ATTACHMENT 2 TO

2CAN101403

STRUCTURAL INTEGRITY ASSOCIATES CALCULATION 1401289.301

Ct	wotural Inton	rity Associates	lno®	File No.: 1401289.30)1		
		ON PACKAG		Project No.: 1401289 Quality Program: ⊠ Nuclear ☐ Commercial			
PROJECT ANO Leaki	NAME: ng Flaw Evaluation	on					
CONTRAC 10423246, C	CT NO.: Change Request N	No. 00109841					
CLIENT: Entergy Ark	cansas, Inc.		PLANT: Arkansas	Nuclear One, Unit 2			
	ATION TITLE: of a Through-Wal	Il Leak in a Service	Water Tee	(Dwg 2HCC-2003-1)			
Document Revision	Affected Pages	Revision Descrip		Project Manager Approval Signature & Date	Preparer(s) & Checker(s) Signatures & Date		
	1 - 12	Initial Issue		Eric J. Houston 10/31/2014	Preparer: Adam C. Roukema 10/31/2014 Checker: Mule Dan Brad P. Dawson 10/31/2014		

Table of Contents

1.0 INTRODUCTION	3
2.0 TECHNICAL APPROACH	
3.0 DESIGN INPUTS AND ASSUMPTIONS	
4.0 CALCULATIONS	
4.1 Minimum Required Wall Thickness	5
4.2 Applied Loads	
4.2.1 Hoop Stress	
4.2.2 Axial Stresses	
4.3 Stress Intensity Factor Calculations	6
4.4 Critical Fracture Toughness Determination	
5.0 RESULTS	
6.0 CONCLUSIONS	
7.0 REFERENCES	9
List of Tables	
Table 1: Applied Moment Loading for Bounding Moments	10
Table 2: J _{IC} Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database	e [9]11
Table 3: Axial and Circumferential Structural Factors [2]	12
Table 4: Load Combinations for Circumferential Flaw Analyses	12
Table 5: Pressure Blowout Check	12

File No.: **1401289.301** Page 2 of 12

1.0 INTRODUCTION

Arkansas Nuclear One has identified a pinhole leak in a 6-inch branch connection (Sweep-o-let) in the service water system. The system is safety related, and therefore requires an evaluation to demonstrate operability. The objective of this calculation is to determine the allowable through-wall flaw lengths in accordance with ASME Code Case N-513-4 [1].

2.0 TECHNICAL APPROACH

The flaw evaluation herein is based on the criteria prescribed in ASME Code Case N-513-4, allowing for the temporary acceptance of through-wall flaws in moderate energy Class 2 or Class 3 piping. N-513-4 allows non-planar, through-wall flaws to be characterized and evaluated as planar (i.e., crack-like), throughwall flaws in the axial and circumferential directions.

In addition to straight pipe, N-513-4 evaluation criteria includes rules for the evaluation of piping components such as elbows, branch tees and reducers. Flaws in these components may be evaluated as if in straight pipe provided the stresses used in the evaluation are adjusted to account for geometric differences. Details are provided in N-513-4 for determining these adjusted stresses. The leaking flaw is in the carbon steel sweep-o-let, near the dissimilar metal weld at the adjoining stainless steel elbow. Therefore, the evaluation approach for branch connections in N-513-4 is appropriate. Although the attached elbow material has significantly higher toughness than the carbon steel (which if used would result in a much larger allowable through-wall flaw) the influence of the higher toughness on the allowable through-wall flaw is ignored and the system is evaluated as only carbon steel.

N-513-4 has been approved and published by ASME. It is recognized in ASME committee that the technical approach is very conservative. Simple treatment of piping component flaw evaluation using hand calculations was an important objective in the development of the approach recognizing the trade-off being conservative results. N-513-4 allows for alternative methods to calculate the stresses used in the analysis to reduce conservatism. N-513-4 has not been generically reviewed by the NRC.

Code Case N-513-4 evaluation criteria rely on the methods given in ASME Section XI, Appendix C [2]. Linear Elastic Fracture Mechanics (LEFM) criteria are conservatively employed as described in Article C-7000. Equations for through-wall stress intensity factor parameters F_m , F_b and F are given in the Code Case, Appendix I. Allowable flaw lengths are determined through iteration comparing calculated stress intensity factors to a critical fracture toughness defined in C-7200 of Section XI, Appendix C.

3.0 DESIGN INPUTS AND ASSUMPTIONS

The piping design Code of Construction is ASME Section III - 1971 with Addenda through Summer 1971 [3] except for the items listed below:

- A) Use ASME Section III 1971 Winter 1972 Addenda, NC-3611.1(b)(4)(c) and NC-3650 with Code Case 1606-1, for the following:
 - a. Moments

b. Design Loading Combinations

File No.: 1401289.301 Page 3 of 12

c. Section Modulus

- d. Stress Limits
- B) Use ASME Section III 1974 [4], NC-3673.2 for the following:
 - a. Flexibility Factors

b. Stress Intensification Factors

The sweep-o-let material is ASME A105 Gr II carbon steel and the run piping is A106 Gr. B [5] carbon steel. For the analysis, A106 Gr. B carbon properties are conservatively used. In addition, the fracture toughness of the two materials are assumed to be comparable.

The following design inputs are used in this calculation:

- 1. Outside diameter = 6.625 inches [5, Line Item 14]
- 2. Nominal wall thickness = 0.280 inch (based on standard pipe size) [5, Line Item 14]
- 3. Design temperature = 130°F [6, Page 114]
- 4. Design pressure = 150 psig [6, Page 114]
- 5. Material stress allowable = 15 ksi [7, PDF Page 19]
- 6. Young's modulus = 27,900 ksi [7, PDF Page 19]
- 7. NDE inspection results [8]

The moment loadings applied to the piping are obtained from the piping stress report [7] for the element located between nodes 25 and 225. The bounding moments are shown in Table 1.

Determination of the fracture toughness, J_{IC}, used in the evaluation is based on Section XI, Appendix C, C-8320 [2], which specifies that 'reasonable lower bound fracture toughness data' may be used to determine the allowable stress intensity factor, K_{Ic}. The NRC's Pipe Fracture Encyclopedia [9] contains numerous CVN test results for A106 Gr. B carbon steel at low temperature, which are reproduced in Table 2. The minimum reported value of 293 in-lb/in² is used in the analysis.

The following assumptions are used in this calculation:

- 1. Poisson's ratio is assumed to be 0.3.
- 2. The impact of weld residual stress on the structural stability of the observed flaw is assumed negligible. Weld residual stresses are secondary (i.e., self-limiting) and do not contribute significantly to gross structural failure in ductile materials in the presence of a through-wall flaw. In addition, the contribution, if any, to flaw growth due to secondary weld residual stresses is not required as the Code Case specifies a frequent re-inspection interval.
- 3. A corrosion allowance is not considered (the ongoing inspection requirements in Code Case N-513-4 address the possibility of flaw growth during the temporary acceptance period).

4.0 CALCULATIONS

The applied stresses and resulting stress intensity factors are conservatively calculated using an evaluated wall thickness, t_{eval}, 0.175 inches.

File No.: 1401289.301 Page 4 of 12

4.1 Minimum Required Wall Thickness

An evaluation of ASME Section III, NC-3650 equations 3, 8, 9B, 9D, and 10 has been conducted using inputs discussed in Section 3.0. Based on these equations the minimum required wall thickness is 0.115 inch.

4.2 Applied Loads

Axial and circumferential (i.e., hoop) stresses are calculated from the moment loads in Table 1 and the design pressure. The evaluated wall thickness, t_{eval}, is used to determine the section properties. The nominal wall thickness, t_{nom}, is used to calculate the flexibility characteristic 'h' in accordance with the guidance of N-513-4.

4.2.1 Hoop Stress

For the allowable axial flaw length on a branch tee, the hoop stress, σ_h , may be determined from Equation 13 of N-513-4:

$$\sigma_h = \frac{pD_o}{2t} \tag{1}$$

where:

p = internal design pressure, psig

 D_0 = outside diameter, in

 $t = evaluated wall thickness = t_{eval}$, in

4.2.2 Axial Stresses

For the allowable circumferential flaw length, the axial stress due to pressure, deadweight and seismic loading is presented below. For axial membrane stress due to pressure, σ_m , Equation 14 of N-513-4 is used. Note that there is a typo in the published version of this equation; the correct form is:

$$\sigma_m = B_1 \frac{pD_0}{2t} \tag{2}$$

 B_1 is the primary stress index for pressure loading. As allowed by the Code Case, the primary stress indices B_1 and B_2 are taken from a more recent edition of the ASME Code [10, Table NB-3681(a)-1]. For branch connections, B_1 is 0.5.

For axial bending stress, σ_b , due to deadweight and seismic moments, Equation 15 of N-513-4 may be used:

$$\sigma_b = B_2 \frac{D_0 M_b}{2I} \tag{3}$$

File No.: 1401289.301 Page 5 of 12

where:

 M_b = resultant primary bending moment, in-lbs.

I = moment of inertia based on evaluated wall thickness, in⁴

The coefficient B_2 for branch connections is $0.5*C_2$ (but not < 1.0) and [10, NB-3683.8]:

$$C_2 = 1.5 \left(\frac{R_m}{T_r}\right)^{2/3} \left(\frac{r_{\prime m}}{R_m}\right)^{1/2} \left(\frac{T_{\prime b}}{T_r}\right) \left(\frac{r_{\prime m}}{r_p}\right) \tag{4}$$

where:

 R_m = mean nominal radius of run pipe, in

 $T_r = nominal wall thickness of run pipe, in$

r'_m = mean nominal radius of branch pipe, in

 T'_b = nominal wall of branch pipe, in

 r_p = outside nominal radius of branch pipe, in

For axial bending stress, σ_e , due to thermal expansion, Equation 16 of N-513-4 may be used:

$$\sigma_e = i \frac{D_o M_e}{2I} \tag{5}$$

where:

i = stress intensification factor

 M_e = resultant thermal expansion moment, in-lbs.

The stress intensification factor is calculated based on a welding tee as [4, Figure NC-3673.2(b)-1]:

$$i = \frac{0.9}{h^{2/3}}$$
 and $h = \frac{4.4t_n}{r}$ (6, 7)

where:

h = flexibility characteristic

 $t_n = nominal wall thickness of run piping, in$

r = mean radius of run piping, in

4.3 Stress Intensity Factor Calculations

For LEFM analysis, the stress intensity factor, K_I, for an axial flaw is taken from Article C-7000 [2] as prescribed by N-513-4 and is given below:

$$K_I = K_{\rm Im} + K_{Ir}$$

where:

 $K_{Im} = (SF_m)F\sigma_h(\pi a/Q)^{0.5}$

 SF_m = structural factor for membrane stress (see Table 3)

F = through-wall stress intensity factor parameter for an axial flaw under hoop stress (given in Appendix I of N-513-4)

File No.: 1401289.301

Revision: 0

Page 6 of 12

 σ_h = hoop stress, ksi

a = flaw depth (taken as half flaw length for through-wall flaw per Appendix I of N-513-4), in

Q = flaw shape parameter (unity per Appendix I of N-513-4)

 $K_{Ir} = K_I$ from residual stresses at flaw location (assumed negligible)

Only the hoop stress influences the allowable axial flaw length, which is a function of pressure.

For LEFM analysis, the stress intensity factor, K_I, for a circumferential flaw is taken from Article C-7000 [2] as prescribed by N-513-4 and is given below:

$$K_I = K_{\rm lm} + K_{Ib} + K_{Ir}$$

where:

 $K_{lm} = (SF_m)F_m\sigma_m(\pi a)^{0.5}$

 F_m = through-wall stress intensity factor parameter for a circumferential flaw under membrane stress (given in Appendix I of N-513-4)

 σ_m = membrane stress, ksi

 $K_{lb} = [(SF_b)\sigma_b + \sigma_e]F_b(\pi a)^{0.5}$

 SF_b = structural factor for bending stress (see Table 3)

 σ_b = bending stress, ksi

 σ_e = thermal stress, ksi

 F_b = through-wall stress intensity factor parameter for a circumferential flaw under bending stress (given in Appendix I of N-513-4)

 $K_{Ir} = K_I$ from residual stresses at flaw location (assumed negligible)

Note that the through-wall flaw stress intensity factor parameters are a function of flaw length.

Table 4 shows the specific load combinations considered herein for the allowable circumferential flaw calculations.

4.4 Critical Fracture Toughness Determination

For LEFM analysis, the static fracture toughness for crack initiation under plane strain conditions, K_{lc} , is taken from Article C-7000 [2] as prescribed by N-513-4 and is given below:

$$K_{lc} = \sqrt{\frac{J_{lc}E'}{1000}}$$

where:

J_{Ic} = material toughness, in-lb/in²

 $E' = E/(1-v^2)$

E = Young's modulus, ksi

v = Poisson's ratio

File No.: 1401289.301 Page 7 of 12

Based on the design input listed above, $K_{lc} = 94.7 \text{ ksi-in}^{0.5}$. The allowable flaw lengths are determined iteratively by increasing flaw length until the stress intensity factor is equal to the static fracture toughness.

5.0 RESULTS

Based on inputs in Section 3.0, moments in Table 1 and using equations from Section 4.0, the allowable through-wall flaw in the circumferential direction is 2.7 inches and the allowable through-wall flaw in the axial direction is 5.8 inches. The allowable through-wall flaw lengths are based on an evaluated wall thickness of 0.175 inch. Based on the inspection data given in Reference [8], the analyzed thickness and flaw lengths easily bound the observed thinning. Thus, the acceptance criteria of Code Case N-513-4 are met.

Code Case N-513-4, Paragraph 3.2(c) requires that the remaining ligament average thickness over the degraded area be sufficient to resist pressure blowout [1, Equation 8]. Table 5 shows the required average thickness, t_{c,avg}, as a function of the equivalent diameter of the circular region, d_{adj}, for which the wall thickness is less than t_{adj}. Based on the inspection data given in Reference [8], the values in Table 5 easily bound the observed thinning. Thus, the Code Case requirement is met.

6.0 CONCLUSIONS

Arkansas Nuclear One has identified a pinhole leak in a 6-inch branch connection (Sweep-o-let) in the service water system. Allowable through-wall flaw lengths have been calculated in accordance with ASME Code Case N-513-4. Because N-513-4 has not been generically reviewed by the NRC, justification for continued operation without repair or replacement until the next scheduled outage requires NRC review and approval.

The allowable through-wall flaw in the circumferential and axial directions is 2.7 inches and 5.8 inches, respectively. The allowable through-wall flaw lengths are based on an evaluated wall thickness of 0.175 inch. Table 5 shows the requirements to meet the Code Case pressure blowout limits.

The observed pinhole leak is easily bounded by the results of the analysis; thus, the acceptance criteria of Code Case N-513-4 are met. The system should be considered operable but degraded.

File No.: 1401289.301 Page 8 of 12

7.0 REFERENCES

- 1. ASME Code Case N-513-4, "Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping Section XI, Division 1," Cases of ASME Boiler and Pressure Vessel Code, May 7, 2014.
- 2. ASME Boiler and Pressure Vessel Code, Section XI, Appendix C, 2001 Edition with 2003 Addenda.
- 3. ASME Boiler and Pressure Vessel Code, Section III, 1971 Edition with Addenda through Summer 1971.
- 4. ASME Boiler and Pressure Vessel Code, Section III, 1974 Edition.
- 5. Entergy Drawing No. 2HBC-33-2, Sheet 1, Revision 16, "Large Pipe Isometric Service Water Supply Header #1," SI File No. 1401289.201.
- 6. Entergy Calculation No. 88-E-0200-15, Revision 3, "P-T Calculation for Unit 2 Service Water System," SI File No. 1401289.201.
- 7. Entergy Calculation No. 90-D-2003-08, Revision 3, "Supply Piping Analysis for Piping in DCP 90-2003," SI File No 1401289.201.
- 8. Entergy UT Thickness Examination Report No. 2-BOP-UT-14-040, SI File No. 1401289.201.
- 9. Pipe Fracture Encyclopedia, US Nuclear Regulatory Commission, Volume 1, 1997.
- 10. ASME Boiler and Pressure Vessel Code, Section III, 2004 Edition.

File No.: 1401289.301 Page 9 of 12

Table 1: Applied Moment Loading for Bounding Moments

Deadweight (in-lbs)	OBE (in-lbs)	DBE (in-lbs)	Thermal (in-lbs)
6902	21471	30657	5408

Notes:

- 1. Square Root Sum of the Squares (SRSS) is used to calculate moments from Reference [7].
- 2. Moments are from the bounding location, which is at node 225.

File No.: **1401289.301** Page 10 of 12

Table 2: JIC Values for A106 Gr. B Carbon Steel from NRC's Pipe Fracture Database [9]

abase Reference	Temperature (°C)	Temperature (°F)	JIC (kJ/m²)	JIC (lb _r in/in²)	KIC (ksi-in ^{0.5})
2		75	97	552	133
2	24	75	336	1919	249
16		77	81	464	122
16	25	77	418	2386	277
16	25	77	270	1542	223
16		77	193	1104	189
22		75	224	1278	203
22	20	68	112	641	144
22		68	117	668	147
22		73	214	1223	199
22			167	954	175
22		68	223	1271	202
22		68	108	617	141
23		126	116	663	146
23		73 73	103 105	590 600	138
23		73	93	528	131
24		73	76	431	118
24		73	82	469	123
24		135	51	293	97
25		73	77	439	119
25		73	70	400	114
25		135	62	356	107
90		68	235	1342	208
90		68	219	1251	201
					
90			255	1456	217
90	 	68	281	1605	228
90		 	281	1605	228
90		68	335	1913	248
90	<u> </u>		421	2404	279
90		-	385	2198	266
90			175	999	180
90			172	982	178
90			178	1016	181
90		68	214	1222	199
90			275	1570	225
90	20	68	133	759	157
90	20	68	140	799	161
90	20	68	174	994	179
90	20	68	111	634	143
90	20	68	190	1085	187
90			71	405	114
90			110	628	142
90			104	594	138
90			104	594	138
90			97	554	134
90			89	508	128
90			88	502	127
90			267	1525	222

File No.: **1401289.301** Page 11 of 12

Table 3: Axial and Circumferential Structural Factors [2]

Service Level	Membrane Stress, SF _m	Bending Stress, SF _b
A	2.7	2.3
В	2.4	2.0
С	1.8	1.6
D	1.3	1.4

Table 4: Load Combinations for Circumferential Flaw Analyses

Load Combination	Service Level
P+DW+TH	Α
P+DW+TH+OBE	В
P+DW+TH+DBE	D

Table 5: Pressure Blowout Check

dadj	t _{c,avg}
0.25	0.01
0.75	0.03
1.25	0.04
1.75	0.06
2.25	0.08
2.75	0.10
3.25	0.11
3.75	0.13
4.25	0.15
4.75	0.17
5.25	0.19

File No.: **1401289.301** Page 12 of 12

ATTACHMENT 3 TO 2CAN101403 UT THICKNESS EXAMINATION REPORT 2-BOP-UT-14-040

UT Thickness Examination

S	ite/Unit:	ANO-2	. /	2	******	Proc	edure:	CEP	-NDE-0505	Ot	itage No.:		N/A	
Summ	ary No.:	FW-	1 2HCC-	2003-1	F	Procedure	Rev.:		004	R	eport No.:	2-BOP	-UT-1	4-040
Wor	kscope:	ВС	P\Non-C	utage	V	Vork Orde	er No.:		396448		Page:	1	of _	4
Code:		Info On	ly	Ca	it./Item:	N/A	VN/A	Loca	ation:		U2 TB 33	5'		
Drawing N	lo.:	2H	ICC-2003	1-1		Description	on: SV	/ Leak at S	S to CS FV	N-1				
System ID	: <u>s</u> \	N												
Compone	nt ID: 21	ICC-200	3-1 SW L	eak			Size/Le	ngth:	6"	Thickn	ess/Diame	ter:	0.28	10"
Limitation	s: <u>N</u>	one												
Temp. To	ol Mfg.:			PTC		s	erial No).: 	109537	S	urface Ter	np.:	70	°F
										o.:	N.	/A		
									und Flush					
Lo Locati	on:		TDC (I	eak at 24	") look	ing @	TEE	Wo Location	on:	Cen	terline of	Weld		
^							10/24							
Tmin	scan	.069"	_o 24"	Wo .3"										
Tmin	grid	.226"												
Tmax	grid	.577"												
Tavg	grid	.353"												
														······································
							·							
Commen	ts:													
was 0.06	9" near	leak. Equ	ipment	used: Pa	nametric	:s 37DL F	lus #5	1324510, P	adings at l 'anametric sidered No	eak location s transduce n-Planar	n. Lowest er D795 5 f	scanne VIhz .2"	ed rea #101	ding 01,
Results:		Acce	pt 🗌	Rejec	t 🗀	Info 🗹	<u>F</u>	Ref. CR-AN	O-2-2014-2	2970				
Percent (Of Cover	age Obta	ined > 90)%: 	Ń/A		F	Reviewed P	revious Da	ta:	N/A	 .		
Examine	er Le Michael	wel II	11	Signati	ıre	10/21/2	1 1	eviewer			Signature	2		Date
Examine		vel N/A	1 - f - b	Signati	afe .		ate Si	te Review	K	Parile	Signature	•		Date
N/A Other		evel 0	./ /	Signati	ıre	-	ate Al	anther, Ke	n /%	instr	Signature		10/2	2/2014 Date
Jackson	n, Ricke	1 Ku	10	My	<u>.</u>	10/21/2	014 N	Α						

UT Thickness Examination

Supplemental Report

Report No.: 2-BOP-UT-14-040

Date:

Page:

Summary No.: FW-1 2HCC-2003-1

Examiner: Taylor, Michael W. Level:

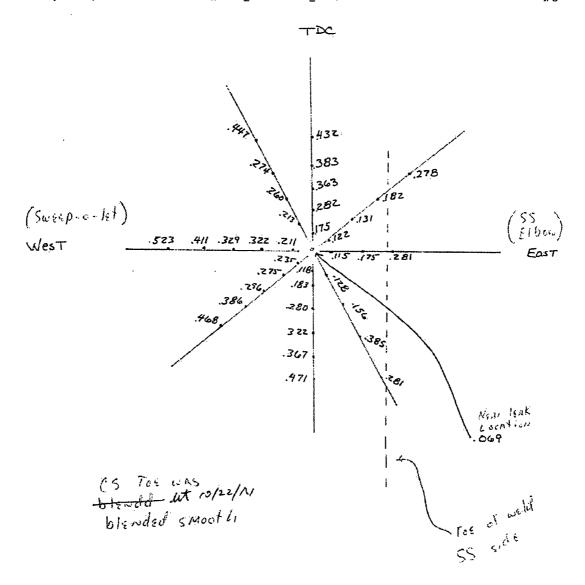
Reviewer: N/A

Site Review: Panther, Ken

Date: 10/22/2014

Other: Jackson, Rickey

Examiner: N/A


Level: N/A

ANII Review: N/A

Date:

Comments: The leak was located at the toe of weld on the Sweep-o-let side of weld. UT readings taken in a Star pattern around leak location to establish a wear area. Each row is incremented every 45° with each reading taken every .25" away from leak. This flaw is considered Non-Planar.

Sketch or Photo: \\ightharpoont\indexidonastsp001\indexidonastsp00

Supplemental Report

Report No.: 2-BOP-UT-14-040

Summary No.: FW-1 2HCC-2003-1

Examiner: Taylor, Michael W. Level: Reviewer: N/A

Date:

Examiner: N/A

Level: N/A

Site Review: Panther, Ken

Date: 10/22/2014

Other: Jackson, Rickey

Level: N/A

ANII Review: N/A

Date:

Comments: UT readings taken 360° around pipe at the plane of the leak for circuferential thicknesses. 01 reading was taken at TDC. Also scanned 100% circumferentially around pipe looking for other low readings and none were found. Oh reading is north of ol reading. Not 10/22/14

"A"- taken on CS Sweep-O-Let, "B"- taken on weld, "C"- taken on SS Elbow

Sketch or Photo: \\jdcnsetsp001\IDDEAL\Iddeal Ver 8\Iddeal_Server\iddeal_ANO\Documents\ANO BOP 2014\MIC\2HCC Grid.jpg

1	A	В	С		
l	0.450	0.313	0.277		
	0.577	0.319	0.282		
Ì	0.544	0.309	0.285		
i	0,477	0.302	0.285		
	0.533	0.390	0.299		
ì	0.562	0.416	0.285		
1	0.436	0.411	0.286		
5	0.505	0.415	0.281		
8 0	0.512	0.448	0.290		
9					
0	0.490	0.357	0.282		
L	0.434	0,431	0.278		
2	0.445	0.443	0.296		
1	0.388	0.303	0.309		
4	0.437	0.309	0.293		
1 5	0.447	0.295	0.289		
1	0.367	0.409	0.285		
7	0.321	0.350	0.286		
1 8	0.318	0.309	0.285		
1	0.283	0.245	0.300		
20	0.235	0.250	0.275		
2	0.258	0.226	0.284		
2	0.283	0.262	0.282		
Ź	0.351	0.363	0.281		
2	0.388	0.301	0.272		
2	0.456	0.240	0.276		
2	0.486	0.254	0.258		
5	0.465	0.237			
2			0.265		
8	0.442	0.398			
9	0.480	0.403			
D	0.490	0.392			
1	0.480	0.416	0.274		
2	0.494	0.459	0.279		

Supplemental Report

Report No.: 2-BOP-UT-14-040

Summary No.: FW-1 2HCC-2003-1

Examiner: Taylor, Michael W.

Level:

Reviewer: N/A

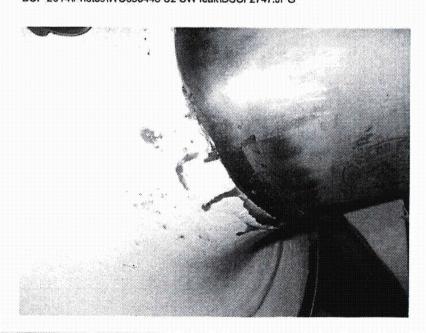
Site Review: Panther, Ken

Ranthe

Date: Date: 10/22/2014

Examiner: N/A

Other: Jackson, Rickey


ANII Review: N/A

Date:

Comments: Pictures before and after grinding weld flat. Picture on left shows weld still painted with stain appearing on SS elbow. Picture on the right is after grinding weld flat showing the leak to be at the toe of the weld on the Sweep-o-let side. LEAK is in lower South quadrant

Sketch or Photo: \\jdcnsetsp001\IDDEAL\Iddeal Ver 8\Iddeal Server\Iddeal ANO\Documents\ANO BOP 2014\Photos\WO396448 U2 SW leak\DSCF2747.JPG

\\jdcnsetsp001\IDDEAL\Iddeal Ver 8\Iddeal_Server\Iddeal_ANO\Documents\ANO BOP 2014\Photos\WO396448 U2 SW leak\DSCF2597.JPG

