Biolow Wolks Tunnet Wolks Loudination 1	By B	Ayout ar (1.8)										Transverse Shear Design Fore-				
Biolowials Tunnel Wals	Max Tension ai conseponding noment Max Compression ai conseponding noment Max Moment ath asid stravison Max Tension and conseponding noment Max Tension ai conseponding noment Max Tension ai conseponding noment Max Moment ath asid ression Max Moment ath asid progression Max Tension ai conseponding noment	1 2 4	ĉ,	Axial and Flexure	Loads		In-Plane Shear Loads		Longitudinal Reinforcement			Transverse Snear Design Porc				
Bion Wolks Tune! Walks	B Max Tension wi conseponding nonnert Max Compression wi conseponding nonnert Max Momere aith acid tension Max Tension wi conseponding nonnert Max Consequencial maintenant Max General and acid tension Max Momere aith acid tension Max Momere aith acid tension Max Tension wi consequencial progression	sreement L ing Numba	Force	Loads (11) Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Loads ⁽¹¹⁾ Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	Provided (in²/ ft)	Load Combination	Horizont	al Section	Vertica	I Section	Transverse Shear ⁽⁷⁾ Reinforcement Provided (in²/tt²)	Remarks
Image: Second	Max Tension of conseponding nonset Max Compression wi consequenting nonset Max Moneet with axial tension Max Tension wi consequenting nonset Max Tension wi consequenting nonset Max Moneet with axial tension Max Moneet with axial tension Max Moneet with axial compression Max Tension with consequenting moment	Rainfo Draw Reinforcer	X S W								Transverse Shear Force (kips / ft)	Corresponding Axial Force (kips / ft)	Transverse Shear Force (kips / ft)	Corresponding Axial Force (kips / ft)		
Bion Walks Tunnel Walk r Far Side Non Side Far Side Non Side Far Side Non Side Far Side Non Side Non Side Hotomata Non Side Far Side Non Side Non Side Hotomata Non Side Non Side Non Side Non Side Hotomata Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side Non Side	Max Compression of conseponding moment Max Moment with said structure Max Moment with said compression Max Tension with avaid compression Max Compression of conseponding moment Max Moment with said compression Max Moment with said compression Max Max Tension vorseponding moment		Max Tension w/ corresponding moment 9	951 D + L + H' +E' (WP)	130	-28										
Bion Walls Turnel Walls 1 Fa 34a Non 30a Fa 36a Non 36a Non 36a 1 Fa 36a Non 36a Fa 36a Non 36a Non 36a 1 Fa 36a Non 36a Fa 36a Non 36a Non 36a 1 Non 36a Non 36a Fa 36a Non 36a Non 36a 1 Non 36a Non 36a Non 36a Non 36a Non 36a 1 Non 36a Non 36a Non 36a Non 36a Non 36a 1 Non 36a Non 36a Non 36a Non 36a Non 36a 1 Non 36a Non 36a Non 36a Non 36a Non 36a 1 Non 36a Non 36a Non 36a Non 36a Non 36a 1 Non 36a Non 36a Non 36a Non 36a Non 36a 1 Non 36a Non 36a Non 36a Non 36a Non 36a 1 Non 36a Non 36a Non 36a Non 36a Non 36a <	Max Moneset with axial turnsion Max Moneset with axial compression Max Tension wi consequenting moment Max Compression wi consequenting moment Max Moneset with axial tension Max Tension with axial compression Max Tension with axial compression	Ŧ	Max Compression w/ corresponding moment 94	932 D + L + H' +E' (WP)	-66	-1	D + L + H' +E' (WP)	26	4.68							
Bion Wolls Tunnel Wolls re-gase New Side New Side New Side New Side re-gase New Side New Side New Side New Side New Side re-gase New Side New Side New Side New Side New Side New Side re-gase New Side New Side New Side New Side New Side re-gase New Side New Side New Side New Side New Side re-gase New Side New Side New Side New Side New Side re-gase New Side New Side New Side New Side New Side re-gase New Side New Side New Side New Side New Side re-gase New Side New Side New Side New Side New Side re-gase New Side New Side New Side New Side New Side re-gase New Side New Side New Side New Side New Side	Max Moment with axial compression Max Tension of corresponding moment Max Compression of corresponding moment Max Moment with axial tension Max Moment with axial tension Max Tension of corresponding moment	2	Max Moment with axial tension 90	952 D + L + H' +E' (WP)	48	-32										
Bion Walks Tunne Walk 	Max Tension w/ corresponding moment Max Compression w/ corresponding moment Max Moment with axial tension Max Moment with axial compression Max Tension w/ corresponding moment		Max Moment with axial compression 94	953 D + L + H' +E' (WP)	-1	-28										
Bion Walks Turner Walk 1 Fe use Non Use Non Use Non Use 1 Fe use Non Use Fe use Non Use Non Use 1 Fe use Non Use Fe use Non Use Non Use Non Use 1 Proteined Non Use Non Use Non Use Non Use Non Use 1 Non Use Non Use Non Use Non Use Non Use Non Use 1 Non Use Non Use Non Use Non Use Non Use Non Use 1 Non Use Non Use Non Use Non Use Non Use Non Use 1 Non Use Non Use Non Use Non Use Non Use Non Use 1 Non Use Non Use Non Use Non Use Non Use Non Use 1 Non Use Non Use Non Use Non Use Non Use Non Use	Max Compression w/ corresponding moment Max Moment with axial tension Max Moment with axial compression Max Tension w/ corresponding moment		Max Tension w/ corresponding moment 1	153 D + L + H' +E' (WP)	89	-11										
Bion Walks Turnet Walk 1 1 2	Max Moment with axial tension Max Moment with axial compression Max Tension w/ corresponding moment	1987	Max Compression w/ corresponding moment 8	854 D + L + H' +E' (WP)	-77	-1	D + L + H' +E' (WP)	21	3.12							
Bion Walls Tunnel Walls r Fer State New State Fer State Tunnel Walls Fer State New State Fer State New State Fer State New State Yester Fer State Holomatic New State Yester New State State Yester Yester New State State Yester Yester New State State Yester New State New State	Max Moment with axial compression Max Tension w/ corresponding moment	7 × 2	Max Moment with axial tension 20	265 D + L + H' +E' (WP)	62	-17										
Bion Walls Turnel Walls r Faults r faults Nauralia r faults Nauralia r faults Nauralia r Houseal Nauralia r Houseal Nauralia r Natra Natra Natra	Max Tension w/ corresponding moment		Max Moment with axial compression 71	706 D + L + H' +E' (WP)	-8	-16										
Bion Walks Tunnet Walk * * *			Max Tension w/ corresponding moment	149 D + L + H' +E' (WP)	108	-28										
Bion Walls Turnel Walls re re 264 None 506 Fau 506 Pau 506 </td <td>Max Compression w/ corresponding moment</td> <th>345</th> <td>Max Compression w/ corresponding moment</td> <td>149 D + L + H' +E' (WP)</td> <td>-123</td> <td>-6</td> <td>D + L + H' +E' (WP)</td> <td>26</td> <td>4.68</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Max Compression w/ corresponding moment	345	Max Compression w/ corresponding moment	149 D + L + H' +E' (WP)	-123	-6	D + L + H' +E' (WP)	26	4.68							
Bion Walks Tunnel Walk r Fe Sta New Sta Fe Sta New Sta 1 Fe Sta New Sta Fe Sta New Sta 1 Hotomad New Sta Yensal New Sta 1 Hotomad New Sta Yensal New Sta 1 Hotomad Yensal Yensal Netsad 1	Max Moment with axial tension		Max Moment with axial tension 1-	149 D + L + H' +E' (WP)	104	-28										
Biom Walks Turnes For Use Now Use For Use Fo	Max Moment with axial compression		Max Moment with axial compression	141 D + L + H' +E' (WP)	-9	-28										
Bion Walks Table 1 Far Side Naur Side Far Side	Max Tension w/ corresponding moment		Max Tension w/ corresponding moment 20	284 D+L+H+W	109	0										
gion Walls	Mar Hanard with anid transfer	144-C	Max Compression w corresponding moment		-120	20	D + L + H' +E' (WP)	26	3.12							
Bion Walls Real Biol New Biolo Far Biol New Biolo Para Biolo Far Biol New Biolo New Biolo Hotomatal New Biolo New Biolo Hotomatal New Biolo New Biolo Biolo New Biolo New Biolo Hotomatal New Biolo New Biolo Biolo New Biolo New Biolo Biolo New Biolo New Biolo Hotomatal New Biolo New Biolo Biolo New Biolo New Biolo Hotomatal New Biolo New Biolo Biolo New Biolo New Biolo </td <td>May Moment with avial compression</td> <th></th> <td>Max Moment with axial compression 27</td> <td>277 DeleHitE(WP)</td> <td>-72</td> <td>30</td> <td></td>	May Moment with avial compression		Max Moment with axial compression 27	277 DeleHitE(WP)	-72	30										
Bion Walls March 1 Far Side Name Side Name Side Far Side Name Side Name Side Hotomatal Name Side Name Side Name Side Name Side <td< td=""><td>Max Tension w(corresponding moment</td><th></th><td>Max monitors we available compression 2</td><td>953 D+L+H+E</td><td>-12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Max Tension w(corresponding moment		Max monitors we available compression 2	953 D+L+H+E	-12											
gion Walls	Max Commension w/ comenon/inn moment		Max Compression w/ comenonding moment	918 D # L # H #W	-06	-16	D+L+H+Wt 5									
gion Walts	Max Moment with axial tension	3H.7-1	Max Moment with axial tension 9	902 D+L+H'+E'(WP)	14	-86		59	3.12							
Bion Walls Fe Bio. Per Bio. Fe Bio. Nea Bio. Fe Bio. Heat Bio. Nea Bio. Yoncail	Max Moment with axial compression		Max Moment with axial compression 9	902 D+L+H'+E'(WP)	-10	-96										
gion Walls for Fourtiere fourtie																
gion Walls		3H.7-14	-	- D+L+H+Wt		17	D + L + H + Wt	59	3.12							
Image: Constraint of the second of																
ginn Walls Far Side Heatmand Heat		3H.7-14A 1-T								D + F + L + H' + E'	26	3	10	146	0.44	
gion Walls For State Near State Heatmand Houtsate 3412-0 3412-0 3412-0 1414																
gion Walls For State Measured 312-3		3H7-9	•	- D+L+H+Wt			D + L + H'+E' (WP)	34	3.12						-	
gion Walls					1	Ī										
2 6		3H.7		- D+L+H+Wt			D + L + H' +E' (WP)	34	3.12						-	
	1				Seet	4ote (9)										
Accei		5-2'HE	-	- D+L+H+Wt			D + L + H + Wt 182 3.12									
														-	-	
Fair 6 94.7 1.V		2H2 //+		- D+L+H+Wt			D+L+H+Wt	182	3.12							
3H.7-10A 1-T		3H.7-10A 1-T				-				D + F + L + H + Wt	-6	-102	28	86	0.44	

Table 3H.7-1 Results of DGFOT Concrete Design

3H-237

Rev. 11

Final Safety Analysis Report

STP 3 & 4

Thick ness (ft)	Side Face	Direction	orcement Layout fing Number ^(1,8)	ent Zone Numt	n Forces ⁽³⁾	2	Axial and Flexu	e Loads		Jesign Loads					Transverse streat Design Porc							
Thickness (ft)	Side Face	Direction	orcement L fing Numbe	ent Zone	a Forc	펀		e Loads		In-Plane Shear Load	8	Longitudinal Reinforcement Brouided						_				
	Side			<u> </u>	imur	Elemen	Element	Element	Element	Loads ⁽¹¹⁾ Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Loads ⁽¹¹⁾ Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in ² / ft)	Load Combination	Horizo	ntal Section	Vertic	al Section	Transverse Shear ⁽⁷⁾ Reinforcement Provided (in²/ft²)	Remar
1 L	Near	Horizontal	3H.7-15	144		-	D + L + H + Wt	See 1	Note (10)	D + L + H' +E' (WP)	27	3.12										
					Max Tension w/ corresponding moment	2584	D + L + H' +E' (WP)	95	8													
	ę	le au	15	_	Max Compression w/ corresponding moment	309	D + L + H' +E' (WP)	-117	12													
	Far Si	Horizo	3H.7-	ž	Max Moment with axial tension	2351	D + L + H' +E' (WP)	12	21	D + L + H' +E' (WP)	27	3.12					· ·					
					Max Moment with axial compression	2316	D + L + H +Wt	-13	32													
~					Max Tension w/ corresponding moment	2425	D + L + H' +E' (WP)	20	-60													
	Side	3	9	7	Max Compression w/ corresponding moment	301	D + L + H' +E' (WP)	-23	0	1												
	Near	Verbi	Max. Moment with axial tension 2433 D + L + H Max. Moment with axial compression 2554 D + L + H	D + L + H' +E' (WP)	16	-74		47	3.12 .													
					Max Moment with axial compression	2554	D + L + H' +E' (WP)	-2	-72													
					Max Tension w/ corresponding moment	2315	D + L + H +Wt	13	2													
	99	g g g g Max Compression of corresponding moment 309 D + L + H + E (MP) -36 79																				
	Far S	Verti	3H.7	1-V	Max Moment with axial tension	2438	D + L + H' +E' (WP)	1	56	D + L + H' +E' (WP)	ar 0.12											
					Max Moment with axial compression	2496	D + L + H' +E' (WP)	-29	87													
			3H.7-17	1-T									1.4D + 1.4F + 1.7L + 1.7H + 1.7W	52	12	12	1	0.44				
					Max Tension w/ corresponding moment	174	D + L + H + Wt	124	-11													
	8	ontal	91	¥	Max Compression w/ corresponding moment	1703	D + L + H' +E' (WP)	-117	-4	D + L + H' +E' (WP) 34	3.12											
	Near	Horiz	3HC	2	Max Moment with axial tension	1688	D + L + H + Wt	53	-38		34 3.12	0.12										
					Max Moment with axial compression	1694	D + L + H' +E' (WP)	-9	-30													
					Max Tension w/ corresponding moment	1710	D + L + H' +E' (WP)	118	7													
	Side	zontal	7-18	Ŧ	Max Compression w/ corresponding moment	1703	D + L + H' +E' (WP)	-117	12	D + L + H' +E' (WP)	34	3.12										
	Far	Hori	HE	4	Max Moment with corresponding axial tension	1695	D + L + H + Wt	10	41													
					Max Moment with corresponding axial compression	1840	D + L + H + Wt	-10	53													
10					Max Tension w/ corresponding moment	1694	D + L + H + Wt	17	-20													
	r Side	rical	(7-19	¥	Max Compression w/ corresponding moment	1694	D + L + H' +E' (WP)	-28	-45	D + L + H' +E' (WP)	53	3.12										
	Nez	\$	÷	**	Max Moment with corresponding axial tension	1710	D + L + H' +E' (WP)	0	-65													
					Max Moment with corresponding axial compression	174	D + L + H' +E' (WP)	-14	-70													
					Max Tension w/ corresponding moment	1694	D + L + H + Wt	16	9													
	r Side	ertical	4.7-19	7-11	Max Compression w/ corresponding moment	1839	D + L + H' +E' (WP)	-23	6	D + L + H' +E' (WP)	53	3.12										
	a.	>	÷		Max Moment with corresponding axial tension	209	D + L + H' +E' (WP)	2	54													
- I - I-					Max Moment with corresponding axial compression	209	D + L + H' +E' (WP)	-5	54		_											

nat in X-direction) are utilized to ent of 8085 kip*ft due to t

(11) The "E ' (WP)" designation in the load combination column indicates seismic SSE loading including wave propagation effects.

Rev. 11

Load	Ca			
Combination	Overturning	Sliding	Flotation	Notes
D + F _b			1.70	
D + H + W	1.58	3.47		2, 3 (Sliding Only)
D + H + W _t	1.10	1.10		2, 4
D + H' + E'	1.30	1.28		2, 3, 5
D + H + W _{th}	1.10	1.10		2, 6

Table 3H.7-2 Factors of Safety against Sliding, Overturning and Flotation for DGFOT

Notes:

- (1) Loads D, H, H', W, W_t, and E' are defined in Section 3H.7.4.3.4. F_b is the buoyant force corresponding to the design basis flood. Load W_{th} is defined in Subsection 3H.11.1.
- (2) Coefficients of friction for sliding resistance are 0.58 for static conditions and 0.39 for dynamic conditions for the Diesel Generator Fuel Oil Tunnel.
- (3) The calculated safety factors consider the full passive pressure.
- (4) The minimum calculated safety factor against sliding and overturning for tornado wind is 2.32. For tornado wind in conjunction with tornado missile, subsequent detailed design of the restraints for the Access Regions will provide sliding and overturning safety factors greater than 1.10.
- (5) The seismic sliding forces and overturning moments from SSI and SSSI analyses are less than the seismic sliding forces and overturning moments used in the stability evaluations.
- (6) The minimum calculated safety factor against sliding and overturning for hurricane wind is 1.21. For hurricane wind in conjunction with hurricane missile, subsequent detailed design of the restraints for the Access Regions will provide sliding and overturning safety factors greater than 1.10.

Local Check	DGFOT and Access Regions	Minimum required thickness to prevent penetration, perforation, and scabbing = 15.14"				
		Minimum provided thickness = 24"				
		Flexure controls.				
Overall Check of Impacted Element	Walls and Slabs of DGFOT and Access Regions	Maximum impact load including Dynamic Load Factor (DLF) = 899 kips for Access Regions and 862 kips for DGFOT				
		Ductility demand = 1.4 for shell missile and 1.0 for automobile missile < Ductility limit = 10				
Gia Cr	obal leck	Equivalent static impact forces due to missile impact are considered in the local and global design of the DGFOT. The analysis results presented in Table 3H.7-1 provide a summary of the results for all load combinations including those affected by the tornado missile impact.				

STP 3 & 4

	Stability Evaluation	and Seismi	c Category II/I I	Design	, <u>-</u> . ,
		Seisr	nic Analysis		
		SSSI			
Structure	Input Motion	Soil Type	Structural Damping for Generation of ISRS	Input Motion	Soil Type
Diesel Generator Fuel Oil Tunnels (DGFOT)	Envelope of Amplified ⁽¹⁾ Site-Specific SSE & 0.3g RG 1.60	DCD & Site- Specific	4% for all SSI analysis cases	Site-Specific SSE	Site-Specific
UHS/RSW Pump House	Site-Specific SSE	Site-Specific	4% for all SSI analysis cases	Site-Specific SSE	Site-Specific
RSW Piping Tunnels	Amplified ⁽¹⁾ Site-Specific SSE	Site-Specific	4% for all SSI analysis cases Except 7% for Cracked Case	Site-Specific SSE	Site-Specific
Diesel Generator Fuel Oil Storage Vault (DGFOSV)	Envelope of Amplified ⁽¹⁾ Site-Specific SSE & 0.3g RG 1.60	Site-Specific	4% for all SSI analysis cases	Site-Specific SSE	Site-Specific
Radwaste Building (RWB)	NA	NA	NA	Site-Specific SSE	Site-Specific
Control Bldg. Annex (CBA)	NA	NA	NA	NA	NA
Turbine Building (TB)	NA	NA	NA	NA	NA
Service Building (SB)	NA	NA	NA	NA	NA

Table 3H.9-1 Extreme Environmental Design Parameters for Seismic Analysis, Design,

Table 3H.9-1 Extreme Environmental Design Parameters for Seismic Analysis, Design,
Stability Evaluation and Seismic Category II/I Design (Continued)

			Design Str	ucture
Structure	Seismic	Tornado ⁽⁵⁾	Tornado Missiles ⁽⁵⁾	Flood
Diesel Generator Fuel Oil Tunnels (DGFOT)	Envelope of Amplified ⁽¹⁾ Site-Specific SSE & 0.3g RG 1.60 (See Note 4)	DCD Tornado Wind Parameters (As described in Table 5.0 of DCD/Tier 1)	DCD Missile Spectrum 1 as defined in Table 5.0 of DCD/Tier 1	Flood EI. 40' MSL, Water Density 63.85 lb/ft ³ (above grade) + Drag Effect 44 psf (above grade) + Impact of Floating Debris per COLA Section 3.4.2 + Wind Generated Wave Action per COLA Figure 3.4-1 (only hydrodynamic portion)
UHS/RSW Pump House	Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade) + Drag Effect 44 psf (above grade) + Impact of Floating Debris per COLA Section 3.4.2 + Wind Generated Wave Action per COLA Figure 3.4-1 (only hydrodynamic portion)
RSW Piping Tunnels	Amplified ⁽¹⁾ Site-Specific SSE (See Note 4)	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade) + Drag Effect 44 psf (above grade) + Impact of Floating Debris per COLA Section 3.4.2 + Wind Generated Wave Action per COLA Figure 3.4-1 (only hydrodynamic portion)
Diesel Generator Fuel Oil Storage Vault (DGFOSV)	Envelope of Amplified ⁽¹⁾ Site-Specific SSE & 0.3g RG 1.60	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood EI. 40' MSL, Water Density 63.85 lb/ft ³ (above grade) + Drag Effect 44 psf (above grade) + Impact of Floating Debris per COLA Section 3.4.2 + Wind Generated Wave Action per COLA Figure 3.4-1 (only hydrodynamic portion)
Radwaste Building (RWB)	1/2 of 0.3g RG 1.60 SSE for RW-IIa Classification, 4% Damping	Per Table 2 of RG 1.143 Rev. 2 for RW-IIa Classification	Per Table 2 of RG 1.143 Rev. 2 for RW-IIa Classification	Flood El. 33' MSL RW-IIa Classification
Control Bldg. Annex (CBA)	IBC 2006	NA	NA	NA
Turbine Building (TB)	IBC 2006	NA	NA	NA
Service Building (SB)	IBC 2006	NA	NA	NA

	_		Design Stability		
Structure	Seismic	Tornado ⁽⁵⁾	Tornado Missiles ⁽⁵⁾	Flotation	Coeff. Of Friction for Water- proofing Membrane
Diesel Generator Fuel Oil Tunnels (DGFOT)	Amplified ⁽¹⁾ Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1 (Note 2)	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade)	Site-Specific
UHS/RSW Pump House	Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade)	Site-Specific
RSW Piping Tunnels	Amplified ⁽¹⁾ Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade)	Site-Specific
Diesel Generator Fuel Oil Storage Vault (DGFOSV)	Amplified ⁽¹⁾ Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade)	Site-Specific
Radwaste Building (RWB)	Amplified ⁽¹⁾ Site-Specific SSE, 7% Damping	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade)	Site-Specific
Control Bldg. Annex (CBA)	Amplified ⁽¹⁾ Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade)	Site-Specific
Turbine Building (TB)	Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade)	Site-Specific
Service Building (SB)	Amplified ⁽¹⁾ Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade)	Site-Specific

Table 3H.9-1 Extreme Environmental Design Parameters for Seismic Analysis, Design, Stability Evaluation and Seismic Category II/I Design (Continued)

Rev. 11

S	tability Evalu	ation and Sei	smic Categor	y II/I Design (Continued)
		(applicable to	Design f the design of lat	or II/I eral load resisting system)
Structure	Seismic	Tornado ⁽⁵⁾	Tornado Missiles ⁽⁵⁾	Flood
Diesel Generator Fuel Oil Tunnels (DGFOT)	NA	NA	NA	NA
UHS/RSW Pump House	NA	NA	NA	NA
RSW Piping Tunnels	NA	NA	NA	NA
Diesel Generator Fuel Oil Storage Vault (DGFOSV)	NA	NA	NA	NA
Radwaste Building (RWB)	Envelope of Amplified ⁽¹⁾ Site-Specific SSE & 0.3g RG 1.60, 7% Damping	DCD Tornado Wind Parameters (As described in Table 5.0 of DCD/Tier 1)	DCD Missile Spectrum 1 as defined in Table 5.0 of DCD/Tier 1 ⁽⁶⁾	Flood EI. 40' MSL, Water Density 63.85 lb/ft ³ (above grade) + Drag Effect 44 psf (above grade) + Impact of Floating Debris per COLA Section 3.4.2 + Wind Generated Wave Action per COLA Figure 3.4-1 (only hydrodynamic portion)
Control Bldg. Annex (CBA)	Envelope of Amplified ⁽¹⁾ Site-Specific SSE & 0.3g RG 1.60	DCD Tornado Wind Parameters (As described in Table 5.0 of DCD/Tier 1)	DCD Missile Spectrum 1 as defined in Table 5.0 of DCD/Tier 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade) + Drag Effect 44 psf (above grade) + Impact of Floating Debris per COLA Section 3.4.2 + Wind Generated Wave Action per COLA Figure 3.4-1 (only hydrodynamic portion)
Turbine Building (TB)	0.3g RG 1.60 SSE	DCD Tornado Wind Parameters (As described in Table 5.0 of DCD/Tier 1)	DCD Missile Spectrum 1 as defined in Table 5.0 of DCD/Tier 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade) + Drag Effect 44 psf (above grade) + Impact of Floating Debris per COLA Section 3.4.2 + Wind Generated Wave Action per COLA Figure 3.4-1 (only hydrodynamic portion)
Service Building (SB)	Envelope of Amplified ⁽¹⁾ Site-Specific SSE & 0.3g RG 1.60	DCD Tornado Wind Parameters (As described in Table 5.0 of DCD/Tier 1)	DCD Missile Spectrum 1 as defined in Table 5.0 of DCD/Tier 1	Flood El. 40' MSL, Water Density 63.85 lb/ft ³ (above grade) + Drag Effect 44 psf (above grade) + Impact of Floating Debris per COLA Section 3.4.2 + Wind Generated Wave Action per COLA Figure 3.4-1 (only hydrodynamic portion)

Table 3H.9-1 Extreme Environmental Design Parameters for Seismic Analysis, Design,

Table 3H.9-1 Extreme Environmental Design Parameters for Seismic Analysis, Design, Stability Evaluation and Seismic Category II/I Design (Continued)

Notes:

- (1) Amplified Site-Specific SSE accounts for the influence of nearby heavy Reactor Building, Control Building, and/or UHS/RSW Pump House.
- (2) For stability under tornado loading with tornado missile, restraints are required at top of DGFOT access regions.
- (3) NA: Not Applicable
- (4) Seismic wave propagation for DGFOT and RSW Piping Tunnels is based on site-specific SSE because their layouts are site-specific.
- (5) See Section 3H.11 for site-specific hurricane wind and hurricane missiles.
- (6) The exterior doors of the Radwaste Building are normally closed.

	Table	3H.11-1 Hurricane Missi	le Impact Evaluations for UHS/RSW Pump House
Local Check	UHS / RSW Pump House		Minimum Required Thickness to Prevent Penetration, Perforation, and Scabbing = 15.4"
	•		Minimum Provided Thickness = 18"
	RSW Pump	Roof	Shear Controls. Maximum impact load including Dynamic Load Factor (DLF) of 1.0 = 161 Kips Minimum capacity = 188 Kips
Overall Check of Impacted	House	Walls	Shear Controls. Maximum impact load including Dynamic Load Factor (DLF) of 1.53 = 1566 Kips Minimum capacity = 1731 Kips
Element (See Note 1)	11115	Fan Enclosure Walls	Flexure Controls. Ductility demand = 2.1 Ductility limit = 10
	013	Basin Walls	Shear Controls. Maximum impact load including Dynamic Load Factor (DLF) of 1.0 = 1024 Kips Minimum capacity = 1130 Kips

Notes:

(1) The reported impact loads for the subject wall(s) are the resulting loads due to a horizontal automobile missile impact with a minimum impact load of 1024 kips (the peak of a triangular impulse load for a horizontal impact). The reported impact loads for the subject slab(s) are the resulting loads due to a vertical automobile missile impact with a minimum impact load of 445 kips (the peak of a triangular impulse load for a vertical impact).

Rev. 11

Final Safety Analysis Report

STP 3 & 4

Table 3H.11-2	Hurricane Missile Impact Evaluation for
Diesel (Generator Fuel Oil Storage Vault

Local Check	DGFOS Vault	Minimum Required Thickness to Prevent Penetration, Perforation, and Scabbing = 15.4"
		Minimum Provided Thickness = 18"
	Boof	Impacts where Shear Controls. Maximum impact load including Dynamic Load Factor of 1.0 = 445 Kips Minimum capacity = 613 Kips
	Root	Impacts where Flexure Controls. Ductility demand < 1.0 Ductility limit = 10
Overall Check of Impacted	Protection	Shear Controls. Maximum impact load including Dynamic Load Factor of 1.0 = 227 Kips Minimum capacity = 534 Kips
Element (See Note 2)	ent Hood ote 2)	The minimum capacity is based on the inclusion of the following shear reinforcement: - #3 bars spaced at 6" o.c. in both directions
	Walls (Excluding Walls 9, 10, & 16)	Shear Controls. Maximum impact load including Dynamic Load Factor of 1.1 = 1126 Kips Minimum capacity = 1202 Kips
	9, 10, & 16)	Maximum impact load and minimum capacity based on largest ratio of impact load to capacity.

Rev. 11

Table 3H.11-2Hurricane Missile Impact Evaluation for
Diesel Generator Fuel Oil Storage Vault (Continued)

	Short Access Room Walls (Walls 9 & 10)	Shear Controls.			
		<u>For Vertical Beam Shear:</u> Maximum impact load including Dynamic Load Factor of 1.0 = 415 Kips Minimum capacity = 487 Kips			
		For Horizontal Beam Shear: Maximum impact load including Dynamic Load Factor of 1.0 = 385 Kips Minimum capacity = 620 Kips			
Overall Check of Impacted		Shear ties are required to withstand a missile strike near the top panel support. See Table 3H.6-11 and Figures 3H.6-176B and 3H.6-180B for reinforcement size and location.			
Element		Shear Controls.			
(See Note 2)	Entry Way Wall (Wall 16)	<u>For Vertical Beam Shear:</u> Maximum impact load including Dynamic Load Factor of 1.0 = 507 Kips Minimum capacity = 625 Kips			
		For Horizontal Beam Shear: Maximum impact load including Dynamic Load Factor of 1.0 = 457 Kips Minimum capacity = 620 Kips			
		Shear ties are required to withstand a missile strike near the top and bottom panel supports. See Table 3H.6-11 and Figure 3H.6-208 for reinforcement size and location.			

Notes:

- (1) See Figure 3H.6-141 for location of Walls 9, 10, and 16.
- (2) The reported impact loads for the subject wall(s) are the resulting loads due to a horizontal automobile missile impact with a minimum impact load of 1024 kips (the peak of a triangular impulse load for a horizontal impact). The reported impact loads for the subject slab(s) are the resulting loads due to a vertical automobile missile impact with a minimum impact load of 445 kips (the peak of a triangular impulse load for a vertical impact).

Table 3H.11-3 Hurricane Missile Impact Evaluation for Diesel Generator Fuel Oil Tunnel

Local Check	DGFOT and Access Regions	Minimum Required Thickness to Prevent Penetration, Perforation, and Scabbing = 15.4"			
	Walls and Roof	Minimum Provided Thickness = 24"			
Overall Check of Impacted Element	DGFOT Roof	Shear Controls. Maximum impact load including Dynamic Load Factor (DLF) of 1.0 = 302 Kips Minimum capacity = 1058 Kips			
	Access Region Walls	Shear Controls. Maximum impact load including Dynamic Load Factor (DLF) of 1.0 = 420 Kips Minimum capacity = 821 Kips			
		The minimum capacity is based on the inclusion of the following shear reinforcement: - #3 bars spaced at 6" o.c. in both directions			

Note (1): The reported impact loads for the subject wall(s) are the resulting loads due to a horizontal automobile missile impact with a minimum impact load of 1024 kips (the peak of a triangular impulse load for a horizontal impact). The reported impact loads for the subject slab(s) are the resulting loads due to a vertical automobile missile impact with a minimum impact load of 445 kips (the peak of a triangular impulse load for a vertical impact).

Local Check	Reactor Building	Minimum Required Thickness to Prevent Penetration, Perforation, and Scabbing = 15.4"			
	Walls	Minimum Provided Thickness = 16.7"			
	Reactor Building Roof	Minimum Required Thickness to Prevent Penetration, Perforation, and Scabbing = 11.4"			
		Minimum Provided Thickness = 13.2"			
Overall Check of Impacted Element (See Note 1)	Roof and Walls above elevation 64'-0"	Based on the DCD design for tornado missiles per DCD Tier 1 Table 5.0, the Reactor Building roof and exterior walls above elevation 64'-0" are adequate for hurricane missiles.			
	Walls between grade (elevation 34'-0") and elevation 64'-0"	Shear Controls. Maximum impact load including Dynamic Load Factor of 1.0 = 1024 Kips Minimum capacity = 1310 Kips			

Table 3H.11-4 Hurricane Missile Impact Evaluation for Reactor Building

Notes:

(1) The reported impact loads for the subject wall(s) are the resulting loads due to a horizontal automobile missile impact with a minimum impact load of 1024 kips (the peak of a triangular impulse load for a horizontal impact).

Local Check	Control Building Walls	Minimum Required Thickness to Prevent Penetration, Perforation, and Scabbing = 15.4"				
	Wallo	Minimum Provided Thickness = 23.6"				
	Control Building	Minimum Required Thickness to Prevent Penetration, Perforation, and Scabbing = 11.4"				
	Roor	Minimum Provided Thickness = 15.75"				
	Roof and Walls above elevation 64'-0"	Based on the DCD design for tornado missiles per DCD Tier 1 Table 5.0, the Control Building roof and exterior walls above elevation 64'-0" are adequate for hurricane missiles.				
Overall Check of Impacted Element (See Note 1)	Walls between grade (elevation	Impacts where Shear Controls. Maximum impact load including Dynamic Load Factor of 1.0 = 1024 Kips Minimum capacity = 1056 Kips				
	elevation 64'-0"	Impacts where Flexure Controls. Ductility demand < 1.0 Ductility limit = 10				

Table 3H.11-5 Hurricane Missile Impact Evaluation for Control Building

Rev. 11

Notes:

(1) The reported impact loads for the subject wall(s) are the resulting loads due to a horizontal automobile missile impact with a minimum impact load of 1024 kips (the peak of a triangular impulse load for a horizontal impact).

Wind type	RG Guide	Wind speed (mph)	Horizontal Missile Velocity (m/s)			Vertical Missile Velocity (m/s)		
			Auto	Pipe	Sphere	Auto	Pipe	Sphere
Hurricane	1.221	210	59.7	46.5	41.1	26	26	26
Tornado	DCD	300	47	47	47	32.9	32.9	32.9

Table 3H.11-6 Comparison of RG 1.221 and Tornado Requirements for DCD Structures

Table 3H.11-7 Comparison of RG 1.221 and RG 1.76 Tornado Requirements for Site-Specific Structures

Wind type	RG Guide	Wind speed (mph)	Horizontal Missile Velocity (m/s)			Vertical Missile Velocity (m/s)		
			Auto	Pipe	Sphere	Auto	Pipe	Sphere
Hurricane	1.221	210	59.7	46.5	41.1	26	26	26
Tornado	1.76 Rev. 1	200	34	34	7	22.8	22.8	4.7

Figure 3H.1-3 Lateral Seismic Soil Pressure Comparison for RB South Wall (Considering DGFOSVS, RSW Tunnel & UHS/RSW Pump House Building)

Rev. 11

Rev. 11

Figure 3H.1-6 Lateral Seismic Soil Pressure Comparison for RB West Wall (Considering DGFOT & Crane Wall)

Figure 3H.3-1 At-Rest Lateral Earth Pressure on the RWB Walls

Figure 3H.3-2 Dynamic At-Rest Lateral Earth Pressure on the RWB Walls

Figure 3H.3-3 Active Lateral Earth Pressure on the RWB Walls

Figure 3H.3-4 Passive Lateral Earth Pressure on the RWB Walls

Figure 3H.3-5 Radwaste Building SAP2000 Model (Looking from Southwest Corner)

Figure 3H.3-6 Radwaste Building SAP2000 Model (South and West Walls Removed)

Rev. 11

STP 3 & 4

Figure 3H.3-7 Radwaste Building SAP2000 Model (South Wall, West Wall, Roof and El. 35'-0" Slab Removed)

Figure 3H.3-8 RWB North Wall Looking South Horizontal Reinforcement Zones Near Side Face

STP 3 & 4

Figure 3H.3-10 RWB North Wall Looking South Horizontal Reinforcement Zones Far Side Face Final Safety Analysis Report

Details and Evaluation Results of Seismic Category 1 Structures

Figure 3H.3-11 RWB North Wall Looking South Vertical Reinforcement Zones Far Side Face 7'-11"

29'-5"

24'-4"

Rev. 11

Figure 3H.3-12 RWB North Wall Looking South Transverse Reinforcement Zones STP 3 & 4

Figure 3H.3-13 RWB South Wall Looking North Horizontal Reinforcement Zones Near Side Face Rev. 11

91'-3"

3H-272

40'-11"

61'-8"

13'-6"

16'-5"

8'-6"

2'9" 2'9"

82'-3"

∕~3'-3" ∕~4'-9"

9-V-L

14-V-L

14'-11"

10-V-L

16-V-L

13-V-L

23'-7"

Rev. 11

Final Safety Analysis Report

STP 3 & 4

Rev. 11

Vertical Reinforcement Zones

Far Side Face

STP 3 & 4

Rev. 11

Final Safety Analysis Report

Figure 3H.3-17 RWB South Wall Looking North Transverse Reinforcement Zones

Figure 3H.3-18 RWB East Wall Looking West Horizontal Reinforcement Zones Near Side Face

Figure 3H.3-19 RWB East Wall Looking West Vertical Reinforcement Zones Near Side Face

Figure 3H.3-21 RWB East Wall Looking West Vertical Reinforcement Zones Far Side Face

Figure 3H.3-22 RWB East Wall Looking West Transverse Reinforcement Zones

3H-280

Figure 3H.3-23 RWB West Wall Looking East Horizontal Reinforcement Zones Near Side Face

igure 3H.3-24 RWB West Wall Looking East Vertical Reinforcement Zones Near Side Face

Rev. 11

STP 3 & 4

Figure 3H.3-27 RWB West Wall Looking East Transverse Reinforcement Zones

Details and Evaluation Results of Seismic Category 1 Structures

3H-285

Rev. 11

3H-288

Rev. 11

Final Safety Analysis Report

Rev. 11

STP 3 & 4

Final Safety Analysis Report

Details and Evaluation Results of Seismic Category 1 Structures

3H-292

Rev. 11

Final Safety Analysis Report

East-West Reinforcement Zones

Far Side Face

Final Safety Analysis Report

Details and Evaluation Results of Seismic Category 1 Structures

Rev. 11

Figure 3H.3-37a RWB Elevation 35 Looking Down Transverse Reinforcement Zones Rev. 11

Final Safety Analysis Report

Rev. 11

Figure 3H.3-37b Not Used

Near Side Face

- 213'-11' 1-V-L 124'-1" Figure 3H.3-39 RWB Elevation 95 Looking Down North-South Reinforcement Zones Near Side Face

Far Side Face

Details and Evaluation Results of Seismic Category 1 Structures

213'-11" 1-V-L Figure 3H.3-41 RWB Elevation 95 Looking Down North-South Reinforcement Zones Far Side Face

124'-1"

Figure 3H.3-42 RWB Elevation 95 Looking Down Transverse Reinforcement Zones

Figure 3H.3-43 RWB EI 35'-0" Steel Layout Between Column Lines W1-W5 and WA-WC

Figure 3H.3-44 RWB EI 35'-0" Steel Layout Between Column Lines W5-W8 and WA-WC

Details and Evaluation Results of Seismic Category 1 Structures

Figure 3H.3-45 RWB EI 35'-0" Steel Layout Between Column Lines W1-W5 and WC-WE

Figure 3H.3-46 RWB EI 35'-0" Steel Layout Between Column Lines W5-W8 and WC-WE

3H-307

3H-308

Details and Evaluation Results of Seismic Category 1 Structures

Seismic Soil Pressure (psf)

Seismic Soil Pressure (psf)

Factors of Safety against Sliding and Overturning about point A are calculated as follows: $P_{\text{passive}} + F$

$$SF_{sliding} = \frac{P_{assive}}{E_{s} + E`}$$

$$SF_{OT_{A}} = \frac{(P_{passive})(Y_{1}) + (D)(X_{1}) - (F_{B})(X_{2})}{(E_{s})(Y_{2}) + (E`)(Y_{3}) + (E_{v})(X_{1})}$$

Where:

SF_{sliding} = Safety factor against sliding

 SF_{OT_A} = Safety factor against overturning about "A"

D = Dead load

P_{passive} = Total passive soil pressure

 $F = \mu N$ = friction force and μ is the coefficient of friction

- E_s = Static and dynamic soil pressure (active condition)
- E` = Self weight excitation in the horizontal direction
- E_v = Self weight excitation in the vertical direction
- F_B = Buoyancy force

N = Vertical reaction =
$$D - F_B - E_v$$

Notes:

(1) E' represents the inertia of the structure and it is either determined from equivalent static method or response spectrum analysis.

(2) E_s represents the static and dynamic loads from soil which includes seismic loads from soil and hydrodynamic pressure from groundwater. These loads are computed in accordance with Selection 2.5S4.10.5.

Figure 3H.3-52 Formulations Used for Calculations of Factors of Stability Against Sliding and Overturning for Seismic II/I Considerations

Figure 3H.3-54 Radwaste Building Floor Plan at Elevation -11'-0"

(W3)

(₩4)

(17)

2"-0"

100

(W8)

CST CBA CB (T 1031 F051

uns

KEY PLAN

A

42'-8

DN

UP_

HÀŢĆH AĐÔŲE

(W6)

(W1)

(W2)

Figure 3H.3-56 Radwaste Building Floor Plan at Elevation 35'-0"

3H-316

Figure 3H.3-57 Radwaste Building Floor Plan at Elevation 57'-2"

Figure 3H.3-58 Radwaste Building Partial Floor Plans at Elevation 0'-6" and Roof

W8

WA

(WB)

(WC)

(WD)

WE

-0"

Details and Evaluation Results of Seismic Category 1 Structures

Figure 3H.3-59 Radwaste Building, Section A-A

Figure 3H.3-60 Radwaste Building, Section B-B

~

(Red): GMRS in the horizontal direction

..... (Blue): Input Spectrum in the horizontal direction

Figure 3H.6-1 Comparison of GMRS with the Input Spectrum (Horizontal)

Figure 3H.6-2 Comparison of GMRS with the Input Spectrum (Vertical)

Figure 3H.6-3 Not Used

- (Blue): FIRS at 32 ft below ground surface
- (Green): Outcrop spectrum at 32 ft below ground surface resulting from synthetic
- time history applied at ground surface
- _-_. (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-3a Comparison of Spectra at Foundation of UHS Basin (Mean Soil Properties, E-W Direction)

___ (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-3b Comparison of Spectra at Foundation of UHS Basin (Upper Bound Soil Properties, E-W Direction)

_-__ (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-3c Comparison of Spectra at Foundation of UHS Basin (Lower Bound Soil Properties, E-W Direction)

Figure 3H.6-4 Not Used

- (Blue): FIRS at 32 ft below ground surface
- (Green): Outcrop spectrum at 32 ft below ground surface resulting from synthetic time history applied at ground surface
- _-- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-4a Comparison of Spectra at Foundation of UHS Basin (Mean Soil Properties, N-S Direction)

- time history applied at ground surface
- _-_. (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-4b Comparison of Spectra at Foundation of UHS Basin (Upper Bound Soil Properties, N-S Direction)

..... (Blue): FIRS at 32 ft below ground surface

____(Green): Outcrop spectrum at 32 ft below ground surface resulting from synthetic time history applied at ground surface

-. (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-4c Comparison of Spectra at Foundation of UHS Basin (Lower Bound Soil Properties, N-S Direction)

Figure 3H.6-5 Not Used

Figure 3H.6-5a Comparison of Spectra at Foundation of UHS Basin (Mean Soil Properties, Vertical Direction)

_-- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-5b Comparison of Spectra at Foundation of UHS Basin (Upper Bound Soil Properties, Vertical Direction)

-- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-5c Comparison of Spectra at Foundation of UHS Basin (Lower Bound Soil Properties, Vertical Direction)

Figure 3H.6-6 Not Used

-- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-6a Comparison of Spectra at Foundation of RSW Piping Tunnel (Mean Soil Properties, E-W Direction)

(Green): Outcrop spectrum at 57 ft below ground surface resulting f time history applied at ground surface

_-- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-6b Comparison of Spectra at Foundation of RSW Piping Tunnel (Upper Bound Soil Properties, E-W Direction)

- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-6c Comparison of Spectra at Foundation of RSW Piping Tunnel (Lower Bound Soil Properties, E-W Direction)

Figure 3H.6-7 Not Used

(Green): Outcrop spectrum at 57 ft below ground surface resulting from synthetic

- time history applied at ground surface
- _-_- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-7a Comparison of Spectra at Foundation of RSW Piping Tunnel (Mean Soil Properties, N-S Direction)

..... (Blue): FIRS at 57 ft below ground surface

(Green): Outcrop spectrum at 57 ft below ground surface resulting from synthetic time history applied at ground surface

-- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-7b Comparison of Spectra at Foundation of RSW Piping Tunnel (Upper Bound Soil Properties, N-S Direction)

(Green): Outcrop spectrum at 57 ft below ground surface resulting from synthetic time history applied at ground surface

_-- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-7c Comparison of Spectra at Foundation of RSW Piping Tunnel (Lower Bound Soil Properties, N-S Direction)

Figure 3H.6-8 Not Used

(Green): Outcrop spectrum at 57 ft below ground surface resulting from synthetic

- time history applied at ground surface
- _-_ (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-8a Comparison of Spectra at Foundation of RSW Piping Tunnel (Mean Soil Properties, Vertical Direction)

__(Red): GMRS

..... (Blue): FIRS at 57 ft below ground surface

____(Green): Outcrop spectrum at 57 ft below ground surface resulting from synthetic

time history applied at ground surface

-- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-8b Comparison of Spectra at Foundation of RSW Piping Tunnel (Upper Bound Soil Properties, Vertical Direction)

(Red): GMRS

..... (Blue): FIRS at 57 ft below ground surface

____(Green): Outcrop spectrum at 57 ft below ground surface resulting from synthetic

time history applied at ground surface

_-- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-8c Comparison of Spectra at Foundation of RSW Piping Tunnel (Lower Bound Soil Properties, Vertical Direction)

Figure 3H.6-9 Not Used

- time history applied at ground surface
- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-9a Comparison of Spectra at Foundation of RSW Pump House (Mean Soil Properties, E-W Direction)

Figure 3H.6-9b Comparison of Spectra at Foundation of RSW Pump House (Upper Bound Soil Properties, E-W Direction)

Figure 3H.6-9c Comparison of Spectra at Foundation of RSW Pump House (Lower Bound Soil Properties, E-W Direction

Figure 3H.6-10 Not Used

Figure 3H.6-10a Comparison of Spectra at Foundation of RSW Pump House (Mean Soil Properties, N-S Direction)

Figure 3H.6-10b Comparison of Spectra at Foundation of RSW Pump House (Upper Bound Soil Properties, N-S Direction)

-- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-10c Comparison of Spectra at Foundation of RSW Pump House (Lower Bound Soil Properties, N-S Direction)

Figure 3H.6-11 Not Used

-- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-11a Comparison of Spectra at Foundation of RSW Pump House (Mean Soil Properties, Vertical Direction)

(Green): Outcrop spectrum at 68 ft below ground surface resulting from synthetic time history applied at ground surface

- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-11b Comparison of Spectra at Foundation of RSW Pump House (Upper Bound Soil Properties, Vertical Direction)

time history applied at ground surface

- (Magenta): RG 1.60 spectrum scaled to 0.10g

Figure 3H.6-11c Comparison of Spectra at Foundation of RSW Pump House (Lower Bound Soil Properties, Vertical Direction)

Figure 3H.6-11d Comparison of Spectra at Foundation of Emergency Diesel Generator Fuel Storage Vault – Mean Soil Properties, E-W Direction

Figure 3H.6-11f Comparison of Spectra at Foundation of Emergency Diesel Generator Fuel Storage Vault – Lower Bound Soil Properties, E-W Direction

Figure 3H.6-11g Comparison of Spectra at Foundation of Emergency Diesel Generator Fuel Storage Vault – Mean Soil Properties, N-S Direction

Figure 3H.6-11h Comparison of Spectra at Foundation of Emergency Diesel Generator Fuel Storage Vault – Upper Bound Soil Properties, N-S Direction

Figure 3H.6-11i Comparison of Spectra at Foundation of Emergency Diesel Generator Fuel Storage Vault – Lower Bound Soil Properties, N-S Direction

Figure 3H.6-11j Comparison of Spectra at Foundation of Emergency Diesel Generator Fuel Storage Vault – Mean Soil Properties, Vertical Direction

Figure 3H.6-11k Comparison of Spectra at Foundation of Emergency Diesel Generator Fuel Storage Vault – Upper Bound Soil Properties, Vertical Direction

Figure 3H.6-11L Comparison of Spectra at Foundation of Emergency Diesel Generator Fuel Storage Vault – Lower Bound Soil Properties, Vertical Direction

Figure 3H.6-12 Comparison of Spectrum from Synthetic Time History, Input Spectrum, 130% of Input Spectrum, and GMRS (E-W Direction)

Figure 3H.6-12a Comparison of Input Spectrum and Spectrum from Synthetic Time History, Horizontal (E-W) – 2% Damping

Figure 3H.6-12b Comparison of Input Spectrum and Spectrum from Synthetic Time History, Horizontal (E-W) – 3% Damping

Figure 3H.6-12c Comparison of Input Spectrum and Spectrum from Synthetic Time History, Horizontal (E-W) – 4% Damping

Figure 3H.6-12d Comparison of Input Spectrum and Spectrum from Synthetic Time History, Horizontal (E-W) – 7% Damping

Figure 3H.6-13 Comparison of Spectrum from Synthetic Time History, Input Spectrum, 130% of Input Spectrum, and GMRS (N-S Direction)

Figure 3H.6-13a Comparison of Input Spectrum and Spectrum from Synthetic Time History, Horizontal (N-S) – 2% Damping

Figure 3H.6-13b Comparison of Input Spectrum and Spectrum from Synthetic Time History, Horizontal (N-S) – 3% Damping

Figure 3H.6-13c Comparison of Input Spectrum and Spectrum from Synthetic Time History, Horizontal (N-S) – 4% Damping

Figure 3H.6-13d Comparison of Input Spectrum and Spectrum from Synthetic Time History, Horizontal (N-S) – 7% Damping

Figure 3H.6-14 Comparison of Spectrum from Artificial Time History, Input Spectrum, 130% of Input Spectrum, and GMRS (Vertical Direction)

Figure 3H.6-14a Comparison of Input Spectrum and Spectrum from Synthetic Time History, Vertical – 2% Damping

Figure 3H.6-14b Comparison of Input Spectrum and Spectrum from Synthetic Time History, Vertical – 3% Damping

Figure 3H.6-14c Comparison of Input Spectrum and Spectrum from Synthetic Time History, Vertical – 4% Damping

_____ Solid Red - Input Spectrum Dot Blue - Response Spectrum from Synthetic Time History

Figure 3H.6-14d Comparison of Input Spectrum and Spectrum from Synthetic Time History, Vertical – 7% Damping

Figure 3H.6-15 SASSI2000 Model of UHS and RSW Pump House

Figure 3H.6-15a SSI Model (structure only)

Note: Basin East and West Walls have the same mesh. The mesh is symmetrical about the vertical axis such that the view is the same whether looking at the wall from the inside or outside of the basin.

Figure 3H.6-15b UHS Basin East and West Wall – SSI Model

9.33 9.33 9.33 10.50 10.50

7.83 7.83 7.83

7.83

7.83 7.83 7.83 7.83

7.83 7.83 7.83 7.83 7.83

7.83 7.83 10.50 10.50 9.33

Figure 3H.6-15c UHS Basin North and South Wall – SSI Model

T/Wall

T/Grade

9.33 9.33

3H-386

Note: The view is looking south at the outside face of the RSW pump house north wall.

Figure 3H.6-15d RSW Pump House North Wall – SSI Model

STP 3 & 4

Note: The view above is looking east at the outside face of the RSW pump house west wall. The RSW pump house east wall mesh is the mirror image of the RSW pump house west wall mesh with the same dimensions

Figure 3H.6-15e RSW Pump House East and West Wall – SSI Model

10.00'

9.33 9.33 9.33' 10.50' 10.50'

10.00

7.83

7.83' 7.83 7.83' 7.83' 7.83 7.83 7.83* 1 1 7.83'

Ν

Rev. 11

1 1 1 1 7.83' 7.83' 7.83' 7.83'

7.83 7.83 7.83'

7.83 7.83 7.83 7.83' 7.83 7.83 7.83 10.50' 10.50 9.33* 9.33 9.33 10.00"

7.83

Figure 3H.6-15g RSW Pump House Basemat – SSI Model

Figure 3H.6-15h SSI Refined Mesh Model of UHS/RSW Pump House

3H-391

3H-392

Figure 3H.6-17 Broadened FRS in N-S (Y) Direction at the Top of RSW Pump House Mat (Elevation -18 ft MSL)

Figure 3H.6-18 Broadened FRS in Vertical (Z) Direction at the Top of RSW Pump House Mat (Elevation -18 ft MSL)

STP 3 & 4

Figure 3H.6-19 Broadened FRS in E-W (X) Direction at the RSW Pump House Operating Floor (Elevation 14 ft MSL)

Figure 3H.6-20 Broadened FRS in N-S (Y) Direction at the RSW Pump House Operating Floor (Elevation 14 ft MSL)

100

Figure 3H.6-21 Broadened FRS in Vertical (Z) Direction at the RSW Pump House Operating Floor (Elevation 14 ft MSL)

100

STP 3 & 4

3H-400

Rev. 11

100

Rev. 11

STP 3 & 4

3H-409

Figure 3H.6-36 Broadened FRS in Vertical (Z) Direction at the Mid-Level of Cooling Towers (Elevation 125.25 ft MSL)

3H-412

Frequency (Hz)

10

100

STP 3 & 4

Figure 3H.6-40A RSW Pump House Wall and Slab Labeling Convention

Figure 3H.6-40B UHS Basin Wall and Slab Labeling Convention

Rev. 11

Dynamic At-Rest Pressure (ksf)

Figure 3H.6-41 Dynamic At-Rest Lateral Earth Pressure (Excluding SSI and SSSI Seismic Soil Pressures) on the East, West, and North Walls of Pump House

Figure 3H.6-42 Dynamic At-Rest Lateral Earth Pressure (Excluding SSI and SSSI Seismic Soil Pressures) on the UHS Basin Walls

Dynamic At-Rest Pressure (ksf)

Figure 3H.6-43 Dynamic At-Rest Lateral Earth Pressure (Excluding SSI and SSSI Seismic Soil Pressures) on the South Wall of RSW Pump House

Figure 3H.6-44 Dynamic At-Rest Lateral Earth Pressure Diagrams (Excluding SSI and SSSI Seismic Soil Pressures) for Typical Section of RSW Tunnel

Figure 3H.6-45 Driving Lateral Pressure on the East, West, and North Walls of Pump House (for Stability Evaluation)

Figure 3H.6-46 Driving Lateral Pressure on Basin Walls (for Stability Evaluation)

Figure 3H.6-47 Driving Lateral Pressure on the South Wall of Pump House (for Stability Evaluation)

Figure 3H.6-48 Resisting Lateral Pressure on the East, West, and North Walls of Pump House (for Stability Evaluation)

Figure 3H.6-50 Resisting Lateral Pressure on the South Wall of Pump House (for Stability Evaluation)

Figure 3H.6-51 Pump House North Wall Looking South Horizontal Reinforcement Zones Near Side Face

3H-429

Details and Evaluation Results of Seismic Category 1 Structures

Figure 3H.6-52 Pump House North Wall Looking South Vertical Reinforcement Zones Near Side Face

3H-432

68'-0"

Figure 3H.6-55 Pump House North Wall Looking South Transverse Reinforcement Zones

Figure 3H.6-56 Pump House East Wall Looking West Horizontal Reinforcement Zones Near Side Face

Figure 3H.6-57 Pump House East Wall Looking West Vertical Reinforcement Zones Near Side Face

Figure 3H.6-60 Pump House East Wall Looking West Transverse Reinforcement Zones

Figure 3H.6-61 Pump House South Wall Looking South Horizontal Reinforcement Zones Near Side Face

Figure 3H.6-62 Pump House South Wall Looking South Vertical Reinforcement Zones Near Side Face

Figure 3H.6-63 Pump House South Wall Looking South Horizontal Reinforcement Zones Far Side Face

Rev. 11

Figure 3H.6-64 Pump House South Wall Looking South Vertical Reinforcement Zones Far Side Face

3H-442

Figure 3H.6-65 Pump House South Wall Looking South Transverse Reinforcement Zones

Figure 3H.6-66 Pump House West Wall Looking East Horizontal Reinforcement Zones Near Side Face

Figure 3H.6-67 Pump House West Wall Looking East Vertical Reinforcement Zones Near Side Face

Details and Evaluation Results of Seismic Category 1 Structures

Figure 3H.6-70 Pump House West Wall Looking East Transverse Reinforcement Zones

Figure 3H.6-71 Pump House Internal East Wall Looking West Horizontal Reinforcement Zones Near Side Face

Figure 3H.6-72 Pump House Internal East Wall Looking West Vertical Reinforcement Zones Near Side Face

Figure 3H.6-74A Pump House Internal East Wall Looking West Transverse Reinforcement Zones

Figure 3H.6-75 Pump House Internal West Wall Looking West Horizontal Reinforcement Zones Near Side Face

Figure 3H.6-80 Pump House East & West Buttresses Vertical Reinforcement Zones Both Faces

Figure 3H.6-81 Pump House East Buttress Looking North & Pump House West Buttress Looking South Transverse Reinforcement Zones

Figure 3H.6-82 UHS Basin North Wall Looking South Horizontal Reinforcement Zones Near Side Face

Figure 3H.6-83 UHS Basin North Wall Looking South Vertical Reinforcement Zones Near Side Face

Figure 3H.6-84 UHS Basin North Wall Looking South Horizontal Reinforcement Zones Far Side Face

Figure 3H.6-85 UHS Basin North Wall Looking South Vertical Reinforcement Zones Far Side Face

83'-6"

Rev. 11

Figure 3H.6-86 UHS Basin North Wall Looking South Transverse Reinforcement Zones

3H-466

Figure 3H.6-87 UHS Basin South Wall Looking North Horizontal Reinforcement Zones Near Side Face

Figure 3H.6-88 UHS Basin South Wall Looking North Vertical Reinforcement Zones Near Side Face

Figure 3H.6-89 UHS Basin South Wall Looking North Horizontal Reinforcement Zones Far Side Face

Figure 3H.6-90 UHS Basin South Wall Looking North Vertical Reinforcement Zones Far Side Face

Figure 3H.6-91 UHS Basin South Wall Looking North Transverse Reinforcement Zones

Figure 3H.6-92 UHS Basin East Wall Looking West Horizontal Reinforcement Zones Near Side Face

STP 3 & 4

Final Safety Analysis Report

Figure 3H.6-97 UHS Basin West Wall Looking East Horizontal Reinforcement Zones Near Side Face

3H-477

STP 3 & 4

Figure 3H.6-98 UHS Basin West Wall Looking East Vertical Reinforcement Zones Near Side Face

Figure 3H.6-99 UHS Basin West Wall Looking East Horizontal Reinforcement Zones Far Side Face

Final Safety Analysis Report

Figure 3H.6-101 UHS Basin West Wall Looking East Transverse Reinforcement Zones

Figure 3H.6-102 UHS Basin North & South Buttresses Horizontal Reinforcement Zones Both Faces

Figure 3H.6-103 UHS Basin North & South Buttresses Vertical Reinforcement Zones Both Faces

Figure 3H.6-104 UHS Basin North Buttress Looking West & UHS Basin South Buttress Looking East Transverse Reinforcement Zones

Figure 3H.6-105 UHS Basin East & West Buttresses Horizontal Reinforcement Zones Both Faces

Figure 3H.6-106 UHS Basin East & West Buttresses Vertical Reinforcement Zones Near and Far Side Faces

Figure 3H.6-107 UHS Basin East Buttress Looking North & UHS Basin West Buttress Looking South Transverse Reinforcement Zones

Figure 3H.6-108 Cooling Tower North (and South) Wall Looking South (North) Horizontal Reinforcement Zones Near Side Face

Rev. 11

Figure 3H.6-109 Cooling Tower North (and South) Wall Looking South (North) Vertical Reinforcement Zones Near Side Face

286'-0"	\rightarrow			_
1-H-L	4	41'-6"	55'-€	6"
BEAM 1		`		_

Figure 3H.6-110 Cooling Tower North (and South) Wall Looking South (North) Horizontal Reinforcement Zones Far Side Face

Figure 3H.6-111 Cooling Tower North (and South) Wall Looking South (North) Vertical Reinforcement Zones Far Side Face

Figure 3H.6-112 Cooling Tower North (and South) Wall Looking South (North) Transverse Reinforcement Zones

Figure 3H.6-113 Cooling Tower East Wall Looking West Horizontal Reinforcement Zones Near Side Face

Figure 3H.6-114 Cooling Tower East Wall Looking West Vertical Reinforcement Zones Near Side Face

Figure 3H.6-115 Cooling Tower East Wall Looking West Horizontal Reinforcement Zones Far Side Face

Figure 3H.6-116 Cooling Tower East Wall Looking West Vertical Reinforcement Zones Far Side Face

Figure 3H.6-116A Cooling Tower East Wall Looking West Transverse Reinforcement Zones

Figure 3H.6-117 Cooling Tower West Wall Looking East Horizontal Reinforcement Zones Near Side Face

Figure 3H.6-118 Cooling Tower West Wall Looking East Vertical Reinforcement Zones Near Side Face

Figure 3H.6-119 Cooling Tower West Wall Looking East Horizontal Reinforcement Zones Far Side Face

Figure 3H.6-120 Cooling Tower West Wall Looking East Vertical Reinforcement Zones Far Side Face

Figure 3H.6-120A Cooling Tower West Wall Looking East Transverse Reinforcement Zones

Figure 3H.6-121 Cooling Tower Internal Walls Horizontal Reinforcement Zones Both Faces

Figure 3H.6-122 Cooling Tower Internal Walls Vertical Reinforcement Zones Both Faces

Figure 3H.6-122A Cooling Tower Internal Wall Looking West Transverse Reinforcement Zones

Figure 3H.6-125 Pump House Foundation Mat East/West Reinforcement Zones Bottom Face

Figure 3H.6-126 Pump House Foundation Mat North/South Reinforcement Zones Bottom Face

Figure 3H.6-127 Pump House Floor El 15'-2" East/ West Reinforcement Zones Top Face

STP 3 & 4

Figure 3H.6-129 Pump House Floor El 15'-2" East/West Reinforcement Zones Bottom Face

Figure 3H.6-130 Pump House Floor El 15'-2" North/South Reinforcement Zones Bottom Face Final Safety Analysis Report

Rev. 11

STP 3 & 4

Figure 3H.6-131 UHS Basin Foundation Mat East/West Reinforcement Zones Top Face

Figure 3H.6-132 UHS Basin Foundation Mat North/South Reinforcement Zones Top Face

Figure 3H.6-133 UHS Basin Foundation Mat East/West Reinforcement Zones Bottom Face

Final Safety Analysis Report

21'-0"

164'-0"

STP 3 & 4

13'-0"

21'-0"

Figure 3H.6-134 UHS Basin Foundation Mat North/South Reinforcement Zones Bottom Face

Rev. 11

3H-519

Figure 3H.6-136A Pump House Roof North/South Reinforcement Zones Top Face

Figure 3H.6-136B Pump House Roof East/West Reinforcement Zones Bottom Face

Figure 3H.6-136C Pump House Roof North/South Reinforcement Zones Bottom Face

Rev. 11

Factors of Safety against Sliding and Overturning about point A are calculated as follows: $SF_{sliding} = \frac{P_{at_rest} + F}{E_s + E}$

$$SF_{OT_A} = \frac{(P_{at_rest})(Y_1) + (0.9D)(X_1)}{(F_B)(X_2) + (E_s)(Y_2) + (E^{-})(Y_3) + (E_v)(X_1)}$$

Where:

SF_{sliding} = Safety factor against sliding

SF_{OT A} = Safety factor against overturning about "A"

D = Dead load

Pat_rest = Total at-rest soil pressure

 $F = \mu N$ = friction force and μ is the coefficient of friction

- E_s = Static and dynamic soil pressure
- E' = Self weight excitation in the horizontal direction
- E_v = Self weight excitation in the vertical direction
- F_B = Buoyancy force

N = Vertical reaction = $0.9D - F_B - E_v$

Notes:

- (1) If passive pressure is utilized, P_{passive} is used instead of P_{at-rest}
- (2) E' represents the inertia of the structure and it is either determined from equivalent static method or response spectrum analysis.
- (3) E_s represents the static and dynamic loads from soil which includes seismic loads from soil and hydrodynamic pressure from groundwater. These loads are computed in accordance with Section 2.5S4.10.5.

Figure 3H.6-137 Formulations Used for Calculation of Factors of Safety Against Sliding and Overturning for Category I Site-Specific Structures

Figure 3H.6-138 RSW Piping Tunnel, Horizontal Response Spectra

Figure 3H.6-139 RSW Piping Tunnel, Vertical Response Spectra