412)	CENPD- 266-P-A	N.A.	April 1983	N.A.
3	Safety Evaluation Report related to the Final Design of the Standard Nuclear Steam Supply Reference Systems CESSAR System 80, Docket No. STN 50-470	NUREG- 0852	N.A.	November 1981 March 1983	N.A. 1
				September 1983 December 1987	2 3
4	Modified Statistical Combination of Uncertainties (N001-1303-01747)	CEN- 356(V)-P-A	01-P- A	May 1988	N.A.
4	System 80 TM Inlet Flow Distribution (N001-1301-01228)	Enclosure 1-P to LD- 82-054	N.A.	February 1993	1-P
5	Calculative Methods for the C-E Large Break LOCA Evaluation Model	CENPD- 132P	N.A.	August 1974	N.A.
5	Calculational Methods for the C-E Large Break LOCA Evaluation Model	CENPD- 132P	N.A.	February 1975	1
5	Calculational Methods for the C-E Large Break LOCA Evaluation Model	CENPD- 132-P	N.A.	July 1975	2-P
5	Calculative Methods for the C-E Large Break LOCA Evaluation Model for the Analysis of C-E and <u>W</u> Designed NSSS	CENPD- 132	N.A.	June 1985	3-P-A

<u>T.S</u> <u>Ref</u> # ^a	<u>Title</u>	<u>Report No.</u>	Rev	Date	<u>Suppl</u>
5	Calculative Methods for the CE Nuclear Power Large Break LOCA Evaluation Model (N001-1900-01192)	CENPD- 132	N.A.	March 2001	4-P-A Rev. 1
5	Calculative Methods for the CE Nuclear Power Large Break LOCA Evaluation Model (N001-0205-00046)	CENPD- 132	N.A.	August 2007	4-P-A Adde- ndum 1-P-A
5	Revision 4 to the Supplement to Appen- dix A of CENPD-132 Supplement 4-P-A (N001-0205-00229)	CENPD- 132	N.A.	December 2008	SUPP 4-P-A APP A- REV 004
6	Calculative Methods for the C-E Small Break LOCA Evaluation ModeL	CENPD- 137-P	N.A.	August 1974	N.A.
6	Calculative Methods for the C-E Small Break LOCA Evaluation Model	CENPD- 137	N.A.	January 1977	1-P
6	Calculative Methods for the ABB C-E Small Break LOCA Evaluation Model (N001-1900-01185)	CENPD- 137	N.A.	April 1998	2-P-A
7	Letter: O.D. Parr (NRC) to F. M. Stern (CE), (NRC Staff Review of the Combustion Engineering ECCS Evaluation Model). NRC approval for: 5.6.5.b.6.	N.A.	N.A.	June 13, 1975	N.A.
8	Letter: K. Kniel (NRC) to A. E. Scherer (CE), (Evaluation of Topical Reports CENPD 133, Supplement 3-P and CENPD-137, Supplement 1-P). NRC approval for 5.6.5.b.6.	N.A.	N.A.	September 27, 1977	N.A.
9	Fuel Rod Maximum Allowable Pressure (N001-0201-00026)	CEN-372- P-A	N.A.	May 1990	N.A.

<u>T.S</u> <u>Ref#</u> a	<u>Title</u>	Report No.	Rev	Date	<u>Suppl</u>
10	Letter: A. C. Thadani (NRC) to A. E. Scherer (CE), ("Acceptance for Reference CE Topical Report CEN-372- P"). NRC approval for 5.6.5.b.9.	N.A.	N.A.	April 10, 1990	N.A.
11	Arizona Public Service Company PWR Reactor Physics Methodology Using CASMO-4/SIMULATE-3 (NFM-005)	NFM-005	1	August 2007	N.A.
12	Technical Description Manual for the CENTS Code Volume 1 (CENTS-TD MANUAL-VOL 1)	CE-NPD 282-P-A Vols. 1	2	March 2005	N.A.
12	Technical Description Manual for the CENTS Code Volume 2 (CENTS-TD MANUAL-VOL 2)	CE-NPD 282-P-A Vols. 2	2	March 2005	N.A.
12	Technical Description Manual for the CENTS Code Volume 3 (CENTS-TD MANUAL-VOL 3)	CE-NPD 282-P-A Vols. 3	2	March 2005	N.A.
13	Implementation of ZIRLO TM Cladding Material in CE Nuclear Power Fuel Assembly Designs (N001-1900-01329)	CENPD- 404-P-A	0	November 2001	N.A.
13	Optimized ZIRLO TM (N001-0203-00611)	CENPD- 404-P-A Addendum 1-A	0	July 2006	N.A.
13	Westinghouse Clad Corrosion Model for ZIRLO and Optimized ZIRLO TM (N001-0205-00006)	CENPD- 404-P-A Addendum 2-A	0	October 2013	N.A.
14	HERMITE, A Multi-Dimensional Space-Time Kinetics Code for PWR Transients (HERMITE-TOPICAL)	CENPD- 188-A	N.A.	July 1976	N.A.
15	TORC Code, A Computer Code for Determining the Thermal Margin of a Reactor Core (N001-1301-01202)	CENPD- 161-P-A	N.A.	April 1986	N.A.

<u>T.S</u> <u>Ref#</u> a	<u>Title</u>	Report No.	Rev	Date	<u>Suppl</u>
16	CETOP-D Code Structures and Model- ing Methods for San Onofre Nuclear Generating Station Units 2 and 3 (N001-1301-01185)	CEN- 160(S)-P	1-P	September 1981	N.A.
17	"Safety Evaluation related to Palo Verde Nuclear Generating Station, Unit 2 (PVNGS-2) Issuance of Amendment on Replacement of Steam Generators and Uprated Power Operation, (September 29, 2003) and "Safety Evaluation related to Palo Verde Nuclear Generating Station, Units 1, 2, and 3 – Issuance of Amendments Re: Replacement of Steam Generators and Uprated Power Operations and Associated Administrative Changes, (November 16, 2005)."	N.A.	N.A.	September 29, 2003 November 16, 2005	N.A.
18	CPC Methodology Changes for the CPC Improvement Program (N001-1303-02283)	CEN-310- P-A	0	April 1986	N.A.
19	Loss of Flow, C-E Methods for Loss of Flow Analysis (N001-1301-01203)	CENPD- 183-A	0	June 1984	N.A.
20	Methodology for Core Designs Contain- ing Erbium Burnable Absorbers (N001-0201-00035)	CENPD- 382-P-A	0	August 1993	N.A.
21	Verification of the Acceptability of a 1- Pin Burnup Limit of 60 MWD/kgU for Combustion Engineering 16 x 16 PWR Fuel (N001-0201-00042)	CEN-386- P-A	0	August 1992	N.A.
22	CE 16x16 Next Generation Fuel Core Reference Report (N001-0203-00614)	WCAP- 16500-P-A	0	August 2007	N.A.

I

<u>T.S</u> <u>Ref</u> # ^a	<u>Title</u>	<u>Report No.</u>	Rev	Date	<u>Suppl</u>
22	Application of CE Setpoint Methodol- ogy for CE 16x16 Next Generation Fuel (NGF) (N001-0205-00063)	WCAP- 16500-P-A	0	December 2010	1 Rev 1
22	Evolutionary Design Changes to CE 16x16 Next Generation Fuel and Method for Addressing the Effects of End-of-Life Properties on Seismic and Loss of Coolant Accident Analysis (N001-0205-00048)	WCAP- 16500-P-A	0	June 2016	2-P-A
23	VIPRE-01 Modeling and Qualification for Pressurized Water Reactor Non-LOCA Thermal-Hydraulic Safety Analysis (N001-0205-00002)	WCAP- 14565-P-A	0	October 1999	N.A.
23	Addendum 1 to WCAP-14565-P-A Qualification of ABB Critical Heat Flux Correlations with VIPRE-01 Code (N001-0205-00003)	WCAP- 14565-P-A, Addendum 1-A	0	August 2004	N.A.
23	Addendum 2 to WCAP-14565-P-A, Extended Applications of ABB-NV Cor- relation and Modified ABB-NV Correla- tion WLOP for PWR Low Pressure Applications (N001-0205-00004)	WCAP- 14565-P-A, Addendum 2-P-A	0	April 2008	N.A.
24	ABB Critical Heat Flux Correlations for PWR Fuel (N001-0205-00042)	CENPD- 387-P-A	0	May 2000	N.A.
25	Westinghouse Correlations WSSV and WSSV-T for Predicting Critical Heat Flux in Rod Bundles with Side-Sup- ported Mixing Vanes (N001-0203-00615)	WCAP- 16523-P-A	0	August 2007	N.A
26	Implementation of Zirconium Diboride Burnable Absorber Coatings in CE Nuclear Power Fuel Assembly Designs (N001-0205-00226)	WCAP- 16072-P-A	0	August 2004	N.A.

a. Corresponds to the reference number specified in Technical Specification 5.6.5
The cycle-specific operating limits for the specifications listed are presented below.

3.1.1 - Shutdown Margin (SDM) - Reactor Trip Breakers Open

The Shutdown Margin shall be greater than or equal to that shown in Figure 3.1.1-1.

3.1.2 - Shutdown Margin (SDM) - Reactor Trip Breakers Closed

The Shutdown Margin shall be greater than or equal to that shown in Figure 3.1.2-1.

<u>3.1.4 - Moderator Temperature Coefficient (MTC)</u>

The moderator temperature coefficient (MTC) shall be within the area of Acceptable Operation shown in Figure 3.1.4-1.

3.1.5 - Control Element Assembly (CEA) Alignment

With one or more full-strength or part-strength CEAs misaligned from any other CEAs in its group by more than 6.6 inches, the minimum required MODES 1 and 2 core power reduction is specified in Figure 3.1.5-1. The required power reduction is based on the initial power before reducing power.

3.1.7 - Regulating CEA Insertion Limits

With COLSS IN SERVICE, regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limits¹ shown in Figure 3.1.7-1²; with COLSS <u>OUT</u> OF SERVICE, regulating CEA groups shall be limited to the withdrawal sequence and to the insertion limits¹ shown in Figure 3.1.7-2.² Regulating Groups 1 and 2 CEAs shall be maintained \geq fully withdrawn^{1, 3} while in Modes 1 and 2 (except while performing SR 3.1.5.3). When \geq 20% power Regulating Group 3 shall be maintained \geq fully withdrawn.^{1, 3}

¹ A reactor power cutback will cause either (Case 1) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with no sequential insertion of additional Regulating Groups (Groups 1, 2, 3, and 4) or (Case 2) Regulating Group 5 or Regulating Group 4 and 5 to be dropped with all or part of the remaining Regulating Groups (Groups 1, 2, 3, and 4) being sequentially inserted. In either case, the Transient Insertion Limit and withdrawal sequence specified in the CORE OPERATING LIMITS REPORT can be exceeded for up to 2 hours.

 2 The Separation between Regulating Groups 4 and 5 may be reduced from the 90 inch value specified in Figures 3.1.7-1 and 3.1.7-2 provided that each of the following conditions are satisfied:

a) Regulating Group 4 position is between 60 and 150 inches withdrawn.

- b) Regulating Group 5 position is maintained at least 10 inches lower than Regulating Group 4 position.
- c) Both Regulating Group 4 and Regulating Group 5 positions are maintained above the Transient Insertion Limit specified in Figure 3.1.7-1 (COLSS In Service) or Figure 3.1.7-2 (COLSS Out of Service).

³ Fully withdrawn (FW) is defined as \geq 147.75" (Pulse Counter indication) and \geq 145.25" (RSPT indication). No further CEA withdrawal above FW is required for CEAs' to meet the Transient Insertion Limit (TIL) requirements.

3.1.8 - Part Strength CEA Insertion Limits

The part strength CEA groups shall be limited to the insertion limits shown in Figure 3.1.8-1.

3.2.1 - Linear Heat Rate (LHR)

The linear heat rate limit of 13.1 kW/ft shall be maintained.

<u>3.2.3 - Azimuthal Power Tilt (T_q)</u>

The AZIMUTHAL POWER TILT (T_q) shall be less than or equal to 10% with COLSS IN SERVICE when power is greater than 20% and less than or equal to 50%. Additionally, the AZIMUTHAL POWER TILT (T_q) shall be less than or equal to 5% with COLSS IN SERVICE when power is greater than 50%. See Figure 3.2.3-1.

3.2.4 - Departure From Nucleate Boiling Ratio (DNBR)

COLSS IN SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Maintain COLSS calculated core power less than or equal to COLSS calculated core power operation limit based on DNBR decreased by the allowance shown in Figure 3.2.4-1.

COLSS OUT OF SERVICE and CEAC(s) OPERABLE - Operate within the region of acceptable operation of Figure 3.2.4-2 using any operable CPC channel.

COLSS OUT OF SERVICE and Both CEACs INOPERABLE in Any OPERABLE CPC Channel - Operate within the region of acceptable operation of Figure 3.2.4-3 using any operable CPC channel with both CEACs INOPERABLE.

3.2.5 - Axial Shape Index (ASI)

The core average AXIAL SHAPE INDEX (ASI) shall be maintained within the following limits:

COLSS OPERABLE -0.18 \leq ASI \leq 0.17 for power \geq 50% -0.28 \leq ASI \leq 0.17 for power >20% and < 50%

COLSS OUT OF SERVICE (CPC) -0.10 \leq ASI \leq 0.10 for power >20%

3.3.12 - Boron Dilution Alarm System (BDAS)

With one or both start-up channel high neutron flux alarms inoperable, the RCS boron concentration shall be determined at the applicable monitoring frequency specified in Tables 3.3.12-1 through 3.3.12-5.

3.9.1 - Boron Concentration

The boron concentration of all filled portions of the Reactor Coolant System and the refueling canal shall be maintained at a uniform concentration \geq 3000 ppm.

Page 14 of 29

Page 15 of 29

- 201 % KATED THERMAL FOWER FOR SERVICE
 COLSS IN SERVICE AND CEACS IN SERVICE
 AZIMUTHAL POWER TILT IS LESS THAN 3.0 %
 ALL CEAS REMAIN ABOVE 142.5" WITHDRAWN BY PULSE COUNTER AND ABOVE 140.1" WITHDRAWN BY RSPT INDICATION

Fully Withdrawn (FW) is defined as \geq 147.75" (Pulse Counter) and \geq 145.25" (RSPT). * No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

* Fully Withdrawn (FW) is defined as \geq 147.75" (Pulse Counter) and \geq 145.25" (RSPT). No further CEA withdrawal above FW is required for CEAs' to meet the TIL requirements.

Page 22 of 29

Table 3.3.12-1

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $K_{eff} > 0.98$

OPERATIONAL	Number of Operating Charging Pumps			
	0	1	2	3
3	12 hours	0.5 hours	ONA	ONA
4 not on SCS	12 hours	0.5 hours	ONA	ONA
5 not on SCS	8 hours	0.5 hours	ONA	ONA
4 & 5 on SCS	ONA	ONA	ONA	ONA

Table 3.3.12-2

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $0.98 \ge K_{eff} > 0.97$

OPERATIONAL	Number of Operating Charging Pumps			
	0	1	2	3
3	12 hours	1 hour	0.5 hours	ONA
4 not on SCS	12 hours	1.5 hours	0.5 hours	ONA
5 not on SCS	8 hours	1.5 hours	0.5 hours	ONA
4 & 5 on SCS	8 hours	0.5 hours	ONA	ONA

Table 3.3.12-3

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $0.97 \ge K_{eff} > 0.96$

OPERATIONAL	Number of Operating Charging Pumps			
	0	1	2	3
3	12 hours	2.5 hours	1 hour	ONA
4 not on SCS	12 hours	2.5 hours	1 hour	0.5 hours
5 not on SCS	8 hours	2.5 hours	1 hour	0.5 hours
4 & 5 on SCS	8 hours	1 hour	ONA	ONA

Table 3.3.12-4

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $0.96 \ge K_{eff} > 0.95$

OPERATIONAL	Number of Operating Charging Pumps			
	0	1	2	3
3	12 hours	3 hours	1 hour	0.5 hours
4 not on SCS	12 hours	3.5 hours	1.5 hours	0.75 hours
5 not on SCS	8 hours	3.5 hours	1.5 hours	0.75 hours
4 & 5 on SCS	8 hours	1.5 hours	0.5 hours	ONA

Table 3.3.12-5

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR $K_{eff} \leq 0.95$

OPERATIONAL MODE	Number of Operating Charging Pumps				
	0	1	2	3	
3	12 hours	4 hours	1.5 hours	1 hour	
4 not on SCS	12 hours	4.5 hours	2 hours	1 hour	
5 not on SCS	8 hours	4.5 hours	2 hours	1 hour	
4 & 5 on SCS	8 hours	2 hours	0.75 hours	ONA	
6	24 hours	1.5 hours	ONA	ONA	