

Kelvin Henderson Vice President Catawba Nuclear Station

Duke Energy

CNO1VP | 4800 Concord Road York, SC 29745

> o: 803.701.4251 f: 803.701.3221

CNS-15-105

December 17, 2015

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555-0001

- Subject: Duke Energy Carolinas, LLC (Duke Energy) Catawba Nuclear Station, Unit 1 Docket Number 50-413 Core Operating Limits Report (COLR) for Cycle 23 Reload Core - Revision 1
- Reference: Letter from Duke Energy to NRC, "Core Operating Limits Report (COLR) for Cycle 23 Reload Core", dated December 7, 2015

Pursuant to Catawba Technical Specification 5.6.5d., please find attached an information copy of Revision 1 of the subject COLR. This COLR revision is being submitted to update the limits of the Unit 1 Cycle 23 reload core.

There are no changes to the power distribution monitoring factors submitted in the reference letter. Therefore, there is no need to submit an electronic copy of this COLR revision.

This letter and the attached COLR do not contain any regulatory commitments.

Please direct any questions or concerns to L.J. Rudy at (803) 701-3084.

Very truly yours,

Kelvin Henderson Vice President, Catawba Nuclear Station

LJR/s

Attachment (paper COLR version)

www.duke-energy.com

U.S. Nuclear Regulatory Commission Page 2 December 17, 2015

xc (with attachment):

6

L.D. Wert, Acting Region II Administrator U.S. Nuclear Regulatory Commission Marquis One Tower 245 Peachtree Center Avenue NE, Suite 1200 Atlanta, GA 30303-1257

G.A. Hutto III, NRC Senior Resident Inspector U.S. Nuclear Regulatory Commission Catawba Nuclear Station

G.E. Miller, NRC Project Manager U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Mail Stop 8-G9A 11555 Rockville Pike Rockville, MD 20852-2738

Attachment

٩

Catawba Unit 1 Cycle 23 COLR - Revision 1 (paper COLR version)

Catawba Unit 1 Cycle 23

۲

, k

Core Operating Limits Report Revision 001

December 2015

Calculation Number: CNC-1553.05-00-0634, Revision 001

Date

Prepared By:	(signed electronically)	(signed electronically)
	C. L. Klein	
Checked By:	(signed electronically)	(signed electronically)
	J. S. Young	
Checked By:	(signed electronically)	(signed electronically)
	M. E. Carroll	
	(Sections 1.1, 2.1, and 2.9 – 2.18)	
Approved By:	(signed electronically)	(signed electronically)
	M. A. Blom	

QA Condition 1

The information presented in this report has been prepared and issued in accordance with Catawba Technical Specification 5.6.5.

Implementation Instructions for Revision 001

Revision Description and CR Tracking

Revision 1 of the Catawba Unit 1 Cycle 23 COLR contains limits specific to the reload core and is revised to include updated pressurizer pressure limits. Changes are indicated by revision bars in the right margin. The power distribution monitoring factors from Appendix A of Revision 0 remain valid and are not transmitted as part of Revision 1.

There is no CR associated with this revision.

Implementation Schedule

<u>الح</u> (

Revision 1 may become effective immediately upon receipt. The Catawba Unit 1 Cycle 23 COLR will cease to be effective during No MODE between Cycles 23 and 24.

Data files to be Implemented

No data files are transmitted as part of this document.

.

* -¹

REVISION LOG

<u>Revision</u>	Effective Date	Pages Affected	COLR
0	November 2015	1-31, Appendix A*	C1C23 COLR, Rev. 0
1	December 2015	1-31	C1C23 COLR, Rev. 1

*Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Appendix A is included only in the electronic COLR copy sent to the NRC.

1.0 Core Operating Limits Report

.

This Core Operating Limits Report (COLR) has been prepared in accordance with requirements of Technical Specification 5.6.5. Technical Specifications that reference this report are listed below along with the NRC approved analytical methods used to develop and/or determine COLR parameters identified in Technical Specifications.

TS Section	Technical Specifications	COLR Parameter	COLR Section	NRC Approved Methodology (Section 1.1 Number)
2.1.1	Reactor Core Safety Limits	RCS Temperature and Pressure	2.1	6, 7, 8, 9, 10, 12, 15,
0 1 1		Safety Limits		16
3.1.1	Shutdown Margin	Shutdown Margin	2.2	6, 7, 8, 12, 14, 15, 16
3.1.3	Moderator Temperature Coefficient	MTC	2.3	6, 7, 8, 12, 14, 16, 18
3.1.4	Rod Group Alignment Limits	Shutdown Margin	2.2	6, 7, 8, 12, 14, 15, 16
3.1.5	Shutdown Bank Insertion Limit	Shutdown Margin	2.2	2, 4, 6, 7, 8, 9,
		Rod Insertion Limits	2.4	10, 12, 14, 15, 16
3.1.6	Control Bank Insertion Limit	Shutdown Margin	2.2	2, 4, 6, 7, 8, 9,
		Rod Insertion Limits	2.5	10, 12, 14, 15, 16
3.1.8	Physics Tests Exceptions	Shutdown Margin	2.2	6, 7, 8, 12, 14, 15, 16
3.2.1	Heat Flux Hot Channel Factor	F _Q	2.6	2, 4, 6, 7, 8, 9, 10,
		AFD	2.8	12, 15, 16
		ΟΤΔΤ	2.9	
		Penalty Factors	2.6	-
3.2.2	Nuclear Enthalpy Rise Hot Channel	FΔH	2.7	2, 4, 6, 7, 8, 9,
	Factor	Penalty Factors	2.7	10, 12, 15, 16
3.2.3	Axial Flux Difference	AFD	2.8	2, 4, 6, 7, 8, 15, 16
3.3.1	Reactor Trip System Instrumentation	ΟΤΔΤ	2.9	6, 7, 8, 9, 10, 12
		ΟΡΔΤ	2.9	15, 16
3.3.9	Boron Dilution Mitigation System	Reactor Makeup Water Flow Rate	2.10	6, 7, 8, 12, 14, 16
3.4.1	RCS Pressure, Temperature and Flow limits for DNB	RCS Pressure, Temperature and Flow	2.11	6, 7, 8, 9, 10, 12
3.5.1	Accumulators	Max and Min Boron Conc.	2.12	6, 7, 8, 12, 14, 16
3.5.4	Refueling Water Storage Tank	Max and Min Boron Conc.	2.13	6, 7, 8, 12, 14, 16
3.7.15	Spent Fuel Pool Boron Concentration	Min Boron Concentration	2.14	6, 7, 8, 12, 14, 16
3.9.1	Refueling Operations - Boron Concentration	Min Boron Concentration	2.15	6, 7, 8, 12, 14, 16
5.6.5	Core Operating Limits Report (COLR)	Analytical Methods	1.1	None

The Selected License Commitments that reference this report are listed below

SLC Section	Selected Licensing Commitment	COLR Parameter	COLR Section	NRC Approved Methodology (Section 1.1 Number)
16.7-9	Standby Shutdown System	Standby Makeup Pump Water Supply	2.16	6, 7, 8, 12, 14, 16
16.9-11	Boration Systems – Borated Water Source – Shutdown	Borated Water Volume and Conc. for BAT/RWST	2.17	6, 7, 8, 12, 14, 16
16.9-12	Boration Systems – Borated Water Source – Operating	Borated Water Volume and Conc. for BAT/RWST	2.18	6, 7, 8, 12, 14, 16

1.1 Analytical Methods

Analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC as specified in Technical Specification 5.6.5 are as follows.

1. WCAP-9272-P-A, "Westinghouse Reload Safety Evaluation Methodology," (W Proprietary).

Revision 0 Report Date: July 1985 Not Used

2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, " (<u>W</u> Proprietary).

Revision 0 Report Date: August 1985

Addendum 2, "Addendum to the Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code: Safety Injection into the Broken Loop and COSI Condensation Model," (<u>W</u> Proprietary). (Referenced in Duke Letter DPC-06-101)

Revision 1 July 1997

3. WCAP-10266-P-A, "The 1981 Version of Westinghouse Evaluation Model Using BASH Code", (W Proprietary).

Revision 2 Report Date: March 1987 Not Used

4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis," (W Proprietary).

Revision: Volume 1 (Revision 2) and Volumes 2-5 (Revision 1) Report Date: March 1998

5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).

Revision 1 SER Date: January 22, 1991 Revision 2 SER Dates: August 22, 1996 and November 26, 1996 Revision 3 SER Date: June 15, 1994 **Not Used**

1.1 Analytical Methods (continued)

6. DPC-NE-3000-PA, "Thermal-Hydraulic Transient Analysis Methodology," (DPC Proprietary).

Revision 5a Report Date: October 2012

7. DPC-NE-3001-PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).

Revision 0a Report Date: May 2009

Note: The WLOP Correlation is used for the HZP Steam Line Break DNBR Analysis as approved by the following SER:

Letter from G. Edward Miller (NRC) to Mr. K. Henderson (Duke Energy), "Catawba Nuclear Station, Units 1 and 2 and McGuire Nuclear Station Units 1 and 2 – Issuance of Amendments RE: DPC-NE-3001-P, Multidimensional Reactor Transients and Safety Analysis Physics Parameters Methodology (TAC Nos. MF3119, MF3120, MF3121, and MF3122), March 25, 2015.

8. DPC-NE-3002-A, "UFSAR Chapter 15 System Transient Analysis Methodology".

Revision 4b Report Date: September 2010

9. DPC-NE-2004P-A, "Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-01," (DPC Proprietary).

Revision 2a Report Date: December 2008

10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).

Revision 4a Report Date: December 2008

11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3," (DPC Proprietary).

Revision 0 Report Date: April 3, 1995 Not Used

1.1 Analytical Methods (continued)

.

12. DPC-NE-2009-PA, "Westinghouse Fuel Transition Report," (DPC Proprietary).

Revision 3a Report Date: September 2011

13. DPC-NE-1004-A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P."

Revision 1a Report Date: January 2009 **Not Used**

14. DPC-NF-2010-A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."

Revision 2a Report Date: December 2009

15. DPC-NE-2011-PA, "Duke Power Company Nuclear Design Methodology Report for Core Operating Limits of Westinghouse Reactors," (DPC Proprietary).

Revision 1a Report Date: June 2009

16. DPC-NE-1005-PA, "Nuclear Design Methodology Using CASMO-4 / SIMULATE-3 MOX", (DPC Proprietary).

Revision 1 Report Date: November 12, 2008

17. BAW-10231P-A, "COPERNIC Fuel Rod Design Computer Code" (Framatome ANP Proprietary)

Revision 1 SER Date: January 14, 2004 Not Used

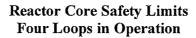
18. DPC-NE-1007-PA, "Conditional Exemption of the EOC MTC Measurement Methodology", (DPC and <u>W</u> Proprietary)

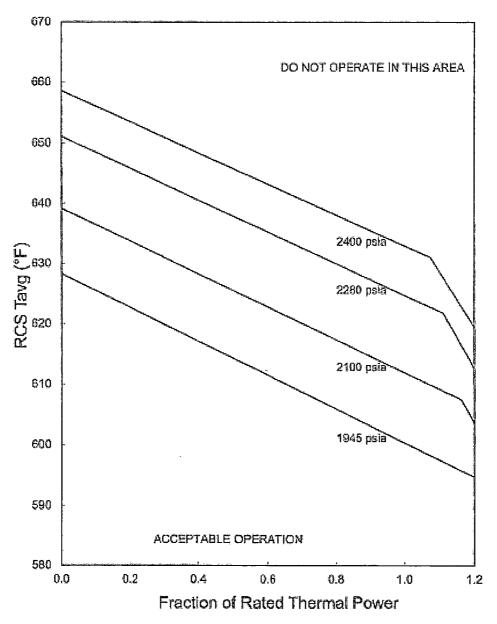
Revision 0 Report Date: April 2015

2.0 **Operating Limits**

Cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using NRC approved methodologies specified in Section 1.1.

2.1 Reactor Core Safety Limits (TS 2.1.1)


The Reactor Core Safety Limits are shown in Figure 1.


2.2 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6, TS 3.1.8)

- **2.2.1** For TS 3.1.1, SDM shall be greater than or equal to $1.3\% \Delta K/K$ in MODE 2 with Keff < 1.0 and in MODES 3 and 4.
- **2.2.2** For TS 3.1.1, SDM shall be greater than or equal to $1.0\% \Delta K/K$ in MODE 5.
- **2.2.3** For TS 3.1.4, SDM shall be greater than or equal to $1.3\% \Delta K/K$ in MODE 1 and MODE 2.
- **2.2.4** For TS 3.1.5, SDM shall be greater than or equal to $1.3\% \Delta K/K$ in MODE 1 and MODE 2 with any control bank not fully inserted.
- **2.2.5** For TS 3.1.6, SDM shall be greater than or equal to $1.3\% \Delta K/K$ in MODE 1 and MODE 2 with Keff ≥ 1.0 .
- **2.2.6** For TS 3.1.8, SDM shall be greater than or equal to $1.3\% \Delta K/K$ in MODE 2 during PHYSICS TESTS.

•

Figure 1

2.3 Moderator Temperature Coefficient - MTC (TS 3.1.3)

2.3.1 Moderator Temperature Coefficient (MTC) Limits are:

MTC shall be less positive than the upper limits shown in Figure 2. BOC, ARO, HZP MTC shall be less positive than 0.7E-04 Δ K/K/°F.

EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 Δ K/K/°F lower MTC limit.

2.3.2 300 ppm MTC Surveillance Limit is:

Measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to $-3.65E-04 \Delta K/K/^{\circ}F$.

2.3.3 The Revised Predicted near-EOC 300 ppm ARO RTP MTC shall be calculated using the procedure contained in DPC-NE-1007-PA.

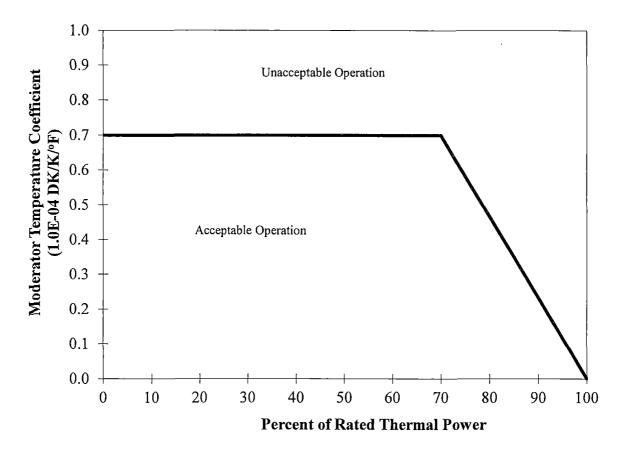
If the Revised Predicted MTC is less negative than or equal to the 300 ppm SR 3.1.3.2 Surveillance Limit, and all benchmark data contained in the surveillance procedure is satisfied, then an MTC measurement in accordance with SR 3.1.3.2 is not required to be performed.

2.3.4 60 PPM MTC Surveillance Limit is:

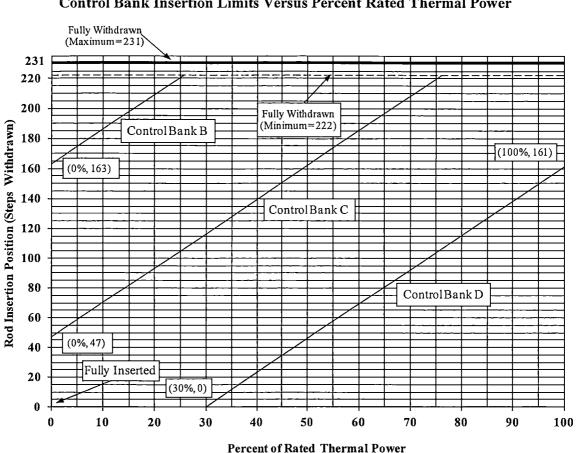
Measured 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to $-4.125E-04 \Delta K/K/^{\circ}F$.

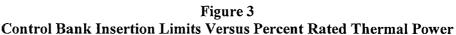
Where: BOC = Beginning of Cycle (burnup corresponding to most positive MTC) EOC = End of Cycle ARO = All Rods Out HZP = Hot Zero Thermal Power RTP = Rated Thermal Power PPM = Parts per million (Boron)

2.4 Shutdown Bank Insertion Limit (TS 3.1.5)


2.4.1 Each shutdown bank shall be withdrawn to at least 222 steps. Shutdown banks are withdrawn in sequence and with no overlap.

2.5 Control Bank Insertion Limits (TS 3.1.6)


2.5.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.


Figure 2

Moderator Temperature Coefficient Upper Limit Versus Power Level

NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits. Refer to the Unit 1 ROD manual for details.

The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can be calculated by:

Bank CD RIL = 2.3(P) - 69 { $30 \le P \le 100$ } Bank CC RIL = 2.3(P) + 47 { $0 \le P \le 76.1$ } for CC RIL = 222 { $76.1 < P \le 100$ } Bank CB RIL = 2.3(P) + 163 { $0 \le P \le 25.7$ } for CB RIL = 222 { $25.7 < P \le 100$ }

where P = %Rated Thermal Power

NOTES: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits. Refer to the Unit 1 ROD manual for details.

•

Fully	y Withdrav	vn at 222 S	Steps	Ful	ly Withdra	wn at 223 S	teps
Control	Control	Control	Control	Control	Control	Control	Conti
Bank A	Bank B	Bank C	Bank D	Bank A	Bank B	Bank C	Bank
			_				
0 Start	0	0	0	0 Start	0	0	0
116	0 Start	0	0	116	0 Start	0	0
222 Stop	106	0	0	223 Stop	107	0	0
222	116	0 Start	0	223	116	0 Start	0
222	222 Stop	106	0	223	223 Stop	107	0
222	222	116	0 Start	223	223	116	0 Sta
222	222		106	223			
	222	222 Stop	100	223	223	223 Stop	107
Fully	y Withdrav	vn at 224 S	Steps	Ful	ly Withdra	wn at 225 S	teps
Control	Control	Control	Control	Control	Control	Control	Contr
Bank A	Bank B	Bank C	Bank D	Bank A	Bank B	Bank C	Bank
0 Start	0	0	0	0 Start	0	0	0
116	0 Start	0	0	116	0 Start	0	0
224 Stop	108	0	0	225 Stop	109	0	0
224	116	0 Start	Ō	225	116	0 Start	Ō
224	224 Stop	108	Ő	225			ő
	-				225 Stop	109	-
224	224	116	0 Start	225	225	116	0 Sta
224	224	224 Stop	108	225	225	225 Stop	109
Fully	y Withdray	vn at 226 S	Steps	Ful	ly Withdra	wn at 227 S	teps
Control	Control	Control	Control	Control	Control	Control	Contr
Bank A	Bank B	Bank C	Bank D	Bank A	Bank B	Bank C	Bank
0 Start	0	0	0	0 Start	0	0	0
116	0 Start	0	0	116	0 Start	0	0
226 Stop	110	0	0	227 Stop	111	0	0
226	116	0 Start	0	227	116	0 Start	0
226	226 Stop	110	0	227	227 Stop	111	0
226	226	116	0 Start	227	227	116	0 Sta
226	226	226 Stop	110	227	227	227 Stop	111
Fully	y Withdrav	vn at 228 S	steps		-	wn at 229 S	teps
Control	Control	Control	Control	Control	Control	Control	Contr
Bank A	Bank B	Bank C	Bank D	Bank A	Bank B	Bank C	Bank
	~	<u>,</u>	6	0.5	~	<u> </u>	
0 Start	0	0	0	0 Start	0	0	0
116	0 Start	0	0	116	0 Start	0	0
228 Stop	112	0	0	229 Stop	113	0	0
228	116	0 Start	0	229	116	0 Start	0
228	228 Stop	112	õ	229	229 Stop	113	0
228	228 300		0 Start		-		
		116		229	229	116	0 Sta
228	228	228 Stop	112	229	229	229 Stop	113
Fully	Withdraw	vn at 230 S	teps	Ful	y Withdra	wn at 231 S	teps
Control	Control	Control	Control	Control	Control	Control	Contr
Bank A	Bank B	Bank C	Bank D	Bank A	Bank B	Bank C	Bank
							-
0 Start	0	0	0	0 Start	0	0	0
	0 Start	0	0	116	0 Start	0	0
116		0	0	231 Stop	115	0	0
116	114			231	116	0 Start	Ő
116 230 Stop	114 116		0				
116 230 Stop 230	116	0 Start	0				
116 230 Stop 230 230	116 230 Stop	0 Start 114	0	231	231 Stop	115	0
116 230 Stop 230	116	0 Start					

Table 1Control Bank Withdrawal Steps and Sequence

2.6 Heat Flux Hot Channel Factor - $F_Q(X,Y,Z)$ (TS 3.2.1)

2.6.1 $F_Q(X,Y,Z)$ steady-state limits are defined by the following relationships:

$F_{Q}^{RTP} * K(Z)/P$	for $P > 0.5$
$F_{O}^{RTP} * K(Z) / 0.5$	for $P \le 0.5$

where,

P = (Thermal Power)/(Rated Power)

Note: The measured $F_Q(X,Y,Z)$ shall be increased by 3% to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limit. The manufacturing tolerance and measurement uncertainty are implicitly included in the F_Q surveillance limits as defined for COLR Sections 2.6.5 and 2.6.6.

2.6.2
$$F_Q^{RTP} = 2.70 \text{ x K(BU)}$$

- **2.6.3** K(Z) is the normalized $F_Q(X,Y,Z)$ as a function of core height. K(Z) for Westinghouse RFA fuel is provided in Figure 4.
- **2.6.4** K(BU) is the normalized $F_Q(X,Y,Z)$ as a function of burnup. F_Q^{RTP} with the K(BU) penalty for Westinghouse RFA fuel is analytically confirmed in cycle-specific reload calculations. K(BU) is set to 1.0 at all burnups.

The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:

2.6.5
$$[F_Q^L(X,Y,Z)]^{OP} = \frac{F_Q^D(X,Y,Z) * M_Q(X,Y,Z)}{UMT * MT * TILT}$$

where:
 $[F_Q^L(X,Y,Z)]^{OP} = Cycle dependent maximum allowable design peaking factor
that ensures $F_Q(X,Y,Z)$ LOCA limit is not exceeded for
operation within the AFD, RIL, and QPTR limits.
 $F_Q^L(X,Y,Z)^{OP}$ includes allowances for calculation and
measurement uncertainties.$

$$F_{\mathcal{Q}}^{D}(X,Y,Z) =$$
 Design power distribution for F_{Q} . $F_{\mathcal{Q}}^{D}(X,Y,Z)$ is provided in
Appendix Table A-1 for normal operating conditions and in
Appendix Table A-4 for power escalation testing during initial
startup operation.

- $M_Q(X,Y,Z) = Margin remaining in core location X,Y,Z to the LOCA limit in$ $the transient power distribution. <math>M_Q(X,Y,Z)$ is provided in Appendix Table A-1 for normal operating conditions and in Appendix Table A-4 for power escalation testing during initial startup operation.
 - UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)
 - MT = Engineering Hot Channel Factor. (MT = 1.03).
 - TILT = Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)

2.6.6
$$[F_Q^L(X,Y,Z)]^{RPS} = \frac{F_Q^D(X,Y,Z) * M_C(X,Y,Z)}{UMT * MT * TILT}$$

where:

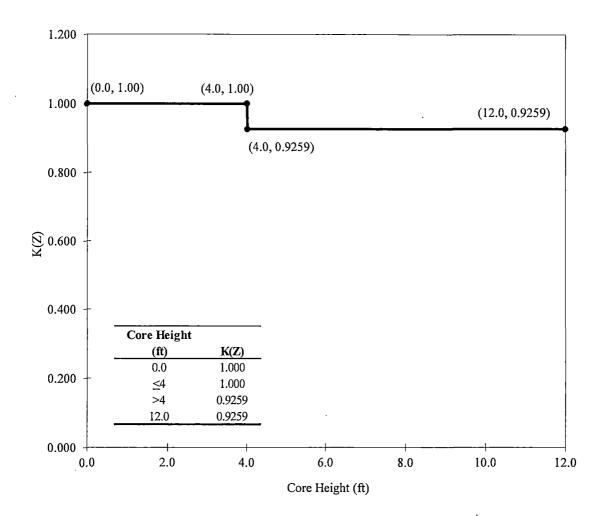
n

 $[F_Q^L(X,Y,Z)]^{RPS} = Cycle dependent maximum allowable design peaking factor$ $that ensures F_Q(X,Y,Z) Centerline Fuel Melt (CFM) limit is not$ exceeded for operation within the AFD, RIL, and QPTR limits. $<math display="block">[F_Q^L(X,Y,Z)]^{RPS} \text{ includes allowances for calculation and}$ measurement uncertainties.

$$F_Q^D(X,Y,Z) = Defined in Section 2.6.5.$$

- $M_{C}(X,Y,Z) = Margin remaining to the CFM limit in core location X,Y,Z$ $from the transient power distribution. <math>M_{C}(X,Y,Z)$ is provided in Appendix Table A-2 for normal operating conditions and in Appendix Table A-5 for power escalation testing during initial startup operations.
 - UMT = Defined in Section 2.6.5.
 - MT = Defined in Section 2.6.5.
 - TILT = Defined in Section 2.6.5.

2.6.7 KSLOPE = 0.0725


where:

- KSLOPE = Adjustment to K₁ value from OT Δ T trip setpoint required to compensate for each 1% $F_Q^M(X,Y,Z)$ exceeds $F_Q^L(X,Y,Z)^{\text{RPS}}$.
- **2.6.8** $F_Q(X,Y,Z)$ Penalty Factors for Technical Specification Surveillances 3.2.1.2 and 3.2.1.3 are provided in Table 2.

•

Figure 4

K(Z), Normalized $F_Q(X,Y,Z)$ as a Function of Core Height for Westinghouse RFA Fuel

Table 2

$F_Q(X,Y,Z)$ and $F_{\Delta H}(X,Y)$ Penalty Factors For Technical Specification Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2

Burnup	$F_Q(X,Y,Z)$	$F_{\Delta H}(X,Y)$
(EFPD)	Penalty Factor(%)	Penalty Factor (%)
4	2.00	2.00
12	2.00	2.00
25	2.00	2.00
50	2.00	2.00
75	2.00	2.00
100	2.00	2.00
125	2.00	2.00
150	2.00	2.00
175	2.00	2.00
200	2.00	2.00
225	2.00	2.00
250	2.00	2.00
275	2.00	2.00
300	2.00	2.00
325	2.00	2.00
350	2.00	2.00
375	2.00	2.00
400	2.00	2.00
425	2.00	2.00
445	2.00	2.00
450	2.00	2.00
463	2.00	2.00
473	2.00	2.00
478	2.00	2.00
488	2.00	2.00
498	2.00	2.00

Note: Linear interpolation is adequate for intermediate cycle burnups. All cycle burnups outside the range of the table shall use a 2% penalty factor for both $F_Q(X,Y,Z)$ and $F_{\Delta H}(X,Y)$ for compliance with the Technical Specification Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.

2.7 Nuclear Enthalpy Rise Hot Channel Factor - $F_{\Delta H}(X,Y)$ (TS 3.2.2)

 $F_{\Delta H}$ steady-state limits referred to in Technical Specification 3.2.2 are defined by the following relationship.

2.7.1
$$[F_{\Delta H}^{L}(X,Y)]^{LCO} = MARP(X,Y) * \left[1.0 + \frac{1}{RRH} * (1.0 - P) \right]$$

where:

- $[F_{\Delta H}^{L}(X, Y)]^{LCO}$ is the steady-state, maximum allowed radial peak and includes allowances for calculation/measurement uncertainty.
- MARP(X,Y) = Cycle-specific operating limit Maximum Allowable Radial Peaks. MARP(X,Y) radial peaking limits are provided in Table 3.

$$P = \frac{\text{Thermal Power}}{\text{Rated Thermal Power}}$$

RRH = Thermal Power reduction required to compensate for each 1% the measured radial peak, $F_{\Delta H}^{M}(X,Y)$, exceeds the limit. (RRH = 3.34, $0.0 < P \le 1.0$)

The following parameters are required for core monitoring per the surveillance requirements of Technical Specification 3.2.2.

2.7.2
$$[F_{\Delta H}^{L}(X,Y)]^{SURV} = \frac{F_{\Delta H}^{D}(X,Y) * M_{\Delta H}(X,Y)}{UMR * TILT}$$

where:

$$[F_{\Delta H}^{L}(X,Y)]^{SURV} =$$
 Cycle dependent maximum allowable design peaking factor
that ensures the $F_{\Delta H}(X,Y)$ limit is not exceeded for operation
within the AFD, RIL, and QPTR limits. $F_{\Delta H}^{L}(X,Y)^{SURV}$
includes allowances for calculation and measurement
uncertainty.

$$F_{\Delta H}^{D}(X,Y) =$$
 Design radial power distribution for $F_{\Delta H}$. $F_{\Delta H}^{D}(X,Y)$ is
provided in Appendix Table A-3 for normal operation and in
Appendix Table A-6 for power escalation testing during
initial startup operation.

- $M_{\Delta H}(X,Y) =$ Margin remaining in core location X,Y relative to Operational DNB limits in the transient power distribution. $M_{\Delta H}(X,Y)$ is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.
 - $\begin{array}{ll} \text{UMR} &= \text{Uncertainty value for measured radial peaks (UMR = 1.0).} \\ & \text{UMR is set to 1.0 since a factor of 1.04 is implicitly included} \\ & \text{in the variable } M_{\text{AH}}(X,Y). \end{array}$
 - TILT = Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)
- **2.7.3** RRH is defined in Section 2.7.1.
- **2.7.4** TRH = 0.04

.

where:

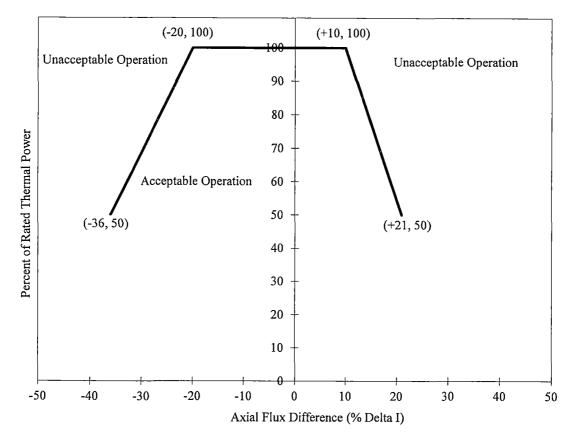
- TRH = Reduction in OT Δ T K₁ setpoint required to compensate for each 1% that the measured radial peak, $F_{\Delta H}^{M}(X,Y)$ exceeds its limit.
- **2.7.5** $F_{\Delta H}(X,Y)$ Penalty Factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2.

2.8 Axial Flux Difference – AFD (TS 3.2.3)

2.8.1 Axial Flux Difference (AFD) Limits are provided in Figure 5.

CNEI-0400-292 Page 21 of 31 Revision 001

Catawba 1 Cycle 23 Core Operating Limits Report


۲

Core Height							Axial Peal	k					
(ft)	1.05	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.1	3	3.25
0.12	1.8092	1.8553	1.9248	1.9146	1.9179	2.0621	2.0498	2.0090	1.9333	1.8625	1.7780	1.3151	1.2461
1.20	1.8102	1.8540	1.9248	1.9146	1.9179	2.1073	2.0191	1.9775	1.9009	1.8306	1.7852	1.3007	1.2235
2.40	1.8093	1.8525	1.9312	1.9146	1.9179	2.0735	1.9953	1.9519	1.8760	1.8054	1.7320	1.4633	1.4616
3.60	1.8098	1.8514	1.9204	1.9146	1.9179	2.0495	1.9656	1.9258	1.8524	1.7855	1.6996	1.4675	1.3874
4.80	1.8097	1.8514	1.9058	1.9146	1.9179	2.0059	1.9441	1.9233	1.8538	1.7836	1.6714	1.2987	1.2579
6.00	1.8097	1.8514	1.8921	1.9212	1.9179	1.9336	1.8798	1.8625	1.8024	1.7472	1.6705	1.3293	1.2602
7.20	1.8070	1.8438	1.8716	1.8930	1.8872	1.8723	1.8094	1.7866	1.7332	1.6812	1.5982	1.2871	1.2195
8.40	1.8073	1.8319	1.8452	1.8571	1.8156	1.7950	1.7359	1.7089	1.6544	1.6010	1.5127	1.2182	1.1578
9.60	1.8072	1.8102	1.8093	1.7913	1.7375	1.7182	1.6572	1.6347	1.5808	1.5301	1.4444	1.1431	1.0914
10.80	1.7980	1.7868	1.7611	1.7163	1.6538	1.6315	1.5743	1.5573	1.5088	1.4624	1.3832	1.1009	1.0470
11.40	1.7892	1.7652	1.7250	1.6645	1.6057	1.5826	1.5289	1.5098	1.4637	1.4218	1.3458	1.0670	1.0142

Table 3Maximum Allowable Radial Peaks (MARPs)RFA MARPs

.

Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits

NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to the Unit 1 ROD manual for operational AFD limits.

2.9 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1

2.9.1 Overtemperature ΔT Setpoint Parameter Values

Parameter	Nominal Value
Nominal Tavg at RTP	$T' \leq 585.1^{\circ}F$
Nominal RCS Operating Pressure	P' = 2235 psig
Overtemperature ΔT reactor trip setpoint $^{++}$	K ₁ = 1.1978
Overtemperature ΔT reactor trip heatup setpoint penalty coefficient	K ₂ = 0.03340/°F
Overtemperature ΔT reactor trip depressurization setpoint penalty coefficient	K ₃ = 0.001601/psi
Time constants utilized in the lead-lag compensator for ΔT	$\tau_1 = 8 \text{ sec.}$ $\tau_2 = 3 \text{ sec.}$
Time constant utilized in the lag compensator for ΔT	$\tau_3 = 0$ sec.
Time constants utilized in the lead-lag compensator for T_{avg}	$\tau_4 = 22 \text{ sec.}$ $\tau_5 = 4 \text{ sec.}$
Time constant utilized in the measured T_{avg} lag compensator	$\tau_6 = 0$ sec.
$f_1(\Delta I)$ "positive" breakpoint	= 19.0 %ΔI
$f_1(\Delta I)$ "negative" breakpoint	= N/A*
$f_1(\Delta I)$ "positive" slope	= 1.769 %ΔT ₀ / %ΔI
$f_1(\Delta I)$ "negative" slope	= N/A*

* $f_1(\Delta I)$ negative breakpoints and slopes for OT ΔT are less restrictive than the OP ΔT $f_2(\Delta I)$ negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits, OP ΔT $f_2(\Delta I)$ limits will result in a reactor trip before OT ΔT $f_1(\Delta I)$ limits are reached. This makes implementation of an OT ΔT $f_1(\Delta I)$ negative breakpoint and slope unnecessary.

++ ΔT_0 is assumed to be renormalized to 100% RTP following the MUR power uprate.

2.9.2 Overpower ΔT Setpoint Parameter Values

.

Parameter_	Nominal Value
Nominal Tavg at RTP	$T'' \leq 585.1^{\circ}F$
Overpower ΔT reactor trip setpoint $^{++}$	$K_4 = 1.0864$
Overpower ΔT reactor trip penalty	$K_5 = 0.02$ / °F for increasing Tavg $K_5 = 0.00$ / °F for decreasing Tavg
Overpower ΔT reactor trip heatup setpoint penalty coefficient	$\label{eq:K6} \begin{split} &K_6 = 0.001179 / ^\circ F \text{ for } T > T'' \\ &K_6 = 0.0 \ / ^\circ F \text{ for } T \leq T'' \end{split}$
Time constants utilized in the lead-lag compensator for ΔT	$\tau_1 = 8 \text{ sec.}$ $\tau_2 = 3 \text{ sec.}$
Time constant utilized in the lag compensator for ΔT	$\tau_3 = 0$ sec.
Time constant utilized in the measured T_{avg} lag compensator	$\tau_6 = 0$ sec.
Time constant utilized in the rate-lag controller for T_{avg}	$\tau_7 = 10$ sec.
$f_2(\Delta I)$ "positive" breakpoint	= 35.0 % Δ Ι
$f_2(\Delta I)$ "negative" breakpoint	= -35.0 %ΔI
$f_2(\Delta I)$ "positive" slope	$= 7.0 \% \Delta T_0 / \% \Delta I$
$f_2(\Delta I)$ "negative" slope	$= 7.0 \% \Delta T_0 / \% \Delta I$

++ ΔT_0 is assumed to be renormalized to 100% RTP following the MUR power uprate.

2.10 Boron Dilution Mitigation System – BDMS (TS 3.3.9)

2.10.1 Reactor Makeup Water Pump combined flow rate limits:

Applicable MODE	<u>Limit</u>
MODE 3	\leq 80 gpm
MODE 4 or 5	\leq 70 gpm

2.11 RCS Pressure, Temperature and Flow DNB Limits (TS 3.4.1)

The RCS pressure, temperature and flow limits for DNB are shown in Table 4.

2.12 Accumulators (TS 3.5.1)

49

¢

2.12.1 Boron concentration limits during MODES 1 and 2, and MODE 3 with RCS pressure >1000 psi:

Parameter	Applicable Burnup	<u>Limit</u>
Accumulator minimum boron concentration.	0 - 200 EFPD	2500
Accumulator minimum boron concentration.	200.1 - 250 EFPD	2463
Accumulator minimum boron concentration.	250.1 - 300 EFPD	2337
Accumulator minimum boron concentration.	300.1 - 350 EFPD	2252
Accumulator minimum boron concentration.	350.1 - 400 EFPD	2166
Accumulator minimum boron concentration.	400.1 - 450 EFPD	2093
Accumulator minimum boron concentration.	450.1 - 488 EFPD	2022
Accumulator minimum boron concentration.	488.1 - 498 EFPD	1961
Accumulator maximum boron concentration.	0 - 498 EFPD	3,075 ppm

¥

e

Table 4

Reactor Coolant System DNB Parameters

PARAMETER	INDICATION	No. Operable CHANNELS	LIMITS
1. Indicated RCS Average Temperature	meter	4	≤ 587.2 °F
	meter	3	\leq 586.9 °F
	computer	4	≤587.7 °F
	computer	3	_ ≤587.5 °F
2. Indicated Pressurizer Pressure	meter	4	\geq 2209.8 psig
	meter	3	≥ 2212.1 psig
	computer	4	\geq 2205.8 psig
	computer	3	≥ 2207.5 psig
3. RCS Total Flow Rate			≥ 388,000 gpm

2.13 Refueling Water Storage Tank - RWST (TS 3.5.4)

2.13.1 Boron concentration limits during MODES 1, 2, 3, and 4:

Parameter	<u>Limit</u>
RWST minimum boron concentration.	2,700 ppm
RWST maximum boron concentration.	3,075 ppm

2.14 Spent Fuel Pool Boron Concentration (TS 3.7.15)

2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.

Parameter	Limit
Spent fuel pool minimum boron concentration.	2,700 ppm

2.15 Refueling Operations - Boron Concentration (TS 3.9.1)

2.15.1 Minimum boron concentration limit for filled portions of the Reactor Coolant System, refueling canal, and refueling cavity for MODE 6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that core K_{eff} remains within the MODE 6 reactivity requirement of $K_{eff} \le 0.95$.

Parameter	<u>Limit</u>
Minimum boron concentration of the Reactor Coolant System, the refueling canal, and the refueling cavity.	2,700 ppm

2.16 Standby Shutdown System - (SLC-16.7-9)

2.16.1 Minimum boron concentration limit for the spent fuel pool required for Standby Makeup Pump Water Supply. Applicable for MODES 1, 2, and 3.

Parameter	<u>Limit</u>
Spent fuel pool minimum boron concentration for TR 16.7-9-3.	2,700 ppm

2.17 Boration Systems Borated Water Source – Shutdown (SLC 16.9-11)

2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during MODE 4 with any RCS cold leg temperature ≤ 210°F, and MODES 5 and 6.

Parameter	<u>Limit</u>	
NOTE: When cycle burnup is ≥ 438 EFPD, Figure 6 may be used to determine the required BAT Minimum Level.		
BAT minimum boron concentration	7,000 ppm	
Volume of 7,000 ppm boric acid solution required to maintain SDM at 68°F	2,000 gallons	
BAT Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)	13,086 gallons (14.9%)	
RWST minimum boron concentration	2,700 ppm	
Volume of 2,700 ppm boric acid solution required to maintain SDM at 68 °F	7,000 gallons	
RWST Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)	48,500 gallons (8.7%)	

2.18 Boration Systems Borated Water Source - Operating (SLC 16.9-12)

اللم 🛡

2.18.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during MODES 1, 2, and 3 and MODE 4 with all RCS cold leg temperatures > 210°F*.

* NOTE: The SLC 16.9-12 applicability is down to MODE 4 temperatures of $> 210^{\circ}$ F. The minimum volumes calculated support cooldown to 200° F to satisfy UFSAR Chapter 9 requirements.

Parameter	Limit		
NOTE: When cycle burnup is ≥ 438 EFPD, Figure 6 may be used to determine the required BAT Minimum Level.			
BAT minimum boron concentration	7,000 ppm		
Volume of 7,000 ppm boric acid solution required to maintain SDM at 210°F	13,500 gallons		
BAT Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)	25,200 gallons (45.8%)		
RWST minimum boron concentration	2,700 ppm		
Volume of 2,700 ppm boric acid solution required to maintain SDM at 210 °F	57,107 gallons		
RWST Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)	98,607 gallons (22.0%)		

* . 4 *

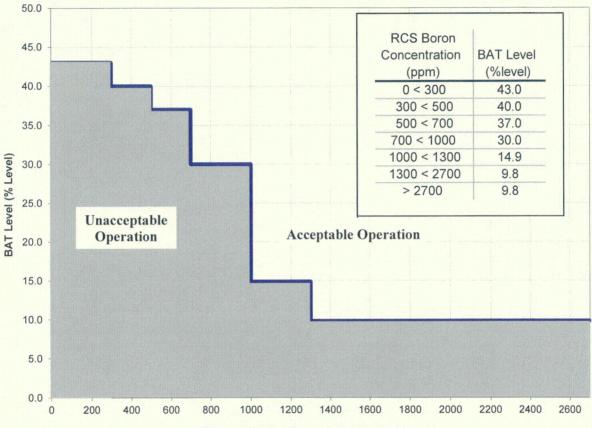

4

Figure 6

Boric Acid Storage Tank Indicated Level Versus Primary Coolant Boron Concentration

(Valid When Cycle Burnup is ≥ 438 EFPD)

This figure includes additional volumes listed in SLC 16.9-11 and 16.9-12

Primary Coolant Boron Concentration (ppmb)

Appendix A

Power Distribution Monitoring Factors

Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. This data was generated in the Catawba 1 Cycle 23 Maneuvering Analysis calculation file, CNC-1553.05-00-0631. Due to the size of the monitoring factor data, Appendix A is controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Catawba Electrical and Reactor Systems Engineering Section controls this information via computer files and should be contacted if there is a need to access this information.

Appendix A is included in the COLR copy transmitted to the NRC.

Note: Revision 1 of the COLR will not transmit Appendix A because there is no change from Revision 0.