

Small Modular Reactors Source Terms

October 28, 2014

Review of Activities

- SECY-10-0034
 - SMR iPWR source terms based upon
 - Information from current generation LWRs
 - Understanding of accident phenomena, including fission product transport and release
- NRC memo dated 12/29/2011
 - Plans to address methods to determine mechanistic source term
 - Contributes to staff's evaluation of siting, EP and other areas
 - Anticipates industry proposing a detailed calculation methodology

Review of Activities (cont'd)

- NEI position paper dated 12/27/2012
 - Areas where the methodology used for LLWRs will be used (Category 1)
 - Areas where the methodology will differ from LLWRs (Category 2)
 - Identifies unique SMR source term issues and path forward to address them
 - Identifies those issues that require additional information

Current Path to Addressing SMR Source Term

- Industry to provide additional information
 - Areas where further generic study is needed
 - Design specific papers
- Containment Aerosol Deposition
 - Identified as highest priority issue for generic resolution in the NEI position paper
 - DOE and EPRI joint study initiated in 2013 and recently completed Phase 1
 - Discuss with NRC and determine what additional information is needed

The Need for More Information on Aerosols

Impact

- The behavior of aerosols in containment is an important component in the evaluation of on-site and off-site doses.
- Why new testing?
 - SMR containment designs contain features that are different from conventional, large light water reactors (LWRs).

Development of an approach for evaluating the **deposition** of aerosols in current light-water-based Small Modular Reactors (SMRs).

EPRI/DOE Project Background

- Funded in October 2013 for 6 months via contract to Lucius Pitkin and Sandia National Laboratory
- Investigation Phase Tasks:
 - Task 1 Generic Containment Model for Aerosol Deposition in SMRs for Westinghouse, mPower, NuScale and Holtec designs.
 - Task 2 Review of U.S. and international post-1993 aerosol deposition test data for applicability to SMR containment postaccident conditions and geometries.
 - Task 3 Complete review of correlations for coagulation, condensation, phoretic, and diffusive deposition mechanisms and evaluate applicability to SMR containment design and expected post-accident conditions.
 - Task 4 Evaluation of need for additional SMR containment aerosol tests and revisions to aerosol deposition correlations for SMRs.

Evaluated Containment Aerosol Deposition Processes and their Key Parameters

- Gravitational Settling
 - Particle size
 - Particle density
- Thermophoresis
 - Temperature and thermal gradient
 - Particle and gas thermal properties
- Diffusiophoresis
 - Steam quality
 - Steam and particle temperature and pressure
 - Steam thermophysical and diffusive mass properties

Generic SMR Containment Model

Generic SMR containment¹

¹Conglomeration of design data provided by Holtec, mPower, NuScale Power, and Westinghouse for their SMR designs

Generic SMR Containment Model

Containment Surface Area to Volume Ratio

© 2014 Electric Power Research Institute, Inc. All rights reserved.

Key Result – Impact of Diffusiophoresis

Comparison of Respirable (≤20 micron) Aerosol Particle Deposition Velocities for Diffusiophoresis, Gravitational, and Thermophoresis Processes (x is the steam mole fraction)

Diffusiophoresis is Important to SMR Containment Aerosol Deposition

- Steam condensation on particles causes increased deposition
- Small SMR containments have higher steam content than large LWRs
- Small SMR containments offer increased exposure time and surface area for aerosols to interact with steam
- Diffusiophoresis respirable particle deposition
 - is constant for the respirable range of aerosol particle diameters
 - is 30 to 1,000 times greater than thermophoresis
 - Exceeds gravitational deposition (depending on steam quality)

Diffusiophoresis Decontamination Factor (DF)

- SMR containments have much larger surface area to volume ratios (SAVR) than large LWRs
- Containment Diffusiophoresis DF is a function of
 - Surface area to volume ratio
 - Magnitude of steam quality
 - Steam residence time
- For generic SMR containment SAVR (0.66 ft⁻¹), 30 minute containment steam residence time DF is:
 - DF= 4 for a quality of 0.1
 - DF> 100 for a quality of 0.5
 - DF>> 100 for a quality of 0.9

Potential Testing to Validate Results

- Objective: Provide data to validate Phase 1 conclusions and to improve aerosol behavior modeling in severe accident codes
- Diffusiophoresis is the phenomena with the largest effect
- Multi-phase test plan identified in report
 - Comprehensive, but results may not be available for SMR design applications
- Industry is considering alternative test plans
 - Limited in scope and focused on the more important phenomena
 - Provide adequate and timely information for SMR design applications

Relevance of EPRI/DOE Conclusions

- Substantiates the enhanced safety of SMR design features
- Effective in reducing the source term and limiting off-site releases from accidents
 - Diffusiophoresis and gravitational settling are large contributors to the decontamination factor
 - Other natural deposition processes that are enhanced by the SMR design can further reduce the source term
- Can be incorporated into regulatory framework for SMRs
 - Safety evaluations (Design basis, and beyond design basis, accidents)
 - Severe accident management
 - Emergency planning
 - Security

Discussion Topics

- Containment aerosol deposition
 - Reasonableness of the conclusions and methodology in the EPRI/DOE report
 - Define an adequate scope of testing that meets the needs of SMR applicants and NRC reviewers
 - Potential submittal to NRC for review and endorsement
- Other areas that need additional information
 - Reactor building fission product dilution and deposition
- Provide clarity to applicants and NRC reviewers on SMR source term development
 - Based upon NEI position paper, design specific papers, and additional generic information
 - Potentially through NRC interim staff guide or industry template

