## ENERCON

### **Appendix A: Setpoint Selection**

The updated salinity analysis using the 10-year Hudson River data from ASA (documented in Appendix F) returned closed-loop salinity values greater than the 7.2 psu defined in the 2003 and 2010 Closed-Loop Cooling Reports [Refs. 6.1 and 6.2]. As discussed in Section 1, this report provides supplemental analyses and evaluates the closed-loop operational scenarios that determine compliance with regulatory requirements for air emissions. There is an essential trade-off between closed-loop cooling operation and air quality, given the prevailing salinity conditions in the vicinity of IPEC. The evaluated mechanism for controlling air emissions is to limit salinity in the closed-loop cooling system through alteration of the cooling tower operations. One method for altering cooling tower operations is to vary the amount of make-up flow supplied to the closed-loop system.

The updated closed-loop cooling make-up flow control logic described in Section 3 of this evaluation relies upon the selection of an acceptable salinity setpoint. The salinity setpoint is a selected point at which additional make-up flow is initiated to counteract high closed-loop salinity levels. Hudson River salinity varies considerably, resulting in a series of peak salinity values occurring throughout the 10-year period. Additional make-up flow would be utilized leading up to and during peak salinity periods in order to reduce maximum closed-loop salinity. During non-peak conditions, providing additional make-up flow would not be required to mitigate the effect of these peak events.

As a result of the analysis described in Section 4, several setpoint values produce identical maximum closed-loop salinity values. Setpoint values were then chosen to minimize the makeup flow necessary (i.e., minimize potential biological effect) at the lowest 24-hr maximum closed-loop salinity. Table A.1 summarizes the 24-hr maximum salinity values (i.e., the maximum 24-hour average salinity), the maximum instantaneous salinity values, the average salinity values, and the make-up flowrates for a given make-up capacity at the selected salinity setpoints over the 10-year Hudson River data provided by ASA.

| Case                                        | Closed-L              | oop Syster   | n Salinity       |                                            |                   |
|---------------------------------------------|-----------------------|--------------|------------------|--------------------------------------------|-------------------|
| (Make-Up Capacity)                          | 24-Hr<br>Max<br>(psu) | Max<br>(psu) | Average<br>(psu) | Make-Up Flow <sup>1</sup><br>Average (gpm) | Selected Setpoint |
| 1.5 Cycles of<br>Concentration <sup>2</sup> | 11.01                 | 11.05        | 2.60             | 48,918                                     | See Note 4        |
| SW + 10,000 gpm                             | 10.28                 | 10.33        | 2.59             | 49,029                                     | 10                |
| SW + 25,000 gpm                             | 9.63                  | 9.69         | 2.57             | 49,545                                     | 9                 |
| SW + 50,000 gpm                             | 9.04                  | 9.11         | 2.51             | 51,123                                     | 8                 |
| SW + 100,000 gpm                            | 8.51                  | 8.59         | 2.50             | 52,124                                     | 8                 |
| SW + 152,000 gpm                            | 8.26                  | 8.34         | 2.50             | 52,675                                     | 8                 |
| SW + 304,000 gpm                            | 7.96                  | 8.05         | 2.41             | 62,570                                     | 7                 |
| SW + 456,000 gpm                            | 7.84                  | 7.93         | 2.40             | 66,771                                     | 7                 |
| SW + 608,000 gpm                            | 7.78                  | 7.87         | 2.40             | 70,661                                     | 7                 |
| SW + 760,000 gpm                            | 7.74                  | 7.83         | 2.40             | 74,381                                     | 7                 |
| SW + 912,000 gpm                            | 7.72                  | 7.81         | 2.39             | 77,910                                     | 7                 |
| SW + 1,064,000 gpm                          | 7.70                  | 7.79         | 2.39             | 81,320                                     | 7                 |
| SW + 1,216,000 gpm                          | 7.68                  | 7.77         | 2.39             | 84,612                                     | 7                 |
| $SW + 1,367,000 \text{ gpm}^3$              | 7.67                  | 7.76         | 2.39             | 87,764                                     | 7                 |

Table A.1IPEC Salinity Analysis

<sup>2</sup> The flowrate required to achieve 1.5 Cycles of Concentration is equivalent to the historic Unit 2 and Unit 3 service water flowrates.

<sup>3</sup> Maximum make-up flowrate determined using minimum SW flowrate (33,000 gpm) and sufficient make-up capacity to produce 700,000 gpm per Unit.

<sup>4</sup> No salinity setpoint was selected as no additional make-up flow is utilized for this scenario. The flowrate required to achieve 1.5 Cycles of Concentration is equivalent to the historic Unit 2 and Unit 3 service water flowrates.

Table A.1 values range from a 24-hr maximum salinity value of 11.01 psu for an average annual make-up flowrate of 48,918 gpm (1.5 Cycles of Concentration) to a 24-hr maximum salinity value of 7.67 psu for an average annual make-up flowrate of 87,764 gpm (SW + 1,367,000; essentially once-through cooling make-up capacity). As the scenario of SW + 1,367,000 is essentially once-through cooling, the 7.67 psu is representative of the maximum Hudson River salinity reported by ASA in Table 5-4 of Appendix F. All of the tabulated maximum salinity values are greater than the 7.2 psu presented in the 2003 Closed-Loop Cooling Report [Ref. 6.1]. The required make-up flow varies by month, as detailed in Appendix B.

As described in Section 3.1, a salinity setpoint is a selected salinity value in psu at which additional make-up flow is initiated to counteract high closed-loop salinity levels. Additional make-up flow above the historic SW flow would not be added to the closed-loop system until the setpoint value was reached within the closed-loop system. To determine an acceptable salinity setpoint, the analysis described in Section 4 of this evaluation was run and summary tables of the analysis are provided in Table A.2 through Table A.15. Each table provides salinity and flow information over a range of salinity setpoints.

## 🔁 ENERCON

Several setpoint values result in identical maximum closed-loop salinity values. This was due to one of two scenarios: (1) no additional make-up flow was available to further dilute the closed-loop salinity (i.e., the maximum make-up flow was reached) or (2) the closed-loop salinity was equal to the Hudson River salinity. These tables also indicate that the average make-up flow rate decreases with an increase in setpoint values. Based on these trends, the highlighted values are chosen as the setpoint values. This selection minimizes the closed-loop salinity at the lowest make-up flow rate (i.e., maximizes the potential biological benefits).

| Setpoint | Closed-Loop System Salinity |              |                  | Make-Up<br>Flow <sup>2</sup> | SW Only          | Additional<br>Make-Up |
|----------|-----------------------------|--------------|------------------|------------------------------|------------------|-----------------------|
| (psu)    | 24-Hr<br>Max (psu)          | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2        | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |
| 3        | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |
| 4        | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |
| 5        | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |
| 6        | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |
| 7        | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |
| 8        | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |
| 9        | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |
| 10       | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |
| 11       | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |
| 12       | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |

### Table A.2 IPEC Closed-Loop Cooling Salinity Analysis at 1.5 Cycles of Concentration<sup>1</sup>

<sup>1</sup> No salinity setpoint was selected as no additional make-up flow is utilized for this scenario. The flowrate required to achieve 1.5 Cycles of Concentration is equivalent to the historic Unit 2 and Unit 3 service water flowrates.

|          |                                            | I IOW IN | ale - Sw | 10,000 gpm                              |                    |                                  |  |
|----------|--------------------------------------------|----------|----------|-----------------------------------------|--------------------|----------------------------------|--|
| Setpoint | Closed-Loop System Salinity24-HrMaxAverage |          |          | Make-Up<br>Flow <sup>1</sup><br>Average | SW Only<br>Average | Additional<br>Make-Up<br>Average |  |
| (psu)    | Max (psu)                                  | (psu)    | (psu)    | (gpm)                                   | (gpm)              | (gpm)                            |  |
| 2        | 10.28                                      | 10.33    | 2.45     | 52,991                                  | 48,918             | 4,073                            |  |
| 3        | 10.28                                      | 10.33    | 2.46     | 52,296                                  | 48,918             | 3,378                            |  |
| 4        | 10.28                                      | 10.33    | 2.48     | 51,489                                  | 48,918             | 2,571                            |  |
| 5        | 10.28                                      | 10.33    | 2.50     | 50,836                                  | 48,918             | 1,918                            |  |
| 6        | 10.28                                      | 10.33    | 2.52     | 50,403                                  | 48,918             | 1,486                            |  |
| 7        | 10.28                                      | 10.33    | 2.54     | 50,028                                  | 48,918             | 1,110                            |  |
| 8        | 10.28                                      | 10.33    | 2.56     | 49,580                                  | 48,918             | 662                              |  |
| 9        | 10.28                                      | 10.33    | 2.58     | 49,251                                  | 48,918             | 333                              |  |
| 10       | 10.28                                      | 10.33    | 2.59     | 49,029                                  | 48,918             | 111                              |  |
| 11       | 10.98                                      | 11.00    | 2.60     | 48,918                                  | 48,918             | 0                                |  |
| 12       | 11.01                                      | 11.05    | 2.60     | 48,918                                  | 48,918             | 0                                |  |

Table A.3IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 10,000 gpm

| Table A.4 | IPEC Closed-Loop Cooling Salinity Analysis |
|-----------|--------------------------------------------|
|           | Flow Rate = SW + 25,000 gpm                |

| Setpoint<br>(psu) | Closed-Loop System Salinity |              |                  | Make-Up<br>Flow <sup>1</sup> | SW Only          | Additional<br>Make-Up |
|-------------------|-----------------------------|--------------|------------------|------------------------------|------------------|-----------------------|
|                   | 24-Hr<br>Max (psu)          | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2                 | 9.63                        | 9.69         | 2.31             | 58,907                       | 48,918           | 9,989                 |
| 3                 | 9.63                        | 9.69         | 2.34             | 57,104                       | 48,918           | 8,186                 |
| 4                 | 9.63                        | 9.69         | 2.38             | 55,028                       | 48,918           | 6,111                 |
| 5                 | 9.63                        | 9.69         | 2.42             | 53,482                       | 48,918           | 4,565                 |
| 6                 | 9.63                        | 9.69         | 2.45             | 52,425                       | 48,918           | 3,508                 |
| 7                 | 9.63                        | 9.69         | 2.49             | 51,367                       | 48,918           | 2,449                 |
| 8                 | 9.63                        | 9.69         | 2.53             | 50,309                       | 48,918           | 1,391                 |
| 9                 | 9.63                        | 9.69         | 2.57             | 49,545                       | 48,918           | 627                   |
| 10                | 10.00                       | 10.01        | 2.59             | 49,049                       | 48,918           | 131                   |
| 11                | 10.98                       | 11.00        | 2.60             | 48,918                       | 48,918           | 0                     |
| 12                | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |

| Setpoint | Closed-Loop System Salinity |              |                  | Make-Up<br>Flow <sup>1</sup> | SW Only          | Additional<br>Make-Up |
|----------|-----------------------------|--------------|------------------|------------------------------|------------------|-----------------------|
| (psu)    | 24-Hr<br>Max (psu)          | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2        | 9.04                        | 9.11         | 2.20             | 68,546                       | 48,918           | 19,628                |
| 3        | 9.04                        | 9.11         | 2.24             | 64,722                       | 48,918           | 15,804                |
| 4        | 9.04                        | 9.11         | 2.29             | 60,541                       | 48,918           | 11,623                |
| 5        | 9.04                        | 9.11         | 2.35             | 57,570                       | 48,918           | 8,653                 |
| 6        | 9.04                        | 9.11         | 2.40             | 55,406                       | 48,918           | 6,488                 |
| 7        | 9.04                        | 9.11         | 2.45             | 53,079                       | 48,918           | 4,162                 |
| 8        | 9.04                        | 9.11         | 2.51             | 51,123                       | 48,918           | 2,206                 |
| 9        | 9.05                        | 9.11         | 2.56             | 49,736                       | 48,918           | 818                   |
| 10       | 9.99                        | 10.01        | 2.59             | 49,051                       | 48,918           | 133                   |
| 11       | 10.97                       | 11.00        | 2.60             | 48,918                       | 48,918           | 0                     |
| 12       | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |

 Table A.5
 IPEC Closed-Loop Cooling Salinity Analysis

 Flow Rate = SW + 50,000 gpm

| Table A.6 | IPEC Closed-Loop Cooling Salinity Analysis |
|-----------|--------------------------------------------|
|           | Flow Rate = SW + 100,000 gpm               |

| Setpoint<br>(psu) | Closed-Loop System Salinity |              |                  | Make-Up<br>Flow <sup>1</sup> | SW Only          | Additional<br>Make-Up |
|-------------------|-----------------------------|--------------|------------------|------------------------------|------------------|-----------------------|
|                   | 24-Hr<br>Max (psu)          | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2                 | 8.51                        | 8.59         | 2.10             | 87,387                       | 48,918           | 38,470                |
| 3                 | 8.51                        | 8.59         | 2.15             | 79,195                       | 48,918           | 30,277                |
| 4                 | 8.51                        | 8.59         | 2.22             | 70,838                       | 48,918           | 21,920                |
| 5                 | 8.51                        | 8.59         | 2.29             | 65,095                       | 48,918           | 16,177                |
| 6                 | 8.51                        | 8.59         | 2.35             | 60,400                       | 48,918           | 11,482                |
| 7                 | 8.51                        | 8.59         | 2.43             | 55,631                       | 48,918           | 6,713                 |
| 8                 | 8.51                        | 8.59         | 2.50             | 52,124                       | 48,918           | 3,207                 |
| 9                 | 9.00                        | 9.02         | 2.56             | 49,752                       | 48,918           | 835                   |
| 10                | 9.98                        | 10.01        | 2.59             | 49,056                       | 48,918           | 138                   |
| 11                | 10.97                       | 11.00        | 2.60             | 48,919                       | 48,918           | 1                     |
| 12                | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |



| Setpoint | Closed-Loop System Salinity |              |                  | Make-Up<br>Flow <sup>1</sup> | SW Only          | Additional<br>Make-Up |
|----------|-----------------------------|--------------|------------------|------------------------------|------------------|-----------------------|
| (psu)    | 24-Hr<br>Max (psu)          | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2        | 8.26                        | 8.34         | 2.05             | 106,639                      | 48,918           | 57,721                |
| 3        | 8.26                        | 8.34         | 2.11             | 93,595                       | 48,918           | 44,677                |
| 4        | 8.26                        | 8.34         | 2.19             | 81,020                       | 48,918           | 32,102                |
| 5        | 8.26                        | 8.34         | 2.26             | 72,383                       | 48,918           | 23,465                |
| 6        | 8.26                        | 8.34         | 2.34             | 64,782                       | 48,918           | 15,864                |
| 7        | 8.26                        | 8.34         | 2.42             | 57,703                       | 48,918           | 8,785                 |
| 8        | 8.26                        | 8.34         | 2.50             | 52,675                       | 48,918           | 3,757                 |
| 9        | 8.99                        | 9.02         | 2.56             | 49,764                       | 48,918           | 846                   |
| 10       | 9.96                        | 10.01        | 2.59             | 49,059                       | 48,918           | 142                   |
| 11       | 10.96                       | 11.00        | 2.60             | 48,919                       | 48,918           | 1                     |
| 12       | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |

Table A.7IPEC Closed-Loop Cooling Salinity Analysis<br/>Flow Rate = SW + 152,000 gpm

| Table A.8 | IPEC Closed-Loop Cooling Salinity Analysis |
|-----------|--------------------------------------------|
|           | Flow Rate = SW + 304,000 gpm               |

| Setpoint | Closed-Loop System Salinity |              |                  | Make-Up<br>Flow <sup>1</sup> | SW Only          | Additional<br>Make-Up |
|----------|-----------------------------|--------------|------------------|------------------------------|------------------|-----------------------|
| (psu)    | 24-Hr<br>Max (psu)          | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2        | 7.96                        | 8.05         | 1.99             | 161,973                      | 48,918           | 113,055               |
| 3        | 7.96                        | 8.05         | 2.06             | 133,883                      | 48,918           | 84,965                |
| 4        | 7.96                        | 8.05         | 2.15             | 109,406                      | 48,918           | 60,488                |
| 5        | 7.96                        | 8.05         | 2.23             | 92,023                       | 48,918           | 43,106                |
| 6        | 7.96                        | 8.05         | 2.32             | 75,599                       | 48,918           | 26,681                |
| 7        | 7.96                        | 8.05         | 2.41             | 62,570                       | 48,918           | 13,652                |
| 8        | 8.02                        | 8.05         | 2.50             | 53,136                       | 48,918           | 4,218                 |
| 9        | 8.96                        | 9.02         | 2.56             | 49,800                       | 48,918           | 882                   |
| 10       | 9.93                        | 10.01        | 2.59             | 49,073                       | 48,918           | 155                   |
| 11       | 10.94                       | 11.00        | 2.60             | 48,920                       | 48,918           | 2                     |
| 12       | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |

## 🖸 ENERCON

| Setpoint | Closed-Loop System Salinity |              |                  | Make-Up<br>Flow <sup>1</sup> | SW Only          | Additional<br>Make-Up |
|----------|-----------------------------|--------------|------------------|------------------------------|------------------|-----------------------|
| (psu)    | 24-Hr<br>Max (psu)          | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2        | 7.84                        | 7.93         | 1.97             | 216,661                      | 48,918           | 167,743               |
| 3        | 7.84                        | 7.93         | 2.04             | 172,827                      | 48,918           | 123,909               |
| 4        | 7.84                        | 7.93         | 2.13             | 136,707                      | 48,918           | 87,789                |
| 5        | 7.84                        | 7.93         | 2.22             | 110,463                      | 48,918           | 61,545                |
| 6        | 7.84                        | 7.93         | 2.31             | 85,151                       | 48,918           | 36,234                |
| 7        | 7.84                        | 7.93         | 2.40             | 66,771                       | 48,918           | 17,853                |
| 8        | 8.00                        | 8.03         | 2.50             | 53,187                       | 48,918           | 4,269                 |
| 9        | 8.93                        | 9.02         | 2.56             | 49,832                       | 48,918           | 915                   |
| 10       | 9.93                        | 10.01        | 2.59             | 49,087                       | 48,918           | 169                   |
| 11       | 10.96                       | 11.00        | 2.60             | 48,920                       | 48,918           | 2                     |
| 12       | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |

Table A.9IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 456,000 gpm

<sup>1</sup> Make-up flowrate based on closed-loop system logic and historic Unit 2 SW, Unit 1 RW, and Unit 3 SW flowrates used in Case 15 of Attachment 6 to the 2010 Alternative Technologies Report.

| Setpoint<br>(psu) | Closed-Loop System Salinity |              |                  | Make-Up<br>Flow <sup>1</sup> | SW Only          | Additional<br>Make-Up |
|-------------------|-----------------------------|--------------|------------------|------------------------------|------------------|-----------------------|
|                   | 24-Hr<br>Max (psu)          | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2                 | 7.78                        | 7.87         | 1.96             | 270,915                      | 48,918           | 221,998               |
| 3                 | 7.78                        | 7.87         | 2.03             | 211,076                      | 48,918           | 162,158               |
| 4                 | 7.78                        | 7.87         | 2.13             | 163,496                      | 48,918           | 114,578               |
| 5                 | 7.78                        | 7.87         | 2.21             | 128,303                      | 48,918           | 79,385                |
| 6                 | 7.78                        | 7.87         | 2.30             | 94,168                       | 48,918           | 45,250                |
| 7                 | 7.78                        | 7.87         | 2.40             | 70,661                       | 48,918           | 21,744                |
| 8                 | 8.00                        | 8.03         | 2.49             | 53,237                       | 48,918           | 4,319                 |
| 9                 | 8.90                        | 9.02         | 2.56             | 49,869                       | 48,918           | 951                   |
| 10                | 9.93                        | 10.01        | 2.59             | 49,098                       | 48,918           | 180                   |
| 11                | 10.95                       | 11.00        | 2.60             | 48,920                       | 48,918           | 2                     |
| 12                | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |

Table A.10IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 608,000 gpm



| Setpoint<br>(psu) | Closed-Loop System Salinity |              |                  | Make-Up<br>Flow <sup>1</sup> | SW Only          | Additional<br>Make-Up |
|-------------------|-----------------------------|--------------|------------------|------------------------------|------------------|-----------------------|
|                   | 24-Hr<br>Max (psu)          | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2                 | 7.74                        | 7.83         | 1.95             | 324,888                      | 48,918           | 275,970               |
| 3                 | 7.74                        | 7.83         | 2.02             | 248,721                      | 48,918           | 199,803               |
| 4                 | 7.74                        | 7.83         | 2.12             | 189,904                      | 48,918           | 140,986               |
| 5                 | 7.74                        | 7.83         | 2.21             | 145,852                      | 48,918           | 96,934                |
| 6                 | 7.74                        | 7.83         | 2.30             | 102,801                      | 48,918           | 53,884                |
| 7                 | 7.74                        | 7.83         | 2.40             | 74,381                       | 48,918           | 25,463                |
| 8                 | 7.99                        | 8.03         | 2.49             | 53,275                       | 48,918           | 4,357                 |
| 9                 | 8.90                        | 9.02         | 2.55             | 49,894                       | 48,918           | 977                   |
| 10                | 9.93                        | 10.01        | 2.59             | 49,109                       | 48,918           | 191                   |
| 11                | 10.95                       | 11.00        | 2.60             | 48,921                       | 48,918           | 3                     |
| 12                | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |

 Table A.11
 IPEC Closed-Loop Cooling Salinity Analysis

 Flow Rate = SW + 760,000 gpm

| Table A.12 | IPEC Closed-Loop Cooling Salinity Analysis |
|------------|--------------------------------------------|
|            | Flow Rate = SW + 912,000 gpm               |

| Setpoint | Closed-Lo          | oop System   | Salinity         | Make-Up<br>Flow <sup>1</sup> | SW Only          | Additional<br>Make-Up |
|----------|--------------------|--------------|------------------|------------------------------|------------------|-----------------------|
| (psu)    | 24-Hr<br>Max (psu) | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2        | 7.72               | 7.81         | 1.95             | 378,473                      | 48,918           | 329,555               |
| 3        | 7.72               | 7.81         | 2.02             | 286,163                      | 48,918           | 237,245               |
| 4        | 7.72               | 7.81         | 2.12             | 216,133                      | 48,918           | 167,215               |
| 5        | 7.72               | 7.81         | 2.21             | 163,169                      | 48,918           | 114,251               |
| 6        | 7.72               | 7.81         | 2.30             | 111,231                      | 48,918           | 62,313                |
| 7        | 7.72               | 7.81         | 2.39             | 77,910                       | 48,918           | 28,992                |
| 8        | 7.98               | 8.03         | 2.49             | 53,320                       | 48,918           | 4,402                 |
| 9        | 8.89               | 9.02         | 2.55             | 49,932                       | 48,918           | 1,014                 |
| 10       | 9.93               | 10.01        | 2.59             | 49,121                       | 48,918           | 203                   |
| 11       | 10.95              | 11.00        | 2.60             | 48,921                       | 48,918           | 3                     |
| 12       | 11.01              | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |

## 🖸 ENERCON

| Setpoint<br>(psu) | Closed-Loop System Salinity |              |                  | Make-Up<br>Flow <sup>1</sup> | SW Only          | Additional<br>Make-Up |
|-------------------|-----------------------------|--------------|------------------|------------------------------|------------------|-----------------------|
|                   | 24-Hr<br>Max (psu)          | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2                 | 7.70                        | 7.79         | 1.94             | 432,155                      | 48,918           | 383,237               |
| 3                 | 7.70                        | 7.79         | 2.01             | 323,387                      | 48,918           | 274,470               |
| 4                 | 7.70                        | 7.79         | 2.11             | 242,066                      | 48,918           | 193,149               |
| 5                 | 7.70                        | 7.79         | 2.20             | 180,226                      | 48,918           | 131,308               |
| 6                 | 7.70                        | 7.79         | 2.29             | 119,454                      | 48,918           | 70,536                |
| 7                 | 7.70                        | 7.79         | 2.39             | 81,320                       | 48,918           | 32,402                |
| 8                 | 7.97                        | 8.03         | 2.49             | 53,390                       | 48,918           | 4,472                 |
| 9                 | 8.85                        | 9.02         | 2.55             | 49,964                       | 48,918           | 1,046                 |
| 10                | 9.93                        | 10.01        | 2.59             | 49,132                       | 48,918           | 214                   |
| 11                | 10.94                       | 11.00        | 2.60             | 48,922                       | 48,918           | 4                     |
| 12                | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |

Table A.13IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 1,064,000 gpm

<sup>1</sup> Make-up flowrate based on closed-loop system logic and historic Unit 2 SW, Unit 1 RW, and Unit 3 SW flowrates used in Case 15 of Attachment 6 to the 2010 Alternative Technologies Report.

| Setpoint<br>(psu) | Closed-Loop System Salinity |              |                  | Make-Up<br>Flow <sup>1</sup> | SW Only          | Additional<br>Make-Up |
|-------------------|-----------------------------|--------------|------------------|------------------------------|------------------|-----------------------|
|                   | 24-Hr<br>Max (psu)          | Max<br>(psu) | Average<br>(psu) | Average<br>(gpm)             | Average<br>(gpm) | Average<br>(gpm)      |
| 2                 | 7.68                        | 7.77         | 1.94             | 485,384                      | 48,918           | 436,466               |
| 3                 | 7.68                        | 7.77         | 2.01             | 360,452                      | 48,918           | 311,534               |
| 4                 | 7.68                        | 7.77         | 2.11             | 267,939                      | 48,918           | 219,021               |
| 5                 | 7.68                        | 7.77         | 2.20             | 197,029                      | 48,918           | 148,111               |
| 6                 | 7.68                        | 7.77         | 2.29             | 127,572                      | 48,918           | 78,655                |
| 7                 | 7.68                        | 7.77         | 2.39             | 84,612                       | 48,918           | 35,694                |
| 8                 | 7.96                        | 8.03         | 2.48             | 53,416                       | 48,918           | 4,499                 |
| 9                 | 8.88                        | 9.02         | 2.55             | 49,988                       | 48,918           | 1,070                 |
| 10                | 9.93                        | 10.01        | 2.59             | 49,144                       | 48,918           | 227                   |
| 11                | 10.96                       | 11.00        | 2.60             | 48,922                       | 48,918           | 5                     |
| 12                | 11.01                       | 11.05        | 2.60             | 48,918                       | 48,918           | 0                     |

Table A.14IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 1,216,000 gpm



| Setpoint<br>(psu) | Closed-Lo          | Closed-Loop System Salinity |                  |                  | SW Only          | Additional<br>Make-Up |
|-------------------|--------------------|-----------------------------|------------------|------------------|------------------|-----------------------|
|                   | 24-Hr<br>Max (psu) | Max<br>(psu)                | Average<br>(psu) | Average<br>(gpm) | Average<br>(gpm) | Average<br>(gpm)      |
| 2                 | 7.67               | 7.76                        | 1.94             | 538,248          | 48,918           | 489,330               |
| 3                 | 7.67               | 7.76                        | 2.01             | 396,892          | 48,918           | 347,975               |
| 4                 | 7.67               | 7.76                        | 2.11             | 293,260          | 48,918           | 244,343               |
| 5                 | 7.67               | 7.76                        | 2.20             | 213,480          | 48,918           | 164,562               |
| 6                 | 7.67               | 7.76                        | 2.29             | 135,450          | 48,918           | 86,532                |
| 7                 | 7.67               | 7.76                        | 2.39             | 87,764           | 48,918           | 38,846                |
| 8                 | 7.95               | 8.03                        | 2.48             | 53,455           | 48,918           | 4,537                 |
| 9                 | 8.92               | 9.02                        | 2.55             | 50,017           | 48,918           | 1,099                 |
| 10                | 9.93               | 10.01                       | 2.58             | 49,157           | 48,918           | 239                   |
| 11                | 10.96              | 11.00                       | 2.60             | 48,923           | 48,918           | 5                     |
| 12                | 11.01              | 11.05                       | 2.60             | 48,918           | 48,918           | 0                     |

Table A.15IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 1,367,000 gpm

## 🔁 ENERCON

### **Appendix B: Monthly Make-Up Flowrates**

The updated salinity analysis using the 10-year Hudson River data from ASA (documented in Appendix F) returned greater make-up flowrates than the SW flows used for the 2010 Alternative Technologies Report [Ref. 6.3] (see Case 15 of Attachment 6). As discussed in Section 3 of this evaluation, the updated closed-loop cooling make-up flow control logic relies upon the selection of an acceptable salinity setpoint. As discussed in Appendix A, several salinity setpoint values result in the identical maximum closed-loop salinity values while the average make-up flow rates decrease with an increase in setpoint values. The selection of setpoints in Appendix A minimizes the closed-loop salinity at the lowest make-up flow rate (i.e., maximizes the potential biological benefits). Based on these setpoint values, Table B.1 through Table B.14 show the average monthly and annual make-up flow rates required to minimize salinity. As discussed in Section 5, the make-up flow rate for closed-loop cooling would be based on 1.5 cycles of concentration (i.e., historic SW flow only).

Per TRC (Appendix C), the maximum salinity value that could be run through the closed-loop cooling system and not exceed the air quality standards would be 0.263 psu. In order to avoid exceeding the air quality standards, a scenario was run to determine how often IPEC would be forced to revert from closed-loop operation to once-through operation. While no detailed design work on a system that would allow switching from closed-loop to once-through operation at IPEC has been performed, operating constraints would likely limit the switch to a seasonal basis; however, this Report conservatively assumes the switch between once-through and closed-loop operation would be determined on a weekly basis (although impractical for actual Station operation). The 10-year Hudson River salinity data was reviewed and, if during a given week the closed-loop salinity would exceed the PM<sub>2.5</sub> NAAQS or PM<sub>2.5</sub> SIL, the system was switched to once-through operation. Table B.1 includes the average percentage of once-through run time (bypassing the cooling tower) that would be required to avoid exceeding the air quality standards. Note that the cooling tower make-up flow would be equal to the historic SW flowrates for both Units 2 and 3.

| Month          | Make-Up Flow <sup>2</sup> | SW Only       | Additional<br>Make-Up | Once-Through Run Time<br>PM <sub>2.5</sub> SIL PM <sub>2.5</sub> NAAQS<br>Average (%) |     |
|----------------|---------------------------|---------------|-----------------------|---------------------------------------------------------------------------------------|-----|
|                | Average (gpm)             | Average (gpm) | Average (gpm)         |                                                                                       |     |
| January        | 45,947                    | 45,947        | 0                     | 92%                                                                                   | 39% |
| February       | 46,668                    | 46,668        | 0                     | 92%                                                                                   | 72% |
| March          | 45,031                    | 45,031        | 0                     | 76%                                                                                   | 57% |
| April          | 45,367                    | 45,367        | 0                     | 58%                                                                                   | 29% |
| May            | 46,897                    | 46,897        | 0                     | 78%                                                                                   | 25% |
| June           | 48,227                    | 48,227        | 0                     | 88%                                                                                   | 43% |
| July           | 53,069                    | 53,069        | 0                     | 94%                                                                                   | 73% |
| August         | 56,865                    | 56,865        | 0                     | 100%                                                                                  | 83% |
| September      | 54,319                    | 54,319        | 0                     | 99%                                                                                   | 91% |
| October        | 49,925                    | 49,925        | 0                     | 96%                                                                                   | 82% |
| November       | 46,845                    | 46,845        | 0                     | 82%                                                                                   | 59% |
| December       | 47,628                    | 47,628        | 0                     | 85%                                                                                   | 38% |
| Annual Average | 48,918                    | 48,918        | 0                     | 87%                                                                                   | 57% |

## Table B.1IPEC Closed-Loop Cooling Salinity Analysis<br/>at 1.5 Cycles of Concentration1

<sup>1</sup> No salinity setpoint was selected as no additional make-up flow is utilized for this scenario (see Appendix A). The flowrate required to achieve 1.5 Cycles of Concentration is equivalent to the historic Unit 2 and Unit 3 service water flowrates.

<sup>2</sup> Make-up flowrate based on closed-loop system logic and historic Unit 2 and Unit 3 SW flowrates used in Case 15 of Attachment 6 to the 2010 Alternative Technologies Report.

# Table B.2IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 10,000 gpm1onthMake-Up Flow2SW OnlyAdditional Material

| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|
| January        | 45,947                                     | 45,947                   | 0                                   |
| February       | 46,668                                     | 46,668                   | 0                                   |
| March          | 45,031                                     | 45,031                   | 0                                   |
| April          | 45,367                                     | 45,367                   | 0                                   |
| May            | 46,897                                     | 46,897                   | 0                                   |
| June           | 48,227                                     | 48,227                   | 0                                   |
| July           | 53,069                                     | 53,069                   | 0                                   |
| August         | 57,003                                     | 56,865                   | 138                                 |
| September      | 55,318                                     | 54,319                   | 998                                 |
| October        | 50,134                                     | 49,925                   | 209                                 |
| November       | 46,845                                     | 46,845                   | 0                                   |
| December       | 47,628                                     | 47,628                   | 0                                   |
| Annual Average | 49,029                                     | 48,918                   | 111                                 |

<sup>1</sup> A setpoint of 10 psu was selected to minimize salinity (see Appendix A).

## ENERCON

| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|
| January        | 45,947                                     | 45,947                   | 0                                   |
| February       | 46,668                                     | 46,668                   | 0                                   |
| March          | 45,031                                     | 45,031                   | 0                                   |
| April          | 45,367                                     | 45,367                   | 0                                   |
| May            | 46,897                                     | 46,897                   | 0                                   |
| June           | 48,227                                     | 48,227                   | 0                                   |
| July           | 53,149                                     | 53,069                   | 80                                  |
| August         | 58,448                                     | 56,865                   | 1,583                               |
| September      | 58,446                                     | 54,319                   | 4,127                               |
| October        | 51,409                                     | 49,925                   | 1,484                               |
| November       | 47,093                                     | 46,845                   | 248                                 |
| December       | 47,642                                     | 47,628                   | 13                                  |
| Annual Average | 49,545                                     | 48,918                   | 627                                 |

### Table B.3 **IPEC Closed-Loop Cooling Salinity Analysis**

<sup>1</sup> A setpoint of 9 psu was selected to minimize salinity (see Appendix A).

<sup>2</sup> Make-up flowrate based on closed-loop system logic and historic Unit 2 and Unit 3 SW flowrates used in Case 15 of Attachment 6 to the 2010 Alternative Technologies Report.

#### **IPEC Closed-Loop Cooling Salinity Analysis** Table B.4 Flow Rate = $SW + 50.000 \text{ gnm}^1$

| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|
| January        | 45,947                                     | 45,947                   | 0                                   |
| February       | 46,669                                     | 46,668                   | 1                                   |
| March          | 45,031                                     | 45,031                   | 0                                   |
| April          | 45,367                                     | 45,367                   | 0                                   |
| May            | 46,952                                     | 46,897                   | 55                                  |
| June           | 48,227                                     | 48,227                   | 0                                   |
| July           | 53,919                                     | 53,069                   | 850                                 |
| August         | 63,083                                     | 56,865                   | 6,218                               |
| September      | 65,907                                     | 54,319                   | 11,588                              |
| October        | 56,002                                     | 49,925                   | 6,078                               |
| November       | 48,307                                     | 46,845                   | 1,462                               |
| December       | 47,788                                     | 47,628                   | 160                                 |
| Annual Average | 51,123                                     | 48,918                   | 2,206                               |

<sup>1</sup> A setpoint of 8 psu was selected to minimize salinity (see Appendix A).

| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|
| January        | 45,947                                     | 45,947                   | 0                                   |
| February       | 46,670                                     | 46,668                   | 2                                   |
| March          | 45,031                                     | 45,031                   | 0                                   |
| April          | 45,367                                     | 45,367                   | 0                                   |
| May            | 46,956                                     | 46,897                   | 58                                  |
| June           | 48,227                                     | 48,227                   | 0                                   |
| July           | 54,048                                     | 53,069                   | 979                                 |
| August         | 65,413                                     | 56,865                   | 8,548                               |
| September      | 72,912                                     | 54,319                   | 18,593                              |
| October        | 58,195                                     | 49,925                   | 8,271                               |
| November       | 48,660                                     | 46,845                   | 1,815                               |
| December       | 47,807                                     | 47,628                   | 179                                 |
| Annual Average | 52,124                                     | 48,918                   | 3,207                               |

## Table B.5IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 100.000 gnm<sup>1</sup>

<sup>1</sup> A setpoint of 8 psu was selected to minimize salinity (see Appendix A).

<sup>2</sup> Make-up flowrate based on closed-loop system logic and historic Unit 2 and Unit 3 SW flowrates used in Case 15 of Attachment 6 to the 2010 Alternative Technologies Report.

## Table B.6 IPEC Closed-Loop Cooling Salinity Analysis Flow Rate = SW + 152,000 gpm<sup>1</sup>

| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|
| January        | 45,947                                     | 45,947                   | 0                                   |
| February       | 46,672                                     | 46,668                   | 4                                   |
| March          | 45,031                                     | 45,031                   | 0                                   |
| April          | 45,367                                     | 45,367                   | 0                                   |
| May            | 46,959                                     | 46,897                   | 61                                  |
| June           | 48,227                                     | 48,227                   | 0                                   |
| July           | 54,077                                     | 53,069                   | 1,008                               |
| August         | 66,219                                     | 56,865                   | 9,354                               |
| September      | 77,742                                     | 54,319                   | 23,423                              |
| October        | 59,098                                     | 49,925                   | 9,173                               |
| November       | 48,731                                     | 46,845                   | 1,886                               |
| December       | 47,809                                     | 47,628                   | 180                                 |
| Annual Average | 52,675                                     | 48,918                   | 3,757                               |

<sup>1</sup> A setpoint of 8 psu was selected to minimize salinity (see Appendix A).

| Table B.7 | IPEC Closed-Loop Cooling Salinity Analysis |
|-----------|--------------------------------------------|
|           | Flow Data - SW + 304 000 $\text{anm}^1$    |

| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|
| January        | 46,287                                     | 45,947                   | 341                                 |
| February       | 47,071                                     | 46,668                   | 403                                 |
| March          | 45,031                                     | 45,031                   | 0                                   |
| April          | 45,367                                     | 45,367                   | 0                                   |
| May            | 47,537                                     | 46,897                   | 640                                 |
| June           | 48,305                                     | 48,227                   | 77                                  |
| July           | 59,920                                     | 53,069                   | 6,851                               |
| August         | 93,857                                     | 56,865                   | 36,992                              |
| September      | 122,536                                    | 54,319                   | 68,217                              |
| October        | 88,197                                     | 49,925                   | 38,272                              |
| November       | 56,971                                     | 46,845                   | 10,126                              |
| December       | 49,147                                     | 47,628                   | 1,519                               |
| Annual Average | 62,570                                     | 48,918                   | 13,652                              |

<sup>1</sup> A setpoint of 7 psu was selected to minimize salinity (see Appendix A).

<sup>2</sup> Make-up flowrate based on closed-loop system logic and historic Unit 2 and Unit 3 SW flowrates used in Case 15 of Attachment 6 to the 2010 Alternative Technologies Report.

## Table B.8IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 456,000 gpm1

| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Uj<br>Average (gpm) |  |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|--|
| January        | 46,294                                     | 45,947                   | 347                                 |  |
| February       | 47,138                                     | 46,668                   | 470                                 |  |
| March          | 45,031                                     | 45,031                   | 0                                   |  |
| April          | 45,367                                     | 45,367                   | 0                                   |  |
| May            | 47,561                                     | 46,897                   | 664                                 |  |
| June           | 48,312                                     | 48,227                   | 84                                  |  |
| July           | 60,658                                     | 53,069                   | 7,590                               |  |
| August         | 103,711                                    | 56,865                   | 46,846                              |  |
| September      | 148,211                                    | 54,319                   | 93,892                              |  |
| October        | 99,100                                     | 49,925                   | 49,175                              |  |
| November       | 59,680                                     | 46,845                   | 12,836                              |  |
| December       | 49,590                                     | 47,628                   | 1,962                               |  |
| Annual Average | 66,771                                     | 48,918                   | 17,853                              |  |

<sup>1</sup> A setpoint of 7 psu was selected to minimize salinity (see Appendix A).



| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|
| January        | 46,301                                     | 45,947                   | 354                                 |
| February       | 47,160                                     | 46,668                   | 492                                 |
| March          | 45,031                                     | 45,031                   | 0                                   |
| April          | 45,367                                     | 45,367                   | 0                                   |
| May            | 47,551                                     | 46,897                   | 654                                 |
| June           | 48,312                                     | 48,227                   | 84                                  |
| July           | 61,227                                     | 53,069                   | 8,158                               |
| August         | 112,694                                    | 56,865                   | 55,829                              |
| September      | 172,513                                    | 54,319                   | 118,194                             |
| October        | 109,090                                    | 49,925                   | 59,166                              |
| November       | 62,115                                     | 46,845                   | 15,270                              |
| December       | 49,998                                     | 47,628                   | 2,370                               |
| Annual Average | 70,661                                     | 48,918                   | 21,744                              |

## Table B.9IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 608.000 gnm<sup>1</sup>

<sup>1</sup> A setpoint of 7 psu was selected to minimize salinity (see Appendix A).

<sup>2</sup> Make-up flowrate based on closed-loop system logic and historic Unit 2 and Unit 3 SW flowrates used in Case 15 of Attachment 6 to the 2010 Alternative Technologies Report.

## Table B.10IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 760,000 gpm1

| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|
| January        | 46,321                                     | 45,947                   | 375                                 |
| February       | 47,209                                     | 46,668                   | 541                                 |
| March          | 45,031                                     | 45,031                   | 0                                   |
| April          | 45,367                                     | 45,367                   | 0                                   |
| May            | 47,578                                     | 46,897                   | 681                                 |
| June           | 48,315                                     | 48,227                   | 88                                  |
| July           | 61,734                                     | 53,069                   | 8,666                               |
| August         | 120,981                                    | 56,865                   | 64,116                              |
| September      | 196,203                                    | 54,319                   | 141,884                             |
| October        | 118,417                                    | 49,925                   | 68,492                              |
| November       | 64,437                                     | 46,845                   | 17,593                              |
| December       | 50,438                                     | 47,628                   | 2,809                               |
| Annual Average | 74,381                                     | 48,918                   | 25,463                              |

<sup>1</sup> A setpoint of 7 psu was selected to minimize salinity (see Appendix A).

| Flow Rate = $SW + 912,000 \text{ gpm}^1$ |                                            |                          |                                     |  |
|------------------------------------------|--------------------------------------------|--------------------------|-------------------------------------|--|
| Month                                    | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |  |
| January                                  | 46,315                                     | 45,947                   | 368                                 |  |
| February                                 | 47,227                                     | 46,668                   | 559                                 |  |
| March                                    | 45,031                                     | 45,031                   | 0                                   |  |
| April                                    | 45,367                                     | 45,367                   | 0                                   |  |
| May                                      | 47,612                                     | 46,897                   | 715                                 |  |
| June                                     | 48,333                                     | 48,227                   | 106                                 |  |
| July                                     | 62,242                                     | 53,069                   | 9,173                               |  |
| August                                   | 128,616                                    | 56,865                   | 71,751                              |  |
| September                                | 219,324                                    | 54,319                   | 165,004                             |  |
| October                                  | 127,110                                    | 49,925                   | 77,185                              |  |
| November                                 | 66,541                                     | 46,845                   | 19,697                              |  |
| December                                 | 50,713                                     | 47,628                   | 3,085                               |  |
| Annual Average                           | 77,910                                     | 48,918                   | 28,992                              |  |

 Table B.11
 IPEC Closed-Loop Cooling Salinity Analysis

 Flow Pate = SW + 912 000 gpm<sup>1</sup>

<sup>1</sup> A setpoint of 7 psu was selected to minimize salinity (see Appendix A).

<sup>2</sup> Make-up flowrate based on closed-loop system logic and historic Unit 2 and Unit 3 SW flowrates used in Case 15 of Attachment 6 to the 2010 Alternative Technologies Report.

## Table B.12IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 1,064,000 gpm1

| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|
| January        | 46,376                                     | 45,947                   | 429                                 |
| February       | 47,190                                     | 46,668                   | 522                                 |
| March          | 45,031                                     | 45,031                   | 0                                   |
| April          | 45,367                                     | 45,367                   | 0                                   |
| May            | 47,589                                     | 46,897                   | 691                                 |
| June           | 48,350                                     | 48,227                   | 123                                 |
| July           | 62,722                                     | 53,069                   | 9,653                               |
| August         | 136,045                                    | 56,865                   | 79,180                              |
| September      | 241,751                                    | 54,319                   | 187,431                             |
| October        | 135,350                                    | 49,925                   | 85,425                              |
| November       | 68,667                                     | 46,845                   | 21,822                              |
| December       | 50,965                                     | 47,628                   | 3,337                               |
| Annual Average | 81,320                                     | 48,918                   | 32,402                              |

<sup>1</sup> A setpoint of 7 psu was selected to minimize salinity (see Appendix A).



| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|
| January        | 46,355                                     | 45,947                   | 409                                 |
| February       | 47,235                                     | 46,668                   | 567                                 |
| March          | 45,031                                     | 45,031                   | 0                                   |
| April          | 45,367                                     | 45,367                   | 0                                   |
| May            | 47,633                                     | 46,897                   | 735                                 |
| June           | 48,340                                     | 48,227                   | 113                                 |
| July           | 62,957                                     | 53,069                   | 9,888                               |
| August         | 143,189                                    | 56,865                   | 86,324                              |
| September      | 263,629                                    | 54,319                   | 209,310                             |
| October        | 143,549                                    | 49,925                   | 93,624                              |
| November       | 70,461                                     | 46,845                   | 23,616                              |
| December       | 51,224                                     | 47,628                   | 3,596                               |
| Annual Average | 84,612                                     | 48,918                   | 35,694                              |

## Table B.13IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = $SW + 1.216,000 \text{ gpm}^1$

<sup>1</sup> A setpoint of 7 psu was selected to minimize salinity (see Appendix A).

<sup>2</sup> Make-up flowrate based on closed-loop system logic and historic Unit 2 and Unit 3 SW flowrates used in Case 15 of Attachment 6 to the 2010 Alternative Technologies Report.

## Table B.14IPEC Closed-Loop Cooling Salinity AnalysisFlow Rate = SW + 1,367,000 gpm1

| Month          | Make-Up Flow <sup>2</sup><br>Average (gpm) | SW Only<br>Average (gpm) | Additional Make-Up<br>Average (gpm) |
|----------------|--------------------------------------------|--------------------------|-------------------------------------|
| January        | 46,376                                     | 45,947                   | 429                                 |
| February       | 47,305                                     | 46,668                   | 637                                 |
| March          | 45,031                                     | 45,031                   | 0                                   |
| April          | 45,367                                     | 45,367                   | 0                                   |
| May            | 47,632                                     | 46,897                   | 735                                 |
| June           | 48,354                                     | 48,227                   | 127                                 |
| July           | 63,634                                     | 53,069                   | 10,565                              |
| August         | 149,805                                    | 56,865                   | 92,940                              |
| September      | 284,811                                    | 54,319                   | 230,491                             |
| October        | 150,857                                    | 49,925                   | 100,933                             |
| November       | 72,033                                     | 46,845                   | 25,188                              |
| December       | 51,640                                     | 47,628                   | 4,012                               |
| Annual Average | 87,764                                     | 48,918                   | 38,846                              |

<sup>1</sup> A setpoint of 7 psu was selected to minimize salinity (see Appendix A).

## 🔁 ENERCON

### **Appendix C: TRC Analysis**

### Determination of Maximum Basin Salinity to achieve PM Air Quality Compliance

The closed-loop cooling tower air quality impact analysis as prepared in 2009 (Ref. 7.4) assumed a basin salinity of 7200 ppm (based upon an average Hudson River salinity of 1800 ppm with four cycles of concentration). The maximum  $PM_{2.5}$  ground level concentration during hybrid operation was calculated to be 32.9 micrograms/cubic meter. The  $PM_{2.5}$  national ambient air quality standard (NAAQS) is 35 micrograms per cubic meter. The representative background concentration of  $PM_{2.5}$  for Westchester County is 29.2 micrograms per cubic meter, leaving a maximum available air quality contribution by the closed cycle cooling towers of 5.8 micrograms/cubic meter (35 - 29.2 = 5.8). In order for the particulate emissions from the cooling towers to be limited to a value that would result in impacts that would not exceed the 5.8 micrograms per cubic meter value, the maximum basin dissolved solids concentration is calculated as:

7200 ppm × (5.8 micrograms/cubic meter)/(32.9 micrograms/cubic meter) = 1269 ppm

Similarly, the limiting ground level concentration in the Westchester County  $PM_{2.5}$  nonattainment area is the Significant Impact Level (SIL) of 1.2 micrograms per cubic meter. In order for the particulate emissions from the cooling towers to be limited to a value that would result in impacts that would not exceed the 1.2 micrograms per cubic meter value, the maximum basin dissolved solids concentration is calculated as:

7200 ppm × (1.2 micrograms/cubic meter) / (32.9 micrograms/cubic meter) = 263 ppm

For practical cooling tower operation, the minimum basin cycling is assumed to be 1.5 times the concentration of the Hudson River water. For compliance with the  $PM_{2.5}$  NAAQS the maximum Hudson River dissolved solids would be 846 ppm (1269/1.5 = 846 ppm). Similarly, to achieve the  $PM_{2.5}$  SIL, the Hudson River dissolved solids would be 175 ppm (263/1.5 = 175 ppm).

Note that the threshold river concentrations that would enable the closed-cycle cooling towers to achieve air quality standards compliance are also independent of the maximum river salinity. It is very important to note when the closed cycle cooling towers operate at or below these threshold river salinities, there would be no exceedance of either the  $PM_{2.5}$  NAAQS or the  $PM_{2.5}$  SIL, depending upon which target compliance threshold salinity is being considered. The river salinity thresholds for  $PM_{10}$  standards and SIL compliance are also provided in the Table C.1 for the hybrid operation.

|                        |                                              |                                              | % of Year Operating OTC achieve NO AQ Impacts |     |  |
|------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----|--|
|                        | Applicable<br>Threshold (ug/m <sup>3</sup> ) | Maximum River <sup>1</sup><br>Salinity (psu) | ОТС                                           | ССС |  |
| PM <sub>2.5</sub> AAQS | 5.8                                          | 0.846                                        | 57                                            | 43  |  |
| PM <sub>2.5</sub> SIL  | 1.2                                          | 0.175                                        | 87                                            | 13  |  |
| PM <sub>10</sub> AAQS  | 90                                           | 13.131                                       | 0                                             | 100 |  |
| PM <sub>10</sub> SIL   | 5                                            | 0.729                                        | 59                                            | 41  |  |

| Table C.1 | Hudson River Salinity | y Thresholds for Hybrid | Operation |
|-----------|-----------------------|-------------------------|-----------|
|-----------|-----------------------|-------------------------|-----------|

<sup>1</sup> Base condition - basin salinity of 7.2 psu with a maximum concentration of 32.9 micrograms per cubic meter

## C ENERCON

### Appendix D: ASAAC - Biological Assessment of Closed-Loop Cooling Flow Scenarios

Corporate Office: 5 Fairlawn Drive P.O. Box 57 Washingtonville, NY 10992 Tel: 845-496-7742 Fax: 845-496-7765



### BIOLOGICAL ASSESSMENT OF CLOSED-LOOP COOLING FLOW SCENARIOS 11/19/2010

This report evaluates the entrainment reductions associated with expected makeup flow rates for closed-loop cooling necessary to meet applicable air quality requirements, in a manner consistent with the entrainment reduction analysis performed in the Alternatives Assessment (Enercon 2010). The biological assessment in Enercon 2010 examined two potential cooling tower flow alternatives. In Alternative 15, historical service water flows were assumed to be sufficient to provide all makeup water to the cooling towers, thus no additional flow beyond service water would be required. In alternative 15.5, service water flows were set to the maximum levels for Units 2 and 3 (15,000 gpm at Unit 2 and 18,000 gpm at Unit 3) as an upper bound on potential cooling water use for closed-loop technology.

Subsequent to the submission of the Alternatives Assessment, continued refinement of Hudson River salinity levels occurred, and indicated that it would not be possible to meet air quality standards when operating in closed-loop mode during periods of high river salinity. The revised analysis contemplated a cooling system in which the units would operate in once-through mode during high salinity periods, and in closed-loop mode when salinity is low enough to allow operation without exceeding applicable air quality requirements. These modes were quantified as projected monthly service water flows while in closed-loop mode, plus some percent of the time each month when the operation would be in once-through mode in order to meet the PM2.5 SIL or PM2.5 NAAQS.

38

|        | Historical | Fraction       | of time in |  |  |  |
|--------|------------|----------------|------------|--|--|--|
|        | Service    | once-t         | hrough     |  |  |  |
|        | Water      | mode (Provided |            |  |  |  |
|        | Flow       | by En          | ercon)     |  |  |  |
| Month  | Units      |                |            |  |  |  |
|        | 1,2,3      |                |            |  |  |  |
|        | 2001-      | PM2.5          | PM2.5      |  |  |  |
|        | 2007       | SIL            | NAAQS      |  |  |  |
|        | (gpm)      |                |            |  |  |  |
| Jan    | 45,947     | 0.92           | 0.39       |  |  |  |
| Feb    | 46,668     | 0.92           | 0.72       |  |  |  |
| Mar    | 45,031     | 0.76           | 0.57       |  |  |  |
| Apr    | 45,367     | 0.58           | 0.29       |  |  |  |
| May    | 46,897     | 0.78           | 0.25       |  |  |  |
| Jun    | 48,227     | 0.88           | 0.43       |  |  |  |
| Jul    | 53,069     | 0.94           | 0.73       |  |  |  |
| Aug    | 56,865     | 1.00           | 0.83       |  |  |  |
| Sep    | 54,319     | 0.99           | 0.91       |  |  |  |
| Oct    | 49,925     | 0.96           | 0.82       |  |  |  |
| Nov    | 46,845     | 0.82           | 0.59       |  |  |  |
| Dec    | 47,628     | 0.85           | 0.38       |  |  |  |
| Annual | 48,918     | 0.87           | 0.57       |  |  |  |

The biological assessment of these new operating modes was conducted by estimating expected monthly entrainment in historical years 2001-2007 as the weighted average of monthly entrainment under Closed-Loop alternative 15.5, scaled to the expected monthly flow during closed-loop operation, and monthly entrainment under Current Technology alternative 1:

$$E_{smyc} = (1 - f_m) \frac{F_{mc}}{F_{15.5}} E_{smy15.5} + f_m E_{smy1}$$

where:

 $E_{smyC}$  = Number entrained of species *s* in month *m* in year *y* under the closed-loop scenario

 $E_{smy15.5}$  = Number entrained of species *s* in month *m* in year *y* under alternative 15.5 (closed-loop with maximum service water flow)

 $E_{smy1}$  = Number entrained of species *s* in month *m* in year *y* under alternative 1 (current technology)

 $f_m$  = fraction of time that once-through cooling would be used in month m $F_{mc}$  = average total flow rate during closed-loop operation during month m  $F_{15.5}$  = average total flow rate during closed-loop operation for alternative 15.5

Similar calculations were performed for entrainment losses  $(L_{smyC})$  and equivalent age 1 losses  $(L_{1smyC})$ , lost yield  $(Y_{smyC})$ , and production forgone  $(P_{smyC})$ . The values for  $E_{smy15.5}$ ,  $L_{smy15.5}$ ,  $L_{1smy15.5}$ ,  $Y_{smyC15.5}$ ,  $P_{smyC15.5}$ ,  $E_{smy1}$ ,  $L_{1smy1}$ ,  $Y_{smyC1}$ , and  $P_{smyC1}$  had been calculated previously as part of the Alternatives Assessment.

As calculated in the Alternatives Assessment, the monthly entrainment numbers, losses, and equivalent age 1 losses were summed over the year to produce an annual total, and then compared to the appropriate baseline values ( $E_{syB}$ ,  $L_{syB}$ ,  $L_{1_{syB}}$ ) to estimate the percent reduction:

 $E_{syC} = \sum_{m=1}^{12} E_{smyC}$ % Reduction<sub>syC</sub> = 100  $\left\{ \frac{E_{syB} - E_{syC}}{E_{syB}} \right\}$ % Reduction<sub>yC</sub> =  $\sum_{s}$  % Reduction<sub>syC</sub> % Reduction<sub>c</sub> =  $\sum_{y}$  % Reduction<sub>yC</sub>

To assess total lost yield, the production forgone ( $P_{smyC}$ ) was converted to expect lost yield and added to the direct estimate of lost yield. This was done both with and without inclusion of striped bass production foregone, which are the top predator species in the ecosystem and represent a large majority of the total lost yield.

Total Lost Yield =  $\sum_{s} Y_{smyc} + 0.1R \sum_{s} P_{smyc}$ 

where

0.1 = trophic transfer ratio R = ratio of striped bass lost yield to production forgone (0.323 for entrainment, 0.509 for impingement)

A cumulative life cycle analysis was performed to compare the cumulative performance of the baseline, current technology, 2-mm wedgewire screens, and closed-loop alternatives (operated to meet the PM2.5 SIL and the PM2.5 NAAQS) through the end of the license renewal period (2033 for Unit 2 and 2035 for Unit 3). For the 2-mm, for consistency with Enercon 2010wedgewire screens, it was assumed that screens would be operational at Unit 2 in 2013 and Unit 3 in 2015, for consistency with Enercon 2010.

### RESULTS

Annual entrainment with 2-mm wedgewire screens would be substantially less than with either closed-loop cooling alternative. With 2-mm wedgewire screens, estimated average

annual entrainment is 438 million fish, but entrainment with the closed-loop cooling alternatives were 999 million when operated to meet the PM2.5 SIL, and 560 million if operated to meet the PM2.5 NAAQS (Table 1). Operation to meet the PM2.5 SIL would only reduce entrainment slightly from that using current technology (1139 million) because the units would operate in once-through mode most of the time. The average % reduction for closed-loop cooling was 26.7 for the SIL and 57.4 for the NAAQS, in comparison to 74.1 for the 2-mm wedgewire screen option.

Annual entrainment loss with 2-mm wedgewire screens would be substantially less than with either closed-loop cooling alternative. With 2-mm wedgewire screens, estimated average annual entrainment loss is 262 million fish, but entrainment loss with the closed-loop cooling alternatives were 589 million when operated to meet the PM2.5 SIL, and 390 million if operated to meet the PM2.5 NAAQS (Table 2). Operation to meet the PM2.5 SIL would only reduce entrainment loss slightly from that using current technology (646 million) because the units would operate in once-through mode most of the time. The average % reduction for closed-loop cooling was 41.4 for the SIL and 63.8 for the NAAQS, in comparison to 80.3 for the 2-mm wedgewire screen option.

Annual equivalent age 1 entrainment loss with 2-mm wedgewire screens would be substantially less than with either closed-loop cooling alternative. With 2-mm wedgewire screens, estimated average annual equivalent age 1 entrainment loss is 0.27 million fish, but entrainment loss with the closed-loop cooling alternatives were 2.53 million when operated to meet the PM2.5 SIL, and 2.02 million if operated to meet the PM2.5 NAAQS (Table 3). Operation to meet the PM2.5 SIL would only reduce equivalent age 1 entrainment loss slightly from that using current technology (2.64 million) because the units would operate in once-through mode most of the time. The average % reduction for closed-loop cooling was 38.5 for the SIL and 56.6 for the NAAQS, in comparison to 89.8 for the 2-mm wedgewire screen option.

Estimates of annual lost yield for 2-mm wedgewire screens were also much lower than those for closed-loop cooling. Total lost yield for the wedgewire screens ranged from 13,637 to 15,262 kg, depending on whether striped bass production forgone is included in the calculation of indirect lost yield (Table 4). In contrast, total lost yield ranged from 84,805 to 92,248 for PM2.5 SIL, and from 60,758 to 65,796 for PM2.5 NAAQS. The forgone catch ranged from 4,433 to 4,924 fish for the wedgewire screens, 27,008 to 29,252 fish for the SIL alternative, and 19,350 to 20,869 fish for the NAAQS.

The cumulative analysis through 2035 indicated that installing 2-mm wedgewire screens on the original schedule proposed (2013 and 2015) would reduce numbers entrained from what would occur with current technology by 14,726 million, while closed-loop cooling operated to meet air quality requirements would reduce entrainment by only 1,978 million (SIL), or 4,614 million (NAAQS) (Table 5 for 0% discount rate). Entrainment losses would be reduced by 8,056 million with wedgewire screens, 986 million (SIL) or 2,176 million (NAAQS) with closed-loop cooling. Equivalent age 1 losses would be reduced by 50 million with wedgewire screens, 3 million (SIL) or 6 million (NAAQS) with closed-loop cooling. Lost fishery yield would be reduced by 1.63 million kg using 2-mm wedgewire screens, but only by 0.13 (SIL) or 0.26 (NAAQS) with closed-loop cooling.

If non-zero discount rates, which are used in economic analyses to express future costs or benefits at current equivalent value, are used for the cumulative analysis, the total losses and incremental reductions are smaller but the 2-mm wedgewire screen alternative continues to be the best alternative. Results for a 3% discount rate are presented in Table 6, and those for a 7% discount rate in Table 7.

42

|         | Entrainment Numbers (million) |                             |           |        |              |       |           |                  |           |  |  |
|---------|-------------------------------|-----------------------------|-----------|--------|--------------|-------|-----------|------------------|-----------|--|--|
|         | Baseline-0                    | Baseline-0 Current Tech - 1 |           | 2-mm \ | 2-mm WWS - 4 |       | /12.5 SIL | CC - PM2.5 NAAQS |           |  |  |
| Year    | #                             | #                           | Ave % Red | #      | Ave % Red    | #     | Ave % Red | #                | Ave % Red |  |  |
| 2001    | 2,087                         | 1,863                       | 20.1      | 690    | 78.1         | 1,581 | 7.1       | 746              | 27.7      |  |  |
| 2002    | 765                           | 733                         | 13.2      | 244    | 75.4         | 674   | 20.2      | 450              | 51.0      |  |  |
| 2003    | 1,184                         | 1,087                       | 16.7      | 423    | 74.2         | 947   | 17.3      | 525              | 52.7      |  |  |
| 2004    | 1,511                         | 1,438                       | 12.9      | 676    | 67.2         | 1,245 | 48.4      | 688              | 76.2      |  |  |
| 2005    | 830                           | 800                         | 21.3      | 306    | 72.5         | 711   | 58.5      | 394              | 79.7      |  |  |
| 2006    | 619                           | 597                         | 17.2      | 233    | 74.0         | 559   | 16.8      | 405              | 56.4      |  |  |
| 2007    | 1,533                         | 1,456                       | 19.5      | 493    | 77.4         | 1,278 | 18.3      | 713              | 58.1      |  |  |
| Average | 1,219                         | 1,139                       | 17.3      | 438    | 74.1         | 999   | 26.7      | 560              | 57.4      |  |  |

Table 1. Annual number of fish entrained under Baseline conditions, Current technology, 2-mm wedgewire screens, and under Closed Cycle Cooling operated to meet standards PM2.5 SIL and PM2.5 NAAQS.

|         |            | Entrainment Loss (million) |            |        |           |                |           |                  |           |  |  |  |
|---------|------------|----------------------------|------------|--------|-----------|----------------|-----------|------------------|-----------|--|--|--|
|         | Baseline-0 | Curren                     | t Tech - 1 | 2-mm \ | NWS - 4   | CC - PM2.5 SIL |           | CC - PM2.5 NAAQS |           |  |  |  |
| Year    | #          | #                          | Ave % Red  | #      | Ave % Red | #              | Ave % Red | #                | Ave % Red |  |  |  |
| 2001    | 2,095      | 612                        | 37.3       | 256    | 84.1      | 542            | 6.9       | 320              | 27.6      |  |  |  |
| 2002    | 767        | 566                        | 33.1       | 197    | 78.8      | 527            | 13.3      | 377              | 44.6      |  |  |  |
| 2003    | 1,197      | 585                        | 34.4       | 241    | 81.0      | 532            | 56.7      | 356              | 74.2      |  |  |  |
| 2004    | 1,514      | 923                        | 32.6       | 464    | 74.2      | 832            | 77.4      | 538              | 88.7      |  |  |  |
| 2005    | 840        | 451                        | 34.0       | 193    | 79.7      | 410            | 71.3      | 256              | 85.6      |  |  |  |
| 2006    | 620        | 479                        | 33.1       | 195    | 78.8      | 460            | 47.3      | 360              | 71.0      |  |  |  |
| 2007    | 1,539      | 903                        | 38.7       | 288    | 85.1      | 819            | 17.2      | 526              | 54.8      |  |  |  |
| Average | 1,224      | 646                        | 34.7       | 262    | 80.3      | 589            | 41.4      | 390              | 63.8      |  |  |  |

Table 2. Annual entrainment loss under Baseline conditions, Current technology, 2-mm wedgewire screens, and under Closed Cycle Cooling operated to meet standards PM2.5 SIL and PM2.5 NAAQS.

|         |            | Equivalent Age 1 Entrainment Loss (million) |           |        |              |      |           |                  |           |  |  |  |
|---------|------------|---------------------------------------------|-----------|--------|--------------|------|-----------|------------------|-----------|--|--|--|
|         | Baseline-0 | Baseline-0 Current Tech - 1                 |           | 2-mm \ | 2-mm WWS - 4 |      | M2.5 SIL  | CC - PM2.5 NAAQS |           |  |  |  |
| Year    | #          | #                                           | Ave % Red | #      | Ave % Red    | #    | Ave % Red | #                | Ave % Red |  |  |  |
| 2001    | 2.26       | 1.25                                        | 36.7      | 0.19   | 90.0         | 1.18 | 7.4       | 0.90             | 23.1      |  |  |  |
| 2002    | 2.69       | 2.32                                        | 30.7      | 0.27   | 88.7         | 2.24 | 13.1      | 1.80             | 34.9      |  |  |  |
| 2003    | 3.91       | 2.73                                        | 35.1      | 0.31   | 93.7         | 2.63 | 48.8      | 2.15             | 65.4      |  |  |  |
| 2004    | 3.03       | 2.47                                        | 33.5      | 0.32   | 86.9         | 2.36 | 71.9      | 1.85             | 81.2      |  |  |  |
| 2005    | 3.20       | 2.78                                        | 31.3      | 0.20   | 92.1         | 2.66 | 68.4      | 2.13             | 80.3      |  |  |  |
| 2006    | 2.22       | 1.95                                        | 31.3      | 0.25   | 85.7         | 1.90 | 45.5      | 1.57             | 66.3      |  |  |  |
| 2007    | 5.58       | 4.95                                        | 37.8      | 0.38   | 91.3         | 4.72 | 14.7      | 3.73             | 44.6      |  |  |  |
| Average | 3.27       | 2.64                                        | 33.8      | 0.27   | 89.8         | 2.53 | 38.5      | 2.02             | 56.6      |  |  |  |

Table 3. Annual equivalent age 1 entrainment loss under Baseline conditions, Current technology, 2-mm wedgewire screens, and under Closed Cycle Cooling operated to meet standards PM2.5 SIL and PM2.5 NAAQS.

| Table 4. Annual lost fishery yield and catch under Baseline conditions, |                                               |                |              |             |        |               |  |  |  |  |  |
|-------------------------------------------------------------------------|-----------------------------------------------|----------------|--------------|-------------|--------|---------------|--|--|--|--|--|
| Current technology,                                                     | 2-mm wed                                      | gewire scr     | eens, and ur | nder Closed | Cycle  |               |  |  |  |  |  |
| Cooling operated to meet standards PM2.5 SIL and PM2.5 NAAQS.           |                                               |                |              |             |        |               |  |  |  |  |  |
|                                                                         |                                               |                |              |             |        |               |  |  |  |  |  |
|                                                                         | Baseline Current 2mm WW PM2.5 SIL PM2.5 NAAQS |                |              |             |        |               |  |  |  |  |  |
| Direct LY (kg)                                                          | 240,068                                       | 90,617         | 13,470       | 84,617      | 62,651 |               |  |  |  |  |  |
| Indirect LY (kg)                                                        | 25,909                                        | 8 <i>,</i> 958 | 1,792        | 8,268       | 5,838  | With SB PF    |  |  |  |  |  |
| Total LY                                                                | 265,977                                       | 99,575         | 15,262       | 92,885      | 68,488 | WIT SD FF     |  |  |  |  |  |
| Indirect LY (kg)                                                        | 1,968                                         | 825            | 167          | 759         | 526    | Without SB PF |  |  |  |  |  |
| Total LY                                                                | 242,036                                       | 91,442         | 13,637       | 85,376      | 63,177 |               |  |  |  |  |  |
| Direct Catch                                                            | 76,567                                        | 28,872         | 4,383        | 26,957      | 19,947 | 1             |  |  |  |  |  |
| Indirect Catch                                                          | 7,816                                         | 2,702          | 541          | 2,494       | 1,761  | With SB PF    |  |  |  |  |  |
| Total Catch                                                             | 84,383                                        | 31,574         | 4,924        | 29,451      | 21,708 | WICH SUPE     |  |  |  |  |  |
|                                                                         |                                               |                |              |             |        |               |  |  |  |  |  |
| Indirect Catch                                                          | 594                                           | 249            | 50           | 229         | 159    | Without SB PF |  |  |  |  |  |
| Total Catch                                                             | 77,161                                        | 29,121         | 4,433        | 27,186      | 20,106 |               |  |  |  |  |  |

Table 4 Annual last fishom wold a .

46

Table 5. Cumulative (2013 through 2035) number entrained (million), entrainment loss (million), equivalent age 1 loss (million), and total lost yield (million kg) for Baseline, Current technology, 2-mm wedgewire screens, and under Closed

| Cycle Cooling operate | Cycle Cooling operated to meet standards PM2.5 SIL and PM2.5 NAAQS. |        |                          |         |                          |           | iscount rate =           | 0%      | -                        |
|-----------------------|---------------------------------------------------------------------|--------|--------------------------|---------|--------------------------|-----------|--------------------------|---------|--------------------------|
|                       |                                                                     | Number | · Entrained              | Entrain | ment Loss                | Equivaler | nt Age 1 Loss            | Total L | ost Yield                |
| Alternative           | Year<br>Installed                                                   | #      | Incremental<br>Reduction | #       | Incremental<br>Reduction | #         | Incremental<br>Reduction | #       | Incremental<br>Reduction |
| Baseline              | 2011                                                                | 26,807 | -                        | 26,938  | -                        | 72        | -                        | 5.32    | -                        |
| Current Technology    | 2011                                                                | 25,060 | 1,748                    | 14,203  | 12,735                   | 58        | 14                       | 2.01    | 3.31                     |
| 2-mm WW               | 2013/15                                                             | 10,333 | 14,726                   | 6,147   | 8,056                    | 8         | 50                       | 0.38    | 1.63                     |
| CC -PM2.5 SIL         | 2029                                                                | 23,082 | 1,978                    | 13,217  | 986                      | 55        | 3                        | 1.88    | 0.13                     |
| CC -PM2.5 NAAQS       | 2029                                                                | 20,446 | 4,614                    | 12,027  | 2,176                    | 52        | 6                        | 1.75    | 0.26                     |

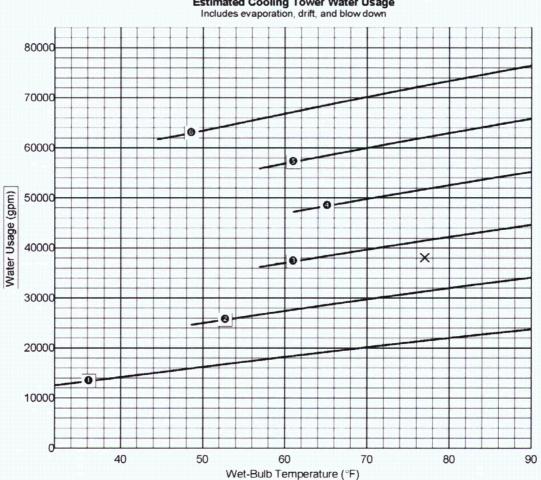
Note: Incremental reduction for WW and CC alternatives calculated from Current Technology.

Table 6. Cumulative (2013 through 2035) number entrained (million), entrainment loss (million), equivalent age 1 loss (million), and total lost yield (million kg) for Baseline, Current technology, 2-mm wedgewire screens, and under Closed

| Cycle Cooling operate | ed to meet st     | andards PN       | /12.5 SIL and PM         | 2.5 NAAQS        | 5.                       | D         | iscount rate =           | 3%      |                          |
|-----------------------|-------------------|------------------|--------------------------|------------------|--------------------------|-----------|--------------------------|---------|--------------------------|
|                       |                   | Number Entrained |                          | Entrainment Loss |                          | Equivaler | nt Age 1 Loss            | Total L | ost Yield                |
| Alternative           | Year<br>Installed | #                | Incremental<br>Reduction | #                | Incremental<br>Reduction | #         | Incremental<br>Reduction | #       | Incremental<br>Reduction |
| Baseline              | 2011              | 19,826           | -                        | 19,922           | -                        | 53        | -                        | 3.94    | -                        |
| Current Technology    | 2011              | 18,533           | 1,293                    | 10,504           | 9,419                    | 43        | 10                       | 1.49    | 2.45                     |
| 2-mm WW               | 2013/15           | 7,814            | 10,719                   | 4,640            | 5,864                    | 7         | 36                       | 0.30    | 1.19                     |
| CC -PM2.5 SIL         | 2029              | 17,335           | 1,198                    | 9,901            | 603                      | 41        | 2                        | 1.41    | 0.08                     |
| CC -PM2.5 NAAQS       | 2029              | 15,836           | 2,697                    | 9,225            | 1,279                    | 39        | 4                        | 1.33    | 0.15                     |

Note: Incremental reduction for WW and CC alternatives calculated from Current Technology.

 Table 7. Cumulative (2013 through 2035) number entrained (million), entrainment loss (million), equivalent age 1 loss (million), and total lost yield (million kg) for Baseline, Current technology, 2-mm wedgewire screens, and under Closed


 Cycle Cooling operated to meet standards PM2 5 SU and PM2 5 NAAOS

| Cycle Cooling operate | cle Cooling operated to meet standards PM2.5 SIL and PM2.5 NAAQS. |                  |             |                  |             |                       | iscount rate = | 7%               |             |
|-----------------------|-------------------------------------------------------------------|------------------|-------------|------------------|-------------|-----------------------|----------------|------------------|-------------|
|                       |                                                                   | Number Entrained |             | Entrainment Loss |             | Equivalent Age 1 Loss |                | Total Lost Yield |             |
|                       | Year                                                              | #                | Incremental | #                | Incremental | #                     | Incremental    | #                | Incremental |
| Alternative           | Installed                                                         |                  | Reduction   |                  | Reduction   |                       | Reduction      |                  | Reduction   |
| Baseline              | 2011                                                              | 13,872           |             | 13,939           |             | 37                    | -              | 2.76             | -           |
| Current Technology    | 2011                                                              | 12,967           | 904         | 7,349            | 6,590       | 30                    | 7              | 1.04             | 1.71        |
| 2-mm WW               | 2013/15                                                           | 5,661            | 7,306       | 3,352            | 3,997       | 5                     | 25             | 0.23             | 0.81        |
| CC -PM2.5 SIL         | 2029                                                              | 12,364           | 603         | 7,043            | 307         | 29                    | 1              | 1.00             | 0.04        |
| CC -PM2.5 NAAQS       | 2029                                                              | 11,674           | 1,294       | 6,731            | 618         | 28                    | 2              | 0.97             | 0.08        |

Note: Incremental reduction for WW and CC alternatives calculated from Current Technology.

.....

### **Appendix E: SPX Information**



### **Estimated Cooling Tower Water Usage**

Water usage rates are provided as an estimate only and for educational purposes. Consult your local representative or sales person to determine the actual water usage requirements for your application.

#### **Figure E.1 Example Curve Illustrating Linear Relationship between** Wet-Bulb Temperature and Water Usage

## 🖸 ENERCON

 From:
 John.Arntson@marleyct.spx.com

 Sent:
 Friday, May 23, 2003 4:35 PM

 To:
 sbeaver@enercon.com

 Cc:
 JIM.VANGARSSE@marleyct.SPX.COM

 Subject:
 Revised Performance Data

Tower Type:

Counterflow, forced draft, plume abated (hybrid) with low noise fans & sound attenuation baffles.

Tower Geometry: OD= 524.8 ft Overall Ht. = 168 ft. ID exit cone: 241.4 ft. No. fans (wet section) = 44 (Motor output power = 300 HP) No. fans (dry section)= 44 (Motor Output Power = 350 HP)

Wet Section Data: Flow = 700,000 gpm Plan area of fill: 121660 ft2 Fill Type: 6 ft. PVC low fouling film (MCT FC-18) DE type / drift rate: Cellular PVC (MCT TU-12)/ drift rate .001% Distribution system: FRP headers/PVC pipes Nozzles: High efficiency polyproplyene

Dry Section Data: Flow= 245,000 gpm Element type: 4 row/ 2 pass Tube type: 1" OD Titanium Fin Type: 2.25" OD Aluminum fins @ 11 fins/in ("L" fin) Tube length = 49 ft. No. tubes/ bundle = 218 No. bundles = 264

Thermal Data: Wet design condition: (77 WBT, 89 CWT, 109 HWT) HP (motor output wet section) = 270 HP, evaporation rate = 1.67%, Vexit= 1233 fpm

Hybrid Operation@ plume abatement design point(27 WBT @ 90 % RH) HP (MOP wet section) = 300 HP, evaporation rate = .81%, CWT = 59 °F, Vexit=2260 fpm HP (MOP dry section)= 350 HP

Note: evaporation rate at summer conditions with dry section in operation will be approx. 1.47%. CWT= 88 ° F approx.

Pumping Head:

Main Pumps: 700,000 gpm @ 45 ft. TDH

Booster Pumps: 245000 gpm @ 26 ft

John K Amtson Marley Cooling Technologies, Inc.

Phone: 913-664-7854 Fax: 913-693-9633 E-mail: john.arntson@marleyct.spx.com

## 🖸 ENERCON

### SPX Cooling Technologies Balcke | Hamon Dry Cooling | Marley PREF

#### PREFERRED COOLING TOWER WATER CONDITION LIMITS

NOTE: Biological treatment and control of Legionella and other potentially health-threatening bacteria is essential. Consult a competent water treatment expert or service company.

| pН                      | 6.5 to 9.0 (spec       | cial materials may be required beyond these limits)                                                                                     |
|-------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Temperature             | 125° F (51.7° C)       | maximum, or up to 180° F (82.2° C) with special materials                                                                               |
| Langelier Saturation In |                        | mmended; higher allowed if scale is controllable.                                                                                       |
| M-Alkalinity            | 100 to 500 ppn         |                                                                                                                                         |
| Silica                  | 150 ppm as SiC         | D <sub>2</sub> maximum (scale formation)                                                                                                |
| Iron                    |                        | um (staining and scale contributor)                                                                                                     |
| Manganese               |                        | num (staining and scale contributor)                                                                                                    |
| Sulfides                | Greater than 1         | ppm can be corrosive to copper alloys, iron, steel, and galvanized steel.<br>elow for limits with film fill.                            |
| Ammonia                 | 50 ppm maxim           | um if copper alloys present; lower limits apply for film fill - see table.                                                              |
| Chlorine / bromine      |                        | dual intermittently (shock), or 0.4 ppm continuously maximum. Excess sealants, accelerate corrosion, increase drift, and embrittle PVC. |
| Organic solvents        |                        | ick plastics and promote bio-growth. Trace amounts may be<br>e, depending on the solvent,                                               |
| TDS                     |                        | n can affect thermal performance and be detrimental to wood in wet/dry zones such as fan deck and louver face.                          |
| Individual Ions:        |                        | MAXIMUM:                                                                                                                                |
|                         | Calcium<br>Aagnesium   | 800 ppm as CaCO3. (300 ppm with MX75 fill in arid climate)<br>Depends on pH and Silica level                                            |
| 8                       | Bodium                 | No limit                                                                                                                                |
| Anions: C               | Chlorides              | 450 ppm as CI <sup>-</sup> (300 for galvanized towers)<br>upgrades are required for higher chloride levels.                             |
| 8                       | Sulfates               | 800 ppm as CaCO <sub>3</sub>                                                                                                            |
| N                       | litrates               | 300 ppm as NO3 (bacteria nutrient)                                                                                                      |
| (                       | arbonates/Bicarbonates | 300 ppm as CaCO <sub>3</sub> maximum preferred for wood                                                                                 |

#### Fouling Contaminant Limits

Bacteria counts listed below relate to maintaining fill thermal efficiency only. Biocidal treatment is required for all cooling tower installations. (see NOTE above).

| Fill Type                                                       | Aerobic Bacteria<br>Heterotrophic Plate Count | Total Suspended<br>Solids (TSS) | <u>Oil and</u><br>Grease | <u>Sulfides</u> | Ammonia |  |
|-----------------------------------------------------------------|-----------------------------------------------|---------------------------------|--------------------------|-----------------|---------|--|
| MC75                                                            | 10,000 CFU/ml                                 | 50 ppm                          | 1 ppm                    | 0.5 ppm         | 10 ppm  |  |
| FB20, SNCS ("Coolfilm"),<br>MX75 (crossflow). ClearFlow Modules | 100,000 CFU/ml<br>10,000 CFU/ml               | 50 ppm<br>150 ppm               | 1 ppm                    | 1.0 ppm         | 15 ppm  |  |
| DF254, FC18, MCR16,<br>DF381+1' MC75 overlay                    | 1,000,000 CFU/ml<br>100,000 CFU/ml            | 50 ppm<br>150 ppm               | 5 ppm                    | 1.5 ppm         | 25 ppm  |  |
| DF381, Tricklebloc, MCR12,<br>AAFNCS ("Cleanflow")              | 1,000,000 CFU/ml                              | 250 ppm                         | 10 ppm                   | 2.0 ppm         | 25 ppm  |  |
| Splash bar or grid fill                                         | 1,000,000 CFU/ml target                       | No specific limit               | 10 ppm                   | N/A             | N/A     |  |

Note: <u>Any amount of oil or grease is likely to adversely affect thermal performance</u>. Sulfides and ammonia promote bacterial growth which can cause fill fouling; conformance to the limits above will assist in controlling bacteria to the recommended levels.

#### **Drift Effects:**

Certain contaminants or treatment chemicals such as surfactants, glycols, biodispersants and antifoams may increase drift rate. When minimizing drift is vital, the circulating water shall have a surface tension of at least 65 dynes/cm and a total organic carbon (TOC) level below 50 ppm. Reclaim or re-use waters in particular may contain contaminants which increase drift rate either directly or by necessitating the use of treatment chemicals which increase drift rate.

#### **Miscellaneous Solids and Nutrients**

Avoid high efficiency fill (MC75) with water containing bacteria nutrients such as alcohols, nitrates, ammonia, fats, glycols, phosphates, black liquor, or TOC greater than 50 ppm. Clog-resistant fills may be considered for contaminated water, case by case. For all fillin fills, avoid fibrous, oily, greasy, fatty, or tary contaminants, which can plug fill, in general, do not use film fill in Steel Plants, Pulp & Paper Mills, Food Processing Operations, or similar applications unless leaks and contamination by oirborne or waterborne particulates, oil, or fibers are extremely unlikely. If film fill is used, biological-growth control must be stringent and diligent.

WircondREV 15a.doc. 10/04/05 RWP

# C ENERCON

## Appendix F: ASA - Estimate of Salinity in the Hudson River at Indian Point Energy Center

# ESTIMATE OF SALINITY IN THE HUDSON RIVER AT INDIAN POINT ENERGY CENTER

ASA Project Number: 2009-167

PREPARED FOR: Indian Point Energy Center Buchanan, NY

AUTHORS:

Craig Swanson Deborah Crowley Lauren Decker Nicholas Cohn Yong Kim

DATE SUBMITTED 19 November 2010



Applied Science Associates, Inc. 55 Village Square Drive South Kingstown, RI 02879 USA phone: +1 401 789-6224 fax: +1 401 789-1932

ASA Offices: São Paulo, Brazll Shanghal, China Gold Coast, Australia Perth, Australia

#### **EXECUTIVE SUMMARY**

It is necessary to estimate salinity in the Hudson River (River) at the Indian Point Energy Center (IPEC) in order to evaluate environmental effects on air quality during closed cycle cooling operations since make-up water is drawn from the River to replace losses from evaporation, drift and blowdown from the cooling towers. The water quality of the circulating cooling water, measured in part by salinity, is important for use in the design of the cooling tower system to ensure optimal operation and minimal environmental effects on air quality. An analysis of long-term historical measurements of salinity in the River was made to provide an estimate of expected salinity of the makeup water for IPEC.

Direct measurements of salinity are not made at IPEC. Consequently, Applied Science Associates, Inc. (ASA) developed an empirical relationship to estimate salinity at the IPEC intake based on salinity measured at other locations in the River. The data sets used for this analysis consisted of conductivity measurements taken every 15 minutes by the U.S. Geological Survey (USGS) at Hastings-on-Hudson (Hastings), , Tomkins Cove (Tomkins), and West Point. The Hastings station is located 21 mi downstream of IPEC and has been continuously operating since 1992. The West Point station is located 9 mi upstream of IPEC and has been operating since 1991. The Tomkins station was located 1 mi downstream of IPEC, but was discontinued in 2001.

A statistical analysis was performed on the salinity data at each of the USGS stations for the available data. The analysis revealed a decrease in salinity to the north (upriver), from Hastings to Tomkins to West Point. Mean salinity at Hastings was 6.29 psu, Tomkins was 2.09 psu, and West Point was 0.79 psu, consistent with the 90<sup>th</sup> percentile salinity values of 10.88 psu (Hastings), 4.96 psu (Tomkins) and 2.63 psu (West Point). Hastings and West Point exhibited the lowest salinity, as determined by the mean and 90<sup>th</sup> percentile values for the periods of record, in April. Low salinity during this time is correlated with high freshwater discharge. The highest mean and 90<sup>th</sup> percentile values occur in September at these two stations, primarily as a function of lower freshwater discharge. Tomkins, with a significantly shorter period of record, had the lowest average salinity values in January and the highest in August.

A correlation analysis was performed that related the salinity at Tomkins to that at West Point and Hastings. It was found that the West Point data was more highly correlated to Tomkins than Hastings was and therefore used to estimate Tomkins salinity for the long-term decadal period. The model was improved at low salinities by forcing the Tomkins salinity to be equal to the West Point salinity when the Hastings salinity fell below 4.07 psu. This improvement had no effect on higher salinity predictions.

The decadal (2000-2009) salinity time series at IPEC (assumed equivalent to that at Tomkins) was generated to provide a long-term estimate of salinity under a variety of environmental

conditions. This time series is consistent with the analysis period conducted for the extreme environmental conditions in support of the hydrothermal modeling (Swanson et al., 2010).

The model results showed that salinities were typically higher in the summer and fall seasons, consistent with the observations at the USGS stations. Some years (2000, 2001, and 2006) showed extended periods of salinity exceeding 5 psu for three months with peaks exceeding 7 psu. There were also shorter periods when the salinity was zero (2000, 2001, and 2008), usually in the spring season. These variations are primarily due to freshwater entering the River, although there are occasional events (storm surge) that can transport salt from the ocean to the vicinity of the IPEC intake.

A statistical analysis was performed on the hourly-modeled salinity predictions at IPEC for the decadal period 2000 through 2009. The mean salinity over the entire period was 1.80 psu, the minimum 0.07 psu and the maximum 7.67 psu. The median, or 50<sup>th</sup> percentile, was 0.72 psu, indicating that the salinity distribution is not a normal distribution, but slightly biased to lower salinities. The 90<sup>th</sup> percentile salinity was 5.23 psu. Salinities between 0 and 0.25 psu were found to occur 30.62% of the time while salinities between 0.25 and 0.50 psu dropped to 12.29% of the time. The large number of low salinities is indicated by the cumulative frequency of occurrence that shows over 50% (54.78%) of the salinities were less than 1.00 psu.

The statistical summary of the 10-yr data set broken down by year showed that 2001 had the highest mean (3.21 psu) and highest median (3.28 psu), 2002 had the highest maximum (7.67 psu) and highest 90<sup>th</sup> percentile (6.90 psu). Salinities between 0 and 0.25 psu occurred between 12% of the time in 2000 and 42% in 2009 while salinities between 0.25 and 0.50 psu dropped dramatically for all years. The large number of low salinities was indicated by the cumulative frequency of occurrence showed that between 33% (in 2001) and 70% (in 2000) of the salinities are less than 1.00 psu.

The statistical summary of the 10-yr data set broken down by month showed that September had the highest mean (3.84 psu), highest maximum (7.67 psu), highest median (3.70 psu) and highest 90<sup>th</sup> percentile (7.16 psu), followed by the months of July, August, October and November. The winter and spring months had lower values with April the lowest of any month. Salinities between 0 and 0.25 psu varied between 5% of the time in September and 85% in April, consistent with fluctuations in freshwater discharge to the River. Salinities between 0.25 and 0.50 psu dropped dramatically for most months, indicating an uneven distribution of salinities across the range of values. The large number of low salinities is indicated by the cumulative frequency of occurrence that shows between 18% (in September) and 86% (in April) of the salinities are less than 1.00 psu.

The effect of using linear interpolation to fill the missing hours (2.8% of the total hours) is insignificant when viewed in the context of the 10-yr record as all statistical measures showed a maximum difference of only 0.01 psu when compared to the results of the non-filled data set. The individual years and months exhibited larger differences but were still relatively small.

# TABLE OF CONTENTS

| Executive Summary                                     | i  |
|-------------------------------------------------------|----|
| Table of Contentsi                                    | ii |
| List of Figuresi                                      | ii |
| List of Tablesi                                       | v  |
| 1 Introduction                                        | 1  |
| 2 USGS Data                                           | 3  |
| 3 Data Analysis                                       | 4  |
| 3.1 Tomkins Data                                      | 4  |
| 3.2 Hastings and West Point Data                      | 6  |
| 3.2.1 Hastings Data                                   | 6  |
| 3.2.2 West Point Data                                 | 8  |
| 4 IPEC Salinity Model Development                     | 0  |
| 4.1 Tomkins vs. Hastings Salinity Correlation1        | 0  |
| 4.2 Tomkins vs. West Point Salinity Correlation1      | 2  |
| 4.3 IPEC Model Results                                | 5  |
| 5 Statistical Analyses 1                              | 8  |
| 5.1 Entire 2000-2009 Analysis                         | 8  |
| 5.2 Yearly Analysis for Each Year in 10-yr Record 2   | 0  |
| 5.3 Monthly Analysis for Each Month in 10-yr Record 2 | 3  |
| 5.4 Continuous 10-yr Data Set Analysis 2              | 6  |
| 6 Conclusions 2                                       | 9  |
| 7 References                                          | 1  |

# LIST OF FIGURES

| Figure 1-1. Map of a portion of the Hudson River showing the USGS stations used in the          |
|-------------------------------------------------------------------------------------------------|
| present analysis (Hastings, Tomkins, and West Point) in relation to IPEC.                       |
| Figure 3-1. Hourly time series at Tomkins for the period of record (15 May 1997 through 16 July |
| 2001)                                                                                           |
| Figure 3-2. Hourly time series at Hastings for the period from 1 October 1999 through 31        |
| December 2009                                                                                   |

# LIST OF TABLES

| Table 3-1. Statistical summary for the entire Tomkins period of record (15 May 1997 throug   | h   |
|----------------------------------------------------------------------------------------------|-----|
| 16 July 2001) and for each year and month in the record                                      | 4   |
| Table 3-2. Statistical summary for the entire Hastings period of record (October 1999 throug | gh  |
| December 2009) and for each year and month in the record                                     | 6   |
| Table 3-3. Statistical summary for the entire West Point period of record (October 1998      |     |
| through December 2009) and for each year and month in the record                             | 8   |
| Table 4-1. Empirically based bin information for Hastings salinity data                      | 11  |
| Table 4-2. Empirically based bin information for West Point salinity data                    | 13  |
| Table 5-1. Statistical summary for the entire 10-yr record.                                  | 18  |
| Table 5-2. Frequency and cumulative frequency distributions in 0.25 psu bins for the entire  | 10- |
| yr record                                                                                    | 19  |
| Table 5-3. Statistical summary for each year of the 10-yr record                             | 20  |
| Table 5-4. Statistical summary for each month of the 10-yr record.                           | 23  |
| Table 5-5. Summary of data gaps in the 10-yr record                                          | 26  |
| Table 5-6. Statistical summary for the continuous entire 10-yr record                        | 27  |
| Table 5-7. Statistical summary for each year of the continuous 10-yr record                  | 28  |
| Table 5-8. Statistical summary for each month of the continuous 10-yr record                 | 28  |
|                                                                                              |     |

#### **1** INTRODUCTION

The Entergy Indian Point Energy Center (IPEC), consisting of two operating nuclear power plants (Units 2 and 3), is located along the eastern side of the Hudson River (River) approximately 42 miles upstream of the Battery (located at the southern tip of Manhattan and defined as the mouth of the River) in the Village of Buchanan, New York. IPEC uses a once-through cooling water configuration to cool the system, discharging heated water employed in the cooling process through a discharge canal to the River. The discharge is permitted by the New York State Department of Environmental Conservation (NYSDEC) via a State Pollutant Discharge Elimination System (SPDES) Permit NY0004472. As part of the renewal process NYSDEC directed Entergy to perform a feasibility and alternative technology assessment of the use of closed-loop cooling, i.e., cooling towers.

The purpose of this report is to assess the salinity variation in the waters of the River near IPEC that would be used to supply makeup water to the cooling towers. This makeup water is required to replace water lost by evaporation, drift and blowdown from cooling tower operations. The water quality of the circulating cooling water, measured in part by salinity, is important for use in the design of the cooling tower to ensure optimal operation and minimal environmental effects on air quality. Since the River is an estuary, salt concentration can vary widely based on environmental forcing so that a constant salinity value to assess the environmental effects and plant efficiency is impractical. Therefore, an analysis of historical measurements of salinity from three locations in the River was performed to provide a more appropriate estimate of expected salinity of the makeup water for IPEC.

Direct measurements of salinity are not made at IPEC. Consequently, Applied Science Associates, Inc. (ASA) developed an empirical relationship to estimate salinity entering the IPEC intake based on salinity measured at other locations in the River. The data sets used for this analysis consisted of conductivity measurements taken every 15 min by the U.S. Geological Survey (USGS) at Hastings-on-Hudson (Hastings), Tomkins Cove (Tomkins), and West Point. The Hastings station is located 21 mi downstream of IPEC and has been operating continuously since 1992. The West Point station is located 9 mi upstream of IPEC and has been operating continuously since 1991. The Tomkins station is located 1 mi downstream of IPEC, but was discontinued in 2001. Figure 1 shows the locations of USGS stations in the River relative to IPEC.

#### Page 2 of 31

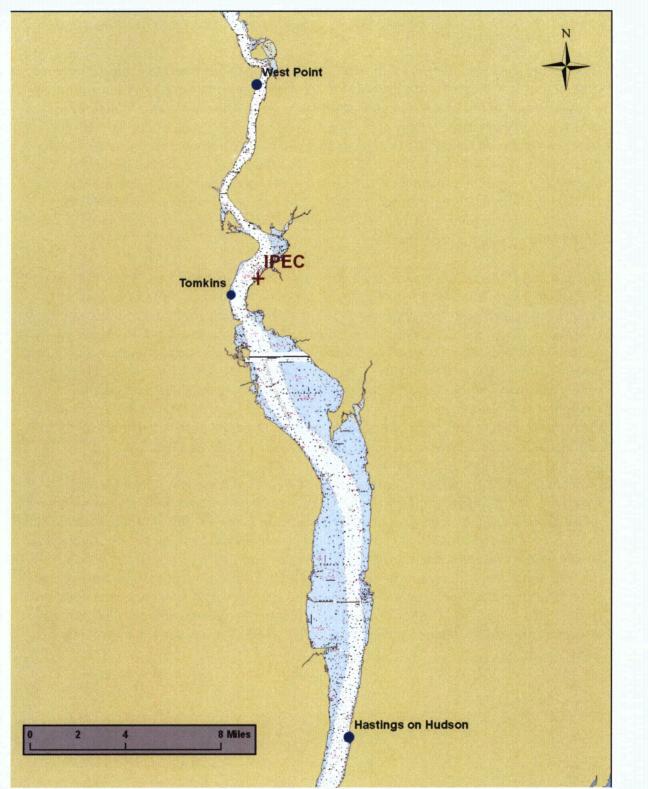



Figure 1-1. Map of a portion of the Hudson River showing the USGS stations used in the present analysis (Hastings, Tomkins, and West Point) in relation to IPEC.

#### 2 USGS DATA

Water level, temperature and specific conductivity data is available in 15-min intervals from two long-term stations located in the River. The Hastings station is located 21 mi downstream from IPEC and West Point is located 9 mi upstream of IPEC (Figure 1-1). These stations provide a continuous long-term history of conductivity variations in the River and, although located some distance from IPEC, the observations bound the range of conductivity (and ultimately salinity) at IPEC. A summary of the stations adapted from the USGS website [http://waterdata.usgs.gov/ny/nwis/rt] is provided below:

- Hastings (USGS station 01376304) located 21 mi above Battery at Lat 40°59'16", Long 73°53'15" referenced to North American Datum of 1927, Westchester County, NY, Hydrologic Unit 02030101, 180 feet from left bank on abandoned Mobil Oil Corporation platform, 0.5 mi southwest of railroad station, at Hastings-on-Hudson. Specific conductivity is measured at a depth of 10 ft below the National Geodetic Vertical Datum of 1929 (approximately mean sea level). Hastings conductivity data is available from 1 October 1999 to the present (real time).
- West Point (USGS station 01374019) located 51 mi above Battery at Lat 41°23'10", Long 73°57'20" referenced to North American Datum of 1927, Orange County, NY, Hydrologic Unit 02020008, on right bank at South Dock at West Point. Specific conductivity is measured at a depth of 10 ft below the National Geodetic Vertical Datum of 1929 (approximately mean sea level). West Point conductivity data is available from 1 October 1998 to the present (real time).

Additional continuous (15-min interval) USGS data from a now-discontinued station (01374349) at Tomkins was obtained for the period from May 1997 through July 2001. Since metadata did not exist for this station, it is assumed that the instrument depth is 10 ft, consistent with other USGS stations. Since Tompkins is located only 1 mi downstream of IPEC (Figure 1-1) at Lat 41°15'31", Long 73°58'41", it is potentially a good proxy for the salinity at the IPEC intake, despite its location on the opposite side of the River.

#### **3 DATA ANALYSIS**

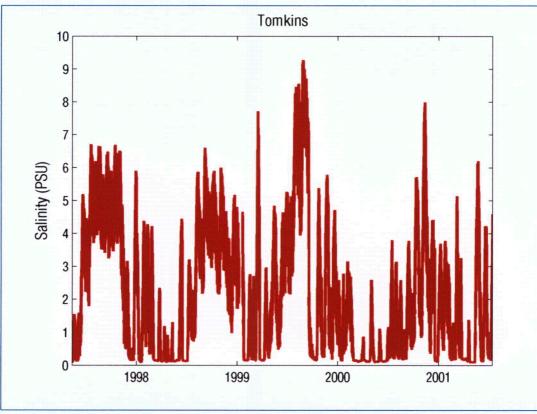
The raw specific conductance data, with units of  $\mu$ S/cm at 25 °C, received from USGS consisted of individual readings taken every 15-min. The data was converted to salinity, with units of Practical Salinity Units (psu), using the relationship:

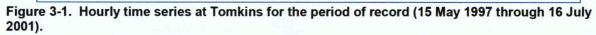
Salinity = -100\*ln(1-(Conductivity/178500))

This equation is based on an analysis conducted by Normandeau Associates, Inc. on properties of water in the River (Texas Instruments, 1976).

The converted salinity data was then filtered with a centered 1-hr moving average and subsampled to every hour. The Tomkins record was analyzed for the period from May 1997 to July 2001. However, longer records were available for the other two USGS stations, so the salinity was analyzed from October 1998 to December 2009 for West Point and from October 1999 to December 2009 for Hastings. The following sections describe the analysis of the individual datasets.

#### 3.1 TOMKINS DATA


The raw specific conductance data received from USGS for the Tomkins station consisted of records every 15-min from 15 May 1997 to 16 July 2001. The data was converted to salinity, filtered with a centered 1-hr moving average and subsampled to an hour. Figure 3-1 displays the time series of the hourly subsampled salinity data. Table 3-1 outlines basic statistics of the Tomkins dataset, broken down by month and year. The data indicates that there is a large range in salinity at Tomkins ranging from 0.09 to 9.27 psu. The maximum salinity reading at Tomkins occurs in August 1999. The mean salinity for the entire record is 2.09 psu and the median (50<sup>th</sup> percentile) is 1.49 psu. Large difference between the mean and median values indicates that the average is driven up by some high salinity spikes within the river. Additionally, the year-to-year variation is significant with large differences in the 50<sup>th</sup> and 90<sup>th</sup> percentile values among the years.


The monthly variation shows lower mean values, between 0.36 and 1.50 psu, from January through June presumably due to increased freshwater discharge. Higher mean values, with a range between 2.56 and 4.07 psu, occur from July through December. Higher salinity is generally indicative of lower freshwater discharge into the River. This general seasonal trend is also apparent in the other statistical measures. For example, the highest 90<sup>th</sup> percentile values occur in August and September, at 7.22 and 6.49 psu, respectively.

| Table 3-1. Statistical summary for the entire Tomkins period of record (15 May 1997 through | 16 |
|---------------------------------------------------------------------------------------------|----|
| July 2001) and for each year and month in the record.                                       |    |

| Period | Mean<br>(psu) | Minimum<br>(psu) | Maximum<br>(psu) | 50 <sup>th</sup><br>Percentile<br>(psu) | 90 <sup>th</sup><br>Percentile<br>(psu) |
|--------|---------------|------------------|------------------|-----------------------------------------|-----------------------------------------|
| All    | 2.09          | 0.09             | 9.27             | 1.49                                    | 4.96                                    |

| Period | Mean<br>(psu) | Minimum<br>(psu) | Maximum<br>(psu) | 50 <sup>th</sup><br>Percentile<br>(psu) | 90 <sup>th</sup><br>Percentile<br>(psu) |
|--------|---------------|------------------|------------------|-----------------------------------------|-----------------------------------------|
| 1997   | 3.36          | 0.10             | 6.71             | 4.03                                    | 5.56                                    |
| 1998   | 2.12          | 0.09             | 6.61             | 2.04                                    | 4.54                                    |
| 1999   | 2.60          | 0.13             | 9.27             | 1.93                                    | 6.54                                    |
| 2000   | 1.20          | 0.10             | 7.99             | 0.60                                    | 3.18                                    |
| 2001   | 1.29          | 0.09             | 6.20             | 0.74                                    | 3.23                                    |
| Jan    | 1.47          | 0.09             | 4.66             | 1.31                                    | 2.98                                    |
| Feb    | 1.24          | 0.14             | 4.28             | 1.11                                    | 2.58                                    |
| Mar    | 0.92          | 0.11             | 7.72             | 0.18                                    | 2.97                                    |
| Apr    | 0.36          | 0.09             | 2.96             | 0.17                                    | 0.94                                    |
| May    | 1.11          | 0.09             | 6.20             | 0.26                                    | 3.53                                    |
| Jun    | 1.50          | 0.11             | 5.27             | 0.79                                    | 3.85                                    |
| Jul    | 2.56          | 0.12             | 8.25             | 2.32                                    | 5.22                                    |
| Aug    | 4.07          | 0.17             | 9.27             | 4.44                                    | 7.22                                    |
| Sep    | 3.70          | 0.18             | 9.00             | 4.17                                    | 6.49                                    |
| Oct    | 3.26          | 0.15             | 6.68             | 3.69                                    | 5.34                                    |
| Nov    | 3.12          | 0.24             | 7.99             | 3.17                                    | 5.36                                    |
| Dec    | 1.88          | 0.12             | 5.90             | 1.75                                    | 3.92                                    |





#### 3.2 HASTINGS AND WEST POINT DATA

The raw specific conductance data received from USGS for the Hastings and West Point stations consisted of observations every 15-min extending from 1 October 1998 to 31 December 2009 for West Point and 1 October 1999 to 31 December 2009 for Hastings. The data were converted to salinity, filtered with a centered 1-hr moving average and subsampled to an hour. The period used in the model development and calibration, as described in later sections, extended from 1 October 1999 through 16 July 2001 since this period included all three USGS stations. The period used in the subsequent model predictions was the decade 2000 – 2009, consistent with previous ASA analyses (Swanson et al., 2010).

#### 3.2.1 HASTINGS DATA

The Hastings data is shown in Figure 3-2 with summary statistics given in Table 3-2. The salinity variation at Hastings is substantial, indicative of the dynamic processes occurring in the River estuary. The large range in salinity at the site varies from 0.10 psu to a maximum of 19.06 psu in February 2007. The mean salinity for the entire record is 6.29 psu is close to the median (50<sup>th</sup> percentile) is 6.12 psu, indicative of a normal distribution. The year-to-year variation for the mean ranges from 4.86 psu in 2000 and 7.77 psu in 2001. The 50<sup>th</sup> percentile values range from 5.19 psu in 2000 and 7.92 psu in 2001 while the 90<sup>th</sup> percentile values range from 8.28 psu in 2000 to 12.99 psu in 2002.

The monthly variation mean salinity values are the lowest between December and June, due to increased freshwater discharge into the River. The exception occurs in February when the mean salinity at 6.36psu, far exceeding the mean in the other winter and spring months. Higher mean values, ranging between 6.10 and 9.44 psu, are observed from July through November. This trend is also evident from other statistical measures, including the peak 90<sup>th</sup> percentile monthly value of 12.84, which occurs in September.

| Period | Mean<br>(psu) | Minimum<br>(psu) | Maximum<br>(psu) | 50 <sup>th</sup><br>Percentile<br>(psu) | 90 <sup>th</sup><br>Percentile<br>(psu) |
|--------|---------------|------------------|------------------|-----------------------------------------|-----------------------------------------|
| All    | 6.29          | 0.10             | 19.06            | 6.12                                    | 10.88                                   |
| 1999   | 5.99          | 1.30             | 14.25            | 5.89                                    | 8.47                                    |
| 2000   | 4.86          | 0.13             | 15.02            | 5.18                                    | 8.28                                    |
| 2001   | 7.77          | 0.16             | 15.32            | 7.92                                    | 11.94                                   |
| 2002   | 7.56          | 0.72             | 16.28            | 7.06                                    | 12.99                                   |
| 2003   | 5.55          | 0.12             | 18.50            | 5.41                                    | 9.76                                    |
| 2004   | 6.59          | 0.22             | 16.17            | 6.48                                    | 10.57                                   |
| 2005   | 6.49          | 0.12             | 16.22            | 6.51                                    | 11.29                                   |

# Table 3-2. Statistical summary for the entire Hastings period of record (October 1999 through December 2009) and for each year and month in the record.

| Period | Mean<br>(psu) | Minimum<br>(psu) | Maximum<br>(psu) | 50 <sup>th</sup><br>Percentile<br>(psu) | 90 <sup>th</sup><br>Percentile<br>(psu) |
|--------|---------------|------------------|------------------|-----------------------------------------|-----------------------------------------|
| 2006   | 5.75          | 0.13             | 15.96            | 5.67                                    | 9.96                                    |
| 2007   | 7.03          | 0.12             | 19.06            | 7.74                                    | 11.04                                   |
| 2008   | 5.41          | 0.10             | 18.43            | 5.23                                    | 10.10                                   |
| 2009   | 5.94          | 0.21             | 14.47            | 6.02                                    | 9.18                                    |
| Jan    | 5.36          | 0.14             | 16.30            | 5.34                                    | 9.15                                    |
| Feb    | 6.36          | 0.12             | 19.06            | 6.53                                    | 9.85                                    |
| Mar    | 4.92          | 0.10             | 15.25            | 5.19                                    | 8.79                                    |
| Apr    | 3.43          | 0.12             | 13.96            | 2.87                                    | 7.38                                    |
| May    | 5.03          | 0.13             | 13.97            | 4.67                                    | 8.60                                    |
| Jun    | 5.37          | 0.15             | 15.84            | 5.12                                    | 8.89                                    |
| Jul    | 8.17          | 0.15             | 16.28            | 8.38                                    | 11.83                                   |
| Aug    | 8.56          | 1.15             | 16.02            | 9.22                                    | 12.25                                   |
| Sep    | 9.44          | 0.31             | 16.28            | 9.78                                    | 12.84                                   |
| Oct    | 7.87          | 0.18             | 18.43            | 8.14                                    | 11.90                                   |
| Nov    | 6.10          | 0.13             | 14.49            | 6.02                                    | 10.46                                   |
| Dec    | 4.96          | 0.13             | 14.47            | 4.88                                    | 8.98                                    |

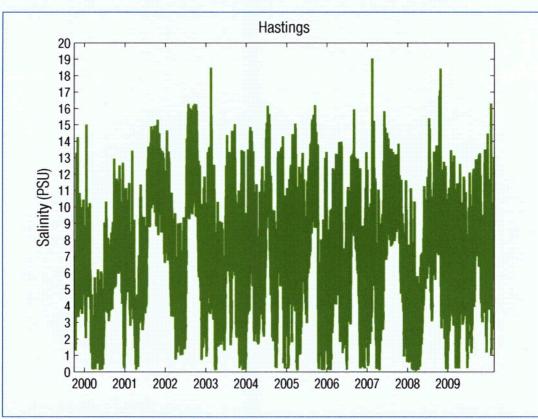
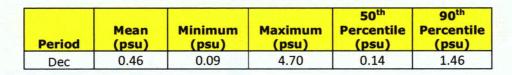



Figure 3-2. Hourly time series at Hastings for the period from 1 October 1999 through 31 December 2009.


#### 3.2.2 WEST POINT DATA

The West Point data is shown in Figure 3-3 with summary statistics given in Table 3-3. There is a lower observed salinity variation at West Point relative to the other two USGS stations simply due to its upstream location. The range in salinity at the site varies from 0.07 psu to a maximum of 6.99 psu, which occurs in September of 2003. The mean salinity for the entire record is only 0.79 psu and the median (50<sup>th</sup> percentile) is 0.17 psu. The year-to-year variation for the mean ranges from 0.36 psu in 2009 and 1.57 psu in 2001. The 50<sup>th</sup> percentile ranges from 0.13 psu in 2006 and 1.17 psu in 1998 while the 90<sup>th</sup> percentile values range from 0.54 psu in 2003 to 4.21 psu in 2006.

The monthly variation shows lower means, between 0.19 and 0.78 psu, from December through June, due to increased freshwater discharge into the River with higher means, between 0.78 and 2.03 psu, from July through November indicative of lower discharge. This trend is also generally seen in the other statistical measures such as with the highest 90<sup>th</sup> percentile value of 4.70 psu occurring in September.

|        |       |         |         | 50 <sup>th</sup> | 90 <sup>th</sup> |
|--------|-------|---------|---------|------------------|------------------|
|        | Mean  | Minimum | Maximum | Percentile       | Percentile       |
| Period | (psu) | (psu)   | (psu)   | (psu)            | (psu)            |
| All    | 0.79  | 0.07    | 6.99    | 0.17             | 2.63             |
| 1998   | 1.22  | 0.22    | 3.06    | 1.17             | 2.12             |
| 1999   | 1.03  | 0.10    | 6.08    | 0.34             | 3.49             |
| 2000   | 0.39  | 0.10    | 5.73    | 0.14             | 1.00             |
| 2001   | 1.57  | 0.09    | 5.29    | 1.05             | 3.64             |
| 2002   | 1.44  | 0.09    | 6.99    | 0.37             | 4.21             |
| 2003   | 0.27  | 0.10    | 2.45    | 0.16             | 0.54             |
| 2004   | 0.44  | 0.10    | 3.24    | 0.16             | 1.28             |
| 2005   | 0.77  | 0.10    | 4.39    | 0.20             | 2.47             |
| 2006   | 0.38  | 0.08    | 3.62    | 0.13             | 1.14             |
| 2007   | 1.39  | 0.08    | 6.94    | 0.37             | 3.91             |
| 2008   | 0.59  | 0.07    | 4.73    | 0.15             | 1.72             |
| 2009   | 0.36  | 0.10    | 3.12    | 0.14             | 0.99             |
| Jan    | 0.41  | 0.08    | 3.95    | 0.15             | 1.14             |
| Feb    | 0.49  | 0.10    | 4.16    | 0.18             | 1.35             |
| Mar    | 0.37  | 0.10    | 3.75    | 0.16             | 1.08             |
| Apr    | 0.19  | 0.08    | 1.99    | 0.13             | 0.29             |
| May    | 0.33  | 0.07    | 3.84    | 0.12             | 1.03             |
| Jun    | 0.42  | 0.10    | 3.36    | 0.14             | 1.16             |
| Jul    | 1.03  | 0.08    | 4.74    | 0.60             | 2.67             |
| Aug    | 1.77  | 0.09    | 6.08    | 1.36             | 3.98             |
| Sep    | 2.03  | 0.11    | 6.99    | 1.44             | 4.70             |
| Oct    | 1.37  | 0.11    | 6.64    | 0.68             | 3.65             |
| Nov    | 0.78  | 0.09    | 5.73    | 0.21             | 2.40             |

Table 3-3. Statistical summary for the entire West Point period of record (October 1998 through December 2009) and for each year and month in the record.



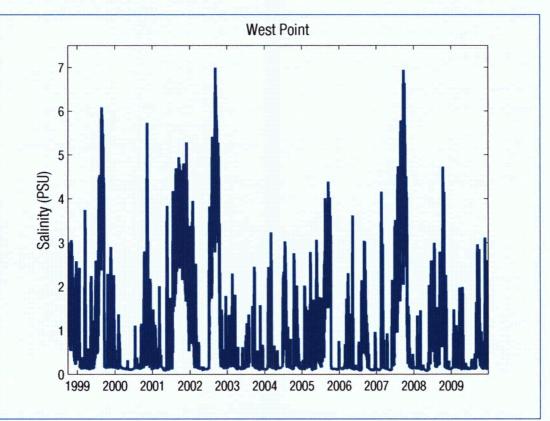



Figure 3-3. Hourly time series at West Point for the period from 1 October 1998 through 31 December 2009.



### 4 IPEC SALINITY MODEL DEVELOPMENT

To estimate the long-term salinity variation in the River at Tomkins (near IPEC), statistical correlations were developed among the USGS station data. An analysis was conducted examining the correlation between both Tomkins and West Point and Tomkins and Hastings USGS stations to assess the relationships among the stations.

#### 4.1 TOMKINS VS. HASTINGS SALINITY CORRELATION

Figure 4-1 shows a scatterplot of the salinities at Tomkins versus Hastings during the October 1999 through July 2001 period when all three data sets overlapped. There is a large variation of salinity at Hastings (0 – 8 psu) when that observed at Tomkins is small (~0.1 psu). However, there is also large variation at Tomkins (0 – 6 psu) when the salinity at Hastings is fixed at 8 psu. The visual best-fit line to the data is a least squares fitted power-law function, as shown superimposed over the data on Figure 4-1. The power-law function has a variance of 0.66 psu<sup>2</sup> and a standard deviation of 0.81 psu.

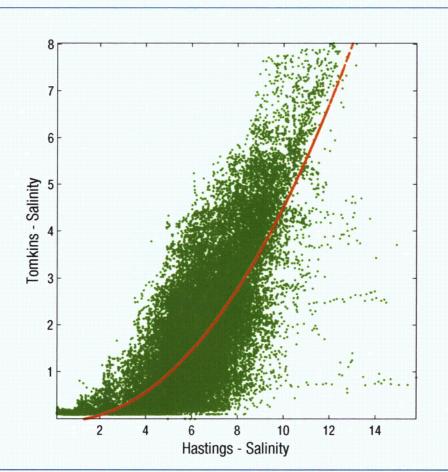



Figure 4-1. Scatterplot of salinity data for USGS stations at Tomkins and Hastings with a power law regression superimposed on the data.

An alternative empirically based approach uses a non-continuous binned relationship between the mean values of salinity at Tomkins averaged over a small range of salinities (the bin width) at Hastings. The bins vary in width from a minimum of 0.084 psu at lowest salinities to a maximum of 0.764 psu at higher salinities (i.e., >5 psu) and are summarized in Table 4-1. The new empirically derived line is superimposed over the data in Figure 4-2. The scatter or fit to the empirical binned function has a variance of 0.60 psu<sup>2</sup> and a standard deviation of 0.78 psu. This new method results in a lower standard deviation and thus a "better fit" as compared to the power law function shown in Figure 4-1. The improvement is seen at the higher Hastings salinities where the Tomkins to Hastings ratio salinity slope decreases to account for the larger scatter in the data.

| Bin    | Bin Width | Bin Max |
|--------|-----------|---------|
| Number | (psu)     | (psu)   |
| 1      | 0.084     | 0.084   |
| 2      | 0.044     | 0.128   |
| 3      | 0.059     | 0.187   |
| 4      | 0.138     | 0.325   |
| 5      | 0.153     | 0.478   |
| 6      | 0.187     | 0.664   |
| 7      | 0.227     | 0.892   |
| 8      | 0.252     | 1.144   |
| 9      | 0.304     | 1.448   |
| 10     | 0.327     | 1.775   |
| 11     | 0.373     | 2.148   |
| 12     | 0.420     | 2.568   |
| 13     | 0.447     | 3.015   |
| 14     | 0.510     | 3.525   |
| 15     | 0.537     | 4.062   |
| 16     | 0.506     | 4.568   |
| 17     | 0.764     | 5.332   |
| 18     | 0.406     | 5.738   |

Table 4-1. Empirically based bin information for Hastings salinity data.



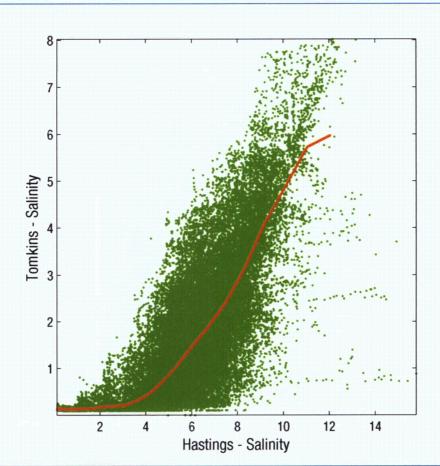



Figure 4-2. Scatterplot of salinity data for USGS stations at Tomkins and Hastings with an empirically based regression superimposed on the data.

#### 4.2 TOMKINS VS. WEST POINT SALINITY CORRELATION

The scatterplot of Tomkins versus West Point is shown in Figure 4-3 with the superimposed least squares fitted power-law function. The scatter is much smaller than Hastings as indicated by the variance of 0.23 psu<sup>2</sup> (standard deviation of 0.48 psu). To check the empirically based approach used above, the mean value of salinity at Tomkins was averaged over a small range of salinities (the bin width) at West Point (Figure 4-4). The bins vary in width from a minimum of 0.145 psu at lowest salinities to a maximum of 0.994 psu at the highest salinities (i.e., 11.5 psu) and are summarized in Table 4-2. The scatter is much smaller than at Hasting as indicated by the low variance of 0.18 psu<sup>2</sup>, corresponding to a standard deviation of 0.43 psu.

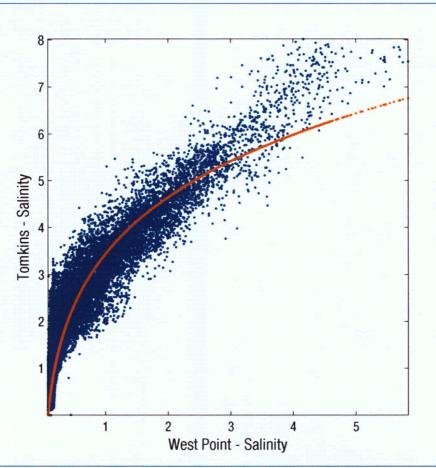



Figure 4-3. Scatterplot of salinity data for USGS stations at Tomkins and West Point with a power law regression superimposed on the data.

| Bin    | <b>Bin Width</b> | Bin Max |
|--------|------------------|---------|
| Number | (psu)            | (psu)   |
| 1      | 0.145            | 0.145   |
| 2      | 0.043            | 0.187   |
| 3      | 0.141            | 0.328   |
| 4      | 0.154            | 0.482   |
| 5      | 0.185            | 0.667   |
| 6      | 0.230            | 0.897   |
| 7      | 0.262            | 1.159   |
| 8      | 0.282            | 1.441   |
| 9      | 0.344            | 1.785   |
| 10     | 0.375            | 2.160   |
| 11     | 0.425            | 2.585   |
| 12     | 0.479            | 3.064   |
| 13     | 0.497            | 3.560   |
| 14     | 0.547            | 4.107   |

| Table 4-2. Empirically based bin information for West Po | pint salinity data |
|----------------------------------------------------------|--------------------|
|----------------------------------------------------------|--------------------|

| Bin<br>Number | Bin Width<br>(psu) | Bin Max<br>(psu) |
|---------------|--------------------|------------------|
| 15            | 0.592              | 4.699            |
| 16            | 0.633              | 5.332            |
| 17            | 0.665              | 5.998            |
| 18            | 0.723              | 6.721            |
| 19            | 0.774              | 7.494            |
| 20            | 0.833              | 8.327            |
| 21            | 0.826              | 9.153            |
| 22            | 0.940              | 10.093           |
| 23            | 0.953              | 11.046           |
| 24            | 0.994              | 12.040           |

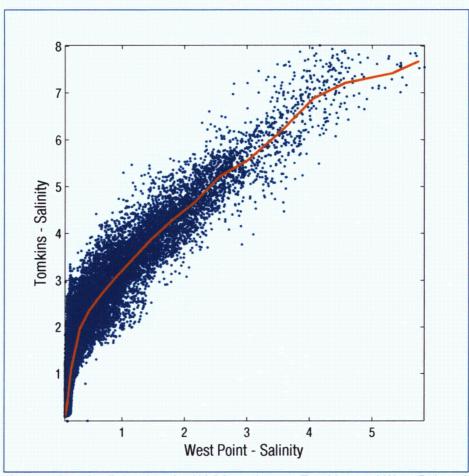



Figure 4-4. Scatterplot of salinity data for USGS stations at Tomkins and West Point with an empirically based regression superimposed on the data.

Page 14 of 31

#### 4.3 IPEC MODEL RESULTS

Since the Tomkins salinity is well correlated to West Point but not to Hastings, initially only the West Point data was used in estimating Tomkins salinity. However, a comparison of the estimated salinity from the empirically based regression model compared to the observed indicates that when salinities are low at West Point (< 1 psu) the model over predicts Tomkins salinities. However, further testing and analysis showed that, when the salinity at Hastings fell below 4.07 psu, the salinity at both West Point and Tomkins was typically very close to zero. Therefore, in all periods when the Hastings salinity dropped below 4.07 psu the Tomkins statistical model was set equal to the West Point salinity. This process prevented unreasonably high model predictions of salinity at Tomkins.

Figure 4-5 shows the salinity time series during the period when salinity observations were reported for all three USGS stations, October 1999 through July 2001. As expected, West Point always had the lowest salinity at any given time, Tomkins salinity was essentially the same or higher than West Point salinity, and Hastings consistently had the highest salinity. During high discharge periods, the salinity recorded at Hastings was very close to that observed at Tomkins and West Point. The empirical model estimate at Tomkins is also shown in Figure 4-5 and tracks the observed data at Tomkins closely.

To see how well the empirical model correlated with the observations on shorter time scales, Figure 4-6 displays a segment of the time series from 30 January through 9 April 2000. During the first month of the period, Hastings salinity is greater than 4.07 psu and the model tracks the Tomkins salinity data well. For the rest of the period the Hastings salinity frequently falls below 4.07 psu and the West Point salinity is essentially zero, thus the model forces the Tomkins salinity to the West Point value. This assumption typically works well except that some small excursions of Tomkins salinity are not captured during this period (e.g., early in March) or that extraneous small (<1 psu) levels are intermittently predicted (early February).

# Time Series of Salinity at USGS Sites

Page 16 of 31

Figure 4-5. Salinity time series of period of record (October 1999 through July 2001).

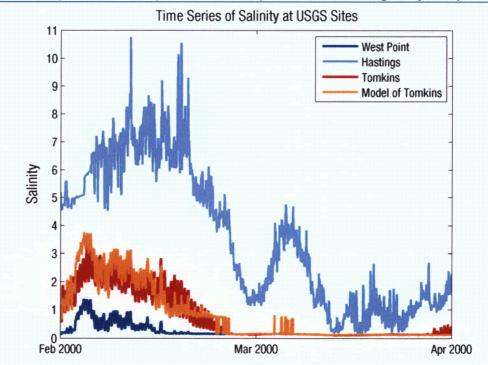



Figure 4-6. Salinity time series of short portion of record (30 January through 9 April 2000) showing ability of model to simulate low salinities at Tomkins.

The resulting time series of hourly salinity at Tomkins, used as a proxy for the IPEC intake, is shown in Figure 4-7 for the 10-year period 2000 – 2009. There is no clear annual cycle although salinities are typically higher in the summer and fall seasons. Some years (2001, 2002, 2005, and 2007) show extended periods of salinity continuously exceeding 4 psu for more than two months with peaks exceeding 7 psu. These variations are primarily due to freshwater entering the River, although there are sometimes events (storm surge) that can transport salt from the ocean to the vicinity of the IPEC intake. The complete 1-hr empirically calculated salinity data set for the 10-yr period is available upon request as an Excel spreadsheet.

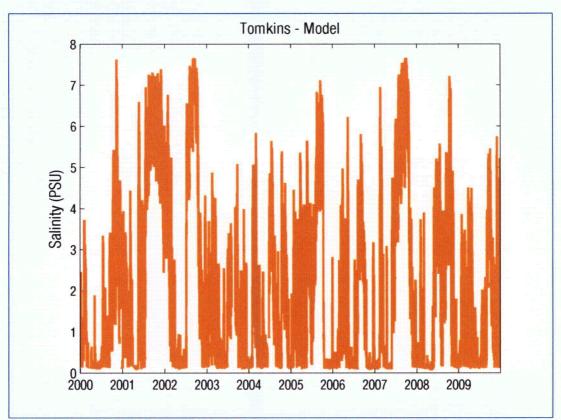



Figure 4-7. Predicted salinity at IPEC (using Tomkins as a proxy) for the period 2000 through 2009.

#### **5** STATISTICAL ANALYSES

Statistics, frequency and cumulative frequency distributions were determined for the hourlymodeled salinity predictions at IPEC (with Tomkins as a proxy) for the decadal period 2000 through 2009. Separate analyses are reported for the entire period, for each of the 10 years and each of the 12 months in the record.

#### 5.1 ENTIRE 2000-2009 ANALYSIS

There were a total of 85,192 hours of data contained in the decadal record (Table 5-1). This value falls below the full 87,672 hours that fall within the period of record from 2000 to 2009 due to a number of missing data points. The missing data points in the original USGS records are likely a function of instrument malfunction, interference, or maintenance.

The mean salinity is seen to be 1.80 psu, the minimum 0.07 psu and the maximum 7.67 psu. The median, or 50<sup>th</sup> percentile, is 0.72 psu, indicating that the salinity distribution is not a normal distribution, but slightly biased to lower salinities. The 90<sup>th</sup> percentile salinity, which means that 90% of the salinity values in the record are less than 5.23 psu, while 10% are greater.

| Table 5-1. | Statistical | summary | for the entire | 10-yr | record. |   |
|------------|-------------|---------|----------------|-------|---------|---|
|            |             |         |                |       |         | - |

| Period    | Count<br>(hrs) | Mean<br>(psu) | Minimum<br>(psu) | Maximum<br>(psu) | 50 <sup>th</sup><br>Percentile<br>(psu) | 90 <sup>th</sup><br>Percentile<br>(psu) |
|-----------|----------------|---------------|------------------|------------------|-----------------------------------------|-----------------------------------------|
| 2000-2009 | 85,192         | 1.80          | 0.07             | 7.67             | 0.72                                    | 5.23                                    |

Figure 5-1 and Table 5-2 document the frequency and cumulative frequency distribution of the entire 10-yr data set. The salinity bin resolution is 0.25 psu (0 - 0.25, 0.25 - 0.50, 0.50 - 0.75, etc). Salinities between 0 and 0.25 psu occur 30.62% of the time while salinities between 0.25 and 0.50 psu drop to 12.29% of the time. The large number of low salinities is indicated by the cumulative frequency of occurrence that shows over 50% (54.78%) of the salinities are less than 1.00 psu. There are no salinity bins above 1.00 psu exceeding a frequency of 3%.

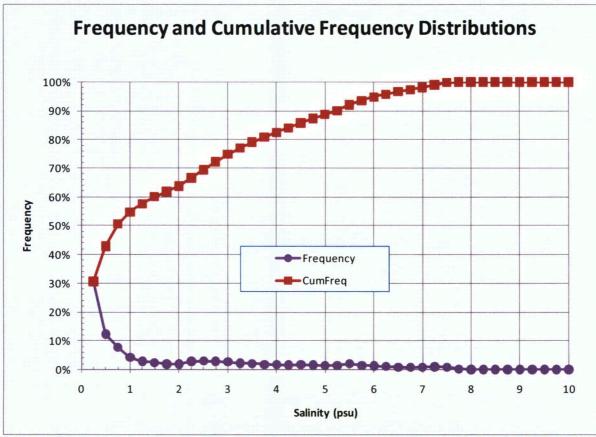



Figure 5-1. Frequency and cumulative frequency distributions for the entire 10-yr record.

| Minimum<br>Salinity<br>(psu) | Maximum<br>Salinity<br>(psu) | Frequency<br>(%) | Cumulative<br>Frequency<br>(%) |
|------------------------------|------------------------------|------------------|--------------------------------|
| 0.00                         | 0.25                         | 30.62%           | 30.62%                         |
| 0.25                         | 0.50                         | 12.29%           | 42.91%                         |
| 0.50                         | 0.75                         | 7.68%            | 50.59%                         |
| 0.75                         | 1.00                         | 4.20%            | 54.78%                         |
| 1.00                         | 1.25                         | 2.85%            | 57.63%                         |
| 1.25                         | 1.50                         | 2.35%            | 59.98%                         |
| 1.50                         | 1.75                         | 1.83%            | 61.81%                         |
| 1.75                         | 2.00                         | 1.89%            | 63.70%                         |
| 2.00                         | 2.25                         | 2.79%            | 66.49%                         |
| 2.25                         | 2.50                         | 2.91%            | 69.40%                         |
| 2.50                         | 2.75                         | 2.83%            | 72.23%                         |
| 2.75                         | 3.00                         | 2.64%            | 74.88%                         |
| 3.00                         | 3.25                         | 2.21%            | 77.09%                         |
| 3.25                         | 3.50                         | 2.04%            | 79.13%                         |
| 3.50                         | 3.75                         | 1.74%            | 80.87%                         |

 Table 5-2. Frequency and cumulative frequency distributions in 0.25 psu bins for the entire 10-yr record.

77

| D    |       |     |                                                                                                                |    | ο.    |       |      |    |
|------|-------|-----|----------------------------------------------------------------------------------------------------------------|----|-------|-------|------|----|
|      | 121   | 21  | 2.33                                                                                                           | 24 | 88.88 | 61103 | 56 Y | 88 |
| 6963 | eini. | ÷02 | en de la compañía de |    |       |       | 202  |    |

| Minimum<br>Salinity<br>(psu) | Maximum<br>Salinity<br>(psu) | Frequency<br>(%) | Cumulative<br>Frequency<br>(%) |
|------------------------------|------------------------------|------------------|--------------------------------|
| 3.75                         | 4.00                         | 1.69%            | 82.56%                         |
| 4.00                         | 4.25                         | 1.57%            | 84.13%                         |
| 4.25                         | 4.50                         | 1.64%            | 85.77%                         |
| 4.50                         | 4.75                         | 1.58%            | 87.35%                         |
| 4.75                         | 5.00                         | 1.36%            | 88.71%                         |
| 5.00                         | 5.25                         | 1.41%            | 90.12%                         |
| 5.25                         | 5.50                         | 1.97%            | 92.10%                         |
| 5.50                         | 5.75                         | 1.45%            | 93.55%                         |
| 5.75                         | 6.00                         | 1.24%            | 94.79%                         |
| 6.00                         | 6.25                         | 0.99%            | 95.78%                         |
| 6.25                         | 6.50                         | 0.82%            | 96.60%                         |
| 6.50                         | 6.75                         | 0.70%            | 97.30%                         |
| 6.75                         | 7.00                         | 0.76%            | 98.07%                         |
| 7.00                         | 7.25                         | 0.95%            | 99.02%                         |
| 7.25                         | 7.50                         | 0.77%            | 99.79%                         |
| 7.50                         | 7.75                         | 0.21%            | 100.00%                        |
| 7.75                         | 8.00                         | 0.00%            | 100.00%                        |
| 8.00                         | 8.25                         | 0.00%            | 100.00%                        |

#### 5.2 YEARLY ANALYSIS FOR EACH YEAR IN 10-YR RECORD

The statistical summary of the 10-yr data set broken down by year is presented in Table 5-3 and displayed in Figure 5-3. Counts for each year vary from 7,846 (2003) to 8,759 (2001) indicating which years have missing data. Non-leap years have 8,760 hrs while leap years have 8,784 hrs. The data shows that the years 2001, 2002, and 2007 have higher salinities on average, while the years 2000, 2003, and 2009 generally have lower salinities. Highest maximum salinities across the entire data set occur in 2000, 2001, 2002 and 2007, with all exceeding 7.40 psu. The minimum salinities vary for all years between 0.07 and 0.11 psu. The mean is consistently greater than or equal to the median indicating that there are more lower values than higher values. The 90<sup>th</sup> percentile salinities show values greater than 6 psu during 2001, 2002 and 2007.

| Period | Count<br>(hrs) | Mean<br>(psu) | Minimum<br>(psu) | Maximum<br>(psu) | 50 <sup>th</sup><br>Percentile<br>(psu) | 90 <sup>th</sup><br>Percentile<br>(psu) |
|--------|----------------|---------------|------------------|------------------|-----------------------------------------|-----------------------------------------|
| 2000   | 8692           | 1.10          | 0.10             | 7.63             | 0.52                                    | 3.20                                    |
| 2001   | 8759           | 3.21          | 0.09             | 7.40             | 3.28                                    | 6.32                                    |
| 2002   | 8572           | 2.75          | 0.09             | 7.67             | 1.94                                    | 6.90                                    |
| 2003   | 7846           | 0.97          | 0.10             | 5.08             | 0.52                                    | 2.46                                    |
| 2004   | 8458           | 1.37          | 0.11             | 5.84             | 0.69                                    | 3.60                                    |
| 2005   | 8486           | 1.96          | 0.10             | 7.13             | 1.10                                    | 5.10                                    |
| 2006   | 8435           | 1.16          | 0.08             | 6.23             | 0.38                                    | 3.43                                    |

| Table 5-3. | Statistical sum | marv for each | vear of the 1 | 0-vr record. |
|------------|-----------------|---------------|---------------|--------------|
|            |                 |               |               |              |

| 2007 | 8705 | 2.71 | 0.08 | 7.67 | 2.06 | 6.60 |
|------|------|------|------|------|------|------|
| 2008 | 8501 | 1.56 | 0.07 | 7.23 | 0.55 | 4.22 |
| 2009 | 8738 | 1.15 | 0.11 | 5.76 | 0.45 | 3.19 |

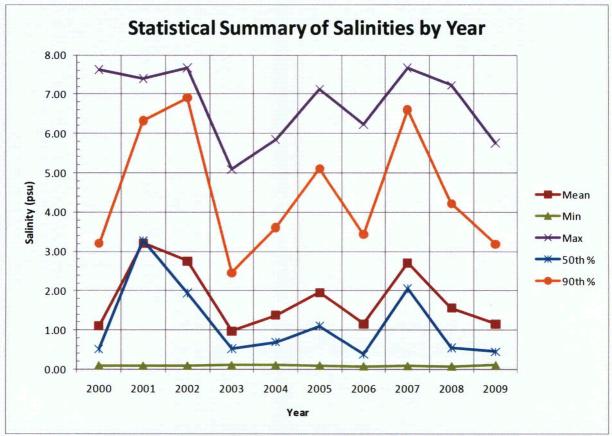
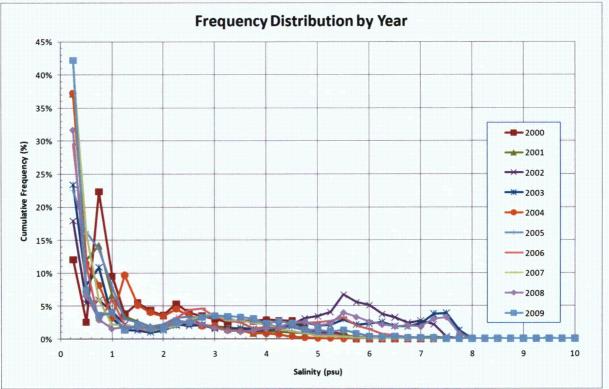




Figure 5-2. Statistical summary by year for the 10-yr period.

Figures 5-3 and 5-4 show the frequency distribution and cumulative frequency distribution, respectively for each year in the 10-yr record. Salinities between 0 and 0.25 psu occur 12% of the time in 2000 and 42% in 2009, while salinities between 0.25 and 0.50 psu occur even less often for all years. Above 1.5 psu, no salinity bins exceed a frequency greater than 5% except for 2009 between 5.50 psu and 6.00 psu. Cumulative frequency distributions indicate that between 33% (in 2001) and 70% (in 2000) of the salinities are less than 1.00 psu.

#### Page 22 of 31





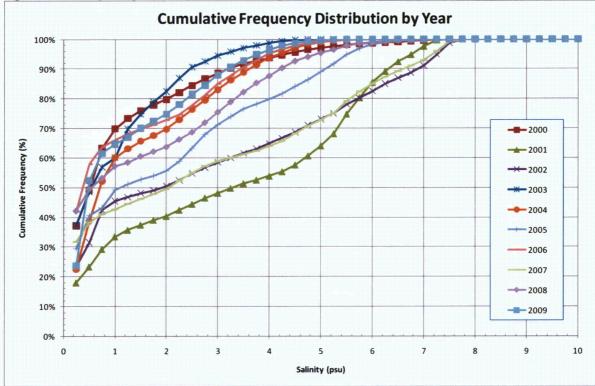



Figure 5-4. Cumulative frequency distributions for each year of the 10-yr record.

#### 5.3 MONTHLY ANALYSIS FOR EACH MONTH IN 10-YR RECORD

The statistical summary of the 10-yr data set broken down by month is shown in Table 5-4 and Figure 5-5. Counts for each month vary from 6,698 to 7,440, differing based on years that have fewer days and missing data. February has 672 hrs during non-leap years and 696 hrs during leap years. The data shows that the months of July through October have higher salinities while the other months have lower salinities, with April the lowest. Highest maximum salinities occur between July and December, with all exceeding 7.20 psu while the minimum salinities vary for all months between 0.07 and 0.11 psu. The mean is consistently larger than the median indicating that there are more lower values than higher values. The 90<sup>th</sup> percentile salinities show values greater than 6 psu during August, September, and October.

| Month | Count<br>(hrs) | Mean<br>(psu) | Minimum<br>(psu) | Maximum<br>(psu) | 50 <sup>th</sup><br>Percentile<br>(psu) | 90 <sup>th</sup><br>Percentile<br>(psu) |
|-------|----------------|---------------|------------------|------------------|-----------------------------------------|-----------------------------------------|
| Jan   | 7440           | 1.11          | 0.08             | 6.77             | 0.39                                    | 3.56                                    |
| Feb   | 6792           | 1.59          | 0.11             | 6.96             | 1.09                                    | 3.65                                    |
| Mar   | 7433           | 1.08          | 0.10             | 5.84             | 0.63                                    | 3.16                                    |
| Apr   | 7100           | 0.52          | 0.08             | 4.51             | 0.13                                    | 1.83                                    |
| May   | 7276           | 0.76          | 0.07             | 6.60             | 0.21                                    | 2.95                                    |
| Jun   | 6698           | 1.22          | 0.10             | 6.07             | 0.35                                    | 3.33                                    |
| Jul   | 6804           | 2.56          | 0.08             | 7.27             | 2.39                                    | 5.31                                    |
| Aug   | 6739           | 3.22          | 0.09             | 7.55             | 3.05                                    | 6.46                                    |
| Sep   | 6939           | 3.84          | 0.11             | 7.67             | 3.70                                    | 7.16                                    |
| Oct   | 7422           | 3.13          | 0.11             | 7.66             | 2.78                                    | 6.46                                    |
| Nov   | 7200           | 1.76          | 0.09             | 7.63             | 0.77                                    | 5.13                                    |
| Dec   | 7349           | 1.04          | 0.09             | 7.26             | 0.28                                    | 3.83                                    |

#### Table 5-4. Statistical summary for each month of the 10-yr record.

#### Page 24 of 31

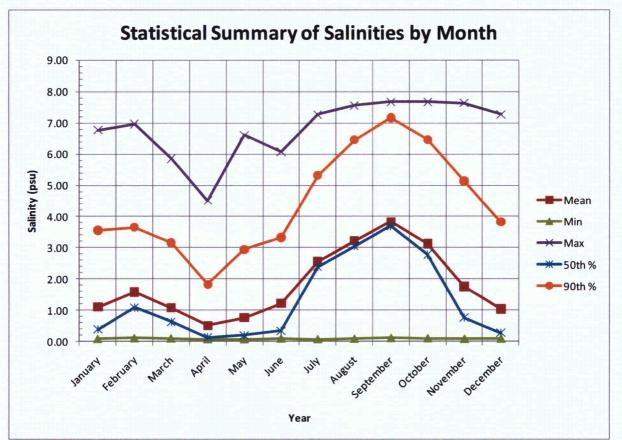



Figure 5-5. Statistical summary by month for the 10-yr period.

Figures 5-6 and 5-7 show the frequency distribution and cumulative frequency distribution, respectively for each month in the 10-yr record. Salinities between 0 and 0.25 psu vary between 5% of the time in September and 85% in April, consistent with freshwater discharge to the River. Generally, there is a dramatic drop for the salinity bin between 0.25 and 0.50 psu for most months. Above 1.5 psu, no salinity bins exceed a frequency greater than 5% except for September for the 7.5-psu bin. Cumulative frequency distributions indicate that between 18% (in September) and 86% (in April) of the salinities are less than 1.00 psu.

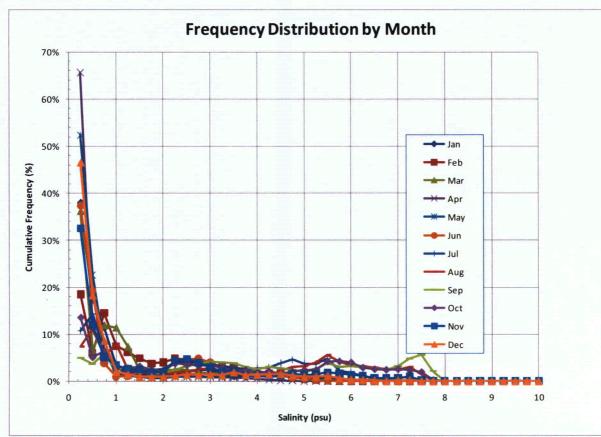



Figure 5-6. Frequency distributions for each month of the 10-yr record.

#### Page 26 of 31

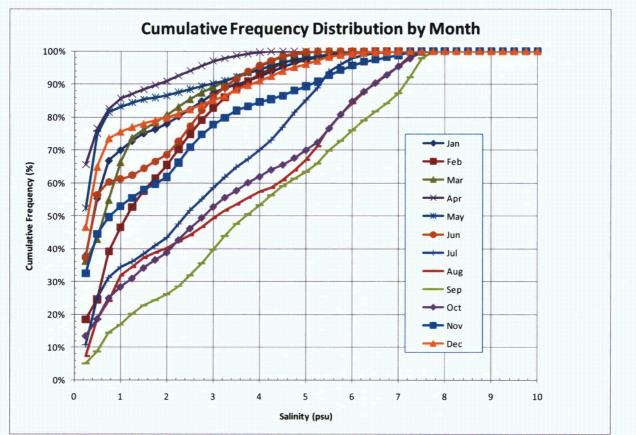



Figure 5-7. Cumulative frequency distributions for each month of the 10-yr record.

#### 5.4 CONTINUOUS 10-YR DATA SET ANALYSIS

As noted in Section 5.1 there were a total of only 85,192 hrs of data in the 10-yr record of model predictions due to missing data values in the original USGS data records used. Since there are 87,672 hrs in the period 2000 through 2009 a total of 2,480 hrs were missing. In order to provide a continuous time series for subsequent analysis of cooling tower operation the missing values needed to be interpolated from the predictions. An analysis of the missing hours reveals that the largest gap extended for 739 hrs down to 60 1-hr gaps summarized in Table 5-5.

| Table 5-5. Summary of data gaps in the 10-yr recor |
|----------------------------------------------------|
|----------------------------------------------------|

| Start Time    | Gap Duration<br>(hr) |  |  |  |
|---------------|----------------------|--|--|--|
|               |                      |  |  |  |
| 8/3/03 15:00  | 739                  |  |  |  |
| 6/9/04 23:00  | 324                  |  |  |  |
| 6/10/03 10:00 | 167                  |  |  |  |
| 7/4/08 0:00   | 154                  |  |  |  |
| 7/1/05 19:00  | 88                   |  |  |  |
| 4/15/05 8:00  | 78                   |  |  |  |

Page 27 of 31

|                | Gap Duration |
|----------------|--------------|
| Start Time     | (hr)         |
| 9/20/05 5:00   | 53           |
| 5/28/02 14:00  | 44           |
| 7/23/06 1:00   | 41           |
| 7/27/06 4:00   | 41           |
| 12/17/00 23:00 | 35           |
| 7/17/06 21:00  | 24           |
| 7/22/06 0:00   | 24           |
| 7/25/06 3:00   | 24           |
| 7/19/06 23:00  | 23           |
| 7/26/06 4:00   | 23           |
| 7/21/06 1:00   | 22           |
| 7/16/06 20:00  | 14           |
| 7/18/06 22:00  | 13           |
| 7/16/06 7:00   | 12           |
| 12/15/00 21:00 | 11           |
| 4/14/05 19:00  | 11           |
| 12/14/00 22:00 | 9            |
| 8/1/05 14:00   | 9            |
| 7/15/06 20:00  | 9            |
| 7/17/06 11:00  | 9            |
| 9/6/02 21:00   | 8            |
| 9/24/07 20:00  | 8            |
| Number of Gaps |              |
| 12             | 7            |
| 20             | 6            |
| 17             | 5            |
| 6              | 4            |
| 12             | 3            |
| 27             | 2            |
| 60             | 1            |

Since the total number of missing values is only 2.8% of the total hrs in 10 yrs the form of the interpolation would not likely affect overall distribution of salinity values. Therefore a simple linear interpolation was used to estimate the missing values. To check whether the interpolation affected the distribution, the statistical analyses used in previous sections was repeated. The statistical summary for the continuous entire 10-yr record is given in Table 5-6. The only differences from the results in Table 5-1 are a 0.01 psu increase in mean and 50<sup>th</sup> percentile values and a 0.01 psu drop in 90<sup>th</sup> percentile value, none of which are significant.

0.07

7.67

0.73

5.22

| labi | e 5-6. Statist | ical summar | y for the co | ntinuous enti | re 10-yr record | a.                             |                                |
|------|----------------|-------------|--------------|---------------|-----------------|--------------------------------|--------------------------------|
|      |                | Count       | Mean         | Minimum       | Maximum         | 50 <sup>th</sup><br>Percentile | 90 <sup>th</sup><br>Percentile |
|      | Period         | (hrs)       | (psu)        | (psu)         | (psu)           | (psu)                          | (psu)                          |

| Table 5-6. Statistical summa | ary for the continuous entire 10-yr record. |
|------------------------------|---------------------------------------------|
|------------------------------|---------------------------------------------|

1.81

2000-2009

87672

The statistical summary for each year of the continuous 10-yr record is shown in Table 5-7. The differences of the means compared to Table 5-3 vary from 0 psu in 2001 and 2008 up to a maximum of 0.10 psu in 2003. The largest difference in 2003 is due to the relatively large number of missing hours, greater than 900 hrs. The largest difference in the 50<sup>th</sup> percentile was also 0.10 psu and the largest difference in the 90<sup>th</sup> percentile was 0.18 psu, all occurring during 2003.

| Period | Count<br>(hrs) | Mean<br>(psu) | Minimum<br>(psu) | Maximum<br>(psu) | 50 <sup>th</sup><br>Percentile<br>(psu) | 90 <sup>th</sup><br>Percentile<br>(psu) |
|--------|----------------|---------------|------------------|------------------|-----------------------------------------|-----------------------------------------|
| 2000   | 8784           | 1.11          | 0.10             | 7.63             | 0.52                                    | 3.19                                    |
| 2001   | 8760           | 3.21          | 0.09             | 7.40             | 3.28                                    | 6.32                                    |
| 2002   | 8760           | 2.79          | 0.09             | 7.67             | 2.01                                    | 6.97                                    |
| 2003   | 8760           | 1.07          | 0.10             | 5.08             | 0.62                                    | 2.64                                    |
| 2004   | 8784           | 1.34          | 0.11             | 5.84             | 0.68                                    | 3.58                                    |
| 2005   | 8760           | 1.95          | 0.10             | 7.13             | 1.09                                    | 5.12                                    |
| 2006   | 8760           | 1.12          | 0.08             | 6.23             | 0.36                                    | 3.41                                    |
| 2007   | 8760           | 2.74          | 0.08             | 7.67             | 2.08                                    | 6.67                                    |
| 2008   | 8784           | 1.56          | 0.07             | 7.23             | 0.56                                    | 4.19                                    |
| 2009   | 8760           | 1.16          | 0.11             | 5.76             | 0.45                                    | 3.20                                    |

Table 5-7. Statistical summary for each year of the continuous 10-yr record.

The statistical summary for each month of the continuous 10-yr record is shown in Table 5-8. The difference in the means compared to Table 5-4 vary from 0.00 psu for January, February, March and November up to a maximum of 0.11 psu for July, consistent with the most months with missing data summarized in Table 5-5. The largest difference for the 50<sup>th</sup> and 90<sup>th</sup> percentiles occurred in August, consistent with the largest gap in August.

|       | Count | Mean  | Minimum | Maximum | 50 <sup>th</sup><br>Percentile | 90 <sup>th</sup><br>Percentile |
|-------|-------|-------|---------|---------|--------------------------------|--------------------------------|
| Month | (hrs) | (psu) | (psu)   | (psu)   | (psu)                          | (psu)                          |
| Jan   | 7440  | 1.11  | 0.08    | 6.77    | 0.39                           | 3.56                           |
| Feb   | 6792  | 1.59  | 0.11    | 6.96    | 1.09                           | 3.65                           |
| Mar   | 7440  | 1.08  | 0.10    | 5.84    | 0.63                           | 3.15                           |
| Apr   | 7200  | 0.51  | 0.08    | 4.51    | 0.13                           | 1.80                           |
| May   | 7440  | 0.75  | 0.07    | 6.60    | 0.19                           | 2.90                           |
| Jun   | 7200  | 1.17  | 0.10    | 6.07    | 0.35                           | 3.26                           |
| Jul   | 7440  | 2.45  | 0.08    | 7.27    | 2.30                           | 5.26                           |
| Aug   | 7440  | 3.14  | 0.09    | 7.55    | 2.76                           | 6.37                           |
| Sep   | 7200  | 3.90  | 0.11    | 7.67    | 3.77                           | 7.22                           |
| Oct   | 7440  | 3.14  | 0.11    | 7.66    | 2.79                           | 6.49                           |
| Νον   | 7200  | 1.76  | 0.09    | 7.63    | 0.77                           | 5.13                           |
| Dec   | 7440  | 1.06  | 0.09    | 7.26    | 0.29                           | 3.81                           |

Table 5-8. Statistical summary for each month of the continuous 10-yr record.



#### **6** CONCLUSIONS

An analysis was performed to estimate the variability of salinity at the intakes to IPEC on the River. Long-term (greater than a decade) data records of conductivity were identified for active USGS stations at West Point and Hastings that are located 9 mi upstream and 21 mi downstream of IPEC, respectively. In addition, a discontinued USGS station at Tomkins Cove, located 1 mi south of IPEC, was identified that had a shorter (4-yr) period of record. Since the Tomkins, station was relatively close to IPEC it was used as a proxy for salinity at the IPEC intakes.

A statistical analysis was performed on the hourly salinity data for each period of record for each station. Statistics, including mean, minimum, maximum, 50<sup>th</sup> and 90<sup>th</sup> percentile values, along with frequency and cumulative frequency distributions, were calculated. The analysis revealed a decrease in salinity from Hastings to Tomkins and from Tomkins to West Point, consistent with their locations moving upriver. Mean salinity at Hastings was 6.29 psu, Tomkins was 2.09 psu, and West Point was 0.79 psu, consistent with the order of the 90<sup>th</sup> percentile salinity values of 10.88 psu (Hastings), 4.96 psu (Tomkins) and 2.63 psu (West Point). Hastings and West Point showed the lowest mean and 90<sup>th</sup> percentile values in April, consistent with high freshwater discharge, and highest mean and 90<sup>th</sup> percentile values in September, consistent with low freshwater discharge. Tomkins, with a significantly shorter period of record, showed the lowest mean and 90<sup>th</sup> percentile values in January and the highest in August.

A correlation analysis was performed that related the salinity at Tomkins to salinities at West Point and Hastings. It was found that the West Point data was more highly correlated to Tomkins than Hastings was and thus used to estimate Tomkins salinity for the long-term decadal period. The model was improved at low salinities by forcing the Tomkins salinity to be equal to the West Point salinity when the Hastings salinity fell below 4.07 psu. This improvement had no effect on higher salinity predictions.

The decadal (2000-2009) salinity time series at IPEC (assumed equivalent to that at Tomkins) was generated to provide a long-term estimate of salinity under a variety of environmental conditions. This time series is consistent with the analysis period conducted for the extreme environmental conditions in support of the hydrothermal modeling at IPEC (Swanson et al., 2010).

The model results showed that salinities were typically higher in the summer and fall seasons, consistent with the observations at the USGS stations. Some years (2000, 2001, and 2006) showed extended periods of salinity exceeding 5 psu for three months with peaks exceeding 7 psu. There were also shorter periods when the salinity was near-zero (2000, 2001, and 2008), usually in the spring season. These variations are primarily due to fluctuations in freshwater entering the River, although there are occasional events (storm surge) that can transport salt from the ocean to the vicinity of the IPEC intake.

#### Page 30 of 31

A statistical analysis was performed on the hourly-modeled salinity predictions at IPEC for the decadal period 2000 through 2009. The mean salinity over the entire period was 1.80 psu, the minimum 0.07 psu and the maximum 7.67 psu. The median, or 50<sup>th</sup> percentile, was 0.72 psu, indicating that the salinity distribution is not a normal distribution, but slightly biased to lower salinities. The 90<sup>th</sup> percentile salinity was 5.23 psu. Salinities between 0 and 0.25 psu were found to occur 30.62% of the time while salinities between 0.25 and 0.50 psu dropped to 12.29% of the time. The large number of low salinities is indicated by the cumulative frequency of occurrence that shows over 50% (54.78%) of the salinities were less than 1.00 psu.

The statistical summary of the 10-yr data set broken down by year showed that 2001 had the highest mean (3.21 psu) and highest median (3.28 psu), 2002 had the highest maximum (7.67 psu) and highest 90<sup>th</sup> percentile (6.90 psu). Salinities between 0 and 0.25 psu occurred between 12% of the time in 2000 and 42% in 2009 while salinities between 0.25 and 0.50 psu dropped dramatically for all years. The large number of low salinities was indicated by the cumulative frequency of occurrence that showed between 33% (in 2001) and 70% (in 2000) of the salinities are less than 1.00 psu.

The statistical summary of the 10-yr data set broken down by month showed that September had the highest mean (3.84 psu), highest maximum (7.67 psu), highest median (3.70 psu) and highest 90<sup>th</sup> percentile (7.16 psu). July, August, October and November had the next highest values after September. The winter and spring months had lower values with April the lowest of any month. Salinities between 0 and 0.25 psu varied throughout the year, with such low values occurring only 5% of the time in September and as high as 85% in April, directly related to the freshwater discharge to the River while salinities between 0.25 and 0.50 psu dropped dramatically for most months, excepting those with lowest salinities. The large number of low salinities is indicated by the cumulative frequency of occurrence that shows between 18% (in September) and 86% (in April) of the salinities are less than 1.00 psu.

The effect of using linear interpolation to fill the missing hours (2.8% of the total hours) is insignificant when viewed in the context of the 10-yr record as all statistical measures showed a maximum difference of only 0.01 psu when compared to the results of the non-filled data set. The individual years and months exhibited larger differences but were still relatively small.

#### 7 REFERENCES

Swanson, C., D. Mendelsohn, Yong Kim, and D. Crowley, 2010. Hydrothermal Modeling of the Cooling Water Discharge from the Indian Point Energy Center to the Hudson River. ASA Project 09-167. Prepared for Elise Zoli, Goodwin Procter, Boston, MA, 22 March 2010.

Texas Instruments, 1976. A synthesis of available data pertaining to major physicochemical variables within the Hudson River Estuary emphasizing the period from 1972 to 1975. Prepared by Texas Instruments Incorporated Ecological Services, Dallas, TX. Prepared for Consolidated Edison Company of New York, Inc., New York, NY, November 1976.