

CCTF Test C2-4 Run 62 Uncertainty Analysis

Overview

- **▶** Motivation
- Methodology
- **▶** Results

- Discussed during the post-submittal meeting w/ NRC on RLBLOCA Rev. 3 - statistical uncertainty evaluation of an IET, specifically CCTF Test C2-4, Run 62
- ► The purpose is answer the following questions:
 - Are the code calculations a good representation of the experimental results in the sense that they provide a good demonstration of the possible LBLOCA outcomes?
 - Does the S-RELAP5 code retain a conservative bias when predicting the complex phenomena in Integral Effects Tests, such as CCTF Run 62?

- ► Test Data Analysis
- ► Characterization of test initial and boundary conditions
- Perform a reduced order PIRT
- Execute base run (best-estimate)
- ► Uncertainty Analysis of CCTF 62

Test Data Analysis

- ▶ Identify data available
- Revealed some information is not available or uncertain
 - Lack of direct measurement for steam flow rates I/O SG (difficult to assess steam binding effects)
 - ♦ Large uncertainties associated w/ hot leg mass flow rate measurements
 - Large uncertainty in measurement data for liquid carryover
 - ♦ Lack of precise geometry description for the containment tank
- Concluded that relevant data is available and adequate for the purpose of the study

Characterization of test I&B conditions

- ► Estimated uncertainty ranges for
 - Input parameters
 - Boundary conditions
- ► Provided as input to the PIRT panel for determination of sampled parameters and their corresponding ranges

- ► The goal was to identify the model parameters with impact on CCTF Test 62
- Started w/ the EMF-2103 Rev. 3 PIRT
 - Is the phenomenon listed in the PIRT table important for CCTF Test C2-4 Run 62?
 - If YES, then it will be included in the reduced order PIRT.
 - If NO, then determine if an alternate/equivalent phenomenon should be considered instead, or exclude it from the reduced order PIRT.
 - Are there any additional phenomena that are not included in the Revision 3 PIRT that should be considered for the reduced order PIRT?
 - How are the identified phenomenological parameters to be ranged in the CCTF UA and quantified for uncertainty evaluation?

► CCTF Model has been updated to include:					
	я т			e e	
	1 II				
	Graph en al 13 eAu and a sign and				
	- Way				
	100 mg / 100				

Base Case Run (BE)

- Overall hydraulic response show good calculation trends
 - ◆ Downcomer ∆p
 - ◆ Core ∆p
- Some response show reasonable to good agreement
 - Break flow rate
 - Upper plenum pressure
 - ◆ Broken loop pump ∆p
 - Difficult to assess steam binding effect due to lack of measurement data
 - Code calculated cold leg condensation is possibly higher than actually occurring – may impact upper plenum pressure
- Good agreement for high-power rods temperatures
 - Maximum temperatures at all core elevations are at the high end or above the measured data

Base Case Run

Base Case Run

Base Case Run

Uncertainty Analysis Results

Uncertainty Analysis Results

Uncertainty Analysis Results

forward-looking energy

Envelope of Calculated and Measured Data at 1.83 m Elevation

Envelope of Calculated and Measured Data at 2.44 m Elevation

Envelope of Calculated and Measured Data at 3.05 m Elevation

Conclusions

► The study shows that the code calculations are a good representation of the experimental results in the sense that they provide a good demonstration of the possible LBLOCA outcomes.

► The S-RELAP5 code retains a conservative bias when predicting the complex phenomena in Integral Effects Tests, such as CCTF Run 62

CCTF Heater Rod

Outline of Response on Packing Factor/ Rupture Strain RAI

Bert Dunn

Rockville, Md September 23, 2014

4.3.B Packing Factor and Burnup

- The possibility of a correlation of packing factor with burnup exists
 - If substantial amounts of fine fragments are present these can fill balloon voids
 - The ruble may then be chunks of the original pellet surrounded by fine fragments
 - Packing of the fine fragments will be limited to 65 to 70 percent but the chunks will be near 100 percent and the average density in the balloon can increase
 - However fine fragments are associated with pulverization of the high burnup structure of the pellet which is only significant near or beyond rod licensing limits
- ◆ Thus, there may be a packing factor dependency on burnup but it is only important beyond current licensing limits
- Should these licensing limits be increased it will be appropriate to review the need to apply this dependency

4.3.D Independence of Sampled Parameters

- The statically evaluation applied by AREVA in non-parametric evaluations essentially order statistics is a measure of the probability of given results of a possible LOCA
- Thus it is the events (called cases in the application) of LOCAs that must be independent of each other
- The relationship between parameters or phenomena that interact to produce the results of an event should, be treated realistically including interdependence if present
- In fact, for phenomena that is of importance to the event outcome, the dependence of one phenomena on another even when sampled must be properly reflected for the event result to be a valid possibility

p. 7

Outline of Response on Zr-4 / ZIRLO, Mixed Core Evaluations RAIs

Bert Dunn Rockville, Md September 23, 2014

- 3.3.A SRR Treatment for non-M5 clad fuel
 - The need to consider non-M5 cladding occurs during mixed core situations
 - Change over to M5 in an AREVA fueled plant (1 possible, Zr-4 to M5)
 - Change of fuel supplier (many possible, ZIRLO to M5)
 - Primary approach is to let previous analysis apply for co-resident fuel
 - New AREVA fuel hydraulically similar of channels some flow to co-resident fuel
 - Co-resident fuel cools the same or better than previous analysis indicates
 - Previous analysis is conservative for co-resident fuel
 - Conditions of analysis of co-resident fuel reported as plant specific EM

- 3.3.A SRR Treatment for non-M5 clad fuel (Continued)
 - AREVA fuel less resistive than co-resident AREVA fuel
 - Sensitivity studies performed to show co-resident fuel non-limiting, or
 - Statistical evaluation performed on co-resident fuel
 - AREVA fuel less resistive than co-resident Non-AREVA
 - Conservative evaluation technique developed for non-AREVA fuel
 - Sensitivity studies performed to show co-resident fuel non-limiting, or
 - Statistical evaluation performed on co-resident fuel
 - Conditions of analysis of co-resident fuel reported as plant specific EMs

- ▶ 3.3.B RODEX-3A in Tables 8.4-1 and 8.5-1
 - ◆ RODEX-3A should not have appeared in either table
 - Tables 8.4-1 and 8.5-1 will be redrafted with only COPERNIC listed as the fuel performance code
 - The inclusion of RODEX-3A in these table was a mistake

Table 8.4-1: Summary of Evaluated Biases and Uncertainties of **Important Code Related PIRT Parameters**

Zr-4 / ZIRLO Evaluations

- ▶ 3.3.C Evaluation of Non-M5 Cladding with RODEX-3A
 - ◆ RODEX-3A will not be used in the Revision 3 evaluation model

Statistical Approach in EMF-2103, Rev. 3

Rev. 3 Statistical Approach

- True multivariate method
 - Uses the concept of statistically equivalent blocks introduced by Tukey
 [Ref. 1]
 - For a univariate sample of size n from a continuous with the order statistics $X_{(1)} < X_{(2)} < \dots X_{(n)}$

the equivalent blocks are defined as the intervals

$$(-\infty, X_{(1)}], \dots (X_{(j-1)}, X_{(j)}], \dots (X_{(n)}, \infty)$$

This distribution of lengths provides at the same time the distribution of fractions of the population covered by the blocks, i.e.

$$F_X(X_{(1)}), ..., F_X(X_{(j)}) - F_X(X_{(j-1)}), ..., 1 - F_X(X_{(n)})$$

It can be proven that the expected content of the blocks is the same

$$E(C_1) = ... E(C_j) = ... E(C_{(n+1)}) = \frac{1}{n+1}$$
 [Ref. 2]

► The sum of coverages of any k preselected blocks out of n+1 is

$$Pr(\sum_{j=1}^{k} C_{j} < 1 - \gamma) = I_{1-\gamma}(n-k+1,k)$$

$$Pr(\sum_{j=1}^{k} C_{j} \geq \alpha) = 1 - I_{\alpha}(n-k+1,k)$$

Bivariate example AREVA forward-looking energy

3 Case E	xample (n	umbers are	e completel	y arbitrary)	,

▶ 3 Case Example (cont.)

Illustration of the results_

- 1. Tukey, J.W., Non-Parametric Estimation II: Statistically Equivalent Blocks and Tolerance Regions the Continuous Case, Ann. Math. Stat. 18, 529-539
- 2. Krishnamoorthy, K., Mathew T., Statistical Tolerance Regions – Theory, Applications, and Computation, John Wiley & Sons, 2009

