

Entergy Operations, Inc. River Bend Station 5485 U.S. Highway 61N St. Francisville, LA 70775 Tel 225-381-4177

Tim Schenk Manager-Regulatory Assurance

RBG-47862

May 1, 2018

Attn: Document Control Desk U. S. Nuclear Regulatory Commission 11555 Rockville Pike Rockville, MD 20852-2738

Subject: Annual Radiological Environmental Operating Report for 2017 River Bend Station – Unit 1 License No. NPF-47 Docket No. 50-458

RBF1-18-0096

Dear Sir or Madam,

Enclosed is the River Bend Station (RBS) Annual Radiological Environmental Operating Report for 2017 for the period January 1, 2017 through December 31, 2017. This report is submitted in accordance with the RBS Technical Specifications, Section 5.6.2.

Should you have any questions regarding the enclosed, please contact Tim Schenk, at (225) 381-4177.

Sincerely,

Tim Schenk Manager-Regulatory Assurance

Enclosure

RBG-47862 Page 2 of 2

cc: U.S. Nuclear Regulatory Commission Region IV 1600 E. Lamar Blvd. Arlington, TX 76011-4511

> U.S. Nuclear Regulatory Commission Attn: Ms. Lisa M. Regner, Project Manager 09-D-14 One White Flint North 11555 Rockville Pike Rockville, MD 20852

NRC Senior Resident Inspector Attn: Mr. Jeff Sowa 5485 U.S. Highway 61, Suite 1 St. Francisville, LA 70775

Department of Environmental Quality Office of Environmental Compliance Radiological Emergency Planning and Response Section Ji Young Wiley P.O. Box 4312 Baton Rouge, LA 70821-4312

Public Utility Commission of Texas Attn: PUC Filing Clerk 1701 N. Congress Avenue P. O. Box 13326 Austin, TX 78711-3326

RIVER BEND STATION ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT FOR 2017

This report compiled by Karli Arterburn of Teledyne Brown Engineering

Reviewed By:

1 A

Victor A. Huffstatler Sr. HP/Chemistry Specialist

Shannon Peterkin Manager – Radiation Protection

Michael Poiczo Manager – Chemistry

Approved By:

Steven Vercelli General Manager, Plant Operations

Table of Contents

Summ	ary		1
1.	Introduction	ч.	5
1.1.	Radiological Environmental Monitoring Program		5
1.2.	Pathways Monitored		5
1.3.	Land Use Census		5
2.	Interpretation and Trends of Results		15
2.1.	Air Particulate and Radioiodine Sample Results		15
2.2.	Thermoluminescent Dosimetry Sample Results		15
2.3.	Water Sample Results		16
2.4.	Shoreline Sediment Sample Results		16
2.5.	Milk Sample Results		16
2.6.	Food Product Sample Results		17
2.7.	Fish and Invertebrate Sample Results		17
2.8.	Land Use Census Results		17
2.9.	Interlaboratory Comparison Results		18
3.	Radiological Environmental Monitoring Program Summary		22
3.1.	2017 Program Results Summary		22

List of Tables

Table 1.1	Radiological Environmental Sampling Program	6
Table 2-1	Land Use Census Results	20
Table 3.1	Radiological Environmental Monitoring Program Summary	24

List of Figures

Figure 1-1	Exposure Pathways	12
Figure 1-2	Sample Collection Sites - Near Field	13
Figure 1-3	Sample Collection Sites - Far Field	14
Figure 2-1	TLD Indicator vs Control Data	21
Figure 2-2	Gross Beta Indicator Results	21

List of Attachments

Attachment 1-7	Data Tables	31
Attachment 1.1	Air Particulate and Charcoal Cartridges	32
Attachment 2.1	Thermoluminescent Dosimeters (TLD)	36
Attachment 3.1	Surface Water	37
Attachment 4.1	Groundwater	41
Attachment 5.1	Shoreline Sediment	42
Attachment 6.1	Food Products	43
Attachment 7.1	Fish	45
Attachment 8	Teledyne Brown Engineering's Interlaboratory Comparison	
	Program Tables	46

Summary

The Annual Radiological Environmental Operating Report presents data obtained through analyses of environmental samples collected for the River Bend Station (RBS) Radiological Environmental Monitoring Program (REMP) for the period January 1, 2017 through December 31, 2017. This report fulfills a requirement specified in RBS Technical Requirements Manual (TRM) 5.6.2 as required by Technical Specification 5.6.2 of Appendix A to RBS License Number NPF-47. During 2017, REMP results remained at background levels, as has been the case in previous years.

All required lower limit of detection (LLD) capabilities were achieved in all sample analyses during 2017, as required by the RBS Technical Requirement Manual (TRM). No measurable levels of radiation above baseline levels attributable to River Bend Station operation were detected in the vicinity of RBS. The 2017 Radiological Environmental Monitoring Program thus substantiated the adequacy of source control and effluent monitoring at River Bend Station with no observed impact of plant operations on the environment.

Radiological Environmental Monitoring Program

RBS established the REMP prior to the station's becoming operational (1985) to provide data on background radiation and radioactivity normally present in the area. RBS has continued to monitor the environment by sampling air, water, sediment, fish and food products, as well as measuring direct radiation. RBS also samples milk if milk-producing animals used for human consumption are present within five miles (8 km) of the plant.

The REMP includes sampling indicator and control locations within an approximate 20-mile radius of the plant. The REMP utilizes indicator locations near the site to show any increases or buildup of radioactivity that might occur due to station operation and control locations farther away from the site to indicate the presence of only naturally occurring radioactivity. RBS personnel compare indicator results with control and preoperational results to assess any impact RBS operation might have had on the surrounding environment.

In 2017, environmental samples were collected for radiological analysis. The results of indicator locations were compared with control locations and previous studies. It was concluded that no significant relationship exists between RBS operation and effect on the area around the plant. The review of 2017 data showed radioactivity levels in the environment were undetectable in many locations and near background levels in significant pathways.

Harmful Effects or Irreversible Damage

The REMP monitoring did not detect any harmful effects or evidence of irreversible damage in 2017. Therefore, no analysis or planned course of action to alleviate problems was necessary.

Reporting Levels

River Bend Station reviews indicate that no REMP sample equaled or exceeded reporting levels for radioactivity concentration in environmental samples, as outlined in RBS Technical Requirements Manual Table 3.12.1-2, when averaged over any calendar quarter. Therefore, 2017 results did not require any Radiological Monitoring Program Special Reports.

Radioactivity Not Attributable to RBS

The RBS REMP has detected radioactivity attributable to other sources not associated with the operation of RBS. These instances are summarized as follows:

- In 2011, I-131 was detected in a control vegetation sample, and indicator and control air sample media, which was credibly attributed to the trans-Pacific transport of airborne releases from Dai-Ichi, Fukushima following the March 11, 2011 Tohoku earthquake.
- ♦ In 1986, following the radioactive plume release due to reactor core degradation at the Chernobyl Nuclear Power Plant, RBS REMP detected I-131 in water, vegetation, and air samples.
- I-131 was also detected during 1998 in the wastewater treatment plant effluent, which was attributed to the medical treatment of a RBS employee.
- ♦ In 2006, Cs-137 was detected in upstream and downstream Mississippi River sediment samples. Cs-137 activity was detected again in a 2017 upstream Mississippi River sediment sample.
- ♦ In 2015, low level Cs-137 activity was detected in a soil sample collected during an emergency preparedness drill from a location greater than five miles from River Bend. This activity is attributed to the well documented global presence of low level Cs-137 activity due to residual weapons testing fallout.

Comparison to Federal and State Programs

RBS personnel compared REMP data to federal and state monitoring programs as results became available. Historically, the programs used for comparison have included the U.S. Nuclear Regulatory Commission (NRC) TLD (Thermoluminescent Dosimeter) Direct Radiation Monitoring Network and the Louisiana Department of Environmental Quality – Office of Environmental Compliance (LDEQ-OEC).

The NRC TLD Network Program was discontinued in 1998. Historically these results have compared to those from the RBS REMP. RBS TLD results continue to remain similar to the historical average and continue to verify that plant operation is not affecting the ambient radiation levels in the environment.

The LDEQ-OEC and the RBS REMP entail similar radiological environmental monitoring program elements. These programs include co-located air samplers, and similar locations for sample media such as water, fish and food products. Both programs have obtained similar results over previous years.

Sample Deviations

Milk

The REMP did not include milk sampling within five miles (8 km) of RBS in 2017 due to unavailability of milk-producing animals used for human consumption. The RBS Technical Requirements Manual requires collection of milk samples if available commercially within 8 km (5 miles) of the plant. RBS personnel collected vegetation samples to monitor the ingestion pathway, as specified in RBS Technical Requirements Manual Table 3.12.1-1, because of milk unavailability.

Sampling Deviations

Listed below are sampling deviations that occurred during 2017. As described in footnote (a) to RBS Technical Requirements Manual Table 3.12.1-1, deviations are permitted from the required sampling schedule due to malfunction of equipment or other legitimate reasons.

Station	Sampling Period	Problem	Comment
		Description	
AP1	04/18/17 to	Power Outage	Air sampler locations AP1 and AN1 lost power
AN1	05/02/17		for 4.8 hours due to power outage. (CR-RBS-
			2017-03696)
AQS2	05/16/17 to	Power Outage	Air sampler location AQS2 lost 7.6 hours due
	05/30/17		to power outage. (CR-RBS-2017-04339)
· · · · · · · · · · · · · · · · · · ·			
AQS2	05/30/17 to	Power Outage	Extended power outage due to substation
	06/13/17		maintenance. (See CR-RBS-2017-04339)
AP1	06/13/17 to	Power Outage	Air sampler locations AP1, AN1, and AGC
AN1	06/27/17		lost power for less than one hour due to power
			outage. (CR-RBS-2017-5049)
AGC			*Power restored - AOS2's volume short 2 days
LOCAT			23 hours and 21 minutes (See CR_PRS_2017_
AQS2*			23 hours and 21 minutes. (See CR-RDS-2017-
			04339).

Missed Samples

In 2017, one sampling period for a special air sample location was missed due to an extended power outage. This power outage was due to substation maintenance, which secured power to the area.

• Unavailable Results

There were no unavailable results in 2017.

Program Modifications

RBS made no modifications to the REMP during the year 2017.

Attachments

Attachments 1 through 7 contain results of air, TLD, water, sediment, fish, food products and special samples collected in 2017. River Bend's REMP TLDs were analyzed by Stanford Dosimetry. The Teledyne Brown Engineering Environmental Laboratory analyzed all remaining samples. Attachment 8 contains Teledyne Brown Engineering's participation in the Interlaboratory Comparison Program during the year 2017.

1. Introduction

1.1. Radiological Environmental Monitoring Program

River Bend Station established the REMP to ensure that plant operating controls properly function to minimize any associated radiation endangerment to human health or the environment. The REMP is designed for the following:

- Analyzing important pathways for anticipated types and quantities of radionuclides released into the environment.
- Considering the possibility of a buildup of long-lived radionuclides in the environment and identifying physical and biological accumulations that may contribute to human exposures.
- Considering the potential radiation exposure to plant and animal life in the environment surrounding RBS.
- Correlating levels of radiation and radioactivity in the environment with radioactive releases from station operation.

1.2. Pathways Monitored

The airborne, direct radiation, waterborne and ingestion pathways, as seen in Figure 1-1, are monitored as required by the RBS Technical Requirements Manual 3.12.1. A description of the RBS REMP sample locations utilized to monitor exposure pathways are described in Table 1.1 and shown in Figures 1-2 and 1-3. RBS may occasionally supplement this program with additional sampling in order to provide a comprehensive and well-balanced program.

Section 2.0 of this report provides a discussion of 2017 sampling results with Section 3.0 providing a summary of results for the monitored exposure pathways.

1.3. Land Use Census

RBS personnel conduct a land use census biannually as required by RBS Technical Requirements Manual 3.12.2. The last land use census was performed in 2016. The next scheduled land use census will be performed in 2018. Section 2.8 on the report contains a narrative on the results of the 2016 land use census.

Exposure	Requirement	Sample Point Description,	Sampling and	Type and Frequency
Pathway		Distance and Direction	Collection Frequency	Of Analyses
Airborne	Radioiodine and Particulates 2 samples from close to the 2 SITE BOUNDARY locations, in different sectors, of the highest calculated annual average ground level D/Q.	 AN1 (0.9 km W) - RBS site Hwy 965; 0.4 km south of Activity Center. AP1 (0.9 km WNW) – Behind River Bend Station Activity Center. 	Continuous sampler operation with sample collection every two weeks, or more frequently if required by dust loading.	Radioiodine Canisters – I-131 analysis every two weeks. Air Particulate – Gross beta radioactivity analysis following filter change.
	Radioiodine and Particulates 1 sample from the vicinity of a community having the highest calculated annual average ground level D/Q.	AQS2 (5.8 km NW) - St. Francis Substation on US Hwy. (Bus.) 61 in St. Francisville.		
	<u>Radioiodine and Particulates</u> 1 sample from a control location, as for example 15 - 30 km distance and in the least prevalent wind direction.	AGC (17.0 km SE) – Entergy Service Center compound in Zachary. (Control)		
Direct Radiation	TLDs One ring of stations, one in each meteorological sector in the general area of the SITE BOUNDARY.	TA1 (1.7 km N) - River Bend Training Center. TB1 (0.5 km NNE) - Utility pole near River Bend Station cooling tower yard area.	Quarterly	mR exposure quarterly.
		TC1 (1.7 km NE) - Telephone pole at Jct. US Hwy. 61 and Old Highway 61.		

Exposure	Requirement	Sample Point Description,	Sampling and	Type and Frequency
Pathway		Distance and Direction	Collection Frequency	Of Analyses
				2
Direct Radiation	<u>TLDs</u> One ring of stations, one in each meteorological sector in the general area	TD1 (1.6 km ENE) – Stub pole along WF7, 150m S of Jct. WF7 and US Hwy. 61. TE1 (1.3 km E) Stub pole along WF7, 1 km	Quarterly	mR exposure quarterly.
	of the SITE BOUNDARY.	S of Jet. WF7 and US Hwy. 61.		
		TF1 (1.3 km ESE) – Stub pole along WF7, 1.6 km S of Jct. WF7 and US Hwy. 61.		
		TG1 (1.6 km SE) – Stub pole along WF7, 2 km S of Jct. WF7 and US Hwy. 61.		
		TH1 (1.7 km SSE) – Stub pole at power line crossing of WF7 (near Grants Bayou).		
		TJ1 (1.5 km S) – Stub pole near River Bend Station Gate #23 on Powell Station Road (LA Hwy. 965).	e electro i	
		TK1 (0.9 km SSW) – Utility pole on Powell Station Road (LA Hwy. 965), 20 m S of River Bend Station River Access Road.		
		TL1 (1.0 km SW) – First utility pole on Powell Station Road (LA Hwy. 965) S of former Illinois Central Gulf RR crossing.		

Exposure	Requirement	Sample Point Description,	Sampling and	Type and Frequency
Pathway		Distance and Direction	Collection Frequency	Of Analyses
Direct Radiation	TLDs One ring of stations, one in each meteorological sector in the general area of the SITE BOUNDARY.	TM1 (0.9 km WSW) - Third utility pole on Powell Station Road (LA Hwy. 965) N of former Illinois Central Gulf RR crossing.	Quarterly	mR exposure quarterly.
		Station Road (LA Hwy. 965), near garden and AN1 air sampler location.		
		TP1 (0.9 km WNW) - Behind River Bend Station Activity Center at AP1 air sampler location.		
		TQ1 (0.6 km NW) – Across from MA-1 on RBS North Access Road.		
		TR1 (0.8 km NNW) – River Bend Station North Access Road across from Main Plant entrance.		
	<u>TLDs</u> The balance of the stations (8) to be placed in special interest areas such as population centers, nearby residences, schools, and in 1 or 2 areas to serve as control locations.	TAC (15.8 km N) – Utility pole at Jct. of US Hwy. 61 and LA Hwy. 421, 7.9 km north of Bains. (Control)		
		TCS (12.3 km NE) – Utility pole at gate to East Louisiana State Hospital in Jackson. (Special)		
		TEC (16.0 km E) – Stub pole at jct. of Hwy. 955 and Greenbrier Road, 4.8 km North of Jct. of Hwys 955 and 964. (Control)		

Exposure	Requirement	Sample Point Description,	Sampling and	Type and Frequency
Pathway		Distance and Direction	Collection Frequency	Of Analyses
Direct Radiation	<u>TLDs</u> The balance of the stations (8) to be placed in special interest areas such as population centers, nearby residences, schools, and in 1 or 2 areas to serve as control locations.	TGS (17.0 km SE) – Entergy Service Center compound in Zachary. (Special) TNS (6.0 km W) – Utility pole with electrical meter at west bank ferry landing (LA Hwy. 10). (Special)	Quarterly	mR exposure quarterly.
		TQS1 (4.0 km NW) – Utility pole front of Pentecostal church (opposite West Feliciana Parish Hospital) near Jct. US Hwy. 61 and Commerce Street. (Special)		
		TQS2 (5.8 km NW) – St. Francis Substation on business US Hwy. 61 in St. Francisville. (Special))	
		TRS (9.2 km NNW) - Stub pole at Jct. of US Hwy. 61 and WF2 near Bains (West Feliciana High School). (Special)		
Waterborne	Surface Water 1 sample upstream and 1 sample downstream.	SWU (5.0 km W) - Mississippi River about 4 km upstream from the plant liquid discharge outfall, near LA Hwy. 10 ferry crossing.	Grab samples quarterly	Gamma isotopic analysis and tritium analysis quarterly.
		SWD (7.75 km S) - Mississippi River about 4 km downstream from plant liquid discharge outfall, near paper mill.		

Exposure	Requirement	Sample Point Description,	Sampling and	Type and Frequency
Pathway		Distance and Direction	Collection Frequency	Of Analyses
Waterborne	<u>Groundwater</u> Samplas from 1 or 2 sources only if likely			
	to be affected.	WU (~470 m NNE) - Upland Terrace Aquifer well upgradient from plant.	Semiannually	Gamma isotopic and tritium analysis semiannually.
		WD (~470 m SW) – Upland Terrace Aquifer well downgradient from plant.		
	Sediment From Shoreline 1 sample from downstream area with existing or potential recreational value.	SEDD (7.75 km S) – Mississippi River about 4 km downstream from plant liquid discharge outfall, near paper mill.	Annually	Gamma isotopic analysis annually.
Ingestion	<u>Milk</u> If commercially available, 1 sample from milking animals within 8 km distant where doses are calculated to be greater than 1 mrem per year.	Currently, no available milking animals within 8 km of RBS.	Quarterly when animals are on pasture.	Gamma isotopic and I-131 analysis quarterly when animals are on pasture.
	1 sample from milking animals at a control location $15 - 30$ km distant when an indicator location exists.			
	Fish and Invertebrates 1 sample of a commercially and/or recreationally important species in vicinity of plant discharge area. 1 sample of similar species in area not	 FD (7.75 km S) - One sample of a commercially and/or recreationally important species from downstream area influenced by plant discharge. FU (4.0 km WSW) - One sample of a commercially and/or recreationally important 	Annually	Gamma isotopic analysis on edible portions annually
	influenced by plant discharge.	species from upstream area not influenced by plant discharge.		

Exposure	Requirement	Sample Point Description,	Sampling and	Type and Frequency
Pathway		Distance and Direction	Collection Frequency	Of Analyses
Ingestion	Food Products			
	1 sample of one type of broadleaf vegetation grown near the SITE BOUNDARY location of highest predicted annual average ground level D/Q if milk sampling is not performed.	GN1 (0.9 km W) – Sampling will be performed in accordance with Table 3.12.1-1 Section 4.a of the Technical Requirements Manual.	Quarterly during the growing season.	Gamma isotopic and I-131 analysis quarterly.
	1 sample of similar broadleaf vegetation grown 15 – 30 km distant, if milk sampling is not performed.	GQC (32.0 km NW) - One sample of similar vegetables from LA State Penitentiary at Angola. (Control)		

Figure 1-2 Sample Collection Sites – Near Field

Figure 1-3 Sample Collection Sites – Far Field

2. Interpretation and Trends of Results

Table 3.1 provides a comparison of the indicator and control location mean values for the 2017 data, and indicates that the environment around the plant is unaffected by plant operations.

2.1. Air Particulate and Radioiodine Sample Results

Iodine-131 attributable to RBS was not detected in the radioiodine cartridges during 2017 as has been the case in previous years. Indicator gross beta air particulate results for 2017 were similar to preoperational and operational levels as seen below. Results are reported as annual average pCi/m³ (picocuries per cubic meter). (Attachment 1.1)

Monitoring Period	Result
Preoperational	0.030
2017	0.018
2016	0.017
2015	0.017
2014	0.019
2013	0.019
2012	0.025
2011	0.026
2010	0.024
2009	0.023
2008	0.023

2.2. Thermoluminescent Dosimetry Sample Results

Gamma radiation exposure in the reporting period compares to previous years. Figure 2-1 compares quarterly indicator results for 2017 with control location data from 1986 to 2017. All indicator results were within three-sigma of the control data.

RBS normalizes measured exposure to 90 days and relies on comparison of the indicator locations to the control as a measure of plant impact. RBS's comparison of the indicator and special interest area TLD results to the controls, as seen in Table 3.1, indicates that the ambient radiation levels are unaffected by plant operations. Therefore, levels continue to remain at or near background. (Attachment 2.1)

2.3. Water Sample Results

Analytical results for 2017 surface water and groundwater samples were similar to those reported in previous years.

<u>Surface water</u> samples were collected from two locations (indicator and control) and analyzed for gamma radionuclides and tritium. Gamma radionuclides were below detectable limits at the indicator and control locations. Tritium was also below detectable limits at all locations. Listed below is a comparison of 2017 results from the indicator location as compared to the preoperational and previous operational years. Results are reported as annual average pCi/l (picocuries per liter). (Attachment 3.1)

Radionuclide	2017	2003 - 2017	Preoperational
Gammas	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Tritium	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>

<u>Groundwater</u> samples were collected from two locations (indicator and control) and analyzed for gamma radionuclides and tritium. Gamma radionuclides and tritium were below detectable limits at the indicator and control locations. Listed below is a comparison of 2017 results from the indicator location as compared to the preoperational and previous operational years. Results are reported as annual average pCi/l. (Attachment 4.1)

Radionuclide	2017	2003 - 2017	Preoperational
Gammas	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Tritium	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>

Based on these comparisons, the operation of RBS had no impact on this pathway during 2017, and levels of radionuclides monitored for this pathway continue to remain similar to those obtained in operational and preoperational years.

2.4. Shoreline Sediment Sample Results

A shoreline sediment sample was collected from the indicator location in 2017 and analyzed for gamma radionuclides. RBS also samples a non-REMP upstream control sediment sample. A review of historical indicator and upstream sediment samples periodically shows Cs-137. Cs-137 was indicated in one of the control samples in 2017 and is in line with historical data. The results of the upstream positive value indicates that this radioactivity in the sediment is most probable from weapons testing or other fallout events and not attributable to RBS. Therefore, based on these measurements, RBS operations had no significant radiological impact upon the environment or public via this pathway. (Attachment 5.1)

2.5. Milk Sample Results

The REMP did not include milk sampling within five miles (8 km) of RBS in 2017 due to unavailability of milk-producing animals used for human consumption. The RBS Technical Requirements Manual requires collection of milk samples if available commercially within 8 km (5 miles) of the plant. RBS personnel collected vegetation samples to monitor the ingestion pathway, as specified in RBS Technical Requirements Manual Table 3.12.1-1, because of milk unavailability.

2.6. Food Product Sample Results

Food product samples were collected when available from two locations (indicator and control) in 2017 and analyzed for gamma radionuclides in accordance with Table TRM 3.12.1-1. The 2017 levels attributable to RBS remained undetectable, which is consistent with previous operational years. Therefore, since levels continue to remain at background, it can be concluded that plant operations is not impacting this pathway. (Attachment 6.1)

2.7. Fish and Invertebrate Sample Results

Fish samples were collected from two locations (indicator and control) and analyzed for gamma radionuclides. In 2017, gamma radionuclides were below detectable limits that were consistent with the preoperational and operational monitoring periods. Therefore, based on these measurements, RBS operations had no significant radiological impact upon the environment or public by this pathway. (Attachment 7.1)

2.8. Land Use Census Results

The Land Use Census was conducted in accordance with procedure ESP-8-051, as required by Technical Requirements Manual (TRM) (TR 3.12.2).

A garden census is not conducted pursuant to the note in the TRM (TLCO 3.12.2) that allows the sampling of broadleaf vegetation in the highest calculated average ground-level D/Q sector near site boundary in lieu of the garden census.

The milk animal census identified no milk animals within 8 km (5 miles) of River Bend site. This information was verified by the County Agents from West Feliciana, East Feliciana, and Pointe Coupee parishes.

No resident census changes were noted, as indicated in Table 2.1.

No locations were identified in 2017 that would yield a calculated dose or dose commitment greater than those contained in the TRM (TR 3.11).

Table 2.1 contains data from the most recently completed Land Use Census.

2.9. Interlaboratory Comparison Results

The purpose of the Interlaboratory Comparison Program (ICP) is to confirm the accuracy of results produced by Teledyne Brown Engineering. Samples of various matrices (i.e. soil, water, vegetation, air filters, and milk) are spiked with known amounts of radioactivity by commercial vendors of this service and by departments within the government. TBE participates in three programs. Two are commercial, Analytics Inc. and Environmental Resource Associates (ERA) and one is a government sponsored program, the Department of Energy's (DOE) Mixed Analyte Performance Evaluation Program (MAPEP). The DOE's Idaho National Engineering Laboratory administers the MAPEP. All three programs are blind performance evaluation studies in which samples with known activities are sent to TBE for analysis. Once analyzed, TBE submits the results to the respective agency for evaluation. The results of these evaluations are published in TBE's quarterly and annual QA reports.

The 2017 Interlaboratory Comparison Program includes all contractually required matrices and analyses TBE supplies to customers and specifically RBS's Technical Requirements Manual 3.12.3. Attachment 8 contains these results.

In reviewing our environmental inter-laboratory crosscheck programs, we identified 1) duplication of efforts on some matrices and isotopes and 2) that we are performing crosscheck samples on some matrices and isotopes that we do not perform for clients. Since the DOE MAPEP is designed to evaluate the ability of analytical facilities to correctly analyze for radiological constituents representative of those at DOE sites, the needed changes were made to the MAPEP program. Therefore, the following isotopes were removed from the MAPEP program:

Soil – gamma – will be provided by Analytics twice per year in 2017.

AP – gamma – is currently provided by Analytics.

Water – gamma, H-3, Sr-90, uranium, gross alpha and gross beta currently provided by ERA.

MAPEP evaluates non-reported (NR) analyses as failed if they were reported in the previous series.

For the TBE laboratory, 168 out of 173 analyses performed met the specified acceptance criteria. Five analyses did not meet the specified acceptance criteria for the following reasons and were addressed through the TBE Corrective Action Program.

Note: The Department of Energy (DOE) Mixed Analyte Performance Evaluation Program (MAPEP) samples are created to mimic conditions found at DOE sites which do not resemble typical environmental samples obtained at commercial nuclear power facilities.

- 1. The ERA April 2017 two nuclides in water were evaluated as *Not Acceptable*. (NCR 17-09)
 - a. The Zn-65 result of 39.3 pCi/L, exceeded the lower acceptance limit of 47.2. The known value was unusually low for this study. The sample

was run in duplicate on two different detectors. The results of each were $39.3 \pm 18.2 \text{ pCi/L}$ (46% error and lower efficiency) and $59.3 \pm 8.23 \text{ pCi/L}$ (13.9% error and higher efficiency). The result from the 2nd detector would have been well within the acceptable range (47.2 – 65.9) and 110.2% of the known value of 53.8 pCi/L.

- b. The Sr-89 result of 40.7 pCi/L exceeded the lower acceptance limit of 53.8. All associated QC and recoveries were reviewed and no apparent cause could be determined for the failure. The prior three cross-check results were from 99 115% of the known values and the one that followed this sample (November, 2017) was 114% of the known value.
- 2. The DOE MAPEP August 2017 air particulate U-238 result of 0.115 ± 0.025 Bq/sample was higher than the known value of 0.087 ± 0.002 with a ratio of 1.32, therefore the upper ratio of 1.30 (acceptable with warning) was exceeded. TBE's result with error easily overlaps with the acceptable range. MAPEP does not evaluate results with any associated error. Also, the spike level for this sample was very low (2.35 pCi) compared to TBE's normal LCS of 6 pCi. TBE considers this result as passing. (NCR 17-15)
- 3. The Analytics September 2017 soil Cr-51 result was evaluated as *Not Acceptable* (Ratio of TBE to known result at 0.65). The reported value was 0.230 ± 0.144 pCi/g and the known value was 0.355 ± 0.00592 pCi/g. The sample was counted overnight for 14 hours, however the Cr-51 was spiked at a very low level and had a counting error of 65%. Cr-51 has a 27-day half-life, making low-level quantification even more difficult. The error does not appear to have been taken into consideration for this result. If it had been evaluated with the error, the highest result would have been 105% of the reference value, which is acceptable. Also, the known value is significantly lower than TBE's typical MDC for this nuclide in a soil matrix and would typically not be reported to clients (unless specified). The results of all of the previous cross-checks have been in the acceptable (80 – 120%) range. TBE will evaluate further upon completion of the next ICP sample. (NCR 17-16)

4. The ERA November 2017 water Sr-90 sample was evaluated as *Not Acceptable*. TBE's result of 27.1 pCi/L exceeded the lower acceptance range (30.8 – 48.0 pCi/L). After reviewing the associated QC data for this sample, it was determined that although the spike recovery for Sr-90 was within our laboratory guidelines (70% -130%), both the spike result and our ERA result were biased low. The original cross-check sample was completely consumed and we were unable to reanalyze before submitting the result. We have modified our preparation process to avoid this situation for future cross-check samples. We also have enhanced LIMS programming to force a LCSD when a workgroup includes cross-check samples (as opposed to running a DUP). (NCR 17-19)

Table 2-1

Land Use Census Results

7	n	1	6
4	υ	r	U

Item #		Sector	Nearest Residence	Range (km)	Nearest Milk Animal	Range (km)	Comment #
1	A	(N)	5498 Hwy 61 St.Francisville, LA 70775	1.9	-	-	
2	B	(NNE)	4549 Old Hwy 61 St.Francisville, LA 70775	1.4	-	-	
3	C	(NE)	4553 Old Hwy 61 St.Francisville, LA 70775	1.5	-	-	
4	D	(ENE)	12657 Powell Station Rd. St.Francisville, LA 70775	1.4	-	-	
5	E	(E)	4635 Hwy 61 St.Francisville, LA 70775	2.4	-	-	
6	F	(ESE)	12019 Fairview Way Jackson, LA 7748	2.6	-	-	
7	G	(SE)	3319 Hwy 964 Jackson, LA 70748	3.7	-	-	
8	н	(SSE)	11813 Powell Station Rd. St.Francisville, LA 70775	1.7	-	-	- x - ^Q
9	J	(S)	11649 Powell Station Rd. St.Francisville, LA 70775	1.8	-	-	
10	К	(SSW)	8909 Hwy 981 New Roads, LA 70760	6.6	-	-	
11	L	(SW)			-		1
12	M	(WSW)	10933 Cajun 2 Rd. New Roads, LA 70760	5.1		-	
13	N	(W)			e.	-	1
14	Р	(WNW)	10426 Old Field Rd. St.Francisville, LA 70775	3.7		-	
15	Q	(NW)	9537 Hwy 965 St.Francisville, LA 70775	1.3	-	-	
16	R	(NNW)	9794 Hwy 965 St.Francisville, LA 70775	1.6	-	-	9

#	Comment	
1	No residence located within 8 km.	

3. Radiological Environmental Monitoring Program Summary

3.1. 2017 Program Results Summary

Table 3.1 summarizes the 2017 REMP results. RBS personnel did not use values reported as less than the lower limit of detection (<LLD) when determining ranges and means for indicator and control locations.

Table 3.1

Environmental Radiological Monitoring Program Summary

Location of Facility	St. Francisville (County/State)	e, Lou	<u>isiana</u>		Reporting Period	January 1 2017 t	o December 31 2	017
Medium of Pathway Sampled (Unit of Measurement)	Type & Total No. of Analysis Performed	5	Lower Limit of Detection(1)	All Indicator Locations Mean(2) Range(2)	Location with Highes Name	t Annual Mean Mean(2)	Control Location Mean(2) Range(2)	No. of Reportable
Air Particulate	GR-B	103	0.01	.018 (77/77)	AQS2 (5.8 km NW)	.018 (25/25)	.018 (26/26)	0
(pCi/m ³)				(.01/.033)		(.012/.03)	(.011/.032)	
Air Iodine (pCi/m ³)	I-131	103	0.07	ND(0/77) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/26) (ND-ND)	0
Indicators TLDs (mR/Quarter)	Gamma Dose Quarterly	64	NA	13.7 (64/64) (10.3/16.4)	TG1 (1.6 km SE)	16.1 (4/4) (15.3/16.4)	NA	0
Special Interest TLDs (mR/Quarter)	Gamma Dose Quarterly	24	NA	14.3 (24/24) (12.4/17)	TGS (17.0 km SE)	15.9 (4/4) (15.2/17)	NA	0
Control TLDs (mR/Quarter)	Gamma Dose Quarterly	8	NA	NA	TAC (15.8 km N)	15.9 (4/4) (15.2/16.8)	15.2 (8/8) (13.4/16.8)	0
Surface Water (pCi/L)	H-3	10	2000	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0
	Mn-54	10	15	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0
	Co-58	10	15	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0
	Fe-59	10	30	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0

Docket No. 50-458

Name of Facility River Bend Station

Location of Facility	St. Francisvi (County/Stat	<u>lle, Lou</u> te)	isiana		Reporting Period January 1 2017 to December 31 2017				
Medium of Pathway Sampled (Unit of Measurement)	Type & Total N of Analy Perform	& lo. sis ed	Lower Limit of Detection(1) (LLD)	All Indicator Locations Mean(2) Range(2)	Location with Hig Name	ghest Annual Mean Mean(2) Range(2)	Control Location Mean(2) Range(2)	No. of Reportable Occurrences	
Surface Water (cont'd) (pCi/L)	Co-60	10	15	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0	
	Zn-65	10	30	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0	
	Nb-95	10	15	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0	
	Zr-95	10	30	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0	
	I-131	10	15	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0	
	Cs-134	10	15	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0	
	Cs-137	10	18	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0	
	Ba-140	10	60	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0	
	La-140	10	15	ND(0/5) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/5) (ND-ND)	0	
Ground Water (pCi/L)	H-3	4	2000	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0	

Docket No. 50-458

Name of Facility River Bend Station

Location of Facility	St. Francisy (County/Sta	ville, Lou ate)	<u>iisiana</u>		Reporting Perio	od January 1 2017 1	to December 31 2	2017
Medium of Pathway Sampled	Type Total 1 of Anal	& No. lysis	Lower Limit of Detection(1)	All Indicator Locations Mean(2)	Location with Hig Name	zhest Annual Mean Mean(2)	Control Location Mean(2)	No. of Reportable
(Unit of Measurement)	Perform	ned	(LLD)	Range(2)		Range(2)	Range(2)	Occurrences
Ground Water (cont'd) (pCi/L)	Mn-54	4	15	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0
	Co-58	4	15	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0
	Fe-59	4	30	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0
	Co-60	4	15	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0
	Zn-65	4	30	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0
	Nb-95	4	15	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0
	Zr-95	4	30	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0
	I-131	4	15	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0
	Cs-134	4	15	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0
	Cs-137	4	18	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0

Docket No. 50-458

Name of Facility River Bend Station

Location of Facility	St. Francisville (County/State)	e, Loi	<u>iisiana</u>		Reporting Period	d January 1 2017 t	o December 31	2017
Medium of Pathway Sampled	Type & Total No. of Analysis		Lower Limit of Detection(1)	All Indicator Locations Mean(2)	Location with High Name	Mean(2)	Control Location Mean(2)	No. of Reportable
(Unit of Measurement)	Performed		(LLD)	Range(2)		Range(2)	Range(2)	Occurrences
Ground Water (cont'd) (pCi/L)	Ba-140	4	60	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0
	La-140	4	15	ND(0/2) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/2) (ND-ND)	0
Shoreline Sediment (pCi/kg,dry)	Mn-54	2	NA	ND(0/1) (ND)	NA	NA(0/0) (ND)	ND(0/1) (ND)	0
	Co-58	2	NA	ND(0/1) (ND)	NA	NA(0/0) (ND)	ND(0/1) (ND)	0
	Fe-59	2	NA	ND(0/1) (ND)	NA	NA(0/0) (ND)	ND(0/1) (ND)	0
	Co-60	2	NA	ND(0/1) (ND)	NA	NA(0/0) (ND)	ND(0/1) (ND)	0
	Zn-65	2	NA	ND(0/1) (ND)	NA	NA(0/0) (ND)	ND(0/1) (ND)	0
	Nb-95	2	NA	ND(0/1) (ND)	NA	NA(0/0) (ND)	ND(0/1) (ND)	0
	Zr-95	2	NA	ND(0/1) (ND)	NA	NA(0/0) (ND)	ND(0/1) (ND)	0
	I-131	2	NA	ND(0/1) (ND)	NA	NA(0/0) (ND)	ND(0/1) (ND)	0

Docket No. 50-458

Name of Facility River Bend Station

Location of Facility	St. Francisvill (County/State	le, Lou e)	iisiana		Reporting Perio	od January 1 2017 t	o December 31 2	017
Medium of Pathway Sampled (Unit of Measurement)	Type & Total No of Analys Performed	o. is d	Lower Limit of Detection(1) (LLD)	All Indicator Locations Mean(2) Range(2)	Location with Hig Name	<u>zhest Annual Mean</u> Mean(2) Range(2)	Control Location Mean(2) Range(2)	No. of Reportable Occurrences
Shoreline Sediment (cont'd) (pCi/kg,dry)	Cs-134	2	150	ND(0/1) (ND)	NA	NA(0/0) (ND)	ND(0/1) (ND)	
	Cs-137	2	180	ND(0/1) (ND)	SEDU	100.5 (1/1) (ND)	100.5 (1/1) (ND)	0
	Ba-140	2	NA	ND(0/1) (ND)	NA	NA(0/0) (ND)	ND(0/1) (ND)	0
	La-140	2	NA	ND(0/1) (ND)	NA	NA(0/0) (ND)	ND(0/1) (ND)	0
Food Products (pCi/kg,wet)	Mn-54	8	NA	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0
	Co-58	8	NA	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0
	Fe-59	8	NA	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0
	Co-60	8	NA	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0
	Zn-65	8	NA	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0
	Nb-95	8	NA	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0

Docket No. 50-458

Name of Facility River Bend Station

Location of Facility	St. Francisville (County/State)	e, Lou	<u>iisiana</u>		Reporting Perio	d January 1 2017 t	to December 31 2	2017
Medium of Pathway	Type & Total No.		Lower Limit of	All Indicator Locations	Location with Hig	hest Annual Mean	Control Location	No. of
Sampled (Unit of Measurement)	of Analysis Performed		Detection(1) (LLD)	Mean(2) Range(2)	Name	Mean(2) Range(2)	Mean(2) Range(2)	Reportable Occurrences
Food Products (cont'd) (pCi/kg,wet)	Zr-95	8	NA	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0
	I-131	8	60	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0
	Cs-134	8	60	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0
	Cs-137	8	80	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0
	Ba-140	8	NA	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0
	La-140	8	NA	ND(0/4) (ND-ND)	NA	NA(0/0) (NA-NA)	ND(0/4) (ND-ND)	0
Fish (pCi/kg,wet)	Mn-54	2	130	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0
	Co-58	2	130	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0
	Fe-59	2	260	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0
	Co-60	2	130	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0

Name of Facility River Bend Station

Docket No. 50-458

	(County/Sta	te)						
Medium of Pathway Sampled	Type Total I of Anal	Type & Total No. of Analysis		All Indicator Locations Mean(2)	Location with Hig Name	thest Annual Mean Mean(2)	Control Location Mean(2)	No. of Reportable
(Unit of Measurement)	Perform	ned	(LLD)	Range(2)		Range(2)	Range(2)	Occurrences
Fish (cont'd) (pCi/kg,wet)	Zn-65	2	260	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0
	Nb-95	2	NA	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0
	Zr-95	2	NA	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0
	I-131	2	NA	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0
	Cs-134	2	130	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0
	Cs-137	2	150	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0
	Ba-140	2	NA	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0
	La-140	, 2	NA	ND(0/1) (ND-ND)	NA	NA(0/0) (NA-NA)	NA(0/1) (ND)	0

Docket No. 50-458

Reporting Period January 1 2017 to December 31 2017

(1) Nominal Lower Limit of Detection (LLD), as stated in ODCM.

Name of Facility River Bend Station

Location of Facility St. Francisville, Louisiana

(2) Mean and Range based upon detectable measurements only. Fraction of detectable measurements at specified location indicated in brackets().

(3) ND = Non Detectable.

(4) NA = Not Applicable.

Attachment 1 through 7

Data Tables

			LOCATIO	ON NUMBER AGC	
COLLECT	COLLECT			AP FILTER	CHARCOAL FILTER
START	STOP	SAMPLE		GROSS BETA	I-131
DATE	DATE	VOLUME	UNITS	(pCi/cu.m.)	(pCi/cu.m.)
12/27/16	01/10/17	7.89E+02	CU.M	1.25E-02 ± 1.85E-03	L.T. 1.72E-02
01/10/17	01/24/17	7.85E+02	CU.M	1.13E-02 ± 1.73E-03	L.T. 1.42E-02
01/24/17	02/07/17	8.10E+02	CU.M	2.13E-02 ± 2.28E-03	L.T. 9.62E-03
02/07/17	02/21/17	7.99E+02	CU.M	1.82E-02 ± 2.12E-03	L.T. 2.00E-02
02/21/17	03/07/17	8.10E+02	CU.M	1.32E-02 ± 1.82E-03	L.T. 1.76E-02
03/07/17	03/21/17	8.12E+02	CU.M	1.73E-02 ± 2.02E-03	L.T. 1.61E-02
03/21/17	04/04/17	8.06E+02	CU.M	1.72E-02 ± 2.07E-03	L.T. 1.03E-02
04/04/17	04/18/17	8.10E+02	CU.M	1.57E-02 ± 1.93E-03	L.T. 1.97E-02
04/18/17	05/02/17	7.97E+02	CU.M	1.71E-02 ± 2.07E-03	L.T. 1.70E-02
05/02/17	05/16/17	8.12E+02	CU.M	1.77E-02 ± 2.06E-03	L.T. 7.72E-03
05/16/17	05/30/17	8.05E+02	CU.M	1.38E-02 ± 1.90E-03	L.T. 2.07E-02
05/30/17	06/13/17	7.81E+02	CU.M	1.23E-02 ± 1.84E-03	L.T. 7.10E-03
06/13/17	06/27/17	7.97E+02	CU.M	1.23E-02 ± 1.90E-03	L.T. 1.80E-02
06/27/17	07/11/17	7.77E+02	CU.M	1.23E-02 ± 1.81E-03	L.T. 1.67E-02
07/11/17	07/25/17	8.05E+02	CU.M	1.16E-02 ± 1.71E-03	L.T. 1.89E-02
07/25/17	08/08/17	7.99E+02	CU.M	1.92E-02 ± 2.19E-03	L.T. 5.27E-03
08/08/17	08/22/17	8.04E+02	CU.M	1.15E-02 ± 1.77E-03	L.T. 2.06E-02
08/22/17	09/05/17	8.17E+02	CU.M	2.82E-02 ± 2.60E-03	L.T. 2.19E-02
09/05/17	09/19/17	8.03E+02	CU.M	2.43E-02 ± 2.42E-03	L.T. 2.08E-02
09/19/17	10/03/17	8.07E+02	CU.M	2.23E-02 ± 2.30E-03	L.T. 2.06E-02
10/03/17	10/17/17	8.05E+02	CU.M	1.56E-02 ± 1.97E-03	L.T. 2.11E-02
10/17/17	10/31/17	8.07E+02	CU.M	1.63E-02 ± 2.09E-03	L.T. 2.19E-02
10/31/17	11/14/17	8.19E+02	CU.M	1.80E-02 ± 2.01E-03	L.T. 1.13E-02
11/14/17	11/28/17	7.75E+02	CU.M	3.20E-02 ± 2.86E-03	L.T. 1.75E-02
11/28/17	12/12/17	7.93E+02	CU.M	3.05E-02 ± 2.63E-03	L.T. 1.63E-02
12/12/17	12/26/17	8 06E+02	CUM	1.72E-02 + 2.04E-03	LT 2 23E-02

	LOCATION NUMBER AN1						
COLLECT	COLLECT			AP FILTER	CHARCOAL FILTER		
START	STOP	SAMPLE		GROSS BETA	I-131		
DATE	DATE	VOLUME	UNITS	(pCi/cu.m.)	(pCi/cu.m.)		
		16.25					
12/27/16	01/10/17	8.51E+02	CU.M	1.19E-02 ± 1.73E-03	L.T. 1.60E-02		
01/10/17	01/24/17	8.02E+02	CU.M	1.30E-02 ± 1.81E-03	L.T. 1.40E-02		
01/24/17	02/07/17	8.13E+02	CU.M	2.00E-02 ± 2.22E-03	L.T. 1.78E-02		
02/07/17	02/21/17	8.02E+02	CU.M	1.59E-02 ± 1.99E-03	L.T. 1.65E-02		
02/21/17	03/07/17	8.19E+02	CU.M	1.39E-02 ± 1.85E-03	L.T. 1.76E-02		
03/07/17	03/21/17	8.31E+02	CU.M	1.79E-02 ± 2.02E-03	L.T. 1.57E-02		
03/21/17	04/04/17	8.03E+02	CU.M	1.86E-02 ± 2.14E-03	L.T. 1.04E-02		
04/04/17	04/18/17	8.24E+02	CU.M	1.71E-02 ± 1.98E-03	L.T. 1.94E-02		
04/18/17	05/02/17	7.89E+02	CU.M	1.73E-02 ± 2.10E-03	L.T. 7.24E-03		
05/02/17	05/16/17	8.19E+02	CU.M	1.77E-02 ± 2.05E-03	L.T. 1.84E-02		
05/16/17	05/30/17	8.13E+02	CU.M	1.22E-02 ± 1.80E-03	L.T. 2.07E-02		
05/30/17	06/13/17	7.89E+02	CU.M	1.27E-02 ± 1.84E-03	L.T. 1.68E-02		
06/13/17	06/27/17	7.94E+02	CU.M	1.16E-02 ± 1.80E-03	L.T. 1.56E-02		
06/27/17	07/11/17	7.76E+02	CU.M	1.22E-02 ± 1.81E-03	L.T. 2.07E-02		
07/11/17	07/25/17	8.33E+02	CU.M	1.01E-02 ± 1.59E-03	L.T. 1.84E-02		
07/25/17	08/08/17	8.10E+02	CU.M	1.93E-02 ± 2.18E-03	L.T. 1.23E-02		
08/08/17	08/22/17	8.32E+02	CU.M	1.35E-02 ± 1.85E-03	L.T. 2.00E-02		
08/22/17	09/05/17	8.67E+02	CU.M	2.47E-02 ± 2.37E-03	L.T. 8.71E-03		
09/05/17	09/19/17	8.03E+02	CU.M	2.39E-02 ± 2.40E-03	L.T. 1.13E-02		
09/19/17	10/03/17	8.25E+02	CU.M	2.59E-02 ± 2.43E-03	L.T. 8.49E-03		
10/03/17	10/17/17	8.14E+02	CU.M	1.62E-02 ± 1.99E-03	L.T. 1.14E-02		
10/17/17	10/31/17	8.29E+02	CU.M	1.60E-02 ± 2.04E-03	L.T. 1.15E-02		
10/31/17	11/14/17	8.09E+02	CU.M	1.92E-02 ± 2.09E-03	L.T. 4.83E-03		
11/14/17	11/28/17	8.10E+02	CU.M	3.25E-02 ± 2.81E-03	L.T. 9.20E-03		
11/28/17	12/12/17	7.97E+02	CU.M	3.14E-02 ± 2.66E-03	L.T. 6.88E-03		
12/12/17	12/26/17	8 07E+02	CUM	$1.88E_{-02} + 2.12E_{-03}$	L T 1 16E-02		

			LOCATIC	N NUMBER AP1	
COLLECT	COLLECT	1. 12. 14.		AP FILTER	CHARCOAL FILTER
START	STOP	SAMPLE		GROSS BETA	I-131
DATE	DATE	VOLUME	UNITS	(pCi/cu.m.)	(pCi/cu.m.)
		1			
12/27/16	01/10/17	9.01E+02	CU.M	1.42E-02 ± 1.80E-03	L.T. 1.51E-02
01/10/17	01/24/17	8.67E+02	CU.M	1.32E-02 ± 1.74E-03	L.T. 1.30E-02
01/24/17	02/07/17	8.30E+02	CU.M	1.79E-02 ± 2.09E-03	L.T. 1.74E-02
02/07/17	02/21/17	8.56E+02	CU.M	1.58E-02 ± 1.91E-03	L.T. 6.49E-03
02/21/17	03/07/17	8.34E+02	CU.M	1.20E-02 ± 1.72E-03	L.T. 1.73E-02
03/07/17	03/21/17	8.85E+02	CU.M	1.82E-02 ± 1.97E-03	L.T. 1.47E-02
03/21/17	04/04/17	8.62E+02	CU.M	1.85E-02 ± 2.05E-03	L.T. 9.71E-03
04/04/17	04/18/17	8.26E+02	CU.M	1.69E-02 ± 1.97E-03	L.T. 8.19E-03
04/18/17	05/02/17	7.76E+02	CU.M	1.62E-02 ± 2.06E-03	L.T. 1.76E-02
05/02/17	05/16/17	8.02E+02	CU.M	1.89E-02 ± 2.13E-03	L.T. 1.88E-02
05/16/17	05/30/17	8.12E+02	CU.M	1.34E-02 ± 1.87E-03	L.T. 2.07E-02
05/30/17	06/13/17	7.96E+02	CU.M	1.12E-02 ± 1.75E-03	L.T. 1.67E-02
06/13/17	06/27/17	7.99E+02	CU.M	1.30E-02 ± 1.87E-03	L.T. 1.55E-02
06/27/17	07/11/17	7.93E+02	CU.M	9.86E-03 ± 1.63E-03	L.T. 2.03E-02
07/11/17	07/25/17	8.12E+02	CU.M	1.13E-02 ± 1.69E-03	L.T. 1.89E-02
07/25/17	08/08/17	8.10E+02	CU.M	1.90E-02 ± 2.17E-03	L.T. 1.23E-02
08/08/17	08/22/17	8.03E+02	CU.M	1.41E-02 ± 1.92E-03	L.T. 2.07E-02
08/22/17	09/05/17	8.23E+02	CU.M	2.58E-02 ± 2.49E-03	L.T. 2.19E-02
09/05/17	09/19/17	8.03E+02	CU.M	2.57E-02 ± 2.48E-03	L.T. 2.09E-02
09/19/17	10/03/17	8.10E+02	CU.M	2.51E-02 ± 2.42E-03	L.T. 2.06E-02
10/03/17	10/17/17	8.08E+02	CU.M	1.61E-02 ± 1.99E-03	L.T. 2.12E-02
10/17/17	10/31/17	8.05E+02	CU.M	1.67E-02 ± 2.12E-03	L.T. 2.18E-02
10/31/17	11/14/17	7.94E+02	CU.M	2.01E-02 ± 2.15E-03	L.T. 1.17E-02
11/14/17	11/28/17	8.12E+02	CU.M	3.20E-02 ± 2.79E-03	L.T. 1.67E-02
11/28/17	12/12/17	8.00E+02	CU.M	3.06E-02 ± 2.62E-03	L.T. 1.63E-02
12/12/17	12/26/17	8.04E+02	CU.M	1.76E-02 + 2.07E-03	L.T. 2.25E-02

			LOCATIO	N NUMBER AQS2	
COLLECT	COLLECT	12		AP FILTER	CHARCOAL FILTER
START	STOP	SAMPLE		GROSS BETA	I-131
DATE	DATE	VOLUME	UNITS	(pCi/cu.m.)	(pCi/cu.m.)
		7			
12/27/16	01/10/17	8.40E+02	CU.M	1.39E-02 ± 1.85E-03	L.T. 6.78E-03
01/10/17	01/24/17	8.14E+02	CU.M	1.22E-02 ± 1.75E-03	L.T. 1.38E-02
01/24/17	02/07/17	8.25E+02	CU.M	2.00E-02 ± 2.20E-03	L.T. 1.75E-02
02/07/17	02/21/17	8.16E+02	CU.M	1.71E-02 ± 2.03E-03	L.T. 1.96E-02
02/21/17	03/07/17	8.32E+02	CU.M	1.27E-02 ± 1.77E-03	L.T. 1.73E-02
03/07/17	03/21/17	8.41E+02	CU.M	1.89E-02 ± 2.06E-03	L.T. 1.55E-02
03/21/17	04/04/17	8.54E+02	CU.M	1.65E-02 ± 1.96E-03	L.T. 9.77E-03
04/04/17	04/18/17	8.15E+02	CU.M	1.55E-02 ± 1.91E-03	L.T. 1.97E-02
04/18/17	05/02/17	7.83E+02	CU.M	1.50E-02 ± 1.99E-03	L.T. 1.74E-02
05/02/17	05/16/17	8.03E+02	CU.M	1.97E-02 ± 2.17E-03	L.T. 1.87E-02
05/16/17	05/30/17	7.90E+02	CU.M	1.36E-02 ± 1.91E-03	L.T. 8.83E-03
05/30/17	06/13/17*				
06/13/17	06/27/17	6.18E+02	CU.M	1.49E-02 ± 2.39E-03	L.T. 2.33E-02
06/27/17	07/11/17	7.76E+02	CU.M	1.18E-02 ± 1.78E-03	L.T. 1.68E-02
07/11/17	07/25/17	8.09E+02	CU.M	1.19E-02 ± 1.73E-03	L.T. 1.88E-02
07/25/17	08/08/17	8.05E+02	CU.M	1.87E-02 ± 2.16E-03	L.T. 1.24E-02
08/08/17	08/22/17	8.03E+02	CU.M	1.33E-02 ± 1.88E-03	L.T. 2.06E-02
08/22/17	09/05/17	8.26E+02	CU.M	2.68E-02 ± 2.53E-03	L.T. 2.18E-02
09/05/17	09/19/17	8.04E+02	CU.M	2.54E-02 ± 2.46E-03	L.T. 2.09E-02
09/19/17	10/03/17	8.12E+02	CU.M	2.70E-02 ± 2.50E-03	L.T. 2.06E-02
10/03/17	10/17/17	8.05E+02	CU.M	1.67E-02 ± 2.03E-03	L.T. 2.12E-02
10/17/17	10/31/17	8.08E+02	CU.M	1.62E-02 ± 2.09E-03	L.T. 2.17E-02
10/31/17	11/14/17	7.87E+02	CU.M	1.73E-02 ± 2.02E-03	L.T. 1.18E-02
11/14/17	11/28/17	8.10E+02	CU.M	2.99E-02 ± 2.71E-03	L.T. 1.67E-02
11/28/17	12/12/17	7.96E+02	CU.M	2.85E-02 ± 2.55E-03	L.T. 1.63E-02
12/12/17	12/26/17	8.07E+02	CU.M	1.72E-02 ± 2.04E-03	L.T. 2.24E-02

* Power outage and sampler pump failure. CR-RBS-2017-04339

ATTACHMENT 2.1 RIVER BEND STATION THERMOLUMINESCENT DOSIMETERS (TLD) mR/Qtr

Sample	Location	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Quarter Average
Nuclide		01/01/17-03/31/17	04/01/17-06/30/17	07/01/17-09/30/17	10/01/17-01/01/18	- 1 S.D.
			C			
TLD	TA1	11.5	10.8	10.3	11.9	11.1 ± 0.7
	TAC	15.9	15.2	15.8	16.8	15.9 ± 0.7
	TB1	15.8	14.7	14.9	15.6	15.2 ± 0.6
	TC1	15.3	14.1	15.0	15.9	15.1 ± 0.7
	TCS	12.8	12.9	12.5	13.4	12.9 ± 0.4
	TD1	15.2	15.0	14.6	16.2	15.3 ± 0.7
	TE1	14.4	13.6	14.6	14.7	14.3 ± 0.5
	TEC	14.1	13.4	15.0	15.3	14.4 ± 0.9
	TF1	14.4	14.0	14.8	14.5	14.4 ± 0.3
	TG1	16.4	15.3	16.2	16.4	16.1 ± 0.5
	TGS	15.7	15.2	15.7	17.0	15.9 ± 0.8
	TH1	13.2	12.1	13.4	13.4	13.0 ± 0.6
	TJ1	13.9	12.9	13.5	14.5	13.7 ± 0.7
	TK1	13.9	13.7	14.3	14.7	14.2 ± 0.4
	TL1	14.6	13.9	14.0	15.2	14.4 ± 0.6
	TM1	13.1	12.4	12.5	13.0	12.8 ± 0.4
	TN1	14.5	13.6	14.5	14.9	14.4 ± 0.5
	TNS	14.1	13.2	14.5	14.2	14.0 ± 0.5
	TP1	13.5	12.8	13.0	14.5	13.4 ± 0.8
	TQ1	11.0	10.8	11.0	11.4	11.0 ± 0.3
	TR1	11.0	10.4	11.0	11.5	11.0 ± 0.5
	TRS	15.0	14.3	14.4	15.1	14.7 ± 0.4
	TQS1	14.8	14.9	15.0	15.9	15.1 ± 0.5
	TQS2	13.8	12.5	12.4	12.6	12.8 ± 0.6
Average/	Quarter	14.1 ± 1.5	13.4 ± 1.4	13.9 ± 1.6	14.5 ± 1.6	
Range		(11.0-16.4)	(10.4-15.3)	(10.3-16.2)	(11.4-17)	
Detection	n/Total	24/24	24/24	24/24	24/24	

STATION NUMBER SWD

DATE COLLECTED	02/09/17	05/16/17	08/14/17	11/15/17
RADIOCHEMICAL ANALYSIS:				
H-3	L.T. 7.01E+02	L.T. 7.15E+02	L.T. 6.59E+02	L.T. 1.83E+02
GAMMA SPECTRUM ANALYSIS:				
MN-54 CO-58 FE-59 CO-60 ZN-65 NB-95 ZR-95 I-131 CS-134 CS-134 CS-137 BA-140	L.T. 5.09E+00 L.T. 4.94E+00 L.T. 9.72E+00 L.T. 4.62E+00 L.T. 5.66E+00 L.T. 5.66E+00 L.T. 1.38E+01 L.T. 4.57E+00 L.T. 5.61E+00 L.T. 3.18E+01 L.T. 1.01E+01	L.T. 2.12E+00 L.T. 2.31E+00 L.T. 5.50E+00 L.T. 2.06E+00 L.T. 2.52E+00 L.T. 2.52E+00 L.T. 4.72E+00 L.T. 1.25E+01 L.T. 2.33E+00 L.T. 2.32E+00 L.T. 2.09E+01 L.T. 2.09E+01	L.T. 4.91E+00 L.T. 5.32E+00 L.T. 1.34E+01 L.T. 6.33E+00 L.T. 1.14E+01 L.T. 6.51E+00 L.T. 1.01E+01 L.T. 1.38E+01 L.T. 6.54E+00 L.T. 5.91E+00 L.T. 3.43E+01	L.T. 3.64E+00 L.T. 3.93E+00 L.T. 9.37E+00 L.T. 3.49E+00 L.T. 7.38E+00 L.T. 5.81E+00 L.T. 6.53E+00 L.T. 1.28E+01 L.T. 3.02E+00 L.T. 4.53E+00 L.T. 2.77E+01

STATION NUMBER SWD DUP

DATE COLLECTED

02/09/17

RADIOCHEMICAL ANALYSIS:

H-3

L.T. 7.19E+02

GAMMA SPECTRUM ANALYSIS:

MN-54	L.T. 5.02E+00
CO-58	L.T. 5.25E+00
FE-59	L.T. 1.16E+01
CO-60	L.T. 5.02E+00
ZN-65	L.T. 8.79E+00
NB-95	L.T. 5.43E+00
ZR-95	L.T. 8.07E+00
I-131	L.T. 1.32E+01
CS-134	L.T. 4.87E+00
CS-137	L.T. 4.59E+00
BA-140	L.T. 3.11E+01
LA-140	L.T. 7.43E+00

STATION NUMBER SWU

DATE COLLECTED	02/09/17	05/16/17	08/14/17	11/15/17
RADIOCHEMICAL ANALYSIS:				
H-3	L.T. 7.18E+02	L.T. 7.04E+02	L.T. 6.55E+02	L.T. 2.63E+02
GAMMA SPECTRUM ANALYSIS:				
MN-54 CO-58 FE-59 CO-60 ZN-65 NB-95 ZR-95 I-131 CS-134 CS-137 BA-140	L.T. 4.72E+00 L.T. 5.11E+00 L.T. 1.12E+01 L.T. 4.96E+00 L.T. 1.10E+01 L.T. 6.58E+00 L.T. 1.18E+01 L.T. 1.46E+01 L.T. 5.19E+00 L.T. 5.10E+00 L.T. 3.46E+01	L.T. 1.84E+00 L.T. 2.10E+00 L.T. 4.58E+00 L.T. 1.94E+00 L.T. 3.79E+00 L.T. 2.22E+00 L.T. 3.78E+00 L.T. 1.06E+01 L.T. 2.02E+00 L.T. 2.03E+00 L.T. 1.93E+01	L.T. 4.95E+00 L.T. 5.80E+00 L.T. 8.39E+00 L.T. 5.74E+00 L.T. 8.67E+00 L.T. 5.73E+00 L.T. 7.73E+00 L.T. 1.16E+01 L.T. 5.15E+00 L.T. 5.48E+00 L.T. 3.07E+01	L.T. 4.63E+00 L.T. 4.77E+00 L.T. 1.08E+01 L.T. 4.85E+00 L.T. 9.52E+00 L.T. 5.19E+00 L.T. 9.17E+00 L.T. 1.42E+01 L.T. 5.20E+00 L.T. 5.09E+00 L.T. 2.70E+01

STATION NUMBER SWU DUP

DATE COLLECTED

02/09/17

RADIOCHEMICAL ANALYSIS:

H-3

L.T. 7.10E+02

GAMMA SPECTRUM ANALYSIS:

MN-54	L.T. 4.14E+00
CO-58	L.T. 3.87E+00
FE-59	L.T. 1.21E+01
CO-60	L.T. 5.97E+00
ZN-65	L.T. 1.06E+01
NB-95	L.T. 5.75E+00
ZR-95	L.T. 6.91E+00
I-131	L.T. 1.23E+01
CS-134	L.T. 4.73E+00
CS-137	L.T. 4.63E+00
BA-140	L.T. 2.93E+01
LA-140	L.T. 9.34E+00

ATTACHMENT 4.1 RIVER BEND STATION GROUNDWATER pCi/L

	LOCATION	GWD	LOCATION (GWU
DATE COLLECTED	05/23/17	11/16/17	05/23/17	11/16/17
RADIOCHEMICAL ANALYSIS:				
H-3	L.T. 6.92E+02	L.T. 6.20E+02	L.T. 7.02E+02	L.T. 6.15E+02
GAMMA SPECTRUM ANALYSIS:				
MN-54 CO-58 FE-59 CO-60 ZN-65 NB-95 ZR-95 I-131 CS-134	L.T. 4.69E+00 L.T. 4.18E+00 L.T. 1.05E+01 L.T. 4.72E+00 L.T. 9.80E+00 L.T. 4.76E+00 L.T. 9.34E+00 L.T. 1.44E+01 L.T. 4.45E+00	L.T. 4.71E+00 L.T. 4.79E+00 L.T. 9.54E+00 L.T. 5.99E+00 L.T. 7.72E+00 L.T. 5.78E+00 L.T. 8.77E+00 L.T. 1.44E+01 L.T. 5.13E+00	L.T. 4.75E+00 L.T. 5.14E+00 L.T. 1.07E+01 L.T. 5.41E+00 L.T. 9.26E+00 L.T. 4.96E+00 L.T. 8.93E+00 L.T. 1.46E+01 L.T. 5.54E+00	L.T. 5.11E+00 L.T. 5.09E+00 L.T. 1.01E+01 L.T. 6.17E+00 L.T. 1.11E+01 L.T. 5.55E+00 L.T. 8.83E+00 L.T. 1.49E+01 L.T. 6.71E+00
CS-137 BA-140 LA-140	L.T. 4.91E+00 L.T. 3.05E+01 L.T. 9.86E+00	L.T. 5.11E+00 L.T. 3.24E+01 L.T. 1.00E+01	L.T. 6.29E+00 L.T. 3.23E+01 L.T. 9.67E+00	L.T. 5.31E+00 L.T. 3.30E+01 L.T. 1.34E+01

ATTACHMENT 5.1 RIVER BEND STATION SHORELINE SEDIMENT pCi/kg, dry

LOCATION SEDD

LOCATION SEDU

09/21/17

DATE COLLECTED

09/21/17

GAMMA SPECTRUM ANALYSIS:

MN-54	L.T. 6.26E+01	L.T. 7.03E+01
CO-58	L.T. 6.88E+01	L.T. 6.67E+01
FE-59	L.T. 1.66E+02	L.T. 1.46E+02
CO-60	L.T. 6.06E+01	L.T. 7.40E+01
ZN-65	L.T. 1.68E+02	L.T. 1.84E+02
NB-95	L.T. 8.15E+01	L.T. 8.81E+01
ZR-95	L.T. 1.07E+02	L.T. 1.18E+02
I-131	L.T. 1.48E+02	L.T. 1.79E+02
CS-134	L.T. 7.78E+01	L.T. 1.02E+02
CS-137	L.T. 6.40E+01	1.01E+02 ± 6.14E+01
BA-140	L.T. 4.28E+02	L.T. 4.60E+02
LA-140	L.T. 1.15E+02	L.T. 1.25E+02

ATTACHMENT 6.1 RIVER BEND STATION FOOD PRODUCTS pCi/kg, wet

LOCATION GN1

DATE COLLECTED	03/03/17	05/25/17	08/22/17	11/21/17
GAMMA SPECTRUM ANALYSIS:				
MN-54	L.T. 3.72E+01	L.T. 2.07E+01	L.T. 7.80E+00	L.T. 2.86E+00
CO-58	L.T. 3.48E+01	L.T. 2.07E+01	L.T. 7.28E+00	L.T. 3.23E+00
FE-59	L.T. 6.32E+01	L.T. 4.60E+01	L.T. 1.92E+01	L.T. 8.45E+00
CO-60	L.T. 3.79E+01	L.T. 1.85E+01	L.T. 7.59E+00	L.T. 2.60E+00
ZN-65	L.T. 9.64E+01	L.T. 3.91E+01	L.T. 1.67E+01	L.T. 5.96E+00
NB-95	L.T. 4.05E+01	L.T. 2.25E+01	L.T. 9.20E+00	L.T. 5.96E+00
ZR-95	L.T. 5.81E+01	L.T. 3.59E+01	L.T. 1.46E+01	L.T. 5.66E+00
I-131	L.T. 5.77E+01	L.T. 5.16E+01	L.T. 5.65E+01	L.T. 5.86E+01
CS-134	L.T. 3.55E+01	L.T. 1.75E+01	L.T. 9.34E+00	L.T. 2.95E+00
CS-137	L.T. 3.93E+01	L.T. 2.17E+01	L.T. 7.78E+00	L.T. 2.60E+00
BA-140	L.T. 1.42E+02	L.T. 1.27E+02	L.T. 1.05E+02	L.T. 6.03E+01
LA-140	L.T. 4.50E+01	L.T. 3.41E+01	L.T. 2.75E+01	L.T. 1.56E+01

ATTACHMENT 6.1 RIVER BEND STATION FOOD PRODUCTS pCi/kg, wet

LOCATION GQC

DATE COLLECTED	03/02/17	05/25/17	09/11/17	12/14/17
GAMMA SPECTRUM ANALYSIS:				
MN-54 CO-58 FE-59 CO-60 ZN-65 NB-95	L.T. 2.53E+01 L.T. 2.24E+01 L.T. 5.61E+01 L.T. 2.65E+01 L.T. 5.33E+01 L.T. 2.39E+01	L.T. 2.02E+01 L.T. 1.68E+01 L.T. 3.87E+01 L.T. 1.93E+01 L.T. 3.70E+01 L.T. 1.81E+01	L.T. 4.27E+01 L.T. 2.94E+01 L.T. 6.23E+01 L.T. 3.83E+01 L.T. 8.49E+01 L.T. 3.34E+01	L.T. 6.82E+00 L.T. 6.83E+00 L.T. 1.78E+01 L.T. 8.00E+00 L.T. 1.68E+01 L.T. 6.84E+00
ZR-95 I-131 CS-134 CS-137	L.T. 4.64E+01 L.T. 3.68E+01 L.T. 2.72E+01 L.T. 2.23E+01	L.T. 3.07E+01 L.T. 4.78E+01 L.T. 1.95E+01 L.T. 1.62E+01	L.T. 5.78E+01 L.T. 3.80E+01 L.T. 5.00E+01 L.T. 3.80E+01	L.T. 1.23E+01 L.T. 1.65E+01 L.T. 7.37E+00 L.T. 6.56E+00
LA-140	L.T. 2.82E+01	L.T. 3.05E+01	L.T. 5.12E+01	L.T. 1.28E+01

ATTACHMENT 7.1 RIVER BEND STATION FISH pCi/kg, wet

LOCATION FD

LOCATION FU

L.T. 9.10E+01

DATE COLLECTED	08/14/17	08/14/17
GAMMA SPECTRUM ANALYSIS:		
MN-54	L.T. 6.55E+01	L.T. 7.94E+01
CO-58	L.T. 5.78E+01	L.T. 7.04E+01
FE-59	L.T. 1.06E+02	L.T. 1.82E+02
CO-60	L.T. 5.94E+01	L.T. 7.51E+01
ZN-65	L.T. 1.30E+02	L.T. 1.45E+02
NB-95	L.T. 7.45E+01	L.T. 7.00E+01
ZR-95	L.T. 1.25E+02	L.T. 1.21E+02
I-131	L.T. 1.26E+02	L.T. 1.10E+02
CS-134	L.T. 6.61E+01	L.T. 7.67E+01
CS-137	L.T. 7.91E+01	L.T. 7.42E+01
BA-140	L.T. 3.33E+02	L.T. 3.30E+02

L.T. 1.08E+02

LA-140

Attachment 8

Teledyne Brown Engineering's Interlaboratory Comparison Program Tables

Month/Year	Identification Number	Matrix	Nuclide	Units	TBE Reported Value	Known Value ^(a)	Ratio of TBE to Analytics Result	Evaluation ^(b)
March 2017	E11811	Milk	Sr-89	pCi/L	87	97.7	0.89	А
			Sr-90	pCi/L	12.4	16.2	0.77	W
	E11812	Milk	Ce-141	pCi/L	135	145	0.93	A
			Co-58	pCi/L	153	150	1.02	A
			Co-60	pCi/L	182	183	1.00	A
			Cr-51	pCi/L	258	290	0.89	A
			Cs-134	pCi/L	104	120	0.87	A
			Cs-137	pCi/L	142	140	1.02	A
			Fe-59	pCi/L	135	129	1.05	A
			I-131	pCi/L	92.6	97.9	0.95	A
			Mn-54	pCi/L	173	164	1.05	A
			Zn-65	pCi/L	208	199	1.04	A
	E11813	Charcoal	I-131	pCi	92	93.9	0.98	А
	E11814	AP	Ce-141	pCi	99.9	101	0.99	А
			Co-58	pCi	95.4	104	0.92	А
			Co-60	pCi	140	127	1.10	А
			Cr-51	pCi	211	201	1.05	А
			Cs-134	pCi	82.1	83.2	0.99	A
			Cs-137	pCi	92.8	97.0	0.96	А
			Fe-59	pCi	107	89.3	1.20	A
			Mn-54	pCi	106	114	0.93	A
			Zn-65	pCi	137	138	0.99	A
	E11816	Soil	Ce-141	pCi/a	0.258	0.250	1.03	A
			Co-58	pCi/q	0.241	0.258	0.93	А
			Co-60	pCi/g	0.312	0.315	0.99	А
			Cr-51	pCi/q	0.439	0.500	0.88	А
			Cs-134	pCi/q	0.176	0.207	0.85	А
			Cs-137	pCi/q	0.304	0.317	0.96	A
			Fe-59	pCi/g	0.210	0.222	0.95	А
			Mn-54	pCi/a	0.292	0.283	1.03	A
			Zn-65	pCi/g	0.353	0.344	1.03	А
	E11815	Water	Fe-55	pCi/L	1600	1890	0.85	A

(a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

(b) Analytics evaluation based on TBE internal QC limits:

A = Acceptable - reported result falls within ratio limits of 0.80-1.20

W = Acceptable with warning - reported result falls within 0.70-0.80 or 1.20-1.30

N = Not Acceptable - reported result falls outside the ratio limits of < 0.70 and > 1.30

Month/Year	Identification Number	Matrix	Nuclide	Units	TBE Reported Value	Known Value ^(a)	Ratio of TBE to Analytics Result	Evaluation ^(b)
June 2017	E11844	Milk	Sr-89	pCi/L	81.3	92.6	0.88	А
			Sr-90	pCi/L	12.1	13.5	0.90	А
	E11846	Milk	Ce-141	pCi/L	142	151	0.94	A
			Co-58	pCi/L	147	155	0.95	A
			Co-60	pCi/L	185	191	0.97	А
			Cr-51	pCi/L	321	315	1.02	A
			Cs-134	pCi/L	168	188	0.89	А
			Cs-137	pCi/L	148	150	0.99	A
			Fe-59	pCi/L	116	115	1.01	А
			I-131	pCi/L	102	93.6	1.09	А
			Mn-54	pCi/L	168	172	0.98	А
			Zn-65	pCi/L	195	204	0.96	А
	E11847	Charcoal	I-131	pCi	87.9	84.8	1.04	А
	E11845	AP	Sr-89	pCi	70.8	79.1	0.90	А
			Sr-90	pCi	9.10	11.5	0.79	W
	E11848	AP	Ce-141	pCi	112	116	0.96	А
			Co-58	pCi	119	119	1.00	A
			Co-60	pCi	171	146	1.17	A
			Cr-51	pCi	270	241	1.12	A
			Cs-134	pCi	152	144	1.05	A
			Cs-137	pCi	114	115	0.99	A
			Fe-59	pCi	94.1	88.3	1.07	A
			Mn-54	pCi	139	132	1.06	A
			Zn-65	pCi	141	156	0.90	А
	E11849	Water	Fe-55	pCi/L	1840	1890	0.97	А
July 2017	E11901	AP	GR-A GR-B	pCi pCi	50.1 218	44.2 233	1.13 0.93	A A

(a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

- (b) Analytics evaluation based on TBE internal QC limits:
 - A = Acceptable reported result falls within ratio limits of 0.80-1.20
 - W = Acceptable with warning reported result falls within 0.70-0.80 or 1.20-1.30
 - N = Not Acceptable reported result falls outside the ratio limits of < 0.70 and > 1.30

Month/Year	Identification Number	Matrix	Nuclide	Units	TBE Reported Value	Known Value ^(a)	Ratio of TBE to Analytics Result	Evaluation ^(b)
September 2017	E11914	Milk	Sr-89	pCi/L	84.3	82.7	1.02	А
			Sr-90	pCi/L	12.6	12.1	1.04	А
	E11915	Milk	Ce-141	pCi/L	93.9	87.0	1.08	A
			Co-58	pCi/L	115	117	0.98	A
			Co-60	pCi/L	265	262	1.01	A
			Cr-51	pCi/L	273	217	1.26	W
			Cs-134	pCi/L	186	201	0.93	A
			Cs-137	pCi/L	175	172	1.02	A
			Fe-59	pCi/L	137	125	1.09	A
			I-131	pCi/L	78.0	71.0	1.10	A
			Mn-54	pCi/L	128	123	1.04	A
			Zn-65	pCi/L	206	184	1.12	A
	E11916	Charcoal	I-131	pCi	71.9	64.4	1.12	А
	E11917	AP	Ce-141	pCi	80.1	86.3	0.93	А
			Co-58	pCi	110	116	0.95	A
			Co-60	pCi	277	260	1.07	A
			Cr-51	pCi	275	215	1.28	\sim
			Cs-134	pCi	192	199	0.96	A
			Cs-137	pCi	165	170	0.97	А
			Fe-59	pCi	122	124	0.98	A
			Mn-54	pCi	120	122	0.99	A
			Zn-65	pCi	175	183	0.96	А
	E11918	Water	Fe-55	pCi/L	1630	1630	1.00	А
	E11919	Soil	Ce-141	pCi/g	0.136	0.142	0.96	А
			Co-58	pCi/g	0.179	0.191	0.94	A
			Co-60	pCi/g	0.405	0.429	0.94	A
			Cr-51	pCi/g	0.230	0.355	0.65	N ⁽¹⁾
			Cs-134	pCi/g	0.272	0.328	0.83	A
			Cs-137	pCi/g	0.336	0.356	0.94	A
			Fe-59	pCi/g	0.210	0.205	1.02	А
			Mn-54	pCi/g	0.210	0.201	1.05	А
			Zn-65	pCi/g	0.301	0.301	1.00	А

(a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

(b) Analytics evaluation based on TBE internal QC limits:

A = Acceptable - reported result falls within ratio limits of 0.80-1.20

W = Acceptable with warning - reported result falls within 0.70-0.80 or 1.20-1.30

N = Not Acceptable - reported result falls outside the ratio limits of < 0.70 and > 1.30

(1) See NCR 17-16

Month/Year	Identification Number	Matrix	Nuclide	Units	TBE Reported Value	Known Value ^(a)	Ratio of TBE to Analytics Result	Evaluation ^(b)
December 2017	E12054	Milk	Sr-89	pCi/L	92.1	92.3	1.00	А
			Sr-90	pCi/L	18.3	16.9	1.09	А
	E12055	Milk	Ce-141	pCi/L	97.8	98.3	0.99	A
			Co-58	pCi/L	92.3	89.9	1.03	A
			Co-60	pCi/L	176	173	1.02	A
			Cr-51	pCi/L	226	242	0.93	A
			Cs-134	pCi/L	118	125	0.95	А
			Cs-137	pCi/L	148	141	1.05	A
			Fe-59	pCi/L	123	113	1.08	A
			I-131	pCi/L	66.0	57.8	1.14	A
			Mn-54	pCi/L	173	161	1.08	A
			Zn-65	pCi/L	233	211	1.10	А
	E12056	Charcoal	I-131	pCi	48.1	47.5	1.01	А
	E100574	45	0. 444	- 01	100		0.07	
	E1205/A	AP	Ce-141	pCi	108	111	0.97	A
			Co-58	pCi	89.5	102	0.88	A
			Co-60	pCi	223	196	1.14	A
			Cr-51	pCi	311	274	1.13	A
			Cs-134	pCi	141	142	1.00	A
			Cs-137	pCi	162	160	1.01	A
			Fe-59	pCi	121	129	0.94	A
			Mn-54	pCi	177	182	0.97	A
			Zn-65	pCi	203	239	0.85	A
	E12058	Water	Fe-55	pCi/L	1970	1740	1.13	А
	E12059	AP	Sr-89	pCi	71.2	87.4	0.81	А
			Sr-90	pCi	12.9	16.0	0.81	А

(a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

- (b) Analytics evaluation based on TBE internal QC limits:
 - A = Acceptable reported result falls within ratio limits of 0.80-1.20
 - W = Acceptable with warning reported result falls within 0.70-0.80 or 1.20-1.30

N = Not Acceptable - reported result falls outside the ratio limits of < 0.70 and > 1.30

Month/Year	Identification Number	Matrix	Nuclide	Units	TBE Reported Value	Known Value ^(a)	Acceptance Range	Evaluation ^(b)
February 2017	17-MaS36	Soil	Ni-63	Bq/kg	-5.512		(1)	А
			Sr-90	Bq/kg	571	624	437 - 811	А
	17-MaW36	Water	Am-241	Bq/L	0.693	0.846	0.592 - 1.100	А
			Ni-63	Bq/L	13.4	12.2	8.5 - 15.9	А
			Pu-238	Bq/L	0.7217	0.703	0.492 - 0.914	A
			Pu-239/240	Bq/L	0.9277	0.934	0.654 - 1.214	А
	17-RdF36	AP	U-234/233	Bq/sample	0.0911	0.104	0.073 - 0.135	А
			U-238	Bq/sample	0.0967	0.107	0.075 - 0.139	А
	17-RdV36	Vegetation	Cs-134	Bq/sample	6.44	6.95	4.87 - 9.04	А
			Cs-137	Bq/sample	4.61	4.60	3.22 - 5.98	A
			Co-57	Bq/sample	-0.0229		(1)	A
			Co-60	Bq/sample	8.52	8.75	6.13 - 11.38	A
			Mn-54	Bq/sample	3.30	3.28	2.30 - 4.26	A
			Sr-90	Bq/sample	1.30	1.75	1.23 - 2.28	W
			Zn-65	Bq/sample	5.45	5.39	3.77 - 7.01	А
August 2017	17-MaS37	Soil	Ni-63	Bq/kg	1130	1220	854 - 1586	А
			Sr-90	Bq/kg	296	289	202 - 376	A
	17-MaW37	Water	Am-241	Bq/L	0.838	0.892	0.624 - 1.160	А
			Ni-63	Bq/L	-0.096		(1)	A
			Pu-238	Bq/L	0.572	0.603	0.422 - 0.784	A
			Pu-239/240	Bq/L	0.863	0.781	0.547 - 1.015	A
	17-RdF37	AP	U-234/233	Bq/sample	0.103	0.084	0.059 - 0.109	W
			U-238	Bq/sample	0.115	0.087	0.061 - 0.113	N ⁽²⁾
	17-RdV37	Vegetation	Cs-134	Bq/sample	2.34	2.32	1.62 - 3.02	А
			Cs-137	Bq/sample	0.05		(1)	A
			Co-57	Bq/sample	3.32	2.8	2.0 - 3.6	A
			Co-60	Bq/sample	2.09	2.07	1.45 - 2.69	А
			Mn-54	Bq/sample	2.90	2.62	1.83 - 3.41	A
			Sr-90	Bq/sample	1.17	1.23	0.86 - 1.60	A
			Zn-65	Bq/sample	6.07	5.37	3.76 - 6.98	А

DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Teledyne Brown Engineering Environmental Services

(a) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation

(b) DOE/MAPEP evaluation:

A = Acceptable - reported result falls within ratio limits of 0.80-1.20

W = Acceptable with warning - reported result falls within 0.70-0.80 or 1.20-1.30

N = Not Acceptable - reported result falls outside the ratio limits of < 0.70 and > 1.30

(1) False positive test

(2) See NCR 17-15

Month/Year	Identrification Number	Matrix	Nuclide	Units	TBE Reported Value	Known Value ^(a)	Acceptance Limits	Evaluation ^(b)
March 2017	MRAD-26	AP	GR-A	pCi/sample	76.3	85.5	28.6 - 133	А
April 2017	PAD 100	Mator	Po 122	DCi/I	40.2	40.7	40 9 55 1	٨
April 2017	RAD-109	vvaler	Da-133	pCi/L	49.2	49.7	74.0 - 99.1	A A
			Ce-137	pCi/L	202	206	185 - 228	~
			Co-60	pCi/L	51 2	54 7	49.2 - 62.7	Δ
			7n-65	pCi/L	30.3	53.8	47.2 - 65.9	N ⁽¹⁾
			CR-A	pCi/L	53.6	75.0	39.5 - 92.3	Δ
			GR-R	pCi/L	42.7	38.5	25.5 - 46.0	Δ
			U-Nat	pCi/L	50.1	55.6	45 2 - 61 7	Δ
			H-3	pCi/L	7080	6850	5920 - 7540	A
			Sr-89	pCi/L	40.7	66.2	538-743	N ⁽¹⁾
			Sr-90	pCi/L	26.9	26.7	19.3 - 31.1	A
			I-131	pCi/L	26.7	29.9	24.9 - 34.9	A
September 2017	MRAD-27	AP	GR-A	pCi/sample	40.9	50.1	16.8 - 77.8	А
		AP	GR-B	pCi/sample	58.0	61.8	39.1 - 90.1	А
October 2017	RAD-111	Water	Ba-133	pCi/L	71.3	73.7	61.7 - 81.1	А
			Cs-134	pCi/L	43.0	53.0	42.8 - 58.3	А
			Cs-137	pCi/L	48.2	52.9	47.6 - 61.1	A
			Co-60	pCi/L	69.0	69.5	62.6 - 78.9	А
			Zn-65	pCi/L	335	348	313 - 406	А
			GR-A	pCi/L	32.5	35.6	18.3 - 45.8	A
			GR-B	pCi/L	24.3	25.6	16.0 - 33.6	А
			U-Nat	pCi/l	36.6	37.0	30.0 - 40.9	А
			H_3	pCi/L	6270	6250	5390 - 6880	Δ
			I-131	pCi/L	26.4	24.2	201-287	A
			1-101	point	20.4	27.2	20.1 20.7	~
November 2017	1113170	Water	Sr-89	pCi/L	57.1	50.0	39.4 - 57.5	А
			Sr-90	pCi/L	27.1	41.8	30.8 - 48.0	N ⁽²⁾

(a) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(b) ERA evaluation:

A = Acceptable - Reported value falls within the Acceptance Limits N = Not Acceptable - Reported value falls outside of the Acceptance Limits

(1) See NCR 17-09

(2) See NCR 17-19