ENVIRONMENTAL STUDIES IN THE VICINITY OF THE SUSQUEHANNA STEAM ELECTRIC STATION

2008 WATER QUALITY BENTHIC MACROINVERTEBRATES FISHES

Prepared by

Ecology III, Inc. Susquehanna SES Environmental Laboratory 804 Salem Boulevard Berwick, Pennsylvania 18603

For

PPL Susquehanna, LLC 769 Salem Boulevard Berwick, PA 18603

July 2009

Ecology III, Inc. Susquehanna SES Environmental Laboratory

804 Salem Boulevard Berwick, PA 18603 Phone: (570) 542-2191 Fax: (570) 542-1625

13 July 2009

Paul Harmon Normandeau Associates 400 Old Reading Pike Stowe, PA 19464

2008 ANNUAL REPORT

Enclosed is a copy of "Environmental Studies in the Vicinity of the Susquehanna Steam Electric Station, 2008 Water Quality, Benthic Macroinvertebrates, and Fishes" prepared by Ecology III, Inc. for PPL Susquehanna, LLC. The purpose of this report was to assess the environmental impact of the Susquehanna Steam Electric Station on the Susquehanna River water quality, benthic macroinvertebrates, and relative abundance of fishes. This was done by evaluating 2008 results and by comparing preoperational and operational data.

If you have any questions regarding this report, please contact us.

Marion Hidlay Office Manager

Enclosure

Erckogy M, Koc. Statistics 200 Erclander (Success)

> ana Baran Bassan Ali ang Ang Ang Ang

901. Jac 🕈

Paul Harmon Normandellu Aksoutiks 400 Oct Reading Fille Stowe, PA 1 Ared

2008 ANNUAL REPORT

Enclosed a scopy of "Environmental Juscies of the Vicinity of the Sosque handa Steam Electric Station, 2003 Mater Quality, Benthic Microwicz obrates, and Piches (prepared by Ecology III, no for PPL Susceptianna, LLO, "The purpose of this report was to assess the environmental implicit of the Susquationna Steam Electric Station on the Susquehorina River water quality, benthic macromiverbinities, and relative touridance or fames. This view done by environted by 2008 results and the motor of gradient.

if you have any unretions regarding this record, prease contract us

SHEEDENT

CONTENTS

Page

|--|

WATER QUALITY by Lyle R. Harvey and Sharon A. Harrall	2
Procedures	2
Results and Discussion	2
River Flow, River Water Withdrawal, and Temperature	2
River Water Quality at the Susquehanna SES	4
Blowdown	4
Control and Indicator Site Comparisons	5
Conclusion	5
Conclusion	5

BENTHIC MACROINVERTEBRATES by Brian P. Mangan	7
Procedures	7
Results and Discussion	8

FISHES by Brian P. Mangan	9
Procedures	9
Electrofishing	9
Seining	10
Statistical Analysis	10
Results and Discussion	11
Electrofishing	11
Seining	12
BACI Results: Electrofishing	13
BACI Results: Seining	13

FERENCES

LIST OF TABLES

Table 1	P Descriptions of water quality sampling sites in the vicinity of the Susquehanna SES, 2008	'age 19
Table 2	Water quality parameters and methods of analyses utilized by the Susquehanna SES Environmental Laboratory, 2008	20
Table 3	Daily mean flow (cfs) of the Susquehanna River at the Susquehanna SES Environmental Laboratory, 2008	21
Table 4	Daily mean temperature (C) of the Susquehanna River at the Susquehanna SES Environmental Laboratory, 2008	22
Table 5	Pennsylvania Department of Environmental Protection specific water quality criteria for the Susquehanna River in the vicinity of the Susquehanna SES, 2008	23
Table 6	Water quality data collected quarterly from the Susquehanna River and the Susquehanna SES blowdown, 2008	24
Table 7	Total iron concentrations from the Susquehanna River at the SSES sampling site, 1975-2008	26
Table 8	Comparison of total mineral solids (TMS) concentrations from the Susquehanna River and the Susquehanna SES blowdown, 2008	27
Table 9	Comparison of annual average total mineral solids (TMS) concentrations from the Susquehanna River and the Susquehanna SES blowdown, 1991-2008	27
Table 10	Number, density (no/m ²), and percent total of benthic macroinvertebrates collected with a dome sampler at SSES I (replicate 1) on the Susquehanna River, June 2008	28
Table 11	Number, density (no/m ²), and percent total of benthic macroinvertebrates collected with a dome sampler at SSES I (replicate 2) on the Susquehanna River, June 2008	29
Table 12	Number, density (no/m ²), and percent total of benthic macroinvertebrates collected with a dome sampler at Bell Bend IV (replicate 1) on the Susquehanna River, June 2008	30

Table 13	Number, density (no/m ²), and percent total of benthic macroinvertebrates collected with a dome sampler at Bell Bend IV (replicate 2) on the Susquehanna River, June 2008
Table 14	Comparative densities of organisms/m ² in dome samples collected from the Susquehanna River at SSES I and Bell Bend IV from 1990-1994 and 2007-2008
Table 15	Comparative proportions of organisms in dome samples collected from the Susquehanna River at SSES I and Bell Bend IV from 1990-1994 and 2007-2008
Table 16	Descriptions of electrofishing (EL) and seining (SN) sites at SSES and Bell Bend on the Susquehanna River, 2008
Table 17	Fish species that were observed while electrofishing or collected by seining at SSES and Bell Bend on the Susquehanna River, 200835
Table 18	Number, mean, and percent total of fish observed while electrofishing at SSES on the Susquehanna River, 2008
Table 19	Number, mean, and percent total of fish observed while electrofishing at Bell Bend on the Susquehanna River, 2008
Table 20	Number, mean, and percent total of fish captured by seining at SSES and Bell Bend on the Susquehanna River, 2008
Table 21	P-values for fish species deemed significant by the BACI analysis, 1976-2008 ($\alpha = 0.05$)

and the second s

LIST OF FIGURES

			Page
Fig. 1	Sampling sites for water quality, benthic electrofishing (EL), and seining (SN) at the Susquehanna River, 2008	c macroinvertebrates SSES and Bell Be	tes, end on 40
Fig. 2	The 2008 monthly mean flow of the Sus Susquehanna SES Environmental Labo 47-year (1961-2007) mean	squehanna River a pratory compared	at the to the 41
Fig. 3	Volume of Susquehanna River flow at t Environmental Laboratory, 1961-2008.	he Susquehanna	SES 41
Fig. 4	Daily Susquehanna River water withdra 2007-2008.	wal by Susqueha	nna SES, 42
Fig. 5	Total iron and sulfate of the Susquehar sampling site, 1975-2008	na River at the S	SES 43

INTRODUCTION

PPL Susquehanna, LLC (PPL) contracted Ecology III, Inc. to conduct nonradiological monitoring of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Susquehanna SES) in 2008. The Susquehanna SES is a nuclear power station with two boiling water reactors, each with a net electrical generating capacity of approximately 1,230 megawatts. It is located on a 2,355-acre site in Salem Township, Luzerne County, 5 miles northeast of Berwick, Pennsylvania. Approximately 716 acres of mostly undeveloped and recreational lands owned by PPL are located on the east side of the Susquehanna River in Conyngham and Hollenback Townships. PPL owns 90 percent of the station and the Allegheny Electric Cooperative, Inc. owns 10 percent.

The objective of the nonradiological environmental monitoring program is to assess the impact of operating the Susquehanna SES on the Susquehanna River water quality and relative abundance of fishes. This was accomplished in 2008 by comparing data at control and indicator stations and by evaluating results of preoperational (1971-1982) and operational (1983-2008) studies (Ichthyological Associates 1972, Ichthyological Associates, Inc. 1973-1985, Ecology III, Inc. 1986-2008). In addition, benthic macroinvertebrate samples were collected in 2008. Monitoring was done at sites within a control station (SSES) upriver from the Susquehanna SES river intake structure and indicator station (Bell Bend) downriver from the discharge diffuser.

To more objectively assess the impact of operating the Susquehanna SES on the Susquehanna River, a statistical procedure called BACI (Before-After:Control-Impact) analysis was applied to preoperational and operational fishes monitoring data.

This report presents results of water quality, benthic macroinvertebrate, and fishes studies.

WATER QUALITY

PROCEDURES

Water quality of the Susquehanna River relative to operation of the Susquehanna SES was monitored throughout 2008 at four locations (Table 1, Fig. 1). Susquehanna River water samples were collected quarterly at SSES (control) and Bell Bend (indicator). In addition, water samples were also collected quarterly from the cooling tower blowdown of the Susquehanna SES. River flow and temperature were monitored continuously at the Environmental Laboratory (Table 2).

Most of the water sample parameters were analyzed by the Chemical Laboratory at the PPL System Facilities Center, Hazleton, Pennsylvania. This laboratory has state accreditation with the Pennsylvania Department of Environmental Protection (PADEP, 2006), identified as Lab #40-00568 (<u>www.dep.state.pa.us</u>). Water temperature and dissolved oxygen were measured by Ecology III personnel and river level was recorded with the SSES data (Table 2). PPL Susquehanna, LLC personnel provided data for Susquehanna River water withdrawal and blowdown discharge.

RESULTS AND DISCUSSION

River Flow, River Water Withdrawal, and River Temperature

In 2008, Susquehanna River flow was above the 47-year average for January, February, March, and December, and below average for the remaining months (Fig. 2). The annual precipitation data at Avoca, PA (about 30 miles upriver from the Susquehanna SES) was 43.25 inches. This was the ninth highest annual total on record since 1951 (<u>www.erh.noaa.gov/bgm/climate/avp.shtml</u>, accessed 19 and 25 February 2009).

Daily mean river flow ranged from 897 to 124,000 cubic feet per second (cfs; Table 3). March had the second highest monthly mean flow in the past 48 years. Luzerne County was under a drought watch issued by PADEP from 6 August 2007 to 11 January 2008 (<u>www.srbc.net/hydrologic/drought_center.htm</u> link: Pennsylvania Department of Environmental Protection Drought Center, accessed 2 March 2009). Cumulatively, an estimated 519 billion cubic feet of water flowed through this section of the Susquehanna River during 2008 (Fig. 3). This was the 17th highest flow in the last 48 years.

Susquehanna SES river water withdrawal of river flow ranged from 0.03% on 9 and 10 March to 8.33% on 27 September (Fig. 4). Daily river water withdrawal of the plant was $\leq 2\%$ of river flow for two-thirds of 2008. River water withdrawal equaled or exceeded 4% of river flow on 55 days last year.

River temperature was monitored throughout the year. The hourly minimum river temperature of 0.4 C occurred nine times in 2008 in the months of January, February and December. The hourly maximum river temperature of 30.1 C occurred at 1400 h on 21 July. Daily mean river temperature ranged from 0.5 C on numerous days in January, February and December to 28.3 C on 20 and 21 July (Table 4). April had the warmest monthly mean river temperature on record since 1974 and September was the third warmest in 35 years. River temperature was above average every month except March, May, November and December.

River Water Quality at the Susquehanna SES

Control and indicator data were compared to PADEP water quality criteria (2008; Table 5). The parameters with published water quality criteria include alkalinity, ammonia nitrogen, chloride, dissolved oxygen, fluoride, total and dissolved iron, manganese, nitrogen (nitrate), pH, sulfate, temperature and total dissolved solids. In 2008, Susquehanna River water met the published criteria at both the control and indicator sampling sites (Table 6). The total iron concentration for the October sample exceeded 1.5 mg/L because the sample was collected during an elevated river flow following an extended period of low flow. This did not technically violate the criterion at this concentration because it is based on a 30-day average. Still, this relatively high iron concentration is reflective of the legacy of anthracite coal mining upstream from the power plant in the Wyoming Valley and Mocanaqua regions.

Overall, the water quality of this section of the Susquehanna River continues to improve. There have been significant decreases over time in certain indicators of abandoned mine discharge such as total iron and sulfate concentrations (Table 7, Fig. 5), and Ecology III, Inc. has long reported the biotic recovery in the river associated with these improvements.

Blowdown

Blowdown is river water used in the nuclear power plant cooling cycle that is discharged back to the river. It has elevated conductivity and dissolved solids concentrations because of evaporative loss from the cooling towers (9,700-27,900

-4-

gallons/minute during 2008 operation). In 2008, the daily average blowdown discharge rate to the river ranged from 3,680-12,000 gallons/minute.

Control and Indicator Site Comparisons

Control and indicator water quality data were similar on most of the sampling dates during 2008 (Table 6). The dilutive effect of high river flow tends to equalize values at the control and indicator sites. Slightly higher values of total mineral solids (TMS) at the indicator site are possibly due in part to the elevated concentrations of solids in the blowdown. Most of the water taken from the river for plant operation is evaporated in the cooling process and the remaining cooling water returned to the river subsequently contains concentrated mineral solids. This is evident when TMS values of the blowdown are compared to the control and indicator TMS results (Tables 8 and 9). It has been previously demonstrated that TMS concentrations at SSES are the best predictor of TMS concentrations at Bell Bend at most river flows. In addition, it has been confirmed that if operation of the Susquehanna SES is to influence the water quality at the indicator site, then the probability of that occurring should be greatest at low river flows (Ecology III, Inc. 2008).

Conclusion

Susquehanna River flow exceeded the 47-year average during four months in 2008 and was below average for the remaining months. The maximum river water withdrawal of river flow by Susquehanna SES was 8.3% on 27 September. On most days during 2008,

- 5 -

however, river water withdrawal was ≤2% of river flow. Exceptionally warm river temperatures were recorded for April and September.

Water quality data demonstrated that river samples met the published criteria for 13 common parameters. Overall, water quality of this section of the Susquehanna River continues to improve.

Our data analyses demonstrate that effects of the operation of Susquehanna SES on water quality of the Susquehanna River will likely occur at the lowest range of river flows. This is reasonable because the dilutive power of the river against plant discharge would then be minimized. For a variable such as TMS, this is further amplified because low river flows naturally increase TMS concentrations of the river water *before* it enters Susquehanna SES, resulting in some of the most concentrated discharge occurring during these periods.

BENTHIC MACROINVERTEBRATES

PROCEDURES

Benthic macroinvertebrates were collected from the Susquehanna River in June. Ecology III scuba divers collected two samples at each of two sampling sites, a control site (SSES I) upriver from the intake of Susquehanna SES and at an indicator site (Bell Bend IV) downriver from the intake (Fig. 1). Both of these sites correspond to historic benthos sampling locations in the river that were last routinely sampled by Ecology III in 1994 (Ecology III, Inc. 1995).

The sampling methodology followed the procedures used previously for macroinvertebrates. A dome suction sampler was lowered from a boat to the river bottom and was positioned by a diver in an undisturbed area of river substrate. The diver vacuumed the substrate inside the dome for five minutes and the organisms and sediments drawn from the dome were collected in a 216-micron mesh net. The net was removed from the dome, returned to the boat, and then a new net was attached to the dome and the entire procedure was repeated in a different area.

Samples were returned to the laboratory and the organisms and sediments in the nets were washed into tubs using tap water. Excess water was poured off through an 841-micron mesh sieve and the samples were placed in one-gallon plastic jugs and fixed with 100% isopropanol. All four samples were transported to Normandeau Associates, Inc. where the organisms in the samples were separated into orders and subsequently identified to genus. The density of organisms per square meter was estimated by

multiplying the organisms in each taxon by 6.13, the conversion factor for the 0.163 m² dome.

RESULTS AND DISCUSSION

The overall densities and proportions of organisms in the 2008 samples generally approximated those previously measured in the Susquehanna River (Tables 10 through 13; Ecology III, Inc. 1995, 2007). Overall, the density of organisms at SSES was higher than densities reported at that site since 1990 (Table 14). This was due largely to greater numbers of Trichopterans in the genera *Cheumatopsyche*, *Hydropsyche*, and *Macrostemum*, Coleopterans in the genera *Optioservus* and *Stenelmis*, and Dipterans of the genus *Chironomidae*. Oligochaetes comprised 24% of one of the samples taken at the Bell Bend site. Also at Bell Bend since 1990, a greater density of Crustaceans was observed due to Amphipods, as were Dipterans because of the numbers of Chironomids. Coleopterans comprised the greatest proportion of macroinvertebrates collected at SSES, while Dipterans were the largest proportion at Bell Bend (Table 15).

Another noteworthy finding in 2008 was the relative paucity of Asian clams (*Corbicula* spp.) in the benthos samples. In 2007, Asian clams were collected in all four dome samples that were taken; *Corbicula* spp. comprised almost 18% of the organisms collected in one dome at Bell Bend. In the 2008 samples, however, Asian clams were collected in only one of the domes at Bell Bend and at low numbers. This volatility in Asian clam density between sites and years continues to suggest that the vicinity of Susquehanna SES still approximates a northern edge of this biofouling mollusk in the Susquehanna River.

FISHES

- 9 -

PROCEDURES

Electrofishing

Electrofishing samples were collected once each month in May, June, July, August and October in 2008. Sampling was done at four sites, and each site was approximately 1,100-yards long and parallel to the river shoreline. These sites have been consistently sampled by boat electrofishing since 1976. Two sites were located upriver from the Susquehanna SES river intake structure along each bank of the river, and two sites were downriver from the intake (referred to as SSES and Bell Bend locations, respectively; Table 16, Fig. 1).

The 18-foot electrofishing boat was outfitted with a 5-KW generator (direct current). Electrical output was controlled by a variable-voltage pulsator, with a target of 5-6 amps delivered to the water.

During sampling the boat was driven downstream parallel to the shoreline, usually within 30 feet of the riverbank. For both safety purposes and sampling efficiency electrofishing was done at river levels less than 493.1 feet above mean sea level (msl; equivalent to 10.1 feet) as measured at the Environmental Laboratory. Sampling was done in the evening and began about one hour after sunset. Two observers stood in the bow of the boat and identified and counted fish during each sample. Data were recorded using a cassette tape recorder.

Seining

Shoreline fishes were collected by seine during June and August. Sampling was done when river levels were less than 490.2 feet above msl (equivalent to 7.2 feet at the Environmental Lab). Similar to the electrofishing sampling sites, two shoreline seine sites were above the Susquehanna SES river intake structure and two were below (Table 16, Fig. 1). High water interrupted seining at the SSES sites in October.

To seine, one end of the 25-foot bag seine (0.25-inch mesh) was kept stationary on the riverbank while the other end was extended about 20 feet into the river or as far as depth of the water allowed. The seine was then pulled upriver and onto shore. Two hauls were made in the same location at each site and the catches from both hauls were combined and considered one unit of effort. Captured fish were placed in 10% formalin in the field and returned to the laboratory. After at least two weeks in the formalin, the fish were rinsed with water, identified, and enumerated before final preservation in 40% isopropyl alcohol.

Statistical Analysis

A statistical analysis known as the Before-After:Control-Impact (BACI), was applied to the electrofishing (1976-2008) and seining data (1978-2008; Ecology III, Inc. 1990). Twenty species or categories of fish were analyzed from the electrofishing data, as were 12 species from the seining data. These species or groups were chosen based on their abundance during the years before Susquehanna SES operation.

Two different electrofishing data sets were analyzed. The first set included all months sampled by electrofishing through the years, and is referred to as the All Data set.

The second set, named the Summer Data set, included only the months from June through October to reflect the reduced monitoring effort in place since1986. The seining data set analyzed by the BACI represents all of the months sampled by this method through the years.

RESULTS AND DISCUSSION

Electrofishing

Electrofishing at the SSES and Bell Bend locations in 2008 resulted in the observation of 2,377 fish of 19 species (Tables 17 through 19). The total numbers of fish collected above and below the SSES intake and discharge for the year were generally similar. Differences in monthly totals between upriver vs. downriver sites ranged from as few as 63 fish in July to as many as 81 fish in August. Comparatively, the range of monthly sample sizes (maxima minus minima) between the east and west banks was 33 fish at SSES and 35 at Bell Bend. Maximum monthly sample sizes occurred during October at SSES (380) and August at Bell Bend (373).

Smallmouth bass was the most abundant species overall observed at SSES and Bell Bend in 2008 (28% and 29% of the totals, respectively). Smallmouth bass and walleye together represented 44% of the fish observed at SSES and 52% of those at Bell Bend. Smallmouth bass was also the most abundant species during most months at both SSES and Bell Bend, with the exception of northern hog sucker in August at SSES and walleye in August and October at Bell Bend. Seventeen species were observed at SSES as were 19 at Bell Bend. Species richness in monthly samples ranged from 12 to 13 at SSES and 10 to 15 at Bell Bend. Sucker and sunfish species dominated richness in all months during 2008.

Seining

Seining at the SSES and Bell Bend locations in 2008 resulted in the capture of 2,618 fish of 14 species (Tables 17 and 20). Spotfin shiner was the most abundant species captured at both SSES and Bell Bend, representing 33% and 80% of the total collections, respectively. Spotfin shiner, spottail shiner, and white sucker comprised 74% of the fishes collected at SSES and 98% of those collected at Bell Bend.

Similar to previous years, the number of fishes captured at SSES was a fraction (44%) of those collected at Bell Bend. This disparity between the upriver and downriver locations was most evident during the August sample when over five times as many fish were captured at Bell Bend. This may reflect increasing habitat differences between the sites. For example, the SSES location on the west bank of the river has had increasing amounts of emergent vegetation. Thick vegetation during certain water levels at this site sometimes presents an obstacle that can affect seining efficiency. Moreover, this location is also the deepest of the four sites.

Thirteen species were collected at SSES and 9 species were captured at Bell Bend. At both stations, species in the minnow and sunfish families predominated.

BACI Results: Electrofishing

Of the 20 species or categories of fish that were tested with the BACI analysis, nine species from the All Data set and eight species from the Summer Data set showed significant differences in the numbers of fishes above versus below the power plant discharge ($P \le 0.05$, Table 21). Species in the All Data set that indicated decreases in abundance below the power plant discharge included quillback, white sucker, northern hog sucker, shorthead redhorse, muskellunge, rock bass, smallmouth bass, and unidentified fish. Brown bullhead was also significantly different; however, its numbers significantly increased at Bell Bend compared to the upriver sites. The Summer Data set demonstrated decline or increase in all of the same species except white sucker.

BACI Results: Seining

The results of the 12 seined species tested by BACI analysis indicated that spotfin shiner was marginally significant (P=0.086). The point estimates for this species indicate that more spotfins were collected at the downriver sites vs. upriver.

REFERENCES

- American Chain and Cable Company (ACCO). 1971. Instruction manual for indicating and recording liquid-level bubbler-type gauges in series "500" case. ACCO, Bristol Division, Waterbury, CT. Loose-leaf publ., n.p.
- American Public Health Association. 1995. Standard methods for the examination of water and wastewater. 19th ed., APHA, Washington, DC.
- Commonwealth of Pennsylvania. 2006. Environmental laboratory accreditation. 25 Pa Code § 252. Fry Communications, Inc. Mechanicsburg, PA.
- Commonwealth of Pennsylvania. 2008. Water quality standards. 25 Pa Code § 93. Fry Communications, Inc. Mechanicsburg, PA.
- Ecology III, Inc. 1986. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, 1985 annual report. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 267 pp.

_____. 1987. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, 1986 annual report. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 260 pp.

_____. 1988. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, 1987 annual report. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 228 pp.

____. 1989. Ecological studies in the vicinity of the Susquehanna Steam Electric Station, 1988 annual report. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 177 pp.

____. 1990. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 1989 annual report. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 152 pp.

_____. 1991. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 1990 annual report. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 140 pp.

_____. 1992. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 1991 annual report. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 146 pp.

____. 1993. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 1992 annual report. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 102 pp.

____. 1994. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 1993 annual report. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 136 pp.

_____. 1995. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 1994 annual report. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 139 pp.

_____. 1996. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 1995 water quality and fishes. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 29 pp.

____. 1997. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 1996 water quality and fishes. Prepared for Pennsylvania Power and Light Company. Ecology III, Inc., Berwick, PA. 31 pp.

____. 1998. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 1997 water quality and fishes. Prepared for PP&L, Inc. Ecology III, Inc., Berwick, PA. 29 pp.

_____. 1999. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 1998 water quality and fishes. Prepared for PP&L, Inc. Ecology III, Inc., Berwick, PA. 29 pp.

_____. 2000. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 1999 water quality and fishes. Prepared for PPL Corporation. Ecology III, Inc., Berwick, PA. 33 pp.

_____. 2001. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 2000 water quality and fishes. Prepared for PPL Susquehanna, LLC. Ecology III, Inc., Berwick, PA. 30 pp.

____. 2002. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 2001 water quality and fishes. Prepared for PPL Susquehanna, LLC. Ecology III, Inc., Berwick, PA. 32 pp.

_____. 2003. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 2002 water quality and fishes. Prepared for PPL Susquehanna, LLC. Ecology III, Inc., Berwick, PA. 43 pp.

_____. 2004. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 2003 water quality and fishes. Prepared for PPL Susquehanna, LLC. Ecology III, Inc., Berwick, PA. 32 pp.

. 2005. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 2004 water quality and fishes. Prepared for PPL Susquehanna, LLC. Ecology III, Inc., Berwick, PA. 40 pp.

_____. 2007a. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 2005 water quality and fishes. Prepared for PPL Susquehanna, LLC. Ecology III, Inc., Berwick, PA. 30 pp.

____. 2007b. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 2006 water quality and fishes. Prepared for PPL Susquehanna, LLC. Ecology III, Inc., Berwick, PA. 33 pp.

. 2008. Environmental studies in the vicinity of the Susquehanna Steam Electric Station, 2007 water quality, benthic macroinvertebrates, and fishes. Prepared for PPL Susquehanna, LLC. Ecology III, Inc., Berwick, PA. 51 pp.

- Ichthyological Associates. 1972. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania, progress report for the period January-December 1971. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Ithaca, NY. 232 pp.
- Ichthyological Associates, Inc. 1973. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania, progress report for the period January-December 1972. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 658 pp.

______. 1974. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania, progress report for the period January-December 1973. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 838 pp.

_____. 1976. Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, progress report for the period January-December 1974. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 314 pp.

_____. 1976. Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, annual report for 1975. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 237 pp.

_____. 1977. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, annual report for 1976. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 250 pp.

_____. 1978. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, annual report for 1977. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 345 pp.

_____. 1979. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, annual report for 1978. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 293 pp.

_____. 1980. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, annual report for 1979. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 298 pp.

______. 1981. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, annual report for 1980. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 306 pp.

_____. 1982. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, annual report for 1981. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 365 pp.

______. 1983. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, 1982 annual report. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 353 pp.

_____. 1984. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, 1983 annual report. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 338 pp.

_____. 1985. Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station, 1984 annual report. Prepared for Pennsylvania Power and Light Company. Ichthyological Associates, Inc., Berwick, PA. 343 pp.

- Nelson, J. S., E. J. Crossman, H. Espinosa-Pérez, L. T. Findley, C. R. Gilbert, R. N. Lea, and J. D. Williams. 2004. Common and scientific names of fishes from the United States, Canada, and Mexico. 6th ed., Spec. Publ. 29. Am. Fish. Soc., Bethesda, MD.
- Omega. 2001. Omega MobileCorder RD-MV-100 User's Manuals: User's Manual No. M3641, Communication Interface Manual No. M3643, DAQstandard Software Manual No. M3645. Omega Engineering, Inc., Stamford, CT.
- Soya, W. J. 1991. Depth-level-flow relationship of the Susquehanna River at the Susquehanna SES Environmental Laboratory. Ecology III, Inc., Berwick, PA. 10 pp.
- Yokogawa. 2003. Instruction manual for paperless recorder AX100, DAQstandard for AX software. IM-04L60A01-61E, 2nd edition. Yokogawa Electric Corporation, Newnan, GA.

Descriptions of water quality sampling sites in the vicinity of the Susquehanna SES, 2008.

SITE	LOCATION
Susquehanna SES Environmental Laboratory	West bank of the Susquehanna River: 1,620 feet (ft) upriver from the Susquehanna SES intake structure, sensors for river depth and temperature are located on river bottom within 100 ft of the bank
SSES (control)	Susquehanna River: 750 ft upriver from the center of the Susquehanna SES intake structure, 130 ft from the west bank
Blowdown	Since November 1996: Susquehanna SES Cooling Tower Blowdown Discharge Line 2S7 automatic composite sampler (ACS) about 750 feet downstream from the cooling tower basin, 0.1 air miles NNE from the stand-by gas treatment vent at 44200/N34117 (PA Grid System)
	December 1990-October 1996: 6S7 ACS at the Susquehanna SES sewage treatment plant about 2,880 feet downstream from the cooling tower basin
Bell Bend (indicator)	Susquehanna River: 2,260 ft downriver from the Susquehanna SES discharge diffuser, 130 ft from the west bank

- 20 -

Table 2

Water quality parameters and methods of analyses utilized by the Susquehanna SES Environmental Laboratory, 2008.

PARAMETER	METHOD	REFERENCE ^a
River depth (ft)	Seven-day continuous recording from an Acco Bristol, Model No. G500-15 bubbler-type water level gauge.	ACCO (1971)
River level (ft above msl)	Level = Depth + 482.96	Soya (1991)
River flow (cfs)	Insert river level into the appropriate regression equation. At level <486.0 ft, $\log flow = -0.0525(level)^2 + 51.478501(level) - 12612.85672$ At level ≥486.0 ft, $flow = 319.96989(level)^2 - 3093316.24395(level) + 74753300$	Soya (1991)
Temperature (°F)	Constant monitor of river temperature: Seven-day continuous recording from a Yokogawa AX 102-1-2 temperature recorder.	Omega (2001) Yokogawa (2003)
(°C)	River and blowdown temperature of samples collected: Calibrated, mercury-filled thermometer. Method 2550 B.	APHA (1995)
	Convert Fahrenheit to Celsius for tabulation: $^{\circ}C = (^{\circ}F - 32) \div 1.8$ or $\frac{^{\circ}C}{^{\circ}F - 32} = \frac{5}{9}$	^b Internet site
Dissolved oxygen (mg/L)	Membrane electrode. Method 4500-O G.	APHA (1995)

^a Listed in references cited. ^b <u>http://mathforum.org/library/drmath/view/58393.html</u>. Accessed: 19 February 2009.

Daily mean flow (cfs) of the Susquehanna River at the Susquehanna SES Environmental Laboratory, 2008.

DATE	JAN	FEB	MAR	APR	ΜΑΥ	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1	30000	10300	13100	40200	14400	5020	3460	5020	1940	3230	9910	6490
2	28100	19200	11900	58600	13500	5020	3230	4480	1940	3000	8470	8470
3	24600	26300	11900	66700	12300	4480	3000	4210	2140	2350	7780	12700
4	19700	28100	14900	58600	12300	4480	3000	3710	1940	1750	7450	14900
5	17200	25200	64800	51800	13500	4740	2770	3710	1570	1750	7450	13100
6	16200	35900	121000	52600	14900	4210	2770	3960	1570	1750	7120	11100
7	17200	99800	90900	47800	14000	3960	2560	4210	1940	1750	6490	10300
8	22900	120000	92000	40900	12700	3960	2560	5020	1750	1750	5880	9180
9	32600	85500	124000	35200	11900	3960	2560	4480	2140	1570	5590	7780
10	41600	63900	110000	31300	11900	3960	2140	4210	2350	1390	5300	8120
11	47000	46200	83400	27500	11500	3960	1940	3960	2140	1210	5300	10700
12	56800	32600	66700	26300	10300	3960	1940	4210	1940	1210	5300	25700
13	56000	28100	51800	26300	9910	3460	1940	4480	1940	1210	5020	40900
14	47000	29400	40900	26300	9180	3230	2560	5020	2140	1210	4740	35200
15	38000	25200	37300	24600	8470	3000	3230	5300	2140	1390	4480	26900
16	31900	23500	48500	21800	7780	3460	3000	5300	2140	1210	5020	24000
17	26900	20700	52600	18700	10700	3460	3000	4740	1750	996	9180	30600
18	22300	26300	42400	15500,ª	11900	3460	3460	4210	1570	897	14400	33900
19	19200	50200	36600	14200	12300	3710	3460	3960	1570	897	13500	29400
20	17200	55100	56000	13100	12300	3710	3230	3460	1390	897	11100	24000
21	14400	41600	95300	12200	11900	3710	2770	3230	1570	996	9180	20200
22	13100	28800	78300	11200	11500	3710	2770	3000	1570	996	7450	17700
23	11100	22900	57700	10500	9910	4210	3460	3000	1570	1210	6800	16700
24	10300	19700	43900	10300	8820	4210	6800	2770	1390	996	6180	15300
25	10300	18700	35200	9910	8120	3960	10700	2770	1210	996	5880	19700
26 27 28 29 30 31	8820 9180 9180 8120 8820 9180	17700 18700 17200 14400	29400 25700 25700 37300 39500 31300	8820 8470 9540 13100 14900	7780 7120 7120 6490 5590 5020	3710 3230 3230 3460 3960	10300 11100 9180 6800 6490 6180	2560 2140 2350 1940 1940 1940	1210 996 1210 1750 1940	1750 3230 4740 9180 11900 11500	5590 6180 6490 6800 6490	22900 27500 28800 46200 58600 51000
MEAN	23400	36200	53900	26900	10500	3890	4270	3720	1750	2550	7220	22800

^a Calculated 18-23 April flows using USGS data.

Daily mean temperature (C) of the Susquehanna River at the Susquehanna SES Environmental Laboratory, 2008.

DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	a	1.3	1.4		14.3	20.9	24.8	26.6	23.3	18.9	8.0	3.1
2		1.2	1.8		14.1	21.2	25.1	26.5	23.8	17.8	8.0	3.1
3		1.0	2.8	6.5	14.3	21.5	24.9	26.0	24.4	16.4	8.1	2.9
4		1.3	3.8	6.1	14.8	21.6	24.3	25.9	25.0	15.8	8.5	3.2
5	0.5	1.8	3.3	6.2	15.5	21.9	24.2	26.1	25.2	15.8	9.2	3.0
6	0.8	2.6	2.1	6.4	16.0	22.4	24.5	26.4	24.8	15.7	10.1	2.3
7	2.1	2.6	2.3	6.9	16.6	23.9	25.3	25.8	24.5	15.5	10.7	1.8
. 8	3.1	2.0	2.7	7.9	17.3	25.3	26.3	25.3	24.1	15.3	11.0	0.8
9	4.3	1.9	2.3	9.2	16.7	27.0	25.9	24.6	23.1	16.3	10.7	0.8
10	4.6	1.9	2.1	10.3	15.9	27.7	26.5	24.0	22.1	16.4	9.9	1.9
11	4.6	1.0	2.2	11.3	15.5	27.7	26.5	23.1	21.8	16.5	9.0	2.8
12	4.8	0.5	2.5	12.0	14.9	27.4	26.8	23.0	21.1	16.8	8.7	3.1
13	4.4	0.5	3.0	12.1	14.8	27.3	26.6	23.3	21.9	16.7	8.5	2.1
14	4.2	0.6	3.6	11.4	15.8	27.3	26.7	24.1	22.8	17.1	8.8	1.7
15	3.8	0.7	4.1	10.9	16.7	27.1	26.3	24.3	23.1	17.7	9.6	2.3
16	3.6	0.9	4.4	11.1	16.4	26.5	26.7	24.1	21.9	17.5	9.7	3.1
17	3.0	1.0	4.2	11.8	15.4	25.1	27.0	24.4	21.7	16.5	8.5	2.8
18	2.7	1.9	3.9	12.9	14.9	23.5	27.4	24.8	21.3	15.2	7.4	2.7
19	2.5	2.0	4.1	14.2	14.0	22.8	27.8	24.5	20.3	14.1	6.3	2.1
20	1.7	1.5	4.7	15.0	13.2	22.4	28.3	24.2	20.1	13.2	5.5	1.5
21	0.5	1.1	4.0	15.7	13.3	22.5	28.3	24.0	20.2	124	46	11
22	0.5	0.9	3.7	16.7	13.6	23.2	28.0	24.3	20.1	11.4	3.5	0.5
23	0.5	0.6	3.9	17.6	14.1	24.1	26.5	24.6	20.0	10.9	2.9	0.5
24	0.5	0.8	4.1	18.3	14.9	24.2	25.4	25.1	20.1	10.4	2.5	0.5
25	0.5	1.3	4.5	18.2	16.0	24.3	24.7	24.7	19.7	11.1	2.9	0.7
26	0.5	17	5.0	18.6	175	245	2/ 0	24.2	10.1	11 /	30	0.0
20	0.5	21	0.0	18.6	10.2	24.0	24.5	23.8	10.1	11.4	0.Z 3 3	10.5
28	0.0	15		17.4	10.2	24.8	25.0	20.0	10.2	10.2	3.1	10
29	0.8	1.0		16.3	19.3	24.8	25.4	22.0	19.2	8.5	3.1	27
30	12	1.0		15.1	19.7	24.9	25.8	22.7	19.1	8.0	29	2.7
31	1.2			10.1	20.3	۲ ، ۷	26.4	23.1	10.1	7.6	2,0	2.6
MEAN	2.1	1.4	3.3	12.7	16.0	24.4	26.1	24.5	21.7	14.1	6.9	2.0

^a Equipment Failure

Pennsylvania Department of Environmental Protection specific water quality criteria for the Susquehanna River in the vicinity of the Susquehanna SES, 2008.

PARAMETER UNIT PERIOD		PERIOD	CRITERIA		AVERAGE
Sanahan an ann an			Minimum	Maximum	
Alkalinity as CaCO3	mg/L		20	4 50	
Ammonia Nitrogen	mg/L			4.56	
Chloride	mg/L		4.0	250	
Dissolved Oxygen	mg/L		4.0		
		Daily Average	5.0		
Fluoride	mg/L	Daily			2.0
Iron Total	mg/L	30-Day			1.5
Dissolved	mg/L			0.3	
Manganese	mg/L			1.0	
	ug/L			1000	
Nitrite plus Nitrate as N	mg/L			10	
pH	-		6.0	9.0	
Sulfate	mg/L			250	
Temperature	С	Januarv 1-31		4.4	
		February 1-29		4.4	
		March 1-31		7.8	
		April 1-15		11.1	
		April 16-30		14.4	
		Mav 1-15		17.8	
		May 16-31		22.2	
		June 1-15		26.7	
		June 16-30		28.9	
		July 1-31		30.6	
		August 1-15		30.6	
		August 16-31		30.6	
		September 1-15		28.9	
		September16-30		25.6	
		October 1-15		22.2	
		October 16-31		18.9	
		November 1-15		14.4	
•		November 16-30		10.0	
		December 1-31		5.6	
Total Dissolved Solids	mg/L	Monthly		750	500

Water quality data collected quarterly from the Susquehanna River and the Susquehanna SES blowdown, 2008. River sites were SSES (control) and Bell Bend (indicator). Analyses were performed by the PPL Chemical Laboratory, Hazleton, PA. N.D. = Not Detected

	299720920000000000000000000000000000000		BLOW	BELL		BLOW	BELL	
PARAMETER	UNITS	SSES	DOWN	BEND	SSES	DOWN	BEND	
			***************************************	***************************************				-
Date		2/28/2008	2/28/2008	2/28/2008	5/22/2008	5/22/2008	5/22/2008	
Time		717	557	734	712	751	708	
River level	ft	491.0			489.6			
Temperature	С	1.2	12.2	1.2	12.9	16.6	12.9	
Dissolved oxygen	mg/L	21.3	13.9	21.8	11.7	10.6	11.5	
nH lab		7.78	8 52	7.74	7 94	8.79	79	
Conductivity, lab	umho	241	617	239	256	835	258	
Total alkalinity	ma/L	45	114	45	61	202	61	
Phenolohthalein alkalinity	ma/L	0	4	0	. 0	13	0	
Total suspended solids	mg/L	<4.0	33.6	5.6	7.6	57.3	6	
		-0.00	.0.00	.0.00	.0.00	0.00	ND	
Animonia as n Silicon dioxido	mg/L mg/l	<0.20	<0.20	<0.20	<0.20	<0.20	N.D.	
Billicon dioxide	mg/L	4.37	12.3	4.03	1.1	0.20 170	1.1	
Carbonate as CO2	mg/L	40	100	45	01	1/0	01	
Carbonale as CO3	mg/L	0	4.0	0	04.0	0.01		
Chionae	mg/L	-0.10	-0.00	-0.10	24.9	99.2	20.4	
Nitrate as NO2	mg/L	<0.10	<0.20	<0.10	0.08	0.24	0.06	
Nitrate ion on N	mg/L	0.7	9.1	0.1	1.3	0.1 + 4	1.4	
Decemberus as DO4	mg/L	0.7	1715	0.7	0.3	0.4	0.3	
Phosphorus as FO4	mg/L	0.107	1.710	0.101	0.147	3.914	0.202	
Sullate	mg/L	21.2	36.7	20.0	20	90.9	20.1	
Aluminum, dissolved	ug/L	N.D.	<100	N.D.	N.D.	<100	N.D.	
Aluminum, total	ug/L	163	690	156	<100	736	106	
Barium, total	ug/L	26	75	26	31	117	32	
Calcium, dissolved	mg/L	22	57.9	21.8	24.3	83.5	24.6	
Calcium, total	mg/L	22.1	58.6	21.8	24.6	86	24.9	
Copper, dissolved	ug/L	<20	N.D.	N.D.	N.D.	N.D.	N.D.	
Copper, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Iron, dissolved	mg/L	0.18	0.37	0.17	0.09	0.23	0.09	
Iron, total	mg/L	0.66	2.21	0.66	0.62	2.8	0.62	
Magnesium, dissolved	mg/L	4.6	12.1	4.54	5.74	19.2	5.94	
Magnesium, total	mg/L	4.66	12.4	4.58	5.81	20	5.85	
Manganese, dissolved	ug/L	82	42	77	39	26	39	
Manganese, total	ug/L	85	147		112	353	112	
Nickel, total	ug/L	N.D.	N.D.	N.D.	N.D.	<10	N.D.	
Potassium, dissolved	mg/L	1.19	3.24	1.14	1.44	4.74	1.55	
Potassium, total	mg/L	1.21	3.3	1.17	1.46	4.94	1.46	
Silver, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Sodium, dissolved	mg/L	17.2	47.5	17	14.8	56.7	15.2	
Sodium, total	mg/L	17.2	47.9	17.1	14.8	57.6	14.9	
Strontium, total	ug/L	81	206	08	94	337	94	
Vanadium, total	ug/L	<10	<10	<10	N.D.	<10	<10	
Zinc, dissolved	ug/L	<20	<20	<20	<20	<20	<20	
ZITIC, IOLAI	ug/L	<20	<20	<20	<20	<20	N.D.	
Beryllium, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Cadmium, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Chromium, total	ug/L	N.D.	N.D.	N.D.	N.D.	<10	N.D.	
Lead, total	ug/L	N.D.	<5	N.D.	N.D.	<5	N.D.	
Thallium, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Arsenic, total	ug/L	<1.0	1.4	<1.0	<1.0	2.3	<1.0	
Selenium, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Antimony, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Total mineral solids	mg/L	132.04	354.44	130.65	136.16	486.55	137.85	
Calcium hardness (C)	mg/L	54.9	144.6	54.4	60.7	208.5	61.4	
Total hardness (C)	mg/L	74.4	197	73.3	85.4	297	86.3	

Table 6 (cont.)

and a second sec

			BLOW	BELL		BLOW	BELL
PARAMETER	UNITS	SSES	DOWN	BEND	SSES	DOWN	BEND
							(-
Date		8/28/2008	8/28/2008	8/28/2008	10/30/2008	10/30/2008	10/30/2008
Lime Divertevel	<i>t</i> +	123	841	/14	490.7	714	753
Tomperature	n C	400.0 22 Q	24	22 Q	409.7	16.8	7.8
Dissolved oxygen	ma/l	8.5	8	8.3	14.6	6.9	14.6
bisserved oxygen	ing/L	0.0	0	0.0	11.0	0.0	1110
pH, lab		7.92	8.9	7.96	7.94	8.8	7.92
Conductivity, lab	μmho	385	995	393	339	992	343
Total alkalinity	mg/L	89.5	232	88.5	83.5	220	79.1
Phenoiphthalein aikalihity	mg/L	0	23.6	0		17.6	0
Total suspended solids	mg/L	0.0	14.0	4.0	20.0	49	24.0
Ammonia as N	mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Silicon dioxide	mg/L	1.79	5.88	1.8	1.49	4.46	1.46
Bicarbonate as CaCO3	mg/L	89.5	185	88.5	83.5	185	79.1
Carbonate as CO3	mg/L	0	28.3	0	0	21.1	0
Chloride	mg/L	39.6	123	41.3	39.8	130	39.8
Fluoride	mg/L	0.1	0.29	0.1	0.09	0.27	0.09
Nitrate as NO3	mg/L	0.9	3.3	0.9	1.4	4.9	1.4
Nitrate ion as N	mg/L	0.2	0.7	0.2	0.3	1.1	0.3
Phosphorus as PO4	mg/L	0.199	3.571	0.319	0.445	4.564	0.512
Suitate	mg/L	43	127	44.6	21.9	104	22.4
Aluminum, dissolved	ug/L	N.D.	<100	N.D.	<100	<100	<100
Aluminum, total	ug/L	<100	232	<100	381	675	397
Barium, total	ug/L	37	99	35	44	95	44
Calcium, dissolved	mg/L	34.8	98.7	35.3	31.1	90.7	31.7
Calcium, total	mg/L	38.4	100	35.9	31.6	92.7	32.2
Copper, dissolved	ug/L	N.D.	N.D.	N.D.	<20	N.D.	N.D.
Copper, total	ug/L	N.D.	<20	N.D.	N.D.	<20	N.D.
Iron, dissolved	mg/L	0.02	0.06	<0.02	0.1	0.07	0.1
Iron, total	mg/L	0.57	1.37	0.5	2.07	4.24	2.13
Magnesium, dissolved	mg/L	9.61	26.9	9.75	6.91	24.2	7.08
Magnesium, total	mg/L	10.6	27.5	9.94	7.1	25	7.28
Manganese, dissolved	ug/L	7	9	5	29	13	26
Manganese, total	ug/L	152	368	133	276	639	281
Nickel, total	ug/L	<10	<10	N.D.	<10	<10	N.D.
Potassium, dissolved	mg/L	2.14	5.89	2.26	2.22	6.57	2.33
Potassium, total	mg/L	2.4	5.94	2.31	2.32	6.71	2.39
Silver, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sodium, dissolved	mg/L	24.8	74.3	25.4	23.1	77.6	23.9
Sodium, total	mg/L	27.2	75.1	25.5	23.2	78.5	23.8
Strontium, total	ug/L	187	470	175	100	427	103
Vanadium, total	ug/L	<10	<10	N.D.	N.D.	<10	<10
Zinc, dissolved	ug/L	<20	N.D.	<20	<20	N.D.	N.D.
Zinc, total	ug/L	N.D.	<20	<20	N.D.	<20	N.D.
Beryllium, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Cadmium, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Chromium, total	ug/L	N.D.	<10	N.D.	N.D.	<10	N.D.
Lead, total	ug/L	N.D.	N.D.	N.D.	N.D.	<5	N.D.
Thallium, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Arsenic, total	ug/L	<1.0	2.6	<1.0	1.5	3.2	1.3
Selenium, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Antimony, total	ug/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Total mineral solids	ma/L	210.36	604.61	214.43	178.02	574.44	177.53
Calcium hardness (C)	ma/L	86.9	246.5	88.1	77.7	226.5	79.2
Total hardness (C)	ma/L	140	363	131	108	334	110
		-			-		

Total iron concentrations from the Susquehanna River at the SSES sampling site, 1975-2008. Samples were collected monthly from 1975 through 1996 and quarterly from 1997 through 2008. Analyses were performed by the PPL Chemical Laboratory, Hazleton, PA.

YEAR	NO. SAMPLES Collected	NO. SAMPLES <1.50 mg/L	% SAMPLES <1.50 mg/L	ANNUAL MEAN
International Contract Stock Processing and		-		
1975	12	2	16.7	3.55
1976	12	3	25.0	3.08
1977	11	5	45.5	1.71
1978	12	5	41.7	1.48
1979	12	5	41.7	3.13
1980	12	5	41.7	1.74
1981	12	9	75.0	1.31
1982	12	7	58.3	2.37
1983	11	6	54.5	1.41
1984	12	4	33.3	1.71
1985	12	5	41.7	1.61
1986	12	7	58.3	1.82
1987	12	8	66.7	1.96
1988	12	7	58.3	1.28
1989	12	9	75.0	1.45
1990	12	10	83.3	1.41
1991	12	10	83.3	0.98
1992	12	12	100.0	0.92
1993	12	8	66.7	1.55
1994	11	8	72.7	1.46
1995	12	12	100.0	0.89
1996	12	9	75.0	1.42
1997	4	4	100.0	0.55
1998	4	4	100.0	0.65
1999	4	4	100.0	0.60
2000	4	4	100.0	0.70
2001	4	4	100.0	0.74
2002	4	4	100.0	0.62
2003	4	3	75.0	1.43
2004	4	3	75.0	0.94
2005	4	4	100.0	0.57
2006	4	4	100.0	0.62
2007	4	3	75.0	2.00
2008	4	3	75.0	0.98

DATE	Flow (cfs)	SES tms (mg/L)	BLOV Flow (cfs)	VDOWN tms (mg/L)	BELL BEND tms (mg/L)	DIFFERENCE BELL BEND - SSES tms (mg/L)
28 Feb	17200	132.0	19.8	354.4	130.6	-1.4
22 May	11500	136.2	21.3	486.6	137.8	1.6
28 Aug	2350	210.4	26.5	604.6	214.4	4.0
30 Oct	11900	178.0	25.1	574.4	177.5	-0.5

Comparison of total mineral solids (TMS) concentrations from the Susquehanna River and the Susquehanna SES blowdown, 2008. River sites were SSES (control) and Bell Bend (indicator).

Table 9

Comparison of annual average total mineral solids (TMS) concentrations from the Susquehanna River and the Susquehanna SES blowdown, 1991-2008. River sites were SSES (control) and Bell Bend (indicator).

YEAR	SS	SES	BLOW	/DOWN	BELL BEND	DIFFERENCE
	Flow	tms	Flow	tms	tms	BELL BEND - SSES
	(CIS)	(mg/L)	(CIS)	(mg/L)	(mg/L)	tms (mg/L)
Restored and the second se						(119/1)
1991	12600	197.3	14.6	711.8	203.7	6.4
1992	13400	155.3	7.5	600.3	156.4	1.1
1993	23700	202.8	13.1	636.2	204.4	1.6
1994	19200	174.9	13.9	660.9	175.3	0.4
1995	10200	196.7	12.9	643.9	198.8	2.1
1996	24000	151.8	19.5	438.4	152.6	0.8
1997	6490	239.0	16.9	787.7	248.6	9.6
1998	11200	242.2	19.2	649.3	247.9	5.7
1999	9120	204.1	11.2	585.1	212.0	7.9
2000	21200	160.4	12.6	449.5	163.5	3.1
2001	7190	180.2	20.8	572.5	183.9	3.7
2002	12200	136.2	17.7	523.4	142.5	6.3
2003	26900	131.3	18.7	459.0	132.5	1.2
2004	12200	134.1	18.3	446.6	136.3	2.2
2005	13500	157.1	16.2	583.9	165.4	8.3
2006	14400	137.6	17.9	522.8	138.0	0.4
2007	20810	145.7	20.4	455.1	147.9	2.2
2008	10700	164.1	23.2	505.0	165.1	1.0
MEAN	14900	172.8	16.4	568.4	176.4	3.6

Number, density (no/m²), and percent total of benthic macroinvertebrates collected with a dome sampler at SSES I (replicate 1) on the Susquehanna River, June 2008.

GROUP	an,,	24-Jun	
Taxon	No.	No./m ²	% Total
CRUSTACEA			
Amphipoda	3	18	0.1%
PLECOPTERA			
Neoperla sp.	1	6	0.0%
EPHEMEROPTERA			
Anthopotamus sp.	96	589	3.3%
Caenis sp.	36	221	1.3%
Ephoron sp.	360	2,209	12.5%
Isonychia sp.	4	25	0.1%
Leucrocuta sp.	96	589	3.3%
Stenonema sp.	4	25	0.1%
TRICHOPTERA			
Cheumatopsyche sp.	216	1,325	7.5%
Chimarra sp.	88	540	3.1%
Ithytrichia sp.	3	18	0.1%
Hydropsyche sp.	80	491	2.8%
Macrostemum sp.	152	933	5.3%
COLEOPTERA			
Dineutus sp.	7	43	0.2%
Optioservus sp.	112	687	3.9%
Stenelmis sp.	1,109	6,804	38.5%
DIPTERA			
Chironomidae	196	1,202	6.8%
MOLLUSCA			
Goniobasis sp.	1	6	0.0%
Musculium sp.	244	1,497	8.5%
Pisidium sp.	8	49	0.3%
OTHER			
Prostoma sp.	1	6	0.0%
Tricladida	60	368	2.1%
TOTAL	2,877	17,650	100.0%

Number, density (no/m²), and percent total of benthic macroinvertebrates collected with a dome sampler at SSES I (replicate 2) on the Susquehanna River, June 2008.

GROUP		24-Jun	
Taxon	No.	No./m ²	% Total
Unidentified	11	67	0.2%
CRUSTACEA		01	0.270
Amphipoda	15	92	0.3%
PLECOPTERA			
Acroneuria sp.	1	6	0.0%
lsoperla sp.	1	6	0.0%
Pteronarcys sp.	1	6	0.0%
EPHEMEROPTERA			
Anthopotamus sp.	256	1,571	5.7%
Baetis sp.	8	49	0.2%
Caenis sp.	16	98	0.4%
Ephoron sp.	83	509	1.9%
Isonychia sp.	24	147	0.5%
Leucrocuta sp.	112	687	2.5%
Stenonema sp.	8	49	0.2%
TRICHOPTERA			
Ceraclea sp.	32	196	0.7%
Cheumatopsyche sp.	480	2,945	10.7%
Chimarra sp.	112	687	2.5%
Protoptila sp.	32	196	0.7%
Hydropsyche sp.	320	1,963	7.1%
Macrostemum sp.	368	2,258	8.2%
Neureclipsis sp.	8	49	0.2%
COLEOPTERA			
Dineutus sp.	5	31	0.1%
Optioservus sp.	224	1,374	5.0%
Psephenus sp.	1	6	0.0%
Stenelmis sp.	1,666	10,221	37.2%
DIPTERA	004	0.050	0.00/
Chironomidae	384	2,356	8.6%
Simulium sp.	6	37	0.1%
MOLLUSCA	0	10	0.00/
Goniobasis sp.	۲ ۲۵۵	12	0.0%
Musculium sp.	192	1,170	4.3%
	4	20	0.170
Acariformos	1	e	0.0%
Prostoma so	2	0 10	0.0 %
riosiona sp. Tricladida	101	620	0.170 2.20/
Πυανίνα	IUT	020	2.0/0
τοται	4 477	27 466	100.0%

- 30 -

Table 12

GROUP		24-Jun	
Taxon	No.	No./m ²	% Total
			a de 1919
Unidentified	35	215	3.0%
CRUSTACEA	00	210	0.070
Amphipoda	57	350	4 9%
Decanoda	7	43	0.6%
Isopoda	1	6	0.1%
PLECOPTERA	·	Ŭ	0.170
Neoperla sp.	1	6	0.1%
EPHEMEROPTERA		-	
Anthopotamus sp.	120	736	10.2%
Baetis sp.	4	25	0.3%
Caenis sp.	4	25	0.3%
Ephoron sp.	7	43	0.6%
Leucrocuta sp.	28	172	2.4%
Paraleptophlebia sp.	4	25	0.3%
Stenonema sp.	24	147	2.0%
Tricorythodes sp.	21	129	1.8%
TRICHOPTERA			
Ceraclea sp.	6	37	0.5%
Cheumatopsyche sp.	48	294	4.1%
Hydropsyche sp.	4	25	0.3%
Lepidostoma sp.	1	6	0.1%
Macrostemum sp.	1	6	0.1%
Neureclipsis sp.	3	18	0.3%
COLEOPTERA			
Optioservus sp.	1	6	0.1%
Psephenus sp.	3	18	0.3%
Stenelmis sp.	115	706	9.8%
DIPTERA			
Chironomidae	450	2,761	38.3%
MOLLUSCA	_		
Ferrissia sp.	9	55	0.8%
Musculium sp.	192	1,178	16.4%
Physa sp.	8	49	0.7%
Pisidium sp.	4	25	0.3%
OTHER	0	40	0.00/
	2	12	0.2%
Sialis sp.	9	55	0.8%
I riciadida	5	31	0.4%
TOTAL	1,174	7,202	100.0%

Number, density (no/m²), and percent total of benthic macroinvertebrates collected with a dome sampler at Bell Bend IV (replicate 1) on the Susquehanna River, June 2008.

Number, density (no/m²), and percent total of benthic macroinvertebrates collected with a dome sampler at Bell Bend IV (replicate 2) on the Susquehanna River, June 2008.

GROUP		24-Jun	
Taxon	No.	No./m2	% Total
OLIGOCHAETA			
Unidentified	480	2.945	24.0%
CRUSTACEA		,	
Amphipoda	204	1,252	10.2%
PLECOPTERA			
Neoperla sp.	2	12	0.1%
EPHEMEROPTERA			
Anthopotamus sp.	160	982	8.0%
Caenis sp.	8	49	0.4%
Ephoron sp.	23	141	1.1%
Leucrocuta sp.	32	196	1.6%
Stenonema sp.	8	49	0.4%
TRICHOPTERA			
Cheumatopsyche sp.	5	31	0.2%
Lepidostoma sp.	1	6	0.0%
Neureclipsis sp.	2	12	0.1%
COLEOPTERA			
Dineutus sp.	4	25	0.2%
Stenelmis sp.	124	761	6.2%
DIPTERA			
Chironomidae	744	4,564	37.1%
MOLLUSCA			
Ferrissia sp.	2	12	0.1%
Corbicula sp.	4	25	0.2%
Musculium sp.	168	1,031	8.4%
Pisidium sp.	8	49	0.4%
OTHER			
Alloeocoela	10	61	0.5%
Sialis sp.	6	37	0.3%
Tricladida	9	55	0.4%
TOTAL	2,004	12,294	100.0%

Comparative densities of organisms/m² in dome samples collected from the Susquehanna River at SSES I and Bell Bend IV from 1990-1994 and 2007-2008. The 2008 data used for this comparison represented the dome sample at each site from the greatest overall density (minus Oligochaetes).

SSES I									
<u>Taxon</u>	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>2007</u>	<u>2008</u>		
Crustacea	6	25	0	12	6	583	92		
Plecoptera	110	104	0	43	6	86	18		
Ephemeroptera	2384	4359	570	5595	589	3209	3110		
Trichoptera	1661	2322	1771	3083	785	883	8294		
Coleoptera	1067	2029	1231	785	840	3472	11632		
Diptera	993	552	392	361	110	644	2393		
Mollusca	503	160	754	0	18	1521	1215		
Other	<u>48</u>	<u>6</u>	<u>42</u>	<u>24</u>	<u>24</u>	<u>1196</u>	<u>644</u>		
Tota	l 6772	9557	4760	9903	2378	11594	27398		

Bell Bend IV

<u>Taxon</u>	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>2007</u>	<u>2008</u>
Crustacea	0	0	0	12	6	607	1252
Plecoptera	49	0	0	6	18	12	12
Ephemeroptera	925	2526	301	2066	324	2841	1417
Trichoptera	208	447	196	110	428	295	49
Coleoptera	1006	601	257	337	214	1416	786
Diptera	687	643	325	1398	404	1301	4564
Mollusca	441	275	220	49	79	3601	1117
Other	<u>55</u>	<u>30</u>	<u>24</u>	<u>61</u>	<u>18</u>	<u>281</u>	<u>153</u>
Tot	al 3371	4522	1323	4039	1491	10354	9350

Comparative proportions of organisms in dome samples collected from the Susquehanna River at SSES I and Bell Bend IV from 1990-1994 and 2007-2008. The 2008 data used for this comparison represented proportions of the dome sample at each site with the greatest overall density (minus Oligochaetes).

				SSES I				
<u>Taxon</u>		<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>2007</u>	<u>2008</u>
Crustacea	l	0.1	0.3	0.0	0.1	0.3	5.0	0.3
Plecoptera	E	1.6	1.1	0.0	0.4	0.3	0.7	0.1
Ephemeroptera		35.2	45.6	12.0	56.5	24.8	27.7	11.4
Trichopter	а	24.5	24.3	37.2	31.1	33.0	7.6	30.3
Coleopter	а	15.8	21.2	25.9	7.9	35.3	29.9	42.5
Diptera		14.7	5.8	8.2	3.6	4.6	5.6	8.7
Mollusca		7.4	1.7	15.8	0.0	0.8	13.1	4.4
Other		<u>0.7</u>	<u>0.1</u>	<u>0.9</u>	<u>0.2</u>	<u>1.0</u>	<u>10.3</u>	<u>2.4</u>
	Total	100	100	100	100	100	100	100

Bell Bend IV									
<u>Taxon</u>	<u>1990</u>	<u>1991</u>	<u>1992</u>	<u>1993</u>	<u>1994</u>	<u>2007</u>	<u>2008</u>		
Crustacea	0.0	0.0	0.0	0.3	0.4	5.9	13.4		
Plecoptera	1.5	0.0	0.0	0.1	1.2	0.1	0.1		
Ephemeroptera	27.4	55.9	22.8	51.2	21.7	27.4	15.2		
Trichoptera	6.2	9.9	14.8	2.7	28.7	2.8	0.5		
Coleoptera	29.8	13.3	19.4	8.3	14.4	13.7	8.4		
Diptera	20.4	14.2	24.6	34.6	27.1	12.6	48.8		
Mollusca	13.1	6.1	16.6	1.2	5.3	34.8	11.9		
Other	<u>1.6</u>	<u>0.7</u>	<u>1.8</u>	<u>1.5</u>	<u>1.2</u>	<u>2.7</u>	<u>1.6</u>		
Total	100	100	100	100	100	100	100		

Descriptions of electrofishing (EL) and seining (SN) sites at SSES and Bell Bend on the Susquehanna River, 2008.

SITE	LOCATION
	SSES (Control)
EL-1	East bank, 426 feet upriver from gas-line crossing to 1,082 feet upriver from a point opposite the center of the Susquehanna SES intake structure
EL-2	West bank from gas-line crossing to a point 820 feet upriver from the center of the Susquehanna SES intake structure
SN-1	East bank, 1,837 feet upriver from a point opposite the center of the Susquehanna SES intake structure (33 feet upriver from the mouth of Little Wapwallopen Creek)
SN-2	West bank, 1,312 feet upriver from the center of the Susquehanna SES intake structure (328 feet downriver from the boat dock at the Susquehanna SES Environmental Laboratory)
	BELL BEND (Indicator)
EL-3	East bank, 1,279 feet downriver from a point opposite the Susquehanna SES intake structure to a point 1,640 feet upriver from the mouth of Wapwallopen Creek
EL-4	West bank, 1,246 feet downriver from the Susquehanna SES intake structure (558 feet downriver from the discharge diffuser) to a point near the southeastern boundary of PPL's Wetlands Nature Area
SN-3	East bank, 8,528 feet (1.6 miles) downriver from a point opposite the Susquehanna SES

SN-4 West bank, 4,264 feet (0.8 miles) downriver from the Susquehanna SES intake structure, near the southeastern boundary of PPL's Wetlands Nature Area

intake structure, at the launching ramp of the Berwick Boat Club

Fish species that were observed while electrofishing or collected by seining at SSES and Bell Bend on the Susquehanna River, 2008. Names of fishes and order of listing conform to Nelson et al. (2004).

COMMON NAME

Carps and Minnows Spotfin shiner Common carp Cutlips minnow Golden shiner Spottail shiner Bluntnose minnow Fallfish

Suckers Quillback White sucker Northern hog sucker Shorthead redhorse

North American Catfishes Yellow bullhead Channel catfish

Pikes Northern pike Muskellunge

Sunfishes Rock bass Redbreast sunfish Green sunfish Pumpkinseed Bluegill Smallmouth bass White crappie

Perches Tessellated darter Banded darter Yellow perch Walleye

SCIENTIFIC NAME

Cyprinidae Cyprinella spiloptera Cyprinus carpio Exoglossum maxillungua Notemigonus crysoleucas Notropis hudsonius Pimephales notatus Semotilus corporalis Catostomidae

Carpiodes cyprinus Catostomus commersonii Hypentelium nigricans Moxostoma macrolepidotum

Ictaluridae Ameiurus natalis Ictalurus punctatus

Esocidae Esox lucius Esox masquinongy

Centrarchidae Ambloplites rupestris Lepomis auritus Lepomis cyanellus Lepomis gibbosus Lepomis macrochirus Micropterus dolomieu Pomoxis annularis

Percidae Etheostoma olmstedi Etheostoma zonale Perca flavescens Sander vitreus

ł

Number, mean, and percent total of fish observed while electrofishing at SSES on the Susquehanna River, 2008.

SPECIES		19	9 May			2	7 Jun			3	1 Jul			28	3 Aug			8	3 Oct		OVE	RALL
	East	West	Mean	% Total	East	West	Mean	% Total	East	West	Mean	% Total	East	West	Mean	% Total	East	West	Mean	% Total	Mean	% Total
Common carp	2	0	1.0	1.9	3	2	2.5	3.1	3	3	3.0	2.9	3	4	3.5	2.4	5	1	3.0	1.6	2.6	2.3
Fallfish	1	1	1.0	1.9	0	1	0.5	0.6	0	0	0.0	0.0	0	9	4.5	3.1	0	1	0.5	0.3	1.3	1.1
Quillback	3	2	2.5	4.9	8	1	4.5	5.5	7	3	5.0	4.8	11	0	5.5	3.8	45	2	23.5	12.4	8.2	7.2
White sucker	1	1	1.0	1.9	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0.2	0.2
Northern hog sucker	6	0	3.0	5.8	6	8	7.0	8.6	15	6	10.5	10.1	17	57	37.0	25.3	13	68	40.5	21.3	19.6	17.1
Shorthead redhorse	7	3	5.0	9.7	4	2	3.0	3.7	2	1	1.5	1.4	3	4	3.5	2.4	5	4	4.5	2.4	3.5	3.1
Sucker spp.	0	0	0.0	0.0	0	0	0.0	0.0	0	1	0.5	0.5	0	0	0.0	0.0	0	0	0.0	0.0	0.1	0.1
Channel catfish	0	2	1.0	1.9	2	0	1.0	1.2	1	6	3.5	3.4	4	0	2.0	1.4	14	4	9.0	4.7	3.3	2.9
Northern pike	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0	1	0.5	0.3	0.1	0.1
Muskellunge	1	0	0.5	1.0	1	0	0.5	0.6	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0.2	0.2
Pike spp.	0	0	0.0	0.0	0	0	0.0	0.0	1	0	0.5	0.5	0	0	0.0	0.0	0	0	0.0	0.0	0.1	. 0.1
Rock bass	1	6	3.5	6.8	9	19	14.0	17.2	5	6	5.5	5.3	11	21	16.0	11.0	9	11	10.0	5.3	9.8	8.6
Redbreast sunfish	0	0	0.0	0.0	0	0	0.0	0.0	2	0	1.0	1.0	0	0	0.0	0.0	0	0	0.0	0.0	0.2	0.2
Green sunfish	0	0	0.0	0.0	1	0	0.5	0.6	2	1	1.5	1.4	1	2	1.5	1.0	0	0	0.0	0.0	0.7	0.6
Pumpkinseed	0	0	0.0	0.0	0	0	0.0	0.0	1	0	0.5	0.5	1	0	0.5	0.3	1	0	0.5	0.3	0.3	0.3
Bluegill	0	0	0.0	0.0	1	0	0.5	0.6	1	0	0.5	0.5	1	1	1.0	0.7	0	1	0.5	0.3	0.5	0.4
Smallmouth bass	13	16	14.5	28.2	45	11	28.0	34.4	54	37	45.5	44.0	45	9	27.0	18.5	52	42	47.0	24.7	32.4	28.3
Sunfish spp.	0	0	0.0	0.0	2	4	3.0	3.7	0	2	1.0	1.0	3	3	3.0	2.1	0	1	0.5	0.3	1.5	1.3
Yellow perch	0	3	1.5	2.9	2	1	1.5	1.8	0	1	0.5	0.5	5	0	2.5	1.7	4	5	4.5	2.4	2.1	1.8
Walleye	9	9	9.0	17.5	6	6	6.0	7.4	9	17	13.0	12.6	19	26	22.5	15.4	48	33	40.5	21.3	18.2	15,9
Fish (unidentified)	8	8	8.0	15.5	8	10	9.0	11.0	12	8	10.0	9.7	22	10	16.0	11.0	6	4	5.0	2.6	9.6	8.4
TOTAL	52	51	51.5		98	65	81.5		115	92	103.5		146	146	146.0		202	178	190.0		114.5	

- 36 -

Number, mean, and percent total of fish observed while electrofishing at Bell Bend on the Susquehanna River, 2008.

SPECIES		1	9 May			2	7 Jun			3	31 Jul			28	Aug			8	Oct		OVE	RALL
	East	West	Mean	% Total	East	West	Mean	% Total	East	West	Mean	% Total	East	West	Mean	% Total	East	West	Mean	% Total	Mean	% Total
Common carp	3	5	4.0	4.6	1	1	1.0	2.0	2	5	3.5	2.6	2	1	1.5	0.8	2	8	5.0	3.2	3.0	2.4
Golden shiner	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0	1	0.5	0.3	0.1	0.1
Fallfish	2	2	2.0	2.3	0	0	0.0	0.0	0	3	1.5	1.1	1	1	1.0	0.5	1	0	0.5	0.3	1.0	0.8
Quillback	4	3	3.5	4.0	0	4	2.0	4.0	4	1	2.5	1.9	2	0	1.0	0.5	9	2	5.5	3.5	2.9	2.4
White sucker	0	2	1.0	1.1	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0.2	0.2
Northern hog sucker	1	6	3.5	4.0	11	0	5.5	11.1	6	5	5.5	4.1	32	6	19.0	10.2	23	23	23.0	14.6	11.3	9.2
Shorthead redhorse	0	0	0.0	0.0	0	0	0.0	0.0	1	2	1.5	1.1	0	1	0.5	0.3	1	1	1.0	0.6	0.6	0.5
Sucker spp.	0	0	0.0	0.0	0	1	0.5	1.0	0	0	0.0	0.0	0	2	1.0	0.5	0	0	0.0	0.0	0.3	0.2
Channel catfish	0	0	0.0	0.0	3	0	1.5	3.0	3	6	4.5	3.3	2	3	2.5	1.3	0	1	0.5	0.3	1.8	1.5
Northern pike	0	1	0.5	0.6	0	0	0.0	0.0	1	0	0.5	0.4	0	1	0.5	0.3	0	0	0.0	0.0	0.3	0.2
Muskellunge	1	0	0.5	0.6	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0.1	0.1
Pike spp.	1	1	1.0	1.1	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0	1	0.5	0.3	0.3	0.2
Rock bass	7	4	5.5	6.3	7	4	5.5	11.1	4	1	2.5	1.9	23	16	19.5	10.5	18	21	19.5	12.4	10.5	8.5
Redbreast sunfish	0	0	0.0	0.0	0	0	0.0	0.0	0	1	0.5	0.4	0	1	0.5	0.3	0	0	0.0	0.0	0.2	0.2
Green sunfish	0	0	0.0	0.0	0	0	0.0	0.0	0	3	1.5	1.1	1	11	6.0	3.2	0	0	0.0	0.0	1.5	1.2
Pumpkinseed	0	0	0.0	0.0	1	0	0.5	1.0	1	2	1.5	1.1	4	1	2.5	1.3	0	0	0.0	0.0	0.9	0.7
Bluegill	0	0	0.0	0.0	0	0	0.0	0.0	2	7	4.5	3.3	8	11	9.5	5.1	1	0	0.5	0.3	2.9	2.4
Smallmouth bass	36	23	29.5	33.7	15	10	12.5	25.3	88	46	67.0	49.6	32	37	34.5	18.5	22	49	35.5	22.5	35.8	29.1
White crappie	0	0	0.0	0.0	1	0	0.5	1.0	0	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0.1	0.1
Sunfish spp.	1	1	1.0	1.1	0	3	1.5	3.0	7	14	10.5	7.8	6	14	10.0	5.4	0	1	0.5	0.3	4.7	3.8
Yellow perch	0	2	1.0	1.1	14	0	7.0	14.1	3	4	3.5	2.6	11	8	9.5	5.1	12	7	9.5	6.0	6.1	5.0
Walleye	22	20	21.0	24.0	5	5	5.0	10.1	11	15	13.0	9.6	53	62	57.5	30.8	43	49	46.0	29.2	28.5	23.1
Fish (unidentified)	12	15	13.5	15.4	9	4	6.5	13.1	11	11	11.0	8.1	11	9	10.0	5.4	9	10	9.5	6.0	10.1	8.2
TOTAL	90	85	87.5		67	32	49.5		144	126	135.0		188	185	186.5		141	174	157.5		123.2	

Number, mean, and percent total of fish captured by seining at SSES and Bell Bend on the Susquehanna River, 2008.

SPECIES		5	Jun			26	aug		OVEF	RALL
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	East	West	Mean	% Total	East	West	Mean	% Total	Mean ^o	% Total
					SSES					
Spotfin shiner Cutlips minnow Spottail shiner Bluntnose minnow Fallfish White sucker Yellow bullhead Pike spp. Rock bass Green sunfish Bluegill Smallmouth bass Tessellated darter Banded darter TOTAL	205 1 9 2 0 65 0 0 0 0 0 2 0 284	24 0 0 193 0 2 1 0 0 0 1 0 0 2 81	114.5 0.5 34.5 1.0 0.0 129.0 0.0 1.0 0.5 0.0 0.0 0.5 1.0 0.0 282.5	$\begin{array}{c} 40.5\\ 0.2\\ 12.2\\ 0.4\\ 0.0\\ 45.7\\ 0.0\\ 0.4\\ 0.2\\ 0.0\\ 0.0\\ 0.2\\ 0.4\\ 0.0\\ 0.0\\ 0.2\\ 0.4\\ 0.0\\ \end{array}$	33 0 21 3 0 1 0 36 23 19 0 7 3 146	3 0 4 6 0 0 0 8 12 48 12 12 0 94	18.0 0.0 13.5 0.0 0.5 0.0 22.0 17.5 33.5 0.5 9.5 1.5 120.0	$15.0 \\ 0.0 \\ 1.7 \\ 11.3 \\ 1.3 \\ 0.0 \\ 0.4 \\ 0.0 \\ 18.3 \\ 14.6 \\ 27.9 \\ 0.4 \\ 7.9 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.5 \\$	66.3 0.3 18.3 7.3 0.8 64.5 0.3 0.5 11.3 8.8 16.8 0.5 5.3 0.8 201.3	$\begin{array}{c} 32.9\\ 0.1\\ 9.1\\ 3.6\\ 0.4\\ 32.0\\ 0.1\\ 0.2\\ 5.6\\ 4.3\\ 8.3\\ 0.2\\ 2.6\\ 0.4 \end{array}$
				R)				
Spotfin shiner Spotfail shiner Bluntnose minnow White sucker Rock bass Green sunfish Bluegill Tessellated darter Walleye TOTAL	11 6 2 112 0 0 2 2 135	227 27 3 153 0 0 0 1 0 411	119.0 16.5 2.5 132.5 0.0 0.0 0.0 1.5 1.0 273.0	43.6 6.0 0.9 48.5 0.0 0.0 0.0 0.0 0.5 0.4	1165 6 3 0 4 1 2 0 0 0 1181	56 13 2 0 1 0 4 9 1 86	610.5 9.5 2.5 0.0 2.5 0.5 3.0 4.5 0.5 633.5	96.4 1.5 0.4 0.0 0.4 0.1 0.5 0.7 0.1	364.8 13.0 2.5 66.3 1.3 0.3 1.5 3.0 0.8 453.3	80.5 2.9 0.6 14.6 0.3 0.1 0.3 0.7 0.2

P-values for fish species deemed significant by the BACI analysis, 1976-2008 ($\alpha = 0.05$). Columns depict the p-values associated with the two temporal categories of data analyzed; All Data represents all months sampled, Summer Data denotes samples collected from June through October, *ns* indicates that a species was not significant in that data set.

SPECIES	ALL DATA	SUMMER DATA
Quillback	0.012	0.003
White sucker	0.031	ns
Northern hog sucker	0.002	0.020
Shorthead redhorse	<0.001	<0.001
Brown bullhead*	0.005	0.046
Muskellunge	<0.001	0.003
Rock bass	0.002	0.009
Smallmouth bass	0.047	0.002
Unidentified fish	0.015	<0.001

*Brown bullhead numbers increased at Bell Bend relative to those collected at SSES.

Fig. 1

Sampling sites for water quality, benthic macroinvertebrates, electrofishing (EL), and seining (SN) at SSES and Bell Bend on the Susquehanna River, 2008.

The 2008 monthly mean flow of the Susquehanna River at the Susquehanna SES Environmental Laboratory compared to the 47-year (1961-2007) mean. The means were calculated from U.S. Geological Survey and Environmental Laboratory data.

Volume of Susquehanna River flow at the Susquehanna SES Environmental Laboratory, 1961-2008. The volumes were calculated from U.S. Geological Survey and Environmental Laboratory data.

SUSQUEHANNA RIVER WATER WITHDRAWAL

Daily Susquehanna River water withdrawal by Susquehanna SES, 2007-2008.

Total iron and sulfate of the Susquehanna River at the SSES sampling site, 1975-2008. Samples were collected monthly 1975-1996 and quarterly 1997-2008. Analyses were performed by the PPL Chemical Laboratory, Hazleton, PA.