ENVIRONMENTAL RADIOACTIVITY LEVELS BROWNS FERRY NUCLEAR PLANT

January-June 1975

DECEMBER 1975

4

. . 1 د بر h . x 5 . . . ı. . . . 4

CONTENTS

:

ł

4

Introduction	1
Figure 1 - Tennessee Valley Region	2
Table 1 - Environmental Radioactivity Sampling Schedule	4
Figure 2 - Atmospheric and Terrestrial Monitoring Network	5
Atmospheric Monitoring	7
Table 2 - Radioactivity in Air	9 =
Nonoccupational Exposure	11
Table 4 - Pain	12
Table $-$ Rain $\cdot \cdot \cdot$	16
	14
Table 6 - Charcoal Filters	12
Terrestrial Monitoring	17
Figure 3 - Milk Monitoring Network	18
Table 7 - Milk	20
Table $8 - $ Wegetation	21
$\mathbf{Table 0} = \mathbf{Vegetation} \cdot \cdot$	41 22
	23
Table 10 - Private Well Water	24
Table 11 - Public Water	25
Table 12 - Environmental Gamma Radiation Levels	26
Table 13 - Poultry and Food Crops	27
Reservoir Monitoring	31
Mable 14 Complete Cabedule Decompeter Mendeoutre	22
lable 14 - Sampling Schedule - Reservoir Monitoring	33
Figure 4 - Reservoir Monitoring Network	34
Table 15 - River Water, Dissolved Activity	35
Table 16 - River Water, Total Activity	36
Table 17 - River Water \ldots	37
Table 18 - Fish	38
Table 19 - Plankton	39
Table 20 - Sediment	40
	40
	4 1
Quality Control	43
Data Analysis	43
Conclusions	43

ENVIRONMENTAL RADIOACTIVITY LEVELS

BROWNS FERRY NUCLEAR PLANT

JANUARY-JUNE 1975

Introduction

The Browns Ferry Nuclear Plant (BFNP), operated by the Tennessee Valley Authority, is located on a site owned by TVA containing 840 acres of land in Limestone County, Alabama, bounded on the west and south by Wheeler Reservoir (see figure 1). The site is 10 miles southwest of Athens, Alabama, and 10 miles northwest of Decatur, Alabama. The plant, when completed, will consist of three boiling water reactors; each unit is rated at 3,293 MWt and 1,098 MWe. Unit 1 achieved criticality on August 17, 1973, and began commercial operation on August 1, 1974. Unit 2 began commercial operation on March 1, 1975. However, neither unit has operated since March 22, 1975, when a fire in the cable trays necessitated the shutdown of both reactors.

The preoperational environmental monitoring program established a baseline of data on the distribution of natural and manmade radioactivity in the environment near the plant site. However, seasonal, yearly, and random variations in the data were observed. In order to determine the potential increases in environmental radioactivity levels caused by the plant, comparisons were made between data for indicator stations (those near the plant) and control stations (those remote from the plant).

Field staffs in the Division of Environmental Planning and the Division of Forestry, Fisheries, and Wildlife Development carried out the sampling program outlined in tables 1 and 14. Sampling locations are shown in figures 2 and 4. All the radiochemical and instrumental analyses were conducted in a central laboratory at Muscle Shoals, Alabama. Alpha and beta analyses were performed on Beckman Low Beta II and Beckman Wide Beta II low background proportional counters. Two Nuclear Data Model 2200 multichannel analyzer systems were used to analyze the samples for specific gamma-emitting radionuclides. Data were coded and punched on IBM cards or automatically printed on paper tape for computer processing specific to the analysis conducted. An IBM 370 Model 165 computer, employing an Alpha-M least squares code, was used to solve multimatrix problems associated with estimating the activities of the gamma-emitting nuclides.

A primary difficulty in sample analysis was the detection of very low radionuclide concentrations. The minimum sensitivities are those concentrations where the percent counting error is 100%, calculated assuming a 3-sigma counting error, when standard sample sizes and counting time are employed. The minimum sensitivities are therefore those concentration values below which it is impossible to state, at the 99 percent confidence level, that any amount of radioactivity above background exists in the sample. The sensitivities, based wholly on counting statistics, are listed for gross alpha, gross beta, and tritium analyses.

N

Standard sensitivities are not listed for specific gammaemitting radionuclides determined by the Alpha-M program because they are not available. Since the minimum sensitivities are not defined, some concentrations reported may not represent actual concentrations. They may be mathematical artifacts of the Alpha-M program. Concentrations with errors (estimated by the Alpha-M program) larger than the reported concentrations are listed as "not detectable" (ND). The errors reported define the statistical distributions of the errors estimated by the Alpha-M least squares program. ENVIRONMENTAL RADIOACTIVITY SAMPLING SCHEDULE

Station Location	Air <u>Filter</u>	Charcoal Filter	Rain- vater	Heavy Particle Fallout	<u>Soi1</u>	Vegetation	<u>Milk</u>	River Water	Well <u>Water</u>	Public <u>Water</u>	Aquatic Life and Sediment
Muscle Shoals	W	.W	н	м	Q	Q	•		1	н	
Lawrenceburg	W	ห	м	M	Q	Q					
Fayetteville	W	w	м	м	Q	Q	•				
Cullman	W	W	м	м	Q	Q					4
Rogersville	W	W	м	м	Q	Q					
Athens	W	¥	м	м	Q	Q				Q	
Decatur	W	W	м	Ķ	Q	Q				н	
Courtland	W	W	M	М	Q	Q				Q	•
Site NW-1	۲,	W	м	н	Q	Q					
Site N-2	W	W	. <u>H</u>	H -	Q	Q		n			
Site NE-3	W	u	м	м	Q	Q					
Site NW-4	W	W	н	X ×	Q	• Q					
Farm B						н	W		м		
Farm Bi				1		. м	W .		н		4
Fara H						н	W		М		
Farm T	* 					ห้	W		- H		
Farm L						н	- W		н		
Farm G (Control)			•	•		М	W	•	н		
Wheeler Dam						4			3	м	
Elk River								н			
Wheeler Reservoir				-				н			. q
Champion Paper Co	•								-	н	*
Wilson Dam								•		Q	
Colbert Steam Pla	nt								-	Q	
Clements School							·			Q	
Town Creek	-	ħ.	*	•				· · · · ·	~	Q	4
Trinity						•	÷			Q	
W - Weekly	M - Mon	thly	0 - 0.	srtarly		· · · · · · · · · · · · · · · · · · ·			··· · · · · · · · · · ·		······

lable 1

Figure 2

5

ATMOSPHERIC MONITORING

The atmospheric monitoring network is divided into three Three local air monitors are located on the plant site in groups. the quadrants of greatest wind frequency. One additional station is located at the point of maximum predicted offsite concentration of radionuclides. Four perimeter air monitors are located at distances out to 10 miles from the plant, and four remote air monitors are located at distances out to 45 miles. These monitoring stations are shown in figure 2. The remote monitors are used as control or baseline stations. At each monitor, air is continuously pulled through a Hollingsworth and Voss HV-70 particulate filter at a regulated flow of 3 ft³/min. In series with, but downstream of, the particulate filter is a charcoal filter used to collect iodine. Each monitor has a collection tray and storage container to obtain rainwater on a continuous basis and a horizontal platform that is covered with gummed acetate to catch and hold heavy particle fallout. Thermoluminescent dosimeters are used to record gamma radiation levels at each remote and perimeter station.

Each of the local and perimeter air monitors is fitted with a GM tube that continuously scans the particulate filter. The disintegration rate of the atmospheric radioactivity is continuously recorded at each station and radiotelemetered into the plant. These stations will detect any significant airborne release from BFNP.

Air filters are collected weekly and analyzed for gross beta activity. No analyses are performed until 3 days after sample collection. The monthly results are combined for each station to obtain a semiannual average. The average semiannual concentrations for the stations in each group of monitors (local, perimeter, and remote) are combined to yield a semiannual average for each group. These data are presented in table 2.

With reference to table 3, which contains the maximum permissible concentrations (MPC) recommended by 10 CFR 20 for nonoccupational exposure, it is seen that the maximum beta concentration is 0.20 percent MPC.

Rainwater is collected and analyzed for gross beta activity, specific gamma-emitting isotopes, and radiostrontium. For the gross beta analysis, a maximum of 500 ml of the sample is boiled to dryness and counted. A gamma scan is performed on a 3.5-liter monthly sample and the results averaged by group location as was done with the air filter data. The strontium isotopes are separated chemically and counted in a low background system. The results are shown in table 4. The highest value reported for beta activity is 0.53 percent MPC for drinking water. The gummed acetate that is used to collect heavy particle fallout is changed monthly. The sample is ashed and counted for gross beta activity. The results are given in table 5.

Charcoal filters are collected and analyzed for radioiodine. The filter is counted in a single channel analyzer system. The data are shown in table 6, where the highest value reported is 0.06 percent MPC for ¹³¹I.

1 I

RADIOACTIVITY IN AIR

pCi/meter³

u.	No. of	Non	volatile B	eta*	Specific Radionuclides in Composite Samples		
Location	Samples	Max.	Min.	Avg.	(Avera	ge)	
<u>Local</u>					•		
Northwest	26	0.186	0.047	0.086	^{141,144} Ce ⁵¹ Cr	.021 ± .004	
LM-4BF	26	0.173	0.054	0.092	131 103-106-	ND	
North	26	0.197	0.049	0.086	¹³⁴ Cs 1370-	.013 ± .006 ND	
Northwest	26	0.172	0.045	0.082	⁹⁵ Zr- ⁹⁵ Nb	$.003 \pm .001$ $.017 \pm .002$	
• •		Average	:	0.086	54 Mn 65 Zn 60 Co	ND ND ND ND	
	- -				¹⁴⁰ Ba- ¹⁴⁰ La ⁹⁰ Sr ⁸⁹ Sr	.015 ± .003 .002 ± .0001 .003 ± .0001	

Perimeter

Rogersville, AL	26	0.171	0.037	0.080	^{141,144} Ce	.024 ±	.004
Athens, AL	26	0:199	, 0.046	0.087	¹³¹ I 103,106 _R ,	ND .001 ±	.0005
Decatur, AL	26	0.170	0.042	0.085	$^{134}_{137}$ Cs	ND	.005
Courtland, AL	26	0.184	0.042	0.085	⁹⁵ Zr- ⁹⁵ Nb	.005 ±	.002
•		Average:		0.084	⁵ 4 Mn ⁶⁵ 7	ND	
			t.		2n 60 Co 140 - 140 -	ND ND	000
				,	⁹⁰ Sr ⁸⁹ Sr	.016 ± .001 ± ND	.003

*Sensitivity 0.004 ND - Not detectable

'I

Table 2 (Continued)

,	No. of	Non	volatile B	eta*	Specific Radionuclides in Composite Samples			
Location	Samples	Max.	Min.	Avg.	(Average)			
Remote					8			
Muscle Shoals, AL	26	0.132	0.040	0.076	^{141,144} Ce ⁵¹ Cr	.016 ± .005		
Lawrenceburg, TN	26	0.175	0.052	0.091	131_{I} 103,106 _D	ND 012 + 005		
Fayetteville, TN	26	0.161	0.054	0.093	¹³⁴ Cs 1370-	ND .002 ± .003		
Cullman, AL	26	0.156	0.049	0.088	⁹⁵ Zr- ⁹⁵ Nb ⁵⁸ Co	.003 ± .002 .017 ± .002 ND		
· .		Average	•	0.087	54Mn 65 7	ND		
-	1	v	-		⁶⁰ Co	.002 ± .0003 ND		
、					⁹⁰ Sr	$.015 \pm .003$ $.001 \pm .0001$		
•					⁸⁹ Sr	.003`± .000Ì		

*Sensitivity 0.004 ND - Not detectable

MAXIMUM PERMISSIBLE CONCENTRATIONS

FOR NONOCCUPATIONAL EXPOSURE

in, +	-	MPC
	In Water pCi/l	In Air pCi/m ³
Alpha -	30	۰.
Nonvolatile beta	3,000	100
Tritium	3,000,000	200,000
^{1 37} Cs	20,000	, 500
103, 106 _{Ru}	10,000	200
¹⁴⁴ Ce	10,000	200
^{9 5} Zr- ^{9 5} Nb	60,000	1,000
¹⁴⁰ Ba- ¹⁴⁰ La	20,000	1,000
131I	` 300	100
^{6 5} Zn	100,000	2,000
⁵ ⁴ Mn	100,000	1,000
^{6 0} Co	30,000	300
⁸⁹ Sr	3,000	·· · 300
⁹⁰ Sr ,	300	30
⁵¹ Cr	2,000,000	80,000
¹³⁴ Cs	9,000	400
^{s 8} Co	90,000	2,000

RAIN

<u>pCi/liter</u>

	No. of Samples	Nony	volatile	Beta*	Radionuclides		
Location		Max.	Min.	Avg.	(Avera	age)	
Local	-		-	¢		•	
Northwest	6	7.33	3.69	5.41	^{141,144} Ce ⁵¹ Cr	1.6 ± 0.6	
LM-4BF	6	14.10	2.20	6.04	131 <u>7</u> 103,106 _{Ru}	$\frac{ND}{ND}$	
North	6	16.04	2.92	7.11	¹³⁴ Cs ¹³⁷ Cs	0.4 ± 0.2 0.7 ± 0.2	
Northeast	6.	8.84	2.68 -	5.20	⁹⁵ Zr- ⁹⁵ Nb ⁵⁸ Co	0.6 ± 0.3 0.2 ± 0.1	
*		Average:		5.94	⁵⁴ Mn 6577	0.6 ± 0.3	
				¥	⁶⁰ Co ¹⁴⁰ Ba- ¹⁴⁰ La ⁹⁰ Sr	0.9 ± 0.8 3.5 ± 0.3 3.3 ± 0.3 0.6 ± 0.1	
	* -				⁸⁹ Sr ³ u**	1.3 ± 0.1	
· •		-		· ·	11	ND	
Perimeter		*			* *		
Rogersville, AL	6	7.33	2.92	4.54	^{141,144} Ce	0.6 ± 0.4	
Athens, AL	. 6	6.42	2.48	4.63	¹³¹ I ^{103,106} Ru	ND ND	
Decatur, AL	6	6.18	ND	3.57	¹³⁴ Cs ¹³⁷ Cs	0.5 ± 0.2 0.5 ± 0.2	
Courtland, AL	6	11.19	2.14	5.72	⁹⁵ Zr- ⁹⁵ Nb ⁵⁸ Co	1.2 ± 0.3 0.1 ± 0.1	
		Average:	N	4.62	⁵⁴ Mn 65-	0.5 ± 0.3	
	•	• •			⁶⁰ Co ¹⁴⁰ Ba- ¹⁴⁰ La	$\begin{array}{c} 0.9 \pm 0.4 \\ 4.0 \pm 0.4 \\ 3.6 \pm 0.5 \\ \end{array}$	
		Þ			⁸⁹ Sr ³ H	0.6 ± 0.1 1.2 ± 0.1 ND	

*Sensitivity 1.6 **Sensitivity 400 ND - Not detectable

12

	N) 1	Specific Padiopuolidos				
Location	No. or Samples	Max.	Min.	Avg.	(Average)		
Remote			1		ч		
Muscle Shoals, AL	6	7.69	3.93	6.11	^{141,144} Ce ⁵¹ Cr	1.7 ± 0.8	
Lawrenceburg, TN	. 6	12.23	4.55	6.84	1311 103,106 Ru	ND	
Fayetteville, TN	6	8.01	3.00	4.95	¹³⁴ Cs ¹³⁷ Cs	0.4 ± 0.2 0.9 ± 0.4	
Cullman, AL	6	8.90	3.77	5.94	⁹⁵ Zr- ⁹⁵ Nb ⁵⁸ Co	1.4 ± 0.4 ND	
	•	<u>Average:</u>		5.96	⁵⁴ Mn ⁶⁵ Zn ⁶⁰ Co ¹⁴⁰ Ba- ¹⁴⁰ La ⁹⁰ Sr ⁸⁹ Sr ³ H**	0.8 ± 0.5 2.5 ± 0.7 4.1 ± 0.4 4.1 ± 0.3 0.6 ± 0.1 1.2 ± 0.1 ND	
	в					, .	

Table 4 (Continued)

٠

*Sensitivity 1.6 **Sensitivity 400 ND - Not detectable

TOTAL FALLOUT DEPOSITED

<u>mCi/kilometer²</u>

	No. of	Nonvolatile Beta*			
Location	Samples	Max.	Min.	Avg.	
Local	-	*	1		
Northwest	6	0.86	0.30	0.58	
LM-4BF	6	1.00	0.32	0.59	
North	6	0.74	0.26	0.47	
Northeast	6	0.83	0.28	0.57	
		Average	e:	0.55	
D I			-		
Perimeter					
Rogersville, AL	6	1.09	0.23	0.58	
Athens, AL	6	1.08	0.33	0.65	
Decatur, AL	6	0.91	0.30	0.54	
Courtland, AL	6	1.01	0.26	0.64	
		Averag	e:	0.60	
Remote					
Muscle Shoals, AL	6	1.17	0.35	0.63	
Lawrenceburg, TN	6	0.89	0.22	0.54	
Feyetteville, TN	6	0.60	0.20	0.38	
Cullman, AL	6	0.86	0.28	0.54	
		Averag	e:	0.52	

5

*Sensitivity 0.01

14

CHARCOAL FILTERS

pCi/meter³

w	No. of	Radioiodine*			
Location	Samples	Max.	Min.	Avg.	
Local	•	ň		-	
Northwest	26	0.025	ND	ND	
LM-4BF	26	ND	ND	ND	
North	26	0.034	ND	ND	
Northeast	26	0.035	ND	ND	
		Average:	<u></u>	ND	
Permieter					
Rogersville, AL	26	0.055	ND	ND	
Athens; AL	26	0.030	ND	ND	
Decatur, AL	26	ND	ND	ND	
Courtland, AL	26	0.048	ND	ND	
	4	Average:		ND	
Remote					
Muscle Shoals, AL	26	ND	ND	ND	
Lawrenceburg, TN	26	0.022	ND	ND	
Fayetteville, TN	26	0.022	ND	ND	
Cullman, AL	26	0.042	ND	ND	
		Average:		ND	

*Sensitivity 0.022 ND - Not detectable

.

15

8.

Terrestrial Monitoring

Milk

Milk is collected from five farms within a 10-mile radius of the plant, and from one farm approximately 20 miles from the plant (see figure 3). Raw milk is analyzed weekly for ¹³¹I, and monthly for gamma-emitting isotopes and for radiostrontium. The average results for each farm are shown in table 7. So that any relationship between fallout on pastureland and the presence of radionuclides in milk might be seen, pasturage is also sampled at the six farms.

A cow census was completed in June 1975. It was determined that there are no dairy farms nearer the plant than the nearest farm being sampled.

Vegetation

In addition to the pasturage samples mentioned previously, vegetation samples are collected near each monitoring station in the network to determine possible plant uptake of radioactive materials from the soil or from foliar deposition. Table 8 gives the results obtained from the laboratory analyses. The data for the specific radionuclide analysis of vegetation are averaged for the four principal locations--local, perimeter, remote-control, and farm.

Soil

Soil samples are collected near each monitoring station in order that any relationship between the amount of radioactive material found in vegetation and that in soil might be established. The averages for specific analyses are obtained in the same fashion as those for vegetation. The results are given in table 9.

Water

Domestic water supplies, obtained from surface streams and wells, are sampled and analyzed. Well water is obtained from seven private supplies within a 10-mile radius of the plant and from a number of wells on the plant site. The results of analyses of well water are shown in table 10 and indicate that the maximum beta concentration is 0.36 percent MPC. Table 11 indicates the results of samples taken from public water supplies. The maximum beta concentration is 0.14 percent MPC. The specific isotopic concentrations reported are averages for each station for the semiannual period.

Environmental Gamma Radiation Levels

Thermoluminescent dosimeters (TLD's) are placed at nine stations around the plant near the plant boundary and at the perimeter and remote air monitors to determine the gamma exposure rates at these locations. The TLD's are changed every 3 months. The quarterly gamma radiation levels determined from these TLD's are given in table 12.

18 .

Scale: 1'' = 1.5 miles

Poultry and Food Crops

Poultry and food crops raised in the vicinity of Browns Ferry Nuclear Plant are sampled as they become available during the growing season. During this sampling period samples of corn, peaches, green beans, tomatoes, potatoes, and chicken were collected and analyzed for gross beta, specific gamma-emitting radionuclides, ⁸⁹Sr, and ⁹⁰Sr. The results are given in table 13.

MILK

pCi/liter

	No. of		¹³¹ I*						,
Location	Samples	Max.	Min.	Avg.	¹³⁷ Cs	⁴⁰ K	¹⁴⁰ Ba- ¹⁴⁰ La	⁹⁰ Sr	⁸⁹ Sr
Raw Milk									
Farm G (Control)	9 (3)**	ND	ND	ND	3.4	1100.3	2.0	5.3	1.8
Farm B	25 (6)	ND	ND	ND	6.6	1349.7	0.1	9.2	0.4
Farm Bi	25 (6)	ND	ND	ND	2.5	1243.5	ND	5.5	1.3
Farm H	25 <u>(</u> 6)	ND	ND	ND	2.5	1275,3	0.2	4.4	1.2
Farm L	25 (6)	ND	ND	ND	1.9	1263.8	ND	6.3	0.6
Farm T	25 (6)	ND	ND	ND	5.2	1299.3	ND	5.2	0.8
	Average: (Far	ns B, <u>Bi</u>	L, H, L, J	C) ND	3.7	1286.3	0.1	6.1	0.9

*Chemical separation of iodine: Sensitivity for ¹³¹I--0.5 pCi/l at time of sample collection. **¹³¹I analysis weekly: (gamma scan and ⁸⁹Sr, ⁹⁰Sr analyses monthly.) ND - Not detectable

ł

. VEGETATION

pCi/gm (Dry Weight) Specific Radionuclides Nonvolatile No. of Samples Beta** (Average) Location Alpha* Local ^{141,144}Ce ŃD 12.7 0.9 ± 0.1 2 Northwest ⁵¹Cr 0.1 ± 0.1 ¹³¹I 2 ND 11.0 0.1 ± 0.01 LM-4BF 103,106_{Ru} 1.2 ± 0.1 ¹³⁴Cs 2 North ND 11.8 ND ¹³⁷Cs 0.2 ± 0.04 ⁹⁵Zr-⁹⁵Nb 2 ND 17.0 0.7 ± 0.04 Northeast ⁵⁸Co 0.1 ± 0.03 ⁵⁴Mn 13.1 ND ND Average: ^{6 5}Zn · ND ^{6 0}Co ND ¹⁴⁰Ba-¹⁴⁰La 0.4 ± 0.03 ⁹⁰Sr 0.4 ± 0.01 ⁸⁹Sr ND Perimeter ^{141,144}Ce 11.7 0.7 ± 0.1 2 ND Rogersville, AL ⁵¹Cr ND 13ĭ<u>1</u> 13.8 Athens, AL 2 ND ND 103,106_{Ru} 1.0 ± 0.1 ¹³⁴Cs 2 ND 11.7 ND Decatur, AL ¹³⁷Cs 0.2 ± 0.03 ⁹⁵Zr-⁹⁵Nb 2 13.6 0.5 ± 0.03 ND Courtland, AL ⁵⁸Co ND ⁵⁴Mn ND 12.7 ND Average: ^{6 5}Zn ND ⁶⁰Co 17 ND ¹⁴⁰Ba-¹⁴⁰La 0.4 ± 0.02 ⁹⁰Sr 0.5 ± 0.01 ⁸⁹Sr ND - *

*Sensitivity 0.1 **Sensitivity 0.1 ND - Not detectable 1 N N

11,

ч		Table	8 (Continued)		• •	
Location	No. of <u>Samples</u>	<u>Alpha*</u>	Nonvolatile Beta**	Specific Radionuclides (Average)		
Remote and Control						
Muscle Shoals, AL	2	ND	15.9	^{141,144} Ce ⁵¹ Cr	1.3 ± 0.1 0.2 ± 0.1	
Lawrenceburg, TN	2	ND	8.6	131 <u>7</u> 103,106 _{R11}	ND 1.0 ± 0.1	
Fayetteville, TN	2	ND	16.3	¹³⁴ Cs ¹³⁷ Cs	$ND = 0.3 \pm 0.04$	
Cullman, AL	2	ND	20.3	⁹⁵ Zr- ⁹⁵ Nb	1.0 ± 0.04	
Farm G	2	NA	22.1	⁵⁴ Mn ⁶⁵ Zn	ND ND	
	Average:	ND	16.6	⁶⁰ Co	ND	
,			•	⁹⁰ Sr ⁹⁹ Sr	0.4 ± 0.02 0.9 ± 0.01 0.2 ± 0.01	

		Non	volatile :	Beta		
Farms		Max.	<u>Min.</u>	Avg.		
Farm Bi	6	26.9	12.3	20.2	^{141,144} Ce	0.9 ± 0.1
Farm B	6	19.2	12.2	15.4	131 103,106	$\frac{0.3 \pm 0.1}{\text{ND}}$
Farm H	6	30.8	13.0	19.9	¹³⁴ Cs 137Ca	$\frac{1.0 \pm 0.1}{\text{ND}}$
Farm L	6	25.8	9.9	17.7	⁹⁵ Zr- ⁹⁵ Nb	0.2 ± 0.02 0.8 ± 0.02
Farm T	6	28.1	12.7	18.0	⁵⁴ Mn 6572	ND
		Average	2:	- 18.2	⁶⁰ Co 140Ba- ¹⁴⁰ La	ND 0.4 ± 0.03
					⁸⁹ Sr	0.5 ± 0.01 0.1 ± 0.01

*Sensitivity 0.1 **Sensitivity 0.1 ND - Not detectable NA - Not analyzed

22

٠

SOIL

pCi/gm (Dry Weight)

.	No. of	N		Specific Radionuclides					
Local	Samples	Nonvolatil	le Beta*	(Averag	<u>e)</u>				
		T							
Northwest	2		5.18	^{141,144} Ce	0.6 ± 0.1				
X) () X	-		5 96	^{31}Cr	ND				
LM-4BF	2		5.36	103,106 _{P,1}	עאי 0 4 + 0 1				
North	2	1.	4.58	¹³⁴ Cs	ND				
	-			¹³⁷ Cs	0.8 ± 0.1				
Northeast	2		4.48	⁹⁵ Zr- ⁹⁵ Nb	0.2 ± 0.03				
				⁵⁸ Co	ND				
- · ·	•	Average:	4.90	⁵ Mn 65m	0.1 ± 0.05				
				⁶⁰ Co	ND D				
				140 Ba - 140 La	0.2 ± 0.03				
Perimeter			,	1					
Decovert110 AT	2		5.04	141,14400	05+01				
Rogersville, AL	4		5.04	⁵¹ Cr	ND				
Athens, AL	2		4.52	131 <u>1</u>	ND				
· · · · · ·		•		103,106Ru	0.4 ± 0.1				
Decatur, AL	2		4.37	134Cs	ND				
0 · 1 · 1 · 17	2		0.16	13 CS 95	1.3 ± 0.1				
Courtland, AL	2		2.40	58CO	0.2 ± 0.03				
		Average:	4.10	^{5 4} Mn	ND				
				⁶⁵ Zn	ND				
	,			⁶⁰ Co	ND				
	и			¹⁴⁰ Ba- ¹⁴⁰ La	0.1 ± 0.02				
Demote									
Remote									
Muscle Shoals, AL	2		4.60	^{141,144} Ce	0.6 ± 0.1				
•				⁵¹ Cr	ND				
Lawrenceburg, TN	2		4.66	$\frac{131}{102}$	ND				
				103910°Ru	0.6 ± 0.1				
Fayetteville, TN	2		3.56 [,]	137Cs					
Cullman AT	2	á	3 30	957r-95Nb	2.7 ± 0.1				
Guillman, AL	2		3.33	58Co	ND				
		Average:	4.05	⁵⁴ Mn	ND				
L				⁶⁵ Zn	ND				
				⁶⁰ Co	ND				
				¹⁴⁰ Ba- ¹⁴⁰ La	0 1 + 0 02				

*Sensitivity 0.15 ND - Not detectable

PRIVATE WELL WATER

pCi/liter

	No. of	Nonv	olatile	Beta*						Specific F	Radionuclides					
Location	Samples	Max.	Min.	Avg.	Ce	51Cr	I	103,106Ru	134Cs	137 _{Cs}	33Zr-33Nb	Co	<u>. 1/n</u>	Zn		Ba- La
Farm G Control	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.512.2	7.1±1.2
Farm B	6	2.5	ND	ND	ND	ND	0.4±0.3	ND	ND	ND	0.7±0.6	ND	0.3±0.2	1.4±1.2	8.0±1.1	4.2±0.7
Barn 31	6	10.7	4.2	5.9	ND	ND	ND	ND	ND	0.9±0.5	0.6±0.6	ND	1.2±0.3	ND	6.3±0.7	4.2±0.5
Farm H	6	3.1	1.7	2.3	2.2±1.9	ND	1.0±0.4	ND	ND	1.2±0.6	1.3±0.8	ND	ND	2.2±1.4	5.5±0.7	4.0±0.8
Farm L	6	ND	ND	ND	ND	ND	0.6±0.4	ND	1.4±0.4	0.6±0.3	0.4±0.4	ND	ND	2.3±1.2	6.3±0.7	2.0±0.6
Farm T	6	2.7	ND	ND	ND	ND	ND	ND	סא י	0.5±0.4	1.8±0.5	ND	1.2±0.9	1.2±1.1	3.7±0.6	3.4±0.5
Residence BT	- 6	4.6	ND	ND	ND	ND	ND	ND	ND	1.3±0.4	ND	ND	ND	ND	4.0±0.7	4.0±0.5
Residence BK	6	1.7	ND	ND	1.7±1.4	ND	ND	ND	ND	0.8±0.5	1.1±0.7	ND	ND	1.5±0.9	5.6±0.7	2.7±0.6
BFNP - 1	6	ND	ND	ND	ND	ND	ND	ND	0.6±0.4	ND	0.8±0.6	ND	ND	ND	5.7±0.8	4.1±0.7
BFNP - 2	6	2.9	ND	ND	ND	ND	ND	ND	1.6±0.6	ND	ND	ND	ND	1.9±1.3	6.5±0.8	5.1±0.7
BFNP - 3	6	2.7	ND	ND	ND	ND	ND	2.0±1.9	0.8±0.2	ND -	1.2 ±0.6	ND	ND	1.9±1.0	4.3±0.8	4.0±0.6
BFNP - 4	6	3.8	ND	2.1	1.8±1.2	ND	ND	ND	0.8±0.5	1.2±0.6	0.9±0.4	ND	1.1±0.9	1.3±0.3	5.9±0.8	4.9±0.6
BENP - 5	6	ND	ND	ND	ND	ND -	1.6±0.6	ND	2.1±0.5	ND	ND	ND	ND	ND	7.5±0.8	3.0:0.8
BENP - 6	4	5.9	ND	2.9	ND	ND	ND	ND	ND	0.7±0.4	ND	ND	1.9±0.6	ND	2.8±0.6	1.7±0.5
BFNP - 7	6	ND	ND	ND	ND	ND -	ND	ND	0.7 0.4	ND	1.4±0.7	ND	1.2±0.9	0.9±0.6	6.3±0.7	3.2±0.5
		Averag	3e: .	ND	0.4±0.2	ND	0.2±0.1	0.1±0.1	0.5±0.1	0.5±0.1	0.7 [±] 0.1	ND	0.5±0.1	1.0±0.2	5.6±0.2	3.8±0.2

*Sensitivity 1.6 ND - Not detectable

Table 1	1
---------	---

× ...

PUBLIC WATER

pCi/liter

	No. of	Nonvolatile beta*							Spe	cific Radio	nuclides			-			
Location	Samples	Max.	Min.	Avg.	Ce	³¹ Cr	<u></u>	IUSTICERU	13:Cs	137 _{Cs}	³⁵ Zr- ³⁵ Nb	<u>۵</u>	3°Mn	• ⁵ Zn	•°Co	143Ba-14tLa	JE##
Wilson Dan	2	1.9	ND	ND	ND	ND	מא	ND	ND	ND	2.1±0.6	ND	ND	ND	3.9±1.1	4.3±0.9	ND
Colbert SP	2 - ``	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7±0.4	ND	4.0±1.1	3.0±0.7	0:8±0.4	ND
Clements School	2	ND	ND	ND	ND	3.1±0.9	ND	ND	ND	ND	ND	ND	ND	ND	3.0 <u>+</u> 0.9	0.9±0.6	ND
Athens	2	3.4	1.9	2.6	ND	ND	ND	ND	ND	1.5±0.7	ND	0.3±0.1	ND _	ND	2.5±0.3	ND	ND
Courtland	2	1.9	1.6	1.8	ND	ND	1.6±0.9	ND	2.5=0.9	2.5±1.2	ND	ND	ND	שא	3.9±1.2	2.0±0.9	, ND
Town Creek	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	םא מא	5.6±1.0	3.5±0.9	ND
Trinity	_ 2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- ND	ND	6.1±1.0	1.7±0.6	ND
Decatur	6	4.1	ND	2.2	2.6 [±] 1.7	ND	0.8±0.3	ND	0.5±0.4	ND	ND	1.0±0.9	ู้ พว	3.0±1.6	5.0±1.2	3.4±0.6	ND
Sheffield (Muscle	6	2.3	ND	1.8	2.3±1.3	ND	ND	ND	0.5±0.4	0.8±0.6	ND	ND	0.7±0.5	ND	4.3±0.9`	5.6±0.8	ND
Wheeler Dam	- 6	2.2	ND	1.7	ND	ND	ND .	ND	0.6±0.2	1.3±0.5	ND	ND	ND	1.4±1.2	4.5±0.7	2.9±0.5	408±55
Champion Paper Co.	6	2.6	עמ	2.0	ND	ND	ND	ND	1.0±0.5	1.3±0.5	ND	ND	ND	1.7±1.2	3.4±0.8	5.4±0.7	416±55
	Weighte	d Avera	ge:	ND	0.8±0.2	0.1 [±] 0.1	0.2±0.1	ND	0.5±0.1	0.7±0.2	0.1±0.1	0.2±0.1	ND	1.2±0.2	4.2±0.3	3.4:0.2	ND

*Sensitivity 1.6 **Sensitivity 400 ND - Not detectable

.

.

25

٠

. .

.

ENVIRONMENTAL GAMMA RADIATION LEVELS

•		Environmer Radiation	ntal Gamma n Levels
Quarter	Location	mR/Hour	mR/Quarter
January-March, 1975	On-Site (9)* Maximum Minimum Average**	0.018 0.012 0.015±0.005	39.9 26.3 31.8±10.0
	Off-Site (8) Maximum Minimum Average	0.015 0.010 0.012±0.003	31.8 21.6 26.4±7.4
April-June, 1975	On-Site (9) Maximum Minimum Average	0.016 0.011 0.013±0.003	34.0 23.7 28.4±7.0
	Off-Site (8) Maximum Minimum Average	0.015 0.009 0.012±0.004	33.1 20.0 26.2±8.4

*Number of stations (three TLD's at each station) **All averages reported $\pm 2\sigma$

1

POULTRY AND FOOD CROPS

	<u>pCi/Kg (wet weight)</u>										
	Co	rn	Gree	n beans							
	Plant Area	Muscle Shoals	Plant Area	Muscle Shoals							
Gross beta*	876.4	1735.7	1481.8	700.5							
Specific Radionuclides		-		. 4							
^{141,144} Ce	ND	ND	ND ^d	ND							
⁵¹ Cr	ND	ND	ND	ND							
¹³¹ I	ND	ND	ND	ND							
103,106Ru	ND	ND	ND	ND							
¹³⁴ Cs	ND	ND	ND	ND							
¹³⁷ Cs	ND	5.5±3.3	ND	ND							
⁹⁵ Zr- ⁹⁵ Nb	ND	ND	ND	ND							
⁵⁸ Co	ND	ND	ND	ND ·							
⁵ "Mn	ND	ND	ND	ND							
^{6 5} Zn	ND	ND	ND	ND							
⁶⁰ Co	ND	11.5±3.8	9.9±3.6	ND							
⁴⁰ K	1622.0±69.0	1986.6±87.5	2211.1±91.1	1344.6±89.1							
¹⁴⁰ Ba- ¹⁴⁰ La	7.3±1.2	5.2±2.5	ND.	6.9±1.9							
⁹⁰ Sr	ND	ND	46.8±4.8	54.8±3.0							
⁸⁹ Sr	ND	4.6±2.3	8.4±6.0	ND							

*Sensitivity 0.1 (pCi/g, dry weight) ND - Not detectable

Table 13 (Continued)

POULTRY AND FOOD CROPS

	pCi/Kg (wet weight)											
ь ч	Plant Area	ches Musele Shoel	c Plant Aron	Atoes Mucolo Shoole								
Gross beta*	532.0	923.3	1525.4	516.8								
Specific Radionuclides	ND	ND	ND	ND								
⁵¹ Cr	ND	ND	ND	ND								
¹³¹ I	ŅD	ND	ND	ND								
103, 106 _{Ru}	ND	ND	ND	ND								
¹³⁴ Cs	5.3±1.9	ND	ND	ND								
¹³⁷ Cs	ND	ND	ND	ND								
⁹⁵ Zr- ⁹⁵ Nb	ND	ND	ND	ND								
^{5 8} Co	ND	ND	ND	ND								
⁵ ⁴ Mn	ND	ND	ND	ND								
^{6 5} Zn	ND	ND	ND	ND								
^{6 0} Co	ND	4.5±3.8	7.9±5.0	ND								
^{ч о} К	1511.7±63.3	1106.1±90.8	2406.6±112.8	2493.3411.1								
¹⁴⁰ Ba- ¹⁴⁰ La	4.0±2.1	1.841.3	1.5±1.4	ND								
⁹⁰ Sr	15.1±1.6	12.3 [±] 3.1	5.6圠.9	3.9 [±] 1.3								
⁸⁹ Sr	ND	ND	ND	5.2±2.6								

*Sensitivity 0.1 (pCi/g, dry weight) ND - Not detectable

•

Table 13 (Continued)

POULTRY AND FOOD CROPS

	pCi/Kg (wet weight)	pCi/g (dry weight)					
	Tomatoes Muscle Shoals	Ch Plant Area	icken Muscle Shoals				
	Musele Shoals	TIANC AIGA	Husere bhoars				
Gross beta*	769.9	3.35	3.33				
Specific Radionuclides	·						
^{141,144} Ce	ND	ND	ND				
⁵¹ Cr	ND	ND	0.2±0.1				
¹³¹ I	ND	ND	ND				
103,106 _{Ru}	ND	ND	0.2±0.1				
¹³⁴ Cs	ND	ND	ND				
¹³⁷ Cs	ND	ND	ND				
⁹⁵ Zr- ⁹⁵ Nb	ND	ND	ND				
⁵⁸ Co	ND	ND	ND				
⁵⁴ Mn	ND	ND	ND				
⁶⁵ Zn	ND	ND	ND				
⁶⁰ Co	ND	ND	ND				
** ⁰ K	1380.9±104.5	5.50±0.70	6.4±0.4				
¹⁴⁰ Ba- ¹⁴⁰ La	ND	ND	ND				
⁹⁰ Sr	9.9±1.4	ND	ND				
⁸⁹ Sr	ND	ND	ND				

*Sensitivity 0.1 (pCi/g, dry weight) ND - Not detectable

۸

Reservoir Monitoring

Samples are collected quarterly along seven cross sections in Wheeler Reservoir--at Tennessee River miles 277.98, 283.94, 288.78, 291.76, 293.70, 295.87, and 307.52 as detailed in table 14. Samples collected for radiological analysis include plankton from three of these cross sections and bottom fauna and sediment from four cross sections. The locations of these cross sections are shown on the accompanying map (figure 4) and conform to sediment ranges established and surveyed by the Hydraulic Data Services Branch, TVA. Station 307.52 is located 13.5 miles upstream from the plant diffuser outfall and was selected as a control station.

Samples of water, net plankton, sediment, Asiatic clams, and two species of fish collected quarterly (plankton in only two quarters) are analyzed for radioactivity. Gamma and gross beta activity are determined in water (dissolved and total activity), net plankton, sediment, shells and flesh of clams, flesh of a commercial and a game fish species, and also in the whole body of the commercial species. The ⁸⁹Sr and ⁹⁰Sr contents are determined in all samples where sufficient quantities are available. The activity of 12 gammaemitting radionuclides is determined with a multichannel gamma spectrometer. The ⁸⁹Sr and ⁹⁰Sr contents are determined by appropriate radiochemical techniques.

Water

From five of the seven cross sections a total of 15 water samples is collected quarterly for determination of total and dissolved radioactivity. The locations and depths for sampling are shown in table 14. Results are displayed in tables 15 and 16. Samples from all horizontal locations and depths at each river mile cross section are composited quarterly for tritium analysis. Water samples are also collected monthly at the point of plant discharge to the Tennessee River and at a point on the Elk River. These samples are a part of the quality control program. From the data in table 17, the maximum average beta concentration is 0.20 percent of MPC for samples collected ' at these two locations.

Fish

Radiological monitoring for fish is accomplished by analysis of composite samples of adult fish taken from each of three contiguous reservoirs--Wilson, Wheeler, and Guntersville. No permanent sampling stations have been established within each reservoir; this reflects the movement of fish species within reservoirs as determined by TVA data from the Browns Ferry Nuclear Plant preoperational monitoring program. Two species, white crappie and smallmouth buffalo, are collected representing both commercial and game species. Sufficient fish are collected in each reservoir to yield 250 to 300 grams oven-dry weight for analytical purposes. All samples are collected quarterly and analyzed for gamma, gross alpha, gross beta activity, ⁸⁹Sr, and ⁹⁰Sr. The composite samples contain approximately the same quantity of flesh from each fish. For each composite a subsample of material is drawn for counting. Results are given in table 18.

Plankton

As indicated in table 14, net plankton (all phytoplankton and zooplankton caught with a 100 μ mesh net) is collected for radiological analyses at each of three stations by vertical tows with a $\frac{1}{2}$ -meter net. At least 50 grams (wet weight) of material is necessary for analytical accuracy. Collection of this amount will probably be practical only during the period April to September (spring and summer quarters) because of seasonal variability in plankton abundance. Samples are analyzed for gross beta activity and, when quantities are sufficient, for gamma activity and ⁸⁹Sr and ⁹⁰Sr content. Results are shown in table 19.

Sediment

Sediment samples are collected from Ponar dredge hauls made for bottom fauna. Gamma and gross beta radioactivity and ⁸⁹Sr and ⁹⁰Sr content are determined quarterly in composite samples collected from each of four stations. Locations of these stations are shown in table 14. Results are shown in table 20.

Bottom Fauna

The flesh and shells of Asiatic clams collected from the cross sections at four stations (table 14) are analyzed for gamma and gross beta activity at quarterly intervals. The 89 Sr and 90 Sr contents are determined on the shells, and on the flesh when sufficient amounts were available. A 50-gram (wet weight) sample provides sufficient activity for counting. Results are given in table 21.

1

I

1

I

1

ſ

ſ

ſ

1

T

I

I

1

SAMPLING SCHEDULE - RESERVOIR MONITORING

		Biological	Water Samples						
Tennessee River (Mile)	Zooplankton, Chlorophyll, Phytoplankton*	Benthic Fauna*	Sediment*	Fish**	Dista Lef Feet	nce From t Bank Percent	Depths (Meters)		
277.98	2	2	2		×				
283.94		•			3600 7100	40 78	1 1, 10		
288.78		2	2						
291.76	2 .			•	5000 7000	60 84	1 1, 5		
293.70		2	2		6800 9200	65 88	1 1, 5		
295.87					4000 7500	_ 44 82	1, 5 1		
307.52	2	2	2		1800 2800	24 37	1, 5 1		

[-

*Replicate samples **Gill net and/or electroshocker will be used for collection. Samples of fish are collected from Guntersville, Wheeler, and Wilson Reservoirs.

μ

Varan Nord 1

RESERVOIR MONITORING NETWORK

.34

RIVER WATER

Dissolved Activity, pCi/liter

TN	No. of	Vorie	Depth	6	Verselandle					•							•		
<u>Mile</u>	Samples	Location*	Heters	Alpha**	Beta***	Telelece	51Cr	_111 <u>I</u>	IUJ.IJERU	Spec:	137Cs	SZr-SNb	55Co	54 Ma	65 _{Zn}	60C0	146Ba-14JLa	**Sr	* Sr
283.94	2	40	1	ND	2.3	ND	ND	ND	ND	ND	ND	ND	ND =	ND	ND	3.6±1.1	4.6±0.9	ND	0.9:0.4
283.94	2	78	1	ND	2.5	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	1.4±0.4	1.5±0.6	0.6±0.4	ND
283.94	2	78	10	ND	3.3	ND	ND	ND _	ND	ND	ND	ND '	ND	ND	ND	4.5±1.2	2.1±0.7	ND	0.8:0.5
291.76	2	60	1	ND	2.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.7±1.1	3.8±0.8	ND	0.4:0.3
291.76	2	84	1	ND	2.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5±0.6	2.1±0.6	0.5±0.4	- ND
291.76	2	84	5	ND	2.4	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	2.5±0.7	1.7±0.6	0.8±0.3	ND
293.70	2	65	1	ND	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND _	ND	6.1±1.0	1.3±0.7	0.7±0.4	ND
292.70	2	88	1	ND	ND	3.9±2.0	ND	ND	ND	ND	0.7±0.4	1.5±0.8	ND	ND	ND	3.1±0.8	1.4:0.6	0.8±0.4	0.6±0.3
293.70	2	88	5	ND	2.3	ND	ND	ND	ND	ND *	ND	1.7±0.6	ND	ND .	ND	5.0±1.2	3.2±0.9	0.4±0.3	ND
295.87	2	44	ı	ND	2.8	_ ND	ND	ND	ND	1.4±0.4	ND	ND	ND	ND	ND	1.7±0.5	2.4±0.7	0.4±0.3	0.8±0.4
295.87	2	44	5	ND	2.8	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND	4.0±1.2	3.5±0.9	1.1±0.4	ND
295.87	2	82 .	1	ND	1.9	ND	ND	ND	ND -	ND	ND .	'ND	nd-	ND	ND	2.9±0.8	1.1±0.7	ND	0.5:0.4
307.52	2	24	1	ND	2.4	3.9±1.4	ND	ND	ND	ND	ND	1.1±0.9	ND	ND	ND	4.7±1.1	2.7±0.8	ND	0.7±0.5
307.52	2	24	5	ND	4.1 .	ND	ND	ND	ND	ND	ND	ND	1.4±0.6	ND	ND	3.1±0.6	2.1±0.5	ND	0.9±0.6
307.52	2 ·	37	1	ND	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0±0.9	2.1±0.6	0.5±0.3	0.7±0.5
· · ·		<u>Aver</u>	age:	ND	2.3	0.5±0.2	_ND	ND	ND		DK	0.3±0.1	ND	ND	ND	_3.5±0.2	2.4±0.2	0.4±0.1	0.4±0.1

*Percent of distance across river from left bank looking downstream **Sensitivity 1.2 ***Sensitivity 1.6 ND - Not detectable

.

3 S

٠.

RIVER WATER

Total Activity, pCi/liter

Ta	No. of	Horiz	Depth	Groes	Vanualatila	•		-		5 -	antfin Pe	Hannalidaa				-			•	
Mile	Samples	Location*	Meters	Alpha**	Beta***	1+1+1+*Ce	⁵¹ Cr	mI	101,105Ru	Cs	137Cs	JSZr-JSNb	22°C0	3°Mn	Zn	et Co	IsoBa-IsoLa	3ºSr_	"Sr	3H***
283.94	2.	40 1	1	ND	2.8	ND	ND	ND	ND	ND	ND	2.0±0.9	ND	ND	ND	5.3±1.4	3.8±0.9	1.4±0.4	0.7±0.4	ND
283.94	2	78	1	ND -	2.6	ND	ND	ND	ND	עא	2.0:0.8	ND	ND	ND	ND	4.0±1.0	- 4.5±1.0	1.0±0.5	1.6±0.7	
283.94	2	78	10	ND	3.1	ND	ND	ND	ND	1.3±0.9	ND	1.8±1.4	ND	ND	ND	4.1±1.2	4.0±1.1	0.6±0.4	0.8=0.3	•
291.76	2	60	1	ND	4.0	ND	ND	סא	ND	ND	2.6±0.3	ND	ND	ND	ND	4.6±1.5	3.1±1.0	0.8±0.3	0.5±0.2	ND
291.76	2	84	1	סא	3.4	3.2±2.0	סא	ND	ND	ND	1.6±0.9	0.8±0.6	ND	ND	ND	6.5±1.4	4.6±1.2	0.6±0.4	0.5±0.3	
291.76	2	84	5.	ND	1.7	3.4±3.1	ND	ND	ND	ND	ND	1.6±1.1	ND	ND	ND	2.3±1.1	5.3±1.0	0.7±0.5	0.6±0.5	
293.70	2	65	1	ND	2.2	ND	פא	ND	3.6±3.0	ND	ND	ND	ND	ND	ND	5.9±1.3	2.5±1.2	0.8±0.3	ND	ND
293.70	2	88	1	GI	2.0	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	2.0±1.0	4.8±0.9	ND	0.7:0.4	
293.70	2	38	5	ND	2.2	5.2±3.2	ND	ND	ND	ND	ND	ND	ND	ND	- ND	7.1±1.6	3.8±1.1	0.9±0.4	ND	
295.87	2	44	1	ND	3.5	ND	ND	ND	ND	0.9±0.8	ND	0.9±0.5	ND	ND	ND	6.1±1.6	* 4.0±1.3	0.8±0.4	0.5±0.4	CN
295.87	2	44	5	ND	3.5	4.1±3.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.1±1.1	2.6±0.8	ND	0.7±0.4	
295.87	2	82	1 ΄	- ND	2.9	ND	ND	ND	ND	1.3±0.4	ND	ND	ND	1.8±1.1	2.9±2.4	5.6±1.2	2.7±1.1	0.6±0.4	0.9±0.5	÷
307.52	2	24	1	סא	2.6	ND	DM	ND	ND	ND	1.1±0.9	0.7±0.5	ND	ND	ND	6.1±1.1	3.4±0.9	1.3±0.4	' ND	ND
307.52	2	24	· 5	ND	2.3	ND	ND	ND	ND	ND	· ND	ND	ND	ND	M	1.2±1.1	2.2±0.8	0.5±0.3	0.6±0.4	
307.52	2	37	1	ND -	2.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.4±1.3	3.3±0.9	ND	0.8=0.5	
		Âve	rage:	ND	2.7	1.1±0.4	ND	ND	0.2±0.2	0.2±0.1	0.5±0.1	0.5±0.1	<u>ND</u>	0.1±0.1	0.2±0.2	4.8±0.3	3.6±0.3	0.7±0.1	0.6±0.1	ND

*Percent of distance across river from left bank looking downstream **Sensitivity 1.2 ***Sensitivity 1.6 ****Sensitivity 400 ND - Not detectable

.

36

RIVER WATER

pCi/liter

4 *	No. of	Alpha*	Nonvolatile Beta**			Specific Radionuclides		
Location	Samples	(Avg.)	Max.	Min.	Avg.	(Averag	;e)	
Browns Ferry at discharge location	6 , *	ND	6.1	2.1	3.3	141, 144Ce ⁵¹ Cr 131 <u>1</u> 103, 106 _{Ru} 134Cs 137Cs ⁹⁵ Zr- ⁹⁵ Nb ⁵⁸ Co ⁵⁴ Mn ⁶⁵ Zn ⁶⁰ Co ¹⁴⁰ Ba- ¹⁴⁰ La ⁹⁰ Sr ⁸⁹ Sr ³ H***	ND ND 0.7±0.6 ND 1.1±0.7 1.0±0.6 ND ND 2.8±1.4 4.4±0.9 5.4±1.2 0.4±0.2 0.8±0.2 ND	
Elk River	6	ND	5.3	2.2	2.9	141,144Ce ⁵¹ Cr 131 <u>1</u> ^{103,106} Ru ¹³⁴ Cs ¹³⁷ Cs ⁹⁵ Zr- ⁹⁵ Nb ⁵⁸ Co ⁵⁴ Mn ⁶⁵ Zn ⁶⁰ Co ¹⁴⁰ Ba- ¹⁴⁰ La ⁹⁰ Sr ⁸⁹ Sr ³ H***	ND ND ND 1.2±0.4 0.9±0.4 ND 0.6±0.5 ND 3.4±1.2 3.8±0.6 5.3±0.6 0.4±0.2 0.6±0.3 ND	
	Average:	ND	Averag	e:	3.1			

*Sensitivity 1.2 **Sensitivity 1.6 ***Sensitivity 400 ND - Not detectable

.

....

FISH

pCi/go, Dry Weight

.

Tocation		No. of	Gross	Gross					Speci	fic Radionu	clide							,
(Reservoir)	Type of Fish	Samples	Alpha*	Beta**	1419144Ce	SICT	1111	103,106Ru	134Cs	117Cs	"Zr-""Nb	33 ^{Co}	<u>nM, s</u>	Zn	<u>Co</u>	Ba- La	Sr	Sr
Guntersville	Smallmouth Buffalo (Whole)	2	ND	5.30	D	ND	ND	ND	ND	0.1±0.02	ND -	ND	ND	ND	ND	ND	0.2±0.03	ND
Smallmouth Buffald (Flesh) White Crappie (Flesh)	Smallmouth Buffalo (Flesh)	2	ND	4.52	ND	0.3±0.1	ND	ND .	ND	0.2±0.04	ND	ND	ND	ND	ND	ND	ND	ND
	White Crappie (Flesh)	2	ND	5.50	ND	0.1±0.06	ND	ND	ND	0.4±0.04	ND	ND	ND	ND	ND	ND	ND	ND
Wheeler S: Si	Scallcouth Buffalo (Whole)	2	ND	5.14	ND	0.4±0.07	ND	ND	ND	0.1±0.02	ND	ND	ND	ND	ND	ND	ND	ND
	Smallmouth Buffalo (Flesh)	2	ND	4.47	ND	0.1±0.05	ND	ND	ND	0.1±0.03	ND	ND	ND	ND	ND	ND	ND	ND
	White Crappie (Flesh)	2	ND	5.88	. 'ND	0.3±0.1	ND	ND	ND	0.3±0.05	ND	ND	ND	ND	ND	- ND	ND	ND
Wilson	Smallmouth Buffalo (Whole)	2	ND	3.78	ND	0.1±0.06	ND	ND	ND	0.2±0.02	ND	ND	ND	ND	ND	ND	0.2±0.02	ND
'n	Smallmouth Buffalo (Flesh)	1	ND	3.79	ND	ND	ND	ND	ND	0.1±0.02	ND	ND	ND	ND	ND	ND	ND	0.2±0.05
	White Crappie (Flesh)	2	ND	5.97	ND	0.2±0.09	ND	ND	ND	0.4±0.03	ND	ND	ND .	ND	ND	ND	ND	ND

*Sensitivity 0.02 **Sensitivity 0.03 ND - Not detectable

.

PLANKTON

pCi/gm, Dry Weight

Tennessee <u>River Mile</u>	No. of <u>Samples</u>	Gross <u>Alpha*</u>	Gross <u>Beta**</u>	Specific <u>Radionuclides***</u>
277.98	. 4	1.08	19.43	
291.76	4	1.30	13.36	v
307.52	4	2.14	18.34	
	Average:	1.51	17.04	

*Sensitivity 0.03 **Sensitivity 0.04 ***Sample size not sufficient to perform specific isotopic analysis

SEDIMENT

pCi/	'gm,	Dry	We:	lght
------	------	-----	-----	------

TN River Mile							
• X *	277.98	288.78	293.70	307.52	Average		
No. of Samplès	4	4	4	4			
Gross Alpha*	0.94	0.81	0.54	0.92	0.80		
Nonvolatile Beta**	[•] 8.07	8.48	5.47	7.47	7.37		
Specific Radionuclides	*	ı					
141,144 Ce	ND	1.0±0.3	0.4±0.2	ND	0.4±0.1		
⁵¹ Cr	ND	ND	ND	· ND	ND		
¹³¹ I	ND	ND	ND	ND	ND		
103,106 _{Ru}	0.4±0.2	1.1±0.2	0.3±0.1	0.5±0.2	0.6±0.1		
¹³⁴ Cs	ND	ND .	ND	ND	ND		
¹³⁷ Cs	6.4±0.2	3.6±0.2	2.1±0.1	0.6±0.1	3.2±0.1		
⁹⁵ Zr- ⁹⁵ Nb	0.2±0.1	0.8±0.1	0.2±0.04	0.2±0.06	0.4±0.04		
⁵⁸ Co	ND	ND	ND	ND	• ND		
⁵⁴ Mn	0.1±0.1	0.2±0.1	0.2±0.05	0.2±0.1	0.2±0.05		
^{6 5} Zn	ND	ND	ND	ND	ND		
⁶⁰ Co	ND	ND	ND	ND	ND		
¹⁴⁰ Ba- ¹⁴⁰ La	0.2±0.1	0.3±0.06	0.2±0.03	0.3±0.05	0.2±0.03		
⁹⁰ Sr	0.2±0.05	0.2±0.05	0.2±0.06	0.2±0.05	0.2±0.03		
⁸⁹ Sr	ND	0.2±0.1	0.1±0.06	0.1±0.07	0.1±0.03		

*Sensitivity 0.11 **Sensitivity 0.15 ND - Not detectable

3

ì

CLAM

:

pCi/gm, Dry Weight

Clam Shell

		TN Rive	r Mile	-	e
	277.98	288.78	293.70	307.52	Average
No. of Samples	4	4	4 ·	. 4	
Gross Alpha*	ND	ND	0.11	0.24	0.09
Nonvolatile Beta**	2.30	2.36	2.69	3.01	2.59
Specific Radionuclides					9 1,
^{141,144} Ce	0.5±0.07	0.5±0.05	0.5±0.08	0.5±0.1	0.5±0.04
⁵¹ Cr	ND	ND	ND	ND	ND
¹³¹ I	ND	ND	ND	ND	ND
103, 106 _{Ru}	ND	0.1±0.02	. ND	0.1±0.07	ND
¹³⁴ Cs	ND	ND	ND	ND	ND
¹³⁷ Cs	ND	ND	ND	ND	ND
⁹⁵ Zr- ⁹⁵ Nb	ND	ND	ND	ND	ND .
⁵⁸ Co	ND	ND	ND	ND	ND
⁵⁴ Mn	ND	ND	ND	ND	ND
^{6 5} Zn	ND	ND	ND	ND	ND
⁶⁰ Co	ND	ND	ND	ND	ND
¹⁴⁰ Ba- ¹⁴⁰ La	ND	ND	ND	0.1±0.02	ND
⁹⁰ Sr	3.3±0.2	4.2±0.3	5.6±0.2	4.9±0.3	4.5±0.1
⁸⁹ Sr	0.3±0.3	0.6±0.2	ND	0.3±0.2	0.3±0.1

*Sensitivity - 0.11 **Sensitivity - 0.14 ND - Not detectable

Ł

,

Table 21 (Continued)

CLAM

pCi/gm, Dry Weight

Clam Flesh

		TN Rive	er Mile		
	277.98	288.78	293.70	307.52	Average
No. of Samples	4	4 .	4.	4	
Gross Alpha*	ND	ND	ND	ND	ND
Nonvolatile Beta**	1.73	1.19	1.28	0.87	1.27
Specific					
Radionuclides	2.4±0.4	1.3±0.6	2.0±0.5	2.2±0.5	2.0±0.3
⁵¹ Cr	1.8±1.0	3.2±0.9	2.9±0.9 ·	•0.5±0.4	2.1±0.4
¹³¹ I	0.2±0.05	0.3±0.1	0.6±0.1	0.5±0.1	0.4±0.05
103, 106Ru	0.4±0.3	0.4±0.2	0.7±0.4	ND	0.4 <u>+</u> 0.1
¹³⁴ Cs	ND	ND	0.2±0.1	0.1±0.05	0.1±0.03
^{1 37} Cs	0.7±0.2	0.3±0.1	0.7±0.2	0.6±0.3	0.6±0.1
⁹⁵ Zr- ⁹⁵ Nb	ND	ND	0.2±0.1	ND	ND
^{5 8} Co	ND	ND	ND	ND	ND
^{5 4} Mn	ND	ND	ND	ND	ND,
⁶⁵ Zn	0.4 [±] 0.2	ND	ND	ND -	0.1±0.05
⁶⁰ Co	0.5±0.1	0.3±0.1	0.3±0.1	0.2±0.05	0.3±0.05
¹⁴⁰ Ba- ¹⁴⁰ La	0.6±0.1	0.5±0.1	0.6±0.1	0.5±0.1	0.6±0.05
⁹⁰ Sr	0.2±0.03	NA	0.1±0.02	NA	0.2±0.02
⁸⁹ Sr	ND	NA	ND .	NA	ND

•

*Sensitivity 0.03 **Sensitivity 0.04 NA - Not analyzed ND - Not detectable

•

Quality Control

A quality control program has been established with the Alabama Department of Public Health Environmental Health Administration Laboratory and the Eastern Environmental Radiation Facility, Environmental Protection Agency, Montgomery, Alabama. Samples of air, water, milk, and vegetation collected around the BFNP are forwarded to these laboratories for analysis; and results are exchanged for comparison.

Data Analysis

1

Data measured at each indicator and control station were averaged for the 6-month reporting period. In order to describe the distribution of control station data, a mean, standard deviation, and 3-sigma value were calculated. We can expect, with 99 percent confidence, that background concentrations would be distributed within these limits. This provides us the basis for comparing control and indicator data. If the indicator data fall within the limits defined for control data, we can say, with 99 percent confidence, that the indicator data were not significantly affected by the nuclear plant. If the data do not fall within the limits, we will perform further analyses to determine if the difference is attributable to the nuclear plant.

Conclusions

A vast majority of the indicator station data were found to be within the distribution defined by the control station data. The Alpha-M least squares computer program identified concentrations slightly exceeding the limits of the control station data for a small number of radionuclides in samples from indicator stations. Many of these values may be discounted because the error reported by the Alpha-M program was greater than the calculated concentration. The remaining isolated elevated concentrations may be the result of fallout, computer program artifacts, or analytical errors. The same type of isolated high values occurred in the control station data and may be attributed to the same sources.

Exposures were measured with thermoluminescent dosimeters (TLD) at nine indicator stations near the site boundary and at eight control stations remote from the plant. Some anomalies were observed in the TLD exposure measurements at both indicator and control stations. A student's "t" test performed on the data indicated that, at the 99% confidence level, the radiation levels found at the onsite stations are not statistically different from the levels found at the offsite stations.

-. . . . , • , •

,