

LaSalle Sation

2601 North 21st Road Marseilles, IL 61341

815 415 2000 www.exeloncorp.com

10 CFR 50 Appendix I

RA15-024

May 13, 2015

U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555

> LaSalle County Station, Units 1 and 2 Facility Operating License Nos. NPF-11 and NPF-18 NRC Docket Nos. 50-373 and 50-374

Subject: 2014 Annual Radiological Environmental Operating Report

Enclosed is the Exelon Generation Company, LLC, LaSalle County Station 2014 Annual Radiological Environmental Operating Report, submitted in accordance with Technical Specification 5.6.2, "Annual Radiological Environmental Operating Report." This report contains the results of the Radiological Environmental and Meteorological Monitoring Programs. This report is enclosed as an attachment.

In addition, this attachment contains the results of groundwater monitoring conducted in accordance with Exelon's Radiological Groundwater Protection Program, which is a voluntary program implemented in 2006. This information is being reported in accordance with a nuclear industry initiative.

Should you have any questions concerning this letter, please contact Mr. Guy V. Ford, Regulatory Assurance Manager, at (815) 415-2800.

Respectfully,

Peter J. Karaba Site Vice President LaSalle County Station

Attachment

cc: Regional Administrator - NRC Region III NRC Senior Resident Inspector - LaSalle County Station

LASALLE COUNTY STATION UNITS 1 and 2

Annual Radiological Environmental Operating Report

1 January Through 31 December 2014

Prepared By

Teledyne Brown Engineering Environmental Services

LaSalle County Station Marseilles, IL 61341

May 2015

Table Of Contents

I. Summary and Conclusions	1
I. IntroductionA. Objectives of the REMPB. Implementation of the Objectives	2
III. Program Description A. Sample Collection	2
 B. Sample Analysis. C. Data Interpretation D. Program Exceptions. E. Program Changes 	5 5 6
 IV. Results and Discussion A. Aquatic Environment	. 9 . 9 10 10
 4. Sediment B. Atmospheric Environment	11 11 12 12 12
 C. Ambient Gamma Radiation. D. Land Use Survey. E. Errata Data F. Summary of Results – Inter-laboratory Comparison Program 	13 13 14

Appendices

Appendix A	Radiological Environmental Monitoring Report Annual Summary
Tables	
Table A-1	Radiological Environmental Monitoring Program Annual Summary for the LaSalle County Station, 2014
Appendix B	Location Designation, Distance & Direction, and Sample Collection & Analytical Methods
Tables	
Table B-1	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, LaSalle County Station, 2014
Table B-2	Radiological Environmental Monitoring Program - Summary of Sample Collection and Analytical Methods, LaSalle County Station, 2014
Figures	
Figure B-1	Inner Ring OSLD Locations of the LaSalle County Station, 2014
Figure B-2	Outer Ring OSLD Locations and Fixed Air Sampling Locations of the LaSalle County Station, 2014
Figure B-3	Ingestion and Waterborne Exposure Pathway Sample Locations of the LaSalle County Station, 2014
Appendix C	Data Tables and Figures - Primary Laboratory
Tables	
Table C-I.1	Concentrations of Gross Beta in Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-I.2	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-I.3	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-II.1	Concentrations of Tritium in Ground/Well Water Samples Collected in the Vicinity of LaSalle County Station, 2014
Table C-II.2	Concentrations of Gamma Emitters in Ground/Well Water Samples Collected in the Vicinity of LaSalle County Station, 2014.

Table C-III.1	Concentrations of Gamma Emitters in Fish Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-IV.1	Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-V.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-V.2	Monthly and Yearly Mean Values of Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-V.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-VI.1	Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-VII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-VII.2	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-VIII.1	Concentrations of Gamma Emitters in Food Product Samples Collected in the Vicinity of LaSalle County Station, 2014.
Table C-IX.1	Quarterly OSLD Results for LaSalle County Station, 2014.
Table C-IX.2	Mean Quarterly OSLD Results for the Inner Ring, Outer Ring, Other and Control Locations for LaSalle County Station, 2014.
Table C-IX.3	Summary of the Ambient Dosimetry Program for LaSalle County Station, 2014.
<u>Figures</u>	
Figure C-1	Surface Water - Gross Beta – Stations L-21 (C) and L-40 Collected in the Vicinity of LSCS, 2005 - 2014.
Figure C-2	Surface Water - Tritium – Stations L-21 (C) and L-40 Collected in the Vicinity of LSCS, 2005 - 2014.
Figure C-3	Air Particulate - Gross Beta – Stations L-01 and L-03 Collected in the Vicinity of LSCS, 2005 - 2014.
Figure C-4	Air Particulate - Gross Beta – Stations L-05 and L-06 Collected in the Vicinity of LSCS, 2005 - 2014.
Figure C-5	Air Particulate - Gross Beta – Station L-10 (C) Collected in the Vicinity of LSCS, 2005 - 2014.
Figure C-6	Air Particulate - Gross Beta – Station L-04 and L-07 Collected in the Vicinity of LSCS, 2005 – 2014.

Figure C-7 Air Particulate - Gross Beta – Station L-08 and L-11 Collected in the Vicinity of LSCS, 2005 - 2014.

Appendix D Inter-Laboratory Comparison Program

<u>Tables</u>

Table D-1	Analytics Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2014
Table D-2	ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2014
Table D-3	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Teledyne Brown Engineering, 2014
Table D-4	ERA Statistical Summary Proficiency Testing Program Environmental, Inc., 2014
Table D-5	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Environmental, Inc., 2014
Appendix E	Effluent Data
Appendix F	Meteorological Data
Appendix G	Errata Data
Appendix H	Annual Radiological Groundwater Protection Program Report (ARGPPR)

I. Summary and Conclusions

This report on the Radiological Environmental Monitoring Program conducted for the LaSalle County Station (LSCS) by Exelon covers the period 1 January 2014 through 31 December 2014. During that time period, 1,407 analyses were performed on 1,393 samples. In assessing all the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of LSCS had no adverse radiological impact on the environment.

Surface water samples were analyzed for concentrations of gross beta, tritium and gamma emitting nuclides. Ground/well water samples were analyzed for concentrations of tritium and gamma emitting nuclides. No fission or activation products were detected. Gross beta and tritium activities detected were consistent with those detected in previous years.

Fish (commercially and recreationally important species) and sediment samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected in fish. Cs-137 was detected in both samples at control location L-21. Occasionally Cs-137 is detected at very low levels (just above LLD) and is not distinguishable from background levels.

Air particulate samples were analyzed for concentrations of gross beta and gamma emitting nuclides. No fission or activation products were detected.

High sensitivity I-131 analyses were performed on weekly air samples. All results were less than the minimum detectable activity for I-131.

Cow milk samples were not analyzed in 2014 for concentrations of I-131 and gamma emitting nuclides as this dairy herd was sold prior to the first sample in 2014.

Food product samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected.

Environmental gamma radiation measurements were performed quarterly using Optically Stimulated Luminescence Dosimeters (OSLD). Beginning in the first quarter of 2012, Exelon changed the type of dosimetry used for the Radiological Environmental Monitoring Program (REMP). Optically Stimulated Luminescent Dosimetry were deployed and Thermo-luminescent Dosimetry (TLD) were discontinued. OSLD technology is different than that used in a TLD but has the same purpose (to measure direct radiation).

II. Introduction

The LaSalle County Station (LSCS), consists of two boiling water reactors, each rated for 3,546 MWt. Both units are owned and operated by Exelon Corporation and are located in LaSalle County, Illinois. Unit 1 went critical on 16 March 1982. Unit 2 went critical on 02 December 1983. The site is located in northern Illinois, approximately 75 miles southwest of Chicago, Illinois.

A Radiological Environmental Monitoring Program (REMP) for LSCS was initiated in 1982 (the preoperational period for most media covers the periods 1 January 1979 through 26 December 1981 and was summarized in a separate report.). This report covers those analyses performed by Teledyne Brown Engineering (TBE) and Landauer on samples collected during the period 1 January 2014 through 31 December 2014.

A. Objectives of the REMP

The objectives of the REMP are to:

- 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.
- 2. Evaluate the relationship between quantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure.
- B. Implementation of the Objectives

The implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways.
- 2. Establishing baseline radiological data of media within those pathways.
- 3. Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment.
- III. Program Description
 - A. Sample Collection

Samples for the LSCS REMP were collected for Exelon Nuclear by Environmental Inc. (Midwest Labs). This section describes the general

collection methods used by Environmental Inc. (Midwest Labs) to obtain environmental samples for the LSCS REMP in 2014. Sample locations and descriptions can be found in Tables B–1 and B–2, and Figures B–1 through B–4, Appendix B.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, ground/well water, fish, and sediment. Two gallon water samples were collected weekly from two surface water locations (L-21 and L-40) and composited for monthly and quarterly required analyses. Control location was L-21. Two ground/well water locations (L-27 and L-28) were also grab sampled quarterly. All samples were collected via grab sample. The samples were then transferred to new unused plastic containers. Both the grab container and the sample containers were rinsed with source water prior to actual sample collection. Fish samples were collected semiannually at three locations, L-34, L-35 and L-36 (Control). Sediment samples composed of recently deposited substrate were collected at three locations semiannually, L-21 (Control), L-40 and L-41.

Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of airborne particulate and iodine. Airborne particulate and iodine samples were collected and analyzed weekly at nine locations (L-01, L-03, L-04, L-05, L-06, L-07, L-08, L-10 and L-11). The control location was L-10. Airborne particulate and iodine samples were obtained at each location, using a vacuum pump to pull air through a glass fiber particulate filter and iodine cartridge. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The particulate filters and iodine cartridges were replaced weekly and sent to the laboratory for analysis.

Terrestrial Environment

The terrestrial environment was evaluated by performing radiological analyses on samples of milk and food product. Samples are typically collected biweekly at one milk location (L-42) from May through October, and monthly from November through April. The control location was L-42. All samples, when available, were collected in new unused two gallon plastic bottles from the bulk tank at each location, preserved with sodium bisulfite, and shipped promptly to the laboratory.

Food products were collected annually in September at five locations (L-Quad C, L-Quad 1, L-Quad 2, L-Quad 3 and L-Quad 4). The control

location was L-Quad C. Various types of samples were collected and placed in new unused plastic bags, and sent to the laboratory for analysis.

Ambient Gamma Radiation

Beginning in the first quarter of 2012, Exelon changed the type of dosimetry used for the Radiological Environmental Monitoring Program (REMP). Optically Stimulated Luminescent Dosimetry (OSLD) were deployed and Thermo-luminescent Dosimetry (TLD) were discontinued. This change may cause step changes in readings, up or down, depending on site characteristics. However, the relative comparison to control locations remains valid. OSLD technology is different than that used in a TLD but has the same purpose (to measure direct radiation).

Each location consisted of 2 OSLD sets. The OSLDs were exchanged quarterly and sent to Landauer for analysis. The OSLD locations were placed on and around the LSCS site as follows:

An <u>inner ring</u> consisting of 16 locations (L-101, L-102, L-103, L-104, L-105, L-106, L-107, L-108, L-109, L-110, L-111B, L-112, L-113A, L-114, L-115 and L-116) near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off–site doses) from LSCS release.

An <u>outer ring</u> consisting of 16 locations (L-201, L-202, L-203, L-204, L-205, L-206, L-207, L-208, L-209, L-210, L-211, L-212, L-213, L-214, L-215 and L-216) extending to approximately 5 miles from the site designed to measure possible exposures to nearby population.

An <u>other</u> set consisting of eight locations (L-01, L-03, L-04, L-05, L-06, L-07, L-08 and L-11).

The balance of one location (L-10) representing the control area.

The specific OSLD locations were determined by the following criteria:

- 1. The presence of relatively dense population;
- Site meteorological data taking into account distance and elevation for each of the sixteen 22 ½ degree sectors around the site, where estimated annual dose from LSCS, if any, would be most significant;
- 3. On hills free from local obstructions and within sight of the vents (where practical);

4. And near the closest dwelling to the vents in the prevailing downwind direction.

(Two OSLDs were placed at each location approximately six feet above ground level.)

B. Sample Analysis

This section describes the general analytical methodologies used by TBE and Environmental Inc. (Midwest Labs) to analyze the environmental samples for radioactivity for the LSCS REMP in 2014. The analytical procedures used by the laboratories are listed in Table B-2.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of beta emitters in surface water and air particulates.
- 2. Concentrations of gamma emitters in ground/well and surface water, air particulates, milk, fish, sediment and vegetation.
- 3. Concentrations of tritium in ground/well and surface water.
- 4. Concentrations of I-131 in air and milk.
- 5. Ambient gamma radiation levels at various site environs.
- C. Data Interpretation

The radiological and direct radiation data collected prior to LaSalle County Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, LaSalle County Station was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) is defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD is intended as a before the fact (a priori) estimate of a system (including instrumentation, procedure and sample type) and not as an after the fact (a posteriori) criteria for the presence of activity. All analyses were designed to achieve the required LSCS detection capabilities for environmental sample analysis.

The minimum detectable concentration (MDC) is defined above with the exception that the measurement is an after the fact estimate of the presence of activity.

2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity effecting a negative number. An MDC was reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface water and food product 12 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Zr-95, Nb-95, I-131, Cs-134, Cs-137, Ba-140 and La-140 were reported.

For ground/well water, fish, sediment, air particulate and milk 11 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Zr-95, Nb-95, Cs-134, Cs-137, Ba-140 and La-140 were reported.

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

D. Program Exceptions

For 2014, the LSCS REMP had a sample recovery rate of 97.8%. Sample anomalies and missed samples are listed in the tables below:

Table D-1 LISTING OF SAMPLE ANOMALIES

Sample Type	Location Code	Collection Date	Reason
A/I	L-03	01/30/14	No apparent reason for low reading of 161.0 hours. Low timer readings of this nature are consistent with weather related power interruptions.
A/I	L-03	02/19/14	No apparent reason for low reading of 142.1 hours. Low timer readings of this nature are consistent with weather related power interruptions.
A/I	L-03	02/27/14	No apparent reason for low reading of 176.0 hours (eight-day run time). Low timer readings of this nature are consistent with weather related power interruptions.
A/I	L-08	02/27/14	No apparent reason for low reading of 188.4 hours (eight-day run time). Low timer readings of this nature are consistent with weather related power interruptions.
A/I	L-05	06/05/14	No apparent reason for low reading of 90.1 hours. Low timer readings of this nature are consistent with weather related power interruptions.
A/I	L-03	06/19/14	Low reading of 70.2 hours due to power outage at sampler; Station notified. Flowrate estimated at 60CFH for the particulate sample only. The iodine sample did not meet the required lower limit of detection due to low run time from the power outage.
A/I	L-05	06/25/14	No apparent reason for low reading of 139.0 hours. Low timer readings of this nature are consistent with weather related power interruptions.
A/I	L-10	07/03/14	No apparent reason for low reading of 112.6 hours. Low timer readings of this nature are consistent with weather related power interruptions.

Sample Type	Location Code	Collection Date	Reason
A/I	L-11	07/03/14	No apparent reason for low reading of 178.5 hours (eight-day run time). Low timer readings of this nature are consistent with weather related power interruptions.
A/I	L-04	08/07/14	No apparent reason for low reading of 155.5 hours. Low timer readings of this nature are consistent with weather related power interruptions.
A/I	L-04	10/16/14	No apparent reason for low reading of 165.2 hours. Low timer readings of this nature are consistent with weather related power interruptions.
A/I	L-07	12/18/14	No apparent reason for low reading of 159.2 hours. Low timer readings of this nature are consistent with weather related power interruptions.

Table D-1 LISTING OF SAMPLE ANOMALIES

Table D-2 LISTING OF MISSED SAMPLES

Sample Type	Location Code	Collection Date	Reason
М	L-42	01/01/14 - 12/31/14	No samples; farmer sold dairy herd.
SW	L-21	02/06/14	No sample; water frozen
SW	L-40	02/06/14	No sample; water frozen
A/I	L-03	06/19/14	No iodine sample due to low run time from power outage. lodine sample did not meet the required lower limit of detection.
A/I	L-03	06/25/14	No power to sampler.
A/I	L-03	07/03/14	Power restored to sampler. No sample due to recent power restoration.

Sample Type	Location Code	Collection Date	Reason
OSLD	L-208-1, L-208-2, L-209-2, L-210-1	10/01/14	OSLDs found missing during quarterly exchange; collector placed new 4 th quarter OSLDs.
OSLD	L-216-4	01/07/15	OSLD found missing during quarterly exchange due to utility pole replacement; collector placed new 1 st quarter OSLD.

Table D-2 LISTING OF MISSED SAMPLES

Each program exception was reviewed to understand the causes of the program exception. Occasional equipment breakdowns and power outages were unavoidable.

The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation.

E. Program Changes

A new air monitoring location, L-11A, was installed in mid-December of 2014 and is currently collecting preliminary data, but is not operational at this time.

- IV. Results and Discussion
 - A. Aquatic Environment
 - 1. Surface Water

Samples were taken weekly and composited monthly at two locations (L-21 and L-40). Of these locations only L-40 located downstream, could be affected by LaSalle's effluent releases. The following analyses were performed:

Gross Beta

Samples from all locations were analyzed for concentrations of gross beta (Table C–I.1, Appendix C). Gross beta was detected in all 24 samples with a range of 4.2 to 11.1 pCi/I. Concentrations detected were consistent with those detected in previous years

(Figure C–1, Appendix C). The required LLD was met. <u>Tritium</u>

Quarterly composites of weekly collections were analyzed for tritium activity (Table C–I.2, Appendix C). Tritium was detected in four of eight samples. The concentrations ranged from 327 to 470 pCi/l. Concentrations detected were consistent with those detected in previous years (Figure C–2, Appendix C). The 2000 pCi/L OCDM and contractually required 200 pCi/L LLDs were met.

Gamma Spectrometry

Samples from both locations were analyzed for gamma emitting nuclides (Table C–I.3, Appendix C). No nuclides were detected, and all required LLDs were met.

2. Ground/Well Water

Quarterly grab samples were collected at two locations (L-27 and L-28). Wells 4, 5 and 6 are associated with L-28. L-27 and L-28 well 6 could be affected by LaSalle's effluent releases. The following analyses were performed:

<u>Tritium</u>

Quarterly grab samples from the locations were analyzed for tritium activity (Table C–II.1, Appendix C). No tritium was detected and the 2000 pCi/L OCDM and contractually required 200 pCi/L LLDs were met.

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–II.2, Appendix C). No nuclides were detected, and all required LLDs were met.

3. Fish

Fish samples were collected at three locations (L-34, L-35 and L-36) semiannually. Locations L-34 and L-35 could be affected by LaSalle's effluent releases. The following analysis was performed:

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma emitting nuclides (Table C–III.1, Appendix C).

Naturally occurring K-40 was found at all stations and ranged from 2,096 to 4,664 pCi/kg wet. No fission or activation products were found.

4. Sediment

Aquatic sediment samples were collected at three locations (L-21, L-40 and L-41) semiannually. Locations L-40 and L-41, located downstream, could be affected by LaSalle's effluent releases. The following analysis was performed:

Gamma Spectrometry

Sediment samples from both locations were analyzed for gamma emitting nuclides (Table C–IV.1, Appendix C). Nuclides detected were naturally occurring K-40. Potassium-40 was found at all stations and ranged from 13,040 to 19,110 pCi/kg dry. Cesium-137 was detected in two samples. The concentration ranged from 146 to 166 pCi/L. No LaSalle fission or activation products were found.

- B. Atmospheric Environment
 - 1. Airborne
 - a. Air Particulates

Continuous air particulate samples were collected from nine locations on a weekly basis. The nine locations were separated into four groups: Group I (onsite) represents locations within the LSCS site boundary (L-03 and L-05), Group II (near site) represents the locations near the LSCS site (L-01 and L-06), Group III (far field) represents the control location at an intermediate distance from LSCS (L-04, L-07, L-08 and L-11) and Group IV (Control) represents the control location at a remote distance (L-10). The following analyses were performed: Gross Beta

Weekly samples were analyzed for concentrations of beta emitters (Table C–V.1 and C–V.2, Appendix C). Detectable gross beta activity was observed at all locations. Comparison of results among the four groups aid in determining the effects, if any, resulting from the operation of LSCS. The results from the OnSite locations (Group I) ranged from 3 to 33 E–3 pCi/m³ with a mean of 18 E–3 pCi/m³. The results from the near site location (Group II) ranged from 5 to 32 E–3 pCi/m³ with a mean of 19 E–3 pCi/m³. The results from the far field locations (Group III) ranged from 6 to 31 E-3 pCi/m³ with a mean of 18 E–3 pCi/m³. The results from the Control location (Group IV) ranged from 6 to 29 E–3 pCi/m³ with a mean of 18 E–3 pCi/m³. Comparison of the 2014 air particulate data with previous years data indicate no effects from the operation of LSCS (Figures C–3 through C-7, Appendix C). In addition, comparisons of the weekly mean values for 2014 indicate no notable differences among the four groups.

Gamma Spectrometry

Weekly samples were composited quarterly and analyzed for gamma emitting nuclides (Table C–V.3, Appendix C). Naturally occurring Be-7 due to cosmic ray activity was detected in 34 of 36 samples. These values ranged from 66 to 155 E–3 pCi/m³. Naturally occurring K-40 was detected in two samples. The concentration ranged from 28 to 31E–3 pCi/m³. All other nuclides were less than the MDC.

b. Airborne lodine

Continuous air samples were collected from nine locations (L-01, L-03, L-04, L-05, L-06, L-07, L-08, L-10 and L-11) and analyzed weekly for I-131 (Table C–VI.1, Appendix C). No I-131 was detected. All required LLDs were met.

- 2. Terrestrial
 - a. Milk

Samples are typically collected from one location (L-42) biweekly May through October and monthly November through April. The following analyses are typically performed:

lodine-131

Milk samples from the location are typically analyzed for concentrations of I-131 (Table C–VII.1, Appendix C). I-131 was not analyzed in 2014.

Gamma Spectrometry

Milk samples are typically analyzed for concentrations of

gamma emitting nuclides (Table C--VII.2, Appendix C).

Naturally occurring K-40 activity is typically found in all samples. Gamma emitting nuclides were not analyzed in 2014.

b. Food Products

Food product samples were collected at five locations (L-Quad C, L-Quad 1, L-Quad 2, L-Quad 3 and L-Quad 4) when available. Four locations, (L-Quad 1, L-Quad 2, L-Quad 3 and L-Quad 4) could be affected by LaSalle's effluent releases. The following analysis was performed:

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–VIII.1, Appendix C). No nuclides were detected, and all required LLDs were met.

C. Ambient Gamma Radiation

Ambient gamma radiation levels were measured utilizing Optically Stimulated Luminescence Dosimeters (OSLD). Forty-one OSLD locations were established around the site. Results of OSLD measurements are listed in Tables C–IX.1 to C–IX.3, Appendix C.

All OSLD measurements were at or below 30 mrem/quarter, with a range of 16.2 to 30.0 mrem/quarter. A comparison of the Inner Ring, Outer Ring, and Other data to the Control Location data, indicate that the ambient gamma radiation levels from the Control Location L-10 were comparable.

D. Land Use Survey

A Land Use Survey conducted during the August 2014 growing season around the LaSalle County Station (LSCS) was performed by Environmental Inc. (Midwest Labs) for Exelon Nuclear to comply with Radiological Effluent Control 12.5.2 of the LaSalle's Offsite Dose Calculation Manual. The purpose of the survey was to document the nearest resident, milk producing animal and garden of greater than 500 ft² in each of the sixteen 22 ½ degree sectors around the site. The distance and direction of all locations from the LSCS reactor buildings were positioned using Global Positioning System (GPS) technology. There were no changes required to the LSCS REMP as a result of this survey. The results of this survey are summarized below:

Distar	ice in Miles from the	ne LSCS Reactor E	Buildings
Sector	Residence	Livestock	Milk Farm
	Miles	Miles	Miles
AN	3.9	4.0	-
B NNE	1.6	1.7	-
C NE	2.1	3.5	-
D ENE	3.3	3.8	-
EE	3.2	-	-
F ESE	1.4	-	-
G SE	1.7	4.7	-
H SSE	1.8	4.7	-
JS	1.5	4.7	-
K SSW	0.7	-	-
L SW	1.0	5.8	-
MWSW	1.5	-	-
NW	1.5	3.0	-
P WNW	0.9	3.0	-
Q NW	1.8	4.0	-
R NNW	1.7	4.6	-

E. Errata Data

There is no errata data for 2014.

F. Summary of Results – Inter-Laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation and water matrices (Appendix D). The PE samples, supplied by Analytics Inc., Environmental Resource Associates (ERA) and DOE's Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria:

1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of laboratory results and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

2. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, NELAC, state specific PT program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is \pm 20% of the reference value. Performance is acceptable with warning when a mean result falls in the range from \pm 20% to \pm 30% of the reference value (i.e., 20% < bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

In reviewing our environmental inter-laboratory crosscheck programs, we identified 1) duplication of efforts on some matrices and isotopes and 2) that we are performing crosscheck samples on some matrices and isotopes that we do not perform for clients. Since the DOE MAPEP is designed to evaluate the ability of analytical facilities to correctly analyze for radiological constituents representative of those at DOE sites, the needed changes were made to the MAPEP program. Therefore, the following isotopes were removed from the MAPEP program:

Soil – gamma – will be provided by Analytics twice per year, starting in 2015. For 2014, one soil gamma is provided by MAPEP, the 2nd soil gamma is provided by Analytics.

AP – gamma – is currently provided by Analytics.

Water – gamma, H-3, Sr-90, uranium, gross alpha and gross beta currently provided by ERA.

MAPEP evaluates non-reported (NR) analyses as failed if they were reported in the previous series.

For the TBE laboratory, 163 out of 169 analyses performed met the specified acceptance criteria. Six analyses (Ni-63, K-40 and I-131 in water, and two Sr-90s and one Gross Alpha in AP samples) did not meet the specified acceptance criteria for the following reasons:

1. Teledyne Brown Engineering's MAPEP March 2014 Ni-63 in water result of 32.7 ± 1.69 Bq/L was overlooked when reporting the data

but would have passed the acceptance range of 23.9 – 44.2 Bq/L. No client samples were affected by this failure. NCR 14-04

- 2. Teledyne Brown Engineering's MAPEP March 2014 K-40 in water result of 1.63 ± 2.49 Bq/L was overlooked when reporting the data but would have passed the false positive test. No client samples were affected by this failure. NCR 14-04
- 3. Teledyne Brown Engineering's ERA November 2014 I-131 in water result of 15.8 pCi/L was lower than the known value of 20.3 pCi/L, failing below the lower acceptance limit of 16.8. The result was evaluated as failed with a found to known ratio of 0.778. No cause could be found for the slightly low result. All ERA I-131 evaluations since 2004 have been acceptable. No client samples were affected by this failure. NCR 14-08
- 4. Teledyne Brown Engineering's MAPEP March 2014 Sr-90 in AP result of 0.822 Bq/sample was lower than the known value of 1.18 Bq/sample, falling below the lower acceptance limit of 0.83 Bq/sample. The rerun result was still low, but fell within the lower acceptance range of 0.836. The rerun result was statistically the same number as the original result. No cause could be found for the slightly low results. No client samples were affected by this failure. NCR 14-04
- Teledyne Brown Engineering's MAPEP September 2014 Sr-90 in AP result of 0.310 Bq/sample was lower than the known value of 0.703 Bq/sample. The gravimetric yield of 117% was very high (we normally see yields of 60% to 70%) and could account for the low activity. No client samples were affected by this failure. NCR 14-09
- 6. Teledyne Brown Engineering's MAPEP September 2014 Gr-Alpha in AP result of 0.153 Bq/sample was lower than the known value of 0.53 Bq/sample. The AP sample was counted on the wrong side. The AP was flipped over and recounted with acceptable results. No client samples were affected by this failure. NCR 14-09

For the EIML laboratory, 85 of 90 analyses met the specified acceptance criteria. Five analyses (Water – Pu-238, Pu-239, Fe-55; AP – Co-57; Soil – Cs134) did not meet the specified acceptance criteria for the following reasons:

1. Environmental Inc., Midwest Laboratory's MAPEP February 2014 water Pu-238 result of 1.28 Bq/L was higher than the known value of 0.83 Bq/L, exceeding the upper control limit of 1.08 Bq/L. The high bias on the plutonium was traced to contamination from a newly purchased standard. The result of the reanalysis with the new tracer was 0.68 Bq/L, which fell within the acceptance criteria. Client samples for the associated time period were evaluated, and no client samples were affected by the issue.

- 2. Environmental Inc., Midwest Laboratory's MAPEP February 2014 water Pu-239/240 result of 0.91 Bq/L was higher than the known value of 0.68 Bq/L, exceeding the upper control limit of 0.88 Bq/L. The high bias on the plutonium was traced to contamination from a newly purchased standard. The result of reanalysis with the new tracer was 0.66 Bq/L, which fell within the acceptance criteria. Client samples for the associated time period were evaluated, and no client samples were affected by the issue.
- 3. Environmental Inc., Midwest Laboratory's MAPEP February 2014 AP Co-57 result of 1.60 ± 0.05 Bq/total sample failed the false positive test. Interference from the Eu-152 resulted in the misidentification of Co-57. The failure was specific to the MAPEP sample. Therefore, there was no impact to client samples as a result of this issue.
- 4. Environmental Inc., Midwest Laboratory's MAPEP February 2014 soil Cs-134 result of 6.10 ± 1.80 Bq/kg failed the false positive test. Long sample counting time lead to interference from naturally occurring Bi-214 in the sample matrix with a close spectral energy. The failure was specific to the MAPEP sample. Therefore, there was no impact to client samples as a result of this issue.
- 5. Environmental Inc., Midwest Laboratory's MAPEP August 2014 water Fe-55 result of 55.10 ± 14.80 Bq/L was higher than the known value of 31.50 Bq/L, exceeding the upper control limit of 41.00 Bq/L. The result of the reanalysis of Fe-55 was 32.63 ± 16.30 Bq/L, which fell within the acceptance criteria. Client samples for the associated time period were evaluated, and no client samples were affected by the issue.

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT ANNUAL SUMMARY

NAME OF FACILITY:	LASALLE			DOCKET NUMBER:	MBER:	50-373 & 50-374 2014	-374 2014	
LOCATION OF FACILITY: MARSEILLES IL	: MARSEILLES IL			REPORTING PERIOD: INDICATOR CONTRO	PERIOD: CONTROL	ANNUAL	ANNUAL LOCATION WITH HIGHEST ANNUAL MEAN (M)	AN (M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATTON # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCULITER)	GR-B	24	4	8.1 (12/12) (5.2/11.1)	7.0 (12/12) (4.2/10.8)	8.1 (12/12) (5.2/11.1)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	Н-3	00	200	430 (2/4) (389/470)	360 (2/4) (327/393)	430 (2/4) (389/470)	L-40 INDICATOR ILLINOIS RIVER - DOWNSTREAM 5.2 MILES NNW OF SITE	0
	GAMMA MN-54	24	15	<pre>dll></pre>	QTT >	2		0
	CO-58		15	U 11>	0 TT>			0
	FE-59		30	ſŢŢ>	CLL	,		0
	CO-60		15	ſŢŢ	ſŢŢ			0
	59-NZ		30	ſŢŢ>	CLL>			0
	NB-95		15	<pre>CLLD</pre>	CLLD	3		0
_	* THE MEAN AND 2 STANDARD FRACTION OF DETECTABLE MEASU	2 STANDARD D TABLE MEASUF	DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES JREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)	ES ARE CALCULA	TED USING T	HE POSITIVE TED IN PARE	VALUES NTHESES (F)	

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR **THE LASALLE COUNTY STATION, 2014**

NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE : MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL	50-373 & 50-374 2014 ANNUAL LOCATION WITH H	50-373 & 50-374 2014 ANNUAL LOCATION WITH HIGHEST ANNUAL MEAN (M)	EAN (M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCIVLITER)	ZR-95		30	QII	Û	I		0
	I-131		15	<pre></pre>	<pre>CLLD</pre>			0
	CS-134		15	CLLD	0TT>	ŧ.		0
	CS-137		18	<pre></pre>	<pre>CLLD</pre>			0
	BA-140		60	CLL1>		1		0
	LA-140		15			ĩ		0
GROUND WATER (PCI/LITER)	H-3	12	200	U 11≻	<lld< td=""><td>ī</td><td></td><td>0</td></lld<>	ī		0
	GAMMA MN-54	12	15	U 11≻	<pre>CLLD</pre>	ä		0
	* THE MEAN AND 2 STANDARD FRACTION OF DETECTABLE MEASU	0 2 STANDARD [CTABLE MEASUI	DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES IREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)	ES ARE CALCUL	ATED USING T ONS IS INDICA	HE POSITIVI TED IN PARI	E VALUES ENTHESES (F)	

F	TABLE A-1 RADIOLOGICAL	LOGICAL E	INVIRONMENTAL MONITORING PROGE THE LASALLE COUNTY STATION, 2014	TAL MONITC E COUNTY S'	DRING PRO	GRAM ANN 14	ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2014	
NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL	50-373 & 50-374 2014 ANNUAL I OCATION WITH H	50-373 & 50-374 2014 ANNUAL LOCATION WITH HIGHEST ANNILLY MEAN ADD	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE		MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	AJA (MJ) NUMBER OF NONROUTINE REPORTED MEASUREMENT?
GROUND WATER (PC/JLITER)	CO-58		15	dii⊳	<pre>clib</pre>	1		0
	FE-59		30	ſſŢ	<pre>dlub</pre>	1		0
	CO-60		15	(TTI>	CLLD			0
	59-NZ		30	(TTI>	CLLD	÷		0
	NB-95		15	(TTI>	<pre>cllD</pre>	e.		0
	ZR-95		30	Q11>	CLLD	. •		0
	CS-134		15	(TTT>	dll>	7		0
	CS-137		18	CLLD	<pre></pre>			0
	BA-140		60	<pre>cllD</pre>	<pre></pre>			0
E	* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)	standard de Ble measure	DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES REMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES	S ARE CALCULA'	TED USING TH NS IS INDICATI	ie positive V. Ed in Parent	ALUES 'HESES (F)	

6	(ABLE A-1 RADIO	LOGICAL E	NVIRONMENTAL MONITORING PROGI THE LASALLE COUNTY STATION, 2014	FAL MONITO E COUNTY SI	RING PROC ATION, 201	BRAM ANT	TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2014	
NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRI	MBER: PERIOD: CONTROL	50-373 & 50-374 2014 ANNUAL LOCATION WITH H	50-373 & 50-374 2014 ANNUAL LOCATION WITH HIGHEST ANNUAL MEAN (M)	EAN (M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GROUND WATER (PCVLITER)	LA-140		15	ſIJ>	CII⊅	1		o
FISH (PCUKG WET)	GAMMA MN-54	12	130	<pre>CLLD</pre>	<pre></pre>	ı		0
	CO-58		130	<pre>CLLD</pre>	<pre>CLD</pre>			0
	FE-59		260	<pre></pre>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	CO-60		130	CLL2>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0
	ZN-65		260	U 11≻	d11>	,		0
	NB-95		NA	C ILI>	<pre></pre>	r		0
	ZR-95		NA	QTT>	<pre>dll></pre>	ĩ		0
	* THE MEAN AND 2 STANDARD FRACTION OF DETECTABLE MEASU) 2 STANDARD STABLE MEASU	DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES JREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)	ES ARE CALCUL ECIFIED LOCATI	ATED USING '	THE POSITIV ATED IN PAR	E VALUES ENTHESES (F)	

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2014

NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE MARSEILLES IL	_		DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL	50-373 & 50-374 2014 ANNUAL LOCATION WITH H	50-373 & 50-374 2014 ANNUAL LOCATION WITH HIGHEST ANNUAL MEAN (M)	(M) (M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	L OCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENT
FISH (PCJ/KG WET)	CS-134		130	QIJ	ŢŢ	I		0
	CS-137		150	<pre></pre>	<lld< td=""><td>·</td><td></td><td>0</td></lld<>	·		0
	BA-140		NA	Q111>	ſſŢ			o
	LA-140		NA	d11>	<pre>dll></pre>	а		0
SEDIMENT (PCI/KG DRY)	GAMMA MN-54	9	NA	(TT]>	<pre>dll></pre>	ř		0
	CO-58		NA	CLL1>	<pre>CLLD</pre>	ē		0
	FE-59		NA	C ILI>	<pre></pre>			o
	CO-60		NA	ſŢŢ	<pre>dll></pre>			0
	 THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F) 	D 2 STANDARD	 THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES ACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES 	ES ARE CALCUL ECIFIED LOCATI	ATED USING T DNS IS INDICA	HE POSITIVI	E VALUES ENTHESES (F)	

			THE LASALLE COUNTY STATION, 2014	E COUNTY S	IATION, 20	14		
NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE : MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL		50-373 & 50-374 2014 ANNUAL LOCATION WITH HIGHEST ANNUAL MEAN (M)	WW
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE			STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SEDIMENT (PCUKG DRY)	ZN-65		NA	QII	Ū11⊃	ı		0
	NB-95		NA	d⊥1>	<pre>cllD</pre>	ı		0
	ZR-95		NA	d11>	(TTI>	r:		0
	CS-134		150	d11>	CLL1>	(16		0
	CS-137		180	(TT)>	156 (2/2) (146/166)	156 (2/2) (146/166)	L-21 CONTROL ILLINOIS RIVER AT SENECA - UPSTREAM 4.0 MILES NE OF SITE	0 VEAM
	BA-140		NA		CLLD	. ,		0
	LA-140		NA	CLLD	CLLD	ĩ		0
AIR PARTICULATE (E-3 PCI/CU.METER)	GR-B	466	10	18 (412/414) (3/33)	18 (52/52) (6/29)	19 (52/52) (6/31)	L-07 INDICATOR SENECA 5.2 MILES NNE OF SITE	0

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

			THE LASALLE COUNTY STATION, 2014	E COUNTY S	TATION, 20	[4		
NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL	50-373 & 50-374 2014 ANNUAL LOCATION WITH H	50-373 & 50-374 2014 ANNUAL LOCATION WITH HIGHEST ANNUAL MEAN (M)	AN ON
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AIR PARTICULATE (E-3 PC/CU.METER)	GAMMA MN-54	36	NA	(TT)>	(TT)>			0
	CO-58		NA	C111>	CLLD	r.		0
	FE-59		NA	QTI>	CLLD			0
	CO-60		NA	d⊥l>	<pre></pre>			0
	ZN-65		NA	(TTI>	<pre>cllD</pre>			0
	NB-95		NA	(TTI>	<pre>cllD</pre>	e.		0
	ZR-95		NA	(TTI>	<pre></pre>			0
	CS-134		50	CTT>	d11⊳	3		0
Ë	* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)	: STANDARD DE ABLE MEASURI	EVIATION VALUE	S ARE CALCULA CIFIED LOCATIO	TED USING TH	IE POSITIVE V ED IN PAREN	/ALUES THESES (F)	

F	TABLE A-1 RADIOLOGICAL		NVIRONMENTAL MONITORING PROG THE LASALLE COUNTY STATION, 2014	TAL MONITC E COUNTY S	RING PRO	GRAM ANN 14	ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR THE LASALLE COUNTY STATION, 2014	
NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE : MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRI	MBER: PERIOD: CONTROL	50-373 & 50-374 2014 ANNUAL LOCATION WITH H	50-373 & 50-374 2014 ANNUAL LOCATION WITH HIGHEST ANNUAL MEAN (M)	(M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AIR PARTICULATE (E-3 PC//CU.METER)	CS-137		60	QII	ſŢŢ	2		0
	BA-140		NA	ſIJ>	<pre>clib</pre>			0
	LA-140		NA	Q111>	(TT)>	c		0
AIR IODINE (E-3 PC//CU.METER)	GAMMA I-131	466	70	<pre>cllD</pre>	<pre>CLLD</pre>			o
VEGETATION (PCI/KG WET)	GAMMA MN-54	10	AA	071>	<pre>dllb</pre>	15		0
	CO-58		NA	Q11>	<pre></pre>			0
	FE-59		NA	Q111>	<pre>CLLD</pre>	а		0
	CO-60		NA	CLL>	<pre>dll></pre>	ĸ		0
L.	* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)	2 STANDARD DE ABLE MEASURI	EVIATION VALUE EMENTS AT SPE	S ARE CALCULA CIFIED LOCATIO	TED USING TH	HE POSITIVE	VALUES ITHESES (F)	

			THE LASALLE COUNTY STATION, 2014	E COUNTY S1	[ATION, 20]	4		
NAME OF FACILITY: LASALLE LOCATION OF FACILITY: MARSEILLES IL	LASALLE MARSEILLES IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTRO	MBER: PERIOD: CONTROL	50-373 & 50-374 2014 ANNUAL LOCATION WITH H	50-373 & 50-374 2014 ANNUAL LOCATION WITH HIGHEST ANNUAL MEAN (M)	AN (M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (M) (F) RANGE	LOCATION MEAN (M) (F) RANGE	MEAN (M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENT:
VEGETATION (PCIKG WET)	29-NZ		NA	Û	dili>	B		0
	NB-95		NA	<pre></pre>	<pre></pre>	1		0
	ZR-95		NA	Q11⊳	<pre>CLLD</pre>	r.		0
	I-131		60	QTT>	<pre></pre>	1		0
	CS-134		60	O.LI>	(TTT>	,		0
	CS-137		80	Q.I.∖	<pre>CLLD</pre>	'n		0
	BA-140		NA	QIII>	¢ĽĽD	,		0
	LA-140		NA		<pre>CLLD</pre>	,		0

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR 50-373 & 50-374 2014 ANNUAL **THE LASALLE COUNTY STATION, 2014 REPORTING PERIOD: DOCKET NUMBER:** LOCATION OF FACILITY: MARSEILLES IL LASALLE NAME OF FACILITY:

				INDICATOR	CONTROL	LOCATION	INDICATOR CONTROL LOCATION WITH HIGHEST ANNUAL MEAN (M)	EAN (M)
				LOCATIONS	LOCATION			
MEDIUM OR PATHWAY SAMPLED	TYPES OF ANALYSIS	NUMBER OF ANALYSIS	REQUIRED LOWER LIMIT	MEAN (M) (F)	MEAN (M) (F)	MEAN (M) (F)	STATION # NAME	NUMBER OF NONROLITINE
(UNIT OF	PERFORMED	PERFORMED	OF DETECTION	RANGE	RANGE	RANGE	DISTANCE AND DIRECTION	REPORTED
MEASUREMENT)			(ILLD)					MEASUREMENTS
DIRECT RADIATION	OSLD-QUARTERLY	331	NA	23.5	21.5	26.4	L-102-1 INDICATOR	0
(MILLREM/QTR.)				(323/323) (16.2/30.0)	(8/8) (17.9/25.2)	(4/4) (20.9/30)	0.6 MILES NNE	

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

APPENDIX B

LOCATION DESIGNATION, DISTANCE & DIRECTION, AND SAMPLE COLLECTION & ANALYTICAL METHODS

Location	Location Description	Distance & Direction From Site
<u>A.</u>	Surface Water	
L-21	Illinois River at Seneca, Upstream (control)	4.0 miles NE
L-40	Illinois River, Downstream (indicator)	5.2 miles NNW
<u>B.</u>	Ground/Well Water	
L-27	LSCS Onsite Well (indicator)	0 miles at station
L-28-W4	Marseilles Well (control)	7.0 miles NNW
L-28-W5	Marseilles Well (control)	6.7 miles NNW
L-28-W6	Marseilles Well (indicator)	4.1 miles N
<u>C.</u>	Milk - bi-weekly / monthly	
L-42	Biros Farm (control)	14.2 miles E
<u>D.</u>	Air Particulates / Air Iodine	
L-01	Nearsite 1 (indicator)	1.5 miles NNW
L-03	Onsite 3 (indicator)	1.0 miles ENE
L-04	Rte. 170 (indicator)	3.2 miles E
L-05	Onsite 5 (indicator)	0.3 miles ESE
L-06	Nearsite 6 (indicator)	0.4 miles W
L-07	Seneca (indicator)	5.2 miles NNE
L-08	Marseilles (indicator)	6.0 miles NNW
L-10	Streator (control)	13.5 miles SW
L-11	Ransom (indicator)	6.0 miles S
<u>E.</u>	Fish	
L-34	LaSalle Cooling Lake (indicator)	2.0 miles E
L-35	Marseilles Pool of Illinois River, Downstream (indicator)	6.5 miles NNW
L-36	Illinois River, Upstream of Discharge (control)	4.3 miles NE
<u>F.</u>	Sediment	
L-21	Illinois River at Seneca, Upstream (control)	4.0 miles NE
L-40	Illinois River, Downstream (indicator)	5.2 miles NNW
L-41	Illinois River, Downstream (indicator)	4.6 miles N
<u>G.</u>	Food Products	
Quadrant '		4.5 miles NE
Quadrant 2	Mike and Gina Welbourne	3.8 miles ESE
Quadrant 3	Michael Olson	1.5 miles WSW
Quadrant 4	Robert Eisers	4.5 miles NW
Control	Eugene Clements	10.0 miles NW

TABLE B-1: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, LaSalle County Station, 2014

Location Location Description	Distance & Direction From Site
Environmental Dosimetry - OSLD	
nner Ring	
L-101-1 and -2	0.5 miles N
L-102-1 and -2	0.6 miles NNE
L-103-1 and -2	0.7 miles NE
104-1 and -2	0.8 miles ENE
L-105-1 and -2	0.7 miles E
L-106-1 and -2	1.4 miles ESE
107-1 and -2	0.8 miles SE
L-108-1 and -2	0.5 miles SSE
L-109-1 and -2	0.6 miles S
110-1 and -2	0.6 miles SSW
L-111b-1 and -2	0.8 miles SW
L-112-1 and -2	0.9 miles WSW
L-113a-1 and -2	0.8 miles W 0.9 miles WNW
L-114-1 and -2	
115-1 and -2	0.7 miles NW 0.6 miles NNW
-116-1 and -2	U.C Innes INIVV
Duter Ring	
L-201-3 and -4	4.0 miles N
202-3 and -4	3.6 miles NNE
203-1 and -2	4.0 miles NE
L-204-1 and -2	3.2 miles ENE
L-205-1 and -2	3.2 miles ESE
L-205-3 and -4	5.1 miles E
L-206-1 and -2	4.3 miles SE
207-1 and -2	4.5 miles SSE
L-208-1 and -2	4.5 miles S
L-209-1 and -2	4.0 miles SSW
L-210-1 and -2	3.3 miles SW
211-1 and -2	4.5 miles WSW
L-212-1 and -2	4.0 miles W
L-213-3 and -4	4.9 miles W
L-214-3 and -4	5.1 miles WNW
215-3 and -4	5.0 miles NW
-216-3 and -4	5.0 miles NNW
Other	
-01-1 and -2 Nearsite 1 (indicator)	1.5 miles NNW
-03-1 and -2 Onsite 3 (indicator)	1.0 miles ENE
04-1 and -2 Rte. 170 (indicator)	3.2 miles E
-05-1 and -2 Onsite 5 (indicator)	0.3 miles ESE
L-06-1 and -2 Nearsite 6 (indicator)	0.4 miles W
-07-1 and -2 Seneca (indicator)	5.2 miles NNE
08-1 and -2 Marseilles (indicator)	6.0 miles NNW
L-11-1 and -2 Ransom (indicator)	6.0 miles S

Streator

13.5 miles SW

 TABLE B-2:
 Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, LaSalle County Station, 2014

Sample Medium	Analysis	Sampling Method	Analytical Procedure Number
Surface Water	Gamma	Monthly composite	TBE, TBE-2007 Gamma emitting radioisotope analysis
	Spectroscopy	from weekiy grab	
		samples.	Env. Inc., GS-01 Determination of gamma emitters by
Surface Water	Gross Beta	Monthly composite	gamma spectroscopy TBE, TBE-2008 Gross Alpha and/or gross beta activity in
Surface water	GIUSS Deta	from weekly grab	various matrices
		samples.	
		sumples.	Env. Inc., W(DS)-01 Determination of gross alpha and/or
			gross beta in water (dissolved solids or total residue)
Surface Water	Tritium	Quarterly composite	TBE, TBE-2011 Tritium analysis in drinking water by liquid
		from weekly grab	scintillation
		samples.	
			Env. Inc., T-02 Determination of tritium in water (direct
	0	Our state and	method)
Ground/Well Water	Gamma Spectroscopy	Quarterly grab	TBE, TBE-2007 Gamma emitting radioisotope analysis
	Specifoscopy	samples.	Env. Inc., GS-01 Determination of gamma emitters by
			gamma spectroscopy
Ground/Well Water	Tritium	Quarterly grab	TBE, TBE-2011 Tritium analysis in drinking water by liquid
		samples.	scintillation
			Env. Inc., T-02 Determination of tritium in water (direct
			method)
Fish	Gamma	Semi-annual samples	TBE-2007 Gamma emitting radioisotope analysis
	Spectroscopy	collected via	
		electroshocking or other techniques	Env. Inc., GS-01 Determination of gamma emitters by
Sediment	Gamma	Semi-annual grab	gamma spectroscopy TBE, TBE-2007 Gamma emitting radioisotope analysis
Codiment	Spectroscopy	samples	
			Env. Inc., GS-01 Determination of gamma emitters by
			gamma spectroscopy
Air Particulates	Gross Beta	One-week composite	TBE, TBE-2008 Gross Alpha and/or gross beta activity in
		of continuous air	various matrices
		sampling through glass	
		fiber filter paper	Env. inc., AP-02 Determination of gross alpha and/or
Air Particulates	0		gross beta in air particulate filters
All Particulates	Gamma Spectroscopy	Quarterly composite of each station	TBE, TBE-2007 Gamma emitting radiolsotope analysis
	opectoscopy	Bacin Station	Env. Inc., GS-01 Determination of gamma emitters by
			gamma spectroscopy
Air Iodine	Gamma	Bi-weekly composite of	TBE, TBE-2007 Gamma emitting radioisotope analysis
	Spectroscopy	continuous air	
		sampling through	Env. Inc., I-131-02 Determination of I-131 in charcoal
		charcoal filter	canisters by gamma spectroscopy (batch method)
Milk	I-131	Bi-weekly grab sample	TBE, TBE-2012 Radiolodine in various matrices
		when cows are on	
		pasture. Monthly all	Env. Inc., I-131-01 Determination of I-131 in milk by an
Milk	Gamma	other times Bi-weekly grab sample	ion exchange TBE, TBE-2007 Gamma emitting radioisotope analysis
	Spectroscopy	when cows are on	
	-poon cocopy	pasture. Monthly all	Env. Inc., GS-01 Determination of gamma emitters by
		other times	gamma spectroscopy
Food Products	Gamma	Annual grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis
	Spectroscopy		
]		Env. Inc., GS-01 Determination of gamma emitters by
			gamma spectroscopy
OSLD	Optically Stimulated	Quarterly OSLDs	Landauer Incorporated
	Luminescence	comprised of two	
	Dosimetry	Al ₂ O ₃ :C Landauer Incorporated elements.	
	L	I incorporated elettients.	I

Figure B-1 Inner Ring OSLD Locations of the LaSalle County Station, 2014

Figure B-2 Outer Ring OSLD Locations and Fixed Air Sampling Locations of the LaSalle County Station, 2014

Figure B-3 Ingestion and Waterborne Exposure Pathway Sample Locations of the LaSalle County Station, 2014

APPENDIX C

DATA TABLES AND FIGURES – PRIMARY LABORATORY

Table C-I.1CONCENTRATIONS OF GROSS BETA IN SURFACE WATER SAMPLES
COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	L-21	L-40	
01/02/14 - 01/30/14 02/13/14 - 02/27/14 03/06/14 - 03/26/14 04/03/14 - 04/24/14 05/01/14 - 05/29/14 06/05/14 - 06/25/14 07/03/14 - 07/31/14 08/07/14 - 08/27/14 10/01/14 - 10/30/14 11/06/14 - 11/26/14 12/04/14 - 12/31/14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 6.0 \pm 2.1 \\ 7.9 \pm 2.6 \\ 9.2 \pm 2.9 \\ 6.9 \pm 2.7 \\ 5.7 \pm 2.3 \\ 5.2 \pm 2.3 \\ 10.6 \pm 3.1 \\ 7.8 \pm 2.6 \\ 7.7 \pm 2.4 \end{array}$)
MEAN	7.0 ± 4.8	8.0 ± 2.4 8.1 ± 4.0	

Table C-I.2CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES
COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	L-21	L-40	
01/02/14 - 03/26/14	327 ± 136	(1) 470 ± 146	(1)
04/03/14 - 06/25/14	393 ± 142	389 ± 139	
07/03/14 - 09/25/14	< 171	< 175	
10/01/14 - 12/31/14	< 188	< 187	
MEAN	360 ± 93	430 ± 115	

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-I.3

CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

40																									
La-140	ۍ ۷	80 V	< 7	ي ۷	ي ۷	ი v	ი v	9 V	ې ۷	ې ۷	ю v	< 7	•	ې ۷	9 v	9 v	9 V	< 7	ი ა	ი ა	00 V	< 7		< 4 <	9 v
Ba-140		< 22			< 16		6 v	< 21	< 17	< 18	< 21	< 19	ı	< 16	< 18	< 16	< 20	< 20	< 13	< 15	< 25	< 22	< 21	< 14	< 17
Cs-137	+ + V	< 2	0 V V	, v	۲ م				, ,		v L	< 2	t	, 1	< 2 <	۰ ۲	< 2	< 2	۲ ۲	, 1	2 2 2	< <		۰ ۲	< 2
Cs-134	+ \ V	0 V	2 V V	v	< <	v v	v	< 2	۰ ۲	۰ ۲	۲ ۲	< 2		۲ ۲	۲ م	۲ ۲	20 V	0 V	, L	۲ ۲		%	۲ ۲	۲ ۲	v v
I-131	< 10 <	11	< 14	ہ 11	6 V	ې ۲	< 7	< 13	11	< 12	< 14	< 12	ı	< 10	11	< 10	< 12	11	< 7	< 11	< 14	< 13	< 14	< 10	< 11
Zr-95	< 3	4	< 4	ۍ م	ი v	۲ ۲	v	< 4 <	ი ა ა	ი ი ა	ი v	< 4	t	< 2	4 ×	ი ა	ი ი	< 4	ი ი	< 2	د د 5	< 4 <	ი ი	< 2	ი ა
Nb-95	۲- ۲-	ი ა	< 2 <	< 2	2	۰ ۲		< 2	< 2	2 2 2	2 V V	< 2	ł	, v	< <	0 V	< <	< 2		, v			۲ ۲		< 2
Zn-65	۰ م	ہ م	4 >	ი ა	ი v	2 V V	, ,	د ع	رب م	ი v	ი ა	< 4	r	< 2	4 4	ი v	ი v	4	იი v	< 2 <	v v	4	ი v	< 2	ი ა
Co-60	۰ ۲	< 2	22	`	224444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444<l< td=""><td>, v</td><td>, v</td><td>< 2</td><td>v</td><td>v</td><td>v v</td><td>2 2</td><td>•</td><td>۲ ۷</td><td>< 2</td><td>< 2</td><td>۲ ۷</td><td>< 2</td><td></td><td>v t</td><td>ი ა</td><td></td><td>< 2 <</td><td></td><td>< 2</td></l<>	, v	, v	< 2	v	v	v v	2 2	•	۲ ۷	< 2	< 2	۲ ۷	< 2		v t	ი ა		< 2 <		< 2
Fe-59	ი ა	9 v	Ω V	ა ა	4 ×	ი ა	< <	< 4	ა ზ	ო v	۸ 4	< 5 <	ı	ი ა	ې ۷	4 v	<pre>4 </pre>	د د	ო v	ო v	< 7	4	< 5 <	2 2	4
Co-58	ب ۷		20 V	< 2	۸ م	v	v v	< <	v v	v v	< 2 <	< 2		v	< 2 <	< 2 <	< 2	< 2	< 2 <	v	۲ ۲	0 V	۷ ۷	, v	< 2
Mn-54	< 1 1	(1) < 2	0 V	v v	۲ ۲	v	v	< 2	v	v	v	< 2	·	v	(1) < 2	v	< 2	< 2	v	v v	0 V	0 V	۲ ۲	v	< 2
CTION	- 01/30/14	- 02/27/14 (- 03/26/14	- 04/24/14	_	06/25/14	- 07/31/14		<u> </u>	10/30/14	11/26/14	12/31/14			02/27/14	03/26/14			_	_	_	_	10/30/14		12/31/14
COLLECTION	01/02/14 -	02/13/14 -			05/01/14 -	06/05/14 -		08/07/14 -	09/03/14 -	10/01/14 -	11/06/14 -	12/04/14 -	MEAN	01/02/14 -	02/13/14 -	03/06/14 -	04/03/14 -	05/01/14 -	06/05/14 -	07/03/14 -	08/07/14 -	09/03/14 -	10/01/14 -	11/06/14 -	12/04/14 -
SITE	L-21													L-40											

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

ı

ī

ı

1

ı

8

1

ı

ı

.

i

MEAN

Table C-II.1 CONCENTRATIONS OF TRITIUM IN GROUND/WELL WATER SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

COLLECTION L-27 L-28-W4 L-28-W5 L-28-W6 PERIOD 01/09/14 - 01/09/14 < 172 < 172 < 174 -04/10/14 - 04/10/14 < 157 < 161 < 161 -07/10/14 - 07/10/14 10/09/14 - 10/09/14 < 174 < 175 < 177 -< 188 < 194 < 190 -MEAN ----

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

Table C-II.2

CONCENTRATIONS OF GAMMA EMITTERS IN GROUND/WELL WATER SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

Ba-140 La-140	v	Ň	/	21 < 5	v	•	32 < 9	24 < 6		а	34 < 9	v		33 < 9	V	v	v	
Cs-137 Ba	v	\ ە د	۰ ۰		v		v	5 <		a	5 2	v v 9 v	8	v	v v v	v	۷ ۲ ۲	
Cs-134	< 4		c ×	4 A	۷ 6	ı	4 ×	د 5		ı.	< 5 <	9 v	9	< 4	< 4	ი ი	4	4
Zr-95	di V		0		< 11		8 8	00 V			თ v	6 V		8 V		< 7	8 V	ı
Nb-95	< 5 م		r v	د م	9 v	1	ہ ت	ې ۲	I	ı	< 5 <	9 v	ı	< 5 <	4	< 4	< 5	
Zn-65	< 11		~ ~		< 10		6 V	< 7		ı	ი ა	< 11		6 v	თ v	< 7	11	
Co-60	4 A	-	פי ∨	4 ×	9 v		< 5 <	4		ı	د م	9 V	•	9 V	ں م	с V	9 V	
Fe-59	10			6 V	< 11		< 10	- 00 V		,	< 11	< 12	•	80 V		6 V	< 10 <	
Co-58			m ∨	ې م	9 V	,	< 4 <	- 4 >	-	,	د ۲	4 4		9 v	v V	V 4	9 V	
Mn-54	u N	00	იი v	< 4 <	ې ۷	39	< 4	4 4	•	ī	ری ۲	v v		ري ۲	4	4 4	v V	
COLLECTION	PERIOD 04100144 04100144		04/10/14 - 04/10/14	07/10/14 - 07/10/14	10/09/14 - 10/09/14	MEAN	01/09/14 - 01/09/14	07/10/14 - 07/10/14		MEAN	04/10/14 - 04/10/14	10/09/14 - 10/09/14	MEAN	01/09/14 - 01/09/14	04/10/14 - 04/10/14	07/10/14 - 07/10/14	10/09/14 - 10/09/14	
SITE	70 1	L-2/					1 -28-W4				1 -28-W5			1-28-W6				

Table C-III.1

CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF PC/KG WET ± 2 SIGMA

)								
SITE	COLLECTION Mn-54	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
1-34												
Channel Catfish	05/06/14	< 60		< 171	< 65	< 117	< 68	< 116	< 57	< 46	< 926	< 334
Common Carp	05/06/14	< 49		< 130	< 52	< 109	< 65	< 105	< 50	< 43	< 856	< 250
Channel Catfish	10/08/14	< 18		< 47	< 17	< 37	< 21	< 37	< 18	< 19	< 169	44
Common Carp	10/08/14	< 24	< 27	< 59	< 22	< 49	< 31	< 49	< 26	< 26	< 243	< 57
	MEAN				,		ı	ı	I	ı	•	
L-35												
Quillback	05/06/14	< 59		< 151	< 48	< 104	64	< 121	60	< 50	< 862	< 243
Smallmouth Buffalo 05/06/14	05/06/14	< 39	< 36	< 106	< 54	< 75	< 40	< 80	< 35	< 36	< 565	< 203
Freshwater Drum	10/08/14	< 21		< 47	< 19	< 45	< 26	< 39	< 22	< 22	< 186	< 52
Smallmouth Buffalo		< 27	< 24	< 56	< 30	< 45	< 28	< 48	< 21	< 24	< 231	< 62
	MEAN	а	ı	ł	a	,	•	,	ı		ı	i
L-36					;	1						F00 1
Largemouth Bass	05/06/14	< 62		< 168	64	< 137	× 84	< 150		< 61	< 119/	187 >
Smallmouth Buffalo		66		< 206	< 65	< 156	< 92	< 133	< 76	< 75	< 1336	< 290
Freshwater Drum		< 24	< 26	< 56	< 21	< 51	< 29	< 49	< 26	< 25	< 239	< 59
Smailmouth Buffalo		< 22	< 22	< 58	< 26	< 44	< 23	< 47	< 20	< 24	< 222	< 70
	MEAN	·		ı		ı	I	ı	I	ı	ŧ	\$

Table C-IV.1

CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF PC/KG DRY ± 2 SIGMA

La-140	35	8		_	38		24 13	
La-	< 195	< 328		< 91	< 238	·	< 124 < 113	1
Ba-140	< 696	< 1115		< 290	< 859		< 396 < 417	,
Cs-137	146 ± 85	166 ± 95	156 ± 29	88	< 111	١	< 48 < 52	
Cs-134	< 68	< 108		< 53	< 85		383535	•
Zr-95	< 157	< 204	ı	< 105	< 183	ı	< 84< 83	•
Nb-95	< 95	< 140		< 69 <	< 108		5154	,
Zn-65	< 173	< 214		< 137	< 231		< 92 < 91	
Co-60	< 102	< 127		< 91	< 79	r	< 42 < 34	I
Fe-59	< 223	< 313		< 138	< 219		< 139 < 125	1
Co-58	06 ×	< 127	•	< 62	< 89		< 52 < 49	
Mn-54	< 92	< 113	ı	< 52	< 82		< 43 < 43	
SITE COLLECTION Mn-54 PERIOD	L-21 05/01/14	10/01/14	MEAN	06/05/14	10/01/14	MEAN	05/01/14 10/01/14	
SITE	L-21			L-40			L41	

Table C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION	GI	ROU	PI	GROUP	
PERIOD	L-03		L-05	L-01	L-06
01/02/14 - 01/09/14	24 ± 5		23 ± 5	21 ± 5	27 ± 5
01/09/14 - 01/16/14	23 ± 5		25 ± 5	20 ± 5	19 ± 4
01/16/14 - 01/23/14	14 ± 4		12 ± 4	20 ± 5	18 ± 5
01/23/14 - 01/30/14	17 ± 4	(1)	16 ± 4	14 ± 4	16 ± 4
01/30/14 - 02/06/14	22 ± 5		29 ± 5	32 ± 5	23 ± 5
02/06/14 - 02/13/14	23 ± 5		27 ± 5	23 ± 4	24 ± 5
02/13/14 - 02/19/14	23 ± 5	(1)	23 ± 5	20 ± 5	19 ± 5
02/19/14 - 02/27/14	30 ± 5	(1)	27 ± 5	25 ± 4	27 ± 5
02/27/14 - 03/06/14	23 ± 5		22 ± 5	22 ± 5	23 ± 5
03/06/14 - 03/13/14	21 ± 4		22 ± 4	25 ± 5	24 ± 5
03/13/14 - 03/20/14	16 ± 4		10 ± 4	17 ± 4	14 ± 4
03/20/14 - 03/26/14	17 ± 5		13 ± 4	18 ± 5	12 ± 4
03/26/14 - 04/03/14	16 ± 4		15 ± 4	15 ± 4	15 ± 4
04/03/14 - 04/10/14	15 ± 4		15 ± 4	16 ± 4	13 ± 4
04/10/14 - 04/17/14	14 ± 4		15 ± 4	16 ± 4	14 ± 4
04/17/14 - 04/24/14 04/24/14 - 05/01/14	20 ± 4		16 ± 4	18 ± 4	20 ± 4
04/24/14 - 05/01/14 05/01/14 - 05/08/14	8 ± 3 13 ± 3		11 ± 4	6 ± 3	11 ± 4
05/08/14 - 05/15/14	13 ± 3 10 ± 4		13 ± 3 3 ± 2	13 ± 3 12 ± 4	16 ± 4
05/15/14 - 05/22/14	10 ± 4 13 ± 4		< 5	12 ± 4 17 \pm 4	9 ± 4 18 ± 4
05/22/14 - 05/29/14	13 ± 4 12 ± 4		16 ± 4	17 ± 4 13 ± 4	10 ± 4 15 ± 4
05/29/14 - 06/05/14	9 ± 4		10 ± 4 18 ± 7	(1) 5 ± 2	15 ± 4 14 ± 4
06/05/14 - 06/12/14	3 ± 4 10 ± 4		15 ± 7	10 ± 4	14 ± 4 14 ± 4
06/12/14 - 06/19/14	10 ± 5	(1)	15 ± 4	10 ± 4	14 ± 4
06/19/14 - 06/25/14	(1)	(1)	16 ± 5	(1) 13 ± 4	13 ± 4
06/25/14 - 07/03/14	(1)		8 ± 4	< 5	8 ± 4
07/03/14 - 07/10/14	14 ± 4		15 ± 4	14 ± 4	17 ± 4
07/10/14 - 07/17/14	17 ± 4		16 ± 4	14 ± 4	13 ± 4
07/17/14 - 07/24/14	22 ± 5		19 ± 4	25 ± 5	10 ± 4 25 ± 5
07/24/14 - 07/31/14	17 ± 4		19 ± 4	18 ± 4	21 ± 4
07/31/14 - 08/07/14	27 ± 5		26 ± 5	26 ± 5	21 ± 5
08/07/14 - 08/14/14	14 ± 4		12 ± 4	17 ± 5	15 ± 5
08/14/14 - 08/21/14	22 ± 5		18 ± 4	26 ± 5	23 ± 5
08/21/14 - 08/27/14	16 ± 5		23 ± 5	15 ± 5	15 ± 5
08/27/14 - 09/03/14	20 ± 5		17 ± 4	20 ± 5	17 ± 4
09/03/14 - 09/10/14	13 ± 4		13 ± 4	17 ± 5	21 ± 5
09/10/14 - 09/18/14	14 ± 4		13 ± 4	15 ± 4	14 ± 4
09/18/14 - 09/25/14	23 ± 5		20 ± 5	24 ± 5	21 ± 5
09/25/14 - 10/01/14	21 ± 5		28 ± 5	24 ± 5	26 ± 5
10/01/14 - 10/09/14	15 ± 4		16 ± 4	20 ± 4	18 ± 4
10/09/14 - 10/16/14	9 ± 4		10 ± 4	9 ± 4	12 ± 4
10/16/14 - 10/23/14	17 ± 4		15 ± 4	16 ± 4	16 ± 4
10/23/14 - 10/30/14	21 ± 5		25 ± 5	20 ± 4	25 ± 5
10/30/14 - 11/06/14	16 ± 4		19 ± 4	17 ± 4	14 ± 4
11/06/14 - 11/13/14	17 ± 4		16 ± 4	18 ± 4	14 ± 4
11/13/14 - 11/20/14	16 ± 4		18 ± 4	20 ± 4	22 ± 5
11/20/14 - 11/26/14	19 ± 5		25 ± 5	20 ± 5	21 ± 5
11/26/14 - 12/04/14	24 ± 4		28 ± 5	22 ± 4	28 ± 5
12/04/14 - 12/11/14	33 ± 5		26 ± 5	31 ± 5	30 ± 5
12/11/14 - 12/18/14	23 ± 5		26 ± 5	24 ± 5	30 ± 5
12/18/14 - 12/24/14	22 ± 5		21 ± 5	22 ± 5	25 ± 5
12/24/14 - 12/31/14	20 ± 4		23 ± 4	24 ± 4	23 ± 4
MEAN	18 ± 11		18 ± 12	19 ± 11	19 ± 11

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

Table C-V.1CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES
COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION		GROUP	Ш	GF	OUP IV
PERIOD	L-04	L-07	L-08	L-11	L-10
01/02/14 - 01/09/14	18 ± 4	24 ± 5	22 ± 5	23 ± 5	26 ± 5
01/09/14 - 01/16/14	20 ± 5	21 ± 5	23 ± 5	19 ± 5	16 ± 4
01/16/14 - 01/23/14	17 ± 4	21 ± 5	17 ± 5	16 ± 4	17 ± 4
01/23/14 - 01/30/14	17 ± 4	15 ± 4	14 ± 4	12 ± 4	12 ± 4
01/30/14 - 02/06/14	24 ± 5	23 ± 5	23 ± 5	22 ± 5	21 ± 5
02/06/14 - 02/13/14	30 ± 5	27 ± 5	24 ± 5	27 ± 5	29 ± 5
02/13/14 - 02/19/14	23 ± 5	29 ± 6	22 ± 5	21 ± 5 31 ± 5	23 ± 5 29 ± 5
02/19/14 - 02/27/14	24 ± 4	27 ± 4 22 ± 5	26 ± 4 (1)	31 ± 5 26 ± 5	20 ± 5
02/27/14 - 03/06/14	20 ± 5	22 ± 5 26 ± 5	22 ± 5 23 ± 5	18 ± 4	20 ± 5 22 ± 5
03/06/14 - 03/13/14	25 ± 5 11 ± 4	20 ± 5 16 ± 4	23 ± 3 11 ± 4	10 ± 4 14 ± 4	14 ± 4
03/13/14 - 03/20/14 03/20/14 - 03/26/14	11 ± 4 18 ± 5	16 ± 4 16 ± 5	17 ± 5	14 ± 4 17 ± 4	14 ± 4
03/26/14 - 03/26/14	10 ± 5 14 ± 4	14 ± 4	16 ± 4	20 ± 5	10 ± 4
04/03/14 - 04/10/14	13 ± 4	15 ± 4	10 ± 4	11 ± 4	18 ± 4
04/10/14 - 04/17/14	13 ± 4	13 ± 4	13 ± 4	14 ± 4	14 ± 4
04/17/14 - 04/24/14	10 ± 4	14 ± 4	16 ± 4	17 ± 4	17 ± 4
04/24/14 - 05/01/14	9 ± 4	6 ± 3	10 ± 4	8 ± 4	6 ± 3
05/01/14 - 05/08/14	16 ± 4	11 ± 3	16 ± 4	15 ± 4	17 ± 4
05/08/14 - 05/15/14	10 ± 4	12 ± 4	10 ± 4	12 ± 4	10 ± 4
05/15/14 - 05/22/14	14 ± 4	12 ± 4	15 ± 4	16 ± 4	16 ± 4
05/22/14 - 05/29/14	12 ± 4	15 ± 4	15 ± 4	13 ± 4	12 ± 4
05/29/14 - 06/05/14	11 ± 4	11 ± 4	13 ± 4	11 ± 4	11 ± 4
06/05/14 - 06/12/14	16 ± 4	12 ± 4	16 ± 4	13 ± 4	14 ± 4
06/12/14 - 06/19/14	17 ± 4	19 ± 5	12 ± 4	13 ± 4	14 ± 4
06/19/14 - 06/25/14	13 ± 4	12 ± 4	14 ± 4	14 ± 4	13 ± 4
06/25/14 - 07/03/14	9 ± 4	7 ± 4	7 ± 4	7 ± 4 (1)	9±6 (1)
07/03/14 - 07/10/14	16 ± 4	18 ± 4	13 ± 4	16 ± 4	14 ± 4
07/10/14 - 07/17/14	16 ± 4	15 ± 4	15 ± 4	11 ± 4	17 ± 4
07/17/14 - 07/24/14	27 ± 5	25 ± 5	23 ± 5	23 ± 5	23 ± 5 18 ± 4
07/24/14 - 07/31/14	20 ± 4	17 ± 4 21 ± 5	15 ± 4 20 ± 5	21 ± 4 21 ± 5	25 ± 5
07/31/14 - 08/07/14	26 ± 6 (1) 18 ± 5	21 ± 5 14 ± 4	20 ± 5 17 ± 5	14 ± 4	15 ± 5
08/07/14 - 08/14/14 08/14/14 - 08/21/14	10 ± 5 23 ± 5	14 ± 4 23 ± 5	20 ± 4	23 ± 5	21 ± 4
08/21/14 - 08/27/14	13 ± 4	16 ± 5	12 ± 4	13 ± 4	16 ± 5
08/27/14 - 09/03/14	13 ± 4 22 ± 5	20 ± 4	17 ± 4	17 ± 4	26 ± 5
09/03/14 - 09/10/14	18 ± 5	20 ± 5	14 ± 5	13 ± 4	15 ± 5
09/10/14 - 09/18/14	14 ± 4	15 ± 4	15 ± 4	14 ± 4	16 ± 4
09/18/14 - 09/25/14	20 ± 5	22 ± 5	18 ± 4	23 ± 5	22 ± 5
09/25/14 - 10/01/14	22 ± 5	27 ± 5	23 ± 5	24 ± 5	29 ± 5
10/01/14 - 10/09/14	15 ± 4	19 ± 4	17 ± 4	13 ± 4	15 ± 4
10/09/14 - 10/16/14	12 ± 4 (1)	16 ± 4	11 ± 4	15 ± 4	15 ± 4
10/16/14 - 10/23/14	22 ± 4	19 ± 4	12 ± 4	14 ± 4	15 ± 4
10/23/14 - 10/30/14	20 ± 4	23 ± 5	23 ± 5	23 ± 5	24 ± 5
10/30/14 - 11/06/14	16 ± 4	17 ± 4	18 ± 4	16 ± 4	18 ± 4
11/06/14 - 11/13/14	17 ± 4	13 ± 4	14 ± 4	18 ± 4	16 ± 4
11/13/14 - 11/20/14	18 ± 4	23 ± 5	20 ± 4	26 ± 5	20 ± 4
11/20/14 - 11/26/14	22 ± 5	26 ± 5	24 ± 5	24 ± 5	24 ± 5
11/26/14 - 12/04/14	27 ± 5	26 ± 4	22 ± 4	26 ± 5	22 ± 4 29 ± 5
12/04/14 - 12/11/14	30 ± 5 26 ± 5	31 ± 5	30 ± 5 25 ± 5	29 ± 5 26 ± 5	29 ± 5 26 ± 5
12/11/14 - 12/18/14	26 ± 5 28 ± 5	28 ± 5 (1) 20 ± 5	25 ± 5 23 ± 5	20 ± 5 23 ± 5	25 ± 5
12/18/14 - 12/24/14 12/24/14 - 12/31/14	26 ± 5 25 ± 5	20 ± 3 22 ± 4	23 ± 3 20 ± 4	19 ± 4	19 ± 4
14127117 - 14101/14	~~ <u>-</u> ~	 . T	an w an -1		
MEAN	18 ± 11	19 ± 12	18 ± 10	18 ± 11	18 ± 11

THE MEAN AND TWO STANDARD DEVIATION ARE CALCULATED USING THE POSITIVE VALUES (1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014 MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS IN AIR Table C-V.2

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

25 ± 8 18 ± 6 14 ± 11 14 ± 7 12 ± 4 12 ± 4 20 ± 14 20 ± 14 17 ± 9 MEAN ± 2SD ± 12 + 7 9 ω H +I **GROUP IV - CONTROL LOCATION** ω 20 22 3 **MIN MAX** 28 23 3 4 15 16 9 ø 01/02/14 - 01/30/14 02/27/14 - 04/03/14 04/03/14 - 05/01/14 - 05/29/14 05/29/14 - 07/03/14 - 07/31/14 01/02/14 - 12/31/14 01/30/14 - 02/27/14 - 09/03/14 - 10/01/14 - 10/30/14 - 12/04/14 - 12/31/14 COLLECTION 05/01/14 07/03/14 09/03/14 07/31/14 10/01/14 10/30/14 2/04/14 MEAN ± 2SD 25 ± 6 18 ± 9 13 ± 6 13 ± 4 12 ± 7 18 ± 9 £ 8 + 6 H **GROUP III - FAR-FIELD LOCATIONS** +1 18 19 17 3 18 25 MIN MAX 31 26 17 17 16 16 16 16 26 27 27 27 27 23 31 33 24 33 12 1 3 19 9 01/30/14 - 02/27/14 02/27/14 - 04/03/14 04/03/14 - 05/01/14 05/01/14 - 05/29/14 05/29/14 - 07/03/14 07/03/14 - 07/31/14 09/03/14 - 10/01/14 01/02/14 - 01/30/14 - 09/03/14 - 10/30/14 - 12/04/14 12/04/14 - 12/31/14 01/02/14 - 12/31/14 COLLECTION 07/31/14 10/01/14 10/30/14 ± 10 ± 11 MEAN ± **24 ± 8** 6 + 14 ± 6 8 + 19 ± 8 ດ o ດ ი ω 2SD ++ 14 ± 19 ± 19 + 20 ± 9 **GROUP II - FAR-FIELD LOCATIONS** H ი 19 5 17 26 19 MIN MAX 32 4 19 5 3 g 6 ß 15 4 თ 22 G 02/27/14 - 04/03/14 04/03/14 - 05/01/14 05/01/14 - 05/29/14 05/29/14 - 07/03/14 01/02/14 - 01/30/14 01/30/14 - 02/27/14 07/03/14 - 07/31/14 07/31/14 - 09/03/14 09/03/14 - 10/01/14 12/04/14 - 12/31/14 10/01/14 - 10/30/14 10/30/14 - 12/04/14 - 12/31/14 COLLECTION 01/02/14 19 ± 10 MIN MAX MEAN ± 18 ± 9 14 ± 7 11 ± 8 13 ± 8 17 ± 5 + 1 16 ± 10 20 ± 9 **01 ± 6**1 9 + ÷ 4 8 2SD **GROUP I - NEAR-SITE LOCATIONS** H 25 18 9 24 8 33 12 2 9 ო 01/02/14 - 01/30/14 02/27/14 - 04/03/14 05/01/14 - 05/29/14 01/30/14 - 02/27/14 04/03/14 - 05/01/14 05/29/14 - 07/03/14 07/03/14 - 07/31/14 07/31/14 - 09/03/14 09/03/14 - 10/01/14 10/01/14 - 10/30/14 10/30/14 - 12/04/14 - 12/31/14 - 12/31/14 COLLECTION PERIOD 01/02/14 12/04/14

CONCENT	
6.	
Table C-V.	

CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

La-140	< 106	< 1283	< 670	< 329	•	< 175	< 538	< 822	< 377	ı	< 154	< 319	< 517	< 119	·	< 189	< 674	< 438	< 249	1	< 192	< 433	< 385	< 79	ı
Ba-140		< 3258	< 1988	< 841	1	< 445	< 1406	< 1369	< 813	ı	< 503	< 930	< 2236	< 671	ı	< 468	< 1389	< 872	< 947	ı	< 508	< 973	< 801	< 279	ı
Cs-137	< 1	ა ა	۲ ۲	د × ع	•	< 2	ې ۲	د ع	< 4	ı	< 2	ۍ ۲	< 4	< 2	1	< 2	4	< 2	с v	١	ი ა	< 2	< 2	v T	,
Cs-134	< 2	ი v	< 4	< 4	1	< 2	< 4	< 2	< 4	ı	< 2	ი ა	< 4	< 2	\$	< 2	რ v	< 2	< 4	1	< 2	ი ა	< 2	, ,	ı
Zr-95	9 2	< 16	< 17	< 14		8 8	< 10	< 10	< 15	,	9 V	6 v	< 16	6 V	ı	6 v	< 17	6 v	< 14		89 V	< 12	< 7	< 5	•
Nb-95	۲ د ۲	80 V	11	8 8	•	< 4	< 7	9 v	< 7	ı	ہ ت	9 v		v ۲	r	v S	< 7	9 v	< 7	'n	د ۲	6	< 5 <	ς γ	3
Zn-65	< 4	80 V	< 11	< 10	ı	00 V	< 10	80 V	11	ı	9 v	ہ ت	< 10	ری v	ŧ	ი ი	8 8	80 V	8 V	۰	9 V	< 7	9 V	ი v	ı
Co-60		ი ა	ი v	< 4	ı	< 2	۸ 4		4	,	< 2 <	ი ა	4 ×	ი ა	3	< 2	۷ د	ი ი	ი v	ı	ი ა	ς γ	4 2	< 2	ı
Fe-59	6 ×	< 30	< 28	< 23	ı	< 14	< 25	< 21	< 19		× 11	< 18	< 20	6 v	·	< 15	< 21	80 V	< 24	1	< 16	< 24	< 15	< 7	ı
Co-58	< 4	00 V	8 V	< 7	ı	4 A	9 v	< 7	8 V		ς ν	ی ۷	0 00 V	ი ა	ı	4	< 7	4	< 7	·	ი v	< 7	ເດ V	v 2	
Mn-54	, v	<pre>4 </pre>	4 4	< 4	ı	< 2	<pre>4 </pre>	ς ν	ς γ	•	< 2	< 2 2	۲ 4	ი ა	ı	< 2	ς ν	ი v	< 4	ı	< 2	ი v	< 2	 <td></td>	
	04/03/14	07/03/14	10/01/14	12/31/14		04/03/14	- 07/03/14	10/01/14	- 12/31/14		04/03/14	- 07/03/14	10/01/14	- 12/31/14		04/03/14	- 07/03/14	- 10/01/14	12/31/14		- 04/03/14	- 07/03/14	- 10/01/14	12/31/14	
COLLECTION	01/02/14 - 04/03/14	04/03/14 - 07/03/14	07/03/14 - 10/01/14	10/01/14 - 12/31/14	MEAN	01/02/14 - 04/03/14	04/03/14 -			MEAN	01/02/14 - 04/03/14	04/03/14 -			MËAN	01/02/14 - 04/03/14	04/03/14 -		10/01/14 - 12/31/14	MEAN	01/02/14 -	04/03/14 -			MEAN
SITE	L-01					L-03					1-04	,) 				1-05					L-06				

Table C-V.3

CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

La-140	< 194	< 545	< 487	< 122		< 259	< 356	< 350	< 197	ı	< 180	< 342	< 834	< 124	ı	< 87	< 111	< 451	< 189	ı
Ba-140	< 593	< 1242	< 1514	< 332		< 559	< 1575	< 1101	< 570	ł	< 527	< 1022	< 1915	< 594	ı	< 448	< 664	< 1203	< 489	
Cs-137	< 3	د م	< 2	÷.	ı	ہ ع	ი v	< 2	۰ ۲	ł	د ع	< 2	4	< 2	ł	< 2	< 2	< 2	< 2	ı
Cs-134	۰ م	< 4	ი ა	, v	ŝ	4	ი v	ი v	< 2	,	ი ა	< 2	4 A	< 2	3	< 2	< 2	< 2	< 2	L
Zr-95	< 12	< 12	< 12	< 4	•	< 13	< 12	6 V	ې ۲	ı	< 11	8 8	< 17	< 7	ı	< 6 د	6 V	80 V	< 7	ı
Nb-95	9 v	9 v	9 v	ი ა	ı	< 7	< 7	9 v	с С	3	9 ×	د ۲	< 11	5	ı	< 5	ہ ۲	< 5 <	< 4	ı
Zn-65	< 7	< 7	< 7	ი ა	ł	8 ×	< 10	< 7	ې د	ı	< 7	9 v	11	9 V		v S	د ۲	۸ 5	× 5	r
Co-60	۲ ۲	ი v		ς γ	ł	ი ა	ი v	ი ი	< 2	·	ი ა	< 2 <	۸ 4	< 2	1	ہ ع	0 V V	< 2	< 2	
Fe-59	< 16	< 15	< 27	< 10		< 17	< 24	< 19	< 14	۱	< 19	< 20	< 27	< 16	ł	< 15	< 14	< 15	< 14	
Co-58	< 5	ې م	ი ი	ი ა	ï	ى v	< 7	د 5	< 2		9 v	ې ۷	ہ 11	۷ ک	,	ہ م	4	4	ი ა	
Mn-54	د ع	4 ×	ი v	< 2	,	ი ა	ი ი	ი ა	< 2	,	ې م	< 2 <	د ۲	ი ა	ŧ	2 2		с v	< 2	ı
CTION	04/03/14	07/03/14	10/01/14	12/31/14		04/03/14	07/03/14	10/01/14	12/31/14		04/03/14	07/03/14	10/01/14	12/31/14		04/03/14	07/03/14	10/01/14	12/31/14	
COLLECTION	01/02/14 - 04/03/14	04/03/14 - 07/03/14	07/03/14 - 10/01/14	10/01/14 - 12/31/14	MEAN	01/02/14 - 04/03/14	04/03/14 - 07/03/14	07/03/14 - 10/01/14	10/01/14 - 12/31/14	MEAN	01/02/14 - 04/03/14	04/03/14 - 07/03/14	07/03/14 - 10/01/14	10/01/14 - 12/31/14	MEAN	01/02/14 - 04/03/14	04/03/14 - 07/03/14	07/03/14 - 10/01/14	10/01/14 - 12/31/14	MEAN
SITE	L-07					L-08					L-10					L-11				

Table C-VI.1 CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

COLLECTION	GRO	UPI	l G	Roup II	I	GRO			GROUP IV
PERIOD	L-03	L-05	L-01	L-06	L-04	L-07	L-08	L-11	L-10
01/02/14 - 01/09/14	< 27	< 27	< 27	< 32	< 27	< 32	< 32	< 13	< 32
01/09/14 - 01/16/14	< 23	< 23	< 23	< 18	< 23	< 18	< 11	< 19	< 19
01/16/14 - 01/23/14	< 27	< 27	< 26	< 16	< 26	< 49	< 49	< 49	< 49
01/23/14 - 01/30/14	< 70 (1)	< 65	< 67	< 69	< 67	< 69	< 69	< 69	< 24
01/30/14 - 02/06/14	< 50	< 50	< 50	< 55	< 50	< 56	< 54	< 22	< 56
02/06/14 - 02/13/14	< 65	< 65	< 37	< 64	< 65	< 61	< 61	< 25	< 61
02/13/14 - 02/19/14	< 61 (1)	< 52	< 21	< 51	< 60	< 66	< 65	< 55	< 56
02/19/14 - 02/27/14	< 41 (1)	< 43	< 22	< 43	< 38	< 49	< 49 (1)	< 55	< 55
02/27/14 - 03/06/14	< 30	< 30	< 18	< 30	< 30	< 33	< 33	< 33	< 33
03/06/14 - 03/13/14	< 25	< 58	< 59	< 58	< 59	< 49	< 49	< 48	< 49
03/13/14 - 03/20/14	< 55	< 55	< 21	< 54	< 54	< 64	< 61	< 63	< 61
03/20/14 - 03/26/14	< 65	< 55	< 50	< 55	< 38	< 65	< 67	< 59	< 57
03/26/14 - 04/03/14	< 25	< 67	< 25	< 67	< 59	< 47	< 47	< 53	< 54
04/03/14 - 04/10/14	< 64	< 27	< 64	< 64	< 63	< 66	< 66	< 65	< 66
04/10/14 - 04/17/14	< 34	< 34	< 34	< 37	< 35	< 38	< 38	< 16	< 38
04/17/14 - 04/24/14	< 67	< 69	< 69	< 27	< 69	< 66	< 65	< 65	< 65
04/24/14 - 05/01/14	< 34	< 35	< 34	< 38	< 34	< 38	< 38	< 21	< 38
05/01/14 - 05/08/14	< 54	< 53	< 53	< 52	< 53	< 22	< 53	< 52	< 52
05/08/14 - 05/15/14	< 32	< 32	< 32	< 12	< 32	< 36	< 36	< 36	< 36
05/15/14 - 05/22/14	< 67	< 66	< 66	< 52	< 66	< 53	< 32	< 53	< 53
05/22/14 - 05/29/14	< 68	< 66	< 35	< 68	< 68	< 55	< 55	< 57	< 57
05/29/14 - 06/05/14	< 36	< 66 (1)	< 36	< 41	< 36	< 42	< 41	< 41	< 17
06/05/14 - 06/12/14	< 35	< 35	< 15	< 35	< 35	< 32	< 32	< 32	< 32
06/12/14 - 06/19/14	(1)	< 56	< 55	< 34	< 55	< 35	< 34	< 14	< 34
06/19/14 - 06/25/14	(1)	< 54 (1)	< 51	< 51	< 51	< 58	< 56	< 55	< 55
06/25/14 - 07/03/14	(1)	< 33	< 13	< 33	< 32	< 39	< 39	< 41 (1)	< 66 (1)
07/03/14 - 07/10/14	< 31	< 31	< 31	< 25	< 31	< 26	< 25	< 11	< 27
07/10/14 - 07/17/14	< 69	< 69	< 27	< 69	< 69	< 70	< 69	< 69	< 70
07/17/14 - 07/24/14	< 44	< 44	< 44	< 44	< 44	< 43	< 43	< 43	< 43
07/24/14 - 07/31/14	< 13	< 34	< 34	< 34	< 34	< 37	< 37	< 36	< 36
07/31/14 - 08/07/14	< 57	< 58	< 57	< 22	< 62 (1)	< 64	< 63	< 63	< 63
08/07/14 - 08/14/14	< 21	< 21	< 21	< 21	< 9	< 32	< 32	< 32	< 32
08/14/14 - 08/21/14	< 55	< 55	< 21	< 55	< 55	< 57	< 57	< 56	< 56
08/21/14 - 08/27/14	< 24	< 63	< 63	< 63	< 63	< 62	< 62	< 62	< 62
08/27/14 - 09/03/14	< 66	< 66	< 66	< 26	< 66	< 69	< 69	< 69	< 69
09/03/14 - 09/10/14	< 66	< 66	< 66	< 28	< 66	< 68	< 67	< 67	< 67
09/10/14 - 09/18/14	< 50	< 50	< 21	< 50	< 50	< 66	< 66	< 65	< 66
09/18/14 - 09/25/14	< 49	< 49	< 48	< 62	< 48	< 26	< 62	< 63	< 62
09/25/14 - 10/01/14	< 50	< 51	< 21	< 50	< 50	< 55	< 53	< 53	< 53
10/01/14 - 10/09/14	< 36	< 36	< 36	< 32	< 36	< 33	< 18	< 33	< 33
10/09/14 - 10/16/14	< 67	< 68	< 26	< 67	< 68 (1)	< 69	< 69	< 70	< 70
10/16/14 - 10/23/14	< 28	< 28	< 28	< 43	< 28	< 44	< 44	< 44	< 18
10/23/14 - 10/30/14	< 30	< 30	< 30	< 23	< 30	< 24	< 24	< 9	< 24
10/30/14 - 11/06/14	< 33	< 33	< 33	< 32	< 32	< 33	< 32	< 18	< 32
11/06/14 - 11/13/14	< 29	< 29	< 11	< 29	< 29	< 32	< 32	< 32	< 32
11/13/14 - 11/20/14	< 63	< 61	< 25	< 63	< 63	< 67	< 67	< 67	< 67
11/20/14 - 11/26/14	< 44	< 44	< 44	< 18	< 43	< 43	< 40	< 43	< 43
11/26/14 - 12/04/14	< 17	< 43	< 43	< 43	< 43	< 48	< 49	< 49	< 49
12/04/14 - 12/11/14	< 55	< 55	< 28	< 55	< 55	< 43	< 43	< 42	< 42
12/11/14 - 12/18/14	< 62	< 63	< 62	< 62	< 24	< 27 (1)	< 61	< 61	< 61
12/18/14 - 12/24/14	< 46	< 46	< 48	< 21	< 46	< 15	< 44	< 42	< 42
12/24/14 - 12/31/14	< 35	< 15	< 35	< 35	< 35	< 15	< 26	< 27	< 27
MEAN	_	_	-	_	-	_	_	-	-
IVIEAN	-	-	-	-	-	-			

Table C-VII.1 CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

CONTROL FARM

COLLECTION L-42 PERIOD

(1) Samples were not available in 2014

CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED	IN THE VICINITY OF LASALLE COUNTY STATION, 2014
Table C-VII.2	

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

La-140	
Ba-140	
Cs-137	
Cs-134	
Zr-95	
Nb-95	
Zn-65	
Co-60	
Fe-59	
Co-58	
Mn-54	
SITE COLLECTION	PERIOD

(1) Samples were not available in 2014

Table C-VIII.1

CONCENTRATIONS OF GAMMA EMITTERS IN FOOD PRODUCT SAMPLES COLLECTED IN THE VICINITY OF LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF PCI/KG WET ± 2 SIGMA

						5) 5) 4 4							
SITE	COLLECTION	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	1-131	Cs-134	Cs-137	Ba-140	La-140
L-CONTROL Beets/kohlrabi	09/17/14	ہ 11	< 11	33 33 V	ہ 11	< 27	< 13	< 21	~ 34	6 V	< 12	< 76	< 21
Kohirabi leaves		6 >	< 10	< 22	6 V	< 21	< 11	< 18	< 29	6 >	ი v	< 67	< 20
	MEAN			•	ı	t		ı	·	I	ı	ı	ı
Potatoes	09/17/14	< 12	< 13	< 31	< 14	< 26	< 14	< 26	< 43	< 12	< 14	< 93	< 18
Swiss chard	09/17/14	< 10	< 11	< 29	< 11	< 27	< 13	< 22	< 34	ი v	< 12	< 85	< 26
	MEAN		·	,	ı	ſ	ı	ı	ı	ı	ı	•	
Eeet greens	09/17/14	< 17	< 20	< 48	< 16	< 41	< 19	< 31	< 57	< 18	< 16	< 134	< 31
Beets	09/17/14	< 19	< 16	< 48	< 19	< 41	< 18	< 35	< 50	< 15	< 19	< 108	< 33
	MEAN	t	к	I	1	i,	i.	E	,	I	ß	¢	ŧ.
Beets	09/17/14	< 12	11	< 25	< 12	< 22	< 12	< 20	< 36	6 v	< 11	< 78	< 20
Swiss chard	09/17/14	< 10	< 13	< 28	< 13	< 32	< 13	< 20	< 35	< 10	< 12	< 77 >	< 25
	MEAN	,	1	ı	ı	ı	I	ı	ı	I	ı	ı	·
Rate	09/17/14 09/17/14			< 29 < 35	 	< 28 < 38		< 23 < 27	< 32 < 41	< 10< 13< 14< 14<	< 11 < 12	< 68 < 91	< 16 < 28
	MEAN		,	ı	,	ı	ı	ŀ	·	ı		ı	·

Table C-IX.1 QUARTERLY OSLD RESULTS FOR LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF MILLIREM/QUARTER ± 2 STANDARD DEVIATIONS

STATION CODE	MEAN ± 2 S.D.	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
L-01-1	23.7 ± 4.5	20.5	25.3	25.3	23.8
L-01-2	23.1 ± 7.2	18.3	26.8	24.4	23.0
L-03-1	23.0 ± 3.6	20.6	23.0	25.0	23.2
L-03-2	22.7 ± 4.6	19.3	24.3	23.3	24.0
L-04-1	23.0 ± 7.0	17.8	24.4	25.2	24.7
L-04-2	22.2 ± 6.3	17.5	22.9	24.4	23.8
L-05-1	22.8 ± 7.5	17.2	24.6	24.3	25.1
L-05-2	22.8 ± 4.3	20.0	22.4	23.7	25.1
L-06-1	24.4 ± 6.9	19.5	25.4	27.7	24.9
L-06-2	24.4 ± 4.4	21.7	23.5	26.8	25.4
L-07-1	24.8 ± 8.6	19.2	24.7	29.6	25.7
L-07-2	23.5 ± 6.0	19.2	24.5	26.1	24.2
L-08-1	23.2 ± 4.6	19.8	24.4	24.7	23.9
L-08-2	23.4 ± 6.4	18.7	23.8	25.0	25.9
L-10-1	21.6 ± 5.0	18.0	21.9	23.4	23.1
L-10-2	21.4 ± 6.1	17.9	20.6	21.8	25.2
L-11-1	21.9 ± 6.6	17.0	22.9	24.1	23.6
L-11-2	21.0 ± 3.2	18.7	21.5	22.2	21.7
L-101-1	24.6 ± 2.3	22.9	25.1	24.6	25.6
L-101-2	23.3 ± 7.0	18.2	24.2	26.2	24.7
L-102-1	26.4 ± 7.8	20.9	26.5	28.1	30.0
L-102-2	26.4 ± 6.0	22.7	25.1	28.7	29.0
L-103-1	23.4 ± 5.4	20.0	23.1	26.5	24.1
L-103-2	24.0 ± 6.1	19.5	24.6	25.7	26.1
L-104-1	22.7 ± 4.0	19.7	23.8	23.8	23.6
L-104-2	22.1 ± 5.4	18.5	21.6	23.3	24.8
L-105-1	24.6 ± 7.4	19.2	25.2	26.5	27.5
L-105-2	24.0 ± 6.3	19.3	25.2	25.4	26.1
L-106-1	23.5 ± 6.5	18.7	24.2	25.6	25.4
L-106-2	22.4 ± 5.7	19.0	21.0	25.0	24.4
L-107-1	24.4 ± 4.4	21.6	23.7	26.7	25.4
L-107-2	23.6 ± 3.5	21.3	23.8	25.5	23.9
L-108-1	24.9 ± 8.0	18.9	26.1	27.4	27.1
L-108-2	20.5 ± 4.5	17.3	20.7	21.7	22.4
L-109-1	23.4 ± 7.2	18.6	23.2	27.3	24.4
L-109-2	25.5 ± 6.6	21.2	25.7	29.3	25.7
L-110-1	23.2 ± 7.3	17.8	24.2	24.9	25.8
L-110-2	22.6 ± 7.9	16.9	22.9	25.4	25.2
L-112-1	21.9 ± 6.2	17.4	22.3	23.5	24.4
L-112-2	23.8 ± 5.6	20.0	23.9	26.7	24.4
L-114-1	24.5 ± 6.1	20.3	24.3	26.1	27.3
L-114-2	25.3 ± 4.5	22.0	26.7	26.8	25.7

Table C-IX.1 QUARTERLY OSLD RESULTS FOR LASALLE COUNTY STATION, 2014

STATION CODE	MEAN ± 2 S.D.	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
L-115-1	22.7 ± 6.5	18.3	22.5	23.8	26.0
L-115-2	21.3 ± 5.7	17.2	23.3	21.4	23.1
L-116-1	21.7 ± 2.5	20.2	21.2	22.6	22.8
L-116-2	23.2 ± 4.7	19.8	24.1	24.0	25.0
L-201-3	21.0 ± 4.4	17.8	22.5	21.6	22.2
L-201-4	24.3 ± 7.2	19.0	25.7	27.0	25.5
L-202-3	21.9 ± 7.8	16.7	23.0	26.1	21.9
L-202-4	20.5 ± 5.2	17.2	20.0	23.4	21.3
L-203-1	23.6 ± 4.8	20.1	25.3	25.0	23.8
L-203-2	24.0 ± 6.1	19.8	23.7	26.7	25.8
L-204-1	24.3 ± 8.0	18.7	24.3	27.6	26.6
L-204-2	24.5 ± 7.2	19.1	26.2	26.1	26.5
L-205-1	23.7 ± 4.7	20.2	24.3	25.3	24.9
L-205-2	23.9 ± 6.3	20.4	22.1	27.0	26.1
L-205-3	25.1 ± 6.5	21.3	23.9	28.9	26.4
L-205-4	23.5 ± 5.4	19.7	25.4	23.4	25.4
L-206-1	24.6 ± 6.9	20.1	23.8	27.7	26.9
L-206-2	23.2 ± 9.4	16.2	24.7	25.9	25.9
L-207-1	22.0 ± 6.5	17.3	23.2	22.8	24.7
L-207-2	23.3 ± 7.5	18.8	22.9	23.4	28.0
L-208-1	22.6 ± 8.3	18.4	22.6	(1)	26.7
L-208-2	23.9 ± 8.7	19.4	24.1	(1)	28.1
L-209-1	23.0 ± 6.1	18.6	23.5	25.6	24.4
L-209-2	21.9 ± 6.6	18.3	22.8	(1)	24.7
L-210-1	24.0 ± 6.1	20.5	25.6	(1)	25.9
L-210-2	24.7 ± 7.5	19.1	27.0	26.7	26.0
L-211-1	25.3 ± 7.0	20.3	25.4	28.0	27.5
L-211-2	24.7 ± 8.4	18.7	25.0	26.8	28.2
L-212-1	24.7 ± 4.6	21.7	24.0	26.8	26.1
L-212-2	24.4 ± 4.3	23.3	23.1	27.6	23.6
L-213-3	22.8 ± 5.3	19.0	24.2	24.9	22.9
L-213-4	23.0 ± 9.0	17.3	23.3	28.3	23.1
L-214-3	23.0 ± 6.7	18.0	24.1	24.9	24.9
L-214-4	22.5 ± 7.5	17.3	24.6	25.7	22.2
L-215-3	24.6 ± 7.8	18.8	26.9	27.0	25.5
L-215-4	25.2 ± 4.8	21.8	25.2	27.3	26.4
L-216-3	24.4 ± 7.1	19.1	25.3	26.5	26.6
L-216-4	23.9 ± 8.8	18.9	25.7	27.1	(1)
L-111B-1	24.3 ± 5.4	20.7	24.2	25.2	27.1
L-111B-2	23.2 ± 5.1	19.6	23.7	25.6	23.8
L-113A-1	25.1 ± 7.7	20.8	23.1	27.0	29.4
L-113A-2	23.9 ± 5.8	19.8	24.2	25.4	26.3

RESULTS IN UNITS OF MILLIREM/QUARTER ± 2 STANDARD DEVIATIONS

TABLE C-IX.2MEAN QUARTERLY OSLD RESULTS FOR THE INNER RING, OUTER RING,
OTHER AND CONTROL LOCATIONS FOR LASALLE COUNTY STATION, 2014

RESULTS IN UNITS OF MILLIREM/QUARTER $\pm\,2$ STANDARD DEVIATIONS OF THE STATION DATA

COLLECTION PERIOD	INNER RING ± 2 S.D.	OUTER RING	OTHER	CONTROL
JAN-MAR	19.6 ± 3.1	19.1 ± 3.1	19.1 ± 2.6	18.0 ± 0.1
APR-JUN	23.9 ± 3.0	24.2 ± 2.9	24.0 ± 2.6	21.3 ± 1.8
JUL-SEP	25.5 ± 3.7	26.0 ± 3.5	25.1 ± 3.6	22.6 ± 2.3
OCT-DEC	25.5 ± 3.6	25.3 ± 3.7	24.3 ± 2.2	24.2 ± 3.0

TABLE C-IX.3SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR LASALLE
COUNTY STATION, 2014

RESULTS IN UNITS OF MILLIREM/QUARTER

	SAMPLES ANALYZED		PERIOD MAXIMUM	PERIOD MEAN ± 2 S.D.
INNER RING	128	16.9	30.0	23.6 ± 5.9
OUTER RING	131	16.2	28.9	23.6 ± 6.3
OTHER	64	17.0	29.6	23.1 ± 5.5
CONTROL	8	17.9	25.2	21.5 ± 5.1

INNER RING STATIONS - L-101-1, L-101-2, L-102-1, L-102-2, L-103-1, L-103-2, L-104-1, L-104-2, L-105-1, L-105-2, L-106-1, L-106-2, L-107-1, L-107-2, L-108-1, L-108-2, L-109-1, L-109-2, L-110-1, L-110-2, L-111B-1, L-111B-2, L-112-1, L-112-2, L-113A-1, L-113A-2, L-114-1, L-114-2, L-115-1, L-115-2, L-116-1, L-116-2

OUTER RING STATIONS - L-201-3, L-201-4, L-202-3, L-202-4, L-203-1, L-203-2, L-204-1, L-204-2, L-205-1, L-205-2, L-205-3, L-205-4, L-206-1, L-206-2, L-207-1, L-207-2, L-208-1, L-208-2, L-209-1, L-209-2, L-210-1, L-210-2, L-211-1, L-211-2, L-212-1, L-212-2, L-213-3, L-213-4, L-214-3, L-214-4, L-215-3, L-215-4, L-216-3, L-216-4

OTHER STATIONS - L-01-1, L-01-2, L-03-1, L-03-2, L-04-1, L-04-2, L-05-1, L-05-2, L-06-1, L-06-2, L-07-1, L-07-2, L-08-1, L-08-2, L-11-1, L-11-2

CONTROL STATIONS - L-10-1, L-10-2

FIGURE C-1 Surface Water - Gross Beta - Stations L-21 (C) and L-40 Collected in the Vicinity of LSCS, 2005 - 2014

L-21 (C) Illinois River at Seneca

L-40 Illinois River Downstream

FIGURE C-2 Surface Water - Tritium - Stations L-21 (C) and L-40 Collected in the Vicinity of LSCS, 2005 - 2014

L-21 Illinois River at Seneca

L-40 Illinois River Downstream

FIGURE C-3 Air Particulate - Gross Beta - Stations L-01 and L-03 Collected in the Vicinity of LSCS, 2005 - 2014

L-01 Nearsite No. 1

L-03 Onsite No. 3

FIGURE C-4 Air Particulate - Gross Beta - Stations L-05 and L-06 Collected in the Vicinity of LSCS, 2005 - 2014

L-05 Onsite No. 5

L-06 Nearsite No. 6

FIGURE C-5 Air Particulate - Gross Beta - Station L-10 (C) Collected in the Vicinity of LSCS, 2005 - 2014

L-10 (C) Streator

L-04 Rte. 170

L-07 Seneca

20.0

10.0

0.0

05-31-07

L-11 Ransom

03-17-11

02-07-13

01-01-15

04-23-09

APPENDIX D

INTER-LABORATORY COMPARISON PROGRAM

TABLE D-1

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2014 (PAGE 1 OF 3)

March 2014 E10854 Milk Sr-89 Sr-90 pCi/L 10.9 15.1 0.72 W E10855 Milk I-131 pCi/L 10.9 15.1 0.72 W E10855 Milk I-131 pCi/L 96.6 98.5 0.98 A Ce-141 pCi/L 112 119 0.94 A Cs-134 pCi/L 186 210 0.89 A Cs-137 pCi/L 250 253 0.99 A Cs-137 pCi/L 248 268 0.93 A Mn-54 pCi/L 230 219 1.05 A Zn-65 pCi/L 321 337 0.95 A Co-60 pCi/L 321 337 0.95 A Cs-134 pCi 100 95.3 1.04 A Cs-137 pCi 122 115 1.06 A Cs-137 pCi 122	Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (ь)	Ratio (c) TBE/Analytics	Evaluation (d)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
E10855 Milk I-131 Ce-141 Cr-61 pC/L PC/L PC/L 96.5 125 98.5 98.5 0.98 0.94 A A A Ce-134 Cr-61 pC/L 112 119 0.94 A Ce-134 Cr-61 pC/L 166 210 0.89 A Ce-137 Cr-65 pC/L 256 0.98 A Ce-137 Min-54 pC/L 226 297 0.98 A Ce-137 Fe-59 pC/L 223 219 1.06 A Ce-65 Ce-61 pCi 53.0 53.9 0.98 A Ce-65 Ce-66 pCiL 321 337 0.95 A Ce-61 pCi 232 223 1.04 A Ce-61 pCi 232 223 1.04 A Ce-63 pCi 122 115 1.06 A Ce-64 pCi 135 135 1.04 A Ze-65 pCi 111 99.3 1.12 W <td< td=""><td>March 2014</td><td>E10854</td><td>Milk</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	March 2014	E10854	Milk						
Line 2014 pC/L 112 119 0.94 A Cr-81 pC/L 149 45 449 45 45				Sr-90	pCi/L	10.9	15.1	0.72	W
June 2014 Ci-S-11 Ca-137 Ca-137 PC//L PC//L FB 499 Ci/L 250 0.91 Ca-30 A Ci-S-30 Ca-137 Ca-137 PC//L Ci/L 268 0.93 Ca-30 A Ca-30 A Ca-31 A Ca-31 A Ca-31 A Ca-31 A Ca-30 Ci/L Ci 2297 0.98 A Ca-32 Fe-99 PC//L Ca-60 20//L Ca-314 210 219 1.05 A Ca-31 Fa-65 PC//L Ca-317 210 232 223 1.04 A Ca-31 Ca-61 PCI 321 337 0.95 A Ca-63 PCI 122 121 1.04 A Ca-314 PCI 132 1.35 1.05 A Ca-63 PCI 122 121 1.01 A Ca-65 PCI 111 193 1.12 A Ca-65 PCI 140 147 0.97 A E10856 Water Fe-55 PCI/L 2090 1760 1.19 A Jun		E10855	Milk	I-131	pCi/L	96.6		0.98	Α
Ca-134 pCi/L 186 210 0.89 A Ca-137 pCi/L 250 0.99 A Ca-88 pCi/L 250 0.99 A Mn-54 pCi/L 292 297 0.98 A Fe-59 pCi/L 321 323 0.97 A Ca-65 pCi/L 321 323 0.97 A Ca-65 pCi/L 321 323 0.97 A Ca-60 pCi 321 333 1.05 A Ca-6134 pCi 100 95.3 1.06 A Ca-137 pCi 122 115 1.06 A Ca-63 pCi 111 99.3 1.05 A Ca-640 pCi 140 147 0.95 A Ca-640 pCi/L 187 153 1.22 W June 2014 E10858 Water Fe-55 pCi/L 2090				Ce-141					
Ca-137 pCi/L 250 253 0.99 A Ca-58 pCi/L 248 288 0.93 A Fa-59 pCi/L 230 219 1.05 A Zn-65 pCi/L 321 337 0.95 A E10857 AP Ca-60 pCi/L 321 337 0.95 A Ca-60 pCi/L 100 95.3 1.06 A Ca-61 pCi 122 116 1.06 A Ca-65 pCi 122 121 1.01 A Min-64 pCi 111 99.3 1.12 A Ca-61 pCi/L 2090				Cr-51	pCi/L				
E10857 AP CC-68 pCi/L 248 268 0.93 A K M-6-54 pCi/L 230 219 1.05 A Co-60 pCi/L 312 323 0.97 A Co-60 pCi/L 321 337 0.95 A Co-60 pCi 100 95.3 1.06 A Co-630 pCi 122 115 1.06 A Co-630 pCi 122 115 1.06 A Co-630 pCi 122 115 1.06 A Co-630 pCi 112 101 A Mn-54 pCi 1135 135 1.00 A Zn-85 pCi 111 99.3 1.12 A Zn-85 pCi/L 187 153 1.22 W June 2014 E10856 Water Fe-55 pCi/L 2090 1760 1.19 A				Cs-134					
Mn-54 Fe-59 Co.60 PC/IL PC/IL 292 297 0.98 0.97 A E10857 AP Ce-141 Co-60 pC/IL 312 323 0.97 A Co-60 pC/IL 321 337 0.95 A E10857 AP Ce-141 Co-51 pCi 100 95.3 1.04 A Co-537 pCi 122 115 1.06 A Co-58 pCi 122 115 1.06 A Co-58 pCi 119 9.3 1.12 A Mn-54 pCi 135 135 1.00 A Fe-59 pCi 140 147 0.95 A Zn-65 pCi/L 187 1750 1.19 A June 2014 E10856 Water Fe-55 pCi/L 2090 1760 1.19 A Co-60 pCi/L 85.9 91.3 0.94 A A A A A A				Cs-137	pCi/L	250	253	0.99	Α
Fe-59 pC/IL 230 219 1.05 A Zr-85 pC/IL 321 337 0.95 A Co-60 pCI 321 337 0.95 A E10857 AP Co-141 pCi 53.0 53.9 0.98 A Co-5134 pCi 100 95.3 1.05 A Co-58 pCi 122 115 1.06 A Co-58 pCi 135 1.00 A Fe-59 pCi 111 99.3 1.12 A Zo-65 pCi 140 147 0.95 A Co-60 pCi 187 153 1.22 W E10856 Water Fe-55 pC/L 2090 1760 1.19 A June 2014 E10913 Milk Sr-89 pC/L 85.9 91.3 0.94 A Co-51 pC/L 85.9 91.3 0.95				Co-58					
Zn-65 pCi/L 312 323 0.97 A E10857 AP Ce-611 pCi 53.9 0.98 A Cs-513 pCi 100 95.3 1.04 A Cs-513 pCi 100 95.3 1.04 A Cs-134 pCi 100 95.3 1.06 A Cs-137 pCi 122 115 1.06 A Cs-68 pCi 122 121 1.01 A Mn-54 pCi 135 135 1.00 A Fe-59 pCi 140 147 0.95 A Co-60 pCi 187 176 0.97 A E10856 Charcoal I-131 pCi/L 2090 1760 1.19 A June 2014 E10913 Milk Sr-89 pCi/L 86.5 90.9 0.95 A Cs-134 pCi/L 138 14.5 0.96				Mn-54	pCi/L	292			
$ \begin{bmatrix} C_0-60 & pCi/L & 321 & 337 & 0.95 & A \\ C_r-51 & pCi & 53.0 & 53.9 & 0.98 & A \\ C_r-51 & pCi & 100 & 95.3 & 1.05 & A \\ C_{S}-134 & pCi & 100 & 95.3 & 1.05 & A \\ C_{S}-137 & pCi & 122 & 115 & 1.06 & A \\ C_{S}-137 & pCi & 135 & 135 & 1.00 & A \\ F_{F}-59 & pCi & 111 & 99.3 & 1.12 & A \\ Z_{r-65} & pCi & 140 & 147 & 0.95 & A \\ C_{O}-60 & pCi & 187 & 153 & 1.22 & W \\ \end{bmatrix} $				Fe-59	pCi/L				
E10857 AP Ce-141 Cr-51 pCi 53.0 53.9 0.98 A Cs-134 pCi 100 95.3 1.05 A Cs-137 pCi 122 115 1.06 A Cs-137 pCi 122 115 1.06 A Cs-58 pCi 112 115 1.06 A Fe-59 pCi 111 99.3 1.12 A Zn-65 pCi 1187 153 1.22 W E10856 Charcoal I-131 pCi 74.1 76.4 0.97 A June 2014 E10913 Milk Sr-89 pCi/L 2090 1760 1.19 A June 2014 E10913 Milk Sr-89 pCi/L 13.8 14.5 0.95 A Cs-517 pCi/L 13.8 14.5 0.95 A Cs-517 pCi/L 123 120 1.03 A <t< td=""><td></td><td></td><td></td><td>Zn-65</td><td>pCi/L</td><td>312</td><td></td><td></td><td></td></t<>				Zn-65	pCi/L	312			
Cr-51 pCi 232 223 1.04 A Cs-134 pCi 100 95.3 1.05 A Cs-137 pCi 122 115 1.06 A Cs-68 pCi 122 115 1.06 A Co-58 pCi 122 115 1.06 A Mn-54 pCi 135 135 1.00 A Fe-59 pCi 111 99.3 1.12 A Zn-65 pCi 140 147 0.95 A Co-60 pCi 187 153 0.92 W E10858 Water Fe-55 pCi/L 2090 1760 1.19 A June 2014 E10913 Milk Sr-89 pCi/L 86.9 91.3 0.94 A Cs-134 pCi/L 13.8 14.5 0.90 A Cs-134 pCi/L 123 100 1.03 A <t< td=""><td></td><td></td><td></td><td>Co-60</td><td>pCi/L</td><td>321</td><td>337</td><td>0.95</td><td>Α</td></t<>				Co-60	pCi/L	321	337	0.95	Α
Cr-51 pCi 232 223 1.04 A Cs-134 pCi 100 95.3 1.05 A Cs-137 pCi 122 115 1.06 A Co-58 pCi 122 115 1.06 A Co-58 pCi 122 115 1.06 A Mn-54 pCi 135 135 1.00 A Fe-59 pCi 140 147 0.95 A Zn-65 pCi 140 147 0.97 A E10858 Water Fe-55 pCi/L 2090 1760 1.19 A June 2014 E10913 Milk Sr-89 pCi/L 85.9 91.3 0.94 A Cs-137 pCi/L 13.8 14.5 0.90 A Cs-134 pCi/L 13.8 14.5 0.90 A Cs-134 pCi/L 123 100 1.03 A		E10857	AP	Ce-141	pCi	53.0	53. 9	0.98	Α
Cs-134 pCi 100 95.3 1.05 A Cs-137 pCi 122 115 1.06 A Cs-58 pCi 122 121 1.01 A Mn-54 pCi 135 1.00 A Fe-59 pCi 140 147 0.95 A Zn-65 pCi 140 147 0.95 A Zn-65 pCi 140 147 0.95 A E10856 Charcoal I-131 pCi 74.1 76.4 0.97 A Lioes8 Water Fe-55 pCi/L 2090 1760 1.19 A June 2014 E10913 Milk Sr-89 pCi/L 85.9 91.3 0.94 A Cs-134 pCi/L 13.8 14.5 0.95 A Cs-137 pCi/L 111 124 0.90 A Cs-137 pCi/L 123 120 1.03				Cr-51		232	223	1.04	Α
Cs-137 pCi 122 115 1.06 A Mn-54 pCi 122 121 1.01 A Fe-59 pCi 111 99.3 1.12 A Fe-59 pCi 1140 147 0.95 A Co-60 pCi 187 153 1.22 W E10856 Charcoal I-131 pCi 74.1 76.4 0.97 A E10858 Water Fe-55 pCi/L 2090 1760 1.19 A June 2014 E10913 Milk Sr-89 pCi/L 13.8 14.5 0.95 A E10914 Milk Sr-89 pCi/L 13.8 14.5 0.95 A Ce-141 pCi/L 86.5 90.9 0.95 A Ce-513 pCi/L 123 120 1.03 A Ce-53 pCi/L 155 156 0.99 A Ce-54 pCi/L								1.05	
Mn-54 Fe-59 Co-60 pCi pCi 135 111 110 135 9.3 135 1.12 1.22 A A E10856 Charcoal I-131 pCi 74.1 76.4 0.97 A E10858 Water Fe-55 pCi/L 2090 1760 1.19 A June 2014 E10913 Milk Sr-89 pCi/L 138 91.3 0.94 A E10914 Milk Sr-89 pCi/L 138 14.5 0.95 A Cr-51 pCi/L 13.8 14.5 0.95 A Cs-134 pCi/L 111 124 0.90 A Cr-51 pCi/L 125 253 1.01 A Cs-134 pCi/L 155 112 0.94 A Mn-54 pCi/L 105 112 0.94 A Cs-137 pCi/L 155 100 A Co-58 pCi/L 155 102 1.04 A Cr-51 </td <td></td> <td></td> <td></td> <td>Cs-137</td> <td>pCi</td> <td>122</td> <td>115</td> <td>1.06</td> <td>Α</td>				Cs-137	pCi	122	115	1.06	Α
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Co-58	pCi	122	121	1.01	Α
$ \begin{array}{c cccc} Zn-65 & pCi & 140 & 147 & 0.95 & A \\ Co-60 & pCi & 187 & 153 & 1.22 & W \\ \hline E10856 & Charcoal & I-131 & pCi & 74.1 & 76.4 & 0.97 & A \\ \hline E10858 & Water & Fe-55 & pCi/L & 2090 & 1760 & 1.19 & A \\ \hline E10913 & Milk & Sr-89 & pCi/L & 85.9 & 91.3 & 0.94 & A \\ \hline E10914 & Milk & I-131 & pCi/L & 86.5 & 90.9 & 0.95 & A \\ \hline E10914 & Milk & I-131 & pCi/L & 111 & 124 & 0.90 & A \\ \hline Cr-51 & pCi/L & 115 & 116 & 0.91 & A \\ \hline Cr-51 & pCi/L & 105 & 112 & 0.94 & A \\ \hline Cr-51 & pCi/L & 105 & 112 & 0.94 & A \\ \hline Cr-56 & pCi/L & 105 & 112 & 0.94 & A \\ \hline Cr-56 & pCi/L & 105 & 112 & 0.94 & A \\ \hline Cr-56 & pCi/L & 105 & 112 & 0.94 & A \\ \hline Mn-54 & pCi/L & 105 & 112 & 0.94 & A \\ \hline Mn-54 & pCi/L & 105 & 112 & 0.94 & A \\ \hline Cr-51 & pCi/L & 251 & 252 & 1.00 & A \\ \hline Cr-51 & pCi/L & 218 & 224 & 0.97 & A \\ \hline E10916 & AP & Ce-141 & pCi & 95.1 & 92.6 & 1.03 & A \\ \hline Cr-51 & pCi & 215 & 190 & 1.13 & A \\ \hline Cr-56 & pCi/L & 218 & 224 & 0.97 & A \\ \hline E10916 & AP & Ce-141 & pCi & 95.1 & 92.6 & 1.03 & A \\ \hline Cr-56 & pCi & 92.5 & 190 & 1.13 & A \\ \hline Cr-56 & pCi & 122 & 122 & 1.00 & A \\ \hline Cr-56 & pCi & 95.1 & 89.8 & 1.06 & A \\ \hline Cr-56 & pCi & 95.1 & 89.8 & 1.06 & A \\ \hline Cr-56 & pCi & 193 & 189 & 1.02 & A \\ \hline Cr-56 & pCi & 193 & 189 & 1.07 & A \\ \hline E10915 & Charcoal & I-131 & pCi & 85.6 & 85.2 & 1.00 & A \\ \hline \end{array}$				Mn-54	pCi	135	135	1.00	Α
Co-60 pCi 187 153 1.22 W E10856 Charcoal I-131 pCi 74.1 76.4 0.97 A E10858 Water Fe-55 pCi/L 2090 1760 1.19 A June 2014 E10913 Milk Sr-89 pCi/L 85.9 91.3 0.94 A E10914 Milk Sr-89 pCi/L 13.8 14.5 0.95 A Co-6141 pCi/L 111 124 0.90 A Co-513 pCi/L 111 124 0.90 A Co-53 pCi/L 111 124 0.90 A Co-58 pCi/L 112 0.94 A Mn-54 pCi/L 155 156 0.99 A Ko-65 pCi/L 106 102 1.04 A Mn-54 pCi/L 155 156 0.99 A Ko-60 pCi/L <td< td=""><td></td><td></td><td></td><td>Fe-59</td><td>pCi</td><td>111</td><td>99.3</td><td>1.12</td><td>Α</td></td<>				Fe-59	pCi	111	99.3	1.12	Α
$ \begin{bmatrix} Co-60 & pCi & 187 & 153 & 1.22 & W \\ E10856 & Charcoal & I-131 & pCi & 74.1 & 76.4 & 0.97 & A \\ E10858 & Water & Fe-55 & pCI/L & 2090 & 1760 & 1.19 & A \\ \\ Dune 2014 & E10913 & Milk & Sr-89 & pCI/L & 85.9 & 91.3 & 0.94 & A \\ E10914 & Milk & I-131 & pCI/L & 86.5 & 90.9 & 0.95 & A \\ \\ Ce-141 & pCI/L & 111 & 124 & 0.90 & A \\ Ce-141 & pCI/L & 111 & 124 & 0.90 & A \\ Cr-51 & pCI/L & 255 & 253 & 1.01 & A \\ Cs-137 & pCI/L & 123 & 120 & 1.03 & A \\ Cs-58 & pCI/L & 105 & 112 & 0.94 & A \\ Cs-58 & pCI/L & 105 & 112 & 0.94 & A \\ Mn-54 & pCI/L & 105 & 112 & 0.94 & A \\ Mn-54 & pCI/L & 106 & 102 & 1.04 & A \\ Cr-51 & pCI/L & 218 & 224 & 0.97 & A \\ \end{bmatrix} $				Zn-65	pCi	140	147	0.95	Α
E10858 Water Fe-55 pCi/L 2090 1760 1.19 A June 2014 E10913 Milk Sr-89 pCi/L 85.9 91.3 0.94 A E10914 Milk Sr-89 pCi/L 13.8 14.5 0.95 A E10914 Milk I-131 pCi/L 86.5 90.9 0.95 A Cr-51 pCi/L 111 124 0.90 A Cs-137 pCi/L 147 162 0.91 A Cs-58 pCi/L 105 112 0.94 A Min-54 pCi/L 105 112 0.94 A Mn-54 pCi/L 105 112 0.94 A Min-54 pCi/L 105 112 0.94 A Min-54 pCi/L 106 102 1.04 A Zn-65 pCi/L 251 252 1.00 A Cs-5137 <t< td=""><td></td><td></td><td></td><td>Co-60</td><td>pCi</td><td>187</td><td>153</td><td>1.22</td><td>W</td></t<>				Co-60	pCi	187	153	1.22	W
June 2014 E10913 Milk Sr-89 Sr-90 pCi/L pCi/L 85.9 13.8 91.3 14.5 0.94 0.95 A E10914 Milk I-131 Cr-51 pCi/L pCi/L 86.5 90.9 0.95 A Cs-134 pCi/L Cr-51 pCi/L 255 253 1.01 A Cs-134 pCi/L 147 162 0.91 A Cs-137 pCi/L 125 253 1.01 A Cs-137 pCi/L 147 162 0.91 A Cs-137 pCi/L 147 162 0.91 A Cs-137 pCi/L 105 112 0.94 A Mm-54 pCi/L 105 156 0.99 A Fe-59 pCi/L 106 102 1.04 A Zn-65 pCi/L 251 252 1.00 A Cs-137 pCi 95.1 92.6 1.03 A Cs-137 pCi 95.1		E10856	Charcoal	I-131	рСі	74.1	76.4	0.97	А
Sr-90 pCi/L 13.8 14.5 0.95 A E10914 Milk I-131 pCi/L 86.5 90.9 0.95 A Ce-141 pCi/L 111 124 0.90 A Cr-51 pCi/L 125 253 1.01 A Cs-134 pCi/L 147 162 0.91 A Cs-5137 pCi/L 123 120 1.03 A Co-58 pCi/L 105 112 0.94 A Mn-54 pCi/L 105 102 1.04 A Zn-65 pCi/L 216 0.97 A E10916 AP Ce-141 pCi 95.1 92.6 1.03 A Cs-134 pCi 122 122 1.00 A Cs-134 pCi 122 1.00 A Cs-137 pCi 95.1 89.8 1.06 A Co-58 pCi <td< td=""><td></td><td>E10858</td><td>Water</td><td>Fe-55</td><td>pCi/L</td><td>2090</td><td>1760</td><td>1.19</td><td>Α</td></td<>		E10858	Water	Fe-55	pCi/L	2090	1760	1.19	Α
Sr-90 pCi/L 13.8 14.5 0.95 A E10914 Milk I-131 pCi/L 86.5 90.9 0.95 A Ce-141 pCi/L 111 124 0.90 A Cr-51 pCi/L 111 124 0.90 A Cs-134 pCi/L 147 162 0.91 A Cs-137 pCi/L 147 162 0.91 A Co-58 pCi/L 105 112 0.94 A Mn-54 pCi/L 155 156 0.99 A Fe-59 pCi/L 106 102 1.04 A Zn-65 pCi/L 251 252 1.00 A Co-60 pCi/L 218 224 0.97 A E10916 AP Ce-141 pCi 95.1 89.8 1.06 A Cs-134 pCi 122 122 1.00 A Co-58 <t< td=""><td>June 2014</td><td>E10913</td><td>Milk</td><td>Sr-89</td><td>pCi/L</td><td>85.9</td><td>91.3</td><td>0.94</td><td>А</td></t<>	June 2014	E10913	Milk	Sr-89	pCi/L	85.9	91.3	0.94	А
Ce-141 pCi/L 111 124 0.90 A Cr-51 pCi/L 255 253 1.01 A Cs-134 pCi/L 147 162 0.91 A Cs-137 pCi/L 123 120 1.03 A Cs-137 pCi/L 105 112 0.94 A Mn-54 pCi/L 105 112 0.94 A Mn-54 pCi/L 105 112 0.94 A Zn-65 pCi/L 106 102 1.04 A Zn-65 pCi/L 251 252 1.00 A Co-60 pCi/L 218 224 0.97 A E10916 AP Ce-141 pCi 95.1 92.6 1.03 A Cr-51 pCi 215 190 1.13 A Cs-134 pCi 122 122 1.00 A Cs-137 pCi 95.1 89.8 1.06 A Co-58 pCi 115 116				Sr-90	pCi/L	13.8	14.5	0.95	Α
Ce-141 pCi/L 111 124 0.90 A Cr-51 pCi/L 255 253 1.01 A Cs-134 pCi/L 147 162 0.91 A Cs-137 pCi/L 123 120 1.03 A Co-58 pCi/L 105 112 0.94 A Mn-54 pCi/L 105 112 0.94 A Mn-54 pCi/L 105 112 0.94 A Zn-65 pCi/L 106 102 1.04 A Zn-65 pCi/L 251 252 1.00 A Co-60 pCi/L 218 224 0.97 A E10916 AP Ce-141 pCi 95.1 92.6 1.03 A Cr-51 pCi 215 190 1.13 A Cs-134 pCi 122 122 1.00 A Cs-137 pCi 95.1 89.8 1.06 A Co-58 pCi 115 116		E10914	Milk	I-131	pCi/L	86.5	90.9	0.95	Α
Cs-134 pCi/L 147 162 0.91 A Cs-137 pCi/L 123 120 1.03 A Co-58 pCi/L 105 112 0.94 A Mn-54 pCi/L 155 156 0.99 A Fe-59 pCi/L 106 102 1.04 A Zn-65 pCi/L 251 252 1.00 A Co-600 pCi/L 218 224 0.97 A E10916 AP Ce-141 pCi 95.1 92.6 1.03 A Cs-51 pCi 215 190 1.13 A Cs-134 pCi 215 190 1.13 A Cs-137 pCi 95.1 89.8 1.06 A Cs-58 pCi 88.7 84.1 1.05 A Mn-54 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Zn-65 pCi 193 189				Ce-141	pCi/L	111	124	0.90	Α
Cs-137 pCi/L 123 120 1.03 A Co-58 pCi/L 105 112 0.94 A Mn-54 pCi/L 155 156 0.99 A Fe-59 pCi/L 106 102 1.04 A Zn-65 pCi/L 251 252 1.00 A Co-60 pCi/L 218 224 0.97 A E10916 AP Ce-141 pCi 95.1 92.6 1.03 A Cr-51 pCi 215 190 1.13 A Cs-134 pCi 122 122 1.00 A Cs-137 pCi 95.1 89.8 1.06 A Co-58 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Mn-54 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Zn-65 pCi 193 189 <				Cr-51	pCi/L	255	253	1.01	Α
Co-58 pCi/L 105 112 0.94 A Mn-54 pCi/L 155 156 0.99 A Fe-59 pCi/L 106 102 1.04 A Zn-65 pCi/L 251 252 1.00 A Co-60 pCi/L 218 224 0.97 A E10916 AP Ce-141 pCi 95.1 92.6 1.03 A Cr-51 pCi 215 190 1.13 A Cs-134 pCi 122 122 1.00 A Cs-137 pCi 95.1 89.8 1.06 A Cs-58 pCi 115 116 0.99 A Fe-59 pCi 115 116 0.99 A Fe-59 pCi 115 116 0.99 A Ac-60 pCi 1193 189 1.02 A Ac-60 pCi 179 168 1.07 A E10915 Charcoal i-131 pCi				Cs-134	pCi/L	147	162	0.91	Α
Mn-54 pCi/L 155 156 0.99 A Fe-59 pCi/L 106 102 1.04 A Zn-65 pCi/L 251 252 1.00 A Co-60 pCi/L 218 224 0.97 A E10916 AP Ce-141 pCi 95.1 92.6 1.03 A Cr-51 pCi 215 190 1.13 A Cs-134 pCi 122 122 1.00 A Cs-137 pCi 95.1 89.8 1.06 A Co-58 pCi 88.7 84.1 1.05 A Mn-54 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Zn-65 pCi 193 189 1.02 A Co-60 pCi 179 168 1.07 A E10915 Charcoal I-131 pCi 85.6 85.2 1.00 A				Cs-137	pCi/L			1.03	
Fe-59 pCi/L 106 102 1.04 A Zn-65 pCi/L 251 252 1.00 A Co-60 pCi/L 218 224 0.97 A E10916 AP Ce-141 pCi 95.1 92.6 1.03 A Cr-51 pCi 215 190 1.13 A Cs-134 pCi 122 122 1.00 A Cs-137 pCi 95.1 89.8 1.06 A Co-58 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Fe-59 pCi 193 189 1.02 A Co-60 pCi 179 168 1.07 A				Co-58					
Zn-65 pCi/L 251 252 1.00 A E10916 AP Ce-141 pCi 95.1 92.6 1.03 A Cr-51 pCi 215 190 1.13 A Cs-134 pCi 122 122 1.00 A Cs-137 pCi 95.1 89.8 1.06 A Co-58 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Fe-59 pCi 193 189 1.02 A Zn-65 pCi 193 189 1.02 A E10915 Charcoal I-131 pCi 85.6 85.2 1.00 A				Mn-54					Α
Co-60 pCi/L 218 224 0.97 A E10916 AP Ce-141 pCi 95.1 92.6 1.03 A Cr-51 pCi 215 190 1.13 A Cs-134 pCi 122 122 1.00 A Cs-134 pCi 95.1 89.8 1.06 A Cs-137 pCi 95.1 89.8 1.06 A Co-58 pCi 88.7 84.1 1.05 A Mn-54 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Zn-65 pCi 193 189 1.02 A Co-60 pCi 179 168 1.07 A									
E10916 AP Ce-141 pCi 95.1 92.6 1.03 A Cr-51 pCi 215 190 1.13 A Cs-134 pCi 122 122 1.00 A Cs-134 pCi 95.1 89.8 1.06 A Cs-134 pCi 95.1 89.8 1.06 A Cs-137 pCi 95.1 89.8 1.06 A Co-58 pCi 88.7 84.1 1.05 A Mn-54 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Zn-65 pCi 193 189 1.02 A Co-60 pCi 179 168 1.07 A E10915 Charcoal i-131 pCi 85.6 85.2 1.00 A									
Cr-51 pCi 215 190 1.13 A Cs-134 pCi 122 122 1.00 A Cs-137 pCi 95.1 89.8 1.06 A Cs-137 pCi 88.7 84.1 1.05 A Co-58 pCi 115 116 0.99 A Mn-54 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Zn-65 pCi 193 189 1.02 A Co-60 pCi 179 168 1.07 A				Co-60	pCi/L	218	224	0.97	Α
Cs-134 pCi 122 122 1.00 A Cs-137 pCi 95.1 89.8 1.06 A Co-58 pCi 88.7 84.1 1.05 A Mn-54 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Zn-65 pCi 193 189 1.02 A Co-60 pCi 179 168 1.07 A		E10916	AP						
Cs-137 pCi 95.1 89.8 1.06 A Co-58 pCi 88.7 84.1 1.05 A Mn-54 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Zn-65 pCi 193 189 1.02 A Co-60 pCi 179 168 1.07 A E10915 Charcoal i-131 pCi 85.6 85.2 1.00 A									
Co-58 pCi 88.7 84.1 1.05 A Mn-54 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Zn-65 pCi 193 189 1.02 A Co-60 pCi 179 168 1.07 A E10915 Charcoal i-131 pCi 85.6 85.2 1.00 A				Cs-134					
Mn-54 pCi 115 116 0.99 A Fe-59 pCi 72.6 76.7 0.95 A Zn-65 pCi 193 189 1.02 A Co-60 pCi 179 168 1.07 A E10915 Charcoal I-131 pCi 85.6 85.2 1.00 A									
Fe-59 pCi 72.6 76.7 0.95 A Zn-65 pCi 193 189 1.02 A Co-60 pCi 179 168 1.07 A E10915 Charcoal I-131 pCi 85.6 85.2 1.00 A									
Zn-65 Co-60pCi1931891.02AE10915CharcoalI-131pCi85.685.21.00A									
Co-60 pCi 179 168 1.07 A E10915 Charcoal I-131 pCi 85.6 85.2 1.00 A					pCi				
E10915 Charcoal I-131 pCi 85.6 85.2 1.00 A									
				Co-60	pCi	179	168	1.07	Α
E10917 Water Fe-55 pCi/L 1680 1810 0.93 A		E10915	Charcoal	I-131	pCi	85.6	85.2	1.00	Α
		E10917	Water	Fe-55	pCi/L	1680	1810	0.93	А

TABLE D-1

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2014 (PAGE 2 OF 3)

	Identification	1 1 - 1 - 1	Nuellala	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
Month/Year	Number	Matrix	Nuclide	Units	value (a)	Value (b)	I DE/Analytics	
September 2014	E10946	Milk	Sr-89	pCi/L	90.7	96.9	0.94	Α
			Sr-90	pCi/L	14.0	16.4	0.85	Α
	E10947	Milk	I-131	pCi/L	92.0	97.6	0.94	А
			Ce-141	pCi/L	117	126	0.93	Α
			Cr-51	pCi/L	281	288	0.98	Α
			Cs-134	pCi/L	141	158	0.89	Α
			Cs-137	pCi/L	186	193	0.96	Α
			Co-58	pCi/L	137	143	0.96	A
			Mn-54	pCi/L	138	142	0.97	Α
			Fe-59	pCi/L	162	158	1.03	Α
			Zn-65	pCi/L	75.2	73.0	1.03	Α
			Co-60	pCi/L	286	297	0.96	Α
	E10949	AP	Ce-141	pCi	97.8	82.1	1.19	Α
			Cr-51	pCi	212	188	1.13	А
			Cs-134	pCi	106	103	1.03	Α
			Cs-137	pCi	131	126	1.04	Α
			Co-58	рСі	85.7	93.0	0.92	A
			Mn-54	pCi	92.8	92.3	1.01	A
			Fe-59	pCi	113	103	1.10	A
			Zn-65	pCi	53.2	47.5	1.12	A
			Co-60	pCi	202	193	1.05	A
	E10948	Charcoal	I-131	рСі	83.9	89.8	0.93	А
	E10950	Water	Fe-55	pCi/L	2010	1720	1.17	Α
	E10951	Soil	Ce-141	pCi/g	0.208	0.186	1.12	А
			Cr-51	pCi/g	0.398	0.425	0.94	Α
			Cs-134	pCi/g	0.216	0.233	0.93	Α
			Cs-137	pCi/g	0.398	0.365	1.09	Α
			Co-58	pCi/g	0.197	0.211	0.93	Α
			Mn-54	pCi/g	0.242	0.209	1.16	Α
			Fe-59	pCi/g	0.238	0.233	1.02	Α
			Zn-65	pCi/g	0.117	0.108	1.08	Α
			Co-60	pCi/g	0.447	0.438	1.02	A
December 2014	E11078	Milk	Sr-89	pCi/L	85.7	95.7	0.90	Α
			Sr-90	pCi/L	12.9	15.6	0.83	Α
	E11079	Milk	I-131	pCi/L	85.9	95.1	0.90	A
			Ce-141	pCi/L	205	219	0.94	A
			Cr-51	pCi/L	402	406	0.99	A
			Cs-134	pCi/L	156	164	0.95	A
			Cs-137	pCi/L	194	198	0.98	A
			Co-58	pCi/L	122	130	0.94	A
			Mn-54	pCi/L	220	225	0.98	A
			Fe-59	pCi/L	183	175	1.05	A
			Zn-65	pCi/L	287	297	0.97	A
			Co-60	pCi/L	224	235	0.95	A

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM
TELEDYNE BROWN ENGINEERING, 2014
(PAGE 3 OF 3)

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	Ratio (c) TBE/Analytics	Evaluation (d)
	E 44004	4.0	Ce-141		96.4	102	0.95	А
December 2014	E11081	AP	Ce-141 Cr-51	pCi	171	190	0.90	A
			Cr-51 Cs-134	pCi pCi	73.1	76.9	0.95	A
			Cs-134 Cs-137	pCi	99.0	92.6	1.07	A
			Co-58	pCi	57.5	60.8	0.95	A
			Mn-54	pCi	107	105	1.02	A
			Fe-59	pCi	74.2	81.6	0.91	Α
			Zn-65	pCi	144	139	1.04	Α
			Co-60	pCi	114	110	1.04	Α
	E11080	Charcoal	I-131	pCi	93.5	98.2	0.95	А
	E11082	Water	Fe-55	pCi/L	1760	1970	0.89	Α

(a) Teledyne Brown Engineering reported result.

(b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽c) Ratio of Teledyne Brown Engineering to Analytics results.

 ⁽d) Analytics evaluation based on TBE internal QC limits: A= Acceptable, reported result falls within ratio limits of 0.80-1.20.
 W-Acceptable with warning, reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable, reported result falls outside the ratio limits of < 0.70 and > 1.30.

TABLE D-2

ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2014 (PAGE 1 OF 1)

Month/Year	Identification Number	Media	Nuclide	Units	Reported Value (a)	Known Value (b)	Acceptance Limits	Evaluation (c)
May 2014	RAD-97	Water	Sr-89	pCi/L	38.25	36.7	27.5 - 43.6	Α
May 2014		vi ator	Sr-90	pCi/L	24.65	26.5	19.2 - 30.9	Α
			Ba-133	pCi/L	89.1	87.9	74.0 - 96.7	Α
			Cs-134	pCi/L	45.55	44.3	35.5 - 48.7	Α
			Cs-137	pCi/L	91.15	89.1	80.2 - 101	A
			Co-60	pCi/L	65.10	64.2	57.8 - 73.1	А
			Zn-65	pCi/L	244	235	212 - 275	А
			Gr-A	pCi/L	45.65	61.0	31.9 - 75.8	А
			Gr-B	pCi/L	27.95	33.0	21.4 - 40.7	А
			I-131	pCi/L	23.75	25.7	21.3 - 30.3	Α
			U-Nat	pCi/L	9.61	10.2	7.95 - 11.8	Α
			H-3	pCi/L	8435	8770	7610 - 9650	Α
	MRAD-20	Filter	Gr-A	pCi/filter	28.0	46.0	15.4 - 71.4	А
November 2014	RAD-99	Water	Sr-89	pCi/L	30.4	31.4	22.8 - 38.1	А
	1010 00		Sr-90	pCi/L	18.6	21.8	15.6 - 25.7	Α
			Ba-133	pCi/L	46.8	49.1	40.3 - 54.5	Α
			Cs-134	pCi/L	88.0	89.8	73.7 - 98.8	Α
			Cs-137	pCi/L	99.0	98.8	88.9 - 111	A
			Co-60	pCi/L	92.5	92.1	82.9 - 104	A
			Zn-65	pCi/L	325	310	279 - 362	А
			Gr-A	pCi/L	29.9	37.6	19.4 - 48.1	А
			Gr-B	pCi/L	27.5	27.4	17.3 - 35.3	Α
			1-131	pCi/L	15.8	20.3	16.8 - 24.4	N (1)
			U-Nat	pCi/L	5.74	5.80	4.34 - 6.96	Α
			H-3	pCi/L	6255	6880	5940 - 7570	Α
	MRAD-21	Filter	Gr-A	pCi/filter	27.3	36.9	12.4 - 57.3	Α

(1) The lodine-131 was evaluated as failed with a ratio of 0.778. No cause could be found for the slightly low activity. TBE would evaluate this as acceptable with warning. A rerun was not possible due to I-131 decay. All other ERA lodine-131 evaluations since 2004 have been acceptable. NCR 14-08

(a) Teledyne Brown Engineering reported result.

(b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. NA=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2014 (PAGE 1 OF 2)

Month/Year	Identification Number	Media	Nuclide*	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (c)
					0.704	0.700	0.504 0.026	A
March 2014	14-MaW30	Water	Am-241	Bq/L	0.764	0.720	0.504 - 0.936 16.2 - 30 0	A
			Cs-134	Bq/L	20.7	23.1		A
			Cs-137	Bq/L	28.0	28.9	20.2 - 37.6	A
			Co-57	Bq/L	26.5	27.5	19.3 - 35.8 11.2 - 20.8	Ä
			Co-60	Bq/L	15.6	16.0 321	225 - 417	N (3)
			H-3**	Bq/L	NR		9.7 - 18.1	
			Mn-54	Bq/L	13.5	13.9	23.8 - 44.2	A N (3)
			Ni-63	Bq/L	NR	34.0 0.828	0.580 - 1.076	IN (3)
			Pu-238	Bq/L	0.911			
			Pu-239/240	Bq/L	0.751	0.676	0.473 - 0.879	N (3)
			K-40	Bq/L	NR	0.54	(1)	
			Sr-90**	Bq/L	NR	8.51	5.96 - 11.06	N (3)
			U-234/233**		NR	0.225	0.158 - 0.293	N (3)
			U-238**	Bq/L	NR	1.45	1.02 - 1.89	N (3)
			Zn-65	Bq/L	-0.201		(1)	A
	14-MaS30	Soil	Cs-134	Bq/kg	2.02		(1)	А
			Cs-137	Bq/kg	1300	1238	867 - 1609	А
			Co-57	Bq/kg	1069	966	676 - 1256	Α
			Co-60	Bq/kg	1.32	1.22	(2)	Α
			Mn-54	Bq/kg	1510	1430	1001 - 1859	Α
			K-40	Bq/kg	669	622	435 - 809	Α
			Sr-90	Bq/kg	4.14		(1)	Α
			Zn-65	Bq/kg	763	695	487 - 904	Α
	14-RdF30	AP	Cs-134**	Bg/sample	NR	1.91	1.34 - 2.48	N (3)
	14-1101 00	74	Cs-137**	Bq/sample	NR	1.76	1.23 - 2.29	N (3)
			Co-57**	Bq/sample			(1)	N (3)
			Co-60**	Bq/sample	NR	1.39	0.97 - 1.81	N (3)
			Mn-54**	Bq/sample	NR		(1)	N (3)
			Sr-90	Bq/sample		1.18	0.83 - 1.53	N (3)
			Zn-65**	Bq/sample			(1)	N (3)
	14-GrF30	AP	Gr-A	Bg/sample	0.606	1.77	0.53 - 3.01	А
	14-01-30	ME	Gr-B	Bq/sample		0.77	0.39 - 1.16	A
		Manatatian	0- 124	Ba/aamala	5.96	6.04	4.23 - 7.85	Α
	14-RdV30	Vegetation	Cs-134 Cs-137	Bq/sample Bq/sample		4.74	3.32 - 6.16	Â
						4.74	7.1 - 13.1	Â
			Co-57	Bq/sample		6.93	4.85 - 9.01	Â
			Co-60	Bq/sample		8.62	4.65 - 9.01 6.03 - 11.21	A
			Mn-54	Bq/sample				A
			Sr-90	Bq/sample		1.46	1.02 - 1.90	A
			Zn-65	Bq/sample	8.91	7.86	5.50 - 10.22	A

TABLE D-3

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2014

(PAGE 2 OF 2)

Month/Year	Identification Number	Media	Nuclide*	Units	Reported Value (a)	Known Value (b)	Acceptance Range	Evaluation (c)
September 2014	14-Ma\//31	Water	Am-241	Bq/L	0.705	0.88	0.62 - 1.14	А
September 2014		AA DIGI	Cs-134***	Bq/L	NR		(1)	N (4)
			Cs-137***	Bq/L	NR	18.4	12.9 - 23.9	N (4)
			Co-57***	Bq/L	NR	24.7	17.3 - 32.1	N (4)
			Co-60***	Bq/L	NR	12.4	8.7 - 16.1	N (4)
			Mn-54***	Bg/L	NR	14.0	9.8 - 18.2	N (4)
			Ni-63	Bq/L	24.07	24.6	17.2 - 32.0	Α
			Pu-238	Bq/L	0.591	0.618	0.433 - 0.803	Α
			Pu-239/240	Bq/L	0.0153	0.0048	(2)	Α
			K-40***	Bq/L	NR	161	113 - 209	N (4)
			Zn-65***	Bq/L	NR	10.9	7.6 - 14.2	N (4)
	14-MaS31	Soil	Cs-134***	Bq/kg	NR	622	435 - 809	N (4)
	11 made i		Cs-137***	Bq/kg	NR		(1)	N (4)
			Co-57***	Bq/kg	NR	1116	781 - 1451	N (4)
			Co-60***	Bq/kg	NR	779	545 - 1013	N (4)
			Mn-54***	Bq/kg	NR	1009	706 - 1312	N (4)
			K-40***	Bq/kg	NR	824	577 - 1071	N (4)
			Sr-90	Bq/kg	694	858	601 - 1115	Α
			Zn-65***	Bq/kg	NR	541	379 - 703	N (4)
	14-RdF31	AP	Sr-90	Bq/sample	0.310	0.703	0.492 - 0.914	N (4)
	14-GrF31	AP	Gr-A	Bq/sample	0.153	0.53	0.16 - 0.90	N (4)
			Gr-B	Bq/sample		1.06	0.53 - 1.59	Α
September 2014	14-RdV31	Vegetation	Cs-134	Bq/sample	7.31	7.38	5.17 - 9.59	А
		10900000	Cs-137	Bq/sample		8.14	5.70 - 10.58	Α
			Co-57	Bq/sample		9.2	6.4 - 12.0	Α
			Co-60	Bq/sample		6.11	4.28 - 7.94	Α
			Mn-54	Bq/sample		7.10	4.97 - 9.23	Α
			Sr-90	Bq/sample		0.85	0.60 - 1.11	Α
			Zn-65	Bq/sample		6.42	4.49 - 8.35	Α

* The MAPEP cross check isotope list has been reduced due to duplication of effort or analysis not being performed for clients.

** These nuclides are no longer part of the TBE cross check program due to duplication of effort or analysis not being performed

for clients. MAPEP evaluates non-reported analyses as failed if they were reported in the previous series.

*** All future gamma cross check samples for these isotopes will be provided by Analytics.

- (1) False positive test.
- (2) Sensitivity evaluation.
- (3) Water, Ni-63 overlooked when reporting, but the result of 32.7 +- 1.69 would have passed the acceptance criteria. NCR 14-04 Water, the non-detected K-40 was overlooked when reporting, but would have passed the false positive test. NCR 14-04 AP, Sr-90 rerun was within the low range of the acceptance criteria. The original and rerun results were statistically the same. No cause could be identified for the slightly low Sr-90 activity. NCR 14-04
- For non reported (NR) analyses, MAPEP evaluates as falled if they were reported in the previous series. NCR 14-04
 (4) AP, Sr-90 gravimetric yield was very high at 117%. Could indicate larger than normal amounts of calcium in the AP. A second furning HNO₃ separation would be required to remove the excess calcium. NCR 14-09
 AP, Gr-Alpha was counted on the wrong side. When flipped over and recounted the results were acceptable. NCR 14-09

For non reported (NR) analyses, MAPEP evaluates as failed if they were reported in the previous series. NCR 14-09 (a) Teledyne Brown Engineering reported result.

- (b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.
- (c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

ERA STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM^a ENVIRONMENTAL, INC., 2014 (Page 1 of 1)

				Concentration (pCi/L)			
Lab Code	Date	Analysis	Laboratory	ERA	Control		
			Result b	Result c	Limits	Acceptance	
ERW-1384	4/7/2014	Sr-89	40.29 ± 5.76	36.70	27.50 - 43.60	Pass	
ERW-1384	4/7/2014	Sr-90	24.08 ± 2.35	26.50	19.20 - 30.90	Pass	
ERW-1385	4/7/2014	Ba-133	78.23 ± 3.93	87.90	74.00 - 96.70	Pass	
ERW-1385	4/7/2014	Co-60	62.75 ± 3.53	64.20	57.80 - 73.10	Pass	
ERW-1385	4/7/2014	Cs-134	44.97 ± 3.99	44.30	35.50 - 48.70	Pass	
ERW-1385	4/7/2014	Cs-137	88.54 ± 4.93	89.10	80.20 - 101.00	Pass	
ERW-1385	4/7/2014	Zn-65	249.1 ± 10.44	235.0	212.0 - 275.0	Pass	
ERW-1388	4/7/2014	Gr. Alpha	56.70 ± 2.47	61.00	31.90 - 75.80	Pass	
ERW-1388	4/7/2014	Gr. Beta	32.10 ± 1.20	33.00	21.40 - 40.70	Pass	
ERW-1391	4/7/2014	I-131	25.52 ± 1.12	25.70	21.30 - 30.30	Pass	
ERW-1394	4/7/2014	Uranium	10.76 ± 0.74	10.20	7.95 - 11.80	Pass	
ERW-1397	4/7/2014	H-3	8982 ± 279	8770	7610 - 9650	Pass	
ERW-5382	10/6/2014	Sr-89	29.40 ± 5.32	31.40	22.80 - 38.10	Pass	
ERW-5382	10/6/2014	Sr-90	19.19 ± 1.85	21.80	15.60 - 25.70	Pass	
ERW-5385	10/6/2014	Ba-133	43.54 ± 4.54	49.10	40.30 - 54.50	Pass	
ERW-5385	10/6/2014	Cs-134	81.95 ± 7.49	89.80	73.70 - 98.80	Pass	
ERW-5385	10/6/2014	Cs-137	95.76 ± 5.50	98.80	88.90 - 111.00	Pass	
ERW-5385	10/6/2014	Co-60	90.25 ± 2.77	92.10	82.90 - 104.00	Pass	
ERW-5385	10/6/2014	Zn-65	327.4 ± 23.3	310.00	279.0 - 362.0	Pass	
ERW-5388	10/6/2014	Gr. Alpha	30.88 ± 8.05	37.60	19.40 - 46.10	Pass	
ERW-5388	10/6/2014	G. Beta	20.47 ± 4.75	27.40	17.30 - 35.30	Pass	
ERW-5392	10/6/2014	I-131	19.58 ± 2.35	20.30	16.80 - 24.40	Pass	
ERW-5394	10/6/2014	Uranium	5.51 ± 0.37	5.80	4.34 - 6.96	Pass	
ERW-5397	10/6/2014	H-3	6876 ± 383	6880	5940 - 7570	Pass	

a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

b Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations.

c Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) ENVIRONMENTAL, INC., 2014

(Page 1 of 2)

		Concentration a							
				Known	Control				
Lab Code b	Date	Analysis	Laboratory result	Activity	Limits c	Acceptance			
MAW-1140	2/1/2014	Gr. Alpha	0.77 ± 0.06	0.85	0.26 - 1.44	Pass			
MAW-1140	2/1/2014	Gr. Beta	4.31 ± 0.08	4.19	2.10 - 6.29	Pass			
MAW-1184	2/1/2014	Fe-55	0.40 ± 3.20	0.00	-0.01 - 2.00	Pass			
MAW-1184	2/1/2014	H-3	345.10 ± 10.60	321.00	225.00 - 417.00	Pass			
MAW-1184	2/1/2014	Ni-63	32.40 ± 3.20	34.00	23.80 - 44.20	Pass			
MAW-1184	2/1/2014	Pu-238	1.28 ± 0.12	0.83	0.58 - 1.08	Fail (1)			
MAW-1184	2/1/2014	Pu-239/240	0.91 ± 0.10	0.68	0.47 - 0.88	Fail (1)			
MAW-1184	2/1/2014	Sr-90	7.00 ± 0.70	8.51	5.96 - 11.06	Pass			
MAW-1184	2/1/2014	U-233/234	0.20 ± 0.07	0.23	0.16 - 0.29	Pass			
MAW-1184	2/1/2014	U-238	1.25 ± 0.18	1.45	1.02 - 1.89	Pass			
MAW-1184	2/1/2014	Co-57	27.86 ± 0.38	27.50	19.30 - 35.80	Pass			
MAW-1184	2/1/2014	Co-60	15.99 ± 0.27	16.00	11.20 - 20.80	Pass			
MAW-1184	2/1/2014	Cs-134	21.85 ± 0.54	23.10	16.20 - 30.00	Pass			
MAW-1184	2/1/2014	Cs-137	28.74 ± 0.49	28.90	20.20 - 37.60	Pass			
MAW-1184	2/1/2014	K-40	1.80 ± 2.00	0.00	0.00 - 10.00	Pass			
MAW-1184	2/1/2014	Mn-54	14.06 ± 0.40	13.90	9.70 - 18.10	Pass			
MAW-1184	2/1/2014	Zn-65	0.00 ± 0.19	0.00	-0.01 - 0.00	Pass			
MAVE-1148	2/1/2014	Co-57	11.63 ± 0.19	10.10	7.10 - 13.10	Pass			
MAVE-1148	2/1/2014	Co-60	7.28 ± 0.18	6.93	4.85 - 9.01	Pass			
MAVE-1148	2/1/2014	Cs-134	6.29 ± 0.29	6.04	4.23 - 7.85	Pass			
MAVE-1148	2/1/2014	Cs-137	5.18 ± 0.20	4.74	3.32 - 6.16	Pass			
MAVE-1148	2/1/2014	Mn-54	9.22 ± 0.26	8.62	6.03 - 11.21	Pass			
MAVE-1148	2/1/2014	Zn-65	8.59 ± 0.40	7.86	5.50 - 10.22	Pass			
MAAP-1151	2/1/2014	Co-57	1.60 ± 0.05	0.00	NA	Fail (2)			
MAAP-1151	2/1/2014	Co-60	1.38 ± 0.08	1.39	0.97 - 1.81	Pass			
MAAP-1151	2/1/2014	Cs-134	1.75 ± 0.11	1.91	1.34 - 2.48	Pass			
MAAP-1151	2/1/2014	Cs-137	1.81 ± 0.10	1.76	1.23 - 2.29	Pass			
MAAP-1151	2/1/2014	Mn-54	0.01 ± 0.03	0.00	NA	Pass			
MAAP-1151	2/1/2014	Zn-65	-0.24 ± 0.09	0.00	-0.50 - 1.00	Pass			
MAAP-1151	2/1/2014	Sr-90	1.11 ± 0.14	1.18	0.83 - 1.53	Pass			
MAAP-1154	2/1/2014	Gr. Alpha	0.56 ± 0.06	1.77	0.53 - 3.01	Pass			
MAAP-1154	2/1/2014	Gr. Beta	0.98 ± 0.06	0.77	0.39 - 1.16	Pass			
MASO-1146	2/1/2014	Ni-63	4.80 ± 15.30	0.00	NA	Pass			
MASO-1146	2/1/2014	Co-57	1064.50 ± 3.60	966.00	676.00 - 1256.00	Pass			
MASO-1146	2/1/2014	Co-60	1.70 ± 0.50	1.22	(3)	Pass			
MASO-1146		Cs-134	6.10 ± 1.80	0.00	NA	Fail (4)			
MASO-1146		Cs-137	1364.30 ± 5.30	1238.00	867.00 - 1609.00	Pass			
MASO-1146		K-40	728.90 ± 15.90	622.00	435.00 - 809.00	Pass			
MASO-1146	2/1/2014	Mn-54	1588.00 ± 6.00	1430.00	1001.00 - 1859.00	Pass			
MASO-1146	2/1/2014	Zn-65	763.50 ± 6.80	695.00	487.00 - 904.00	Pass			
MASO-1146	2/1/2014	Sr-90	1.23 ± 1.37	0.00	NA	Pass			

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) ENVIRONMENTAL, INC., 2014

(Page 2 of 2)

				Concentration	la	
				Known	Control	
Lab Code _b	Date	Analysis	Laboratory result	Activity	Limits c	Acceptance
						_
MASO-4439	8/1/2014	Ni-63	771.62 ± 23.29	980.00	686.00 - 1274.00	Pass
MASO-4439	8/1/2014	Sr-90	778.34 ± 17.82	858.00	601.00 - 1115.00	Pass
MASO-4439	8/1/2014	Cs-134	520.60 ± 7.09	622.00	435.00 - 809.00	Pass
MASO-4439	8/1/2014	Co-57	1135.00 ± 7.40	1116.00	781.00 - 1451.00	Pass
MASO-4439	8/1/2014	Co-60	768.20 ± 7.70	779.00	545.00 - 1013.00	Pass
MASO-4439	8/1/2014	Mn-54				Pass
MASO-4439	8/1/2014	Zn-65	407.89 ± 15.03	541.00	379.00 - 703.00	Pass
			0.70 . 0.00	0.99	0.62 1.14	Pass
						Pass
						Pass
						Pass
					÷···	Pass
						Fail (5)
						Pass
						Pass
MAW-4431	8/1/2014	Zn-65	11.46 ± 0.78	10.90	7.60 - 14.20	F855
NANNI 4400	0/4/00/4	Cr Alaba	0.93 ± 0.07	1 40	042 - 2.38	Pass
		•				Pass
WAW-4493	8/1/2014	GI. Dela	0.51 ± 1.55	0.00	0.20 0.10	
MAAD-4433	8/1/2014	Sr-90	0.74 ± 0.10	0.70	0.49 - 0.91	Pass
	0/1/2014	0.00				
MAAP-4444	8/1/2014	Sr-89	7.82 ± 0.52	9.40	6.60 - 12.20	Pass
			0.76 ± 0.10	0.76	0.53 - 0.99	Pass
	0/ 1/20 / 1					
MAVE-4436	8/1/2014	Cs-134	7.49 ± 0.18	7.38	5.17 - 9.59	Pass
		Co-57	11.20 ± 0.19	9.20	6.40 - 12.00	Pass
			6.84 ± 0.17	6.11	4.28 - 7.94	Pass
			8.11 ± 0.26	7.11	4.97 - 9.23	Pass
			7.76 ± 0.43	6.42	4.49 - 8.35	Pass
MASO-4439	8/1/2014	Mn-54 Zn-65 Am-241 Cs-137 Co-57 Co-60 H-3 Fe-55 Mn-54 Zn-65 Gr. Alpha Gr. Beta Sr-90 Sr-89 Sr-90 Cs-134	$1050.70 \pm 12.60 407.89 \pm 15.03 0.79 \pm 0.08 18.62 \pm 0.54 24.85 \pm 0.42 12.27 \pm 0.38 207.20 \pm 10.60 55.10 \pm 14.80 14.36 \pm 0.53 11.46 \pm 0.78 0.93 \pm 0.07 6.31 \pm 1.35 0.74 \pm 0.10 7.82 \pm 0.52 0.76 \pm 0.10 7.49 \pm 0.18 11.20 \pm 0.19 6.84 \pm 0.17 \\ \hline$	1009.00 541.00 0.88 18.40 24.70 12.40 208.00 31.50 14.00 10.90 1.40 6.50 0.70 9.40 0.76 7.38 9.20 6.11 7.11	$\begin{array}{r} 706.00 & - & 1312.00\\ 379.00 & - & 703.00\\ \hline 0.62 & - & 1.14\\ 12.90 & - & 23.90\\ 17.30 & - & 32.10\\ 8.70 & - & 16.10\\ 146.00 & - & 270.00\\ 22.10 & - & 41.00\\ 9.80 & - & 18.20\\ 7.60 & - & 14.20\\ \hline 0.42 & - & 2.38\\ 3.25 & - & 9.75\\ \hline 0.49 & - & 0.91\\ \hline 6.60 & - & 12.20\\ 0.53 & - & 0.99\\ \hline 5.17 & - & 9.59\\ \hline 6.40 & - & 12.00\\ 4.28 & - & 7.94\\ 4.97 & - & 9.23\\ \end{array}$	Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa Pa P

^a Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^b Laboratory codes as follows: MAW (water), MAAP (air filter), MASO (soil), MAVE (vegetation).

^c MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". MAPEP does not provide control limits.

(1) The high bias on the plutonium crosscheck samples was traced to contamination from a newly purchased standard. The results of reanalysis with replacement tracer purchased from NIST:

MAW-1184 Pu-238	0.68 ± 0.10	Bq/L
MAW-1184 Pu-239/240	0.66 ± 0.10	Bq/L

(2) Interference from Eu-152 resulted in misidentification of Co-57.

(3) Provided in the series for "sensitivity evaluation". MAPEP does not provide control limits.

(4) False positive test. Long sample counting time lead to interference from naturally occuring Bi-214 in sample matrix with a close spectral energy.

(5) Result of reanalysis Fe-55 32.63 ± 16.30 Bq/L

APPENDIX E

EFFLUENT DATA

TABLE OF CONTENTS

2
3
3
3
3
3
3
4
4
4
5
5
5
5
6

Table	of	Contents	(cont)
Ianc	UI.	Contenta	

APPENDIX E-1 DAT	A TABLES AND FIGURES	E-1.1
Station Release	es	
Table 1.1-1	Gaseous Effluents Summation of all Releases	E-1.2
Table 1.2-1	Summation of all Liquid Releases	E-1.3
Table 2.1-1	Solid Radwaste Annual Report	E-1.4
Table 3.1-1	Maximum Doses Resulting from Gaseous Releases and	
	Compliance Status	E-1.5
Table 3.2-1	Maximum Doses Resulting from Liquid Effluents and	
	Compliance Status	E-1.6

Table 3.3-1	10CFR20 Compliance Assessment	E-1.7
Table 3.4-1	Maximum Doses Resulting from Airborne Releases Based	
	On Concurrent Meteorological Data	E-1.8

INTRODUCTION

LaSalle County Station, a two-unit BWR, is located near Marseilles, Illinois in LaSalle County, 3.5 miles south of the Illinois River. Both units are rated at 3546 MWt. Unit 1 loaded fuel in March 1982. Unit 2 loaded fuel in late December 1983. The Station is designed to keep releases to the environment at levels below those specified in the regulations.

Liquid effluents, although no longer released from LaSalle County Station, were designed to be released to the Illinois River in controlled batches after radioassay of each batch. Gaseous effluents are released to the atmosphere after delay allowing time for short-lived (noble) gases to decay. Releases to the atmosphere are sampled and analyzed on a routine basis. The gaseous effluent samples are analyzed for particulate, iodine, noble gas, and tritium activity. The particulate and iodine sample results are obtained from continuously collected composite samples. The noble gas and tritium sample results are obtained from routine grab samples. The results of effluent analyses are summarized on a monthly basis and reported to the Nuclear Regulatory Commission as required per Technical Specifications. Airborne concentrations of noble gases, tritium, I-131, and particulate radioactivity in offsite areas are calculated using effluent and meteorological data.

Environmental monitoring is conducted by sampling at indicator and control (background) locations in the vicinity of LaSalle County Station to measure changes in radiation or radioactivity levels that may be attributable to station operations. If significant changes attributable to LaSalle County Station are measured, these changes are correlated with effluent releases. External gamma radiation exposure from noble gases and internal dose from I-131 in milk are the critical pathways at this site; however, an environmental monitoring program is conducted which also includes these and many other pathways which are less significant in terms of radiation protection.

SUMMARY

Gaseous effluents for the period contributed to only a small fraction of the LaSalle County Station Radiological Effluent Controls Limits. Liquid effluents had no contribution to offsite dose, as no liquid radioactive discharges were conducted. Calculations of environmental concentrations based on effluent, Illinois River flow, and meteorological data for the period indicate that consumption by the public of radionuclides attributable to LaSalle County Station does not exceed regulatory limits. Radiation exposure from radionuclides released to the atmosphere represented the critical pathway for the period with a maximum individual total dose estimated to be 1.67E+00 mrem for the year, where a shielding factor of 0.7 and an occupancy factor of 0.95 are assumed for the nearest resident. The assessment of radiation doses is performed in accordance with the Offsite Dose Calculation Manual (ODCM), specifically, a comparison of preoperational studies with operational controls or with previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environment. Control locations are basis for "preoperational data." The results of analysis confirm that the station is operating in compliance with 10CFR50 Appendix I, 10CFR20 and 40CFR190.

1.0 <u>EFFLUENTS</u>

1.1 Gaseous Effluents to the Atmosphere

Measured concentrations of noble gases, radioiodine, and particulate radioactivity released to the atmosphere during the year, are listed in Table 1.1-1. A total of 3.87E+03 curies of fission and activation gases were released with an average release rate of $1.23E+02 \ \mu$ Ci/sec.

A total of 1.87E-01 curies of I-131 were released during the year with an average release rate of $5.94E-03 \ \mu$ Ci/sec.

A total of 3.59E-02 curies of beta-gamma emitters were released as airborne particulate matter with an average release rate of 1.14E-03 μ Ci/sec. Alpha-emitting radionuclides were below the lower limit of detection (LLD). Carbon-14 released in 2014 was calculated separately with a total of 3.35E+01 curies released with an average release rate of 1.06E+00 μ Ci/sec.

A total of 1.82E+01 curies of tritium were released with an average release rate of 5.76E-01 μ Ci/sec.

1.2 Liquids Released to Illinois River

There were no liquid batch releases in 2014. Continuous release path activity was below applicable Lower Limits of Detection.

2.0 SOLID RADIOACTIVE WASTE

Solid radioactive wastes were shipped by truck to a disposal facility or to a waste processor. For further detail, refer the LaSalle 2014 Annual Radioactive Effluent Release Report (ARERR). This report was submitted to the USNRC by the required date of May 1st, 2014.

3.0 DOSE TO MAN

3.1 Gaseous Effluent Pathways

Table 3.1-1 summarizes the doses resulting from releases of airborne radioactivity via the different exposure pathways.

3.1.1 Noble Gases

3.1.1.1 Gamma Dose Rates

Unit 1 and Unit 2 gaseous releases at LaSalle County Station are reported as Unit 1 releases due to a single station vent stack (SVS) release point. Offsite Gamma air and whole body dose rates are shown in Table 3.1-1 and were calculated based on measured release rates, isotopic composition of the noble gases and average meteorological data for the period. Doses based on concurrent meteorological data are shown in Table 3.4-1. Based on measured effluents and meteorological data, the maximum total body dose to an individual would be 3.19E-02 mrem (Table 3.1-1) for the year, with an occupancy factor of 0.95 and a shielding factor of The maximum total body dose 0.7 included. based on measured effluents and concurrent meteorological data would be 2.22E-02 mrem (Table 3.4-1).

The maximum gamma air dose was 4.78E-02 mrad from Table 3.1-1, and the maximum gamma air dose from concurrent meterorological data was 5.38E-03 mrad (Table 3.4-1).

3.1.1.2 Beta Air and Skin Dose Rates

The range of beta particles in air is relatively small (on the order of a few meters or less); consequently, plumes of gaseous effluents may be considered "infinite" for purpose of calculating the dose from beta radiation incident on the skin. However, the actual dose to sensitive skin tissues is difficult to calculate due to the effect of the beta particle energies, thickness of inert skin and clothing covering sensitive tissues. For purposes of this report the skin is taken to have a thickness of 7.0 mg/cm² and an occupancy factor of 1.0 is used. The skin dose (from beta and gamma radiation) for the year was 5.38E-02 mrem from Table 3.1-1, and the skin dose from concurrent meteorological data was 5.57E-03 mrem (Table 3.4-1). The maximum offsite beta dose for the year was 2.22E-03 mrad from Table 3.1-1, and the maximum offsite beta dose from concurrent meteorological data was 1.93E-03 mrad (Table 3.4-1).

3.1.2 Radioactive Iodine

The human thyroid exhibits a significant capacity to concentrate ingested or inhaled iodine. The radioiodine, I-131, released during routing operation of the plant, may be made available to man resulting in a dose to the thyroid. The principal pathway of interest for this radionuclide is ingestion of radioiodine in milk.

3.1.2.1 Dose to Thyroid

The hypothetical thyroid dose to a maximum exposed individual living near the station via ingestion of milk was calculated. The radionuclide considered was I-131 and the source of milk was taken to be the nearest dairy farm with the cows pastured from May through October. The maximum thyroid does due to I-131 was 9.13E-01 mrem for the year.

3.2 Liquid Effluent Pathways

The three principal pathways through the aquatic environment for potential doses to man from liquid waste are ingestion of potable water, eating aquatic foods, and exposure while on the shoreline. Not all of these pathways are significant or applicable at a given time but a reasonable approximation of the dose can be made by adjusting the dose formula for season of the year or type and degree of use of the aquatic environment. NRC developed equations* were used to calculate the doses to the whole body, lower gastro-intestinal tracts, thyroid, bone and skin; specific parameters for use in the equations are given in the Offsite Dose Calculation Manual. The maximum whole body dose was 0.00E+00 mrem and organ dose was 0.00E+00 for the year mrem (Table 3.2-1).

3.3 Assessment of Dose to Member of Public

During the period January to December 2014, LaSalle County

Station did not exceed these limits as shown in Table 3.1-1 and Table 3.2-1 (based on annual average meteorological data), and as shown in Table 3.3-1:

- The Radiological Effluent Technical Standards (RETS) limits on dose or dose commitment to an individual due to radioactive materials in liquid effluents from each reactor unit (1.5 mrem to the whole body or 5 mrem to any organ during any calendar year; 3 mrem to the whole body or 10 mrem to any organ during the calendar year).
- The RETS limits on air dose in noble gases released in gaseous effluents to a member of the public from each reactor unit (5 mrad for gamma radiation or 10 mrad for beta radiation during any calendar quarter; 10 mrads for gamma radiation or 20 mrad for beta radiation during a calendar year).
- The RETS limits on dose to a member of the public due to iodine-131, iodine-133, tritium and radionuclides in particulate form with half-lives greater than eight days in gaseous effluents released from each reactor unit (7.5 mrem to any organ during any calendar quarter; 15 mrem to any organ during any calendar year).
- The 10CFR20 limit on Total Effective Dose Equivalent to individual members of the public (100 mrem).

4.0 SITE METEOROLOGY

A summary of the site meteorological measurements taken during each calendar quarter of the year is given in Appendix F. The data are presented as cumulative joint frequency distributions of the wind direction for the 375' level and wind speed class by atmospheric stability class determined from the temperature difference between the 375' and 33' levels. Data recovery for these measurements was 99.9% during 2014.

*Nuclear Regulatory Commission, Regulatory Guide 1.109 (Rev. 1)

APPENDIX E-1

DATA TABLES AND FIGURES

Table 1.1-1

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2014) GASEOUS EFFLUENTS ELEVATED RELEASE UNIT 1 AND UNIT 2

A. Fission & Activation Gases	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter4	Est. Total Error %
1. Total Release	Ci	9.98E+02	7.88E+02	1.16E+03	9.23E+02	2.50E+01
2. Average release rate for the period	μCi/sec	1.28E+02	1.00E+02	1.46E+02	1.16E+02	
3. Percent of ODCM limit	%	*	*	*	*	1

B. lodine	T					
1. Total lodine – 131	Ci	6.41E-02	5.01E-02	3.28E-02	3.98E-02	1.50E+01
2. Average release rate for the period	µCi/sec	8.24E-03	6.37E-03	4.13E-03	5.00E-03	
3. Percent of ODCM limit	%	*	*	*	*]

C. Particulates						
1. Particulates with half-lives > 8 days	Ci	1.04E-02	8.03E-03	8.86E-03	8.59E-03	3.50E+01
2. Average release rate for the period	μCi/sec	1.33E-03	1.02E-03	1.12E-03	1.08E-03	
3. Percent of ODCM limit	%	*	*	*	*	

D. Tritium	Ī					
1. Total Release	Ci	4.48E+00	2.40E+00	5.04E+00	6.25E+00	1.50E+01
2. Average release rate for the period	μCi/sec	5.76E-01	3.06E-01	6.35E-01	7.86E-01	
3. Percent of ODCM limit	%	*	*	*	*	

E. Gross Alpha						
1. Total Release	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>N/A</td></lld<>	N/A
2. Average release rate for the period	μCi/sec	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of ODCM limit	%	*	*	*	*	

F. Carbon-14					
1. Total Release	Ci	8.38E+00	8.38E+00	8.38E+00	8.37E+00
2. Average release rate for the period	µCi/sec	1.08E+00	1.06E+00	1.05E+00	1.05E+00
3. Percent of ODCM limit	%	*	*	*	*

"*" This information is contained in the Radiological Impact on Man section of the report.

"<" Indicates activity of sample is less than LLD given in µCi/ml

Table 1.2-1

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2014) SOLID WASTE AND IRRADIATED FUEL SHIPMENTS FOURTH QUARTER

A. Fission & Activation Products	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter4	Est. Total Error %
1. Total Release (not including tritium, gases & alpha)	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>N/A</td></lld<>	N/A
2. Average diluted concentration during period	μCi/mL	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of applicable limit	%	*	*	*	*	
B. Tritium	Ē					
1. Total Release	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>N/A</td></lld<>	N/A
2. Average diluted concentration during period	μCi/mL	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of applicable limit	%	*	*	*	*	1
C. Dissolved & Entrained Gases						
1. Total Release	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>N/A</td></lld<>	N/A
2. Average diluted concentration during period	μCi/mL	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of applicable limit	%	*	*	*	*	<u> </u>
D. Ourse Alishe Asthuite	Ī					
D. Gross Alpha Activity 1. Total Release	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>N/A</td></lld<>	N/A
2. Average release rate for the period	μCi/mL	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3. Percent of ODCM limit	%	*	*	*	*	1
en anna a thairt a an tha anna . Thanana a thairt	· · · · · · · · · · · · · · · · · · ·					-
E. Volume of Waste Released (prior to dilution)	Liters	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
F. Volume of Dilution Water Used During Period	Liters	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

"*" This information is contained in the Radiological Impact on Man section of the report.

"<" Indicates activity of sample is less than LLD given in µCi/ml

Table 2.1-1

SOLID RADWASTE ANNUAL REPORT

LaSalle County Station

Table 2.1-1 deliberately deleted. For solid waste disposal detail, refer to the LaSalle County Station 2014 Annual Radiological Effluent Release Report (ARERR).

 \mathbf{x}_i

Table 3.1-1

LASALLE COUNTY NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT (2014) RADIOLOGICAL IMPACT ON MAN MAXIMUM DOSES RESULTING FROM GASEOUS RELEASES AND COMPLIANCE STATUS

% of	Limit	0.48	0.01	0.64	0.36	6.08	% of	Limit	0.48	0.01	0.64	0.36	2.51	4	% OT Limit	0.48		10.01			1.27	% of	Limit	0.48	0.01	0.64	0.36	0.80	ing
																							:-			_			tant bound
Annual	Limit	1.00E+01	2 00E+01	5 00E+00	0.00E+01	1.50E+01	Annual	Limit	1 00F+01	2 00E+01	5 00E+00	1.50E+01	1.50E+01	Annual	Limit	1.00E+01					1.50E+01	Annual	Limit	1.00E+01	2.00E+01	5.00E+00	1.50E+01	1.50E+01	ion. The result
% of	Limit	0.24	0.005	0.32	0 18	2.60	% of	Limit	0.24	0.005	0.32	0.18	1.07	0/, of	/s or	0.24	0.005	0.30	0.18	00	0.04	% of	Limit	0.24	0.005	0.32	0.18	0.34	power operat
4th	Quarter	1.19E-02	5.24E-04	7.93F-03	1.34F-02	1.95E-01	4th	Quarter	1.19E-02	5.24F-04	7.93E-03	1.34E-02	8.05E-02	444	Quarter	1.19E-02	5 74E-N4	7 03E-03	1 345-00		4.U/E-U2	4th	Quarter	1.19E-02	5.24E-04	7.93E-03	1.34E-02	2.57E-02	al capacity at full
% of	Limit	0.28	0.007	0.38	0.21	2.15	% of	Limit	0.28	0.007	0.38	0.21	0.89	% of	Limit	0.28	0.007	0.38	0.21	0.45	0.4.0	% of	Limit	0.28	0.007	0.38	0.21	0.28	gross therm
3 rd	quarter	1.41E-02	6.91E-04	9.42E-03	1.59E-02	1.61E-01	3.d	Quarter	1.41E-02	6.91E-04	9.42E-03	1.59E-02	6.66E-02	3rd	Quarter	1.41E-02	6.91E-04	9.47E-03	1 59F-07	2 365-07	20-200-02	3 ^д	Quarter	1.41E-02	6.91E-04	9.42E-03	1.59E-02	2.13E-02	Carbon-14 has been calculated using the maximum gross thermal capacity at full power operation. The resultant bounding
% of		0.20	0.004	0.26	0.15	3.24	% of	Limit	0.20	0.004	0.26	0.15	1.34	% of	Limit	0.20	0.004	0.26	0.15	0.68	0.0	% of	Limit	0.20	0.004	0.26	0.15	0.43	calculated us
2nd	Auarter	9.77E-03	4.41E-04	6.52E-03	1.10E-02	2.43E-01	2nd	Quarter	9.77E-03	4.41E-04	6.52E-03	1.10E-02	1.00E-01	2nd	Quarter	9.77E-03	4.41E-04	6.52E-03	1.10E-02	5 07E-02	2.07 L 02	2nd	Quarter	9.77E-03	4.41E-04	-		3.20E-02	on-14 has been
% of		0.24	0.006	0.32	0.18	4.18	% of	Limit	0.24	0.006	0.32	0.18	1.72	% of	Limit	0.24	0.006	0.32	0.18	0.87	5	% of	Limit	0.24	0.006	0.32	0.18	0.55	se from Cart
1st Ouerter		1.20E-02	5.67E-04	8.00E-03	1.35E-02	3.14E-01	1st	Quarter	1.20E-02	5.67E-04	8.00E-03	1.35E-02	1.29E-01	1st	Quarter	1.20E-02	5.67E-04	8.00E-03	1.35E-02	6.54F-02		1st	Quarter	1.20E-02	5.67E-04	8.00E-03	1.35E-02	4.13E-02	pected annual do e term.
Units		mkad	mRad	mRem	mRem	mRem	Units		mRad	mRad	mRem	mRem	mRem	11-16-	OUICS	mRad	mRad	mRem	mRem	mRem		Units		mRad	mRad	mRem	mRem	mRem	maximum ex tions of sourc
Quarterly Limit		0.00E+00	1.00E+01	2.50E+00	7.50E+00	7.50E+00	Quarterly	Limit	5.00E+00	1.00E+01	2.50E+00	7.50E+00	7.50E+00	Quarterly	Limit	5.00E+00	1.00E+01	2.50E+00	7.50E+00	7.50E+00		Quarterly		5.00E+00	1.00E+01	2.50E+00	7.50E+00	7.50E+00	ar Power Station specific assump
Infant Recentor	Commo Air	Gainima Alr	Beta Air	NG Total Body	NG Skin	NNG Organ		Child Receptor	Gamma Air	Beta Air	NG Total Body	NG Skin	NNG Organ	Teenager	Receptor	Gamma Air	Beta Air	NG Total Body	NG Skin	NNG Organ	5		Adult Keceptor	Gamma Air	beta Air	NG Total Body		NNG Organ	The LaSalle County Nuclear Power Station maximum expected annual dose from Carb $^\infty_\infty$ doses are based upon site specific assumptions of source term.
	1							1				E	-1.5													Pa	ige	90 of	F萼 178