APPENDIX 8B

TECHNICAL SPECIFICATION REVISIONS HAND MARKED

:

8509050151 850806 PDR ADOCK 05000272 P PDR

1.0 DEFINITIONS

DEFINED TERMS

1.1 The DEFINED TERMS of this section appear in capitalized type and are applicable throughout these Technical Specifications.

THERMAL POWER

1.2 THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.

RATED THERMAL POWER

1.3 RATED THERMAL POWER shall be a total reactor core heat transfer rate to the reactor coolant of 2538 MWt.

3411

OPERATIONAL MODE

1.4 An OPERATIONAL MODE shall correspond to any one inclusive combination of core reactivity condition, power level and average reactor coolant temperature specified in Table 1.1.

ACTION

1.5 ACTION shall be those additional requirements specified as corollary statements to each principle specification and shall be part of the specifications.

OPERABLE - OPERABILITY

1.6 A system, subsystem, train, component or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s). Implicit in this definition shall be the assumption that all necessary attendant instrumentation, controls, normal and emergency electrical power sources, cooling or seal water, lubrication or other auxil equipment that are required for the system, subsystem, train, component or device to perform its function(s) are also capable of performing their rela support function(s).

REPORTABLE OCCURRENCE

1.7 A REPORTABLE OCCURRENCE shall be any of those conditions specified in Specifications 6.9.1.8 and 6.9.1.9.

SALEM - UNIT 1

1-1

Amendment No. 9

•	INDEE OTE V	
	DNB PARAMETERS	
	LIMIT	<u>'</u>
PARAMETER	4 Loops In Operation 582	3/Loops in Operation/
Reactor Coolant System Tavg	<u><</u> 581°F	/ <u><</u> \$72°F
Pressurizer Pressure	2220 psia*	>/2220/ps#a*
Reactor- Contant System	<u>349,200-gp</u> m	

. . .

.

3/4 2-14

.

*Limit not applicable during either a THERMAL POWER ramp incease in excess of 5% RATED THERMAL POWER per minute or a THERMAL POWER step increase in excess of 10% RATED THERMAL POWER.

ATTACHMENT # 2

DRAFT FSAR CHANGES TO BE INCORPORATED UPON ISSUANCE OF THE SALEM UNIT 1 POWER UPRATE AMENDMENT

The following changes have been identified:

- Chapter 1 Change page 1.0-1 as per the attached marked-up page.
- Chapter 2&3 No Changes
- Chapter 4* Delete Tables 4.1-1A (six pages), 4.4-1A (two pages) 4.4-2A (one page, and 4.4-3A (one page).
 - Change Tables 4.1-1B (six pages), 4.4-1B (two pages), 4.4-2B (one page), and 4.4-3B (one page) as per the attached marked-up pages.
 - Change throughout Section 4.4 any reference to "Tables 4.4-1A and B" to "Table 4.4-1". Similarly for Tables 4.4-2A and B, and Tables 4.4-3A and B.
 - Change pages 4.4-5, 4.4-13, and 4.4-54 as per the attached marked-up pages.

Chapters 6, 7, 8, and 9 - No Changes.

Chapter 10 - Revise pages 10.2-1 and 10.3-2 per the attached marked up pages.

Chapters 11, 12, 13, 14 and 15 - No Changes.

*Section 4.3, Nuclear Design, is based on Cycle 1 core design. Since the uprate will not be implemented until cycle 7, it is not appropriate to change Section 4.3 to reflect the uprated conditions. Revisions to the Nuclear Design are addressed by the reload analyses, Section 4.5.

1.0 - INTRODUCTION AND SUMMARY

This Updated Final Safety Analysis Report is submitted pursuant to the requirements of 10 CFR 50.71 by Public Service Electric and Gas Company (PSE&G) for the two nuclear power units at its Salem Generating Station.

PSE&G and Westinghouse Electric Corporation have jointly participated in the design and construction of each unit. The plant is operated by PSE&G. Each unit employs a pressurized water reactor nuclear steam supply system furnished by Westinghouse which is similar in design concept to several other projects licensed by the Nuclear Regulatory Commision. The only systems shared by the two units are Compressed Air, Demineralized Water and the Solid Radwaste Handling System. There are a minimum of shared components; chemical drain and laundry hot shower tanks and pumps are the only components in common.

core power for both units is 3411 Malt. The licensed ratings of the two units are as follows: Unit-1-3338 MWt, and Unit 2 - 3411 MWt. The warranted gross and approximate net electrical outputs are 1132 MWe and 1090 MWe respectively for Unit 1 and 1158 MWe and 1115 MWe respectively for Unit 2. The reactors are expected to be capable of outputs of approximately 3494 MWt (Unit-1) and 3570 MWt (Unit-2), which corresponds to the valves-wide-open rating of the turbine generators of 1176 MWe gross and 1130 MWe net for Unit 1; and 1201 MWe gross and 1155 MWe net for Unit-2. The containment and engineered safety features for both units have been designed and evaluated at the Unit-2 maximum power rating of 3570 Mwt. Most postulated accidents have been evaluated at 3423 MWt. Loss-of-coolant accidents and those postulated accidents having offsite dose consequences have been analyzed at the power rating of 3570 Mwt.

SGS-UFSAR

1.0-1

* Unit 1 turbine-generator maximun calculated load is presently 1178 mile grass.

DELETE

TABLE 4.1-1A (Sheet 1 of 5)

REACTOR DESIGN COMPARISON TABLE

-		
	Salem Unit 1	Salem Unit 1
	17x17 Fuel Assembly	15x15 Fdel Assembly
Thermal and	With Densification	Without
Hydraulic Design Parameters	Effects	Depsification Effects
1 Peactor Core Heat Output, MWt	3338 /	3338
2. Reactor Core Heat Output. Btu/hr	$11,393 < 10^{6}$	11,393 x 10 ⁰ -
2. West Congrated in Fuel.	97.4	. 97.4
4 System Pressure Nominal DSia	2250	2250
4. System Pressure, Nominary por		
5. System Pressure, and obcost	2220	. 2220
State, DSTa		
6. Minimum DNBR at Nominal Con-	2 31	2.09 ^[a]
ditions Typical Flow Channel,		-
Thimble (Cold Wall) Flow	1.06	
Channel	1.80	
7. Minimum DNBR for Design	1 20	>1 30
Transients	>1.30	×1.50 .
Coolant Flow		
· · /	6	121 1 106
8. Total Thermal Flow Bate, 15/hr	$132.3 \times 10^{\circ}$	134.1 X 10
9. Effective Flow Rate for Heat		ала <u>со</u> б
Transfer, 1b/hr	126.4 × 10°	$128.0 \times 10^{\circ}$
10. Effective Flow Area for Heat		
Transfer, tr ²	51.1	51.2
11. Average Velocity Along Fuel		
Rods St/sec	15.3	15.5
12 Average Mass Velocity.		
lb/or=ft ²	2.47 x 10 ⁵	2.50 x 10 ⁶

Revision O July 22, 1982

٠.

SGS-UF SAR

	· •	DELETE
TABLE 4.1-	-1A (Sheet 2 of 6)	. /
REACTOR DESI	GN COMPARISON TABLE	
	Salem Unit I	Salem Uprit 1
	17x17 Fuel Assembly	15x15 Fzel Assembly
Thornal and	With Densification	Without
Hydraulic Design Parameters	Effects	Depsification Effects
nydrauffe bestgil furaneters		7
Coolant Temperature, °F	. /	/
12 Marinal Islat	544.4	.544.4
13. Nominal Intel	64.7	63.9
14. Average Rise in Vessel	67.8	66.6
15. Average Rise in Core	579.8	579.1
16. Average in Lore	576 7	576.3
16. Average in Vessel	51011	-
Heat Transfer		
18. Active Heat Transfer, Surface		
Area, ft ²	59,700	52,200
19. Average Heat Flux, Btu/hr/ft ²	185,700	212,600
20. Maximum Heat Flux for Normal	C 1 1	
Operation, Btu/hr-ft ²	430,900 ^{LD]}	580,000
21. Average Thermal Output, kw/ft	5.33	6.88
22. Maximum Thermal Sutput for	ſ L]	
Normal Operation, kw/ft	12.4 ^{L0}	18.8
23. Peak linear power for deter-		
<pre>mination of protection set points, kw/ft.</pre>	18.0 ^[d]	

2.32^[c]

24. Heat Flux Hot Channel Factor

Revision 0 July 22, 1982

2.16

SGS-UFSAR

SGS-UF SAR

July 22, 1982

SGS-UFSAR

TABLE 4.1-1A (Sheet 5 of 6)

REACTOR DESIGN COMPARISON TABLE

Core Mechanical Design	Salem Unit 1 17x17 Fuel Assembly _With Densification	Salem Unit 1 15x15 Fuel Assembly Without
Parameters	Effects	Uensification Effects
Core Structure	. /	
50. Core Barrel, I.D./O.D., in.	148.0/152.5	148.0/152.5
51. Thermal Shield I.D./O.D., in.	158.5/164.0	158.5/164.0
Nuclear Design Parameters		-
Structure Characteristics		
52. Core Diameter, in. (Equivalent) 53. Core Average Active Fuel Height,	132.7	132.7
in.	143.7	144
Reflector Thickness and Composition		
54. Top - Water plus Steel, in.	~10	~10
55. Bottom - Water plus Steel, in.	~10	~10
56. Side - Water plys Steel, in.	~15	~15
57. H ₂ 0/U, Molecular Ratio, Lattice (cold)	2.41	2.52
Feed Enrichment, w/o		
58. Region 1	2.25	2.25
59. Begion 2	2.80	2.80
uu keytun u	يان و ل	J.JU
/ .		

SGS-UFSAR

Revision 0 July 22, 1982

DELETÉ

SGS-UFSAR

TABLE 4.1-1 (Sheet 1 of 6)

REACTOR DESIGN COMPARISON TABLE

		•
	-Salem Unit 2	-Salem Unit 2-
	17x17 Fuel Assembly	15x15 Fuel Assembly
Thermal and	With Densification	Without
Hydraulic Design Parameters	Effects	Densification Effects
1. Reactor Core Heat Output, MWt	3411	3411
2. Reactor Core Heat Output, Btu/hr	11,642 x 10 ⁶	11,642 × 10 ⁰
3. Heat Generated in Fuel,%	97.4	97.4
4. System Pressure, Nominal, psia	2250	2250
5. System Pressure, Min. Steady		
State, psia	2220	2220
6. Minimum DNBR at Nominal Condi-		c 7 -
tions Typical Flow Channels,	2.24	2.0 ^[a]
Thimble (Cold Wall) Flow Channel.	1.80	
7. Minimum DNBR for Design	<u>></u> 1.30 .	<u>></u> 1.30
Transients		
Coolant Flow		
	-	c
8. Total Thermal Flow Rate, jb/hr	132.2 x 10 ⁶	134.0 × 10 ⁰
9. Effective Flow Rate for Heat		C
Transfer, 1b/hr	126.3 x 10 ⁶	128.0 x 10 ⁰
10. Effective Flow Area for Heat		
Transfer, ft ²	51.1	51.2
11. Average Velocity Along Fuel		
<pre> Rods, ft/sec</pre>	15.4	15.6
12. Average Mass Velocity,	c	6
lb/hr-ft ²	2.47 x 10 ⁰	2.50 x 10°
<i>,</i> • •		

Revision 0 July 22, 1982

SGS-UF SAR

TABLE 4.1-1 (Sheet 2 of 6)

REACTOR DESIGN COMPARISON TABLE

•	-Salem-Unit-2	-Salem Unit-2-
	17x17 Fuel Assembly	15x15 Fuel Assembly
Thermal and	-With Densification	Without
Hydraulic Design Parameters	Effects	Densification Effects
Coolant Temperature, °F		
13. Nominal Inlet	545.0	545.0
14. Average Rise in Vessel	65.8	65.1
15. Average Rise in Core	68.7	67.8
16. Average in Core	581.0	580.4
17. Average in Vessel	577.9	577.5
Heat Transfer		
18. Active Heat Transfer, Surface		
Area, ft ²	59,700	52,200
19. Average Heat Flux, Btu/hr-ft ²	189,700	217,200
20. Maximum Heat Flux for Normal Operation, Btu/hr-ft ²	440,200 ^[b]	580,000
21. Average Thermal Output, kw/ft	5.44	7.03
22. Maximum Thermal Output for	[b]	
Normal Operation, kw/ft	12.660	18.8
23. Peak linear power for deter-		
mination of protection set-	٢~٦	
points, kw/ft	18.0 ^{LC]}	

Revision 0 July 22, 1982

 2×3

SGS-UF SAR

.;....

TABLE 4.1-1 (Sheet 3 of 6)

REACTOR DESIGN COMPARISON TABLE

	-Salem Unit-2	- Salem-Unit 2
	17x17 Fuel Assembly	15x15 Fuel Assembly
Thermal and Hydraulic	-With Densification	Without
Design Parameters_	. Effects	Jensification Effects
Heat Transfer (Cont'd)		
24 Heat Flux Hot Channel Factor.		
	2.32 ^[c]	2.40
' Q		
Fuel Central Temperature, °F		-
25. Peak at 100 Percent Power	3400	4250
26. Peak at Maximum Thermal Output		
for Maximum Overpower Trip		
Point	4150	
Core Mechanical Design Parameters		
Fuel Assemblies		
27. Design	RCC Canless	RCC Canless
28. Number of Fuel Assemblies	193	193
29. UO ₂ Rods per Assembly	264	204
30. Rod Pitch, in.	0.496	0.503
31. Overall Dimension, in.	8.426 x 8.425	8.426 x 8.426
32. Fuel Weight (as UO ₂), pounds	222,739	215,400
33. Zircaloy Weight, lbs.	50,913	48,250
34. Number of Grids per Assembly	8-Type R	7-Type L
35. Loading Technique	3 region non-uniform	n 3 region non-uniform.

SGS-UF SAR

TABLE 4.1-1 (Sheet 4 of 6)

REACTOR DESIGN COMPARISON TABLE

	-Salem-Unit-2	-Salem-Unit-2-
	17x17 Fuel Assembly	15x15 Fuel Assembly
·	With Densification	Without
Core Mechanical Design Parameters	- Effects	Densification Effects
Fuel Rods		
36. Number	50,952	39,372
37. Outside Diameter, in.	0.374	0.422
38. Diametral Gap, in., Regions		
1, 2, (and 3)	0.0065	0.0075 (0.0085)
39. Clad Thickness, in.	0.0225	0.0243
40. Clad Material	Zircaloy-4	Zircaloy-4
Fuel Pellets		
41. Material	UO ₂ Sintered	UO ₂ Sintered
42. Density (% of Theoretical)	95	94, 93, 92
43. Diameter, in., Regions 1, 2,	. . •	
(and 3)	0.3225	0.3659 (0.3649)
44. Length, in.	0.530	0.600
Rod Cluster Control Assemblies		
45. Neutron Absorber	Ag-In-Cd	Ag-In-Cd
46.•Cladding Material	Туре 304	Type 304
	SS-Cold Worked	SS-Cold Worked
47. Clad Thickness, in.	0.0185	0.019
48. Number of Clusters	53	53

Revision O July 22, 1982

SGS-UFSAR

TABLE 4.1-1 (5 of 6)

REACTOR DESIGN COMPARISON TABLE

	-Salem-Unit-2	-Salem-Unit-2
	17x17 Fuel Assembly	15x15 Fuel Assembly Without
Cours Muchanical Design Parameters	Effects	Densification Effects
Lore Mechanical Design Faraneters		
Rod Cluster Control Assemblies (Cont	'd)	
49. Number of Absorber Rods per		
Cluster	24	20
Core Structure		-
50. Core Barrel, I.D./O.D., in.	148.0/152.5	148.0/152.5
51. Thermal Shield, I.D./O.D., in.	158.5/164.0	158.5/164.0
Nuclear Design Parameters		
Structure Characteristics		
52. Core Diameter, in. (Equivalent)	132.7	132.7
in.	143.7	144
Reflector Thickness and Composition		•
54. Top - Water plus Steel, in.	~10	~10
55. Bottom - Water plus Steel, in.	~10	~10
56. Side - Water plus Steel, in.	~15	~15
57. H ₂ O/U, Molecular Ratio,	2 11	2.52
Lattice (cold)	L• + L	

SGS-UFSAR

TABLE 4.1-1 (6 of 6)

REACTOR DESIGN COMPARISON TABLE

	UNIT 1/UNITZ Salem Unit 2	UNITS I & 2 Salem Unit 2
	17x17 Fuel Assembly	15x15 Fuel Assembly
	With Densification	Without
Nuclear Design Parameters	Effects	Densification Effects
		1

Feed Enrichment, w/o

58. Region 1
 59. Region 2
 60. Region 3

2.25/	2.10	2.25
2.80/	2.60	2.80
3.30/	3.10	3.30

[a] Previously, the value of 2.09 for a limiting typical channel was quoted only since the thimble (cold wall) DNB tests were incomplete.
[b] This limit is associated with the value of FQ = 2.32.
[c] Includes the effect of fuel densification.
[d] See Section 4.3.2.2.6.
[C] Cycle 1 Guel

SGS-UFSAR

. . . .

4.4.2.1 Summary Comparison

The design of the Salem Unit 1 and Unit 2 reactors with the 17 x 17 fuel rod array per assembly has the following identical thermal and hydraulic parameters as the 15 x 15 fuel rod array reactor design.

1. Core power

2. System pressure

3. Coolant inlet temperature

4. Open lattice fuel rod array

The vessel loop flow rates for both Unit 1 and Unit 2 thermal design are approximately 1.4 percent less than the 15 x 15 design valves. The basis for this change is discussed in Chapter 5. This change in flow also results in small changes in the core and vessel coolant average temperature and core and vessel coolant exit temperatures.

Table

Values of each parameter are presented in Tables 4.4-1A* and B for all coolant loops in service and in Tables 4.4-2A and B for all but one coolant loop in service. It is also noted that in this power capability evaluation, there has not been any change in the design criteria. The reactor is still designed to a minimum DNBR \geq 1.30 as well as no fuel centerline melting during normal operation, operational transients and faults of moderate frequency.

Where applicable the Figures and Tables in this section consist of two-parts-labeled "A" and "B", which refer to Units-1 and 2 respectively.

adequate heat transfer is provided between the fuel clad and the reactor coolant so that the core thermal output is not limited by considerations of the clad temperature. Figure 4.4-4 shows the axial variation of average clad temperature for the average power rod both at beginning and end-of-life.

Treatment of Peaking Factors

The total heat flux hot channel factor, F_Q , is defined by the ratio of the maximum to core average heat flux. As presented in Table 4.3-2 and discussed in Section 4.3.2.2.1, the design value F_Q for normal operation is 2.32, including fuel densification effects.

This results in peak local power**X** of $\frac{12.4 \text{ kw/ft-and}}{12.6 \text{ kw/ft}}$ for Units 1 and 2 respectively, at full power conditions. As described in Section 4.3.2.2.6 the peak local power at the maximum overpower trip point is 18.0 kw/ft. The centerline temperature at this kw/ft must be below the UO₂ melt temperature over the lifetime of the rod, including allowances for uncertainties. The melt temperature of unirradiated UO₂ is 5080°F^[1] and decreases by 58°F per 10,000 MWD/MTU. From Figure 4.4-2, it is evident that the centerline temperatures at the maximum overpower trip points for both units are far below those required to produce melting. Fuel centerline and average temperatures at rated (100 percent) power and at the maximum overpower trip point are presented in Tables 4.4 1A and B.

4.4.2.3 <u>Critical Heat Flux Ratio or Departure from Nucleate Boiling</u> Ratio and Mixing Technology

The minimum DNBR's for the rated power, design overpower and anticipated transient conditions are given in Tables 4.4 - 2. The core average DNBR is not a safety related item as it is not directly related to the minimum DNBR in the core, which occurs at some elevation in the limiting flow channel. Similarly, the DNBR at the hot spot is not

SGS-UFSAR

4.4-13

Revision O July 22, 1982 Typical

Typica

main parameter which affects the DNBR. If the Salem Units 1 and 2 were operating at full power and nominal steady state conditions as specified in Tables 4.4-1A and B; a reduction in local mass velocity of 72 percentand 69 percent respectively, would be required to reduce the DNBR from 1.66 and 1.80 to 1.30. The above mass velocity effect on the DNB correlation was based on the assumption of fully developed flow along the full channel length. In reality a local flow blockage is expected to promote turbulence and thus would likely not effect DNBR at all.

Coolant flow blockages induce local crossflows as well as promote turbulence. Fuel rod behavior is changed under the influence of a sufficiently high crossflow component. Fuel rod vibration could occur, caused by this crossflow component, through vortex shedding or turbulent mechanisms. If the crossflow velocity exceeds the limit established for fluidelastic stability, large amplitude whirling results. The limits for a controlled vibration mechanism are established from studies of vortex shedding and turbulent pressure fluctuations. Crossflow velocity above the established limits can lead to mechanical wear of the fuel rods at the grid support locations. Fuel rod wear due to flow induced vibration is considered in the fuel rod fretting evaluation (Section 4.4).

4.4.4 TESTING AND VERIFICATION

4.4.4.1 Tests Prior to Initial Criticality

A reactor coolant flow test, as noted in Item 5 of Table 13.3-1, is performed following fuel loading but prior to initial criticality. Coolant loop pressure drop data is obtained in this test. This data in conjunction with coolant pump performance information allows determination of the coolant flow rates at reactor operating conditions. This test verifies that proper coolant flow rates have been used in the core thermal and hydraulic analysis.

TABLE 4.4-1A (sneet 1 of 2)

TABLE 4.4-1A (snee	t 1 of 2)	delete
REACTOR DESIGN COMPARISON T	ABLE SALEM UNIT 1	. /
	17×17 with	15 x 15 ditbout
Thermal and Hydraulic Design Parameters	Densification	Densification
Reactor Core Heat Output, MWt	3338	3338
Reactor Core Heat Output, Btu/hr —	11,393 × 106	11,393 x 100
Heat Generated in Fuel,	97.7	97.4
System Pressure, Nominal, psia	250	2250
System Pressure, Minimum Steady State, psia	2220	2220
Minimum DNBR at Nominal Conditions Typical Flow Channel Thimble (Cold-Wall) Flow Channel	2.31 1.86	2.39[a]
Minimum DNBR for Design Transients	>1.30	>1.30
DNB Correlation	"R-Grid" (W-3 with modified spacer factor)	"R-Grid" (W-3 With modified spacer factor)
Coplant Flow		
Total Thermal Flow Rate, 16 nr	132.3 x 106	134.1 x 10 ⁵
Effective Flow Rate for Heat Transfer, lo/hr	126.4 x 106	128.0 × 10 ⁵
Effective Flow Area for Heat Transfer, ft ²	51.1	51.2
Average /elocity Along Fuel Rods, ft/sec	15.3	15.5
Average and revocity, 1b/hr-ft ²	2.47 x 10 ⁶	2.50 × 106
Coolant Tant mature	·	
Nominal Inet, °F	544.4	544.4
Average Rise in Vessel, °F	ō4 . 7	63.9
Average Rise in Core, °F	67.5	6 6. 6
/		•

SGS-UFSAR

. .

TABLE 4.4-1A (sneet 2 of 2)

delete

REACTOR DESIGN COMPARISON TA	BLE 14124	/	
	17 x 17 xi=0		
Thermal and Hydraulic Design Parameters	Jensification	ensitization	
Average in Core, °F	579.8	579.1	
Average in Vessel, °F	576.7	575.3	
Heat Transfer			
Active Heat Transfer, Surface Area, ft ²	59,700	52,200	
Average Heat Flux, 3tu/hr-ft2	125,700	212,500	
Maximum Heat Flux, for normal operation Btu/nr-ft2	430,90020]	530.000	
Average Thermal Output, kw/ft	5.33	6.38	
Maximum Thermal Output, for normal operation, kw/ft	12.4[5]	13.3	
Peak Linear Power for determination of Protection Setpoints, kw/ft	18.0[c]		
Fuel Central Temperature			
Peak at 100 Power, [°] F	3350	4250	
Peak at Thermal Output Maximum for Maximum Overpower Trip Point, °F	+1.50		
Pressure Drop			
Across Core, psi Across Vessel, including nozzle, psi	24.7 + 2.5[d] 49.3 ± 5.0	32.50el 52.0	
 [a] Previously, the value of 2.09 for a limiting typical channel was quoted only since the thimble (cold wall) D43 Tests were incomplete. [b] This limit is associated with the value of Fig = 2.32. [c] See Section 4.3.2.2.0. [d] Based on best estimate reactor flow rate of 95,600 ypm/loop. [e] Previously, a conservatively high value of pressure drop was used to determine vessel loop flow rates. 			

SGS-UFSAR

TABLE 4.4-1X (sheet 1 of 2)

REACTOR DESIGN COMPARISON TABLE SALEM SALE 2

.

Thermal and Hydraulic Design Parameters	17 x 17 With Densification	15 x 15 Without Densification
Reactor Core Heat Output, MWt	3411	3411
Reactor Core Heat Output, Btu/hr	- 11,642 x 106	11,642 x 106
Heat Generated in Fuel,	97.4	97.4
System Pressure, Nominal psia	2250	2250
System Pressure, Minimum Steady State, psia	2220	2220
Minimum DNBR at Nominal Conditions Typical Flow Channel Thimble (Cold wall) Flow Channel	2.24 1.80	2.J[a]
Minimum DN3R for Design Transients	<u>></u> 1.30	<u>></u> 1.30
DNB Correlation	"R-Grid" (W-3 with modified spacer factor)	"R-Grid" (៧-3 with modified spacer factor)
Coolant Flow		
Total Thermal Flow Rate, 1b/hr	132.2 × 10 ⁶	134.0 x 106
Effective Flow Mate for Heat Transfer, John	126.3 x 10 ⁶	128.0 x 106
Effective Flow Area for Heat Transfer, ft ²	51.1	51.2
Average Velocity Along Fuel Rods, Stysec	15.4	15.6
Average lass /elocity, lb/hr-ft2	2.47 x 106	2.50 x 106
Coolant Temperature	-	· · · · ·
Nominal Inlet, °F	545.0	545.0
Average Rise in Vessel, °F	65.8	65.1
Leanne Dita in 197		57.3

TABLE 4.4-1X (sheet 2 of 2)

The later lie Decise Decretors	17 x 17 With	15 x 15 Without
Thermal and Hydraulic Design Parameters :	Jenstrication	Jensti icaciun
Average in Core, °F	581.0	530.4
Average in Vessel, °F	577.9	577.5
Heat Transfer		
Active Heat Transfer, Surface Area, ft2	59,700	52,200
Average Heat Flux, Btu/hr-ft2	189,700 J	217,200
Maximum Heat Flux, for normal operation, 3tu/hr-ft2 Averaje Thermal Output, kw/ft	440,200[b] 5.44	580,000 7.03
Maximum Thermal Output; for normal operation kw/ft	12.6[5]	18.8
Peak Linear Power for determination of Protection Setpoints, xw/ft	18.0[¢]	
Fuel Central Temperature		
Peak at 100 Power. "F	. 3400	4250
Peak at Thermal Output Maximum for Maximum Overplwer Trip Point, °F	4150	
Pressure Unop		
Across Core, osi Across Core, including nozzle, psi	24.7 <u>+</u> 2.5[d] 49.8 <u>+</u> 5.0	32.5[e] 52.0

REACTOR DESIGN COMPARISON TABLE -

[a] Prove Isly, the value of 2.09 for a limiting typical channel was quoted only since the thimble (cold wall) DNB Tests were incomplete.
[b] This finit is associated with the value of Fg = 2.32.
[c] See Section 4.3.2.2.0.
[d] Based on best estimate reactor flow rate of 95,600 gpm/loop.
[e] Previously, a conservatively high value of pressure drop was used to docarring vessal loop flow rates.

determine vessel loop flow rates.

SGS-UFSAR

TABLE 4.4-2A

delete

۰.

THERMAL-HYDRAULIC DESIGN PARA	METERS FOR
ONE OF FOUR COOLANT LOOPS OUT	OF SERVICE
SALEM UNIT 1	
Total Core Heat Output, MWt	2337
Total Core Heat Output, 10° Btu/hr	7976
Heat Generated in Fuel,	97.4
Nominal System Pressure, psia	2250
Coolant Flow	
Effective Thermal Flow Rate for	
Heat Transfer, 10 ⁶ lbs/hr	90.6
Effective Flow Area for Heat	
Transfer, ft ²	51.1
Average Velocity along Fuel	
Rods, ft/sec	10.9
Average Mass Velocity, 10 ⁶	
lb/hr-ft ²	1.77
Coolant Temperature, °F	
Design Nominal Inlet	538.8
Average Rise in Core	67.0
Average in Core	573.8
Heat Transfer	
Active Heat Transfer Surface	
'Area, ft ²	59,700
Average Heat Flux, Btu/hr-ft ²	130,000
ut i Dubie et Nominel	
Minimum UNB Katto at Homman	> 1 86
Congretors	- 1.00
White MR Pation for Dation	

SGS-UFSAR

.

Revision 0 July 22, 1982

۰.

TABLE 4.4-2

THERMAL-HYDRAULIC DESIGN PARAMETERS FOR ONE OF FOUR COOLANT LOOPS OUT OF SERVICE

SALEM UNIT-2

Total Core Heat	Output, MWt		2388
Total Core Heat	Output, 10 ⁶ Btu/hr ⁻	-	8150
Heat Generated	in Fuel,		97.4
Nominal System 1	Pressure, psia		2250

Coolant Flow

Effective Thermal Flow Rate for	
Heat Transfer, 10 ⁶ 1bs/hr	90.6
Effective Flow Area for Heat	
Transfer, ft ²	51.1
Average Velocity along Fuel	
Rods, ft/sec	10.9
Average Mass Velocity, 10 ⁶	
lb/hr-ft ²	1.77
· · ·	

Coolant Temperature, °FDesign Nominal Inlet539.1Average Rise in Core68.2Average in Core574.7

Heat Transfer

Active Heat Transfer Surface	
Area. ft ²	59,700
Average leat Flux, Btu/hr-ft ²	132,900
Minimum DNB Ratio at Nominal	
Conditions	> 1.80

مريعون مري ويدر والار مريون

and Anticipated Transients

> 1.30

SGS-UFSAR

TABLE	4.4-3 X
-------	----------------

VOID FRACTIONS AT NOMINAL REACTOR CONDITIONS WITH DESIGN HOT CHANNEL FACTORS

	SALEN UNIT-2-		
	- ·	Average	Maximum
Core		<u>0.18%</u>	`
Hot Subchannel		4.0%	13.6

70

SGS-UFSAR

•

TABLE 5.1-1

SYSTEM DESIGN AND OPERATING PARAMETERS

	Unit-1	Unit-2
Plant design life, years	-40-	40
Number of heat transfer loops	-4-	4
Design pressure, psig	-2485-	2485
Nominal operating pressure, psig	2235-	2235
Total system volume including pressurizer		
and surge line (ambient conditions), ft ³	-12,612	12,612
System liquid volume, including pressurizer		
and surge line (ambient conditions), ft 3	11,892 -	11,892
Total heat output (100 percent power), Btu/hr	$\frac{11,431 \times 10^{6}}{11,431 \times 10^{6}}$	11,680 x 10 ⁶
Reactor vessel coolant temperature		
at full power:		
Inlet, nominal, °F	-544-4	545.0
Outlet, °F	-603.3-	610.2
Coolant temperature rise in vessel at		
full power, avg, °F	- 63.9-	05.2 132.2 × 10 ⁶ c
Total coolant flow rate, lb/hr	-134.1×10^{6}	-133.9×10^{6}
Steam pressure at full power, psia	-805-	805

DELETE THIS NOTE WHEN DOING ACTUAL FLAR REVISION

Editorial mok:

The revised coolant flow, 132.2×106 lt/hr, is the total coolant flow with the 17×17 fuel aremblies. The originally reported Now in tables 5.1-1, 5.2-3, and 5.2-5 for the RCS were apparently based on the 15×15 fuel attembly design. Refer to Table 4.1-1 for comparison of old and new values, 15×15 fuel and 17×17 fuel, respectively

> Revision 0 July 22, 1982

SGS-UFSAR

TABLE 5.2-3 (Sheet 1 of 2)

REACTOR VESSEL DESIGN DATA

	Unit 1	<u>Unit 2</u>
Design/Operating Pressure, psig	-2485/2235	2485/2235
Hydrostatic Test Pressure, psig	-3107	3107
Design Temperature, °F	-650-	650
Overall Height of Vessel and Closure Heat, ft-in. (bottom head OD to top of control rod mechanism adapter	- 	43-10
Thickness of Insulation, min., in.	-3-	3
Number of Reactor Closure Head Studs	-54-	54
Diameter of Reactor Closure Head Studs, in.	7	7
ID of Flange, in.	-172.5 .	172.5
OD of Flange, in.	~205 -	205
ID at Shell, in.	-173-	173
Inlet Nozzle ID, in	-27-1/2-	27-1/2
Outlet Nozzle ID, in.	- 29-	29
Clad Thickness, min., in.	-5/32-	5/32
Lower Head Thickness, min., in. (base metal)	-5-3/8	5-3/8
Vessel Belt-Line Thickness, min., in. (base metal)	-8.5 -	8.5
Closure Heat Thickness, in.	-7	7
Reactor Coolant Inlet Temperature, °F	-544.4	545.0
Reactor Coolant Outlet Temperature, °F	-608.3 -	610.2
Reactor Coolant Flow, 1b/hr	-134.1 × 106	132.2 × 10- 133.9 × 106
Total Water Volume Below Core, ft3	-1050-	1050
Water Volume in Active Core Region, ft ³	-665-	665

SGS-UFSAR

TABLE 5.2-3 (Sheet 2 of 2)

REACTOR VESSEL DESIGN DATA

	. <u>Unit 1</u>	Unit 2-
Total Water Volume to Top of Core, ft3	-2164-	2164
Total Water Volume to Coolant Piping Nozzles Centerline, ft ³	-2929-	2959
Total Reactor Vessel Water Volume, (with core and internals in place), ft ³	- •4945 -	4945
Total Reactor Coolant System Volume, ft ³	-12.612	12,612

DELETE THIS NOTE WHEN DOING ACTUAL FSAR changes

Editorial comment: The volume to the noggles centerline, 2929 ft³, originally reported for unit 1 was a typographical error. The correct value is 2959, the same as unit 2's.

SGS-UFSAR

TABLE 5.2-5 (Sheet 1 of 2)

STEAM GENERATOR DESIGN DATA*

(Model 51)		
	Unit 1	Unit 2
Number of Steam Generators	4-	4
Design Pressure (Reactor coolant/steam), psig	2485/1085	2485/1085
Reactor Coolant Hydrostatic Test Pressure (tube side-cold), psig		3107
Design Temperature (reactor coolant/steam), °F	-650/600-	650/600
Reactor Coolant Flow, 1b/hr	-33.53 x 10 6	33.05 × 10 -
Total Heat Transfer Surface Area, ft ²	-51,500 -	51,500
Heat Transferred, Btu/hr	2857 x 10 6	2920 x 10 ⁶
Steam Conditions at Full Load, Outlet Nozzle:		-
Steam Flow, 15/hr	3.61 x 1 06	3.74 x 10 ⁶
Steam Temperature, °F	-519-	519
Steam Pressure, psig	-805 -	805
Maximum Moisture Carryover, wt percent	- 0.25	0.25
Feedwater, °F	-435-	435
Overall Height, ft-in.	- 67-8-	67-8
Shell OD (upper/lower), in.	175-3/4 / 135	175-3/4 / 135
Number of U-tubes	3388 -	3388
U-tube OD, in.	0.875-	0.875
Tube.Wall Thickness (minimum), in.	0.050 -	0.050
Number of Manways/ID in.	4/16-	4/16
Number of handholes/ID, in.	-2/6-	2/6

*Quantities are for each steam generator

SGS-UFSAR

 $\pi_{i}^{i}(x) = \sum_{i=1}^{n} (x_{i}^{i}(x_{i}))^{i}(x_{i}))^{i}(x_$

C. C. C. C. C. C. C. C.

0.000

Revision 0 July 22, 1982

TABLE 5.2-5 (Sheet 2 of 2)

- (Model 51)				
	Unit 1	Unit 2		
· .	Rated Load	No Load		
Reactor Coolant Water Volume, ft ³	1080	1080		
Primary Side Fluid Heat Content, Btu	⁻ 28.7 x 106	27.7 x 10 ⁶		
Secondary Side Water Volume, ft ³	1838	3524		
Secondary Side Steam Volume, ft ³	4030	2344		
Secondary Side Steam Fluid Heat Content, Btu	5.738 x 107	9.628 x 10^7		

STEAM GENERATOR DESIGN DATA*

*Quantities are for each steam generator

TABLE 5.2-7

REACTOR COOLANT PIPING DESIGN PARAMETERS

	Unit 1 -	Unit 2
Reactor Inlet Piping ID, in.		27-1/2
Reactor Inlet Piping Nominal Thickness, in.	2.38-	2.38
Reactor Outlet Piping ID, in	-29-	29
Reactor Outlet Piping Nominal Thickness, in.	2.50	2.50
Coolant Pump Suction Piping ID, in.	-31 -	31
Coolant Pump Suction Piping Nominal Thickness, in.	2.66	2.66
Pressurizer Surge Line Piping ID, in.	-11.500	(\mathfrak{h})
a distributiona Distributional		
Pressurizer Surge Line Piping nominat		(2)
Thickness, in.	1.25	(2)
Design/Operating Pressure, psig	1.25 2485/2255	(2) 2485/2235
Thickness, in. Design/Operating Pressure, psig Hydrostatic Test Pressure (Cold), psig	- 1.25 ` 2485/2ंटउठ' 3107	(2) 2485/2235 3107
Pressurizer Surge Line Piping hominat Thickness, in. Design/Operating Pressure, psig Hydrostatic Test Pressure (Cold), psig Design Temperature, °F	-1.25 - 2485/2255 - 3107 - 650-	(2) 2485/2235 3107 650
Pressurizer Surge Line Piping hominat Thickness, in. Design/Operating Pressure, psig Hydrostatic Test Pressure (Cold), psig Design Temperature, °F Design Temperature (pressurizer surge line), °F	- 1.25 - 2485/2255 - 3107 - 650- - 660-	(2) 2485/2235 3107 650 680
Pressurizer Surge Line Piping hominat Thickness, in. Design/Operating Pressure, psig Hydrostatic Test Pressure (Cold), psig Design Temperature, °F Design Temperature (pressurizer surge line), °F Water Volume, (all 4 loops including surge line) ft ³	- 1.25 - 2485/2255 - 3107 - 650- - 680- - 2455	(2) 2485/2235 3107 650 680 1455
Pressurizer Surge Line Piping nominat Thickness, in. Design/Operating Pressure, psig Hydrostatic Test Pressure (Cold), psig Design Temperature, °F Design Temperature (pressurizer surge line), °F Water Volume, (all 4 loops including surge line) ft ³ Design Pressure (pressurizer relief lines), psig	- 1.25 -2485/2255 -3107 -650- -660- -2455 -(1)	(2) 2485/2235 3107 650 680 1455 (3)

DELETE THE NOTE . When DOING ACTUAL FEAR REVISION

Editorial role: The total water volume originally reported for units, 2455 ft3, was a typographical error. The correct value is 1455 ft3, the same as unit 2's

(1) Unit 1 11.188, Monit 2 11.500 in ches (3) Unit 1 1.25, Unit 2 1.460

(3) From pressurizer to safety valve 2485 psig 650°F From safety valve to pressurizer relief tank 600 psig 600°F.

> Revision O July 22, 1982

SGS-UFSAR

TABLE 5.5-1 (Sheet 1 of 3)

RESIDUAL HEAT REMOVAL SYSTEM DESIGN PARAMETERS

Code Requirements Residual Heat Exchangers (Tube Side) ASME III, Class C (Shell Side) ASME VIII ANSI B31.1.0* Residual Heat Removal Piping and Valves ANSI B31.7** General 40 Plant design life, years Component cooling water supply temperature design, °F 95 Reactor coolant temperature at startup of decay heat removal °F 350 Time to cool Reactor Coolant System from 350°F to 140°F, starting at 4 hours 16 after shutdown, hr Refueling water storage temperature, °F Ambient Decay heat generation at 20 hours after shutdown, Btu/hr -70.6 72.1 x 10⁶ H₃BO₃ concentration in refueling water storage tank, ppm boron ~2000

Used for design.

** For piping not supplied by the NSSS supplier, material inspection fabrication and quality control conform to ANSI B31.7. Where not possible to comply with ANSI B31.7, the requirements of ASME III-1971, which incorporated ANSI B31.7, were adhered to.

SGS-UFSAR

10.2 TURBINE GENERATOR

10.2.1 DESIGN BASES

The Steam and Power Conversion System is designed to convert the heat produced in the reactor to electrical energy. Heat absorbed by the Reactor Coolant System is transferred to the feedwater in four steam generators. The feedwater system provides sufficient feedwater flow to the four steam generators where removal of heat from the Reactor Coolant System results in sufficient steam formation to drive the turbine generator units as follows:

	No. 1 Unit	No. 2 Unit
AT 100% REACTOR POWER Maximum Guaranteed-Rating		
· · · · · · ·	1158	1159
Gross Output, Mwe		1130
Anticipated Net Output, Mwe	1090 1115	1115
Maximum Calculated Load		
Gross Output, Mwe	1176	1201
Anticipated Net Output, Mwe	1130	1155

10.2.2 SYSTEM DESCRIPTION

10.2.2.1 Turbine-Generator

The turbine is a four-casing, tandem-compound, six flow exhaust, 1800 rpm unit with 44-inch long last stage blades. The turbine shaft is directly connected to the ac generator. A brushless exciter is coupled to the generator. The generator is hydrogen cooled with water-cooled stator windings. It is rated at 1,300,000 KVA at 75 psig hydrogen pressure, 0.90 PF, 0.48 SCX, 3 phase, 60 cps, 25 KV, and 1800 rpm. Generator

SGS-UF SAR

ANSI-B31.7, Nuclear Power Piping. Where not possible to comply with ANSI B31.7, the requirements of ASME III-1971, which incorporated ANSI B31.7, were adhered to.

(b) Principal System Valves:

Main Steam Safety Valves - ASHE Boiler and Pressure Vessel Code, Section III, Class A.

Main Steam Relief Valves - ASME Boiler and Pressure Vessel Code, Section III, Class II (Class I for materials, inspections, faprication and quality control).

Main Steam Stop Valves - ASME Boiler and Pressure Vessel Code, Section III, Class II (Class I for materials, inspections, fabrication and quality control).

Feedwater Isolation Valves - ASME Boiler and Pressure Vessel Code, Section III, Class II (Class I for materials, inspections, faurication and quality control).

10.3.2 SYSTEM DESCRIPTION

10.3.2.1 Main Steam System

The Main Steam System is shown in Figure 10.3-1.

The Main Steam System for each unit conveys saturated steam from four steam generators to the nigh pressure turbine with less than 40 psi The steam conditions at full load of pressure drop. Though each steam generator for the No. 1 Unit is approximately 3,740,000 pounds per nour of 750 psis 513°F steam were designed to furnish approximately 3,000,000 pounds per nour of 750 psis, 513 F steam to the turbine, the higher design flow rate for the No. 2 Unit, approximately 3,700,000 pounds per hour to the turbine for each steam generator, was used for the system design of both units. Reheat is