

10 CFR 50.55a(g)(5)(iii)

LR-N18-0087 September 24, 2018

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

> Hope Creek Generating Station Renewed Facility Operating License No. NPF-57 NRC Docket No. 50-354

Subject: Submittal of Relief Request Associated with the Third Inservice Inspection (ISI) Interval

In accordance with 10 CFR 50.55a, "Codes and standards," paragraph (g)(5)(iii), PSEG Nuclear LLC (PSEG) hereby requests NRC approval of the attached request for the third 10-year inservice inspection (ISI) interval for the Hope Creek Generating Station which ended on December 12, 2017. The relief request addresses limitations for examinations performed in accordance with the requirements of the American Society of Mechanical Engineering (ASME) Boiler and Pressure Vessel Code, Section XI for Class 1 and 2 components.

There are no commitments in this letter or enclosure.

If you have any questions or require additional information, please contact Mr. Lee Marabella at 856-339-1208.

Sincerely,

al

Paul R. Duke, Jr. Manager - Licensing PSEG Nuclear LLC

Enclosure 1: American Society of Mechanical Engineers (ASME) Section XI 10 CFR 50.55a Request for Relief Number HC-I3R-08, Revision 0 September 24, 2018 Page 2 LR-N18-0087

cc: Regional Administrator – NRC Region I Project Manager - USNRC NRC Senior Resident Inspector - Hope Creek P. Mulligan, Chief, NJBNE Hope Creek Commitment Coordinator LR-N18-0087

Enclosure 1

American Society of Mechanical Engineers (ASME) Section XI 10 CFR 50.55a Request for Relief Number HC-I3R-08, Revision 0

Enclosure 1

Hope Creek Generating Station (HCGS)

10 CFR 50.55a Request for Relief Number HC-I3R-08, Revision 0

In Accordance with 10 CFR 50.55a(g)(5)(iii)

--Inservice Inspection Impracticality--

1. ASME Code Component(s) Affected

The Hope Creek Generating Station (HCGS) Class 1 and 2 components with limited examinations that are included in this request for relief are for the Third Ten-Year Inservice Inspection Interval. The content of this request includes the insights gained from guidance provided in Reference 1 and the following Code Classes, Examination Categories, and Item Numbers apply.

Code Classes:	1 and 2
Examination Categories:	B-A, B-D, B-P, C-A, C-G, and R-A
Item Numbers:	B1.12, B1.30, B3.90, B3.100, B15.10, C1.10, C6.10, and R1.20-4

2. Applicable Code Edition and Addenda

The HCGS third interval Inservice Inspection (ISI) program was based on ASME Boiler and Pressure Vessel Code Section XI, *Rules for Inservice Inspection of Nuclear Power Plant Components,* 2001 Edition through 2003 Addenda (Reference 2), as modified by 10 CFR 50.55a. The Appendix VIII requirements and use of the Performance Demonstration Initiative (PDI) requirements at HCGS were in accordance with the 2001 Edition of Section XI (Reference 3) for the limited examinations contained in this request as conditioned by 10 CFR 50.55a(b)(2)(xv) and 10 CFR 50.55a(b)(2)(xxiv).

The HCGS Third Ten-Year ISI Interval ended on December 12, 2017.

3. Applicable Code Requirements

Exam Cat.	Item No.	Class 1 Weld Examination Coverage Requirements
B-A	B1.12	To include essentially 100% examination of the Reactor Vessel Longitudinal Shell Welds.
B-A	B1.30	To include essentially 100% examination of the Reactor Vessel Shell-to-Flange Weld.
B-D	B3.90	To include the examination volume of the Reactor Vessel Nozzle- to-Vessel weld as depicted in the applicable figure shown in Figures IWB-2500-7(a), (b), (c), or (d)
B-D	B3.100	To include examination volume of the Reactor Vessel Nozzle-to Vessel Inner Radius Sections as depicted in the applicable figure shown in Figures IWB-2500-7(a), (b), (c), or (d).
B-P	B15.10	To include all Class 1 pressure retaining components within the system boundary as specified in IWB-5222(b)

Exam Cat.	Item No.	Class 2 Weld Examination Coverage Requirements
C-A	C1.10	To include essentially 100% examination of the Residual Heat Exchanger Shell-to-Flange Weld
C-G	C6.10	To include 100% examination of the all welds in one pump of each group of pumps.

	kam Sat.	Item No.	Class 1 and Class 2 Piping Welds / Risk-Informed Inservice Inspection Program Coverage Requirements
R	R-A	R1.20-4	To include essentially 100% of the examination location with no degradation mechanism.

As previously defined in 10 CFR 50.55a(g)(6)(ii)(A)(2), now removed, and Regulatory Guide 1.147, Revision 17 (Reference 4), ASME Code Case N-460 (Reference 5) was invoked for the required coverage associated with the welds in this request and states that essentially 100% equates to more than 90% of the examination volume or required surface area of each weld where the reduction in coverage is due to interference by another component or part geometry.

Limited Class 1 and Class 2 Piping Welds / Risk-Informed Inservice Inspection Programs

Class 1 and Class 2 piping welds selected for examination during the third interval under the Risk-Informed Inservice Inspection (RI-ISI) Programs used for HCGS were examined in accordance with EPRI Topical Report TR-112657, Rev. B-A methodology (Reference 7) which was supplemented by ASME Code Case N-578-1 (Reference 8) and included the piping welds (elements) selected for examination under Examination Category R-A. The use of these documents for HCGS was based on a request for an alternative HC-I3R-01 that was authorized for use per Reference 9.

RI-ISI Program Limited Examination Evaluations

When limited piping weld examinations are identified under EPRI TR-112657 Rev. B-A supplemented by Code Case N-578-1 RI-ISI Programs, an evaluation is performed with consideration given to whether a new weld location should be selected for examination to make-up for these limited examinations. However, since the initial RI-ISI piping weld selections were based on consequence, failure probability, potential degradation mechanisms and the design of the welds were all similar (i.e., Fitting to Fitting, Fitting to Valve, Fitting to Pipe or located just inside a piping penetration) for examination under these parameters, it was determined that no or very little additional coverage could be obtained by selecting another weld with these same selection criteria. Thus, no other RI-ISI piping weld was selected for the limited examination identified in Attachment 1 for the RI-ISI piping weld examined in the third interval.

4. Impracticality of Compliance

The construction permit for HCGS was issued on November 4, 1974 and falls under the provisions of 10 CFR 50.55a(q)(3), which were applied to components (including supports) that must meet the requirements of paragraphs (g)(4) and (g)(5) to the extent practical. Components that are part of the reactor coolant pressure boundary and their supports must meet the requirements applicable to components that are classified as ASME Code Class 1. Components that are classified as ASME Code Class 2 and 3 must be designed and provided with access to enable the performance of inservice examination of these components and must meet the preservice examination requirements. Therefore, although the design of the plants has provided access for examinations to the extent practical, component design configurations resulting in examination limitations such as those from support interference, geometric configurations of welds and materials such as fitting or valve bodies made of cast stainless steel may not allow the full required examination volume or surface area coverage with the latest techniques available. A typical example of such a condition is a valve-to-pipe weld where essentially 100% of the code required volume cannot be examined from the valve side of the weld and where a plant modification would be needed to provide this coverage. Details of examination restrictions and reductions in required examination coverage are provided in Attachment 1.

When examined, the welds listed in Attachment 1 of this request did not receive the required code volume or surface area coverage due to their component design configurations or interference by other items. These conditions resulted in scanning or surface area access limitations that prohibited obtaining essentially 100% examination coverage of the required examination volumes or surface areas, but when this situation occurred 100% coverage of the accessible volumes or surface areas of each weld was obtained.

5. Burden Caused by Compliance

To comply with the code required examination volumes or surface areas for obtaining essentially 100% coverage for the welds listed in this request for relief, the welds and their

associated components would have to be physically modified and/or disassembled beyond their current design. Overall, components and fittings associated with the welds listed in this request are constructed of standard design items and materials meeting typical national standards that specify required configurations and dimensions. To replace these items with items of alternate configurations or materials to enhance examination coverage would require unique redesign and fabrication. Because these items are in the Class 1 and 2 boundaries and for the Class 1 items that form a part of the reactor coolant pressure boundary, their redesign and fabrication would be an extensive effort based on the limitations that exist.

For the Class 1, Examination Category B-A, Reactor Pressure Vessel Shell Welds, Item No. B1.12 (RPV1-W12-1, RPV1-W12-2, and RPV1-W12-3) limitations were caused by the internal piping in the reactor vessel. The volumetric examination was performed from the vessel ID and the feedwater sparger and core spray piping reduced the coverage. These internal piping configurations would require removing or redesigning to allow the additional coverage.

For the Class 1, Examination Category B-A, Reactor Pressure Vessel Shell-to-flange weld, Item No. B1.30 (RPV1-W3) limitation was caused by proximity of the main steam nozzle plugs, nozzle clad removal areas and the rod guides at 0° and 180°.

For the Class 1, Examination Category B-D, "Full Penetration Welded Nozzles in Vessels -Inspection Program B," Item No. B3.90 for the nine nozzle welds including the six feedwater nozzle welds, the volumetric examinations were limited due to plant design and to obtain the required coverage for each of these welds would require a design modification.

For the Class 1, Item No. B3.100, "Nozzle Inside Radius Section" limitations applied to the five inside radius sections. To obtain the required coverage, a design modification would have to be performed to remove or replace the thermal sleeves in these nozzles. Performing this type of modification is considered to be impractical. The structural integrity of the nozzle forgings themselves is not in question at this time because they were nondestructively examined during fabrication and have been previously examined using ultrasonic techniques specific to the nozzle configurations. No indications of fabrication or service related cracking have been observed as a result of these examinations.

For the Class 1, Item No. B15.10 "All Pressure Retaining Components" limitation applied to one root valve pair AE-V9989 and AE-V9995, the piping between the two root valves, 2.25 linear inches per FSK-P-1-AE-662, was not pressurized. Access to these two valves is limited due to location between main steam lines, which would require excessive scaffolding and poses radiological and personnel safety concerns. There were no indications of leakage identified in the area surrounding these valves during the system pressure test. Note that Code Case N-798, approved in revision 18 of RG 1.147, allows for the vent and drain inboard isolation valves to remain closed during the system pressure test.

For the Class 2 Examination Category C-A, Shell Circumferential Welds, Item No. C1.10, the volumetric examination limitations on the Vessel-to-Flange Weld on the "A" RHR Heat

Exchanger were due to the taper of the flange side of the weld, which would require a design modification to remove the taper.

For the Class 2 Examination Category C-G, Pump Casing Welds, the surface examination limitations were caused by the concrete pump pedestal obstructions. A design change would be required to remove the concrete pedestal.

The configuration of the Class 1 piping weld examined per the RI-ISI program only allowed ultrasonic examination from one side of the weld and limited coverage from specific areas on the far side of the weld and thus would require a design modification or replacement to obtain the required examination coverage.

Overall it is not possible to obtain interrogation of greater than 90% of the required code examination volume or surface areas for the welds in this request without extensive weld or component design modifications. Examinations have been performed to the maximum extent possible. Supplemental radiography is impractical due to the amount of work being performed in the areas on a 24-hour basis when the welds are available for examination. Using radiography would result in numerous work-related stoppages and increased exposure due to the shutdown and startup of other work in the areas. The water may need to be drained from systems or components where radiography is performed, which increases the radiation dose rates over a much broader area than the weld being examined.

The surface and volumetric examination techniques used for welds in this request for relief were reviewed to determine if additional coverage could be achieved by improving those techniques. None were identified and the examinations have been performed to the maximum extent possible. Therefore, HCGS has determined that obtaining essentially 100% coverage is not feasible without adding additional burden consisting of significant redesign work, increased radiation exposure, and/or potential damage to the plant or the component itself.

6. Proposed Alternative and Basis for Use

Proposed Alternative

- Periodic system pressure test VT-2 visual examinations will continue to be performed in accordance with ASME Section XI, Examination Category B-P, for Class 1 pressure retaining welds and items each refueling outage and Examination Category C-H for Class 2 pressure retaining welds and items each inspection period of Table IWB-2500-1 and Table IWC-2500-1, respectively.
- 2) Conduct required surface and/or volumetric examinations to the maximum extent possible as required by ASME Section XI or the RI-ISI Programs.

Basis for Use

10 CFR 50.55a(g)(4) recognizes that throughout the service life of a nuclear power facility, components which are classified as ASME Code Class 1, Class 2 and Class 3 must meet the requirements set forth in the ASME Code to the extent practical within the limitations of design, geometry and materials of construction. When a component is found to have conditions which limit the required examination volume or surface area, HCGS is required to submit this information to the enforcement and regulatory authorities having jurisdiction at the plant site. This request for relief has been written to address areas where these types of conditions exist and where the required amount of coverage was reduced below the minimum acceptable. HCGS has performed the weld examinations to the maximum extent possible for each of the welds identified with limitations in Attachment 1.

The Class 1 Examination Category B-A, Head-to-Flange Welds, the Class 1 Examination Category B-D, Reactor Vessel Nozzle-to-Vessel Welds and Inside Radius Sections, the Class 1 Examination Category B-P, All Pressure Retaining Components, and the Class 1 Risk-Informed Piping Weld within the scope of this request are all located inside the containment. Even though their examination did not meet the essentially 100% code required volume coverage requirement, there is instrumentation in place to assure early detection of any Reactor Coolant System (RCS) pressure boundary leakage. The instrumentation consists of monitoring of drywell floor drain sump level to determine flow rate, drywell cooler condensate flow rate increases, and airborne gaseous radioactivity increases. HCGS Technical Specifications Limiting Condition for Operation (LCO) 3.4.3.2 requires that RCS leakage shall be limited to:

- a. No PRESSURE BOUNDARY LEAKAGE.
- b. 5 gpm UNIDENTIFIED LEAKAGE.
- c. 25 gpm IDENTIFIED LEAKAGE averaged over any 24-hour period.
- d. 0.5 gpm leakage per nominal inch of valve size up to a maximum of 5 gpm from any reactor coolant system pressure isolation valve specified in Table 3.4.3.2-1, at rated pressure.
- e. 2 gpm increase in UNIDENTIFIED LEAKAGE within any period of 24 hours or less.

The Class 2 Examination Category C-A, RHR Heat Exchanger Shell-to-Flange Weld and the Class 2 Examination Category C-G, Pump Casing Welds within the scope of the request are outside containment. The RHR Heat Exchanger and the RHR Pumps are located in the RHR Pump Rooms while the Core Spray Pump is located in the Core Spray Pump Room. The Operations Department performs routine plant walkdowns to identify deficiencies and initiate corrective actions as appropriate. Any leaks identified are required to be reported to the Control Room. Note that HCGS will be implementing Code Case N-716-1 in the 4th Interval which evaluated the RHR Heat Exchangers and determined them to be classified as Low Safety Significant (LSS) which requires no examination with the exception of the VT-2 examination during the periodic pressure test. Category C-G was removed from ASME Section XI in the 2008 Addenda and therefore will no longer require examination.

Based upon the extent of the required surface examination area or volumetric examination volume achieved for each of the welds within this request for relief, applicable leakage monitoring, and required system pressure test VT-2 visual examinations, reasonable assurance of structural integrity is ensured.

7. Duration of Proposed Alternative

This request for relief is for HCGS, Third Ten-Year ISI Interval, which began on December 13, 2007 and ended on December 12, 2017.

8. Precedents

Note: Industry requests for relief due to impracticality associated with limited weld examinations are common and are filed by all licensees. Some recent NRC approvals of requested relief are:

- NRC Safety Evaluation Report (SER) for Surry Power Station Unit No. 2 Requests for Relief LMT-SS01, LMT-CS01, LMT-P01, LMT-C01, LMT-C02, LMT-C03, and LMT-C04 – For Limited Coverage Examinations Performed in the Fourth 10-Year Inservice Inspection Interval (CAC NOS., MF7718, MF-7719, MF7720, MF7721 MF7722, MF7723, MF7724 and MF7725), Dated: February 17, 2017, [ADAMS Accession No.: ML16365A118]
- NRC Safety Evaluation Report (SER) for Diablo Canyon Power Plant, Unit No. 1 Relief Request NDE-SIF-U1 To Allow Use of Alternate American Society of Mechanical Engineers Boiler and Pressure Vessel Code Section XI Examination Requirements for the Third Inservice Inspection Interval (CAC NO. MF7552), Dated: July 27, 2016, [ADAMS Accession No.: ML16207A397]
- NRC Safety Evaluation Report (SER) for Millstone Power Station, Unit No. 2 Relief Requests For Limited Coverage Examinations Performed In The Fourth 10-Year Inservice Inspection Interval (CAC NOS. MF6567, MF6568, and MF6569), Dated: July 13, 2016, [ADAMS Accession No.: ML16172A135]
- 4) NRC Safety Evaluation Report (SER) for Susquehanna Steam Electric Station, Units 1 and 2 – Relief Requests for the Third 10-Year Inservice Inspection Interval (CAC NOS. MF6302, MF6303, MF6304, MF6305, MF6306, AND MF6307), Dated: May 10, 2016, [ADAMS Accession No.: ML16069A199]
- 5) NRC Safety Evaluation Report (SER) for Second 10-Year Interval for Inservice Inspection Program – Hope Creek Generating Station, Dated: February 3, 2000, (TAC No. MA2026), Dated: February 3, 2000, [ADAMS Accession No.: ML003680090]
- NRC Safety Evaluation Report (SER) for Hope Creek Generating Station Evaluation of Relief Request NC-RR-B11, Dated March 22, 2004, (TAC No. MB8408), Dated June 9, 2003, [ADAMS Accession No.: ML031600421]

9. References

- 1) NRC presentation "Coverage Relief Requests", Industry/NRC NDE Technical Information Exchange Public Meeting January 13-15, 2015, [ADAMS Accession No.: ML15013A266].
- 2) ASME Section *XI, Rules for Inservice Inspection of Nuclear Power Plant Components,* 2001 Edition through 2003 Addenda.
- 3) ASME Section XI, *Rules for Inservice Inspection of Nuclear Power Plant Components,* Appendix VIII, Performance Demonstration for Ultrasonic Examination Systems, 2001 Edition.
- NRC Regulatory Guide 1.147, Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1, Revision 17, Dated August 2014. [ADAMS Accession No.: ML13339A689]
- 5) ASME Code Case N-460, Alternative Examination Coverage for Class 1 and Class 2 Welds Section XI, Division 1.
- 6) ASME Code Case N-648-1, Alternative Requirements for Inner Radius Examinations of Class 1 Reactor Vessel Nozzles Section XI, Division 1
- 7) EPRI Topical Report TR-112657 Rev. B-A, Revised Risk-Informed Inservice Inspection Evaluation Procedure, Dated: December 1999, [ADAMS Accession No.: ML013470102]
- 8) ASME Code Case N-578-1, Risk-Informed Requirements for Class 1, 2, or 3 Piping, Method B Section XI, Division 1.
- 9) NRC SER Hope Creek Generating Station "Submittal of Relief Requests Associated with the Third Inservice Inspection (ISI) Interval dated December 12, 2007 (this SER included authorization of HC-I3R-01 "Request for Relief for Alternate Risk-Informed Selection and Examination Criteria for Examination Category B-F, B-J, and C-F-2 Pressure Retaining Piping Welds" [ADAMS Accession No. ML082470063].
- 10) NRC Regulatory Guide 1.147, Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1, Revision 18, Dated January 2018.
- 11) ASME Code Case N-716-1, Alternative Classification and Examination Requirements, Section XI, Division 1

Attachment 1

PSEG Nuclear LLC Hope Creek Generating Station (HCGS)

10 CFR 50.55a Request for Relief Number HC-I3R-08, Revision 0

In Accordance with 10 CFR 50.55a(g)(5)(iii)

--Inservice Inspection Impracticality--

Introduction

This attachment contains figures and tables as applicable that are used to depict the limitations and calculations used for obtained coverage, materials and product forms, with ultrasonic examination angles and wave modes used, any limited surface examinations and the examination results for the welds associated with this request for relief, including any applicable previous examination history used. The following Table 1 for HCGS identifies the welds within the scope of this request and summarizes the extent of examination coverage achieved for each weld.

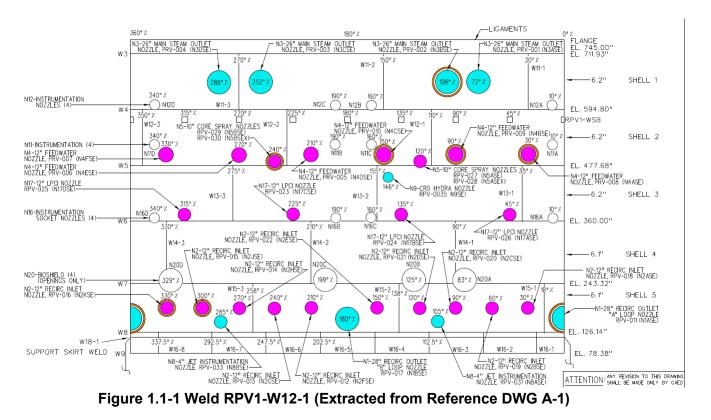

Many of the welds listed were examined with different HCGS approved procedures and techniques during the span of the Third Ten-Year ISI Interval and therefore not all the coverage calculations used are identical, but they are based on the actual Non-Destructive Examination (NDE) data reports that were provided for the examinations completed.

		TABLE 1 –	HCGS WELDS		TED EXAMINA	TIONS		
Seq. Number / Weld Identification Number	Class, Category and Item No.	Weld Description	Material 1 and Product Form	Material 2 Weld	Material 3 and Product Form	Examination Code Coverage Obtained ²	Examination Limitations and Results	Applicable Tables and Figures
1.1/RPV1- W12-1	1 B-A, B1.12	RPV ¹ Longitudinal Seam @ 110°	SA-533 Gr. B Cl. 1 Alloy Steel Plate	Weld Ferritic Steel	N/A	72.40%	UT Limitations due to proximity of feedwater and core spray spargers	Tables 1.1- 1, 1.1-2, and Figures 1.1-1, 1.1- 2
1.2/RPV1- W12-2	1 B-A, B1.12	RPV ['] Longitudinal Seam @ 230°	SA-533 Gr. B Cl. 1 Alloy Steel Plate	Weld Ferritic Steel	N/A	71.70%	UT Limitations due to proximity of feedwater and core spray spargers	Tables 1.2- 1, 1.2-2 and Figures 1.2-1, 1.2- 2
1.3/RPV1- W12-3	1 B-A, B1.12	RPV ¹ Longitudinal Seam @ 350°	SA-533 Gr. B Cl. 1 Alloy Steel Plate	Weld Ferritic Steel	N/A	72.40%	UT Limitations due to proximity of feedwater and core spray spargers	Tables 1.3- 1, 1.3-2, and Figures 1.3-1, 1.3- 2
1.4/RPV1- W3 ³	1 B-A, B1.30	RPV ¹ Shell-to- Flange Weld	SA-533 Gr. B Cl.1 Alloy Steel Plate	Weld Ferritic Steel	SA-508 Cl. 2 Alloy Steel Forging	86.20%	UT Limitations due to proximity of the N3 Main Steam nozzle plugs, N3 Nozzle clad removal areas and the rod guides at 0° and 180°	Tables 1.4- 1, 1.4-2, and Figures 1.4-1, 1.4- 2
1.5/RPV1- N3D	1 B-D B3.90	RPV ¹ Nozzle- to-Vessel Weld (Main Steam D)	SA-508 Cl. 2 Alloy Steel Forging	Weld: Ferritic Steel	SA-533 Gr. B Cl. 1 Alloy Steel Plate with Stainless Steel Cladding	82.80%	UT Limitations due to nozzle configuration and proximity of N8 nozzle	Table 1.5-1 and Figures 1.5-1 to 1.5-3
1.6/RPV1- N4A	1 B-D B3.90	RPV ¹ Nozzle- to-Vessel Weld (Feedwater A)	SA-508 CI. 2 Alloy Steel Forging	Weld: Ferritic Steel	SA-533 Gr. B Cl. 1 Alloy Steel Plate with Stainless Steel Cladding	89.60%	UT Limitations due to nozzle configuration	Table 1.6-1 and Figures 1.6-1 to 1.6-3

		TABLE 1 –		S WITH LIMI	TED EXAMINA	TIONS		
Seq. Number / Weld Identification Number	Class, Category and Item No.	Weld Description	Material 1 and Product Form	Material 2 Weld	Material 3 and Product Form	Examination Code Coverage Obtained ²	Examination Limitations and Results	Applicable Tables and Figures
1.7/RPV1- N4B	1 B-D B3.90	RPV ¹ Nozzle- to-Vessel Weld (Feedwater B)	SA-508 Cl. 2 Alloy Steel Forging	Weld: Ferritic Steel	SA-533 Gr. B Cl. 1 Alloy Steel Plate with Stainless Steel Cladding	89.60%	UT Limitations due to nozzle configuration	Table 1.7-1 and Figures 1.7-1 to 1.7-3
1.8/RPV1- N4C	1 B-D B3.90	RPV ¹ Nozzle- to-Vessel Weld (Feedwater C)	SA-508 Cl. 2 Alloy Steel Forging	Weld: Ferritic Steel	SA-533 Gr. B Cl. 1 Alloy Steel Plate with Stainless Steel Cladding	80.42%	UT Limitations due to nozzle configuration	Table 1.8-1 and Figures 1.8-1 to 1.8-3
1.9/RPV1- N4D	1 B-D B3.90	RPV ¹ Nozzle- to-Vessel Weld (Feedwater D)	SA-508 Cl. 2 Alloy Steel Forging	Weld: Ferritic Steel	SA-533 Gr. B Cl. 1 Alloy Steel Plate with Stainless Steel Cladding	89.60%	UT Limitations due to nozzle configuration	Table 1.9-1 and Figures 1.9-1 to 1.9-3
1.10/RPV1- N4E	1 B-D B3.90	RPV ¹ Nozzle- to-Vessel Weld (Feedwater E)	SA-508 Cl. 2 Alloy Steel Forging	Weld: Ferritic Steel	SA-533 Gr. B Cl. 1 Alloy Steel Plate with Stainless Steel Cladding	89.60%	UT Limitations due to nozzle configuration	Table 1.10- 1 and Figures 1.10-1 to 1.10-3
1.11/RPV1- N4F	1 B-D B3.90	RPV ¹ Nozzle- to-Vessel Weld (Feedwater F)	SA-508 CI. 2 Alloy Steel Forging	Weld: Ferritic Steel	SA-533 Gr. B Cl. 1 Alloy Steel Plate with Stainless Steel Cladding	80.42%	UT Limitations due to nozzle configuration	Table 1.11- 1 and Figures 1.11-1 to 1.11-3
1.12/RPV1- N8A	1 B-D B3.90	RPV ¹ Nozzle- to-Vessel Weld (Jet Pump Instrumentation A)	SA-508 Cl. 2 Alloy Steel Forging with Stainless Steel Cladding	Weld: Ferritic Steel	SA-533 Gr. B Cl. 1 Alloy Steel Plate with Stainless Steel Cladding	87.80%	UT Limitations due to nozzle configuration	Table 1.12- 1 and Figures 1.12-1 to 1.12-3
1.13/RPV1- N7	1 B-D B3.90	RPV ¹ Nozzle- to-Vessel Weld (Head Vent)	SA-508 Cl. 2 Alloy Steel Forging	Weld: Ferritic Steel	SA-533 Gr. B Cl. 1 Alloy Steel Plate	74.70%	UT Limitations due to nozzle configuration	Table 1.13- 1 and Figures 1.13-1 to 1.13-3

		TABLE 1 –	HCGS WELDS	6 WITH LIMI	TED EXAMINA	TIONS		
Seq. Number / Weld Identification Number	Class, Category and Item No.	Weld Description	Material 1 and Product Form	Material 2 Weld	Material 3 and Product Form	Examination Code Coverage Obtained ²	Examination Limitations and Results	Applicable Tables and Figures
1.14/ RPV1-N2AIR RPV1-N2BIR RPV1-N2KIR RPV1-N5BIR RPV1- N17AIR	1 B-D B3.100 B3.100 B3.100 B3.100 B3.100	RPV ¹ Nozzle- to-Vessel Weld (Recirc. Inlet A) (Recirc. Inlet B) (Recirc. Inlet K) (Core Spray B) (LPCI A)	SA-508 CI. 2 Alloy Steel Forging with Stainless Steel Cladding	N/A	N/A	40.00% 25.00% 50.00% 25.00% 45.00%	Visual Limitations due to internal piping configuration	Table 1.14- 1 and Figures 1.14-1 to 1.14-6
1.15/1-AE- 205-RHX- W4 ³	2 C-A C1.10	RHR Heat Exchanger Shell-to-Flange Weld	SA-516 Carbon Steel Plate	Weld Ferritic Steel	SA-105 Carbon Steel Forging	88.10%	UT Limitation due to flange configuration	Table 1.15- 1 and Figures 1.15-1 to 1.15-3
1.16/1-CP- 206-CSP- W2 ³	2 C-G C6.10	Core Spray Pump Casing- to-Flange Weld	A48 Cl. 30-B Gray Cast Iron	Weld Ferritic Steel	A350 LF1 or LF2 Carbon Steel Forging	23.40%	PT Limitation due to concrete pump pedestal	Figures 1.16-1 to 1.16-4
1.17/1-CP- 202-RHP-W2	2 C-G C6.10	RHR Pump Casing-to- Flange Weld (RHR "C" Pump)	A536 Gr. 65-45-12 Ductile Cast Iron	Weld Ferritic Steel	A516 Gr. 70 Carbon Steel Plate	18.04%	PT Limitation due to concrete pump pedestal	Table 1.17- 1 and Figure 1.17-1
1.18/1-DP- 202-RHP- W2 ³	2 C-G C6.10	RHR Pump Casing-to- Flange Weld (RHR "D" Pump)	A536 Gr. 65-45-12 Ductile Cast Iron	Weld Ferritic Steel	A516 Gr. 70 Carbon Steel Plate	18.04%	PT Limitation due to concrete pump pedestal	Figures 1.18-1 and 1.18-2
1.19/1-DP- 202-RHP- W3 ³	2 C-G C6.10	RHR Pump Casing Suction Weld (RHR "D" Pump)	A536 Gr. 65-45-12 Ductile Cast Iron	Weld Ferritic Steel	A516 Gr. 70 Carbon Steel Plate	29.90%	PT Limitation due to concrete pump pedestal	Figures 1.19-1 and 1.19-2
1.20/1-BG- 6DBA-001-29	1 R-A R1.20-4	RWCU Pipe-to-Valve	SA-106 Gr. B	Weld Ferritic Steel	SA-216 Gr. WCB	81.50%	UT No Exam downstream due to valve configuration	Table 1.20- 1 and Figures 1.20-1 and to 1.20-2
2.	Ultrasonic (UT) Ez Particle (MT).	Leakage Detection A xamination, Phased A ninations had receive	Array UT Exam				uid Penetrant (PT)	or Magnetic

1.1 Weld RPV1-W12-1 – RPV Longitudinal Seam @ 110°

This weld was UT examined in Inspection Period 3, during the RFO20 refueling outage in 2016. The NDE data came from UT Report No.: VEN-16-032. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-2. The corresponding CRV as shown on that Figure is A-B-C-D. The UT examination was limited by the proximity of the feedwater and core spray spargers resulting in total UT coverage of **72.40%** as described in Tables 1.1-1 and 1.1-2 and shown on Figure 1.1-2. No recordable indications were detected during this scan.

Section XI Appendix VIII and Supplements 4 and 6 used for this UT examination were implemented using ISwT-PDI-AUT5, Rev. 2, "Automated Inside Surface Ultrasonic Examination of Pressure Vessel Welds Using Phased Array".

Note: No laminations exist on the RPV shell that could interfere with the angle beam examinations performed on this weld.

Jtility: PSE	G Nuclear Outag	ge: H1R20			Sum	nary St	neet No. 100055
System: Re	eactor Pressure Vessel	Line Subasse	mbly: Vertica	Weld @ 110°		Identif	ication: RPV1-W12-1
NDE Method	Proc/Rev/Chg/ICN	NDE Examination	Calibration Sheet No.	Exam Sheet No.		Other	Remarks
AUT	ISwT-PDI-AUT5/2/0/1	Probe 1	1100009	19	•	•	Examination #19 was not performed
AUT	ISwT-PDI-AUT5/2/0/1	Probe 2	1100010	19		2	due to proximity of core spray sparge
AUT	ISwT-PDI-AUT5/2/0/1	Probe 3	1100011	19			
AUT	ISwT-PDI-AUT5/2/0/1	Probe 4	1100012	19	•	-	
AUT	ISwT-PDI-AUT5/2/0/1	Probe 1	1100005	20	Х	-	
AUT	ISwT-PDI-AUT5/2/0/1	Probe 2	1100006	20	Х	-	
AUT	ISwT-PDI-AUT5/2/0/1	Probe 3	1100007	20	X	•	
AUT	ISwT-PDI-AUT5/2/0/1	Probe 4	1100008	20	х		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 1	1100001	21	Х		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 2	1100002	21	X		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 3	1100003	21	х	~	
AUT	ISwT-PDI-AUT5/2/0/1	Probe 4	1100004	21	x	- 2	

Table 1.1-1 Weld RPV1-W12-1 Scan Coverage and Scan Summary

Examination Summary:

This weld was examined from the inside surface using AIRIS-21 and Dynaray examination equipment.

No recordable indications were detected during this examination.

The examination was limited due to the proximity of the feedwater and core spray spargers. The examination coverage was 72.4%.

Examination Angles for each probe included: PA60°-80°L, PA40°-50°S, PA30°-60°L, & PA0°L.

Indication Summary:

No recordable indications were detected during this examination.

Limitation Summary:

The examination was limited due to the proximity of the core spray and feedwater sparger piping. The examination coverage was 72.4%. Total Weld Length = 117.1" Total Weld Length Examined = 84.8"

Exam No.	Beam Direction	No. of Scans ¹	Lower Increr Axis/Dev	ment	Upper Limit Increment Axis/Device (in.)			r Limit s/Arm (in.)	Upper Limit Scan Axis/Arm (in.)	
			Planned	Actual	Planned	Actual	Planned	Actual	Planned	Actual
ID-19	CW DN. CCW UP	27	468.68	0.00	492.08	0.00	234.71	0.00	249.71	0.00
No examination	n due to the proximit	y of the Core S	pray Spargers							
ID-20	CW DN. CCW UP	64	491.08	510.00	547.78	547.78	234.71	234.71	249.71	249.71
Limited examin	ation due to the prop	ximity of the Co	re Spray Sprager	S						
ID-21	CW DN. CCW UP	65	546.78	546.78	604.38	608.38	234.71	234.71	249.71	249.71

Table 1-1-2 Weld RPV1-W12-1 Individual Scan Results

Notes:

1. The weld was examined from the inside surface using the AIRIS-21 and Dynaray examinations equipment.

Probe	Channel/Angles		Skew	Scan Offset	Step Offset	
Probe	Probe 1-(60-80°L)	2-(40-50°S)		4	+1 50/in)	
1	3-(30-60°L)	4-(0°)	0 °	-175(in)	+1.50(in)	
Probe	1-(60-80°L)	2-(40-50°S)			+0.24(in)	
2	3-(30-60°L)	4-(0°)	270°	+3.00(in)		
Probe	1-(60-80°L)	2-(40-50°S)			1 50(in)	
3	3-(30-60°L)	4-(0°)	180°	+1.75(in)	-1.50(in)	
Probe	1-(60-80°L)	2-(40-50°S)			-0.24(in)	
4	3-(30-60°L)	4-(0°)	90°	-3.00(in)		

2. Probe Information

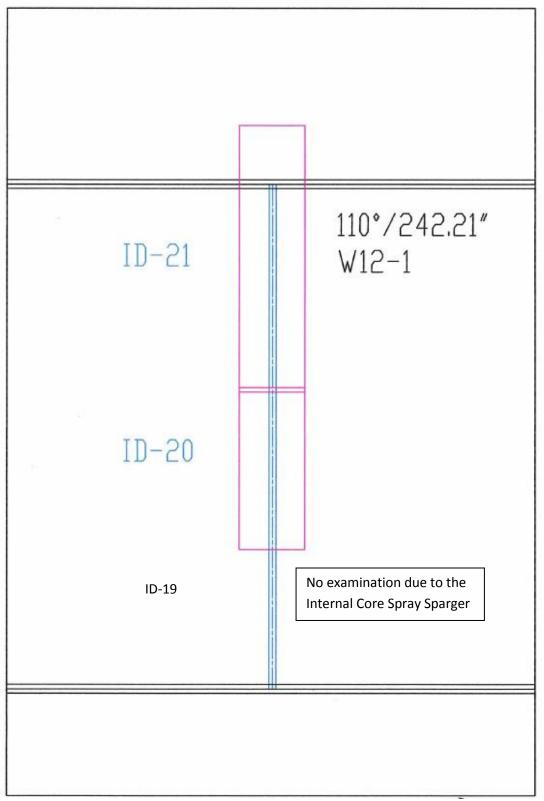
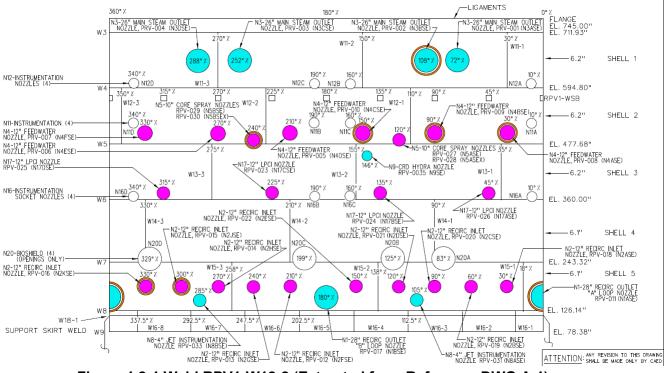



Figure 1.1-2 Weld RPV1-W12-1 (Examination Location and Coverage Map)

1.2 <u>Weld RPV1-W12-2 – RPV Longitudinal Seam @230°</u>

Figure 1.2-1 Weld RPV1-W12-2 (Extracted from Reference DWG A-1)

This weld was UT examined in Inspection Period 3, during the RFO20 refueling outage in 2016. The NDE data came from UT Report No.: VEN-16-033. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-2. The corresponding CRV as shown on that Figure is A-B-C-D. The UT examination was limited by the proximity of the feedwater and core spray spargers resulting in total UT coverage of **71.70%** as described in Tables 1.2-1 and 1.2-2 and combined with Figure 1.2-2. No recordable indications were detected during this examination.

Section XI Appendix VIII and Supplements 4 and 6 used for this UT examination were implemented using ISwT-PDI-AUT5, Rev. 2, "Automated Inside Surface Ultrasonic Examination of Pressure Vessel Welds Using Phased Array".

Note: No laminations exist on the RPV shell that could interfere with the angle beam examinations performed on this weld.

Table 1.2-1 Weld RPV1-W12-2 Scan Coverage and Scan Summary

Itility: PSE	G Nuclear Outag	je: H1R20		Sum	nary Sr	neet No. 100060		
System: Re	actor Pressure Vessel	Line Subasse	mbly: Vertica	Weld @ 230°	_	Identification: RPV1-W12-2		
NDE Method	Proc/Rev/Chg/ICN	NDE Examination	Calibration Sheet No.	Exam Sheet No.	17420202	Other	Remarks	
AUT	ISwT-PDI-AUT5/2/0/1	Probe 1	1100009	22		-	Examination #22 was not performed	
AUT	ISwT-PDI-AUT5/2/0/1	Probe 2	1100010	22			due to proximity of core spray sparger	
AUT	ISwT-PDI-AUT5/2/0/1	Probe 3	1100011	22				
AUT	ISwT-PDI-AUT5/2/0/1	Probe 4	1100012	22		-		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 1	1100013	23	Х	-		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 2	1100014	23	X	× .		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 3	1100015	23	X	-		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 4	1100016	23	X	-		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 1	1100009	24	X			
AUT	ISwT-PDI-AUT5/2/0/1	Probe 2	1100010	24	X			
AUT	ISwT-PDI-AUT5/2/0/1	Probe 3	1100011	24	X	-		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 4	1100012	24	X			

Examination Summary:

This weld was examined from the inside surface using AIRIS-21 and Dynaray examination equipment.

No recordable indications were detected during this examination.

The examination was limited due to the proximity of the feedwater and core spray spargers. The examination coverage was 71.7%.

Examination Angles for each probe included: PA60°-80°L, PA40°-50°S, PA30°-60°L, & PA0°L.

Indication Summary:

No recordable indications were detected during this examination.

Limitation Summary:

The examination was limited due to the proximity of the core spray and feedwater sparger piping. The examination coverage was 71.7%. Total Weld Length = 117.1" Total Weld Length Examined = 84.0"

			-							
Exam No.	Beam Direction	No. of Scans ¹	Lower Increi Axis/Dev	ment	Upper Limit Increment Axis/Device (in.)		Lower Scan Axis	r Limit s/Arm (in.)	Upper Limit Scan Axis/Arm (in.)	
			Planned	Actual	Planned	Actual	Planned	Actual	Planned	Actual
ID-22	CW DN. CCW UP	27	468.68	0.00	492.08	0.00	498.94	0.00	513.94	0.00
No examinatio	n due to the proximit	ty of the Core S	pray Spargers							
ID-23	CW DN. CCW UP	64	491.08	491.08	547.78	547.80	498.94	498.94	513.94	513.94
Limited examin	nation due to the pro	ximity of the Co	re Spray Sprager	'S						
ID-24	CW DN. CCW UP	65	546.78	544.89	604.38	606.99	498.94	498.94	513.94	513.94
Limited examin	nation due to the pro	ximity of the Co	re Spray Sprager	s						

Table 1.2-2 Weld RPV1-W12-2 Individual Scan Results

Notes:

1. The weld was examined from the inside surface using the AIRIS-21 and Dynaray examinations equipment.

Probe	Channel/Ang	les	Skew	Scan Offset	Step Offset	
Probe	1-(60-80°L)	2-(40-50°S)			+1 50/im)	
1	3-(30-60°L)	4-(0°)	0°	-175(in)	+1.50(in)	
Probe	1-(60-80°L)	2-(40-50°S)			+0.24/im)	
2	3-(30-60°L)	4-(0°)	270°	+3.00(in)	+0.24(in)	
Probe	1-(60-80°L)	2-(40-50°S)			1 E0(in)	
3	3-(30-60°L)	4-(0°)	180°	+1.75(in)	-1.50(in)	
Probe	1-(60-80°L)	2-(40-50°S)			0.24/in)	
Probe –	3-(30-60°L)	4-(0°)	90°	-3.00(in)	-0.24(in)	

Page **10** of **68**

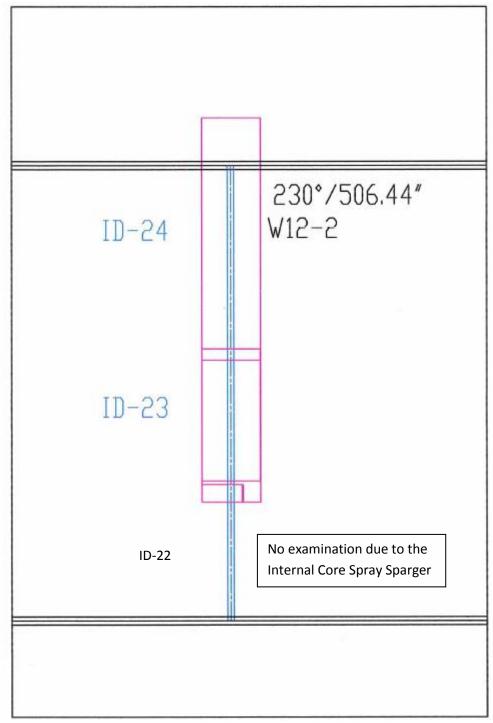
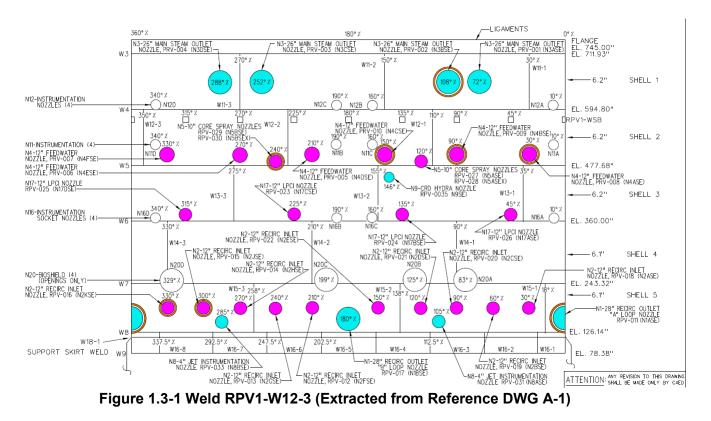



Figure 1.2-2 Weld RPV1-W12-2 (Examination Location and Coverage Map)

1.3 Weld RPV1-W12-3 – RPV Longitudinal Seam @350°

This weld was UT examined in Inspection Period 3, during the RFO20 refueling outage in 2016. The NDE data came from UT Report No.: VEN-16-034. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-2. The corresponding CRV as shown on that Figure is A-B-C-D. The UT examination was limited by the proximity of the feedwater and core spray spargers resulting in total UT coverage of **72.40%** as described in Tables 1.3-1 and 1.3-2 and combined with Figure 1.3-2. No recordable indications were detected during this examination.

Section XI Appendix VIII and Supplements 4 and 6 used for this UT examination were implemented using ISwT-PDI-AUT5, Rev. 2, "Automated Inside Surface Ultrasonic Examination of Pressure Vessel Welds Using Phased Array".

Note: No laminations exist on the RPV shell that could interfere with the angle beam examinations performed on this weld.

System: Re NDE Method	actor Pressure Vessel	Line Cubeses					
		Line Subasse	mbly: Vertica	l Weldi @ 350°		Identif	ication: RPV1-W12-3
	Proc/Rev/Chg/ICN	NDE Examination	Calibration Sheet No.	Exam Sheet No.	NRI	Other	Remarks
AUT	ISwT-PDI-AUT5/2/0/1	Probe 1	1100001	25	-	-	Examination #25 was not performed
AUT	ISwT-PDI-AUT5/2/0/1	Probe 2	1100002	25		141	due to proximity of core spray sparger
AUT	ISwT-PDI-AUT5/2/0/1	Probe 3	1100003	25		0.40	
AUT	ISwT-PDI-AUT5/2/0/1	Probe 4	1100004	25			
AUT	ISwT-PDI-AUT5/2/0/1	Probe 1	1100005	26	X		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 2	1100006	26	X	-	
AUT	ISwT-PDI-AUT5/2/0/1	Probe 3	1100007	26	X	-	
AUT	ISwT-PDI-AUT5/2/0/1	Probe 4	1100008	26	х		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 1	1100005	27	X		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 2	1100006	27	X		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 3	1100007	27	X		
AUT	ISwT-PDI-AUT5/2/0/1	Probe 4	1100008	27	x		
This weld v No recorda The examin coverage v Examinatio	on Summary: vas examined from the ins ble indications were deter nation was limited due to t vas 72.4%. In Angles for each probe i Summary:	cted during this he proximity of	examination the feedwate	er and core sp	oray s	parger	s. The examination
No recorda	ble indications were deter	cted during this	examination				
imitation	Summary:						

Table 1.3-1 Weld RPV1-W12-3 Scan Coverage and Scan Summary

The examination was limited due to the proximity of the core spray and feedwater sparger piping. The examination coverage was 72.4%. Total Weld Length = 117.1" Total Weld Length Examined = 84.8"

Exam No.	Beam Direction	No. of Scans ¹	Lower Increr Axis/Dev	ment		⁻ Limit ment vice (in.)	Lower Limit Scan Axis/Arm (in.)		Upper Limit Scan Axis/Arm (in.	
			Planned	Actual	Planned	Actual	Planned	Actual	Planned	Actual
ID-25	CW DN. CCW UP	27	468.68	0.00	492.08	0.00	763.17	0.00	778.17	0.00
No examination	n due to the proximit	y of the Core S	pray Spargers							
ID-26	CW DN. CCW UP	64	491.08	511.73	547.78	547.78	763.17	763.17	778.17	778.19
Limited examin	ation due to the prop	ximity of the Co	re Spray Sprager	s						
ID-27	CW DN. CCW UP	65	546.78	546.78	604.38	608.38	763.17	763.17	778.17	778.17

Table 1.3-2 Weld RPV1-W12-3 Individual Scan Results

Notes:

1. The weld was examined from the inside surface using the AIRIS-21 and Dynaray examinations equipment.

2.	Probe in	formation		-		<u>.</u>
	Probe	Channel/Ang	les	Skew	Scan Offset	Step Offset
	Probe	1-(60-80°L)	2-(40-50°S)			+1.50(in)
	1	3-(30-60°L)	4-(0°)	0°	-175(in)	+1.50(11)
	Probe	1-(60-80°L)	2-(40-50°S)			+0.24(in)
	2	3-(30-60°L)	4-(0°)	270°	+3.00(in)	+0.24(in)
	Probe	1-(60-80°L)	2-(40-50°S)			1 50(in)
	3	3-(30-60°L)	4-(0°)	180°	+1.75(in)	-1.50(in)
	Probe	1-(60-80°L)	2-(40-50°S)			0.24(in)
	4	3-(30-60°L)	4-(0°)	90°	-3.00(in)	-0.24(in)

2. Probe Information

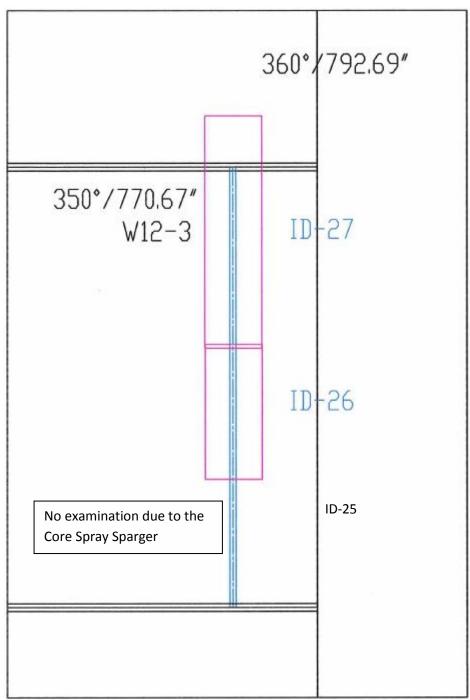
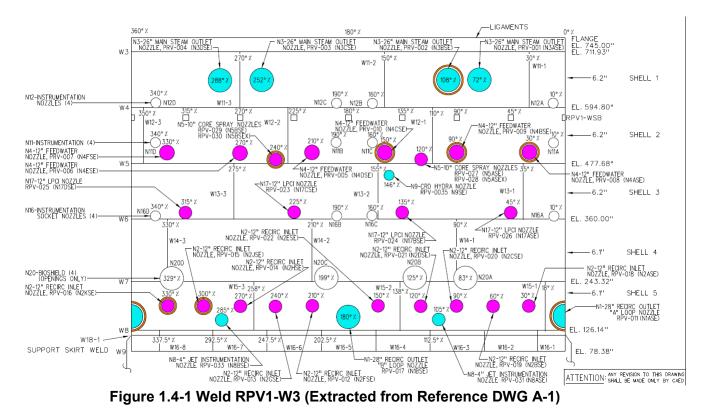



Figure 1.3-2 Weld RPV1-W12-3 (Weld Profile) 45° & 60° deg. Scans

1.4 Weld RPV1-W3 – RPV Shell-to-Flange Weld

This weld was UT examined in Inspection Period 3, during the RFO20 refueling outage in 2016. The NDE data came from UT Report No.: VEN-16-031. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-4. The corresponding CRV as shown on that Figure is A-B-C-D. The UT examination was limited due to the proximity of the N3 Main Steam Nozzle plugs, N3 clad removal areas and the Rod Guides at 0° and 180° resulting in total UT coverage of **86.20%** as described in Tables 1.4-1 and 1.4-2 combined with Figure 1.4-2. There were two recordable indications identified that were acceptable.

Section XI Appendix VIII and Supplements 4 and 6 used for this UT examination were implemented using ISwT-PDI-AUT5, Rev. 2, "Automated Inside Surface Ultrasonic Examination of Pressure Vessel Welds Using Phased Array".

Note: No laminations exist on the RPV shell that could interfere with the angle beam examinations performed on this weld.

Jtility: PSE	www.comercontenders.org	Bite: Hope Creek Nucle Dutage: H1R20	ear Generating St	ation	Sum	nary S	heet No. 100005	
System: Re	eactor Pressure Vessel	Line Subasse	mbly: Upper She	II to Flange		Identification: RPV1-W3		
NDE Method	Proc/Rev/Chg/IC	NDE N Examination	Calibration Sheet No.	Exam Sheet No.	12/20/04/04	Other	Remarks	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 1	1100009	35	X	•	exams #35 A-X, 35AA, 35AC-35AK	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 2	1100010	35	X	- 20	exams #35 A-X, 35AA, 35AC-35AK,AW,AX	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 3	1100011	35	X		exams #35 A-X, 35AA, 35AC-35AK,AW,A>	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 4	1100012	35	X		exams #35 A-X, 35AA, 35AC-35AK,AW,A)	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 1	1100013	35	X		exams #35 Y-Z	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 2	1100014	35	X	8	exams #35 Y-Z, 35AW-B	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 3	1100015	35	X		exams #35 Y-Z, 35AW-B	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 4	1100016	35	X		exams #35 Y-Z, 35AW-B	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 1	1100001	35		X	exams #35AB, 35AL-35AV	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 2	1100002	35	X		exams #35AB, 35AL-35AV	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 3	1100003	35	X	- ×:	exams #35AB, 35AL-35AV	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 4	1100004	35	X		exams #35AB, 35AL-35AV	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 1	1100005	35	X		exams #35AV-B	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 2	1100006	35	X		exams #35AV-B	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 3	1100007	35	X	-	exams #35AV-B	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 4	1100008	35	X	•	exams #35AV-B	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 1	1100017	35	X	•	exams #35AW-A, 35AX	
AUT	ISwT-PDI-AUT5/2/	0/1 Probe 1	1100018	35	X		exams #35AW-B	

Table 1.4-1 Weld RPV1-W3 Scan Summary

Examination Summary:

This weld was divided into sections. See remarks above for setion identification numbers.

This weld was examined from the inside surface using AIRIS-21 and Dynaray examination equipment.

Two (2) recordable indications were detected and determined to be allowable in accordance with the 2001 Edition of A3ME Section XI Code with 2003 Addenda.

The examination was limited due to the proximity of N3 mainsteam nozzle plugs, N3 nozzle clad removal areas, and the guide rods at 0° and 180°. The examination coverage was 85.0%. \mathcal{D}^{m} 12/19/16 86.2% 2% at 2% and the Examination Angles for each probe included: PA60°-80°L, PA40°-50°S, PA30°-60°L, & PA0°L.

Indication Summary:

		UTI	Results 2010	5	NE STORE	and the second	UT Results 2007					
		F	law Locatio	n	Flaw Dimension		Flaw Location			Flaw Dimension		
Indication Number	Flaw Type	X Location (in)	Y Location (in.)	Z Location (in.)	L (in.)	T-Wall (a/t%)	X Location (in)	Y Location (in.)	Z Location (in.)	L (in.)	T-Wal (a/t%)	
35AB-RR-1-1 35AB-RR-1-2		597.6 597.4	705.0 709.5	1.7 1.5	1.3 2.7	1.6 1.6			le Indication le Indication			

Limitation Summary:

The examination was limited due to the proximity of N3 mainsteam nozzle plugs, N3 nozzle clad removal areas, and the guide rods at 0° and 180°. The examination coverage was 86.2%. Total weld length = 792.7" Examined = 683.0". \land

Table 1.4-2 Weld RPV1-W3 Individual Scan Results

		1					uuai Scan	Recutte	,	
Exam No.	Beam Direction	No. of Scans ¹	Lower Increi			r Limit ment	Lower			r Limit
NO.	Direction	Scans	Axis/Dev		Axis/Dev		Scan Axis/	Arm (in.)	Scan Axis	s/Arm (in.)
			Planned	Actual	Planned	Actual	Planned	Actual	Planned	Actual
ID-35A	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	171.30	793.69	186.30
ID-35B	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	185.30	793.69	200.30
ID-35C	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	199.30	793.69	214.30
ID-35D	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	213.30	793.69	226.10
Limited examin	nation due to the pro	ximity of the N3	B Nozzle and the	N3B plug.						
ID-35E	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	245.60	793.69	260.60
ID-35F	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	259.60	793.69	274.60
ID-35G	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	273.60	739.69	288.60
ID-35H	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0,00	287.60	793.69	302.60
ID-35-I	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	301.60	793.69	316.60
ID-35J	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	315.60	793.69	330.60
ID-35K	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	329.60	793.69	344.60
ID-35L	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	343.60	793.69	358.60
ID-35M	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	357.60	793.69	372.60
ID-35N	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	371.60	793.69	386.60
ID-350	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	385.60	793.69	400.60
ID-35P	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	399.60	793.69	414.40
ID-35Q	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	413.60	793.69	428.60
ID-35R	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	427.60	793.69	442.60
ID-35S	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	441.60	793.69	456.60
ID-35T	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	455.60	793.69	470.60
ID-35U	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	469.60	793.69	484.60
ID-35V	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	483.60	793.69	498.60

Exam No.	Beam Direction	No. of Scans ¹	Lower Increi Axis/Dev	ment		r Limit ment vice (in.)	Lower Scan Axis/			r Limit s/Arm (in.)
			Planned	Actual	Planned	Actual	Planned	Actual	Planned	Actual
ID-35W	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	497.60	793.69	512.60
ID-35X	CW DN. CCW UP	21	703.22	703.22	721.22	721.22	0.00	511.60	793.69	526.60
ID-35Y	CW DN. CCW UP	21	703.22	703.22	721.22	727.63	0.00	525.25	793.69	540.25
ID-35Z	CW DN. CCW UP	21	703.22	703.22	721.22	722.55	0.00	569.50	793.69	583.50
Limited examin	ation due to the pro	ximity of N3C n	ozzle & the N3C	Plug.						
ID-35AA	CW DN. CCW UP	21	703.22	703.22	721.22	721.26	0.00	582.50	793.69	596.50
ID-35AB _RR	CW DN. CCW UP	21	703.22	698.22	721.22	725.22	0.00	590.50	793.69	605.50
ID-35AB _RR_1	CW DN CCW UP	21	703.22	702.00	721.22	717.00	0.00	595.50	793.69	609.50
ID-35AC	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	666.15	793.69	681.15
ID-35AD	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	680.15	793.69	695.15
ID-35AE	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	694.15	793.69	709.15
ID-35AF	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	708.15	793.69	723.15
ID-35AG	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	722.15	793.69	737.15
ID-35AH	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	736.15	793.69	751.15
ID-35AI	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	750.15	793.69	765.15
ID-35AJ	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	764.15	793.69	779.15
ID-35AK	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	778.15	793.69	793.15
ID-35AL	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	-1.00	793.69	12.00
ID-35AM	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	11.00	793.69	25.00
ID-35AN	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	24.00	793.69	38.00
ID-35AO	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	37.00	793.69	51.00
ID-35AP	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	50.00	793.69	64.00
ID-35AQ	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	63.00	793.69	77.00

Exam No.	Beam Direction	No. of Scans ¹	Lower Increr Axis/Dev	ment	Incre	r Limit ment vice (in.)	Lower Scan Axis/			r Limit s/Arm (in.)
			Planned	Actual	Planned	Actual	Planned	Actual	Planned	Actual
ID-35AR	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	76.00	793.69	90.00
ID-35AS	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	89.00	793.69	103.00
ID-35AT	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	102.00	793.69	116.00
ID-35AU	CW DN CCW UP	21	703.22	703.62	721.22	725.22	0.00	115.00	793.69	129.00
ID-35AV -A	CW DN CCW UP	21	703.22	712.63	721.22	725.22	0.00	128.00	793.69	143.00
ID-35AV -B	CW DN CCW UP	21	703.22	698.30	721.22	713.63	0.00	128.00	793.69	143.00
ID-35AW -A	CW DN CCW UP	21	703.22	707.22	721.22	725.22	0.00	642.30	793.69	657.30
ID-35AW -B	CW DN CCW UP	21	703.22	698.22	721.22	708.23	0.00	642.30	793.69	657.30
ID-35AX	CW DN CCW UP	21	703.22	698.22	721.22	725.22	0.00	656.30	793.69	667.30

Notes:

1. The weld was examined from the inside surface using the AIRIS-21 and Dynaray examinations equipment.

2. Probe Information

Probe	Channel/Angl	es	Skew	Scan Offset	Step Offset	
Probe 1	1-(60-80°L)	2-(40-50°S)	0%	475(1	+1.50(in)	
FIODEI	3-(30-60°L)	4-(0°)	0°	-175(in)	• 1.00(11)	
Probe 2	1-(60-80°L)	2-(40-50°S)	070%	12.00(in)	+0.24(in)	
FIDDe 2	3-(30-60°L)	4-(0°)	270°	+3.00(in)	· •· • •	
Probe 3	1-(60-80°L)	2-(40-50°S)	400%	14 75(in)	-1.50(in)	
FIDE 5	3-(30-60°L)	4-(0°)	180°	+1.75(in)	-1.00(11)	
Probe 4	1-(60-80°L)	2-(40-50°S)	00%	2.00(in)	-0.24(in)	
Probe 4	3-(30-60°L)	4-(0°)	90°	-3.00(in)	-0.24(11)	

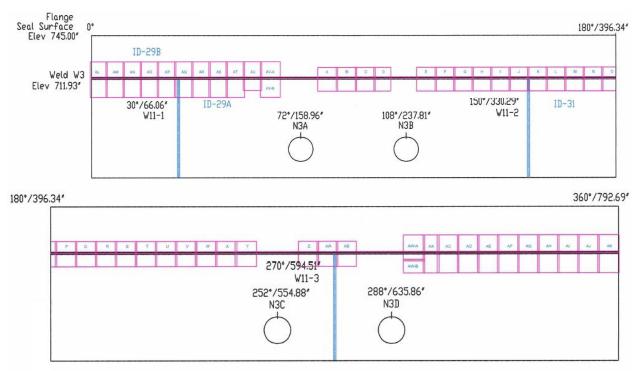
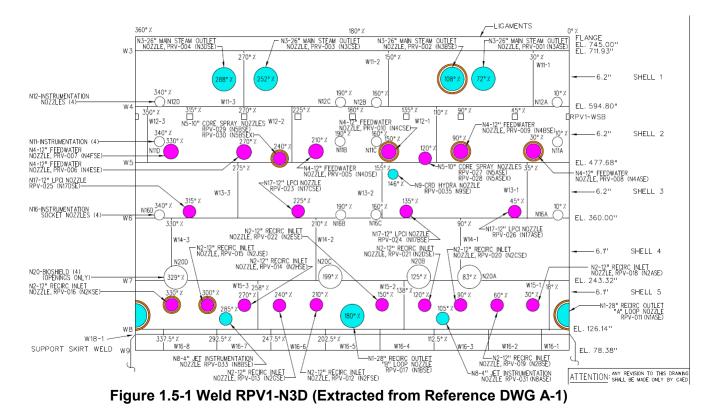



Figure 1.4-2 Weld RPV1-W3 (Examination Location & Coverage Map)

1.5 Weld RPV1-N3D – RPV Main Steam D Nozzle-to-Vessel Weld

This weld was UT examined in Inspection Period 3, during the RFO19 refueling outage in 2015. The NDE data came from UT Report No.: VEN-15-001. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-7(b). The corresponding CRV as shown on that Figure is A-B-C-D-E-F-G-H. The UT examination was limited from the nozzle side of the weld due to the geometric configuration of the nozzle and the proximity of the N8 nozzle. The examination resulted in total UT coverage of **82.80%** as described in Table 1.5-1 and combined with Figures 1.5-2 and 1.5-3. No recordable indications were detected during this examination.

The ultrasonic examination was performed in accordance with the criteria of 10 CFR 50.55a(b)(2)(xv)(G) and the minimum coverage requirements of 10 CFR 50.55a(b)(2)(xv)(K) was achieved to the maximum extent possible.

The examination satisfied the requirements of ASME Section XI, 2001 Edition with the 2003 Addenda for Category B-D, Item number B3.90, figure number IWB-2500-7(b) exam volume, and was performed using ASME Section XI, Appendix VIII qualified personnel, procedures and equipment to the 2001 Edition of Appendix VIII as conditioned by 10 CFR 50.55a(b)(2)(xv). Code Case N-613-1 was used to reduce the area to be examined to the weld plus a $\frac{1}{2}$ " on each side.

Note: No laminations exist on the shell that could interfere with the angle beam examinations performed on this weld.

60°RL Radial Scan 10	0% t	60°RL Circ. Scan Upp	er 85%	50° <u>+</u> 71° to 82° Circ. S	can
volume		t volume		Inner 15% t volume (M	odeled)
Thickness (t _s) inches	6.50	Thickness (t _s) inches	6.50	Thickness (t _s) inches	6.50
Weld Width inches	2.87	Weld Width inches	2.87	Weld Width inches	2.87
Exam Area (A-B-C-	23.86	Exam Area (A-B-C-	23.86	Exam Area (A-B-C-	23.86
D-E-F-G-H) Sq.		D-E-F-G-H) Sq.		D-E-F-G-H) Sq.	
inches		inches		inches	
Area Scanned Sq.	23.40	Upper 85% "T" Area	20.26	Inner 15% "T" Area	3.60
inches		Sq. inches		Sq. inches	
		Area Scanned	12.53	Area Scanned	3.60
Percentage of Area	98.0%	Percentage of Area	61.8%	Percentage of Area	100%
Scanned		Scanned		Scanned	
Percentage of Total	98.0%	Percentage of Total	52.5%	Percentage of Total	15.00%
Volume		Volume		Volume	
Coverage Radial	98.0%	Coverage Circ. Scan	52.5%	Coverage Circ. Scan	15.00%
Scan 100% t volume		upper 85% t volume		Inner 15% t volume	

Table 1.5-1 Weld RPV1-N3D Scan Coverage and Scan Summary

Total Coverage Radial and Circ. Scans: (98.0% + 52.5% + 15.00%) ÷ 2 = 82.8%

Notes:

- Radial scans were performed with a procedure qualified for the examination of vessel nozzle to shell welds (54-ISI-805-008). This procedure has been demonstrated for detection of flaws located throughout the entire weld thickness. Coverage obtained during radial scans was limited due to the nozzle and weld configuration.
- 2. In the circumferential scan direction the outer 85%-t is examined with the same vessel procedure as mentioned above and coverage was also limited due to the nozzle configuration. To achieve additional coverage in the circumferential scan direction a second examination was performed with a procedure qualified for the nozzle to shell weld inner 15% thickness region (54-ISI-850-008). This procedure has been demonstrated for detection of flaws in the inner 15%-t only. The nozzle to shell weld inner 15% thickness examination techniques were performed in accordance with the parameters identified in EPRI modeling report IR-2003-23.
- 3. Scanning was performed to the maximum extent possible. The total coverage achieved for scans performed in accordance with procedure 54-ISI-805-008 is a conservative estimate derived from the physical limitation caused by the nozzle configuration at the vertical sections of the nozzle and does not include additional volume obtained at the horizontal sections of the nozzle. Scanning with the 60°RL was also taken back to the limit of one half inch from the toe of the weld as measure from OD weld radius tip and projected to the ID perpendicular to the surface.
- 4. The total examination coverage differs from the previous examination coverage due to variances in calculating the examination coverage and utilizing single-sided access techniques and personnel qualified for single sided examination.

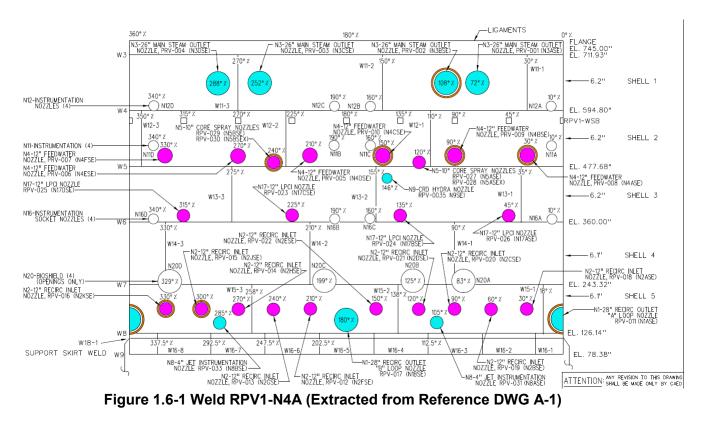

Utility: PSEG	Plant: HC	Unit: 1	Outage: RFO19	Weld ID: RPV1-N3D	Work Sheet Number: CWS-01
			N3 No	zzle to Shell Weld Axial Sca	n Coverage Calculations
		Ы		<u>rea:</u> = 23.86 in²	
			Total Ar	ea: 3.67" x 6.50" = 23.86 in²	
			Lower	15% t of Vessel Shell Coverage: = 1	15.0%
			0.98" x	3.67" = 3.60 in ²	
			3.60/2	3.86 x 100 = 15.0% of Total Area	
		H.	Upper	35% t of Vessel Shell & Radius Cov	verage: = 83.0%
			2.36" x	5.52" = 13.03 in ²	
	/		1.31" x	4.78" = 6.26 in ²	
			0.78" x	1.31" / 2 = 0.51 in ²	
			(13.03 -	- 6.26 + 0.51) / 23.86 x100 =83.0%	
			Total	Axial Coverage: = 83.0% +	⊦ 15.0% = 98.0%

Figure 1.5-2 Weld RPV1-N3D (Axial Scans) Coverage Calculations from Shell Side

Utility: PSEG	Plant: HC	Unit: 1	Outage: RFO19	Weld ID: RPV1-N3D	Work Sheet Number: CWS-02		
			N	N3D Nozzle to Shell Weld Circumferential Scan Coverage Calculations			
				<u>Total Area:</u> = 23.86 in ² Total Area = 3.67" x 6.50" = 23.86 in ²			
				Upper 85% t of Vessel Shell & Radius Coverage: = 52.5% 2.27" x 5.52" = 12.53 in ² 12.53 / 23.86 x 100 = 52.5%			
			0.0	ower 15% t of Vessel Shell Coverage 98" x 3.67" = 3.60 in ² (Modeled) 50 + 23.86 x 100 = 15.0% of Total Area	_		
					- age: = 52.5% + 15.0% = 67.5%		

Figure 1.5-3 Weld RPV1-N3D (Circumferential Scans) Coverage Calculation

1.6 Weld RPV1-N4A – RPV Feedwater A Nozzle-to-Shell Weld

This weld was UT examined in Inspection Period 2, during the RFO18 refueling outage in 2013. The NDE data came from UT Report No.: VEN-13-015. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-7(b). The corresponding CRV as shown on that Figure is A-B-C-D-E-F-G-H. The UT examination was limited from the nozzle side of the weld due to the geometric configuration of the nozzle. The examination resulted in total UT coverage of **89.60%** as described in Table 1.6-1 and combined with Figures 1.6-2 and 1.6-3. No recordable indications were detected during this examination.

The ultrasonic examination was performed in accordance with the criteria of 10 CFR 50.55a(b)(2)(xv)(G) and the minimum coverage requirements of 10 CFR 50.55a(b)(2)(xv)(K) was achieved to the maximum extent possible.

The examination satisfied the requirements of ASME Section XI, 2001 Edition with the 2003 Addenda for Category B-D, Item number B3.90, figure number IWB-2500-7(b) exam volume, and was performed using ASME Section XI, Appendix VIII qualified personnel, procedures and equipment to the 2001 Edition of Appendix VIII as conditioned by 10 CFR 50.55a(b)(2)(xv). Code Case N-613-1 was used to reduce the area to be examined to the weld plus a $\frac{1}{2}$ " on each side.

60°RL Radial Scan 10 volume	00% t	60°RL Circ. Scan Upp volume	oer 85% t	t 45° <u>+</u> 73° Circ. Scan Inner 15 t volume (Modeled)		
Thickness (t _s) inches	6.50	Thickness (t _s) 6.50 T inches		Thickness (t _s) inches 6.50		
Weld Width inches	2.20	Weld Width inches	2.20	Weld Width inches	2.20	
Exam Area (A-B-C- D-E-F-G-H) Sq. inches	20.80	Exam Area (A-B-C- D-E-F-G-H) Sq. inches	20.80	Exam Area (A-B-C- 20.80 D-E-F-G-H) Sq. inches		
Area Scanned Sq. inches	20.68	Upper 85% "T" Area 17.70		Inner 15% "T" Area 3.14 Sq. inches		
		Area Scanned	13.49	Area Scanned	3.14	
Percentage of Area Scanned	99.33%	Percentage of Area Scanned	76.21%	Percentage of Area Scanned	100%	
Percentage of Total Volume	99.33%	Percentage of Total Volume	64.86%	Percentage of Total Volume	15.00%	
Coverage Radial Scan 100% t volume	99.33%	Coverage Circ. Scan upper 85% t volume	64.86%	Coverage Circ. Scan Inner 15% t volume	15.00%	

Table 1.6-1 Weld RPV1-N4A Volumetric Coverage and Limitation Summary

Total Coverage Radial and Circ. Scans: (99.33% + 64.86% + 15.00%) ÷ 2 = 89.60%

- 1. Radial scans were performed with a procedure qualified for the examination of vessel nozzle to shell welds (54-ISI-805-008). This procedure has been demonstrated for detection of flaws located throughout the entire weld thickness. Coverage obtained during radial scans was limited due to the nozzle and weld configuration.
- 2. In the circumferential scan direction the outer 85%-t is examined with the same vessel procedure as mentioned above and coverage was also limited due to the nozzle configuration. To achieve additional coverage in the circumferential scan direction a second examination was performed with a procedure qualified for the nozzle to shell weld inner 15% thickness region (54-ISI-850-008). This procedure has been demonstrated for detection of flaws in the inner 15%-t only. The nozzle to shell weld inner 15% thickness examination techniques were performed in accordance with the parameters identified in EPRI modeling report IR-2013-546 Rev. 2.
- 3. Scanning was performed to the maximum extent possible. The total coverage achieved for scans performed in accordance with procedure 54-ISI-805-008 is a conservative estimate derived from the physical limitation caused by the nozzle configuration at the vertical sections of the nozzle and does not include additional volume obtained at the horizontal sections of the nozzle. Scanning with the 60°RL was also taken back to the limit of one half inch from the toe of the weld as measure from OD weld radius tip and projected to the ID perpendicular to the surface.
- 4. The total examination coverage differs from the previous examination coverage due to variances in calculating the examination coverage and utilizing single-sided access techniques and personnel qualified for single sided examination.

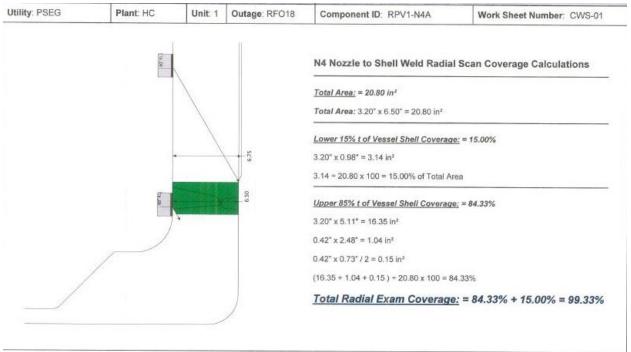
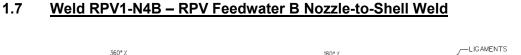
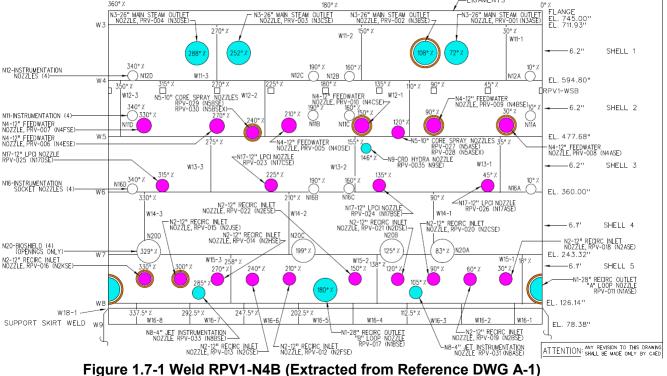




Figure 1.6-2 Weld RPV1-N4A (Radial Scans) Coverage Calculations from Shell Side

Figure 1.6-3 Weld RPV1-N4A (Circumferential Scans) Coverage Calculation

This weld was UT examined in Inspection Period 2, during the RFO18 refueling outage in 2013. The NDE data came from UT Report No.: VEN-13-026. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-7(b). The corresponding CRV as shown on that Figure is A-B-C-D-E-F-G-H. The UT examination was limited from the nozzle side of the weld due to the geometric configuration of the nozzle. The examination resulted in total UT coverage of **89.60%** as described in Table 1.7-1 and combined with Figures 1.7-2 and 1.7-3. No recordable indications were detected during this examination.

The ultrasonic examination was performed in accordance with the criteria of 10 CFR 50.55a(b)(2)(xv)(G) and the minimum coverage requirements of 10 CFR 50.55a(b)(2)(xv)(K) was achieved to the maximum extent possible.

The examination satisfied the requirements of ASME Section XI, 2001 Edition with the 2003 Addenda for Category B-D, Item number B3.90, figure number IWB-2500-7(b) exam volume, and was performed using ASME Section XI, Appendix VIII qualified personnel, procedures and equipment to the 2001 Edition of Appendix VIII as conditioned by 10 CFR 50.55a(b)(2)(xv). Code Case N-613-1 was used to reduce the area to be examined to the weld plus a $\frac{1}{2}$ " on each side.

60°RL Radial Scan 10 volume	00% t	60°RL Circ. Scan Upp volume	oer 85% t	35% t 45° <u>+</u> 73° Circ. Scan Inner 1 t volume (Modeled)		
Thickness (t _s) inches	6.50	Thickness (t _s) inches	6.50	Thickness (t_s) inches	6.50	
Weld Width inches	2.20	Weld Width inches	2.20	Weld Width inches	2.20	
Exam Area (A-B-C- D-E-F-G-H) Sq. inches	20.80	Exam Area (A-B-C- D-E-F-G-H) Sq. inches	20.80	Exam Area (A-B-C- D-E-F-G-H) Sq. inches		
Area Scanned Sq. inches	20.68	Upper 85% "T" Area 17.70		Inner 15% "T" Area 3.14 Sq. inches		
		Area Scanned	13.49	Area Scanned	3.14	
Percentage of Area Scanned	99.33%	Percentage of Area Scanned	76.21%	Percentage of Area Scanned	100%	
Percentage of Total Volume	99.33%	Percentage of Total Volume	64.86%	Percentage of Total Volume	15.00%	
Coverage Radial Scan 100% t volume	99.33%	Coverage Circ. Scan upper 85% t volume	64.86%	Coverage Circ. Scan Inner 15% t volume	15.00%	

Table 1.7-1 Weld RPV1-N4B Volumetric Coverage and Limitation Summary

Total Coverage Radial and Circ. Scans: (99.33% + 64.86% + 15.00%) ÷ 2 = 89.60%

- 1. Radial scans were performed with a procedure qualified for the examination of vessel nozzle to shell welds (54-ISI-805-008). This procedure has been demonstrated for detection of flaws located throughout the entire weld thickness. Coverage obtained during radial scans was limited due to the nozzle and weld configuration.
- 2. In the circumferential scan direction the outer 85%-t is examined with the same vessel procedure as mentioned above and coverage was also limited due to the nozzle configuration. To achieve additional coverage in the circumferential scan direction a second examination was performed with a procedure qualified for the nozzle to shell weld inner 15% thickness region (54-ISI-850-008). This procedure has been demonstrated for detection of flaws in the inner 15%-t only. The nozzle to shell weld inner 15% thickness examination techniques were performed in accordance with the parameters identified in EPRI modeling report IR-2013-546 Rev.2.
- 3. Scanning was performed to the maximum extent possible. The total coverage achieved for scans performed in accordance with procedure 54-ISI-805-008 is a conservative estimate derived from the physical limitation caused by the nozzle configuration at the vertical sections of the nozzle and does not include additional volume obtained at the horizontal sections of the nozzle. Scanning with the 60°RL was also taken back to the limit of one half inch from the toe of the weld as measure from OD weld radius tip and projected to the ID perpendicular to the surface.
- 4. The total examination coverage differs from the previous examination coverage due to variances in calculating the examination coverage and utilizing single-sided access techniques and personnel qualified for single sided examination.

Figure 1.7-2 Weld RPV1-N4B (Radial Scans) Coverage Calculations from Shell Side

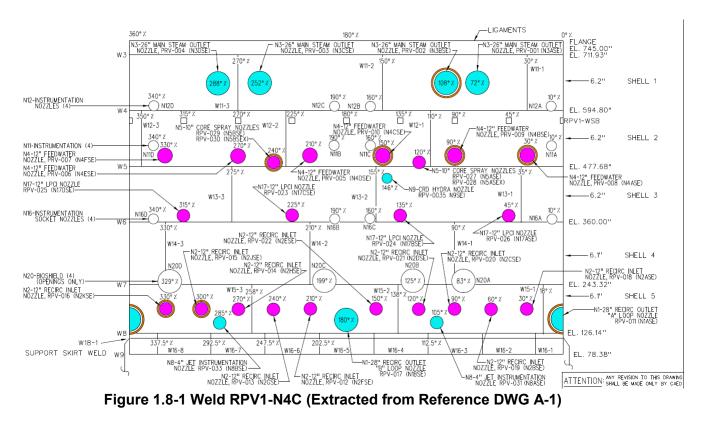



Figure 1.7-3 Weld RPV1-N4B (Circumferential Scans) Coverage Calculation

1.8 Weld RPV1-N4C – RPV Feedwater C Nozzle-to-Shell Weld

This weld was UT examined in Inspection Period 2, during the RFO18 refueling outage in 2013. The NDE data came from UT Report No.: VEN-13-028. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-7(b). The corresponding CRV as shown on that Figure is A-B-C-D-E-F-G-H. The UT examination was limited from the nozzle side of the weld due to the geometric configuration of the nozzle. The examination resulted in total UT coverage of **80.42%** as described in Table 1.8-1 and combined with Figures 1.8-2 and 1.8-3. No recordable indications were detected during this examination.

The ultrasonic examination was performed in accordance with the criteria of 10 CFR 50.55a(b)(2)(xv)(G) and the minimum coverage requirements of 10 CFR 50.55a(b)(2)(xv)(K) was achieved to the maximum extent possible.

The examination satisfied the requirements of ASME Section XI, 2001 Edition with the 2003 Addenda for Category B-D, Item number B3.90, figure number IWB-2500-7(b) exam volume, and was performed using ASME Section XI, Appendix VIII qualified personnel, procedures and equipment to the 2001 Edition of Appendix VIII as conditioned by 10 CFR 50.55a(b)(2)(xv). Code Case N-613-1 was used to reduce the area to be examined to the weld plus a $\frac{1}{2}$ " on each side.

60°RL Radial Scan 1	000/ +	60°DI Ciro Soon Llo	oor 950/ t	45° +73° Circ. Scan Inner				
	00% l	60°RL Circ. Scan Upp		—				
volume		volume	15% t volume (Modeled)					
Thickness (t _s)	6.50	Thickness (t _s) 6.50		Thickness (t _s)	6.50			
inches		inches		inches				
Weld Width inches	2.20	Weld Width inches	2.20	Weld Width inches	2.20			
Weld Length	118.00	Weld Length	118.00	Weld Length	118.00			
Exam Volume (A-B-	2454.40	Exam Volume (A-B-	2454.40	Exam Area (A-B-C-	20.80			
C-D-E-F-G-H)		C-D-E-F-G-H)		D-E-F-G-H) Sq.				
Cubic inches		Cubic inches		D-E-F-G-H) Sq.				
Volume Scanned	2114.56	Upper 85% "T"	2088.13	Inner 15% "T" Area	3.14			
Cubic inches		Volume Cubic		Sq. inches				
		inches						
		Volume Scanned	1465.01	Area Scanned	3.14			
		Cubic inches						
Percentage of Area	86.15%	Percentage of	70.16%	Percentage of Area	100%			
Scanned		Volume Scanned		Scanned				
Percentage of Total	86.15%	Percentage of Total	59.69%	Percentage of Total	15.00%			
Volume		5		Volume				
Coverage Radial	86.15%			Coverage Circ.	15.00%			
Scan 100% t		5		Scan Inner 15% t				
volume		volume		volume				

Table 1.8-1 Weld RPV1-N4C Volumetric Coverage and Limitation Summary

Total Coverage Radial and Circ. Scans: (86.15% + 59.69% + 15.00%) ÷ 2 = 80.42%

- 1. Radial scans were performed with a procedure qualified for the examination of vessel nozzle to shell welds (54-ISI-805-008). This procedure has been demonstrated for detection of flaws located throughout the entire weld thickness. Coverage obtained during radial scans was limited due to the nozzle and weld configuration.
- 2. In the circumferential scan direction the outer 85%-t is examined with the same vessel procedure as mentioned above and coverage was also limited due to the nozzle configuration. To achieve additional coverage in the circumferential scan direction a second examination was performed with a procedure qualified for the nozzle to shell weld inner 15% thickness region (54-ISI-850-008). This procedure has been demonstrated for detection of flaws in the inner 15%-t only. The nozzle to shell weld inner 15% thickness examination techniques were performed in accordance with the parameters identified in EPRI modeling report IR-2013-546 Rev.2.
- 3. Scanning was performed to the maximum extent possible. The total coverage achieved for scans performed in accordance with procedure 54-ISI-805-008 is a conservative estimate derived from the physical limitation caused by the nozzle configuration at the vertical sections of the nozzle and does not include additional volume obtained at the horizontal sections of the nozzle. Scanning with the 60°RL was also taken back to the limit of one half inch from the toe of the weld as measure from OD weld radius tip and projected to the ID perpendicular to the surface.
- 4. The total examination coverage differs from the previous examination coverage due to variances in calculating the examination coverage and utilizing single-sided access techniques and personnel qualified for single sided examination.

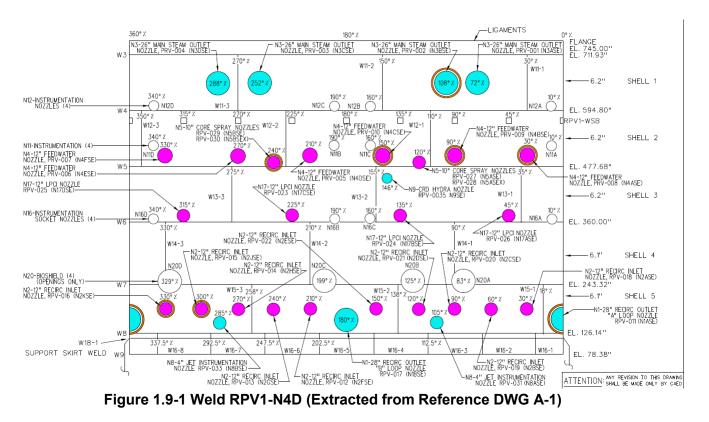


Figure 1.8-2 Weld RPV1-N4C (Radial Scans) Coverage Calculations from Shell Side

Figure 1.8-3 Weld RPV1-N4C (Circumferential Scans) Coverage Calculation

1.9 Weld RPV1-N4D – RPV Feedwater D Nozzle-to-Shell Weld

This weld was UT examined in Inspection Period 2, during the RFO18 refueling outage in 2013. The NDE data came from UT Report No.: VEN-13-013. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-7(b). The corresponding CRV as shown on that Figure is A-B-C-D-E-F-G-H. The UT examination was limited from the nozzle side of the weld due to the geometric configuration of the nozzle. The examination resulted in total UT coverage of **89.60%** as described in Table 1.9-1 and combined with Figures 1.9-2 and 1.9-3. No recordable indications were detected during this examination.

The ultrasonic examination was performed in accordance with the criteria of 10 CFR 50.55a(b)(2)(xv)(G) and the minimum coverage requirements of 10 CFR 50.55a(b)(2)(xv)(K) was achieved to the maximum extent possible.

The examination satisfied the requirements of ASME Section XI, 2001 Edition with the 2003 Addenda for Category B-D, Item number B3.90, figure number IWB-2500-7(b) exam volume, and was performed using ASME Section XI, Appendix VIII qualified personnel, procedures and equipment to the 2001 Edition of Appendix VIII as conditioned by 10 CFR 50.55a(b)(2)(xv). Code Case N-613-1 was used to reduce the area to be examined to the weld plus a $\frac{1}{2}$ " on each side.

60°RL Radial Scan 10 volume	00% t	60°RL Circ. Scan Upp volume					
			r	t volume (Modeled)			
Thickness (t _s)	6.50	Thickness (t_s)6.501		Thickness (t _s) inches	6.50		
inches		inches					
Weld Width inches	2.20	Weld Width inches	2.20	Weld Width inches 2.20			
Exam Area (A-B-C-	20.80	Exam Area (A-B-C-	20.80	Exam Area (A-B-C-	20.80		
D-E-F-G-H) Sq.		D-E-F-G-H) Sq.		D-E-F-G-H) Sq.			
inches		inches		inches			
Area Scanned Sq.	20.68	Upper 85% "T" Area 17.70		Inner 15% "T" Area	3.14		
inches		Sq. inches		Sq. inches			
		Area Scanned	13.49	Area Scanned	3.14		
Percentage of Area	99.33%	Percentage of Area	76.21%	Percentage of Area	100%		
Scanned		Scanned		Scanned			
Percentage of Total	99.33%	Percentage of Total	64.86%	Percentage of Total	15.00%		
Volume		Volume		Volume			
Coverage Radial	99.33%	Coverage Circ. 64.86%		Coverage Circ. Scan 15.00			
Scan 100% t		Scan upper 85% t		Inner 15% t volume			
volume		volume					

Table 1.9-1 Weld RPV1-N4D Volumetric Coverage and Limitation Summary

Total Coverage Radial and Circ. Scans: (99.33% + 64.86% + 15.00%) ÷ 2 = 89.60%

- 1. Radial scans were performed with a procedure qualified for the examination of vessel nozzle to shell welds (54-ISI-805-008). This procedure has been demonstrated for detection of flaws located throughout the entire weld thickness. Coverage obtained during radial scans was limited due to the nozzle and weld configuration.
- 2. In the circumferential scan direction the outer 85%-t is examined with the same vessel procedure as mentioned above and coverage was also limited due to the nozzle configuration. To achieve additional coverage in the circumferential scan direction a second examination was performed with a procedure qualified for the nozzle to shell weld inner 15% thickness region (54-ISI-850-008). This procedure has been demonstrated for detection of flaws in the inner 15%-t only. The nozzle to shell weld inner 15% thickness examination techniques were performed in accordance with the parameters identified in EPRI modeling report IR-2013-546 Rev.2.
- 3. Scanning was performed to the maximum extent possible. The total coverage achieved for scans performed in accordance with procedure 54-ISI-805-008 is a conservative estimate derived from the physical limitation caused by the nozzle configuration at the vertical sections of the nozzle and does not include additional volume obtained at the horizontal sections of the nozzle. Scanning with the 60°RL was also taken back to the limit of one half inch from the toe of the weld as measure from OD weld radius tip and projected to the ID perpendicular to the surface.
- 4. The total examination coverage differs from the previous examination coverage due to variances in calculating the examination coverage and utilizing single-sided access techniques and personnel qualified for single sided examination.



Figure 1.9-2 Weld RPV1-N4D (Radial Scans) Coverage Calculations from Shell Side

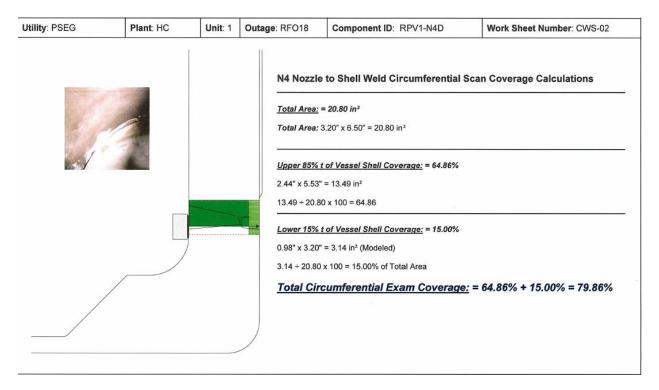
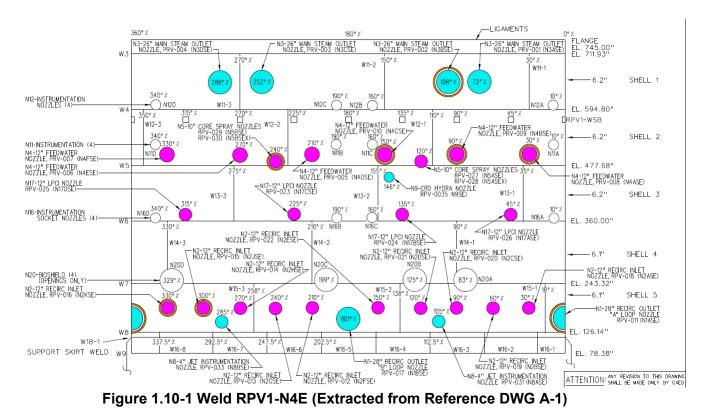



Figure 1.9-3 Weld RPV1-N4D (Circumferential Scans) Coverage Calculation

1.10 Weld RPV1-N4E – RPV Feedwater E Nozzle-to-Shell Weld

This weld was UT examined in Inspection Period 2, during the RFO18 refueling outage in 2013. The NDE data came from UT Report No.: VEN-13-018. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-7(b). The corresponding CRV as shown on that Figure is A-B-C-D-E-F-G-H. The UT examination was limited from the nozzle side of the weld due to the geometric configuration of the nozzle. The examination resulted in total UT coverage of **89.60%** as described in Table 1.10-1 and combined with Figures 1.10-2 and 1.10-3. No recordable indications were detected during this examination.

The ultrasonic examination was performed in accordance with the criteria of 10 CFR 50.55a(b)(2)(xv)(G) and the minimum coverage requirements of 10 CFR 50.55a(b)(2)(xv)(K) was achieved to the maximum extent possible.

The examination satisfied the requirements of ASME Section XI, 2001 Edition with the 2003 Addenda for Category B-D, Item number B3.90, figure number IWB-2500-7(b) exam volume, and was performed using ASME Section XI, Appendix VIII qualified personnel, procedures and equipment to the 2001 Edition of Appendix VIII as conditioned by 10 CFR 50.55a(b)(2)(xv). Code Case N-613-1 was used to reduce the area to be examined to the weld plus a $\frac{1}{2}$ " on each side.

60°RL Radial Scan 10 volume	00% t	60°RL Circ. Scan Upp volume	oer 85% t	t 45° <u>+</u> 73° Circ. Scan Inner 15 t volume (Modeled)		
Thickness (t _s) inches	6.50	Thickness (t _s) 6.50 T inches		Thickness (t _s) inches 6.50		
Weld Width inches	2.20	Weld Width inches	2.20	Weld Width inches	2.20	
Exam Area (A-B-C- D-E-F-G-H) Sq. inches	20.80	Exam Area (A-B-C- D-E-F-G-H) Sq. inches	20.80	Exam Area (A-B-C- 20.80 D-E-F-G-H) Sq. inches		
Area Scanned Sq. inches	20.68	Upper 85% "T" Area 17.70		Inner 15% "T" Area 3.14 Sq. inches		
		Area Scanned	13.49	Area Scanned	3.14	
Percentage of Area Scanned	99.33%	Percentage of Area Scanned	76.21%	Percentage of Area Scanned	100%	
Percentage of Total Volume	99.33%	Percentage of Total Volume	64.86%	Percentage of Total Volume	15.00%	
Coverage Radial Scan 100% t volume	99.33%	Coverage Circ. Scan upper 85% t volume	64.86%	Coverage Circ. Scan Inner 15% t volume	15.00%	

Table 1.10-1 Weld RPV1-N4E Volumetric Coverage and Limitation Summary

Total Coverage Radial and Circ. Scans: (99.33% + 64.86% + 15.00%) ÷ 2 = 89.60%

- 1. Radial scans were performed with a procedure qualified for the examination of vessel nozzle to shell welds (54-ISI-805-008). This procedure has been demonstrated for detection of flaws located throughout the entire weld thickness. Coverage obtained during radial scans was limited due to the nozzle and weld configuration.
- 2. In the circumferential scan direction the outer 85%-t is examined with the same vessel procedure as mentioned above and coverage was also limited due to the nozzle configuration. To achieve additional coverage in the circumferential scan direction a second examination was performed with a procedure qualified for the nozzle to shell weld inner 15% thickness region (54-ISI-850-008). This procedure has been demonstrated for detection of flaws in the inner 15%-t only. The nozzle to shell weld inner 15% thickness examination techniques were performed in accordance with the parameters identified in EPRI modeling report IR-2013-546 Rev.2.
- 3. Scanning was performed to the maximum extent possible. The total coverage achieved for scans performed in accordance with procedure 54-ISI-805-008 is a conservative estimate derived from the physical limitation caused by the nozzle configuration at the vertical sections of the nozzle and does not include additional volume obtained at the horizontal sections of the nozzle. Scanning with the 60°RL was also taken back to the limit of one half inch from the toe of the weld as measure from OD weld radius tip and projected to the ID perpendicular to the surface.
- 4. The total examination coverage differs from the previous examination coverage due to variances in calculating the examination coverage and utilizing single-sided access techniques and personnel qualified for single sided examination.

Figure 1.10-2 Weld RPV1-N4E (Radial Scans) Coverage Calculations from Shell Side

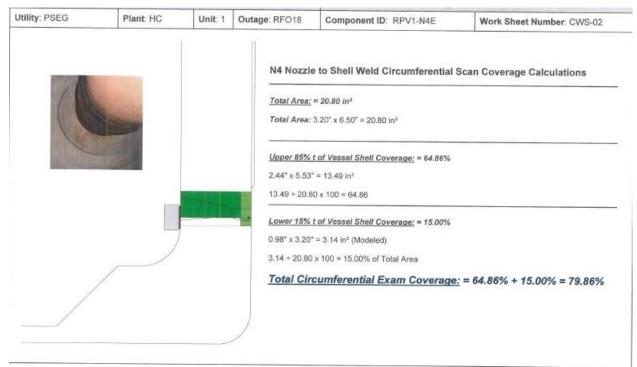
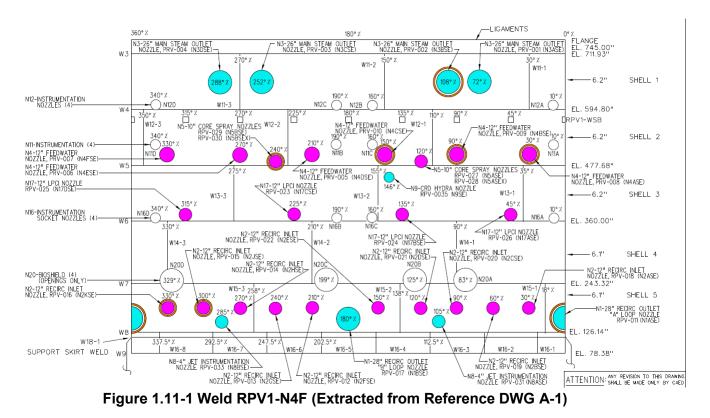



Figure 1.10-3 Weld RPV1-N4E (Circumferential Scans) Coverage Calculation

1.11 Weld RPV1-N4F – RPV Feedwater F Nozzle-to-Shell Weld

This weld was UT examined in Inspection Period 2, during the RFO18 refueling outage in 2013. The NDE data came from UT Report No.: VEN-13-027. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-7(b). The corresponding CRV as shown on that Figure is A-B-C-D-E-F-G-H. The UT examination was limited from the nozzle side of the weld due to the geometric configuration of the nozzle. The examination resulted in total UT coverage of **80.42%** as described in Table 1.11-1 and combined with Figures 1.11-2 and 1.11-3. No recordable indications were detected during this examination.

The ultrasonic examination was performed in accordance with the criteria of 10 CFR 50.55a(b)(2)(xv)(G) and the minimum coverage requirements of 10 CFR 50.55a(b)(2)(xv)(K) was achieved to the maximum extent possible.

The examination satisfied the requirements of ASME Section XI, 2001 Edition with the 2003 Addenda for Category B-D, Item number B3.90, figure number IWB-2500-7(b) exam volume, and was performed using ASME Section XI, Appendix VIII qualified personnel, procedures and equipment to the 2001 Edition of Appendix VIII as conditioned by 10 CFR 50.55a(b)(2)(xv). Code Case N-613-1 was used to reduce the area to be examined to the weld plus a $\frac{1}{2}$ " on each side.

60°RL Radial Scan 1	00% t	60°RL Circ. Scan Up	oer 85% t	45° <u>+</u> 73° Circ. Scan Inner				
volume		volume		15% t volume (Modeled)				
Thickness (t _s)	6.50	Thickness (t _s)	6.50	Thickness (t _s)	6.50			
inches		inches		inches				
Weld Width inches	2.20	Weld Width inches	2.20	Weld Width inches	2.20			
Weld Length	118.00	Weld Length	118.00	Weld Length 118.00				
Exam Volume (A-B- C-D-E-F-G-H)	2454.40	Exam Volume (A-B- C-D-E-F-G-H)	2454.40	Exam Area (A-B-C- 20.80 D-E-F-G-H) Sq.				
Cubic inches		Cubic inches		inches				
Volume Scanned	2114.56	Upper 85% "T"	2088.13	Inner 15% "T" Area	3.14			
Cubic inches		Volume Cubic inches		Sq. inches				
		Volume Scanned Cubic inches	1465.01	Area Scanned	3.14			
Percentage of Area Scanned	86.15%	Percentage of Volume Scanned	70.16%	Percentage of Area Scanned	100%			
Percentage of Total Volume	86.15%	Percentage of Total 59.69%		Percentage of Total Volume	15.00%			
Coverage Radial Scan 100% t volume	86.15%	Coverage Circ. Scan upper 85% t volume	59.69%	Coverage Circ. Scan Inner 15% t volume	15.00%			

 Table 1.11-1 Weld RPV1-N4F Volumetric Coverage and Limitation Summary

Total Coverage Radial and Circ. Scans: (86.15% + 59.69% + 15.00%) ÷ 2 = 80.42%

- 1. Radial scans were performed with a procedure qualified for the examination of vessel nozzle to shell welds (54-ISI-805-008). This procedure has been demonstrated for detection of flaws located throughout the entire weld thickness. Coverage obtained during radial scans was limited due to the nozzle and weld configuration.
- 2. In the circumferential scan direction the outer 85%-t is examined with the same vessel procedure as mentioned above and coverage was also limited due to the nozzle configuration. To achieve additional coverage in the circumferential scan direction a second examination was performed with a procedure qualified for the nozzle to shell weld inner 15% thickness region (54-ISI-850-008). This procedure has been demonstrated for detection of flaws in the inner 15%-t only. The nozzle to shell weld inner 15% thickness examination techniques were performed in accordance with the parameters identified in EPRI modeling report IR-2013-546 Rev.2.
- 3. Scanning was performed to the maximum extent possible. The total coverage achieved for scans performed in accordance with procedure 54-ISI-805-008 is a conservative estimate derived from the physical limitation caused by the nozzle configuration at the vertical sections of the nozzle and does not include additional volume obtained at the horizontal sections of the nozzle. Scanning with the 60°RL was also taken back to the limit of one half inch from the toe of the weld as measure from OD weld radius tip and projected to the ID perpendicular to the surface.
- 4. The total examination coverage differs from the previous examination coverage due to variances in calculating the examination coverage and utilizing single-sided access techniques and personnel qualified for single sided examination.

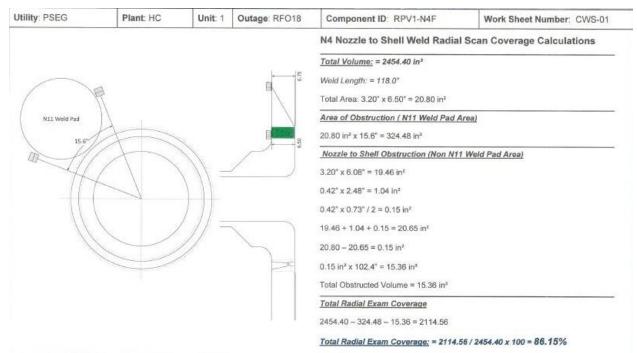
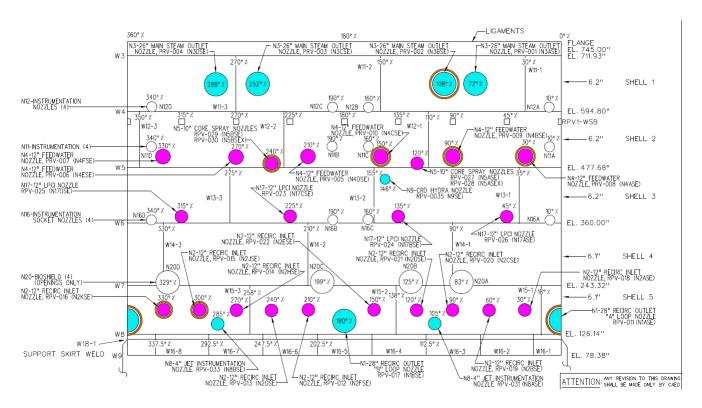



Figure 1.11-2 Weld RPV1-N4F (Radial Scans) Coverage Calculations from Shell Side

Figure 1.11-3 Weld RPV1-N4F (Circumferential Scans) Coverage Calculation

1.12 Weld RPV1-N8A – RPV Jet Pump Instrumentation A Nozzle-to-Shell Weld

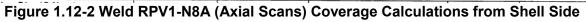
Figure 1.12-1 Weld RPV1-N8A (Extracted from Reference DWG A-1)

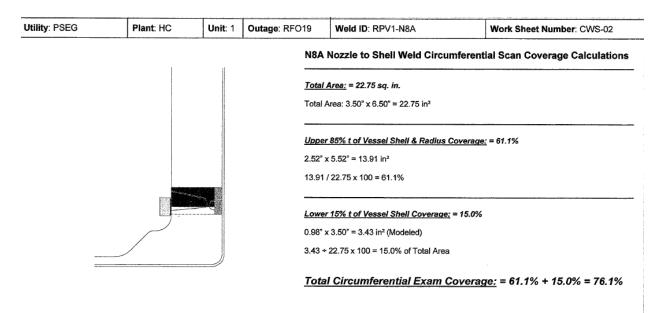
This weld was UT examined in Inspection Period 3, during the RFO19 refueling outage in 2015. The NDE data came from UT Report No.: VEN-15-004. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-7(b). The corresponding CRV as shown on that Figure is A-B-C-D-E-F-G-H. The UT examination was limited from the nozzle side of the weld due to the geometric configuration of the nozzle. The examination resulted in total UT coverage of **87.80%** as described in Table 1.12-1 and combined with Figures 1.12-2 and 1.12-3. No recordable indications were detected during this examination.

The ultrasonic examination was performed in accordance with the criteria of 10 CFR 50.55a(b)(2)(xv)(G) and the minimum coverage requirements of 10 CFR 50.55a(b)(2)(xv)(K) was achieved to the maximum extent possible.

The examination satisfied the requirements of ASME Section XI, 2001 Edition with the 2003 Addenda for Category B-D, Item number B3.90, figure number IWB-2500-7(b) exam volume, and was performed using ASME Section XI, Appendix VIII qualified personnel, procedures and equipment to the 2001 Edition of Appendix VIII as conditioned by 10 CFR 50.55a(b)(2)(xv). Code Case N-613-1 was used to reduce the area to be examined to the weld plus a $\frac{1}{2}$ " on each side.

Note: No laminations exist on the shell that could interfere with the angle beam examinations performed on this weld.


60°RL Radial Scan 1	00% t	60°RL Circ. Scan Upp	oer 85% t	45° <u>+</u> 73° Circ. Scan Inner		
volume		volume		15% t volume (Model	ed)	
Thickness (t _s)	6.50	Thickness (t _s) 6.50 T		Thickness (t _s)	6.50	
inches		inches		inches		
Weld Width inches	2.20	Weld Width inches	2.20	Weld Width inches	2.50	
Exam Area (A-B-C-	22.75	Exam Area (A-B-C-	22.75	Exam Area (A-B-C-	22.75	
D-E-F-G-H) Sq.		D-E-F-G-H) Sq.		D-E-F-G-H) Sq.		
inches		inches		inches		
Area Scanned Sq.	22.66	Upper 85% "T" Area	19.32	Inner 15% "T" Area 3.43		
inches		Sq. inches		Sq. inches		
		Area Scanned	13.91	Area Scanned	3.43	
Percentage of Area	99.5%	Percentage of Area	72.0%	Percentage of Area	100%	
Scanned		Scanned		Scanned		
Percentage of Total	99.5%	Percentage of Total	61.1%	Percentage of Total	15.00%	
Volume		Volume		Volume		
Coverage Radial	99.5%	Coverage Circ. 61.1%		Coverage Circ. 15.00%		
Scan 100% t		Scan upper 85% t		Scan Inner 15% t		
volume		volume		volume		


Table 1.12-1 Weld RPV1-N8A Volumetric Coverage and Limitation Summary

Total Coverage Radial and Circ. Scans: (99.5% + 61.1% + 15.00%) ÷ 2 = 87.8%

- Radial scans were performed with a procedure qualified for the examination of vessel nozzle to shell welds (54-ISI-805-008). This procedure has been demonstrated for detection of flaws located throughout the entire weld thickness. Coverage obtained during radial scans was limited due to the nozzle and weld configuration.
- 2. In the circumferential scan direction the outer 85%-t is examined with the same vessel procedure as mentioned above and coverage was also limited due to the nozzle configuration. To achieve additional coverage in the circumferential scan direction a second examination was performed with a procedure qualified for the nozzle to shell weld inner 15% thickness region (54-ISI-850-008). This procedure has been demonstrated for detection of flaws in the inner 15%-t only. The nozzle to shell weld inner 15% thickness examination techniques were performed in accordance with the parameters identified in EPRI modeling report IR-2005-50.
- 3. Scanning was performed to the maximum extent possible. The total coverage achieved for scans performed in accordance with procedure 54-ISI-805-008 is a conservative estimate derived from the physical limitation caused by the nozzle configuration at the vertical sections of the nozzle and does not include additional volume obtained at the horizontal sections of the nozzle. Scanning with the 60°RL was also taken back to the limit of one half inch from the toe of the weld as measure from OD weld radius tip and projected to the ID perpendicular to the surface.
- 4. The total examination coverage differs from the previous examination coverage due to variances in calculating the examination coverage and utilizing single-sided access techniques and personnel qualified for single sided examination.

Utility: PSEG	Plant: HC	Unit: 1	Outage: RFO19	Weld ID: RPV1-N8A	Work Sheet Number: CWS-01
			N8A N	lozzle to Shell Weld Axial Sc	an Coverage Calculations
			<u>Total A</u>	<u>rea:</u> = 22.75 sq. in.	
			Total Ar	ea: 3.50" x 6.50" = 22.75 in²	
			Lower	15% t of Vessel Shell Coverage: = 1	15.0%
				0.98" = 3.43 in ²	
			3.43 + 2	2.75 x 100 = 15.0% of Total Area	
		, d	<u>Upper 8</u>	5% t of Vessel Shell & Radius Cov	<u>rerage:</u> = 84.5%
			2.80" x 5	5.52" = 15.46 in ²	
			0.71" x 5	5.10" = 3.62 in ²	
			0.40" x (0.76" / 2 = 0.15 in ²	
			(15.46 +	3.62 + 0.15) / 22.75 x 100 = 84.5%	
			Total	Axial Coverage: = 84.5% +	+ 15.0% = 99.5%

1.13 Weld RPV1-N7 – RPV Head Vent Nozzle-to-Shell Weld

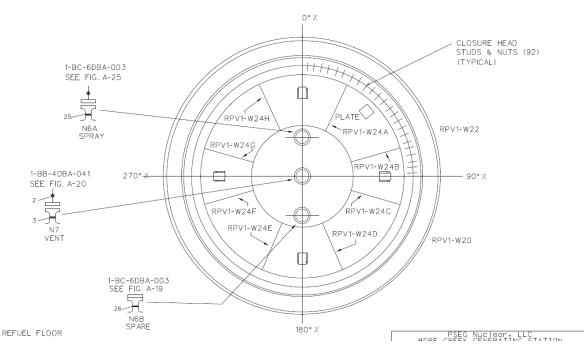


Figure 1.13-1 Weld RPV1-N7 (Extracted from Reference DWG A-2)

This weld was UT examined in Inspection Period 3, during the RFO19 refueling outage in 2015. The NDE data came from UT Report No.: VEN-15-010. The UT Code Required Volume (CRV) was determined based on Section XI, Figure IWB-2500-7(b). The corresponding CRV as shown on that Figure is A-B-C-D-E-F-G-H. The UT examination was limited from the nozzle side of the weld due to the geometric configuration of the nozzle. The examination resulted in total UT coverage of **74.70%** as described in Table 1.13-1 and combined with Figures 1.13-2 and 1.13-3. No recordable indications were detected during this examination.

The ultrasonic examination was performed in accordance with the criteria of 10 CFR 50.55a(b)(2)(xv)(G) and the minimum coverage requirements of 10 CFR 50.55a(b)(2)(xv)(K) was achieved to the maximum extent possible.

The examination satisfied the requirements of ASME Section XI, 2001 Edition with the 2003 Addenda for Category B-D, Item number B3.90, figure number IWB-2500-7(b) exam volume, and was performed using ASME Section XI, Appendix VIII qualified personnel, procedures and equipment to the 2001 Edition of Appendix VIII as conditioned by 10 CFR 50.55a(b)(2)(xv). Code Case N-613-1 was used to reduce the area to be examined to the weld plus a $\frac{1}{2}$ " on each side.

60°RL Radial Scan 1	00% t	60°RL Circ. Scan Up	oer 85% t	50° <u>+</u> 39° to 64°Circ. Scan		
volume		volume		Inner 15% t volume (I	Modeled)	
Thickness (t _s)	4.30	Thickness (t _s) 4.30		Thickness (t _s)	6.50	
inches		inches		inches		
Weld Width inches	2.28	Weld Width inches	2.28	Weld Width inches	2.50	
Exam Volume (A-B-	14.29	Exam Volume (A-B-	14.29	Exam Volume (A-B-	14.29	
C-D-E-F-G-H) Sq.		C-D-E-F-G-H) Sq.		C-D-E-F-G-H) Sq.		
inches		inches		inches		
Area Scanned Sq.	11.82	Upper 85% "T" 12.18		Inner 15% "T" 2.14		
inches		Volume Sq. inches		Volume Sq. inches		
		Area Scanned	7.39	Area Scanned	2.14	
Percentage of Area	82.7%	Percentage of Area	60.7%	Percentage of Area	100%	
Scanned		Scanned		Scanned		
Percentage of Total	82.7%	Percentage of Total	51.7%	Percentage of Total	15.00%	
Volume		Volume		Volume		
Coverage Radial	82.7%	Coverage Circ. 51.7%		Coverage Circ. 15.00%		
Scan 100% t		Scan upper 85% t		Scan Inner 15% t		
volume		volume		volume		

 Table 1.13-1 Weld RPV1-N7 Volumetric Coverage and Limitation Summary

Total Coverage Radial and Circ. Scans: (82.7% + 51.7% + 15.00%) ÷ 2 = 74.7%

- Axial scans were performed with a procedure qualified for the examination of vessel shell welds (54-ISI-805-008). This procedure has been demonstrated for detection of flaws located throughout the entire weld thickness. Coverage obtained during axial scans was limited due to the nozzle configuration.
- 2. In the circumferential scan direction the outer 85%-t is examined with the same vessel procedure as mentioned above and coverage was also limited due to the nozzle configuration. To achieve additional coverage in the circumferential scan direction a second examination is performed with a procedure qualified for the nozzle inside-radius examinations (54-ISI-850-008). This procedure has been demonstrated for detection of flaws in the inner 15%-t only. The nozzle inside-radius techniques were performed in accordance with the parameters identified in EPRI modeling report IR-2004-50.
- 3. Scanning was performed to the maximum extent possible. The total coverage achieved for scans performed in accordance with procedure 54-ISI-805-008 is a conservative estimate derived from the physical limitation caused by the nozzle configuration at the vertical sections of the nozzle and does not include additional volume obtained at the horizontal sections of the nozzle. Scanning with the 60°RL was also taken back to the limit of one half inch from the toe of the weld as measure from OD weld radius tip and projected to the ID perpendicular to the surface.

Utility: PSEG	Plant: HC	Unit: 1	Outage: RF19	9	Weld ID: RPV1-N7	Work Sheet Number: CWS-01			
			N	N7 Nozz	te to Head Weld Axial Scan Cover	age Calculations			
		<u>Total Area:</u> = 14.29 in ²							
			<u>L</u>	ower 15	<u>% t of Head Coverage:</u> = 15.0%				
			2.	2.14 / 14.29 X 100 = 15.0%					
			U	Jpper 85					
			Т	otal Uppe	er 85% Area: 12.18 in²				
			— Te	otal Uppe	er 85% Area Scanned: 11.82 in²				
			11	1.82 / 14	.29 X 100 = 82.7%				
				Total A	<u>xial Coverage:</u> = 82.7% + 15.0%	97.7%			
		Scale:		Due to cur	to curvature of head, areas were calculated using a CAD program.				

Figure 1.13-2 Weld RPV1-N7 (Axial Scans) Coverage Calculations from Shell Side

Utility: PSEG	Plant: HC	Unit: 1	Outage: RF19	Weld ID: RPV1-N7	Work Sheet Number: CWS-02
			N7	Nozzle to Head Weld Circu	mferential Scan Coverage Calculations
			<u></u>	<u>tal Area:</u> = 14.29	
				per 85% t of Head Coverage: = 51	7%
			То	al Upper 85% Area: 12.18 in ²	
			То	al Upper 85% Area Scanned: 7.39 in	,2
			7.3	9 / 14.29 X 100 = 51.7%	
(1900				wer 15% t of Vessel Shell Coverag	<u>e:</u> = 15.0%
			То	al Lower 15% Area: 2.14 in ²	
			2.1	4 / 14.29 / 100 = 15.0%	
			Scale: 1/4:1 70	otal Circumferential Cover	<u>age:</u> = 51.7% + 15.0% = 66.7%
			*Di	e to curvature of head, areas were calcul	ated using a CAD program.

Figure 1.13-3 Weld RPV1-N7 (Circumferential Scans) Coverage Calculation

1.14 Inside Radius Sections for RPV1-N2AIR (Recirc. Inlet A), RPV1-N2BIR (Recirc. Inlet B), RPV1-N2KIR (Recirc. Inlet K), RPV1-N5BIR (Core Spray B) and RPV1-N17AIR (LPCI A)

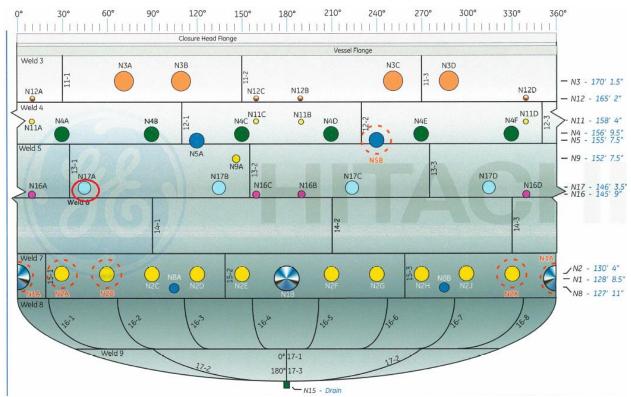


Figure 1.14-1 Nozzle Inner Radii Sections

Nozzle Inner Radii N2A, N2B, N2K and N5B were visually examined in Inspection Period 2, during the RFO17 refueling outage in 2012 in accordance with Code Case N-648-1. The NDE data came from In Vessel Visual Inspection Hope Creek Spring 2012 R17 Outage Report. The surface area was determined based on Section XI, Figure IWC-2500-7(b). The corresponding surface as shown on that Figure is M-N. Enhanced VT-1 (EVT-1) (0.44" resolution), was performed remotely using closed circuit television (CCTV) equipment. All EVT-1 examinations (where accessible) were brushed prior to performing inspection. Brushing was utilized to effectively discern the weld ripples and surface texture conditions. Cleaning was performed for those components being examined that exhibited surface conditions that restricted the examination as required by procedure. When cleaning was required, it was performed using a nylon bristle brush with the desired result of cleaning to a dull non-reflective surface in which primarily the oxide covering the surface was removed. The visual examination was limited due to the thermal sleeve configuration resulting in total visual coverage as described in Table 1.14-1 and Figures 1.14-2 through 1.14-4.

Nozzle Inner Radius N17A was visually examined in Inspection Period 3, during RFO20 refueling outage in 2016 in accordance with Code Case N-648-1. The NDE data came from the Visual Inspection of Vessel Interior Outage Report. A VT-1 (0.44" resolution) was performed

remotely using closed circuit television (CCTV) equipment. In addition, a VT-3 examination was used to supplement the VT-1 examination. The visual examination was limited due to the thermal sleeve configuration resulting in total visual coverage as described in Table 1.14-1..

Summary No.	100410		Compo	nent	RPV	and the		Description	Re	circ Inlet In	ner Radiu	is Section @ 30"
Component ID	RPV1 N	12 A	IR		Azimuth	030			Ð	am Type	EV	T-1
DVD 05	Title 03				Surface C	ondition	Brushed					
Camera RJ 21	10 on Pole				Coverage	40%	Limitation	Riser The	ermal	Sleeve		
Examiner Kulko	ski, Daniel					Date	4/19/2012	2 Resu	ullis	NRI		
Examiner Comm	ents He	avy (Grinding	Mark	s, Deep Scratcl	hes, Pitt	ing and Sta	aining. All Non-I	Relev	ant.		
Reviewer Ande	son, Edward	- 82 F				Date	4/20/2012	2				
Reviewer Comm	ents NF	RI, CI	adding	is to th	e just inside of	the nozz	zle. Lots o	f grinding mark	and	scratches		
	180050 000	1000	ters case			02228468	46.VV-20625	2520 C 2010 C	319.53	9,9976		
Summary No.	100415		Compo	nent	RPV			Description	Rē	circ Inlet In	ner Radiu	Is Section @ 60
Component ID	RPV1 N	12 B	IR		Azimuth	060			E	am Type	EV	T-1
DVD 10	Title 06				Surface C	ondition	Brushed					
Camera RJ 21	10 on Pole				Coverage	25%	Limitation	Jet Pump	o Con	figuration		
Examiner Teod	oro, Mikado					Date	4/20/201	2 Resu	ults	NRI		
Examiner Comm	ents M	achine	e Marks	, Scra	tches & Crud L	ines.						
Reviewer Goss	Edward					Date	4/21/201	2				
Reviewer Comm	ents He	avy o	rinding	and s	cratches noted.	NRI.						
		0										
Summary No.	100455		Compo	nent	RPV			Description	Re	circ Inlet In	ner Radiu	us Section @ 330".
Component ID	RPV1 N	12 K	IR		Azimuth	330			E	am Type	EV	T-1
DVD 33	Title 02				Surface C	ondition	Brushed			10		
Camera RJ 21	10 on Pole				Coverage	50%	Limitation	Jet Pump	o Con	figuration		
Examiner Elliot,	Jarett						4/25/201	2 Resi	ults	NRI		
Examiner Comm		/D 32	had in	correct	t location starte	d. DVD	33 is the o	orrect exam. No	oted o	prind, scrat	ch and br	ush marks.
Reviewer Goss							4/26/201					
Reviewer Comm		IT in	NPT I	ont M2	K, DVD 33 is o				and	contribut a	noted MP	4
Neviewer Contin	enta D	-C -	IS NES	in the	N, DYD 35 B 0	on cost co	carri locario	n, onno marka	ana	acratorica	Died. Mrs	
Summary No.	40054	-	Com	ponen	t RPV			Description	-	Core Spres	Inner Ra	dius Section @ 240'
	10051	-			Azimuth	240		area a special		20101010000010		ar a dana kacamatan ang kabula
Component ID	KFV1		BIR							Exam Typ	e I	EVT-1
DVD 13	Title 06						on Brushe					
	2110 on Pole				Covera	ge 25%				nfiguration		
Examiner Ste						Date	8 4/21/20	012 Re	esults	NRI		
Examiner Con	nments	Grind	marks	and se	cratches.							
Reviewer An	derson, Edwa	ard				Dat	e 4/21/2	012				
Reviewer Con	nments	NRI,	can onl	y see p	part of Inner Ra	dius and	d HAZ, Cha	anged percent o	cover	age from 5	0 to 25	
tle Inner Radius												
									П			Sum. No. 100615. Performed a VT-
			VT-1					hash Barran			2016-10-26	the N17A nozzle Inner Radius and a
-IR		45°	VT-3		No			Jacob Briggs (JLB)	ш	NRI	22:32:52	and general overall condition. (ASMI Section XI, Item #B3.100, Cat. B-D)
												Total Coverage 50%
								B-b-d-market m			0040 40 55	VT-1 portion. Limited access due to LPCI assembly and piping. (ASME
			VT-1 VT-3	21		Vid	0087.mkv	Robert Whitehill (RDW)	ш	NRI	2016-10-26 14:23:15	Section XI, Item #B3.100, Cat. B-D)

Table 1.14-1 Nozzle Inner Radii Coverage

Vid 0091.mkv

Mathew Clemmons (MBC)

п

NRI

VT-1 VT-3

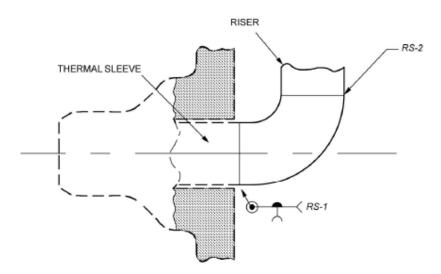
22

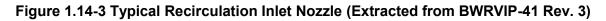
Coverage 45%

verage 3%

2016-10-26

20:48:18


Supplemental VT-3 Examination of the N17A-IR


No

Nozzle Inner Radius Cut-Away (Typical)

Figure 1.14-2 Inner Radius RPV1-N2AIR Examination Area

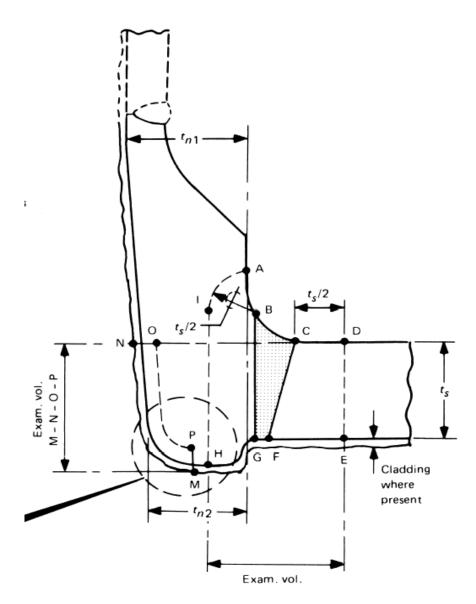



Figure 1.14-4 Typical Examination coverage for nozzles with a thermal sleeve

1.15 Weld 1-AE-205-RHX-W4 – Residual Heat Exchanger Shell-to-Flange Weld

Figure 1.15-1 Weld 1-AE-205-RHX-W4 (Extracted from Reference DWG B-1)

This weld was UT examined in Inspection Period 2, during the RFO18 refueling outage in 2013. The weld was examined under Item No. C1.10 and the NDE data came from UT Report No.: UT-13-002. The UT Code Required Volume (CRV) was determined based on the requirements of Section XI, Figure IWC-2500-1. The corresponding CRV as shown on that Figure is A-B-C-D. However, the CRV for this weld could not be examined fully because the weld was located near the bolted flange studs limiting the examination coverage. The 45° circumferential scans were limited due to an obstruction from the bolted flange studs. The examination resulted in total UT coverage of **88.1%** as described in Table 1.15-1 and shown on Figures 1.15-2 and 1.15-3. No recordable indications were detected during this examination.

Calculation Coverage Data

Downstream Examination Volume = $L \times W \times H$ 160.0" L x 1.05 W x 1.1" H = 184.8 cubic inches

Limitation Volume = L x W x H (Downsteam Limitation for Circumferential Scans) 160.0" L x 0.5" x 1.1" H = 88.0 cubic inches

Examination Coverage Limitation ÷ Downstream Side of Weld Examination Volume x 100% = % Not Examined 88.0 ÷ 184.8 = 47.6% Not Examined 100% - 47.6% = 52.4% DS Circumferential Examination Coverage

Table 1.15-1 – Weld 1-AE-205-RHX-W4, Examination Coverage Summary									
Angle and Wave Mode ⁽¹⁾	Upstream Axial	Upstream Circumferential	Downstream Axial	Downstream Circumferential					
45°S	100%	100%	100%	52.4%					
	Code Coverage Total ⁽²⁾ = 88.1%								
Note: Exam volur	me is the full volu	me of the weld plus $\frac{1}{2}$	" on each side of the	weld toes.					

			Syste	m:	RHR	Summary No.: 200080
Comp. Thickness:	1.1"					
Component No.: 1-AE-205	-RHX-W4					
0 Reference is	s located at	the Long	gseam			North Contraction
I) Interfering Condition:	Bolted F	lange S	tuds on	DS side	of weld	
Distance From Centerline:	0.5"	DS	То	1.0"	DS	
Distance From Ref. Point:	0.0"	CW	То	160"	CW	The 45 degree circumferential examination was limited
2) Interfering Condition:			N/A			due to an obstruction from the bolted flange studs
Distance From Centerline:		N/A	То	N/A		on the downstream side of the weld.
Distance From Ref. Point:		N/A	То	N/A		See attached photos.
3) Interfering Condition:			N/A			The axial examination coverage was obtained with
Distance From Centerline:		N/A	То	N/A		the use of a 1/2 Vee and Full Vee path technique.
Distance From Ref. Point:		N/A	То	N/A		100% Examination Volume = L x W x H
(For All Measurements Indicate	US, DS, C	W, CCV	V)			160.0" L x 2.1 " W x 1.1" H = 369.6 cubic inches
Calculations Below: Note: Exam volume is the full volum	ne of the weld	l plus 1/2	" on eac	h side of t	he weld t	oes.
Note: Exam volume is the full volum Downstream Examination 160.0" L x 1.05 " W x 1.1" H Limitation Volume = L x W 160.0" L x 0.5" W x 1.1" H = Examination Coverage Limitation + Downstream Side 88.0 + 184.8 = 47.6% Not E 100% - 47.6% = 52.4% DS (Volume = = 184.8 c / x H (Dow = 88.0 cubi = of Weld Ex xamined Circumfere	L x W ubic inc nstrea c inche aminati	<u>x H</u> ches <u>m Lim</u> s on Volu camina	itation 1 ume x 10 ution Co	f <u>or Circ</u> 0% = % verage	cumferential Scans) Not Examined
Note: Exam volume is the full volum Downstream Examination 160.0" L x 1.05 " W x 1.1" H Limitation Volume = L x W 160.0" L x 0.5" W x 1.1" H = Examination Coverage Limitation + Downstream Side 88.0 + 184.8 = 47.6% Not E 100% - 47.6% = 52.4% DS (Examination Coverage OI	Volume = = 184.8 c / x H (Dow = 88.0 cubi = of Weld Ex xamined Circumfere btained	L x W ubic inc mstrea c inche aminati ential E> (Exam	<u>x H</u> ches <u>m Lim</u> s on Volu camina coverz	itation 1 ume x 10 tion Co	f <u>or Circ</u> 0% = % verage ers from	sumferential Scans) Not Examined I previous data due to small differences in measurement
Note: Exam volume is the full volum Downstream Examination 160.0" L x 1.05 " W x 1.1" H Limitation Volume = L x W 160.0" L x 0.5" W x 1.1" H = Examination Coverage Limitation + Downstream Side 88.0 + 184.8 = 47.6% Not E 100% - 47.6% = 52.4% DS (Volume = = 184.8 c / x H (Dow = 88.0 cubi = of Weld Ex xamined Circumfere btained n Coverage	L x W ubic inc nstrea c inche antial Ex (Exam e = 100	<u>x H</u> ches m Lim s on Volu camina covera %	itation (ume x 10 tion Co age diffe Do	for Circ 0% = % verage ers from wwnstre	cumferential Scans) Not Examined

Figure 1.15-2 Weld 1-AE-205-RHX-W4 (Weld Profile) Limitations

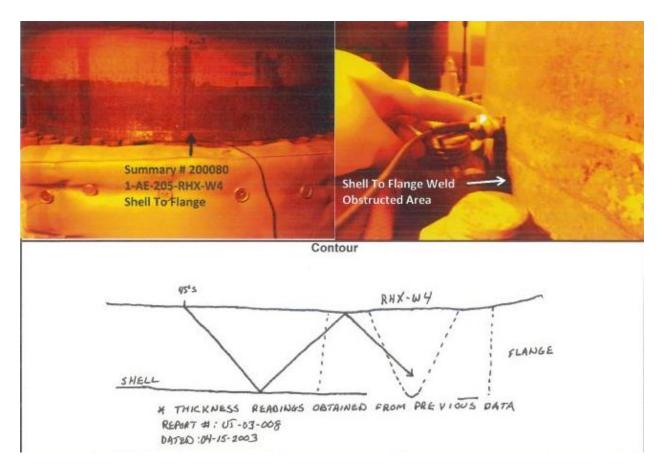


Figure 1.15-3 Weld 1-AE-205-RHX-W4 (Weld Profile) Weld Thickness and Contour

1.16 Weld 1-CP-206-CSP-W2 – "C" Core Spray Pump (CSP) Casing Weld

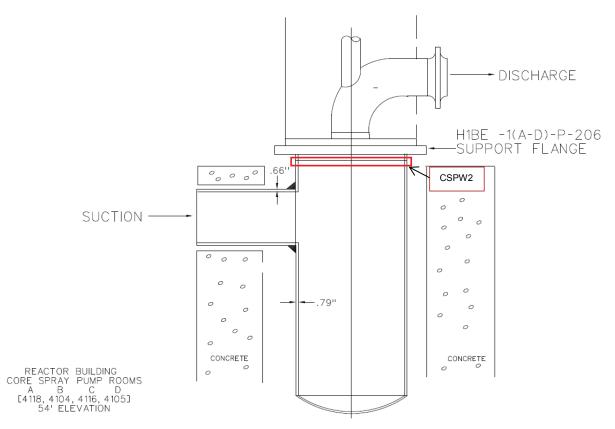


Figure 1.16-1 Weld 1-CP-206-CSP-W2 (Extracted from Reference DWG B-2)

This weld was Liquid Penetrant (PT) examined in Inspection Period 1, during the RFO16 refueling outage in 2010. The weld was examined under Item No. C6.10 and the NDE data came from Liquid Penetrant Report No.: PT-10-002. The Code Required Area (CRA) was determined based on the requirements of Section XI, Figure IWC-2500-8. The corresponding CRA as shown on that Figure is A-B. However, the CRA for this weld could not be examined fully because the pump was too close to the concrete pump pedestal. The coverage for the examination resulted in total PT coverage of **23.4%** as shown on Figures 1.16-2 through 1.16-4. No recordable indications were detected during this examination.

Å		~					~		FTI SL	JRF_EX.FRP 02/0	9/00
	F R	AMATOME		SU	RFACE EX	AMINA	TION	1 COV	ERA	GE REPO	RT
CUS	TOMER:	HOPE CREEK, RFO-09			SYSTEM: C	SP-W2					
SUM	IMARY NO): 250130	Į		COMPONEN	LID: (CSP-W	2			
			SUR	FACE EX	AMINATION	IS		÷			
1.0-	CALCI	JLATE REQUIRED EXAM	IINATIO	ON AREA							
	Calcula	ate Examination Area (Len	gth X V	Vidth = A1)	: 94	х	2.5		=	235.000	sq.in.
2.0	CALCI	JLATE AREA NOT EXAM	INED								
	2.1	Length of Limitation	1	Width o	f Limitation		1	Area N	ot Exa	amined	
	А.	72.00	x	2	2.50	_ =		1	80.00	00	sq.in.
	в.		х.			_ =					
	c.		х -		THE IS AND ADDRESS	_ =				,	
	D.	Malana (1997)	х.	77	7	_ =					
	-2.2	Calculate Total Area Not	Cuessi								
	2.2	(The sum of Area: A + B					100	000			
		(The sull of Alea. A + b	101	U - A2)			160	000			
3.0	CALCL	JLATE PERCENT AREA	NOTE	XAMINED							
	3.1	Calculate Percent of Area			2/A1 X 100 = I	P):		7	6.596	3	
4.0	TOTAL	EXAMINATION COVER	AGE O	BTAINED							
	4.1	Calculate Percent of Tota	I Area	Examined (100 - LP):			23.4	104%		
		LIMIT	ATION		ATION / RE	MAR	KS				
_							1			wanger and a second	
	DUE TO	THE CONFIGURATION O	F THE	PUMP CAS	NG, THE CON	ICRET	E LIMI	TS THE	ARE	A OF	
	COVERA	GE TO 23.4% OF THE E	NTIRE V	WELD. ON	Y THE AREA	ABOV	E CSP	W3 1S	VISA	BLÉ.	
_							3				

Figure 1.16-2 Weld 1-CP-206-CSP-W2 Limitations



Figure 1.16-3 Weld 1-CP-206-CSP-W2 Limitations

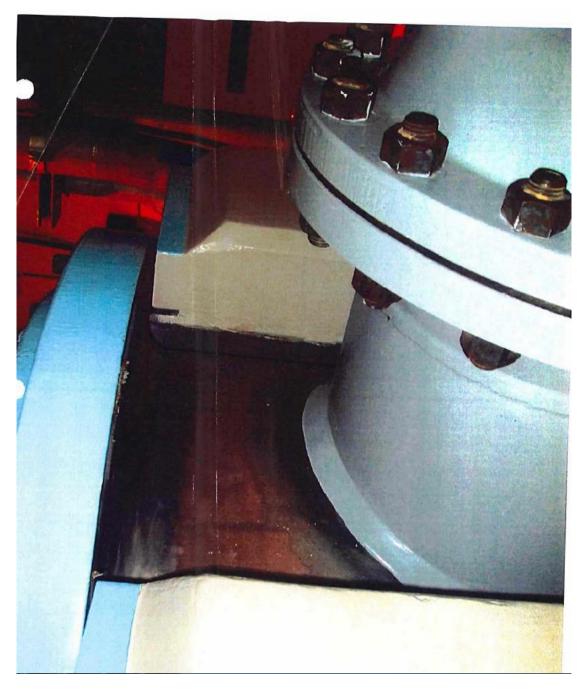


Figure 1.16-4 Weld 1-CP-206-CSP-W2 Limitations

1.17 Weld 1-CP-202-RHP-W2 – "C" Residual Heat Removal Pump (RHP) Casing Weld

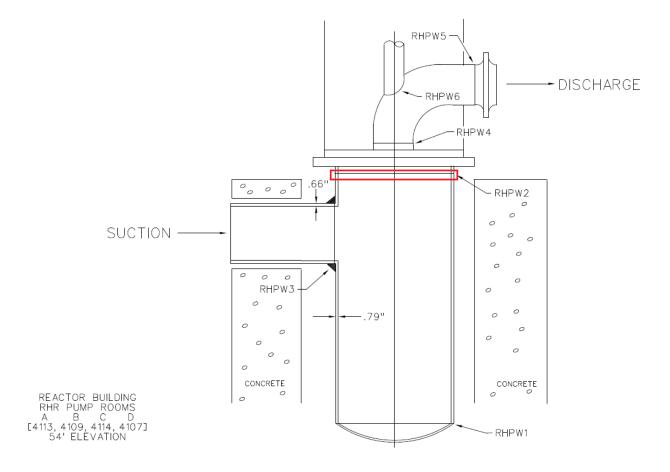


Figure 1.17-1 Weld 1-CP-202-RHP-W2 (Extracted from Reference DWG B-3)

This weld was Liquid Penetrant (PT) examined in Inspection Period 2, during the RFO17 refueling outage in 2010. The weld was examined under Item No. C6.10 and the NDE data came from Liquid Penetrant Report No.: PT-12-004. The Code Required Area (CRA) was determined based on the requirements of Section XI, Figure IWC-2500-8. The corresponding CRA as shown on that Figure is A-B. However, the CRA for this weld could not be examined fully because the pump was too close to the concrete pump pedestal. The coverage for the examination resulted in total PT coverage of **18.04%** as described in Table 1.17-1. No recordable indications were detected during this examination.

Table 1.17-1 Weld 1-CP-202-RHP-W2, Examination Coverage Summary						
Weld Circumference	149.67"					
Weld Width	2.5"					
Required Examination Area (L x W)	149.67 x 2.5 = 374.180 Sq. in.					
Area not examined	306.675 Sq. in.					
Total area examined	18.041%					

1.18 Weld 1-DP-202-RHP-W2 – "D" Residual Heat Removal Pump (RHP) Casing Weld

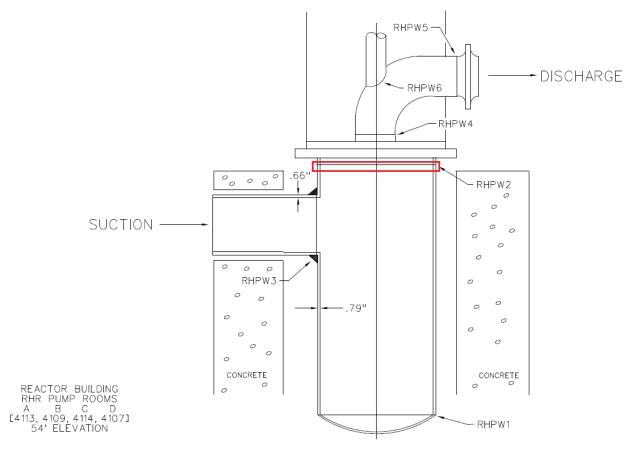


Figure 1.18-1 Weld 1-DP-202-RHP-W2 (Extracted from Reference DWG B-3)

This weld was Liquid Penetrant (PT) examined in Inspection Period 2, during the RFO17 refueling outage in 2012. The weld was examined under Item No. C6.10 and the NDE data came from Liquid Penetrant Report No.: PT-12-001. The Code Required Area (CRA) was determined based on the requirements of Section XI, Figure IWC-2500-8. The corresponding CRA as shown on that Figure is A-B. However, the CRA for this weld could not be examined fully because the pump was too close to the concrete pump pedestal. The coverage for the examination resulted in total PT coverage of **18.04%** as shown on Figure 1.18-2. No recordable indications were detected during this examination.

1	FRA	MATOME AN	P SU	RFACE	EXAN	/IN/		COVERA	GE REPO	ORT
CUST	OMER:	HOPE CREEK, RFO 10)	SYSTEN	I: RES PUN		AL HEAT	REMOVA	L SYSTEM	
SUMI	MARY NO	250490		СОМРО	NENT I	D: F	RHP-W2			
			SURFACE EX	AMINA'	TIONS					
1.0	CALCI	JLATE REQUIRED EXA	MINATION AREA							
		ate Examination Area (Le		. 14	19.67	X	2.5	=	374.180	sq.ir
.0	CALCI	JLATE AREA NOT EXA	MINED							
	2.1	Length of Limitation	Width c	of Limitatio	on		A	rea Not Ex	amined	
	Α.	122.67	x	2.50				306.6	575	sq.ir
	В.		х			=				
	C.		х			=				
	D.		х			=				
	2.2	Calculate Total Area No	ot Examined							
		(The sum of Area: A +	B + C + D = A2)				306.6	75		
.0		JLATE PERCENT AREA								
	3.1	Calculate Percent of Ar	ea Not Examined (A2	2/A1 X 10	0 = LP			81.95	9	
.0	TOTAL	EXAMINATION COVE	RAGE OBTAINED							
	4.1			100 - LP):			18.041%	5	
					· -					
		LIM	ITATION EXPLAI	NATION	/ REN	/IAR	KS			
_	Obstruct	ion created by concrete	pump foundation.							
	Examined	d from 15-1/2" CW to (D to 11-1/2" CCW.							
							Fr	CTORY A	AUTURE	
							INSI	IRANCE (COMPARY	
							7	LA-DK	4 10-20-01	

1.19 Weld 1-DP-202-RHP-W3 – "D" Residual Heat Removal Pump (RHP) Casing Weld

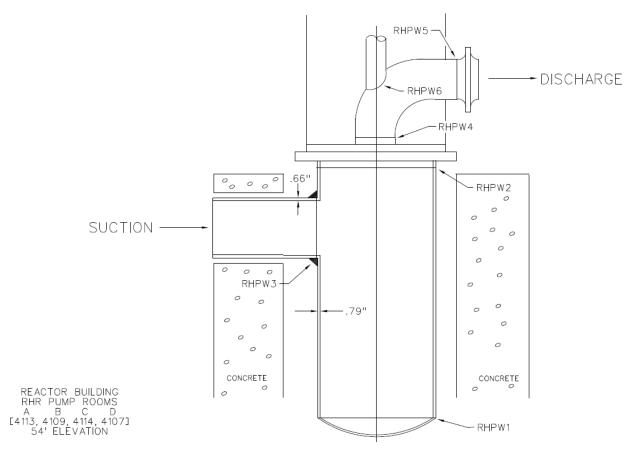


Figure 1.19-1 Weld 1-DP-202-RHP-W3 (Extracted from Reference DWG B-3)

This weld was Liquid Penetrant (PT) examined in Inspection Period 2, during the RFO17 refueling outage in 2012. The weld was examined under Item No. C6.10 and the NDE data came from Liquid Penetrant Report No.: PT-12-002. The Code Required Area (CRA) was determined based on the requirements of Section XI, Figure IWC-2500-8. The corresponding CRA as shown on that Figure is A-B. However, the CRA for this weld could not be examined fully because the pump was too close to the concrete pump pedestal. The coverage for the examination resulted in total PT coverage of **29.90%** as shown on Figure 1.19-2. No recordable indications were detected during this examination.

1	FRA	MATOME AN	1P SL	JRFACE E	XAMIN	ATION C		URF_COV.FRP	
cus	TOMER:	HOPE CREEK, RFO 1	0	SYSTEM:	RESIDU PUMPS	AL HEAT I	REMOVA	L SYSTEM	
SUN	IMARY NO): 250500		COMPONE	ENT ID:	RHP-W3			
			SURFACE EX		ONS				
1.0	CALCI	ULATE REQUIRED EX	AMINATION AREA						
		ate Examination Area (L		:97.	.0 X	2.25	=	218.250	sq.in.
2.0		ULATE AREA NOT EX							
		Length of Limitation		of Limitation		<u>Are</u>	ea Not Exa		
r -		68.00		2.25	=		153.0	00	sq.in.
	С. D.		- x						
	D.		_ ^		=				
	2.2	Calculate Total Area N	lot Examined						
		(The sum of Area: A -	+ B + C + D = A2)			153.00	0		
3.0		ULATE PERCENT ARE		2/44 X 400	- 1 D);		70.10	-	
	3.1	Calculate Percent of A	rea Not Examined (A2	Z/A1 X 100	= LP): -		70.10	3	
4.0	τοται	EXAMINATION COVE							
1.0	4.1			100 - LP):			29.897%		
		LIN	IITATION EXPLA	NATION /	REMAR	RKS			
	Obstruct	ion created by concret	e pump foundation.						
_	Examine	d from 17-1/2" CCW t	o 0 to 11-1/2" CW.						
_									
_							ALL NA	ITUAL	
						FAC	TORY MI	17	
_						Tal	ASK.	4 10-20	101
						l			

Figure 1.19-2 Weld 1-DP-202-RHP-W2 Limitations

1.20 Weld 1-BG-6DBA-001-29 – Reactor Water Cleanup System (6") Pipe-to-Valve Weld

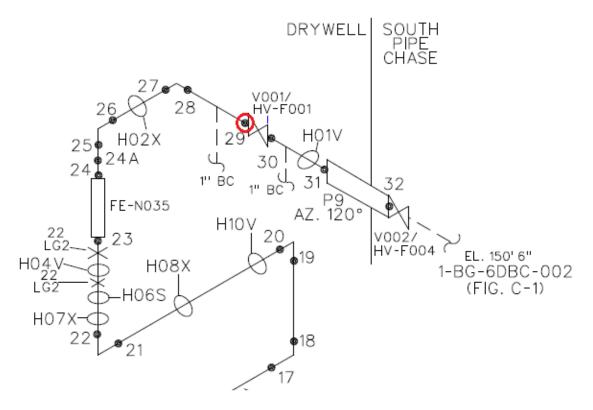


Figure 1.20-1 Weld 1-BG-6DBA-001-29 (Extracted from Reference DWG A-36)

This weld was UT examined using 45° and 60° shear waves in Inspection Period 3, during the RFO19 refueling outage in 2015 to meet the requirements of the RI-ISI Program under Request for Alternative HC-I3R-01, Reference 9 as supplemented by Code Case N-578-1. The weld was examined under Item No. R1.20-4, for welds that are not subject to a degradation mechanism and the NDE data came from UT Report No.: UT-15-035. The UT Code Required Volume (CRV) was determined based on the requirements of the RI-ISI Program and Section XI, Figure IWB-2500-8(c). The corresponding CRV as shown on that Figure is C-D-E-F and there is no increased volume requirement for this Item No. R1.20. However, the CRV for this weld could not be examined fully because of a limitation due to the valve configuration. The examination resulted in total UT coverage of **81.50%** as described in the Calculation Coverage Data section and shown on Figure 1.20-2. No recordable indications were detected during this examination.

Section XI Appendix VIII and Supplements used for this UT examination were implemented using procedure 54-ISI-835-14 Rev. 14 "Ultrasonic Examination of Ferritic Piping Welds"

Calculation Coverage Data

-	Table	1.20-1 –	Weld 1-I	3G-6I	DBA-001-29, E	xaminati	on Covera	ge Sum	mary	
		Ex	aminatio	n Vol	ume & Weld D	imensio	ns in Inche	S		
Length = Wid 20.8" 0.7		idth = Height = 75" Not Determi			Weld Thickner 0.432"	ess =	Weld Len 20.8"	gth =	Weld Width = 0.75"	
Weld 1-BG-6DBA-001-29 – Branch Connection-to-Pipe Weld 4"										
				Re	quired Angles	/Scans				
Angle an Wave Mod					-	nstream xial	Downstream Circumferential			
45°S		81.	.5%		81.5%	0%			0%	
60°S	60°S 81.5%		.5%	N/A		0%			N/A	
Code Coverage Total ⁽²⁾ =									81.5%	
Best Effort Coverage (Maximum 25%) Total ⁽³⁾ =							Total ⁽³⁾ =	N/A		
NOTES:										
(2) Code that i (3) Best	e Cov s effe Effor	erage To ectively ex t Coverag	tal refers xamined v ge refers t	to the vith th to the	Wave, or RL = maximum per ne qualified exa required exam	centage of mination ination pation	of the requir procedures ast the cent	ed exan used. erline of	nination volume	

Dissimilar Metal Welds that are examined in the axial beam direction with an Appendix VIII demonstrated procedure for single sided access.

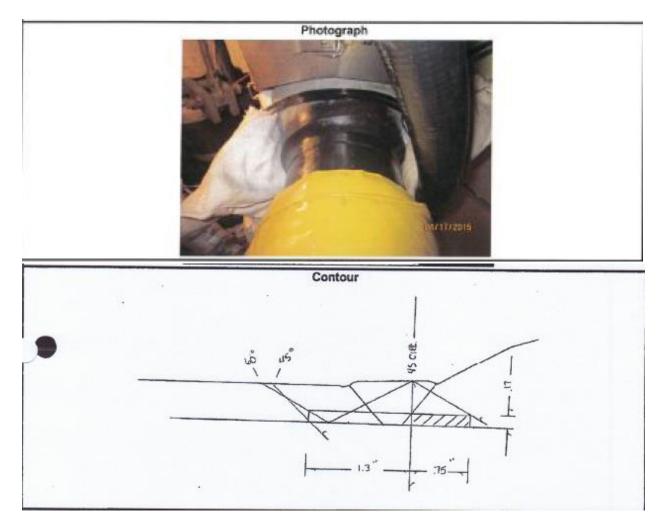


Figure 1.20-2 Weld 1-BG-6DBA-001-29 Coverage Plot