From:Joyce. Ryan M.To:Martin. RobertSubject:NRC SNC GSI-191 Public Meeting 11-06-2014.pptxDate:Thursday, October 23, 2014 5:41:43 PMAttachments:NRC SNC GSI-191 Public Meeting 11-06-2014.pptx

Bob,

Attached is the SNC presentation for the GSI-191 meeting.

Thanks.

Ryan

VOGTLE GSI-191 PROGRAM CHEMICAL EFFECTS TESTING STRAINER HEADLOSS TESTING NRC PUBLIC MEETING

NOVEMBER 6, 2014

AGENDA

- Introductions
- Objectives for Meeting
- *Discussion of Integrated Chemical Effects Test Plans
- *Discussion of Strainer Head Loss Test Plans
- Feedback on Documents Provided for Review Prior to Meeting
- Staff Questions and Concerns

*Presentation provides topic highlights only, more detailed information is contained in other documents provided.

SNC ATTENDEES

- Ryan Joyce Licensing
- Phillip Grissom Program Manager GSI-191
- Tim Littleton Lead Engineer Vogtle Design
- Franchelli Febo Vogtle Site Design
- Owen Scott Risk Informed Engineering

OBJECTIVES OF THE MEETING

- Provide an overview of Vogtle plans for future large scale chemical effects and strainer headloss testing, and receive any comments, concerns, or feedback from NRC staff
- Receive any NRC observations or feedback on documents provided for review prior to this meeting

VOGTLE BACKGROUND

Vogtle Description

- Westinghouse 4-Loop PWR, 99% NUKON Insulation
- ~ 6 ft3 of Interam fire barrier
- GE Stacked Disk Strainers for ECCS and Containment Spray (4/unit)
- 765 ft2 per each of 2 ECCS trains, separate CS strainers (2)
- TSP Buffer

Vogtle Status

- Strainer Head Loss and In-vessel issues remain open
- Previous chemical effects testing provided very promising results, but not accepted by NRC
- Vogtle elected to follow Option 2B (risk-informed resolution) of SECY-12-0093, as being piloted by STP

DOCUMENTS PROVIDED FOR REVIEW PRIOR TO MEETING

Strainer Headloss

 SNCV083-PR-05, Rev 0, "Risk-Informed Head Loss Test Strategy", October 2014

Chemical Effects

- CHLE-SNC-001, Rev. 2, "Bench Test Results for Series 1000 Tests for Vogtle Electric Generating Plant", September 2013
- CHLE-SNC-007, Rev. 2, "Bench Test Results for Series 3000 Tests for Vogtle Electric Generating Plant", January 2014
- CHLE-SNC-008, Rev. 3, "Column Chemical Head Loss Experimental Procedures and Acceptance Criteria", March 2014
- CHLE-SNC-020, Rev 0, "Test Plan-Vogtle Risk Informed GSI-191 CHLE Test T6, T7 and T8", October 2014

INTEGRATED CHEMICAL EFFECTS TESTING

UNIVERSITY OF NEW MEXICO ENERCON ALION SCIENCE AND TECHNOLOGY

CHEMICAL EFFECTS TESTING OVERVIEW

- 30-Day Integrated Tank Test w/Debris Bed
 System (T8)
 - Similar to STP Test T2, but with Vogtle Specifics
 - Prototypical Water Chemistry for Vogtle During LOCA
 - Based on Double Ended Guillotine Break of the 29" Hot Leg Piping on Loop 4 of the RCS (Weld# 11201-004-6-RB)
- Additional Chemical Effects Testing
 - Bench Scale Tests
 - Prototypical Water Chemistry Tank Test w/o Debris Beds (T6)
 - Forced Precipitation Tank Test w/Debris Beds (T7)

30-DAY INTEGRATED TANK TEST (T8)

• Objective:

- Determine and characterize chemical precipitates generated during a simulated LOCA event
- Investigate effects of potential chemical products on head loss
- Generate test results for a simulated break case to compare with the chemical effects model
- Based on Double Ended Guillotine Break of the 29" Hot Leg Piping on Loop 4 of the RCS (Weld# 11201-004-6-RB)

Includes:

- CHLE Corrosion tank
 - Prototypical Vogtle Water Chemistry
 - Corrosion and Ancillary Materials
- Vertical Column System
 - Multi-Particulate Debris Beds

SUMMARY OF PREVIOUS TESTING (STP)

	T1	T2	T3	T4	T5
Corrosion materials	- Al scaffolding - Fiberglass	- Al scaffold - Fiberglass - GS, Zn coupons - Concrete	- Al, GS, Zn coupons - Fiberglass - Concrete	- Al coupons - Fiberglass	- Al scaffold - Fiberglass - GS, Zn coupons - Concrete
Avg Vel (ft/s)	0.01	0.01	0.01	0.01	0.01
рН	7.22	7.32	7.22	7.22	7.25
Temperature profile	MB-LOCA	LB-LOCA	<figure></figure>		LB-LOCA
Testing Per.	30-day	30-day	10-day	10-day	10-day
Bed prep.	NEI	NEI	Blend & NEI	Blend & NEI	Blender

SUMMARY OF PROPOSED TESTING (SNC)

	Т6	T7	Т8
Corrosion materials	- Al, GS, Cu, CS - Fiberglass - Concrete - MAP, Interam, Dirt - Epoxy, IOZ	- Al, GS coupons - Fiberglass - Concrete - IOZ	- Al, GS, Cu, CS - Fiberglass - Concrete - MAP, Interam, Dirt - Epoxy, IOZ
Velocity (ft/s)	0.013	0.013	0.013
Target pH	7.2	7.2	7.2
Temperature profile	Modified LB-LOCA	Non-Prototypical	Modified LB-LOCA
Testing period	30-day	10-day	30-day
Bed type	None	Multi-Constituent Particulate	Multi-Constituent Particulate

TEMPERATURE PROFILE: T8

TEMPERATURE PROFILE: T8

- T6/T8 Temperature Profile (initial hour)
 - Best Estimate case is below 185°F within ~10 min
 - T6/T8 materials are immediately submerged and exposed to sprays
 - No credit taken for the time to activate sprays and fill the sump
 - No credit taken for thermal lag of materials in containment

CHEMICAL EFFECTS TESTING OVERVIEW

 30-Day Integrated Tank Test w/Debris Bed System (T8)

Vertical Column Head Loss System

- CHLE Corrosion Tank
- Prototypical Water Chemistry for Vogtle During LOCA
- Additional Chemical Effects Testing
 - Bench Scale Tests
 - Prototypical Water Chemistry Tank Test w/o Debris Beds
 - Forced Precipitation Tank Test w/Debris Beds

CHLE – VERTICAL HEAD LOSS TESTING

- UNM Testing Facility
- Previous Testing (NEI and Blender Beds)
- Head Loss Results
 - Debris Beds with Acrylic Particulates
 - Head loss Repeatability
 - Head loss Stability & variability
 - Bed sensitivity, Hysteresis & detectability
 - Debris Beds with Epoxy Particulates

CHLE UNM Testing Facility

CHLE VERTICAL HEAD LOSS MODULES

CHLE PREVIOUS TESTING

CHLE Results: Repeatability Test #1, 2, and 3 - Paint/Fiber (40/20)

CHLE Results: Stability and Variability

CHLE Results: Sensitivity , Hysteresis & Chemical Detectability

Head Loss, ∆P (H₂O")

CHLE – Results: Detectability with Epoxy

Approach Velocity (ft/s)

CHEMICAL EFFECTS TESTING OVERVIEW

- 30-Day Integrated Tank Test w/Debris Bed System (T8)
 - Vertical Column Head Loss System
 - CHLE Corrosion Tank

Prototypical Water Chemistry for Vogtle During LOCA

- Additional Chemical Effects Testing
 - Bench Scale Tests
 - Prototypical Water Chemistry Tank Test w/o Debris Beds
 - Forced Precipitation Tank Test w/Debris Beds

PROTOTYPICAL CHEMICALS: CHLE TANK

Chemical Type	Vogtle Quantity (mM)	CHLE Tank Quantity (g)	Significance	
H ₃ BO ₃	221.4	15546	Initial Pool Chemistry	
LiOH	0.0504	1.372		
HCI	2.39	99	Radiolysis Generated Chemicals	
HNO ₃	0.0873	6.2		
TSP	5.83	2582	Containment Buffering Agent	

CHEMICAL ADDITION PROTOCOLS

- Initial Pool Chemistry
 - Boric Acid
 - Lithium Hydroxide ([Li]=0.35 mg/L)
- TSP metered in continuously during first two hours of test to desired final concentration
- Radiolysis generated materials added throughout test
 - Batch addition at 1, 2, 5, 10, 24 hours initially
 - Continued additions periodically thereafter

PROTOTYPICAL MATERIALS: CHLE TANK (1 OF 2)

<u>Material Type</u>	Vogtle Quantity	<u>300 gal CHLE</u> <u>Test Quantity*</u>	
Aluminum (submerged)	54 ft ²	0.026 ft ² (3.7 in ²)	
Aluminum (exposed to spray)	4,003 ft ²	1.91 ft ²	
Galvanized Steel (submerged)	19,144 ft ²	9.13 ft ²	
Galvanized Steel (exposed to spray)	191,234 ft ²	91.2 ft ²	
Copper (submerged)	149.8 ft ²	0.0715 ft ² (10.3 in ²)	
Fire Extinguisher Dry Chemical – Monoammonium phosphate (MAP)	357 lb _m	0.170 lb _m (77.2 g)	
Interam™ E-54C (submerged)	4.448 ft ³	2.12 ×10 ⁻³ ft ³ (3.67 in ³)	

PROTOTYPICAL MATERIALS: CHLE TANK (2 OF 2)

<u>Material Type</u>	Vogtle Quantity	<u>300 gal CHLE</u> <u>Test Quantity*</u>
Carbon Steel (submerged)	548.0 ft ²	0.261 ft ² (37.6 in ²)
Carbon Steel (exposed to spray)	367.5 ft ²	0.175 ft ² (25.2 in ²)
Concrete (submerged)	2,092 ft ²	0.998 ft ² (144 in ²)
IOZ Coatings Zinc Filler (submerged)	50 lb _m	0.024 lb _m (11 g)
Epoxy Coatings (submerged)	2,785 lb _m	1.33 lb _m (603 g)
Latent Dirt/Dust (submerged)	51 lb _m	0.024 lb _m (11 g)
Fiberglass (submerged)	2,552 ft ³	1.218 ft ³

MATERIAL ADDITION PROTOCOLS

- Submerged metal coupons
 - Arranged in a submergible rack system within tank
- Unsubmerged metal coupons
 - Secured individually to a rack system within tank
- Loose materials
 - Concrete affixed to a submerged coupon rack
 - Interam, MAP, latent dirt/dust, fiberglass and IOZ* will be loosely packed in wire mesh 'bags' submerged front of one of the tank headers
 - * Total inventory of IOZ may be added to the vertical columns instead of to the tank if it is determined to be too fine to contain in a mesh bag

COUPON RACKS

COMPAN

MATERIAL BAGS

PROTOTYPICAL MATERIALS: DEBRIS BEDS

<u>Material Type</u>	Vogtle Quantity	<u>300 gal CHLE</u> <u>Test Quantity*</u>	Quantity per Column (g)
IOZ Coatings Zinc Filler	29 lb _m	0.014 lb _m (6.4 g)	2.13
Epoxy Coatings	601 lb _m	0.236 lb _m (107.2 g)	35.74
Latent Dirt/Dust	30 lb _m	0.014 lb _m (6.4 g)	2.13
Fiberglass	478.3 ft ³	0.055 ft ³ (60 g)	20

- Debris Bed Materials are loaded into columns before connection to tank solution with loaded tank materials
- Connection between tank and column system occurs once beds reach criteria for stability

CHEMICAL EFFECTS TESTING OVERVIEW

- 30-Day Integrated Tank Test w/Debris Bed System
 - Vertical Column Head Loss System
 - CHLE Corrosion Tank
 - Prototypical Water Chemistry for Vogtle During LOCA
- Additional Chemical Effects Testing

Bench Scale Tests

- Prototypical Water Chemistry Tank Test w/o Debris Beds
- Forced Precipitation Tank Test w/Debris Beds

BENCH SCALE TESTS: ALUMINUM

- Objectives
 - Time-Averaged Corrosion due to Variations in pH, Temperature, Phosphate (TSP)
 - Corrosion and release rates over a range of temperature and pH values
 - Comparison with WCAP correlation for AI
 - Effects on Al Corrosion due to Other Corrosion Materials Present During LOCA
 - Zinc, Copper, Iron, Chlorine

BENCH SCALE RESULTS: ALUMINUM

- Time-averaged corrosion rate reached maximum within 5 hours
- Passivation of aluminum occurred within 24 hours (stabilized rate of release)
- Direct correlation between corrosion rate and higher temperature/pH values (next two figures)

BENCH SCALE RESULTS: ALUMINUM

BENCH SCALE RESULTS: ALUMINUM

BENCH SCALE RESULTS: ALUMINUM

- Presence of zinc inhibits the corrosion of aluminum
- Presence of copper, chloride and iron ions have little appreciable effect on corrosion of aluminum
- 24-hour release of aluminum is reduced by a factor of 2-3 compared to the WCAP-16530 equations by including passivation in the TSP environment

CHEMICAL EFFECTS TESTING OVERVIEW

- 30-Day Integrated Tank Test w/Debris Bed System
 - Vertical Column Head Loss System
 - CHLE Corrosion Tank
 - Prototypical Water Chemistry for Vogtle During LOCA
- Additional Chemical Effects Testing
 - Bench Scale Tests
 - Prototypical Water Chemistry Tank Test w/o Debris Beds (T6)
 - Forced Precipitation Tank Test w/Debris Beds

ADDITIONAL CE TANK TESTS

- 30-Day Recirculatory Tank Test (T6)
 - Objective:
 - Investigate isolated effects of water chemistry on plant materials during a LOCA
 - No vertical column system or debris beds
 - Prototypical Vogtle Water Chemistry
 - Temperature Profile Identical to T8

CHEMICAL EFFECTS TESTING OVERVIEW

- 30-Day Integrated Tank Test w/Debris Bed System
 - Vertical Column Head Loss System
 - CHLE Corrosion Tank
 - Prototypical Water Chemistry for Vogtle During LOCA
- Additional Chemical Effects Testing
 - Bench Scale Tests
 - Prototypical Water Chemistry Tank Test w/o Debris Beds
 - Forced Precipitation Tank Test w/Debris Beds (T7)

ADDITIONAL CE TANK TESTS

- 10-Day Integrated Tank Test (T7)
 - Objective:
 - Investigate material corrosion and any resulting effects on head loss under forced precipitation conditions using Vogtle quantities for boron, TSP, concrete, galvanized steel, and zinc
 - Corrosion Tank
 - Vertical Column Head Loss System
 - Excess aluminum submerged in CHLE Tank (parallel to T3 test for STP)
 - Different Temperature Profile than T6/T8

TEMPERATURE PROFILE: T7

COMP

NEXT STEPS...

- Vertical Column Head Loss
 - Explore effects of chemical surrogates on measured head loss for various fiber/particulate ratios (thin, medium, and thick debris beds)
- Tank Tests
 - Perform T6, T7, T8 tests
- Bench Scale Tests
 - Zinc
 - Calcium

REFERENCES

- CHLE-SNC-001 (Bench Tests: Aluminum)
- CHLE-SNC-007 (Bench Tests: Aluminum w/other metals)
- CHLE-SNC-008 (HL Operating Procedure)
- CHLE-SNC-020 (Test Plan for T6, T7 & T8)

STRAINER HEAD LOSS TEST PLAN

RISK-INFORMED CONVENTIONAL HEAD LOSS TEST STRATEGY

- Enercon Services, Inc.
 - Tim Sande
 - Kip Walker
- Alden Research Laboratory
 - Ludwig Haber

HEAD LOSS MODEL

- Why is a head loss model necessary?
 - Thousands of break scenarios
 - Each with unique conditions (break flow rate, sump water level, debris loads, etc.)
 - Parameters that change with time
 - It is not practical to conduct a head loss test for every scenario
- Approaches for developing a risk-informed head loss model
 - Correlation approach has some advantages, but very difficult to implement
 - Rule-based approach is focused on prototypical conditions for a given plant, which makes it more practical
 - Hybrid approach uses rule-based head loss data to create an empirical correlation
- An overall head loss test strategy is presented which includes some Vogtle-specific implementation information. Other plants are evaluating and may use all or parts of this strategy.

HYPOTHETICAL TEST RESULTS

 η = particulate/fiber ratio

PRACTICAL CONSIDERATIONS

- "Conservatisms" required to limit test scope
 - Reduce all particulate types to one bounding surrogate
 - Reduce all fiber types to one bounding surrogate
 - Reduce all water chemistries to one bounding chemistry
- Notes:
 - Surrogate properties include the debris type, size distribution, density, etc.
 - Bounding refers to a parameter value that maximizes head loss within the range of plant-specific conditions
 - Test details will be fully developed in a plant-specific test plan

PRACTICAL CONSIDERATIONS

- Definition of testing limits based on plant-specific conditions
 - Maximum fiber quantity
 - Maximum particulate quantity
 - Maximum particulate to fiber ratio (max η)
- Use of small-scale testing
 - If a small-scale version of the prototype strainer can be shown to provide the same head loss results as a large-scale strainer, test program will utilize small-scale head loss values to build model
 - Reduced cost and schedule would allow more data to be gathered

OVERVIEW OF TEST PROGRAM

Test Series

- Large-scale test with thin-bed protocol
- Large-scale test with full-load protocol
- Validation of small-scale testing
- Small-scale sensitivity tests
- Small-scale tests with full-load protocol
- Need to determine minimum fiber and maximum particulate quantity (i.e., maximum η) required to generate "significant" conventional debris head loss
 - Significant head loss subjectively defined as 1.5 ft
 - Vogtle's NPSH margin ranges from 10 ft to over 40 ft, depending on pool temperature and containment pressure
 - Head loss below 1.5 ft is not likely to cause failures under most circumstances even if future chemical effects testing results in significant head loss

LARGE-SCALE TEST WITH THIN-BED PROTOCOL

Purpose

- Identify minimum fiber load required to develop "significant" conventional head loss (maximum η)
- Obtain prototypical head loss data for use in validating the small-scale strainer
- Measure bounding strainer head loss for thin-bed conditions
- Test Protocol
 - Use buffered and borated water at 120 °F
 - Perform flow sweep to measure clean strainer head loss
 - Add prototypical mixture of particulate debris (max quantities)
 - Batch in prototypical mixture of fiber debris (one type at Vogtle) in small increments (1/32nd inch equivalent bed thickness)
 - Measure stable head loss and perform flow sweep between each batch
 - Continue adding fiber until a head loss of 1.5 ft is observed
 - Perform temperature sweep
 - Batch in chemical precipitates (quantity and form to be determined by separate analysis/testing)

LARGE-SCALE TEST WITH FULL-LOAD PROTOCOL

• Purpose

- Identify fiber quantity required to fill the interstitial volume
- Obtain prototypical head loss data for use in validating the small-scale strainer
- Measure bounding strainer head loss for full-load conditions

Test Protocol

- Use buffered and borated water at 120 °F
- Perform flow sweep to measure clean strainer head loss
- Utilize n value corresponding to bounding fiber debris quantity with same particulate load used for large-scale thin-bed test
- Batch in prototypical mixture of fiber and particulate debris maintaining the desired η value for each batch
- Measure stable head loss and perform flow sweep between each batch
- Repeat batches and flow sweeps until full fiber and particulate load has been added
- Perform temperature sweep
- Batch in chemical precipitates (quantity and form to be determined by separate analysis/testing)

VALIDATION OF SMALL-SCALE TESTING

- Design small-scale strainer using proven scaling techniques
- Test small-scale strainer under conditions similar to large-scale testing (both thin-bed and full-load protocols)
- Adjust strainer or tank design as necessary to appropriately match large-scale test results
- Note: If small-scale testing cannot be validated due to competing scaling factors, the remaining tests could be performed using the large-scale strainer

SMALL-SCALE SENSITIVITY TESTS

Purpose

- Reduce all particulate types to a single bounding surrogate
- Reduce all fiber types to a single bounding surrogate (Vogtle only has one fiber type)
- Reduce range of prototypical water chemistries to a single bounding chemistry
- Tests will be run with a variety of representative parameters to identify the parameters for use in remaining tests
- Gather data for head loss caused by various types of chemical surrogates

SMALL-SCALE TESTS WITH FULL-LOAD PROTOCOL

- Purpose of these tests are to gather data necessary to build the head loss model
- Test Protocol will be similar to large-scale, full-load test except that the small-scale tests will be conducted using the bounding surrogates for fiber, particulate, and water chemistry
- Perform series of tests (e.g., 9 tests) at different η values with equivalent fiber batch sizes for each test

RULE-BASED IMPLEMENTATION

OPTIONS FOR IMPLEMENTATION

- Select head loss value for bounding fiber quantity and η value
- Interpolate between two fiber values and use bounding η value
- Interpolate between all four points

VOGTLE DEBRIS GENERATION

- Debris quantities vary significantly for different weld locations and break sizes
- Max Fiber (11201-004-6-RB, Hot leg at base of SG)
 - Nukon: 2,235 ft³
 - Latent fiber: 4 ft³
 - Total: 2,239 ft³
- Max Particulate (11201-008-4-RB, Crossover leg)
 - Interam: 183 lb_m
 - Qualified epoxy: 188 lb_m
 - Qualified IOZ: 61 lb_m
 - Unqualified epoxy: 2,602 lb_m
 - Unqualified IOZ: 25 lbm
 - Unqualified alkyd: 32 lb_m
 - RCS Crud: 23 lb_m
 - Latent dirt/dust: 51 lb_m
 - Total: 3,165 lb_m

VOGTLE DEBRIS TRANSPORT

- Debris transport varies significantly depending on several parameters
 - Break location (compartment)
 - Debris size distribution
 - Number of pumps/trains in operation
 - Whether containment sprays are activated
 - Location of unqualified coatings
 - Time when containment sprays are secured
 - Failure time for unqualified coatings
 - ECCS/CSS pump flow rates
 - Recirculation pool water level

VOGTLE FIBER TRANSPORT FRACTIONS TO ONE RHR STRAINER*

Debris Type	Size	1 Train w/ Spray	2 Train w/ Spray	1 Train w/out Spray	2 Train w/out Spray
Nukon	Fines	58%	29%	23%	12%
	Small	48%	24%	5%	2%
	Large	6%	3%	7%	4%
	Intact	0%	0%	0%	0%
Latent	Fines	58%	29%	28%	14%

* Preliminary values

VOGTLE PARTICULATE TRANSPORT FRACTIONS TO ONE RHR STRAINER*

Debris Type	Size	1 Train w/ Spray	2 Train w/ Spray	1 Train w/out Spray	2 Train w/out Spray
Unqualified Epoxy	Fines	58%	29%	44%	22%
	Fine Chips	0%	0%	0%	0%
	Small Chips	0%	0%	0%	0%
	Large Chips	0%	0%	0%	0%
	Curled Chips	58%	29%	5%	7%
Unqualified IOZ	Fines	58%	29%	12%	6%
Unqualified Alkyd	Fines	58%	29%	100%	50%
Interam	Fines	58%	29%	23%	12%
Qualified Epoxy	Fines	58%	29%	23%	12%
Qualified IOZ	Fines	58%	29%	23%	12%
Latent dirt/dust	Fines	58%	29%	28%	14%
RCS Crud	Fines	58%	29%	23%	12%

* Preliminary values

DEBRIS TRANSPORT W/O CONTAINMENT SPRAYS

- Blowdown transport fractions are not changed
- Distribution of debris prior to recirculation remains unchanged
- 5% of fines assumed to be washed down due to condensation in containment

VOGTLE FIBER TRANSPORT TO ONE RHR STRAINER, 1 TRAIN W/SPRAY*

Debris Type	Size	DG Quantity (ft ³)	Transport Fraction	Quantity (ft ³)
Nukon	Fines	290.5	58%	168.5
	Small	1,001.1	48%	480.5
	Large	453.6	6%	27.2
	Intact	489.4	0%	0.0
	Total	2,234.7		676.3
Latent	Fines	3.8	58%	2.2
Total		2,238.5		678.4

* Preliminary values

VOGTLE PARTICULATE TRANSPORT TO ONE RHR STRAINER, 1 TRAIN W/SPRAY*

Debris Type	Size	DG Quantity (lb _m)	Transport Fraction	Quantity (lb _m)
Unqualified Epoxy	Fines	319.5	58%	185.3
	Fine Chips	968.7	0%	0.0
	Small Chips	245.4	0%	0.0
	Large Chips	534.2	0%	0.0
	Curled Chips	534.2	58%	309.8
	Total	2,602.0		495.2
Unqualified IOZ	Fines	25.0	58%	14.5
Unqualified Alkyd	Fines	32.0	58%	18.6
Interam	Fines	182.9	58%	106.1
Qualified Epoxy	Fines	187.6	58%	108.8
Qualified IOZ	Fines	61.3	58%	35.6
Latent dirt/dust	Fines	51.0	58%	29.6
RCS Crud	Fines	23.0	58%	13.3
Total		3,164.8		821.6

* Preliminary values

HYPOTHETICAL TEST RESULTS WITH TRANSPORT CONSIDERATIONS

SUMMARY

- A comprehensive test program is necessary to quantify head loss for thousands of break scenarios
- The rule based approach is a more practical option than a full correlation or test for every break scenario
- Simplifications of fiber type, particulate surrogate, and water chemistry are necessary to develop a practical test matrix
- Small-scale testing may be utilized to gather a majority of the data

CHEMICAL EFFECTS BACKUP SLIDES

CHEMICAL EFFECTS TESTING OVERVIEW

- 30-Day Integrated Tank Test w/Debris Bed System (T8)
 - Vertical Column Head Loss System

CHLE Corrosion Tank

- Prototypical Water Chemistry for Vogtle During LOCA
- Additional Chemical Effects Testing
 - Bench Scale Tests
 - Prototypical Water Chemistry Tank Test w/o Debris Beds
 - Forced Precipitation Tank Test w/Debris Beds

CHLE TROUBLESHOOTING APPROACH

- Modifications to CHLE Tank & Column System
 - 1. Single flow header for each column
 - 2. Unified suction and discharge plumbing arrangement
 - 3. Improved flow distribution sparger
 - 4. Develop a new procedure for debris bed preparation and loading [CHLE-SNC-008]
 - Stable head loss
 - Repeatable head loss (single column)
 - Minimum variability
 - Chemical detection

CHLE TANK AND COLUMN MODIFICATIONS

ALUMINUM CORRELATION DATA: BEST FIT

STRAINER HEADLOSS BACKUP SLIDES

INTRODUCTION

- 35 Years of History and Lessons Learned
 - USI A-43 (opened in 1979)
 - Head loss testing/correlations for fiber and RMI (no particulate)
 - Resolved without major plant modifications
 - Bulletins 93-02 and 96-03
 - Incident at Barsebäck in 1992 and similar events at Perry and Limerick showed that mixtures of fiber and particulate can cause higher head loss than previously evaluated
 - BWR research and plant-specific evaluations led to strainer replacements at all U.S. BWRs
 - Issue resolved in early 2000s.

INTRODUCTION

- 35 Years of History and Lessons Learned, Cont.
 - GSI-191 and GL 2004-02
 - Based on BWR concerns, GSI-191 was opened in 1996 to address ECCS strainer performance for PWRs
 - Chemical effects identified as an additional contributor to strainer head loss
 - PWR research and plant-specific evaluations led to strainer replacements at all U.S. PWRs
 - Complexities in evaluations have delayed closure for most plants
 - NRC head loss guidance issued in March 2008

3M INTERAM E-50 SERIES

- MSDS and observations indicate that it is 30% fiber and 70% particulate
- Non-QA testing with NEI fiber preparation protocol indicates that it is more robust than Temp-Mat
 - 11.7D ZOI can be justified
- Testing indicates that 50% fines and 50% small pieces would be conservative (i.e., smaller than actual)
- Transport metrics can be developed based on density and particle sizes, similar to other types of debris

