
APR1400 Design Certification Application Pre-submittal Update

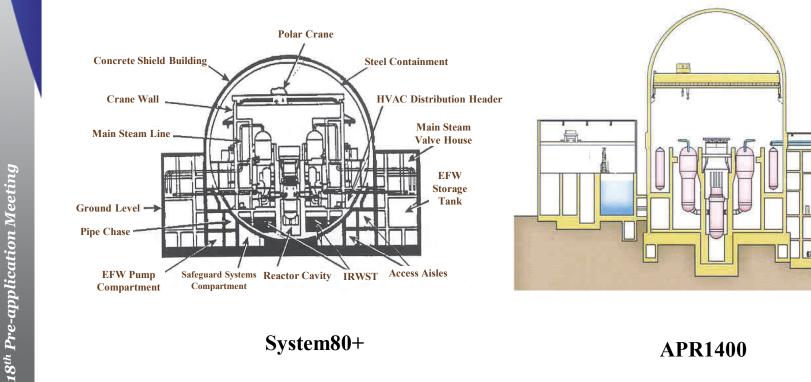
KEPCO/KHNP October 29, 2014

APR1400-K-X-EC-14001-NP

Contents

- Purposes
- Introduction
- APR1400 Design Certification Status
- NRC Comments
- Resolutions
- Additional Efforts
- Conclusions

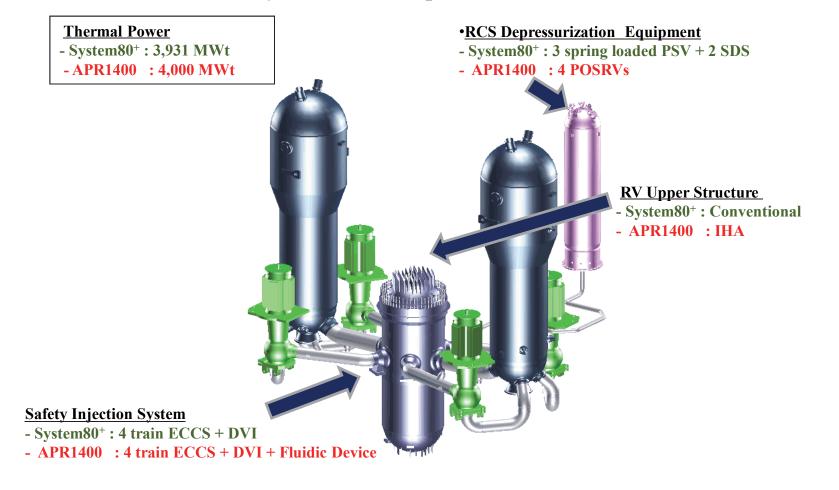
18th Pre-application Meeting


Purposes

- Present the status of the APR1400 submittal readiness
- Receive the NRC feedback

• The APR1400 Design Concept and Features

✓ Major design concept is identical to System 80+


System80+

APR1400

• The APR1400 Design Concept and Features

✓ Additional safety features incorporated in the APR1400

18th Pre-application Meeting

APR1400-K-X-EC-14001-NP

KHNP

Shin-Kori Units 3 and 4

- ✓ The reference plant for the DC application
- ✓ Expected commercial operations: 2015 and 2016
- Future Projects
 - ✓ Shin-Hanul Units 1 and 2: Start-up 2017, 2018
 - ✓ Shin-Kori Units 5 and 6: Start-up 2021, 2022
 - ✓ Overseas Projects

• APR1400 DC Application

- ✓ Retain the reference plant design (Shin-Kori Units 3 and 4)
 - Some minor differences (e.g., turbine generator design to be selected by COL applicants, ultimate heat sink)
 - Address U.S. industry standards and expectations
- ✓ Meet NRC expectations
 - Address December 2013 comments
 - Improve clarity
 - Include other changes resulting from NRC interactions this year

APR1400 Design Certification Status

- The letter of intent on the DC application submitted in March 2009.
- Numerous pre-application meetings held between 2010 ~ 2014.
- The initial APR1400 Design Certification Application submitted in September 2013.
- A summary of NRC review transmitted to KHNP in December 2013 (ML13351A417):

7

- ✓ Twelve issues identified
- ✓ Non-acceptance for docketing

Twelve Issues

ML13351A417

"...the application's deficiencies in the areas of instrumentation and controls (I&C), human factors engineering, probabilistic risk assessment, and in the environmental report. The two key I&C issues for which the application did not provide sufficient information are the software common cause failures of non-safety related control systems that can lead to spurious actuations of redundant safety and non-safety components; and the critical characteristics, such as deterministic performance and the software development process of the safety I&C system platform. Additionally, the NRC staff determined that the application did not provide a sufficient level of detail related to reactor coolant pump design; leak-before-break evaluation; effects of irradiation-assisted stress corrosion cracking on core supports and reactor internals; turbine missile probability; welds for reactor vessel integrity evaluations; radioactive waste management; and radiation protection. The NRC staff also notes that you have not yet submitted technical reports in the following areas: vibration assessment of reactor internals; flywheel integrity; fuel seismic response evaluation; and new and spent fuel criticality analysis."

NRC Comments

- The deficiencies in the areas of:
 - ✓ instrumentation and controls (I&C);
 - ✓ human factors engineering;
 - \checkmark probabilistic risk assessment; and
 - ✓ environmental report

NRC Comments

- Insufficient level of detail related to:
 - ✓ reactor coolant pump design;
 - ✓ leak-before-break evaluation;
 - ✓ effects of irradiation-assisted stress corrosion cracking on core supports and reactor internals;
 - ✓ turbine missile probability;
 - ✓ welds for reactor vessel integrity evaluations;
 - \checkmark radioactive waste management; and
 - \checkmark radiation protection

NRC Comments

- Technical reports needed in the following areas:
 - ✓ vibration assessment of reactor internals;
 - ✓ flywheel integrity;
 - \checkmark fuel seismic response evaluation; and
 - \checkmark new and spent fuel criticality analysis

Instrumentation & Control (I&C)

- ✓ Issues
 - Insufficient information on the software Common Cause Failures (CCFs) of non-safety related control systems
 - Lack of critical characteristics of the safety I&C platform
- ✓ Resolutions
 - Evaluated safety of the system under software common cause failures of non-safety related control systems.
 - Adopted Westinghouse Common Q as the safety I&C platform. The critical characteristics of the platform are provided as a technical report.

• Human Factor Engineering (HFE)

- ✓ Issues
 - Lack of clarity, conciseness and technical detail
 - HFE design approaches:
 - Detailed implementation plans (IPs) with supporting ITAAC or
 - General IPs with associated results summary reports

✓ Resolutions

- Improved document quality and supplemented technical details in Design Control Document (DCD) and the technical reports.
- Will submit 9 detailed IPs and 3 Technical Reports.

• Probabilistic Risk Assessment (PRA)

- ✓ Issues
 - Lack of quantitative development of the Low-Power Shutdown (LPSD) internal fire/flooding PRAs, and the LPSD level 2 PRAs
 - Lack of detailed risk insights
- ✓ Resolutions
 - Performed quantitative assessments of LPSD PRAs
 - Updated the risk insights

• Environmental Report (ER)

- ✓ Issues
 - Lack of design-specific Severe Accident Mitigation Design Alternative (SAMDA) list
 - Lack of detailed documentation
- ✓ Resolutions
 - Clarified the design-specific SAMDA list
 - Prepared a technical report with the detailed information


APR1400-K-X-EC-14001-NP

• Reactor Coolant Pump (RCP)

- ✓ Issues
 - Insufficient level of details
 - Proposed Design Acceptance Criteria (DAC) for the RCP design
 - RCP flywheel integrity was lacking
- ✓ Resolutions
 - DCD enhanced with additional technical details
 - DAC will not be used for the RCP design, the Tier 1 revised
 - RCP flywheel integrity technical report will be submitted

• Leak-Before-Break (LBB)

- ✓ Issues
 - Not addressed pre-service inspection for all welds in LBB-applied piping (i.e., surge line, SI/SC piping)
- ✓ Resolutions
 - Will apply 100% pre-service inspection for the LBB applied piping welds.
 - A technical report will be submitted.

Irradiation-Assisted Stress-Corrosion Cracking (IASCC)

- ✓ Issues
 - No evaluation on the effects of IASCC and void swelling
- ✓ Resolutions
 - Performed the evaluation for susceptibility to IASCC and void swelling.

APR1400-K-X-EC-14001-NP

The results are incorporated into the DCD.

- Turbine Missile Probability
 - ✓ Issue
 - Lack of turbine missile probability analysis
 - ✓ Resolution
 - Revised DCD to incorporate the Combined License (COL) action items and Inspections, Tests, Analyses, and Acceptance Criteria (ITAAC) with the detailed turbine missile probability analysis plan for the COL applicant.

• Reactor Vessel (RV) Weld Integrity

- ✓ Issue
 - Not included RV integrity related evaluations for the RV welds
- ✓ Resolutions
 - Performed RV integrity for RV weld and incorporated into DCD.

APR1400-K-X-EC-14001-NP

Revised the technical report.

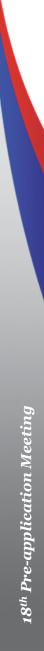
- Radwaste Management (RW)
 - ✓ Issues
 - Compliance of Liquid Waste Management System (LWMS) and Gas Waste Management System (GWMS) with 10CFR20, App. B and 10CFR50, App. I
 - Initial loading and type of subsystem demineralizers and filters
 - Automatic isolation of effluent release
 - ✓ Resolutions
 - Added detailed description for processing the liquid/gaseous waste prior to release.
 - Added an ITAAC specifying the Decontamination Factor (DF) requirements and filter efficiency.
 - Added an ITAAC to confirm the automatic isolation of effluent release.

• Radiation Protection (RP)

- ✓ Issues
 - Stay times in vital areas outside Main Control Room (MCR) and Technical Support Center (TSC) are not specified
 - Occupational Radiation Exposure (ORE) data consistency with RG 8.19
 - Justification of Environmental Qualification (EQ) total integrated dose (TID) margin
 - Radiation zones for Turbine Building and component cooling water (CCW) heat exchanger building
- ✓ Resolutions
 - Vital area mission dose analyses have been completed with consideration of actual expected time and locations where the emergency operator actions are required.
 - Number of workers expected to be working on a given task and exposure time have been specified to be consistent with RG 8.19.
 - EQ margin justification and updates of the radiation zones drawings will be incorporated into the DCD.

APR1400-K-X-EC-14001-NP

KHNP



• Technical Reports

- ✓ Issues
 - Four Technical Reports needed:
 - vibration assessment of reactor internals;
 - flywheel integrity;
 - fuel seismic response evaluation; and
 - new and spent fuel criticality analysis
- ✓ **Resolution**
 - The four technical reports are prepared and will be submitted with the DCD.

Additional Efforts

- Four topical reports submitted are under review by the NRC.
- Over 50 technical reports are to be submitted with the DCD.
- The KHNP Quality Assurance Program Description (QAPD) for the APR1400 DC has been approved by the NRC in 2013.
- The Safeguards Information (SGI) order has been received, and the program approval is in process.

18th Pre-application Meeting

Conclusions

- All issues identified by the NRC staff have been addressed, and the staff's feedback received during several pre-application meetings were incorporated.
- The APR1400 DC application is being finalized, and the supporting technical reports will be submitted together with the DC application.
- KEPCO/KHNP plans to submit the APR1400 DC application in December 2014.

Conclusions

- The KEPCO/KHNP management is in full support of the DCD submittal.
- The financial and technical resources are available to support the NRC staff's review of the DCD.
- KEPCO/KHNP looks forward to interact with NRC during the APR1400 DC application reviews, after its acceptance.

Thank You!

Acronyms (1/2)

- Advanced Power Reactor APR CCF - Common Cause Failure CCW - Component Cooling Water COL - Combined License DAC – Design Acceptance Criteria DC – Design Certification - Design Control Document DCD DF - Decontamination Factor DVI – Direct Vessel Injection ECCS – Emergency Core Cooling System ER – Environmental Report EQ - Environmental Qualification ESF - Engineering Safety Feature **GWMS** – Gaseous Waste Management System HFE - Human Factors Engineering
- HVAC Heating, Ventilation, Air Conditioning
- I&C Instrumentation & Control
- IASCC Irradiation-Assisted Stress-Corrosion Cracking
- IHA Integrated Head Assembly
- IP Implementation Plan
- IRWST In-containment Refueling Water Storage Tank
- ITAAC Inspections, Tests, Analyses, and Acceptance Criteria
- **KEPCO Korea Electric Power Corporation**
- KHNP Korea Hydro & Nuclear Power Co. Ltd
- LBB Leak-Before-Break
- LPSD Low-Power and Shutdown
- LWMS Liquid Waste Management System
- MCR Main Control Room

Acronyms (2/2)

- NRC Nuclear Regulatory Commission
- **ORE** Occupational Radiation Exposure
- **POSRV Pilot Operated Safety Relief Valve**
- PRA Probabilistic Risk Assessment
- **PSV** Pressurizer Safety Valve
- QAPD Quality Assurance Program Description
- PRA Probabilistic Risk Assessment
- RCP Reactor Coolant Pump
- RCS Reactor Coolant System
- RG Regulatory Guide
- **RV Reactor Vessel**
- RW Radwaste Management
- SAMDA Severe Accident Mitigation Design Alternative
- SDS Safety Depressurization System
 - I Safeguards Information

- SI/SC Safety Injection/Shutdown Cooling
- TID Total Integrated Dose
- TSC Technical Support Center

