

James M. Welsch Vice President Nuclear Generation and Chief Nuclear Officer Diablo Canyon Power Plant P.O. Box 56 Avila Beach, CA 93424

805.545.3242 E-Mail: James.Welsch@pge.com

August 8, 2018

PG&E Letter DCL-18-058

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

Docket No. 50-323, OL-DPR-82 Diablo Canyon Unit 2 <u>Flaw Evaluation of Unit 2, ASME Code Class 2 Charging Pump Discharge Lines:</u> <u>Welds WIC-45A and RB-46-7</u>

Dear Commissioners and Staff:

In accordance with the requirements of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section XI, 2007 Edition through 2008 Addenda, Paragraphs IWC-3132.3, IWC-3134(b), and IWC-3640, Pacific Gas & Electric Company (PG&E) is submitting the results of the analytical evaluation of the flaws found in Diablo Canyon Power Plant (DCPP) Unit 2, on the 4-inch diameter ASME Code Class 2 Charging Pump Discharge Lines: Welds WIC-45A and RB-46-7. IWC-3134(b) states, "Analytical evaluation of examination results as required by IWC-3132.3 shall be submitted to the regulatory authority having jurisdiction at the plant site."

PG&E identified circumferential indications at welds WIC-45A and RB-46-7 (i.e., one circumferential flaw in each weld) in the charging pump discharge lines using ultrasonic examination techniques during a DCPP routine scheduled risk-informed inservice inspection (RI-ISI) performed during Unit 2 twentieth refueling outage. Additional examinations required in accordance with IWC-2430 were completed and no other indications were detected.

The indications in WIC-45A and RB-46-7 were found to have exceeded the acceptance standards of ASME Section XI, 2007 Edition with 2008 addenda, Table IWB-3514-2 (as referenced by IWC-3514). The flaws were initially dispositioned as unacceptable. Subsequently, an analytical evaluation was performed based on the rules of ASME Code, Section IWC–3640, to demonstrate that the welds containing the flaw are acceptable for continued service for the life of the plant.

The results of the analysis show that, using the conservative bounding flaw size, the conservative bounding loads, and a conservative transient loading, the flaw does not exceed the ASME Code, Section XI allowable flaw size assuming an additional

PG&E Letter DCL-18-058

Document Control Desk August 8, 2018 Page 2

40-year operating period. Therefore, the flaws are acceptable for the remainder of the Unit 2 plant life through the end of the operating license on August 26, 2025. The analysis, methodology, and results are shown in the Enclosure.

PG&E makes no new or revised regulatory commitments (as defined by NEI 99-04) in this letter. If you have any questions or require additional information, please contact Mr. Hossein Hamzehee at (805) 545-4720.

Sincerely,

James M. Welsch Vice President, Nuclear Generation and Chief Nuclear Officer

rntt/4231/SAPN 50965613-04

Enclosure

cc: Diablo Distribution

cc/enc: Kriss M. Kennedy, NRC Region IV Administrator Christopher W. Newport, NRC Senior Resident Inspector Gonzalo L. Perez, Branch Chief, California Department of Public Health Balwant K. Singal, NRR Senior Project Manager State of California, Pressure Vessel Unit

Enclosure PG&E Letter DCL-18-058

Diablo Canyon Power Plant, Unit 2

Evaluation of the Flaw in the 4-inch Charging Pump Discharge Line: Welds WIC-45A & RB-46-7

			-	λ			
ructural Integ	rity Associates, li	nc.®	File No.: 1800289.301				
ALCULATIO	ON PACKAGE	Project No.: 1800289 E Quality Program Type: Nuclear Commercial					
' NAME: yon Power Plant (Charging Pump Dischar	rge Liı	ne Flaw Evaluation	nga lantan setelektri ulta.			
C T NO.: 9353, Rev. 0	-						
& Electric	PI D	LANT iablo (: Canyon Power Plant, Unit	2			
ATION TITLE: of the Flaw in the	4-inch Charging Pump) Discł	narge Line: Welds WIC-4	5A & RB-46-7			
ocument Affected Revision Descrip			Project Manager Approval Signature & Date	Preparer(s) & Checker(s) Signatures & Date			
1 - 41 A-1 - A-6 B-1 - B-3 C-1 - C-22	Initial Issue		James W. Axline JWA 3/10/18	Preparers: S. S. Tang SST 3/10/18 C. Fourcade CJF 3/10/18 Checkers: C. Fourcade CJF 3/10/18 M Fong			
1, 4, 5,	Revised to incorpora	ate		MF 3/10/18 Preparers:			
11, 19, 22	Client comment		James W. Axline JWA 7/19/18	James W. Axline JWA 7/19/18 Checkers: R. Bax RLB 7/19/18			
	ructural Integ ALCULATION NAME: yon Power Plant O CT NO.: 9353, Rev. 0 & Electric ATION TITLE: of the Flaw in the Affected Pages 1 - 41 A - 1 - A - 6 B - 1 - B - 3 C - 1 - C - 22 1, 4, 5, 11, 19, 22	ALCULATION PACKAGE NAME: yon Power Plant Charging Pump Discha CT NO.: 9353, Rev. 0 & Electric Affected Pages 1 - 41 A-1 - A-6 B-1 - B-3 C-1 - C-22 1, 4, 5, 11, 19, 22 Revised to incorpora Client comment M 17802 W 17802	ructural Integrity Associates, Inc.® ALCULATION PACKAGE NAME: yon Power Plant Charging Pump Discharge Lin CT NO.: 9353, Rev. 0 & Electric Affected Pages 1 - 41 A-1 - A-6 B-1 - B-3 C-1 - C-22 1, 4, 5, 11, 19, 22 Revised to incorporate Client comment	ructural Integrity Associates, Inc.® File No.: 1800289.301 NAME: Project No.: 1800289 yon Power Plant Charging Pump Discharge Line Flaw Evaluation CT NO: 9353, Rev. 0 PLANT: & Electric Diablo Canyon Power Plant, Unit Affected Pages Revision Description 1 - 41 Initial Issue A1 - A-6 James W. Axline B-1 - B-3 C-1 - C-22 1, 4, 5, Revised to incorporate (1, 4, 5, Client comment WAT7/19/18 M 17802 WA 7/19/18 M 17802			

Structural Integrity Associates, Inc.®

Table of Contents

1.0		INTR(DDUCTION
2.0		TECH	NICAL APPROACH4
3.0		DESIC	GN INPUTS
	3.1		Geometry
	3.2		Loads6
	3.3		Operating Conditions
	3.4		Material7
	3.5		Indication Characterization7
	3.6		Cause of Cracking
	3.7		Thermal Transients9
	3.8		Residual Stress11
4.0		CALC	ULATIONS11
	4.1		Flaw Characterization11
	4.2		Determination of Stresses and Load Combinations11
	4.3		Thermal Transient Stress Analyses and
			Stress Intensity Factors Determination
	4.4		Crack Growth Evaluation
		4.4.1	Stress Intensity Factors
		4.4.2	Austenitic Stainless Steel Fatigue Crack Growth Law16
		4.4.3	Loading Combinations and Stresses17
		4.4.4	Allowable Flaw Size Determination
5.0		RESU	LTS19
6.0		CONC	LUSIONS
7.0		REFE	RENCES
AP]	PEN	NDIX A	A NDE ISI EXAMINATION DATA A-1
AP]	PEN	NDIX E	B COMPUTER FILE LISTINGB-1
AP	PEN	NDIX C	C PC-CRACK OUTPUT FILESC-1

Structural Integrity Associates, Inc.®

List of Tables

Table 1: Transient Cycles for Evaluation	23
Table 2: Piping Loads for Weldment WIC-45A (Node 15 E) and RB-46-7 (348-380)	25
Table 3: Piping Loads for Load Combinations - Weldment WIC-45A & RB-46-7	27
Table 4: Primary/Secondary Stresses	29
Table 5: Bounding Primary Piping Stresses	31
Table 6: Bounding Secondary Piping Stresses	31
Table 7: Transient Cycles Evaluated	32
Table 8: Transient Analyzed in SI-TIFFANY	
Table 9: Material Properties for A-376 TP 316	34
Table 10: Fatigue Crack Growth Loadings	34
Table 11: Initial, Final, and Allowable Flaw Sizes	34
Table 12: Allowable Flaw Sizes	35

List of Figures

Figure 1.	Isometric Drawing of the Charging Pump 2-1 Line	.36
Figure 2.	Isometric Drawing of the Charging Pump 2-2 Line	.37
Figure 3.	Indication Sketch WIC-45A	.38
Figure 4.	Indication Sketch RB-46-7	.39
Figure 5.	Semi-Elliptic Flaw on Inside Surface of a Cylinder	.40
Figure 6.	Flaw Growth and Allowable Flaw Size – Bounding Flaw	.41

1.0 INTRODUCTION

During routine inservice inspection of the ASME Code, Class 2 Charging Pump discharge line welds at Diablo Canyon Power Plant (DCPP), Unit 2 in the Spring 2018 2R20 outage, a circumferential flaw was identified at two weldments: Weld WIC-45A and RB-46-7 [1, 2]. The location of weld WIC-45A is shown in Figure 1 (isometric drawing of the charging line) and weld RB-46-7 is shown in Figure 2. As can be seen from these figures, the welds are located a short distance from the charging pump. The possible cause of cracking is discussed in Section 3.6.

This calculation documents an evaluation to determine the acceptability of the circumferential flaws identified in the charging line welds WIC-45A and RB-46-7 at DCPP Unit 2 for continued operation. Included in the calculation is documentation of loadings, calculation of stresses and stress intensity factors, determination of fatigue crack growth, and the allowable flaw size. Based on the evaluation contained herein, the flawed component is acceptable for continued operation. The crack will not exceed the ASME Code, Section XI allowable flaw size for the life of the plant (assuming an additional 40-year operating life).

2.0 TECHNICAL APPROACH

The subject DCPP piping systems are classified as ASME Class 2 piping, with Class 1 requirements for seismic. The calculation documents the evaluation of existing flaws in a Class 2 piping system that remains in service. Therefore, the requirements for evaluation and acceptance criteria of ASME Code, Section XI, Subsection IWC apply. The current applicable Section XI Edition and Addenda for these systems at DCPP is the 2007 Edition with 2008 Addenda [3].

The technical approach used for the flaw evaluation consists of using the ASME Code, Section XI, Subarticle IWC-3600 and Appendix C requirements summarized in the following steps:

1. The characterization of the identified flaws are planar flaws located within the austenitic stainless steel piping butt welds, and are ID-connected [1, 2]. The flaws are first evaluated using the Acceptance Standards of Subarticle IWC-3500, specifically IWC-3514, for flaws in austenitic piping. IWC-3514 states that these standards "*are in the course of preparation*" and directs that "*the standards of IWB-3514 may be applied*." IWB-3514, specifically IWB-3514.3(a) for austenitic piping, states that "*the size of allowable flaws shall not exceed the limits specified in Table IWB-3514-2*." This determination has been performed by PG&E and the as-found flaws did not pass the rules of IWC-3500, implemented as IWB-3500 (Table IWB-3514-2).

It is noted that these butt welds are in stainless steel piping in a pressurized water reactor (PWR), which are not susceptible to stress corrosion cracking, and therefore the requirements of IWB-3514 are applicable.

- 2. Subsubarticle IWC-3640 states that piping containing flaws that exceed the acceptance standards of IWC-3514 (implemented as IWB-3514) may be evaluated by analytical procedures to determine acceptability for continued service, and references use of Section XI, Appendix C. Therefore, a more detailed flaw evaluation using the rules of Appendix C is required. The specific steps in the evaluation involved are listed below.
 - a. Determine the stresses at the flaw locations. Since the flaws are oriented in the circumferential direction, the stresses required are the axial stresses. The loadings considered in this evaluation include pressure, deadweight, thermal expansion, seismic (inertial and anchor movements), residual, and thermal transient stresses.
 - b. Determine the ASME Code, Section XI allowable flaw size for austenitic stainless steel piping in Appendix C [3] {Past Operability}.
 - c. Determine thermal transients applicable to flawed piping location.
 - d. Calculate stress intensity factors for the thermal transients and other loadings.
 - e. Perform a crack growth evaluation to determine how long it will take the as-found flaws to reach the ASME Code, Section XI allowable flaw size determined in Step b.
 - f. Compare the end of the evaluation period flaw (after fatigue crack growth) to the ASME Code, Section XI allowable flaw size in Appendix C to determine acceptability for operation through the evaluation period {Continued Operability}.

The current version of ASME Code, Section XI used at DCPP [15] is the 2007 Edition with Addenda through 2008 [3].

Two computer programs verified under Structural Integrity Associates (SI) Quality Assurance (QA) program are used to facilitate the calculations in this evaluation. These computer programs are **SI-TIFFANY** [10] and **pc-CRACK** [11].

The software **SI-TIFFANY** [10] performs time history thermal stress and stress intensity factor analysis of a pipe with a specified temperature/flow history of the fluid inside the pipe. The end result (output) of the software is tables of the maximum and minimum stress intensity factor for ID part-through wall circumferential or axial flaws for selected crack sizes.

In this calculation, **SI-TIFFANY** is used to calculate the thermal transient stress and minimum and maximum stress intensity factor distributions for the bounding thermal transient(s). These maximum and minimum stress intensity factors are used for the fatigue crack growth evaluation.

The fatigue crack growth evaluation is performed using **pc-CRACK** [11]. **pc-CRACK** [11] is a Windows-based software for the fracture mechanics analysis of cracks in materials. Analysis procedures performed are based on linear elastic fracture mechanics (LEFM) or elastic-plastic fracture mechanics (EPFM). The code can be used for a very wide range of crack geometries subjected to a variety of stress

Structural Integrity Associates, Inc.®

states. Some 35 LEFM and 15 EPFM crack configurations are included, several with influence functions that allow consideration of arbitrary stress distributions. **pc-CRACK** can compute critical crack size, allowable flaw size based on the ASME Code, and the life of a component subjected to sub-critical crack growth such as fatigue, stress corrosion cracking (SCC) or primary water stress corrosion cracking (PWSCC).

In this calculation, **pc-CRACK** is used to calculate the fatigue crack growth and to determine the flaw acceptability (stability) using the rules of ASME Code, Section XI, Appendix C [3].

3.0 DESIGN INPUTS

3.1 Geometry

Nominal pipe size (NPS) = 4 inch [1, 2] Pipe outside diameter (OD) = 4.5 inches [1, 2] Nominal pipe thickness = 0.437 inches [1, 2] Actual measured pipe thicknesses are all thicker than 0.48 inches [5]

In this evaluation, the nominal thickness (0.437 inches) will be conservatively used as it results in a larger a/t and larger stresses.

3.2 Loads

All piping loads for this analysis are taken from References 1 and 2. The locations of the flaws are shown in Figure 1 (WIC-45A) and Figure 2 (RB-46-7). The representative nodes in the piping analysis [1 and 2] are node 15 E for weld WIC-45A, and 348-380 for weld RB-46-7. Multiple load cases are provided in References 1 and 2. All the load cases in References 1 and 2 are contained in Table 2. To account for any future updates of the piping loads due to changes in the piping analysis, the loads (other than pressure) are conservatively increased by a 50% factor. The loads are further explained in the calculation of stresses.

3.3 Operating Conditions

References 1 and 2 define the operating conditions for the charging pump discharge line. The discharge line is line 2-S6-45-4 [1] for weld WIC-45A, and line 2-S6-46-4 [2] for weld RB-46-7. Operating conditions are defined [1]. Pages 9 and 15 of Reference 1 define the temperatures and pressures to be used. Discussion of the thermal transients applicable to this location is contained in Section 3.7.

Internal Pressure = 2800 psig [1, pg. 9, Based on pipe specification S6] Temperature = 130°F [1, pg. 15, Mode 1NN]

3.4 Material

The material of the piping is A-376 TP 316 [1, pg. 14] austenitic stainless steel and the elbow and tee are A-403 Type 316 [8]. Reference 7 identifies the weld as being stainless steel (Type 308 and 316) and using both GTAW and SMAW welding processes. As a flux type weld is used, the elastic plastic fracture mechanics method of the ASME Code, Section XI, Appendix C will be required for the allowable flaw size determination.

For the flaw evaluation, the flow stress of the material is required. At a temperature of 150°F, the stainless steel material properties are as follows (SA-376 TP 316 properties used):

 $S_y = 27.4 \text{ ksi } [4]$ $S_u = 75.0 \text{ ksi } [4]$ $\sigma_f = 51.2 \text{ ksi (average of } S_y \text{ and } S_u)$

3.5 Indication Characterization

The two flaws are described below, and a bounding flaw is then defined. The bounding flaw will be evaluated using bounding loads from the two piping systems.

<u>Weld WIC-45A</u>: One circumferential indication was identified in the weld [1]. The NDE report is contained in Appendix A of this calculation, and the indication is shown in Figure 3.

Length = 0.40 inch [1] Maximum flaw depth = 0.075 inch [1] Flaw depth-to-thickness ratio (a/t) = 0.172 (based on nominal thickness)

<u>Weld RB-46-7</u>: One circumferential indication was identified in the weld [2]. The NDE report is contained in Appendix A of this calculation, and the indication is shown in Figure 4.

Length = 0.45 inch [2] Maximum flaw depth = 0.067 inch [2] Flaw depth-to-thickness ratio (a/t) = 0.153 (based on nominal thickness)

BOUNDING FLAW:

Length = 0.45 inch [Greater of 1 and 2] Maximum flaw depth = 0.075 inch [Greater of 1 and 2] Flaw depth-to-thickness ratio (a/t) = 0.172 (based on nominal thickness)

3.6 Cause of Cracking

A thorough root cause of the cracking cannot be undertaken since the flawed components were not removed from service. Possible causes of the cracking include:

- Thermal fatigue from thermal transients and thermal stratification
- Stress corrosion cracking
- Vibration
- Fabrication defect

The crack like indications identified in References 1 and 2 are noted as being ID connected. Given the significant rate of flow, and resulting velocity, in these discharge piping runs, it is unlikely that any thermal stratification is present. Most importantly, these systems are run without voids, that is, there is no water/steam interface within the line. Also, the RB-46-7 weldment is on a vertical run, making stratification unlikely. Therefore, thermal stratification as a cause for the cracking can be eliminated.

One other possible apparent cause could be stress corrosion cracking. However, as the Reactor Coolant System (RCS) is in constant operation and there is very little oxygen in the system, the risk of stress corrosion cracking is small. DCPP has also performed other evaluations that has eliminated stress corrosion cracking as a plausible degradation mechanism in the reactor coolant system. Additionally, the operating temperature of the piping system is low (<200°F). At these temperatures SCC is not significant [14].

It is not necessary to include vibration as a mechanism to grow the flaw. The basis for this is that currently the flaws have not grown through wall but have "initiated". Given the extremely high number of cycles that would have been generated by the operation of the pump (cycles $> 10^7$), if the vibration-induced stress were greater than the K threshold stress value for flaw growth, then the flaw would already have grown through wall. As the flaw is still small, the stress due to vibration is by default below the threshold K stress value, and therefore fatigue growth, due to vibration, is not an issue.

As thermal stratification and SCC are not likely causes, and the defect could be associated with a lack of fusion (weld root), the only mechanism that will lead to flaw growth is due to thermal transients and thermal cycling. As such, the fatigue crack growth evaluation is appropriate as the thermal transient cycles are considered.

3.7 Thermal Transients

The charging system delivers RCS water back to the RCS (cold leg) after it has been processed ("cleaned") through the ion exchange system. As such, the 2-1 and 2-2 charging pumps (there are three (3) at each unit of DCPP) are either on or off. The feed for the charging pumps is low temperature RCS water from the regenerative heat exchangers and is nominally 130°F [1, pg. 15, Mode 1NN].

A set of design transients for the charging pump discharge piping is not defined as part of the design basis. Therefore, in order to perform a fatigue crack growth evaluation, SI developed a conservative pressure and temperature transient for these two sections of piping that contain the flawed weldments. The bounding transient is shown schematically below. See Table 8 for an explanation of time steps.

File No.: **1800289.301** Revision: 1 Page 9 of 41

The specifics of the transient are:

- 1. The discharge piping line is pressurized at 2800 psig and the fluid temperature is 130°F.
- 2. It then instantaneously drops pressure to zero, and fluid temperature to 40°F. It is acknowledged that RCS water cooled to 40°F will create crystallization of dissolved boron, but this temperature, although unrealistic, is conservatively selected to maximize the thermal transient.
- 3. After 3600 seconds (long enough for the pipe to reach 40°F thru-wall), the pressure is instantaneously ramped to 2800 psig and the fluid temperature goes to 130°F. The selection of 3600 seconds for this portion of the transient is an academic one and is not a realistic value for any actual charging pump transient. It is only intended to conservatively assure steady state behavior prior to the temperature upshock.
- 4. Then another period of time sufficient to reach steady state at the 2800 psig and 130°F.

This transient conservatively bounds the maximum pressure change (2800 psig to 0 psig [1]) and the maximum operating temperature range (130°F to 40°F) [1, Pg. 15, Mode 1NN].

Relative to the number of cycles to be evaluated, SI referenced SI Calculation FP-PGE-305, Rev. 3 [9]. The objective of this calculation, performed as part of SI's FatiguePro implementation, is to determine transient cycle counts and fatigue usage factors (at selected monitored locations) that accurately reflect the operating history of Diablo Canyon Power Plant (DCPP) Units 1 and 2 from initial startup to year-end 2008. These results constitute a 'baseline' of cycle counts and cumulative usage factor (CUF) on which future monitoring efforts will be based.

Table 1 from [9] lists all the identified transients, and those transients applicable (for which a cycle will be assigned) are highlighted in yellow. These include all charging transients, both prompt and delayed, and delayed letdown transients (that would potentially result in stopping of the charging pump). Lp3 and Lp4 refer to different loops, but the cycles from each are conservatively combined to develop a number of cycles for either of the flawed weldments. Heatup and Cooldown are also included.

The number of cycles for each listed transient in Table 1 is taken as the greater of the design cycles or the projected cycles (based on monitoring). The number of cycles chosen is marked with yellow highlight.

Based on the selected transients listed in Table 1, a total of (75 + 25 + 25 + 25 + 25 + 25 + 118 + 25 + 200 + 200), equals **793 total cycles for 60 years, or conservatively 14 cycles per year.** This yearly cycle count (14) is then applied in this flaw evaluation for a period of 40 years (14 * 40 = 560 cycles) to justify <u>an additional 40 years of operation</u> (starting from the present) for this bounding flaw.

3.8 Residual Stress

The residual stresses in the weld are required for the crack growth evaluation. For this evaluation, a constant tensile residual stress will be assumed. The value assumed is the operating temperature yield strength of the material, which is 27.4 ksi [4] for Type 316 stainless steel (@ 150° F). The yield stress is taken at 150° F, as it is a stated value from the Code (no interpolation required). Use of a lower yield stress value (< 10%) for the uniform through-wall residual stress, is bounded by the assumption of uniform tensile residual stresses through the thickness. Using this value is conservative as the axial residual stresses in piping are required to balance through the wall thickness to remain in equilibrium. Assuming a constant tensile stress is not realistic, but it is conservative as it gives a higher mean stress for the evaluation which leads to higher crack growth rates.

4.0 CALCULATIONS

4.1 Flaw Characterization

Since only one circumferential flaw was identified in each weldment, the flaw combination rules of ASME Code, Section XI, IWA-3330 do not apply. The bounding characterized flaw length is 0.45 inch and the flaw depth is 0.075 inch [1 and 2] (see Section 3.5). The actual measured thickness at the flaw location varies, but is greater than 0.48 inches, therefore, the nominal pipe wall thickness of 0.437 inches is conservatively used for a flaw-depth to-thickness ratio of 0.172 and an aspect ratio (flaw depth, a (0.075 inch), divided by flaw length, 1 (0.45 inch)) of 0.167. Using Table IWB-3514-2 of ASME Code Section XI, this flaw does not meet the Acceptance Standards and, therefore, will need to be evaluated per the flaw evaluation procedures of IWC-3600.

4.2 Determination of Stresses and Load Combinations

The stresses are calculated based on the piping loads from References 1 and 2 and the loads are contained in Table 2. Table 3 performs the load combinations for both weldments and Table 4 determines the resulting membrane and secondary stresses from the load combinations. Table 5 lists the resulting bounding membrane stresses that include the 50% increase for margin. Table 6 lists the resulting bounding secondary stresses that include the 50% increase for margin.

A description of the individual loads is given below. Following the description of the individual loads, the load combinations for all service levels are defined and listed.

Deadweight (DW) - Deadweight of piping system (Listed as **WT01**)

THRMN1 through THRMN5 – Five normal thermal expansion conditions described in References 1 and 2. These loads include thermal anchor movement. The bounding thermal load, **TM**, is determined based on the maximum SRSS value of the three moments for each thermal load case.

THRMA1 – Accident thermal load (includes thermal anchor movement).

SEISDX – DE (similar to OBE) inertial seismic loading for X & Y directions. Seismic anchor movements are zero.

SEISDZ – DE (similar to OBE) inertial seismic loading for Z & Y directions. Seismic anchor movements are zero.

SEISDE – Maximum of SEISDX and SEISDZ (Based on the maximum SRSS value of the three moments for each seismic load case

SEISDD - DD (similar to SSE) inertial seismic loading. Seismic anchor movements are zero. This is 2 times **SEISDE**.

SEISHX – Hosgri (Faulted seismic condition specific to DCPP) inertial seismic loading for X & Y directions. Seismic anchor movements are zero.

SEISHZ – Hosgri (Faulted seismic condition specific to DCPP) inertial seismic loading for Z & Y directions. Seismic anchor movements are zero.

SEISH – Maximum of SEISHX and SEISHZ (Based on the maximum SRSS value of the three moments for each seismic load case

With the definition of the piping loadings, the load combinations for each service level are defined as:

Primary Loads:

Service Level A	DW01	+ Pressure (P)
Service Level B	DW01	+P+SEISDE
Service Level C	DW01	+P+SEISDD
Service Level D	DW01	+ P + SEISH

Secondary Loads

Service Level A	TM
Service Level B	TM
Service Level C	THRMA1 (Conservatively added as Service Level C)
Service Level D	THRMA1

The load combinations are performed and shown in Table 4. The piping stresses are calculated based on pressure and external bending moments using equations from Appendix C, Section C-2500 [3] as described as follows.

Primary membrane stress (σ_m) is given by:

 $\sigma_m = PD/(4t) + F/A$, where:

- P = operating pressure for the service level being considered
- D = outside diameter of the component
- t = thickness, consistent with the location at which the outside diameter is taken
- F = resultant force for the appropriate primary load combination for each Service Level
- A = cross sectional area of the pipe

Primary bending stress (σ_b) is given by:

 $\sigma_b = DM_b/(2I)$, where:

D	=	outside diameter of the component
d	$_{\rm c} =$	inside diameter, consistent with the point at which the outside diameter is taken
M_b	=	resultant moment for the appropriate primary load combination for each Service
		Level
Ι	=	moment of inertia, $(\pi/64)$ $(D^4 - d^4)$

Secondary membrane stress (σ_{msec}) is given by:

 $\sigma_{msec} = F_{sec}/A$, where:

- F_{sec} = resultant force for the appropriate secondary load combination for each Service Level
- A = cross sectional area of the pipe

Secondary bending stress (σ_e) is given by:

 $\sigma_e = DM_e/(2I)$, where:

- D = outside diameter of the component d = inside diameter, consistent with the point at which the outside diameter is taken $M_e =$ resultant moment for the appropriate secondary load combination for each Service Level (includes seismic anchor loads and thermal expansion)
- $I = \text{moment of inertia, } (\pi/64) (D^4 d^4)$

For this evaluation, all the primary forces are combined (SRSS) and are conservatively considered a membrane stress and added to the pressure component. In **pc-CRACK**, all secondary forces are also combined and added to the secondary bending stress term for conservatism. In **SI-TIFFANY**, the

File No.: **1800289.301** Revision: 1

secondary membrane and secondary bending stresses are input separately. The stress for the secondary forces are calculated as F/A, where F is the resultant force (SRSS of 3 directions) and A is the area of the piping. The bounding stresses are shown in Table 5 (membrane) and Table 6 (bending), and both Tables include the 50% margin.

4.3 Thermal Transient Stress Analyses and Stress Intensity Factors Determination

Table 7 and Table 8 list the transients that are evaluated for the flawed location. The transient in Table 8 is evaluated with **SI-TIFFANY** to determine the transient stresses and stress intensity factors. Construction of the input file for the transient involves inserting the transient time history into an input file. A time step of 0.1 seconds is used in all **SI-TIFFANY** runs. All material properties used for the **SI-TIFFANY** runs are contained in Table 9.

Each **SI-TIFFANY** run with the corresponding filename has the following relevant files, which are included as supporting files to this calculation:

*.dat SI-TIFFANY input file
 *.rpt SI-TIFFANY output file, which echoes the inputs.
 *.mnn SI-TIFFANY output file with tabulated K_{min} values.
 *.mxn SI-TIFFANY output file with tabulated K_{max} values.

The tabulated values of the minimum and maximum stress intensity factors, K_{min} and K_{max}, for specific crack sizes are used for fatigue crack growth analysis. All **SI-TIFFANY** files are listed in Appendix B.

SI-TIFFANY uses temperature history of the transient to compute the thermal stress due to the radial gradient of the temperature in the pipe wall. At the beginning of the transient, the piping location is taken to be at a uniform temperature equal to the first line in the transient history. The radial gradient thermal stress is then combined with the pressure stress and thermal expansion stresses due to tensile and bending loads (restraint of thermal expansion) to provide stresses that are used to calculate stress intensity factors. The thermal expansion tension and bending stress at the beginning of the transient is taken to be the stress due to the resultant force and moment of the restraint of thermal expansion, which are obtained from the loads in Table 3, scaled up or down from the normal operating temperature using the following relation:

$$\sigma(T_{ave}) = \frac{T_{ave} - 40}{T_{no} - 40} \sigma_{no}$$

This relation is applied to tension and bending thermal expansion stresses to scale the values during the transient. T_{no} is 130.0°F (normal operation temperature). T_{ave} is the average wall temperature, which is evaluated in **SI-TIFFANY**. The values of σ_{no} (nominal stress) for tension and bending were calculated using the equations from Section 4.2 and the loads from Table 2.

File No.: **1800289.301** Revision: 1

The values of $\sigma_{no \ tension}$ and $\sigma_{no \ bending}$ from thermal expansion input to **SI-TIFFANY** are 0.031 ksi and 1.165 ksi, respectively. Stresses due to deadweight, residual stress, and seismic are input separately in the subsequent crack growth calculation. Pressure stresses do not need to be input to **SI-TIFFANY** separately. Only the pressure term is included as **SI-TIFFANY** calculates the stresses due to pressure.

SI-TIFFANY treats the piping conservatively as insulated and the insulation is considered perfect which means that no heat transfer is considered to the surrounding environment. The piping is not insulated as noted in References 1 and 2.

4.4 Crack Growth Evaluation

4.4.1 Stress Intensity Factors

SI-TIFFANY calculated stress intensity factors (K) and determined maximum applied K (K_{max}) and minimum applied K (K_{min}) for a semi-elliptical inside-surface circumferential flaw in a cylinder for various flaw depths and aspect ratios. The K_{max} and K_{min} values include the effects of internal pressure, thermal expansion piping loads, and thermal transient stresses. K_{max} and K_{min} represent the range of applied K for each transient whose difference, $\Delta K = K_{max} - K_{min}$, are used by **pc-CRACK** for the fatigue crack growth (FCG) calculations.

The constant stress intensity values for deadweight and residual stress were not included in **SI-TIFFANY**. As such, they are input as constant stress values for each load cycle. Seismic is input as a reversible stress. Additionally, the crack face pressure of 2.8 ksi (conservative operating pressure) is added to the K_{max} term. The semi-elliptical flaw model with variable aspect ratio is used in **pc-CRACK** to determine the fatigue crack growth. The flaw model is shown in Figure 5.

4.4.2 Austenitic Stainless Steel Fatigue Crack Growth Law

The ASME Code has developed new fatigue crack growth laws for austenitic stainless steels in PWR water environments. The fatigue crack growth law for stainless steels in PWR environment has been approved by the ASME Code, Section XI Committee through Code Case N-809 [12, 13]. This crack growth law (provided below) is used for the present analysis.

$da/dN = C_0 \cdot \Delta K^n$, units of inch/cycle

where:

- C₀ = scaling parameter that accounts for the effect of loading rate and environment on fatigue crack growth rate
 - $= C S_T S_R S_{ENV}$
- n = slope of the log (da/dN) versus log (ΔK) curve = 2.25
- C = nominal fatigue crack growth rate constant = 4.43×10^{-7} for $\Delta K \ge \Delta K_{th}$ = 0 for $\Delta K < \Delta K_{th}$
- ΔK = stress intensity factor range, ksi \sqrt{in}
- $\Delta K_{\text{th}} = 1.10 \text{ ksi} \sqrt{\text{in}}$
- S_T = parameter defining effect of temperature on FCG rate = $e^{-2516/T_{K}}$ for $300^{\circ}F \le T \le 650^{\circ}F$ = $3.39 \times 10^{5} e^{[(-2516/T_{K})-0.0301T_{K}]}$ for $70^{\circ}F < T < 300^{\circ}F$
- T = metal temperature, $^{\circ}F$
- $S_R = parameter defining the effect of R-ratio on FCG rate$ = 1.0 for R < 0 = 1 + e^{8.02(R-0.748)} for 0 < R < 1.0
- $R = K_{min}/K_{max} = R$ ratio (Conservative value of 0.9 is used, and bounds the case of $K_{min} < 0$)
- S_{ENV} = parameter defining the environmental effects on FCG rate = $T_R^{0.3}$
- T_R = loading rise time, sec
- $T_{\rm K} = [(T-32)/1.8+273.15], {\rm K}$

File No.: **1800289.301** Revision: 1

The following parameters were used:

- T = 130° F (metal temperature)
- R = 0.9 (Conservative value)
- $T_R = 1000$ seconds (Conservatively long rise time results in greater flaw growth)

The crack growth evaluation is performed with a variable aspect ratio, which uses the K values at the deepest and surface points of the flaw, while allowing the flaw aspect ratio (depth, a, divided by length, l) to vary.

4.4.3 Loading Combinations and Stresses

SI-TIFFANY was used to obtain tables of maximum applied K (K_{max}) and minimum applied K (K_{min}) for various flaw depths and aspect ratios due to system transients. The K_{max} values are contained in the filename with MXN file extension and the K_{min} values are contained in the filename with MNN file extension.

The maximum and minimum K for crack growth cycles are the combined total of the K_{max} and K_{min} tables output from **SI-TIFFANY**, combined with deadweight and weld residual stress added to both the max and min of the cycle. Seismic is added to K_{max} as a plus value and added to K_{min} as a minus value. Deadweight stresses are calculated from the loads given in Table 3. Deadweight and residual stress loads do not cycle but are present in both the maximum and minimum of the cycle. The fatigue crack growth also needs to include Service Level B seismic (SEISDE). Therefore, SEISDE was considered to occur with the bounding transient. Seven hundred and ninety-three (793) SEISDE cycles are assumed over a 60 year plant life. This is a conservative value for seismic cycles and exceeds the design basis value [9]. Therefore, fourteen (14) seismic cycles are considered each year. Table 10 defines the loading combinations used for each event evaluated in **pc-CRACK**. A crack growth period of an additional 40 years was evaluated.

4.4.4 Allowable Flaw Size Determination

After the fatigue crack growth is performed, the final flaw size has to be checked against the allowable flaw sizes in the ASME Code, Section XI, Appendix C. **pc-CRACK** is used to determine the allowable flaw sizes. As stated earlier, the weld was manufactured partly with a SMAW process and, therefore, requires the use of elastic plastic fracture mechanics (EPFM). The EPFM rules are contained in Article C-6000 of Section XI [3].

The specific equations from Appendix C, including the appropriate safety factors, used to determine allowable flaw size are listed below.

Structural Integrity Associates, Inc.®

The allowable bending stress for EPFM under combined membrane plus bending loads is given by the equation:

$$S_c = \frac{1}{SF_b} \left[\frac{\sigma_b^c}{z} - \sigma_e \right] - \sigma_m \left[1 - \frac{1}{ZSF_m} \right] \qquad \text{Reference 3, C-6321,}$$

where,

$$\sigma_b^c = \frac{2\sigma_f}{\pi} \left[2 \sin\beta - \frac{a}{t} \sin\theta \right], for (\theta + \beta) \le \pi \quad \text{Reference 3, C-5321}$$

$$\beta = \frac{1}{2} \left(\pi - \frac{a}{t} \theta - \pi \frac{\sigma_m}{\sigma_f} \right) \quad \text{Reference 3, C-5321,}$$

The allowable membrane stress is given by the equation:

$$S_t = \frac{\sigma_m^c}{ZSF_m}$$
 Reference 3, C-6322,

$$\sigma_m^c = \sigma_f \left[1 - \left(\frac{a}{t}\right) \left(\frac{\theta}{\pi}\right) - \frac{2\varphi}{\pi} \right]$$

Reference 3, C-5322,

where,

$$\varphi = \arcsin\left[0.5\left(\frac{a}{t}\right)\sin\theta\right],\,$$

and

- S_c = allowable bending stress for a circumferentially flawed pipe
- σ^{c_b} = bending stress at incipient plastic collapse
- SF_m = safety factor for membrane stress based on Service Level as shown in the Table below [3, C-2621]
- SF_b = safety factor for bending stress based on Service Level as shown in the Table below [3, C-2621]
- a =flaw depth
- t = total wall thickness
- S_t = allowable membrane stress for a circumferentially flawed pipe
- σ^{c_m} = membrane stress at incipient plastic collapse
- θ = half flaw angle [3, Figure C-4310-1], 180° or π for a 100% full circumferential flaw
- β = angle to neutral axis of flawed pipe in radians
- σ_m = unintensified primary membrane stress at the flaw location
- σ_f = flow stress = (S_y + S_u)/2 [3, C-8200(a)]
- S_y = specified value for material yield strength at the evaluation (operating) temperature from Reference 4
- S_u = specified value for material ultimate strength at the evaluation (operating) temperature from Reference 4

 σ_e = Secondary bending stress

For austenitic weldments fabricated by SMAW,

$$Z = 1.30[1 + 0.010(NPS - 4)],$$
 Reference 3, C-6330

Where:NPS = Nominal pipe size

Safety factors are provided in Appendix C of Section XI for evaluation of flaws in austenitic stainless steel piping. The safety factors used are shown below and are taken from C-2621 [3].

Service Level	Membrane Stress Safety Factor, SF _m	Bending Stress Safety Factor, SF _b
А	2.7	2.3
В	2.4	2.0
С	1.8	1.6
D	1.3	1.4

Safety Factors for Sizing – Circumferential Flaw [3, C-2621]

Each service level is checked by inputting pipe geometry, crack parameters, and stresses appropriate for the service level. For this calculation, the initial flaw size is input into the program. Based on the stress ratios, it gives the allowable flaw size tables (a/t (flaw depth/pipe thickness) and l/c (flaw length/pipe circumference) values). The **pc-CRACK** output files for the allowable flaw sizes are contained in Appendix C.

5.0 **RESULTS**

The results of the evaluation are contained in Table 11. Table 11 contains the initial flaw size and the final flaw sizes using the variable aspect ratio assumption. Table 12 contains the bounding limiting allowable flaw size from all service levels, for both combined stress and membrane stress. For the loadings, all Service Levels, A through D (see Appendix C), show that the allowable flaw depth is relatively large (75% of pipe wall thickness which is the maximum allowed by the ASME Code, Section XI).

For the fatigue crack growth evaluation, the flaw was grown with a variable aspect ratio. The results show that using the conservative bounding flaw size, the conservative bounding loads, and a

conservative transient loading, the flaw does not exceed the ASME Code, Section XI allowable flaw size for the remainder of the plant life (assuming an additional 40-year operating period). Figure 6 shows a plot of crack growth (depth) per year and the allowable flaw size for the 40 year period. All files used in the analysis are listed in Appendix B.

6.0 CONCLUSIONS

The evaluation presented in this report has shown that the flawed welds in the 2-1 and 2-2 pump discharge piping weldments (WIC-45A and RB-46-7) at DCPP, Unit 2 are acceptable for continued operation. Using the bounding loads assumption, the flaws are acceptable for the remainder of the plant life (assuming an additional 40-year operating period from the present day).

7.0 **REFERENCES**

- 1. DCPP Design Input Transmittal No. DIT-50966007-001-00, "Diablo Canyon Unit 2, CVCS Pump 2-1, 4" Discharge Line Weld Indications WIC-45A," SI File No. 1800289.201.
- 2. DCPP Design Input Transmittal No. DIT-50966526-001-00, "Diablo Canyon Unit 2, CVCS Pump 2-2, 4" Discharge Line Weld Indications RB-46-7," SI File No. 1800289.205.
- 3. ASME Boiler and Pressure Vessel Code, Section XI, 2007 Edition, with Addenda through 2008.
- 4. ASME Boiler and Pressure Vessel Code, Section II, Part D, 2007 Edition, with Addenda through 2008.
- 5. DCPP Design Input Transmittal No. DIT-50966007-005-00, "Diablo Canyon Unit 2, CVCS Pump 2-1 and 2-2, 4" Discharge Line UT Reports from ISI, WIC-45A and RB-46-7, SI File No. 1800289.211.
- 6. DCPP Design Input Transmittal No. DIT-50966007-004-00, "Diablo Canyon Unit 2, CVCS Pump 2-1, 4" Discharge Line Weld Indication WIC-45A, SI File No. 1800289.208.
- 7. DCPP Design Input Transmittal No. DIT-50966526-002-00, "Diablo Canyon Unit 2, CVCS Pump 2-2, 4" Discharge Line Weld Indication RB-46-7, SI File No. 1800289.210.
- 8. DCPP Design Input Transmittal No. DIT-50966007-002-00, "DCPP Pipe Specification, Drawing 047288, Revision 12, S6," SI File No. 1800289.206.
- 9. SI Calculation FP-PGE-305, Revision 3, Cycle and Fatigue Baseline up through YE 2008, SI File No. 1800289.203.
- 10. SI-TIFFANY 3.0, Structural Integrity Associates, September 15, 2015.
- 11. pc-CRACK 4.1 CS, Version Control No. 4.1.0.0, Structural Integrity Associates, December 31, 2013.
- R. C. Cipolla and W. H. Bamford, "Technical Basis for Code Case N-809 on Reference Fatigue Crack Growth Curves for Austenitic Stainless Steels in Pressurized Water Reactor Environments," Proceedings of PVP2015 ASME Pressure Vessels and Piping Division Conference, PVP2015-45884, July 19-23, 2015, Boston, Massachusetts, USA, SI File No. 1800289.207.
- 13. ASME Boiler and Pressure Vessel Code, Section XI, Division 1, Code Case N-809, "Reference Fatigue Crack Growth Rate Curves for Austenitic Stainless Steels in Pressurized Water Reactor Environments," June 23, 2015.

- a. P. L. Andresen, J. Hickling, K. S. Ahluwalia and J. A. Wilson, "Effects of Hydrogen on SCC Growth Rate of Ni Alloys in High Temperature Water", Corrosion, Vol. 64, No. 9, p. 707. Sept 2008.
 - b. P. L. Andresen, R. Reid and J. Wilson, "SCC Mitigation of Ni Alloys and Weld Metals by Optimizing Dissolved H2", Proc. 14th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors", American Nuclear Soc., August 2009.
- 15. DCPP Design Input Transmittal No. DIT-50966007-003-00, "Diablo Canyon Unit 2, CVCS Pump 2-1, 4" Discharge Line Weld Indications WIC-45A, SI File No. 1800289.209.

Transient	Startup thru 12/31/04	1/1/05 thru 12/31/08	Startup thru 12/31/08	60 year projection	Design Cycles	% Used to-date (12/31/08)	60 year projected % Used
7.5M Hosgri Earthquake	0	0	0	1	1	0%	100%
Accumulator SI into CL	0	0	· 0	4(1)	1,000	0%	0.4%
Aux. Spray during C/D	54	0	54	102	500	11%	20%
Charging SI into Cold Leg	13	0	13	20	400	3.3%	5.0%
Complete Loss of Normal FW	0	0	0	1	20	0%	5.0%
Complete Loss of RCS Flow	0	0	0	1	20	0%	5.0%
Control Rod Drop	1	0	1	2	80	1.3%	2.5%
Design Earthquake (OBE)	0	0	0	1	20	0%	5.0%
Double Design Earthquake	0	0	0	1	1	0%	100%
Excessive Feedwater Flow	0	0	0	1	30	0%	3.3%
Feedwater Cycling (S/G-1)	0	0	0	*(3)	18,300	N/A	N/A
Feedwater Cycling (S/G-2)	0	0	0	*(3)	18,300	N/A	N/A
Feedwater Cycling (S/G-3)	0	0	0	*(3)	18,300	N/A	N/A
Feedwater Cycling (S/G-4)	0	0	0	*(3)	18,300	N/A	N/A
High Head SI into CL	0	0	0	4(1)	97	0%	4.1%
Hot Leg Safety Injection	0	0	0	4 ⁽¹⁾	500	0%	0.8%
Inady, Accumulator Blowdn.	0	0	0	1	5	0%	20%
Inady, Aux, Spray Actuation	5	0	5	7	10	50%	70%
Inady. ECCS Actuation	0	0	0	5	60	0%	8.3%
Inady, RCS Depressurization	0	0	0	3(6)	20	0%	15%
Large Steam Pipe Break	0	0	0	1	1	0%	100%
Large Step Load Decrease	3	1	4	9	200	2.0%	4.5%
Loss of All Offsite Power	1	0	1	3	40	2.5%	7.5%
Loss of Load (TT w/o RT)	3	0	3	10	80	3.8%	13%
Lp3 Chrg & Ltdn Shutoff	0	0	0	8(4)	75	0%	11%
Lp3 Chrg Trip Delayed Rtn.	0	0	0	3(4)	25	0%	12%
Lp3 Chrg Trip Prompt Rtn.	0	0	0	3(4)	25	0%	12%
Lp3 Ltdn Trip Delayed Rtn.	0	0	0	3(4)	25	0%	12%
Lp3 Ltdn Trip Prompt Rtn.	0	0	0	25(4)	250	0%	10%
Lp4 Chrg & Ltdn Shutoff	3	1	4	11	75	5.3%	15%
Lp4 Chrg Trip Delayed Rtn.	3	0	3	6	25	12%	24%
Lp4 Chrg Trip Prompt Rtn.	53	1	54	118	25	216%	472%
Lp4 Ltdn Trip Delayed Rtn.	5	1	6	14	25	24%	56%
Lp4 Ltdn Trip Prompt Rtn.	44	1	45	94	250	18%	38%
Main RCS Pipe Break	0	0	0	1	1	0%	100%
Partial Loss of Flow	2	1	3	8	80	3.8%	10%

Table 1: Transient Cycles for Evaluation [9]

Table 9: Baseline and 60-Year Projection of Cycles (Unit 2)

File No.: **FP-PGE-305** Revision: 3 Page 29 of 61

Note: Selected transients and number of cycles are highlighted in yellow. Greater of design or projected cycles is used.

File No.: **1800289.301** Revision: 1 Page 23 of 41

Transient	Startup thru 12/31/04	1/1/05 thru 12/31/08	Startup thru 12/31/08	60 year projection	Design Cycles	% Used to-date (12/31/08)	60 year projected % Used
Plant (RCS) Cooldown	27	3	30	63	200	15%	32%
Plant (RCS) Heatup	28	3	31	65	200	16%	33%
Pressurizer Cooldown	28	4	32	72	250	13%	29%
Pressurizer Heatup	29	4	33	73	250	13%	29%
Primary Hydrostatic Test	1	0	1	2(5)	5	20%	40%
Primary Side Leak Test	0	0	0	5	50	0%	10%
RHR Operation (Train A)	27	2	29	59	250	12%	24%
RHR Operation (Train B)	27	2	29	59	250	12%	24%
Reactor Trip - C/D & SI	0	0	0	4(2)	10	0%	40%
Reactor Trip - C/D no SI	11	0	11	17	160	6.9%	11%
Reactor Trip - no C/D	36	1	37	61	230	16%	27%
Refueling	12	2	14	36	80	18%	45%
Secndry Hydrotest (S/G-1)	0	0	. 0	1	10	0%	10%
Secndry Hydrotest (S/G-2)	0	0	0	1	10	0%	10%
Secndry Hydrotest (S/G-3)	0	0	0	1	10	0%	10%
Secndry Hydrotest (S/G-4)	0	0	0	1	10	0%	10%
Secndry Leak Test (S/G-1)	0	0	0	1	10	0%	10%
Secndry Leak Test (S/G-2)	0	0	0	1	10	0%	10%
Secndry Leak Test (S/G-3)	0	0	0	1	10	0%	10%
Secndry Leak Test (S/G-4)	0	0	0	1	10	0%	10%
Step Load Decrease 10%	4	1	5	13	2,000	0.3%	0.7%
Step Load Increase 10%	25	0	25	48	2,000	1.3%	2.4%
Switchover from Norm/Alt Charg.	0	0	0	4(7)	120	0%	3.3%
Tavg Coastdn to Red. Temp.	4	0	4	9	50	8.0%	18%
Turbine Roll Test	6	0	6	9(5)	10	60%	90%

Table 1 (Concluded) [9]

This event, which includes an SI actuation, is conservatively projected to the same # of cycles as High-Head SI. (2)

(3) This event is not monitored - the design number of cycles should be used as the projection.

(4) Because DCPP never uses the alternate charging, 10% × (design cycles) is used as the projection.

(5) These events are startup tests, unlikely to be repeated; project at 50% above current (round up).
 (6) This event is considered more likely than other events with <40 design cycles, so the projection was increased.

(7) The design assumption is very high for this event; the Unit 1 projection is considered good for Unit 2 also.

Note: Selected transients and number of cycles are highlighted in yellow. Greater of design or projected cycles is used.

Forces & Moments for WIC-45A [1, Pg. 17-27]										
Load Case	Node/ Notation	F	orces (l	b)	Mo	ments (f	t-lb)	FINAL LOAD CASE	SRSS of Moment	
		FA	FB	FC	MA	MB	MC			
WT01	15 E	21	108	9	13	-13	68	WT01		
THRMN1	15 E	13	76	87	235	-154	182	TM	334.8	
THRMN2	15 E	99	184	-118	-148	192	132		276.0	
THRMN3	15 E	41	112	17	104	-36	164		197.5	
THRMN4	15 E	99	184	-118	-148	192	132		276.0	
THRMN5	15 E	33	106	42	150	-78	177		244.8	
THRMA1	15 E	-121	-101	411	839	-698	240	THRMA1		
SEISDX	15 E	152	54	5	7	21	45		50.1	
SEISDZ	15 E	76	48	45	54	68	42	SEISDE	96.5	
		152	96	90	108	136	84	SEISDD	192.9	
SEISHX	15 E	397	153	13	19	54	122		134.8	
SEISHZ	15 E	212	122	111	131	167	109	SEISH	238.6	

Table 2: Piping Loads for Weldment WIC-45A (Node 15 E) and RB-46-7 (348-380)

Notes:

1. The bounding case is determined from the largest square root of the sum of the squares of the moments and is shown in bold. These are shown in grey.

2. These piping loads are given in the local coordinate system. A is the axial direction, so FA is the axial force and MB and MC are the bending moments.

Forces & Moments for RB-46-7 [2, Pg. 19-43]									
Load Case	Node/ Notation	Forces (lb)			Mo	ments (f	t-lb)	FINAL LOAD CASE	SRSS of Moment
		FA	FB	FC	MA	MB	MC		
WT01	348-380	-20	37	35	-2	-90	-147	WT01	
THRMN1	348-380	103	54	6	-19	2	87		89.1
THRMN2	348-380	-69	-127	13	8	-42	-249	TM	252.6
THRMN3	348-380	45	-8	8	-10	-13	-29		33.3
THRMN4	348-380	-69	-127	13	8	-41	-249		252.5
THRMN5	348-380	65	15	8	-13	-10	16		22.9
THRMA1	348-380	148	256	-43	-63	123	525	THRMA1	
SEISDX	348-380	2	12	17	8	89	32		94.9
SEISDZ	348-380	22	81	11	6	42	169	SEISDE	174.2
		44	162	22	12	84	338	SEISDD	348.5
SEISHX	348-380	45	84	79	20	263	185		322.2
SEISHZ	348-380	66	218	41	15	154	458	SEISH	483.4

Table 2 Concluded - Piping Loads for Weldment WIC-45A and RB-46-7 (Node 348-380)

Notes:

1. The bounding case is determined from the largest square root of the sum of the squares of the moments and is shown in bold. These are shown in grey.

2. These piping loads are given in the local coordinate system. A is the axial direction, so FA is the axial force and MB and MC are the bending moments.

PRIMARY RESULTANT Forces & Moments - Weldment WIC-45A								
· · · ·				Forces (lb)		Mo	oments (ft	-lb)
			FA	FB	FC	MA	MB	MC
	Service Level A	WT01	21	108	9	13	-13	68
LEVEL A	Summary Fo	orce/Moment	-	110.4			70.4	
	Service Level B	WT01	21	108	9	13	-13	68
		SEISDE	76	48	45	54	68	42
5		Abs Sum	97	156	54	67	81	110
LEVEL B	Summary Fo	orce/Moment		191.5			152.2	
	Service Level C	WT01	21	108	9	13	-13	68
		SEISDD	152	96	90	108	136	84
		Abs Sum	173	204	99	121	149	152
LEVEL C	Summary Fo	orce/Moment		285.2			244.8	
	Service Level D	WT01	21	108	9	13	-13	68
		SEISH	212	122	111	131	167	109
		Abs Sum	233	230	120	144	180	177
LEVEL D	Summary Fo	orce/Moment		348.7			290.6	

Table 3: Piping Loads for Load Combinations – Weldment WIC-45A & RB-46-7

SECONDARY RESULTANT Forces & Moments - Weldment WIC-45A								
		Forces (Il	b)	Moments (ft-lb)				
	FA	FB	FC	MA	MB	MC		
Service Level A TM	13	76	87	235	-154	182		
LEVEL A Summary Force/Moment		116.2			334.8			
Service Level B TM	13	76	87	235	-154	182		
LEVEL B Summary Force/Moment		116.2			334.8			
Service Level C THRMA1	-121	-101	411	839	-698	240		
LEVEL C Summary Force/Moment		440.2			1117.5			
Service Level D THRMA1	-121	-101	411	839	-698	240		
LEVEL D Summary Force/Moment		440.2			1117.5			

Note: Summary forces and moments are resultant SRSS of three directions

PRIMARY RESULTANT Forces & Moments - Weldment RB-46-7								
			Forces (lb)			Moments (ft-lb)		
			FA	FB	FC	MA	MB	MC
	Service Level A	WT01	-20	37	35	-2	-90	-147
LEVEL A	Summary Fo	orce/Moment		54.7			172.4	
	Service Level B	WT01	-20	37	35	-2	-90	-147
		SEISDE	22	81	11	6	42	169
		Abs Sum	42	118	46	8	132	316
LEVEL B	Summary Fo	orce/Moment		133.4			342.6	
	Service Level C	WT01	-20	37	35	-2	-90	-147
		SEISDD	44	162	22	12	84	338
		Abs Sum	64	199	57	14	174	485
LEVEL C	Summary Fo	orce/Moment		216.7			515.5	
	Service Level D	WT01	-20	37	35	-2	-90	-147
		SEISH	66	218	41	15	154	458
		Sum	86	255	76	17	244	605
LEVEL D	Summary Fo	orce/Moment		279.6			652.6	

Table 3 Concluded: Piping Loads for Load Combinations – Weldment WIC-45A & RB-46-7

SECONDARY RESULTANT Forces & Moments - Weldment RB-46-7								
		Forces (lb)		Moments (ft-lb)		-lb)		
			FA	FB	FC	MA	MB	MC
Service Level A TM			-69	-127	13	8	-42	-249
LEVEL A	Summary Fo	orce/Moment		145.1			252.6	
Se	rvice Level B	ТМ	-69	-127	13	8	-42	-249
LEVEL B	Summary Fo	orce/Moment		145.1			252.6	
Se	rvice Level C	THRMA1	148	256	-43	-63	123	525
LEVEL C	Summary Fo	orce/Moment		298.8			542.9	
Se	rvice Level D	THRMA1	148	256	-43	-63	123	525
LEVEL D	Summary Fo	orce/Moment		298.8			542.9	

Note: Summary forces and moments are resultant SRSS of three directions

STRESS	Calculatio	on WIC	-45A	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
	Pine OD	45				
	thom	0 437				
	Pine ID	3 626				
	Pine Metal	Cross-se	rtional area	(π/4)(D	0^2-Di^2)	5.578 in
	Pine Section	n Modulı	IS	(π/(32*	Do)*(Do^4-Di^4)	5.370 in
	Tipe Section	nwouun	15	(79 (32		5.175 11
	Membrane	Stress = I	SRSS/Apipe			
	Bending Str	ess = Mo	ment _{sRSS} /Sectio	n Modulus		
Drimon	Membrane St	racc	DCPP Charging		154 Nozzle	
riinary i	vienibrane St	1035	Summary Force	(SRSS) /Ih)	Strace (nei)	
	Service Leve	ما ۵	110 /	. (51(55) (16)	19.8	
	Service Lev	el R	191 5			
	Service Lev		282.2		51 1	
	Service Lev		203.2		62 5	
	Jervice Lev		J+0./		02.3	1454 (1971)
Primary E	Bending Stres	S	DCPP Charging	Nozzle WIC-4	15A Nozzle	
			Summary Mom	ent(SRSS)ft-l	b Stress (psi)	
	Service Lev	el A	70.4		163.3	
	Service Lev	el B	152.2		352.8	
	Service Lev	el C	244.8		567.8	
	Service Leve	el D	290.6		673.9	
Secondar	v Membrane	Strace				Strategy and Statistical Statistics and Statistics and Statistics and Statistics and Statistics and Statistics
Jecondar	y wiemorane	501035	Summary Force	(SRSS) (Ib)	Stress (nsi)	
	Service Lev	elΔ	116 2	. (51(55) (15)	20.8	*****
	Service Lev	el B	116.2		20.8	
	Service Lev	elC	440.2		78.9	1997 - Tradita Santa
	Service Leve	el D	440.2		78.9	en i etastatan mendalak amin'n tas nataren
Secondar	y Bending St	ress	Summary Mom	ont/SRSS)ft_l	h Stress (psi)	nin material transformer para subsection and provide
	Service Low	ما ۵	33/1 2	Sing Sing Sing Sing Sing Sing Sing Sing	776 2	
	Service Leve	ol R	22/ 0		776.2	
85° 522 54° 88° 785° 88° 548° 548° 548° 548° 548° 548°	Service Leve		1117 5		2591 2	
	Service Leve		1117 5		2591.5	
	Jervice Levi		111/.3		2,1672	
Secondar	y Stresses ar	e conserv	vatively added (both membra	ane and bending)	1.1.1. (2.1.1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Secondar	v Stress		DCPP Charging	Nozzle WIC-4	15A Nozzle	
			Stres	ss (psi)		
	Service Leve	el A		797.1		
	Service Leve	el B		797.1		
	Service Leve	el C	2	670.2		
	Service Leve	el D	2	670.2		
						and a second secon

Table 4: Primary/Secondary Stresses

File No.: **1800289.301** Revision: 1

						the second s	and the second se	
	Pipe OD	4.5						
	tnom	0.437						
	Pipe ID	3.626						
	Pipe Metal	Cross-se	ctional are	a	(π/4)(Do′	^2-Di^2)		5.578 in2
	Pipe Sectio	n Modulı	ıs		(π/(32*Do	o)*(Do^4-Di^4	<u>1)</u>	5.175 in3
	Membrane	Stress =	- spss/Apipo					
	Bending Stu	ress = Mo	menteres /s	Section Mo	dulus			
	Denting St		Incines RSS/ c		dulus			
rimary I	Vembrane St	ress	DCPP Cha	rging Nozz	le RB-46-7	Nozzle	A	
			Summary	Force (SRS	S) (lb)	Stress (psi)		
	Service Lev	el A	54.7			9.8		
	Service Lev	el B	133.4			23.9		
	Service Lev	el C	216.7			38.8	and a second sec	
	Service Lev	el D	279.6			50.1		
rimary	Bending Stree	55	DCPP Cha	rging Nozz	e RB-46-7	Nozzle		
			Summary	Moment	RSS)ft-lh	Stress (nsi)	alan senatur bilan satu a di bi cont	
	Service Lev	el A	172 A			399.7	ar da alama na sa dalamatan salama (da ana sa mat	
	Service Lev	el B	342.4			794.4		
en i sterano nen or i si transcer i ist	Service Lev	el C	515 5			1195.3	en beel de soon faar werde kerende soon de soon af een beer ook ook ook ook ook ook ook ook ook oo	
	Service Lev	el D	652.6			1513.3		
econda	v Membrane	Stress		to according to the second sec				
	, memoralle		Summarv	Force (SRS	S) (Ib)	Stress (psi)	naakt binaam aan Maamar ankimar (kus taataa)	
	Service Lev	el A	145.1			26.0	0.000000000000000000000000000000000000	
•	Service Lev	el B	145.1			26.0	nde i 19 wet with distribution from the constraint had we	alt off and the set of a first discovery of the
	Service Lev	el C	298.8			53.6		
	Service Lev	el D	298.8			53.6	ene per en composition de la président composition de la président	
econda	v Bending St	ress					1	
			Summary	Moment(S	RSS)ft-lb	Stress (psi)	and a constraint of the state state state of the state of	
	Service Lev	el A	252.6		an a	585.9	entra lautea i la selan al sirri diserte e	
	Service Lev	el B	252.6			585.9		
	Service Lev	el C	542.9	forder for development to be because		1258.9	analina (h. 1998), (hata (h. 1997) -	
	Service Lev	el D	542.9			1258.9	en men en menseen en andere en	
econdai	y Stresses ar	e conserv	vatively ad	ded (both	membrane	e and bending	g)	
o con d-	nu Stroca		DCDD Ch-	raina Nor-	O DD 4C 7	Nezzla		
econdai	y Stress	an a canada a canada a canada se canada s	DCPP Cha	Stress (no	е кв-46-7	NOZZIE	an a	
	Service Lev	el A		611 Q	1			
	Service Lev	el B		611.9				
	Service Lev	elC		1312 5				
	JUIVICE LEV			T)TC'T		la norma procession construction of the	1111-11-1111-11-11-11-11-11-11-11-11-11	
	Service Lev	el D		1312 5				

Table 4 (Concluded): Primary/Secondary Stresses

File No.: **1800289.301** Revision: 1 Page 30 of 41

Primary Membrane Stress	DCPP Charging Nozzle		BOUNDING
	Summary Force (SRSS) (lb)	Stress (psi)	Stress (psi)
Service Level A	110.4	19.8	29.7
Service Level B	191.5	34.3	51.5
Service Level C	285.2	51.1	76.7
Service Level D	348.7	62.5	93.8

Table 5: Bounding Primary Piping Stresses

Primary Bending Stress	DCPP Charging N	ozzle		BOUNDING
	Summary Mome	nt(SRSS)ft-lb	Stress (psi)	Stress (psi)
Service Level A	172.4		399.7	599.6
Service Level B	342.6		794.4	1191.5
Service Level C	515.5		1195.3	1793.0
Service Level D	652.6		1513.3	2269.9

Note: Bounding stress column includes 50% increase. Input membrane stress to **pc-CRACK** and **SI-TIFFANY** includes pressure stress.

Table 6: Bounding Secondary Piping Stresses

Secondary Stress		DCPP Charging Nozzle	BOUNDING	
un en antinan en data en la constitución de la deconstitución de la constitución de la constitución de la decon		Stress (psi)	Stress (psi)	
	Service Level A	797.1	1195.7	
	Service Level B	797.1	1195.7	
	Service Level C	2670.2	4005.3	
	Service Level D	2670.2	4005.3	

Note: Bounding stress column includes 50% increase. Stresses listed above do not include thermal transient stress.

Transients	Cycles for 60 years
Normal	
Lp3 Chrg & Ltdn Shutoff	75
Lp3 Chrg Trip Delayed Rtn.	25
Lp3 Chrg Trip Prompt Rtn.	25
Lp3 Ltdn Trip Delayed Rtn.	25
Lp4 Chrg & Ltdn Shutoff	75
Lp4 Chrg Trip Delayed Rtn.	25
Lp4 Chrg Trip Prompt Rtn	118
Lp4 Ltdn Trip Delayed Rtn.	25
Plant (RCS) Cooldown	200
Plant (RCS) Heatup	200
TOTAL Cycles	793

Notes: 1. All information is obtained from Reference 9.

Transient	Time (sec)	Temperature (°F)	Pressure (psig)	Flow Rate (gpm)
	0	130	2800	560
Charging	0.1	40	0	560
	3600	40	0	560
	3600.1	130	2800	560
	7200	130	2800	560

Table 8: Transient Analyzed in SI-TIFFANY

Notes: 1. For information on transient development, see Section 3.7. The figure in Section 3.7 which shows the pressure and temperature transient is a schematic representation, as the actual time period between the start of the analysis input and the drop in pressure/temperature is only 0.1 seconds. However, the initial conditions of the system (2800 psig and 130°F) at time zero are consistent with steady state operation (the initial straight line of the trace). Actual SI-TIFFANY time step starts at 0.1 seconds for pressure/temperature change.
Material Property	Units	Pump Discharge Line
Normal Operating Temperature	°F	130
Young's Modulus	ksi	28,300
Poisson's Ratio		0.3
Density	lb/in ³	0.29
Specific Heat	BTU/lb-°F	0.11
Coefficient of Thermal Expansion	in/in-°F	8.5 x 10 ⁻⁶
Thermal Conductivity	BTU/sec-in-°F	1.90 x 10 ⁻⁴

Table 9: Ma	terial Proj	perties for	A-376	TP	316
-------------	-------------	-------------	-------	----	-----

Note: 1. Material properties are taken at a temperature of 70 °F from Reference [4].

Event	K _{max}	K _{min}
Charging Transient	Thermal Expansion _{max} , Thermal Transient _{max} , Pressure _{max} , Deadweight, Residual, Seismic _{max} Crack Face Pressure	Thermal Expansion _{min} , Thermal Transient _{min} , Pressure _{min} , Deadweight, Residual, Seismic _{min}

Table 10: Fatigue Crack Growth Loadings

Table 11:]	Initial,	Final,	and	Allowable	Flaw	Sizes
-------------	----------	--------	-----	-----------	------	-------

- Flaw	Depth (in)	Length (in)	a/t ⁽¹⁾	l/circ ⁽²⁾	Years
Initial	0.075	0.45	0.175	0.032	N/A
Final	0.0917	0.48	0.21	0.034	40 ⁽³⁾

Notes: 1. a/t is the ratio of the flaw depth to the pipe wall thickness.

2. l/circ is the ratio of the flaw length to the pipe circumference.

3. Flaw growth was evaluated for an additional 40 years.

For combined Loading									
	A	llowable flaw	depth (a/t)						
	Level A	Level B	Level C	Level D					
I/Cir.	SR=0.2112	SR=0.2298	SR=0.2941	SR=0.3157					
0	0.75	0.75	0.75	0.75					
0.1	0.75	0.75	0.75	0.75					
0.2	0.75	0.75	0.75	0.75					
0.3	0.75	0.75	0.75	0.75					
0.4	0.75	0.75	0.75	0.75					
0.5	0.7343	0.7381	0.703	0.7328					
0.6	0.6843	0.6983	0.6465	0.6912					
0.75	0.6366 0.6502 0.5983 0.6328								
	tross Patia L/Cir -	0.034							

Table 12: Allowable Flaw Sizes

For Combined Loading

SR= Stress Ratio, L/Cir. = 0.034

For Membrane Loading

	A	llowable flaw	depth (a/t)	
	Level A	Level B	Level C	Level D
I/Cir.	SR=0.4962	SR=0.4424	SR=0.3329	SR=0.2410
0	0.75	0.75	0.75	0.75
0.1	0.75	0.75	0.75	0.75
0.2	0.75	0.75	0.75	0.75
0.3	0.75	0.75	0.75	0.75
0.4	0.7115	0.733	0.75	0.75
0.5	0.6146	0.6791	0.7434	0.75
0.6	0.5542	0.6134	0.7203	0.75
0.75	0.5038	0.5576	0.6671	0.7295

SR= Stress Ratio, L/Cir. = 0.034

Structural Integrity Associates, Inc.®

Weldment WIC-45A

Note: Location of the flaw is circled in the picture. The node of interest is #15 E. Drawing is from Reference 1.

File No.: **1800289.301** Revision: 1

Figure 2. Isometric Drawing of the Charging Pump 2-2 Line Weldment RB-46-7

Note: Location of the flaw is circled in the picture. The node of interest is #348-380. Drawing is from Reference 2.

File No.: **1800289.301** Revision: 1

DCPP Weld RB-46-7

File No.: **1800289.301** Revision: 1 Page 39 of 41

Figure 5. Semi-Elliptic Flaw on Inside Surface of a Cylinder

Structural Integrity Associates, Inc.®

APPENDIX A

NDE ISI EXAMINATION DATA

(Selected pages)

File No.: **1800289.301** Revision: 1 Page A-1 of A-6

DCPP Form 69-22145 (04/25/17)

U1&2

NDE PDI-UT-3 Attachment 2 Page 1 of 1

Sizing Examination Data Sheet

Line 45-4 Weld WIC-45A Item No. 32 Config Pipe-Elbow Iso 2.2-38 XDCR Angles below XDCR Modes below Scan Gain var Weld Crown Width 0.8	Sizing Exa	amination D	ata Sheet								Pa	ge 6 or	57
XDCR Angles below XDCR Modes below Scan Gain var Weld Crown Width 0.8	Line	45-4	Weld	WIC-45A)		Item No.	32	Config	Pipe-Elbow	Iso	2.2-38	
	XÌ	OCR Angles	below	XDCR	Modes	below		Scan Gain	var	Weld Crown	Width	0.8	

Ind	Angle						Corrected Remaining Thru-							
#	Used	dB	OD Tech.	L1	L2	Length	Length	Ligament	Wall	Remarks				
1	60 DS		AATT	8"	8.5"	0.5"	0.4"	0.4" 0.435"		2.25 MHz, elbow side				
1	60 US		TTAA					0.450"	.060	2.25 MHz, Pipe Side				
1	60 DS		AATT					0.460"	.05	5.0 MHz, elbow side				
	60 RL		AATT							See Below				
Contract of the Property Level and the second	ODCR		Hi >							See Below				
	70 AATT 2.2 5Mhz, elbow and pipe sides													
Note	Note: Length measurements are determined using the applicable qualified PDI detection procedure and included here for info only.													
Com	ments													
60 1	RL appl.	ied t	to pipe st	ide (t)	nrough	weld),	no distir	nct indicat	ions a	ttributable to indication noted.				
ODCI	R elbow	side	e detecte	d an i:	ndicat.	ion at	4+ screen	divisions,	outsi	de the calibrated depth range. An				
add	itional	sig	hal is pr	esent .	≦t ~3	divisio	ns while t	the transdu	cer is	bridging base metal and crown.				
Thi	This signal is attributed to the shear wave component and therefore considered invalid.													
70	shear a	ppli	ed to pip	e and	elbow	sides f	or indicat	tion confir	mation	, length sizing and to confirm the				
	and the second se	<i>m</i> +	1 1 1		-		· · · ·	e		1 11 1				

abse	ence	or mid-y	vall	refectors	. see	attached	white	paper	ICT add.	ltional	aiscu:	ssion.			
Exami	ner	M. Les	er	m. for	11		Level	111	Examiner	NIA		,	1 1	Level	NIA
Revie	N	Tich	PR9	HER OT	1L	L-III	Date	2-24-18	ANII	GUADAG	NOU C	Ch. An	head-	Date	3/6/13
											,	1	/		

F0306-01R2

Indication data sheet.doc 0224.2223

ISI INSERVICE INSPECTION

Page 7 of 7

WIC-45A Through-wall/Length Sizing Process and Results

- 60° shear wave technique from the <u>elbow</u> side, both 2.25MHz and 5.0MHz were used for the through- wall sizing of record.
 - Both frequencies produced repeatable indications at 0.480" 0.510" range. In a limited area near the CW end of the flaw, a minimum remaining ligament of 0.435" was detected.
 - The elbow wall thickness is 0.510 in the area, resulting in a flaw through wall dimension of 0.075".
- 70° Shear (detection calibration) was used to determine the length of the indication; length was determined to be 0.5", with an ID corrected length of 0.4".

Supporting results and other information

- 60° shear, 2.2.5 MHz from the far side of the weld (pipe) produced repeatable indications that were typically in the same range as the indications above.
- 60° Dual L-wave from the far side (pipe) did not produce distinctive indications in the area of interest. This is believed to be due to the small through-wall dimension of the flaw and the longer longitudinal search unit wave-length.
 - 60° Dual L-wave from the near side (elbow) was not effective due to lack of contact in the elbow intrados area even though it is a small dual search unit.
- OD Creeper technique produced indications in the area of interest as follows:
 - An indication at approximately 4+ screen divisions, which is well outside the calibrated range of the technique.
 - An indication at approximately 3 screen divisions. This indication is quite large in amplitude, but is obtained with the transducer bridging over a gap between the base material and weld area. This transducer position would place the reflector (detected with the OD creeper) location far outside the area of interest. In addition, the indication has a rapid rise and fall, i.e. short travel, which is characteristic of the shear (unused) component of the search unit rather than the OD creeping wave which is calibrated. For these reasons, the ODCR indications are not considered useful.
- 70° Shear, both 2.25 MHz and 5.0 MHz were applied and produced repeatable indications in the area of interest. Due to the large beam spread from the small diameter search units, repeatable calibration proved difficult in the examination depth. Due to the crisper response of the 60° search units, they provide more accurate measurements at the depth of interest.
 - No deep, (near surface) indications were detected with the 70° search units.
- Phased array 5Mhz shear wave setup produced repeatable indications from the far side (pipe), but cannot be credited for sizing through the weld. Unfortunately, The phased array search unit did not achieve contact on the intrados of the elbow, so no near side data was acquired.

ISI INSERVICE INSPECTION

and a second

File No.: **1800289.301** Revision: 1

File No.: **1800289.301** Revision: 1

Indication Data Sheet

NDE UT-PIPE-TWSMPA1 R1 Page 7 of 7

U1 &2 Attachment 3: Page 1.of 1

				and the second se	-					1	1		
Weld	No:	RB-4	6-7)	Line:	46			Compone	nt Temp	: 6	9°F		Page 2 of 5
lnd. No.	Data File Name	Scan Type AX/Circ	Scan Direc. UP/DN CW/CCW	Ind.Start (L1) (check)	Ind.Stop (L2) (check)	Pos. (W) Ref. Point	Pos. (W) Dim.	Sweep .or MP	Depth From OD	Pipe Wall Thick	TW. Dim.	Technique/Indication Description	Accept/Reject
1	2846F0 F	AX	US	1.0	1.56	-850	.850	. 825	.413	.480	.067*	PATT 60° Focal Caw	Reject .
									L				
			÷							-		·	
						•							•
		· - ·	1.									· ·	
				×				•				5	
Cor	nments:	-	·	· ·	40	4	1458		/	,			
			•			× /	-			•		LAT-A Index Point	
Ex	aminer:	Dr	and Wilsa	- Doul	he-	L	evel:	TH			Dat	e: Z-24-18	
Ex	aminer:			~ 1		L	evel:	,			Dat	e:	
Re	eviewer:	M.	Lever, m	K.L.	•	L	evel:	řμ			Dat	e: 2/24/18	
A	411:	: Ch	Gudigne	1. GUADAI	ALCI1 .						Dat	e: 3/6/12	v

NDE_UT-PIPE-TWSMPA1u3r01.DOC 0208.1045

Page A-4 of A-6

DCPP Form 69-22145 (04/25/17)

U1&2

NDE PDI-UT-3 Attachment 2 Page 1 of 1 Structural Integrity Associates, Inc.®

Sizing Examination Data Sheet

NDE PDI-UT-303r04.DOC 0425.1351

Page 2-13 RB - 46-7 46 Weld Item No. 18-46-7 Iso 2:2.4/ Line Config Tto PIPE. XDCR Modes **XDCR** Angles 60 Shear Scan Gain 3803 Weld Crown Width .8 Angle Corrected Remaining Thru-Ind dB L2 Ligament Wall Used OD Tech. L1 Length Length Remarks # PATT 1.56" . 56" .45" .413 .067" 37 60 5 See Gomments . . . Note: Length measurements are determined using the applicable qualified PDI detection procedure and included here for info only. Indication appears to have good Signed to Nase over Background Comments: No THE signals were observed. Surrounding security is clean of signals indication and corner trop appear to be one indication - string was from the peaked signal with least sound Path/ nepth. Stand L. Wilson Jane Mala TAL Examiner Examiner Level Level 2/24/18 ANII Review Date GUADAGLOU Date 3/6/12 M. 468 480 4

Page A-5 of A-6

Structural Integrity Associates, Inc.®

Page 545

File No.: **1800289.301** Revision: 1 Page A-6 of A-6

Structural Integrity Associates, Inc.®

APPENDIX B

COMPUTER FILE LISTING

File No.: **1800289.301** Revision: 1 Page B-1 of B-3

SI-TIFFANY Files

trans1.dat	SI-TIFFANY input file
trans1.rpt	SI-TIFFANY output file, which echoes the inputs
trans1.mnn	SI-TIFFANY output file with tabulated K _{min} values
trans1.mxn	SI-TIFFANY output file with tabulated K _{max} values

pc-CRACK Files

LevelA.pcf	pc-CRACK input file for Service Level A EPFM evaluation
LevelB.pcf	pc-CRACK input file for Service Level B EPFM evaluation
LevelC.pcf	pc-CRACK input file for Service Level C EPFM evaluation
LevelD.pcf	pc-CRACK input file for Service Level D EPFM evaluation
LevelA.rpt	pc-CRACK output file for Service Level A EPFM evaluation
LevelB.rpt	pc-CRACK output file for Service Level B EPFM evaluation
LevelC.rpt	pc-CRACK output file for Service Level C EPFM evaluation
LevelD.rpt	pc-CRACK output file for Service Level D EPFM evaluation
CGVarAC.pcf	pc-CRACK input file for fatigue crack growth for variable aspect ratio
GrkGrw.rpt	pc-CRACK output file for fatigue crack growth for variable aspect ratio
CrkGrw.kva	pc-CRACK file including K vs A for fatigue crack growth with variable aspect ratio
CrkGrw.avn	pc-CRACK file including crack depth vs time for fatigue crack growth with variable aspect ratio

APPENDIX C

PC-CRACK OUTPUT FILES

File No.: **1800289.301** Revision: 1 Page C-1 of C-22

Service Level A

pc-CRACK 4.1 CS Version Control No. 4.1.0.0 Structural Integrity Associates, Inc. www.structint.com pccrack@structint.com Date: 03/01/2018 14:09 Input Data read from D:\01.Project\11.DCPP\LevelA.pcf Analysis Title: DCCP Weld WIC-45A Units Selected: US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Jic - in-lbs/in^2 Analysis Type: ASME Section XI IWB-3640 (2004) Crack Geometry Orientation: Circumferential Crack Depth = 0.0750 Crack Length = 0.4500 Pipe Geometry Nominal Pipe Size = 4.0000 Outer Diameter = 4.5000 Wall Thickness = 0.4370 Service Level: A The allowable flaw size is determined using Tables Stresses 7.2380 (safety factor = 2.7000) Pm = 0.6000 (safety factor = Pb = 2.3000) Pe = 1.1960 K (Residual Stress) = 0.0000 Material: Stainless Steel Flux weld 51.2000 Flow Stress = Number of Warnings in Inputs: 0

File No.: **1800289.301** Revision: 1 Page C-2 of C-22

Analysis Results

Failure Mode per Screening Criteria: EPFM (Class 1 screening rules used) Table C-5310-1 used 0.2122 Stress Ratio = Z factor = 1.3000 l/circumference =
allowable a/t = 0.0318 0.7500 (Combined Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.7500 0.1000 0.7500 0.2000 0.3000 0.7500 0.4000 0.7500 0.7329 0.5000 0.6829 0.6000 0.7500 0.6353 Table C-5310-5 used Stress Ratio (= 0.4962 Z factor = 1.3000 l/circumference = 0.0318 allowable a/t = 0.7500 (Membrane Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.7500 0.2000 0.3000 0.7500 0.4000 0.7115 0.5000 0.6146 0.5542 0.6000 0.7500 0.5038

Note: Allowable crack size is calculated based on the failure mode indicated by the screening criteria which is based on the input crack size

Number of Runtime Warnings: 0

*** End of pc-CRACK output ***

File No.: **1800289.301** Revision: 1

Service Level B

pc-CRACK 4.1 CS Version Control No. 4.1.0.0 Structural Integrity Associates, Inc. www.structint.com pccrack@structint.com Date: 02/27/2018 14:33 Input Data read from D:\DCPP 1800289\Weld WIC-45A\LevelB.pcf Analysis Title: DCCP Weld WIC-45A Units Selected: US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Jic - in-lbs/in^2 Analysis Type: ASME Section XI IWB-3640 (2004) Crack Geometry Orientation: Circumferential Crack Depth = 0.0750 0.4500 Crack Length = Pipe Geometry Nominal Pipe Size = 4.0000 Outer Diameter = 4.5000 Wall Thickness = 0.4370 Service Level: B The allowable flaw size is determined using Tables Stresses Pm = 7.2600 (safety factor = 2.4000) Pb = 1.1916 (safety factor = 2.0000) Pe = 1.1950 K (Residual Stress) = 0.0000 Material: Stainless Steel Flux weld Flow Stress = 51,2000 Number of Warnings in Inputs: 0

File No.: **1800289.301** Revision: 1 Page C-4 of C-22

Analysis Results Failure Mode per Screening Criteria: EPFM (Class 1 screening rules used) Table C-5310-2 used 0.2298 Stress Ratio = Z factor = 1.3000 l/circumference = 0.0318 allowable a/t = 0.7500 (Combined Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.7500 0.2000 0.3000 0.7500 0.4000 0.7500 0.5000 0.7381 0.6983 0.6000 0.7500 0.6502 Table C-5310-5 used Stress Ratio = 0.4424 Z factor = 1.3000 l/circumference = 0.0318 allowable a/t = 0.7500 (Membrane Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.2000 0.7500 0.7500 0.3000 0.4000 0.7330 0.5000 0.6791 0.6134 0.6000 0.7500 0.5576 Note: Allowable crack size is calculated based on the failure mode indicated

Note: Allowable crack size is calculated based on the failure mode indicated by the screening criteria which is based on the input crack size

Number of Runtime Warnings: 0

*** End of pc-CRACK output ***

File No.: **1800289.301** Revision: 1 Page C-5 of C-22

Service Level C

pc-CRACK 4.1 CS Version Control No. 4.1.0.0 Structural Integrity Associates, Inc. www.structint.com pccrack@structint.com Date: 02/27/2018 14:33 Input Data read from D:\DCPP 1800289\Weld WIC-45A\LevelC.pcf Analysis Title: DCCP Weld WIC-45A Units Selected: US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Jic - in-lbs/in^2 Analysis Type: ASME Section XI IWB-3640 (2004) Crack Geometry Orientation: Circumferential Crack Depth = 0.0750 Crack Length = 0.4500 Pipe Geometry Nominal Pipe Size = 4.0 Outer Diameter = 4.5000 Wall Thickness = 0.4370 4.0000 Service Level: C The allowable flaw size is determined using Tables Stresses Pm = 7.2850 (safety factor = 1.8000) Pb = 1.7930 (safety factor = 1.6000) Pe = 4.0050 K (Residual Stress) = 0.0000 Material: Stainless Steel Flux weld Flow Stress = 51.2000 Number of Warnings in Inputs: 0

File No.: **1800289.301** Revision: 1 Page C-6 of C-22

Analysis Results Failure Mode per Screening Criteria: EPFM (Class 1 screening rules used) Table C-5310-3 used Stress Ratio = 0.2941 Z factor = 1.3000 l/circumference = 0.0318 allowable a/t = 0.7500 (Combined Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.2000 0.7500 0.3000 0.7500 0.4000 0.7500 0.5000 0.7030 0.6000 0.6465 0.7500 0.5983 Table C-5310-5 used Stress Ratio = 0.3329 Z factor = 1.3000 l/circumference = 0.0318 allowable a/t = 0.7500 (Membrane Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.2000 0.7500 0.7500 0.3000 0.4000 0.7500 0.5000 0.7434 0.6000 0.7203 0.7500 0.6671 Note: Allowable crack size is calculated based on the failure mode indicated by the screening criteria which is based on the input crack size Number of Runtime Warnings: 0 *** End of pc-CRACK output ***

File No.: **1800289.301** Revision: 1

Service Level D

pc-CRACK 4.1 CS Version Control No. 4.1.0.0 Structural Integrity Associates, Inc. www.structint.com pccrack@structint.com Date: 02/27/2018 14:34 Input Data read from D:\DCPP 1800289\Weld WIC-45A\LevelD.pcf Analysis Title: DCCP Weld WIC-45A Units Selected: US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Jic - in-lbs/in^2 Analysis Type: ASME Section XI IWB-3640 (2004) Crack Geometry Orientation: Circumferential Crack Depth = 0.0750 Crack Length = 0.4500 Pipe Geometry Nominal Pipe Size = 4.0000 4.0Wall Thickness =0 Service Level: D The allowable flaw size is determined using Tables Stresses Pm = 7.3020 (safety factor = 1.3000) Pb = 2.2700 (safety factor = 1.4000) Pe = 4.0050 K (Residual Stress) = 0.0000 Material: Stainless Steel Flux weld Flow Stress = 51.2000 Number of Warnings in Inputs: 0

File No.: **1800289.301** Revision: 1

Analysis Results Failure Mode per Screening Criteria: EPFM (Class 1 screening rules used) Table C-5310-4 used Stress Ratio = 0.3157 Z factor = 1.3000 0.0318 l/circumference = allowable a/t = 0.7500 (Combined Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.7500 0.2000 0.7500 0.3000 0.7500 0.4000 0.5000 0.7328 0.6000 0.6912 0.7500 0.6328 Table C-5310-5 used Stress Ratio = 0.2410 Z factor = 1.3000 l/circumference = 0.0318 allowable a/t = 0.7500 (Membrane Loading) l/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.2000 0.7500 0.3000 0.7500 0.4000 0.7500 0.5000 0.7500 0.6000 0.7500

Note: Allowable crack size is calculated based on the failure mode indicated by the screening criteria which is based on the input crack size

Number of Runtime Warnings: 0

0.7500

*** End of pc-CRACK output ***

0.7295

Fatigue Crack Growth - Variable Aspect Ratio

pc-CRACK 4.1 CS

Version Control No. 4.1.0.0

Structural Integrity Associates, Inc.
www.structint.com
pccrack@structint.com

Date: 03/01/2018 06:18

Input Data read from D:\DCPP 1800289\Weld WIC-45A\CGVarAC.pcf

Analysis Title: DCCP Weld WIC-45A

Units Selected: US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours

Analysis Type: Crack Growth (LEFM)

Crack Growth Calculation Method - Cycle/Time Stepping Maxinum Number of Load Blocks = 40 Block Print Interval = 1

Crack Model: 309-Semi-Elliptical Circumferential Crack in Cylinder on the Inside Surface (Chapuliot) Crack Depth, a = 0.0750 Half Crack Length, c = 0.2250 Wall Thickness, t = 0.4370 Inside Radius, Ri = 1.8130 Aspect ratio allowed to vary Maximum a/t = 0.7 Crack Depth Print Increment for SIF Tabulation = 0.1 Maximum Aspect Ratio (c/a) for SIF Tabulation = 5 Aspect Ratio Increment for SIF Tabulation = 0.2

Total Load Cases: 6

Load Case 1:DW Type: Stress Coefficients Input by User

Coefficient	CO	=	0.6290
Coefficient	C1	=	0.0000
Coefficient	C2	=	0.0000
Coefficient	C3	=	0.0000

Load Case 2:OBE Type: Stress Coefficients Input by User

Coefficient	C0	=	0.6130
Coefficient	C1	=	0.0000
Coefficient	C2	=	0.0000
Coefficient	C3	=	0.0000

Load Case 3:Residual Type: Stress Coefficients Input by User

Coefficient	C0	=	27.4000
Coefficient	C1	=	0.0000
Coefficient	C2	=	0.0000
Coefficient	C3	=	0.0000

Load Case 4:Trans Max

File No.: **1800289.301** Revision: 1 Page C-10 of C-22

2-d SIF Input by User

The SIF originally read from D:\DCPP 1800289\Weld WIC-45A\trans1.mxn

	-		
No. of aspect a/c =	ratios (a/c) 0.1250	in the tables	= 6
Crack Depth	Kdeepest	Ksurface	
4.370E-03 0.0437 0.0874 0.1311 0.1748 0.2185 0.2622 0.3059 0.3452 0.3496	2.4027 6.2314 7.1142 7.4768 7.3526 7.0997 8.3834 10.2240 11.9800 12.1800	0.8950 2.7154 3.6305 4.3819 4.9733 5.5248 5.9997 6.6660 7.2282 7.2886	
a/c = Crack Depth	0.1500 Kdeepest	Ksurface	
4.370E-03 0.0437 0.0874 0.1311 0.1748 0.2185 0.2622 0.3059 0.3452 0.3496	2.3769 6.1473 6.9980 7.2875 7.0807 6.9092 8.1272 9.8355 11.4590 11.6450	0.9790 2.9656 3.9621 4.7948 5.4596 6.0647 6.5791 7.2603 7.8222 7.8816	
a/c = Crack Depth	0.2000 Kdeepest	Ksurface	
4.370E-03 0.0437 0.0874 0.1311 0.1748 0.2185 0.2622 0.3059 0.3452 0.3496	2.3209 5.9688 6.7550 6.9014 6.5354 6.5216 7.6085 9.0542 10.4180 10.5730	1.1403 3.4465 4.5989 5.5885 6.3947 7.1039 7.6951 8.4044 8.9640 9.0217	
a/c = Crack Depth	0.2500 Kdeepest	Ksurface	
4.370E-03 0.0437 0.0874 0.1311 0.1748 0.2185 0.2622 0.3059 0.3452 0.3496	2.2607 5.7809 6.5028 6.5119 5.9939 6.1308 7.0887 8.2777 9.3875 9.5131	$\begin{array}{c} 1.2925\\ 3.9001\\ 5.2000\\ 6.3373\\ 7.2778\\ 8.0857\\ 8.7491\\ 9.4841\\ 10.0400\\ 10.0960\end{array}$	
a/c = Crack Depth	0.5000 Kdeepest	Ksurface	
4.370E-03 0.0437 0.0874 0.1311 0.1748	1.9620 4.9421 5.4405 5.2241 4.5586	1.6314 4.9206 6.5758 7.8334 8.7938	

File No.: **1800289.301** Revision: 1 Page C-11 of C-22

0.2185	4.9422	9.7181
0.2622	5.5776	10.4790
0.3059	6.2845	10.9070
0.3452	6.9250	11.1770
0.3496	6.9965	11.2010
a/c =	1.0000	
Crack Depth	Kdeepest	Ksurface
4.370E-03	1.4605	1.7158
0.0437	3.5619	5.1232
0.0874	3.7551	6.7634
0.1311	3.5226	7.9784
0.1748	3.1763	8.8914
0.2185	3.6039	9.6159
0.2622	4.0057	10.1960
0.3059	4.4364	10.7160
0.3452	5.2345	11.1020
0.3496	5.3757	11.1400

Load Case 5:Trans Min 2-d SIF Input by User

The SIF originally read from D:\DCPP 1800289\Weld WIC-45A\trans1.mnn

6

No. of aspect a/c =	ratios (a/c) 0.1250	in the tables =
Crack Depth	Kdeepest	Ksurface
$\begin{array}{c} 4.370 \pm -03 \\ 0.0437 \\ 0.0874 \\ 0.1311 \\ 0.1748 \\ 0.2185 \\ 0.2622 \\ 0.3059 \\ 0.3452 \\ 0.3496 \end{array}$	-1.7725 -4.1372 -4.0350 -3.3699 -2.2281 -0.8004 -0.6973 -0.8545 -1.0047 -1.0219	-0.6664 -1.9929 -2.6082 -3.0849 -3.4235 -3.7180 -3.9398 -4.2621 -4.5028 -4.5266
a/c = Crack Depth	0.1500 Kdeepest	Ksurface
$\begin{array}{c} 4.370 \pm -03 \\ 0.0437 \\ 0.0874 \\ 0.1311 \\ 0.1748 \\ 0.2185 \\ 0.2622 \\ 0.3059 \\ 0.3452 \\ 0.3496 \end{array}$	-1.7533 -4.0792 -3.9631 -3.2558 -2.0673 -0.6151 -0.6751 -0.8215 -0.9611 -0.9770	-0.7288 -2.1730 -2.8373 -3.3610 -3.7384 -4.0448 -4.2618 -4.5486 -4.7405 -4.7581
a/c = Crack Depth	0.2000 Kdeepest	Ksurface
$\begin{array}{c} 4.370 \pm -03\\ 0.0437\\ 0.0874\\ 0.1311\\ 0.1748\\ 0.2185\\ 0.2622\\ 0.3059\\ 0.3452\\ 0.3496\end{array}$	$\begin{array}{c} -1.7118\\ -3.9563\\ -3.8135\\ -3.0260\\ -1.7508\\ -0.5357\\ -0.6301\\ -0.7553\\ -0.8737\\ -0.8872\end{array}$	-0.8486 -2.5189 -3.2781 -3.8911 -4.3442 -4.6734 -4.8805 -5.0979 -5.1951 -5.2005

File No.: **1800289.301** Revision: 1 Page C-12 of C-22

a/c = Crack Depth	0.2500 Kdeepest	Ksurface
4.370E-03 0.0437 0.1311 0.1748 0.2185 0.2622 0.3059 0.3452 0.3496	-1.6673 -3.8275 -3.6593 -2.7974 -1.4425 -0.5017 -0.5852 -0.6894 -0.7872 -0.7983	-0.9617 -2.8449 -3.6935 -4.3913 -4.9162 -5.2661 -5.4649 -5.6155 -5.6221 -5.6156
a/c = Crack Depth	0.5000 Kdeepest	Ksurface
4.370E-03 0.0437 0.0874 0.1311 0.1748 0.2185 0.2622 0.3059 0.3452 0.3496	$\begin{array}{c} -1.4464 \\ -3.2524 \\ -2.9947 \\ -2.0874 \\ -0.7805 \\ -0.4066 \\ -0.4645 \\ -0.5289 \\ -0.5880 \\ -0.5946 \end{array}$	-1.2131 -3.5708 -4.6264 -5.3399 -5.7952 -6.1415 -6.3160 -6.2050 -5.9858 -5.9552
a/c = . Crack Depth	1.0000 Kdeepest	Ksurface
4.370E-03 0.0437 0.0874 0.1311 0.1748 0.2185 0.2622 0.3059 0.3452 0.3452	-1.0755 -2.3088 -1.9570 -1.2031 -0.2593 -0.2980 -0.3353 -0.3774 -0.7821 -0.8822	-1.2756 -3.7096 -4.7323 -5.4016 -5.8146 -6.0523 -6.1579 -6.1768 -6.1110 -6.0992
Load Case 6:Crac Type: Stress Coe	ck Face Pres efficients Inpu	t by User
Coefficient C0 Coefficient C1 Coefficient C2 Coefficient C3	$ \begin{array}{rcl} = & 2.8000 \\ = & 0.0000 \\ = & 0.0000 \\ = & 0.0000 \\ \end{array} $	
Load Sub-Block	‡ 1	
Load Sub-block M Maximum Load Case Multip 1.0000 1.0000 1.0000 1.0000	Name: Charging Solier Load Case Trans Mar DW OBE Residual Crack For	Line Transient e ID X
Minimum	Clack Fa	Se TIES
Load Case Multip 1.0000 1.0000 -1.0000 1.0000	olier Load Case Trans Min DW OBE Residual	e ID n

File No.: **1800289.301** Revision: 1 Page C-13 of C-22

Growth Law: Paris Cycles/Time: 14 Calc. Interval: 1 Print Interval: 14

Material: 3 Stainless Steel: Type 316

Paris Crack Growth Law

The Fatigue Crack Growth Rate in/cycle (or m/cycle) is given by:

 $da/dN = C * (Delta K)^n$

where
 Delta K = Kmax - Kmin
 C,n = empirical constants

da/dN = 0 for Delta K < Delta K Threshold

No. of Data in the KIC Table = 2

Crack Depth KIC 0.0000 200.0000 10.0000 200.0000

messages/Warnings: Solution for Ri/t of 0.2 and 0.5 will be used

Number of Warnings in Inputs: 0

- - - - - - - - ANALYSIS RESULTS - - - - - - - -

STRESS INTENSITY FACTORS

Load Case	# 1: DW				
	Crack Din	mensions		K at t	ips
a	С	a/t	c/a	a	С
c/a =	3.0000				
0.0750	0.2250	0.1716	3.0000	0.2995	0.1915
0.1750	0.5250	0.4005	3.0000	0.4949	0.3171
0.2750	0.8250	0.6293	3.0000	0.6982	0.4530
c/a =	3.2000				
0.0750	0.2400	0.1716	3.2000	0.3032	0.1884
0.1750	0.5600	0.4005	3.2000	0.5028	0.3127
0.2750	0.8800	0.6293	3.2000	0.7127	0.4474
c/a =	3.4000				
0.0750	0.2550	0.1716	3.4000	0.3065	0.1856
0.1750	0.5950	0.4005	3.4000	0.5098	0.3088
0.2750	0.9350	0.6293	3.4000	0.7254	0.4425

File No.: **1800289.301** Revision: 1 Page C-14 of C-22

c/a =	3.6000				
0.0750 0.1750 0.2750	0.2700 0.6300 0.9900	0.1716 0.4005 0.6293	3.6000 3.6000 3.6000	0.3094 0.5159 0.7367	0.1832 0.3053 0.4381
c/a =	3.8000				
0.0750 0.1750 0.2750	0.2850 0.6650 1.0450	0.1716 0.4005 0.6293	3.8000 3.8000 3.8000	0.3120 0.5215 0.7468	0.1810 0.3022 0.4341
c/a =	4.0000				
0.0750 0.1750 0.2750	0.3000 0.7000 1.1000	0.1716 0.4005 0.6293	4.0000 4.0000 4.0000	0.3143 0.5264 0.7560	0.1791 0.2994 0.4306
c/a =	4.2000				
0.0750 0.1750 0.2750	0.3150 0.7350 1.1550	0.1716 0.4005 0.6293	4.2000 4.2000 4.2000	0.3166 0.5329 0.7709	0.1750 0.2924 0.4198
c/a =	4.4000				
0.0750 0.1750 0.2750	0.3300 0.7700 1.2100	0.1716 0.4005 0.6293	4.4000 4.4000 4.4000	0.3187 0.5388 0.7844	0.1714 0.2860 0.4101
c/a =	4.6000				
0.0750 0.1750 0.2750	0.3450 0.8050 1.2650	0.1716 0.4005 0.6293	4.6000 4.6000 4.6000	0.3206 0.5441 0.7968	0.1680 0.2802 0.4011
c/a =	4.8000				
0.0750 0.1750 0.2750	0.3600 0.8400 1.3200	0.1716 0.4005 0.6293	4.8000 4.8000 4.8000	0.3223 0.5490 0.8081	0.1650 0.2748 0.3929
Load Case	# 2: OBE				
a c/a =	Crack Di: c 3.0000	mensions a/t	c/a	K at a	tips c
0.0750 0.1750 0.2750	0.2250 0.5250 0.8250	0.1716 0.4005 0.6293	3.0000 3.0000 3.0000	0.2919 0.4823 0.6805	0.1866 0.3091 0.4415
c/a =	3.2000				
0.0750 0.1750 0.2750	0.2400 0.5600 0.8800	0.1716 0.4005 0.6293	3.2000 3.2000 3.2000	0.2955 0.4900 0.6945	0.1836 0.3048 0.4360
c/a =	3.4000				
0.0750 0.1750 0.2750	0.2550 0.5950 0.9350	0.1716 0.4005 0.6293	3.4000 3.4000 3.4000	0.2987 0.4968 0.7069	0.1809 0.3010 0.4312
c/a =	3.6000				
0.0750 0.1750 0.2750	0.2700 0.6300 0.9900	0.1716 0.4005 0.6293	3.6000 3.6000 3.6000	0.3015 0.5028 0.7180	0.1786 0.2976 0.4269

File No.: **1800289.301** Revision: 1 Page C-15 of C-22

-, -	3.8000					
0.0750 0.1750 0.2750	0.2850 0.6650 1.0450	0.1716 0.4005 0.6293	3.8000 3.8000 3.8000	0.3040 0.5082 0.7279	0.1764 0.2945 0.4231	
c/a =	4.0000					
0.0750 0.1750 0.2750	0.3000 0.7000 1.1000	0.1716 0.4005 0.6293	4.0000 4.0000 4.0000	0.3063 0.5131 0.7367	0.1745 0.2918 0.4196	
c/a =	4.2000					
0.0750 0.1750 0.2750	0.3150 0.7350 1.1550	0.1716 0.4005 0.6293	4.2000 4.2000 4.2000	0.3086 0.5193 0.7513	0.1706 0.2850 0.4092	
c/a =	4.4000					
0.0750 0.1750 0.2750	0.3300 0.7700 1.2100	0.1716 0.4005 0.6293	4.4000 4.4000 4.4000	0.3106 0.5251 0.7645	0.1670 0.2787 0.3996	
c/a =	4.6000					
0.0750 0.1750 0.2750	0.3450 0.8050 1.2650	0.1716 0.4005 0.6293	4.6000 4.6000 4.6000	0.3124 0.5303 0.7765	0.1638 0.2730 0.3909	
c/a =	4.8000					
0.0750	0.3600 0.8400	0.1716 0.4005	4.8000 4.8000	0.3141 0.5351	0.1608 0.2678	
0.2750	1.3200	0.6293	4.8000	0.7876	0.3829	
0.2750 Load Case	1.3200 # 3: Residual	0.6293	4.8000	0.7876	0.3829	
0.2750 Load Case a	1.3200 # 3: Residual Crack Di c	0.6293 mensions a/t	4.8000	0.7876 K at a	0.3829 tips c	
0.2750 Load Case a c/a =	1.3200 # 3: Residual Crack Di: c 3.0000	0.6293 mensions a/t	4.8000	0.7876 K at a	0.3829 tips c	
0.2750 Load Case a c/a = 0.0750 0.1750 0.2750	1.3200 # 3: Residual Crack Di c 3.0000 0.2250 0.5250 0.8250	0.6293 mensions a/t 0.1716 0.4005 0.6293	4.8000 c/a 3.0000 3.0000 3.0000	0.7876 K at a 13.0476 21.5594 30.4158	0.3829 tips c 8.3401 13.8153 19.7331	
0.2750 Load Case a c/a = 0.0750 0.1750 0.2750 c/a =	1.3200 # 3: Residual Crack Di c 3.0000 0.2250 0.5250 0.8250 3.2000	0.6293 mensions a/t 0.1716 0.4005 0.6293	4.8000 c/a 3.0000 3.0000 3.0000	0.7876 K at a 13.0476 21.5594 30.4158	0.3829 tips c 8.3401 13.8153 19.7331	
0.2750 Load Case a c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.1750 0.2750	1.3200 # 3: Residual Crack Dir C 3.0000 0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800	0.6293 mensions a/t 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	4.8000 c/a 3.0000 3.0000 3.0000 3.2000 3.2000 3.2000	0.7876 K at a 13.0476 21.5594 30.4158 13.2087 21.9027 31.0445	0.3829 tips c 8.3401 13.8153 19.7331 8.2054 13.6224 19.4891	
0.2750 Load Case a c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a =	1.3200 # 3: Residual Crack Dir c 3.0000 0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800 3.4000	0.6293 mensions a/t 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	4.8000 c/a 3.0000 3.0000 3.0000 3.2000 3.2000 3.2000	0.7876 K at a 13.0476 21.5594 30.4158 13.2087 21.9027 31.0445	0.3829 tips c 8.3401 13.8153 19.7331 8.2054 13.6224 19.4891	
0.2750 Load Case a c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a =	1.3200 # 3: Residual Crack Dir C 3.0000 0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800 3.4000 0.2550 0.5950 0.9350	0.6293 mensions a/t 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	4.8000 	0.7876 K at a 13.0476 21.5594 30.4158 13.2087 21.9027 31.0445 13.3509 22.2056 31.5993	0.3829 tips c 8.3401 13.8153 19.7331 8.2054 13.6224 19.4891 8.0865 13.4521 19.2739	
0.2750 Load Case a c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.2750 c/a = 0.2750 c/a = 0.2750 c/a = 0.2750 c/a = 0.2750 c/a = 0.2750 c/a = 0.2750 c/a =	1.3200 # 3: Residual Crack Dir C 3.0000 0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.5600 0.8800 3.4000 0.2550 0.5950 0.9350 3.6000	0.6293 mensions a/t 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	4.8000 	0.7876 K at a 13.0476 21.5594 30.4158 13.2087 21.9027 31.0445 13.3509 22.2056 31.5993	0.3829 tips c 8.3401 13.8153 19.7331 8.2054 13.6224 19.4891 8.0865 13.4521 19.2739	
0.2750 Load Case a c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750	<pre># 3: Residual Crack Dir 3.0000 0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800 3.4000 0.2550 0.5950 0.9350 3.6000 0.2700 0.6300 0.9900</pre>	0.6293 mensions a/t 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	4.8000 	0.7876 K at a 13.0476 21.5594 30.4158 13.2087 21.9027 31.0445 13.3509 22.2056 31.5993 13.4772 22.4748 32.0924	0.3829 tips c 8.3401 13.8153 19.7331 8.2054 13.6224 19.4891 8.0865 13.4521 19.2739 7.9809 13.3008 19.0825	
0.2750 Load Case a c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.2750 c/a =	<pre>1.3200 # 3: Residual Crack Di C 3.0000 0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800 3.4000 0.2550 0.9350 3.6000 0.2700 0.6300 0.9900 3.8000</pre>	0.6293 mensions a/t 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	4.8000 	0.7876 K at a 13.0476 21.5594 30.4158 13.2087 21.9027 31.0445 13.3509 22.2056 31.5993 13.4772 22.4748 32.0924	0.3829 tips c 8.3401 13.8153 19.7331 8.2054 13.6224 19.4891 8.0865 13.4521 19.2739 7.9809 13.3008 19.0825	

File No.: 1800289.301

Revision: 1

Page C-16 of C-22

0.2750	1.0450	0.6293	3.8000	32.5336	18.9113
c/a =	4.0000				
0.0750 0.1750 0.2750	0.3000 0.7000 1.1000	0.1716 0.4005 0.6293	4.0000 4.0000 4.0000	13.6920 22.9324 32.9307	7.8013 13.0435 18.7572
c/a =	4.2000				
0.0750 0.1750 0.2750	0.3150 0.7350 1.1550	0.1716 0.4005 0.6293	4.2000 4.2000 4.2000	13.7918 23.2134 33.5799	7.6254 12.7370 18.2886
c/a =	4.4000				
0.0750 0.1750 0.2750	0.3300 0.7700 1.2100	0.1716 0.4005 0.6293	4.4000 4.4000 4.4000	13.8825 23.4689 34.1701	7.4654 12.4583 17.8626
c/a =	4.6000				
0.0750 0.1750 0.2750	0.3450 0.8050 1.2650	0.1716 0.4005 0.6293	4.6000 4.6000 4.6000	13.9654 23.7022 34.7090	7.3193 12.2039 17.4736
c/a =	4.8000				
0.0750 0.1750 0.2750	0.3600 0.8400 1.3200	0.1716 0.4005 0.6293	4.8000 4.8000 4.8000	14.0413 23.9160 35.2030	7.1855 11.9706 17.1171
Load Case	# 4: Trans Ma Crack Di			K at	tips
a	C	a/t	c/a	а	С
c/a =	3.0000				
0.0750 0.1750 0.2750	0.2250 0.5250 0.8250	0.1716 0.4005 0.6293	3.0000 3.0000 3.0000	5.9650 5.5165 6.8862	5.2561 7.7870 9.5110
c/a = 0.0750 0.1750 0.2750 c/a =	0.2250 0.5250 0.8250 3.2000	0.1716 0.4005 0.6293	3.0000 3.0000 3.0000	5.9650 5.5165 6.8862	5.2561 7.7870 9.5110
c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750	0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800	0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	3.0000 3.0000 3.0000 3.2000 3.2000 3.2000	5.9650 5.5165 6.8862 6.0482 5.6360 7.0239	5.2561 7.7870 9.5110 5.1499 7.6606 9.3744
c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a =	0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800 3.4000	0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	3.0000 3.0000 3.0000 3.2000 3.2000 3.2000	5.9650 5.5165 6.8862 6.0482 5.6360 7.0239	5.2561 7.7870 9.5110 5.1499 7.6606 9.3744
c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a =	0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800 3.4000 0.2550 0.5950 0.9350	0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	3.0000 3.0000 3.0000 3.2000 3.2000 3.2000 3.4000 3.4000 3.4000	5.9650 5.5165 6.8862 6.0482 5.6360 7.0239 6.1217 5.7414 7.1454	5.2561 7.7870 9.5110 5.1499 7.6606 9.3744 5.0561 7.5491 9.2538
c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a =	0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800 3.4000 0.2550 0.5950 0.9350 3.6000	0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	3.0000 3.0000 3.0000 3.2000 3.2000 3.2000 3.4000 3.4000 3.4000	5.9650 5.5165 6.8862 6.0482 5.6360 7.0239 6.1217 5.7414 7.1454	5.2561 7.7870 9.5110 5.1499 7.6606 9.3744 5.0561 7.5491 9.2538
c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a =	0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800 3.4000 0.2550 0.9350 3.6000 0.2700 0.6300 0.9900	0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	3.0000 3.0000 3.0000 3.2000 3.2000 3.2000 3.4000 3.4000 3.4000 3.6000 3.6000 3.6000	5.9650 5.5165 6.8862 6.0482 5.6360 7.0239 6.1217 5.7414 7.1454 6.1870 5.8352 7.2534	5.2561 7.7870 9.5110 5.1499 7.6606 9.3744 5.0561 7.5491 9.2538 4.9728 7.4500 9.1466
c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.2750 c/a = 0.2750 c/a =	0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800 3.4000 0.2550 0.9350 3.6000 0.2700 0.6300 0.9900 3.8000	0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	3.0000 3.0000 3.0000 3.2000 3.2000 3.2000 3.4000 3.4000 3.4000 3.6000 3.6000 3.6000	5.9650 5.5165 6.8862 6.0482 5.6360 7.0239 6.1217 5.7414 7.1454 6.1870 5.8352 7.2534	5.2561 7.7870 9.5110 5.1499 7.6606 9.3744 5.0561 7.5491 9.2538 4.9728 7.4500 9.1466
c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750	0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800 3.4000 0.2550 0.9350 3.6000 0.2700 0.6300 0.9900 3.8000 0.2850 0.6650 1.0450	0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	3.0000 3.0000 3.0000 3.2000 3.2000 3.2000 3.2000 3.4000 3.4000 3.4000 3.6000 3.6000 3.6000 3.6000 3.8000 3.8000 3.8000	5.9650 5.5165 6.8862 6.0482 5.6360 7.0239 6.1217 5.7414 7.1454 6.1870 5.8352 7.2534 6.2454 5.9190 7.3500	5.2561 7.7870 9.5110 5.1499 7.6606 9.3744 5.0561 7.5491 9.2538 4.9728 7.4500 9.1466 4.8983 7.3613 9.0507
c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.1750 0.2750 c/a = 0.0750 0.2750 c/a = 0.2750 c/a =	0.2250 0.5250 0.8250 3.2000 0.2400 0.5600 0.8800 3.4000 0.2550 0.9350 3.6000 0.2700 0.6300 0.9900 3.8000 0.2850 0.6650 1.0450 4.0000	0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293 0.1716 0.4005 0.6293	3.0000 3.0000 3.0000 3.2000 3.2000 3.2000 3.4000 3.4000 3.4000 3.4000 3.6000 3.6000 3.6000 3.8000 3.8000 3.8000	5.9650 5.5165 6.8862 6.0482 5.6360 7.0239 6.1217 5.7414 7.1454 6.1870 5.8352 7.2534 6.2454 5.9190 7.3500	5.2561 7.7870 9.5110 5.1499 7.6606 9.3744 5.0561 7.5491 9.2538 4.9728 7.4500 9.1466 4.8983 7.3613 9.0507

File No.: **1800289.301** Revision: 1 Page C-17 of C-22

0.1750 0.2750	0.7000 1.1000	0.4005 0.6293	4.0000 4.0000	5.9945 7.4370	7.2815 8.9644
c/a =	4.2000				
0.0750 0.1750 0.2750	0.3150 0.7350 1.1550	0.1716 0.4005 0.6293	4.2000 4.2000 4.2000	6.3537 6.1233 7.5786	4.6980 7.0711 8.7116
c/a =	4.4000				
0.0750 0.1750 0.2750	0.3300 0.7700 1.2100	0.1716 0.4005 0.6293	4.4000 4.4000 4.4000	6.4043 6.2403 7.7074	4.5769 6.8799 8.4819
c/a =	4.6000				
0.0750 0.1750 0.2750	0.3450 0.8050 1.2650	0.1716 0.4005 0.6293	4.6000 4.6000 4.6000	6.4505 6.3472 7.8250	4.4664 6.7053 8.2721
c/a =	4.8000				
0.0750 0.1750 0.2750	0.3600 0.8400 1.3200	0.1716 0.4005 0.6293	4.8000 4.8000 4.8000	6.4929 6.4452 7.9328	4.3651 6.5452 8.0798
Load Case	# 5: Trans Min Crack Dimensions			K at tips	
c/a =	3.0000	a/t	c/a	a	С
0.0750 0.1750 0.2750	0.2250 0.5250 0.8250	0.1716 0.4005 0.6293	3.0000 3.0000 3.0000	-3.4940 -1.2184 -0.5716	-3.7441 -5.2108 -5.7672
c/a =	3.2000				
0.0750 0.1750 0.2750	0.2400 0.5600 0.8800	0.1716 0.4005 0.6293	3.2000 3.2000 3.2000	-3.5472 -1.2733 -0.5826	-3.6712 -5.1375 -5.7026
c/a =	3.4000				
0.0750 0.1750 0.2750	0.2550 0.5950 0.9350	0.1716 0.4005 0.6293	3.4000 3.4000 3.4000	-3.5942 -1.3218 -0.5924	-3.6070 -5.0729 -5.6457
c/a =	3.6000				
0.0750 0.1750 0.2750	0.2700 0.6300 0.9900	0.1716 0.4005 0.6293	3.6000 3.6000 3.6000	-3.6360 -1.3649 -0.6010	-3.5498 -5.0155 -5.5951
c/a =	3.8000				
0.0750 0.1750 0.2750	0.2850 0.6650 1.0450	0.1716 0.4005 0.6293	3.8000 3.8000 3.8000	-3.6734 -1.4035 -0.6088	-3.4987 -4.9641 -5.5498
c/a =	4.0000				
0.0750 0.1750 0.2750	0.3000 0.7000 1.1000	0.1716 0.4005 0.6293	4.0000 4.0000 4.0000	-3.7070 -1.4382 -0.6157	-3.4527 -4.9178 -5.5090
c/a =	4.2000				

File No.: **1800289.301** Revision: 1 Page C-18 of C-22

0.0750 0.1750 0.2750	0.3150 0.7350 1.1550	0.1716 0.4005 0.6293	4.2000 4.2000 4.2000	-3.7420 -1.5113 -0.6279	-3.3598 -4.7816 -5.3745	
c/a =	4.4000					
0.0750 0.1750 0.2750	0.3300 0.7700 1.2100	0.1716 0.4005 0.6293	4.4000 4.4000 4.4000	-3.7738 -1.5778 -0.6389	-3.2754 -4.6578 -5.2523	
c/a =	4.6000					
0.0750 0.1750 0.2750	0.3450 0.8050 1.2650	0.1716 0.4005 0.6293	4.6000 4.6000 4.6000	-3.8029 -1.6384 -0.6490	-3.1983 -4.5447 -5.1406	
c/a =	4.8000					
0.0750 0.1750 0.2750	0.3600 0.8400 1.3200	0.1716 0.4005 0.6293	4.8000 4.8000 4.8000	-3.8295 -1.6941 -0.6583	-3.1277 -4.4411 -5.0383	
Load Case	# 6: Crack	Face Pres				
a	Crack c	Dimensions	 c/a	K at a	tips c	
c/a =	3.0000					
0.0750 0.1750 0.2750	0.2250 0.5250 0.8250	0.1716 0.4005 0.6293	3.0000 3.0000 3.0000	1.3333 2.2032 3.1082	0.8523 1.4118 2.0165	
c/a =	3.2000					
0.0750 0.1750 0.2750	0.2400 0.5600 0.8800	0.1716 0.4005 0.6293	3.2000 3.2000 3.2000	1.3498 2.2382 3.1724	0.8385 1.3921 1.9916	
c/a =	3.4000					
0.0750 0.1750 0.2750	0.2550 0.5950 0.9350	0.1716 0.4005 0.6293	3.4000 3.4000 3.4000	1.3643 2.2692 3.2291	0.8264 1.3747 1.9696	
c/a =	3.6000					
0.0750 0.1750 0.2750	0.2700 0.6300 0.9900	0.1716 0.4005 0.6293	3.6000 3.6000 3.6000	1.3772 2.2967 3.2795	0.8156 1.3592 1.9500	
c/a =	3.8000					
0.0750 0.1750 0.2750	0.2850 0.6650 1.0450	0.1716 0.4005 0.6293	3.8000 3.8000 3.8000	1.3888 2.3213 3.3246	0.8059 1.3454 1.9325	
c/a =	4.0000					
0.0750 0.1750 0.2750	0.3000 0.7000 1.1000	0.1716 0.4005 0.6293	4.0000 4.0000 4.0000	1.3992 2.3435 3.3652	0.7972 1.3329 1.9168	
c/a =	4.2000					
0.0750 0.1750 0.2750	0.3150 0.7350 1.1550	0.1716 0.4005 0.6293	4.2000 4.2000 4.2000	1.4094 2.3722 3.4315	0.7792 1.3016 1.8689	
c/a =	4.4000					

File No.: **1800289.301** Revision: 1 Page C-19 of C-22
Structural Integrity Associates, Inc.®

0.0750	0.3300	0.1716	4.4000	1.4187	0.7629
0.1750	0.7700	0.4005	4.4000	2.3983	1.2731
0.2750	1.2100	0.6293	4.4000	3.4918	1.8254
c/a =	4.6000				
0.0750	0.3450	0.1716	4.6000	1.4271	0.7480
0.1750	0.8050	0.4005	4.6000	2.4221	1.2471
0.2750	1.2650	0.6293	4.6000	3.5469	1.7856
c/a =	4.8000				
0.0750	0.3600	0.1716	4.8000	1.4349	0.7343
0.1750	0.8400	0.4005	4.8000	2.4440	1.2233
0.2750	1.3200	0.6293	4.8000	3.5974	1.7492

CRACK GROWTH ANALYSIS RESULTS

Total Cycles /Time	Subblock Cycles /Time	Kmax	Kmin	DeltaK	DaDn /DaDt	Crack Dim a c	ensions a/t c/a
Blocks:	1	20.9676	9.5920	11.3755	2.994E-05	0.0754	0.1726
14.0000	14.0000	14.8815	4.6194	10.2620	2.375E-05	0.2253	2.9877
Blocks:	2	20.9999	9.6250	11.3749	2.994E-05	0.0758	0.1735
28.0000	14.0000	14.9406	4.6394	10.3012	2.395E-05	0.2257	2.9756
Blocks:	3	21.0322	9.6579	11.3743	2.994E-05	0.0763	0.1745
42.0000	14.0000	14.9996	4.6593	10.3403	2.416E-05	0.2260	2.9637
Blocks:	4	21.0643	9.6906	11.3737	2.993E-05	0.0767	0.1755
56.0000	14.0000	15.0585	4.6791	10.3794	2.436E-05	0.2263	2.9519
Blocks:	5	21.0964	9.7233	11.3731	2.993E-05	0.0771	0.1764
70.0000	14.0000	15.1173	4.6989	10.4184	2.457E-05	0.2267	2.9403
Blocks:	6	21.1284	9.7558	11.3725	2.993E-05	0.0775	0.1774
84.0000	14.0000	15.1760	4.7186	10.4574	2.478E-05		2.9289
Blocks:	7	21.1602	9.7882	11.3720	2.992E-05	0.0779	0.1783
98.0000	14.0000	15.2346	4.7382	10.4964	2.499E-05	0.2274	2.9176
Blocks:	8	21.1920	9.8206	11.3714	2.992E-05	0.0784	0.1793
112.0000	14.0000	15.2932	4.7578	10.5354	2.520E-05	0.2277	2.9065
Blocks:	9	21.2236	9.8528	11.3709	2.992E-05	0.0788	0.1803
126.0000	14.0000	15.3516	4.7773	10.5743	2.541E-05	0.2281	2.8955
Blocks:	10	21.2552	9.8849	11.3703	2.991E-05	0.0792	0.1812
140.0000	14.0000	15.4099	4.7968	10.6132	2.562E-05	0.2284	2.8847
Blocks:	11	21.2867	9.9169	11.3698	2.991E-05	0.0796	0.1822
154.0000	14.0000	15.4682	4.8162	10.6520	2.583E-05	0.2288	2.8741

File No.: **1800289.301** Revision: 1 Page C-20 of C-22

Structural Integrity Associates, Inc.®

Blocks:	12	21.3181	9.9488	11.3693	2.991E-05	0.0800	0.1831
168.0000	14.0000	15.5263	4.8355	10.6908	2.604E-05	0.2292	2.8636
Blocks:	13	21.3494	9.9806	11.3688	2.990E-05	0.0804	0.1841
182.0000	14.0000	15.5843	4.8547	10.7296	2.625E-05	0.2295	2.8532
Blocks:	14	21.3807	10.0123	11.3684	2.990E-05	0.0809	0.1850
196.0000	14.0000	15.6423	4.8739	10.7683	2.647E-05	0.2299	2.8430
Blocks:	15	21.4118	10.0439	11.3679	2.990E-05	0.0813	0.1860
210.0000	14.0000	15.7001	4.8931	10.8070	2.668E-05	0.2303	2.8330
Blocks:	16	21.4429	10.0754	11.3675	2.990E-05	0.0817	0.1870
224.0000	14.0000	15.7579	4.9122	10.8457	2.690E-05	0.2306	2.8230
Blocks:	17	21.4739	10.1069	11.3671	2.989E-05	0.0821	0.1879
238.0000	14.0000	15.8155	4.9312	10.8843	2.711E-05	0.2310	2.8132
Blocks:	18	21.5049	10.1382	11.3667	2.989E-05	0.0825	0.1889
252.0000	14.0000	15.8730	4.9501	10.9229	2.733E-05	0.2314	2.8036
,Blocks:	19	21.5357	10.1695	11.3663	2.989E-05	0.0830	0.1898
266.0000	14.0000	15.9305	4.9690	10.9615	2.755E-05		2.7941
Blocks:	20	21.5665	10.2006	11.3659	2.989E-05	0.0834	0.1908
280.0000	14.0000	15.9878	4.9878	11.0000	2.777E-05	0.2322	2.7847
Blocks:	21	21.5973	10.2317	11.3656	2.988E-05	0.0838	0.1917
294.0000	14.0000	16.0450	5.0066	11.0385	2.798E-05		2.7755
Blocks:	22	21.6279	10.2627	11.3653	2.988E-05	0.0842	0.1927
308.0000	14.0000	16.1022	5.0253	11.0769	2.820E-05		2.7664
Blocks:	23	21.6586	10.2936	11.3650	2.988E-05	0.0846	0.1937
322.0000	14.0000	16.1592	5.0439	11.1153	2.842E-05	0.2334	2.7574
Blocks:	24	21.6891	10.3244	11.3647	2.988E-05	0.0850	0.1946
336.0000	14.0000	16.2161	5.0625	11.1536	2.865E-05	0.2338	2.7485
Blocks:	25	21.7196	10.3552	11.3644	2.988E-05	0.0855	0.1956
350.0000	14.0000	16.2729		11.1919	2.887E-05	0.2342	2.7398
Blocks:	26	21.7501	10.3858	11.3642	2.988E-05	0.0859	0.1965
364.0000	14.0000	16.3296	5.0994	11.2302	2.909E-05	0.2346	2.7311
Blocks:	27	21.7805	10.4164	11.3640	2.988E-05	0.0863	0.1975
378.0000	14.0000	16.3862	5.1178	11.2684	2.931E-05	0.2350	2.7226
Blocks:	28	21.8108	10.4469	11.3638	2.987E-05	0.0867	0.1984
392.0000	14.0000	16.4427	5.1362	11.3065	2.954E-05	0.2354	2.7143

File No.: **1800289.301** Revision: 1 Page C-21 of C-22

Structural Integrity Associates, Inc.® Blocks: 29 21.841110.477411.36372.987E-050.08710.199416.49915.154411.34462.976E-050.23582.7060 406.0000 14.0000 Blocks: 30 420.0000 14.0000 21.8702 10.5106 11.3596 2.985E-05 16.5552 5.1739 11.3813 2.998E-05 31 Blocks: 10.5502 5.1962 434.0000 14.0000 21.8969 11.3467 2.977E-05 16.6107 11.4145 3.018E-05 Blocks: 32 14.0000 21.9234 10.5895 11.3339 2.970E-05 448.0000

448.0000	14.0000	21.9234 16.6660	10.5895 5.2185	11.3339 11.4476	2.970E-05 3.037E-05	0.0884 0.2371	0.2023 2.6820
Blocks:	33	21.9498	10.6287	11.3211	2.962E-05	0.0888	0.2032
462.0000	14.0000	16.7211	5.2406	11.4804	3.057E-05	0.2375	2.6742
Blocks:	34	21.9762	10.6677	11.3084	2.955E-05	0.0892	0.2042
476.0000	14.0000	16.7758	5.2627	11.5132	3.077E-05		2.6666
Blocks:	35	22.0024	10.7066	11.2958	2.947E-05	0.0896	0.2051
490.0000	14.0000	16.8303	5.2846	11.5457	3.096E-05	0.2384	2.6592
Blocks:	36	22.0285	10.7453	11.2833	2.940E-05	0.0900	0.2061
504.0000	14.0000	16.8845	5.3065	11.5781	3.116E-05	0.2388	2.6518
Blocks:	37	22.0546	10.7838	11.2708	2.933E-05	0.0905	0.2070
518.0000	14.0000	16.9385	5.3283	11.6103	3.135E-05		2.6446
Blocks:	38	22.0806	10.8222	11.2584	2.925E-05	0.0909	0.2079
532.0000	14.0000	16.9922	5.3499	11.6423	3.155E-05	0.2397	2.6375
Blocks:	39	22.1065	10.8605	11.2461	2.918E-05	0.0913	0.2089
546.0000	14.0000	17.0456	5.3715	11.6741	3.174E-05	0.2401	2.6306
Blocks:	40	22.1324	10.8985	11.2338	2.911E-05	0.0917	0.2098
560.0000	14.0000	17.0988		11.7058	3.194E-05	0.2406	2.6237

Maximum number of blocks reached. The analysis terminated.

Number of Runtime Warnings: 0

*** End of pc-CRACK output ***

0.0876

0.2362

0.0880

0.2366

0.2004

2.6979

0.2013

2.6898