

RESEARCH INFORMATION LETTER 1002:

Identification and Analysis of Failure
Modes in Digital Instrumentation and

Controls (DI&C) Safety Systems—Expert
Clinic Findings, Part 2

EXECUTIVE SUMMARY

In Staff Requirements Memorandum (SRM) M080605B, the Commission directed the staff to
“report the progress made with respect to identifying and analyzing digital I&C failure modes.”
The desired outcome of this directive was to better enable the staff to make safety assurance
determinations of digital safety systems.

Three research information letters (RILs), RIL-1001, RIL-1002, and RIL-1003, address the
Commission’s SRM. RIL-1001 (part 1) dated May 4, 2011 discussed uncertainties that impede
reasonable assurance determinations of DI&C safety systems containing software. RIL-1002
(part 2) discusses the staff’s progress with respect to identifying and analyzing DI&C failure
modes. RIL-1003 (part 3) is scheduled to be completed in early 2015. It will discuss the
feasibility of applying failure mode analysis to quantification of risk associated with DI&C
systems.

Eleven sets of DI&C safety system failure modes are identified and compared in this report.
The staff’s work resulted in one synthesized generic set of system level DI&C failure modes.
The staff’s analysis found that the synthesized failure modes could be used beneficially to
support, in part, the development of the design basis of a system, and in the analysis of
performance-degradation during operation.

The staff’s analysis also found, however, that the synthesized set may not be suitable for
determining the level of safety of a DI&C safety system. The findings indicate that there may be
additional system—specific failure modes that have not been identified. Furthermore, some or
all of the failure modes identified may not manifest in a particular system. As such, the
synthesized set of failure modes may not be helpful for purposes of making determinations of
reasonable assurance of safety. The NRC staff is investigating alternative analytical
approaches to support needs for making better determinations of safety assurance; these
investigations will continue in future work.

This RIL also includes results from staff investigations on the efficacy of Software Fault Modes
and Effects Analysis (SFMEA) as a method for identifying faults leading to DI&C system failure,
i.e., performance – degradation of a safety function. Six distinct SFMEA methods were found,
but the staff did not find a sound technical basis to require NRC applicants and licensees to
perform an SFMEA similar to any of these methods. NUREG/IA-0254, “Suitability of Fault
Modes and Effects Analysis for Regulatory Assurance of Complex Logic in Digital
Instrumentation and Control Systems,” provides additional information supporting this
conclusion.

i

The staff used an expert elicitation process to establish its findings as described above. The
process involved collecting and analyzing information from a diverse panel of safety critical
digital system experts. These experts were consulted in 2010. In addition, the staff also
reviewed over 150 public and nonpublic documents and conducted additional interviews with
experts who were not a part of the elicitation process.

The results of the staff’s efforts have been shared with researchers that are both internal and
external to the NRC. Specifically, the results have been shared with NRC experts conducting
research on DI&C probabilistic risk assessment (PRA) methods and researchers from the
Electrical Power Research Institute (EPRI) who are conducting research on hazard analysis
methods. This RIL does not address issues related to quantifying the reliability of digital
systems. The Division of Risk Assessment within the Office of Nuclear Regulatory Research
(RES) is evaluating appropriate failure modes for the development of probabilistic models for
DI&C systems.

In summary, the staff finds that the failure modes identified in this RIL may not be suitable for
determining the level of safety of a DI&C safety system. However, there could be some
potential benefits if the identified failure modes are applied in the development of the design
basis of a DI&C system and in analysis of performance degradation modes. No additional work
will be performed by the NRC to identify additional failure modes. NRC will continue to monitor
external research on identification of digital system failure modes and seek opportunities to
share any insights found with its stakeholders.

ii

TABLE OF CONTENTS

Section Page

EXECUTIVE SUMMARY ... i

1. INTRODUCTION .. 6
1.1. Objectives ... 6
1.2. Scope ... 7

2. ORGANIZATION OF REMAINING SECTIONS .. 7

3. BACKGROUND .. 8

4. APPLICABLE NRC REGULATIONS AND GUIDANCE ON FAILURE MODE ANALYSES
 ..10

5. RESEARCH METHOD ..13
5.1. NRC Expert Elicitation ...13
5.2. Supplemental NRC Research Activities ...13

6. FINDINGS ...14
6.1. Digital System Failure Modes Findings ..14
6.2. Efficacy of SFMEA for Identifying Faults Leading to System Failures.................31

7. CONCLUSIONS ..33
7.1. Failure Modes Identified ...33
7.2. SFMEA ..33
7.3. Next Steps ...34

8. GLOSSARY...35
8.1. Selection of Definitions ..35
8.2. Definitions ..35

9. EXPERTS CONSULTED ...41

10. CITED LITERATURE ..43

11. LITERATURE REVIEWED BUT NOT CITED ..47

APPENDIX A. THE VOCABULARY RELATED TO FAILURE MODES – A DISCUSSION
 ... A-1
A.1. Failure .. A-1
A.2. Reason for Avoiding the Term “Failure” for Software A-2
A.3. Fault... A-2
A.4. Error... A-3
A.5. Stimulus-Response, Event-Action, State-Mode - Concepts to Characterize

Behavior .. A-3
A.6. Failure Modes .. A-5
A.7. Fault Modes ... A-6

iii

A.8. Bibliography ... A-6

APPENDIX B. IDENTIFIED SOFTWARE FAULTS AND FAULT MODES SETS B-1
B.1. Software Faults and Fault Modes Identified by Source B-1
B.2. Fault Classification and Taxonomy Schemes ... B-14
B.3. Summary of Software Faults and Fault Modes Found B-20
B.4. Bibliography ... B-20

APPENDIX C. SOFTWARE FAULT MODES AND EFFECTS ANALYSIS METHODS. C-1
C.1. SFMEA in Literature Reviewed .. C-1
C.2. Efficacy of SFMEA in Identifying Faults .. C-6
C.3. Bibliography ... C-6

APPENDIX D. OPERATING EXPERIENCE AND FAILURE MODES D-1
D.1. Failure Modes of Induction Motors: Example usage .. D-1
D.2. Digital System Failure Modes: Utility in organizing operating experience data D-2
D.3. Bibliography ... D-2

APPENDIX E. FAILURE MODE RELATED EFFORTS BY NRC PRA STAFF AND
OTHER STAKEHOLDERS .. E-1

E.1. Probabilistic Risk Assessment Research ... E-1
E.2. Working Group on Risk Assessment (WGRisk) Activities and Results E-1
E.3. Halden Research Project Efforts .. E-2
E.4. Bibliography ... E-3

LIST OF FIGURES

Figure Page

Figure 1 Inter-related research work products .. 8

LIST OF TABLES

Table Page

Table 1 Reference Set A - NRC/IRSN Collaboration [2] .. 16
Table 2 Failure Mode Set B [8]. .. 18
Table 3 Failure Mode Set C [24]. .. 19
Table 4 Failure Mode Set D [26]. .. 20
Table 5 Failure Mode Set E [27]. .. 21
Table 6 Failure Mode Set F .. 22
Table 7 Failure Mode Set G [29] ... 23
Table 8 Failure Mode Set H [30]. .. 23
Table 9 Failure Mode Set I [31] ... 24
Table 10 Failure Mode Set J – WGRisk Activities [32] and [33]. 25
Table 11 Failure Mode Set K [23],[36] .. 25
Table 12 Summary of Failure Mode Correlations to Reference Set A 26
Table 13 Failure Mode Set L – Characterization of Failure Modes of a “Generic” Digital

Safety System. ... 30
Table 14 Experts Interviewed during NRC’s DI&C Expert Elicitation Activity. 41

iv

Table 15 Experts Consulted during Additional NRC Research Activities. 42
Table B-1 Fault/Fault Mode Set 1 [B3]. .. B-2
Table B-2 Fault/Fault Mode Set 2 [B4]. .. B-3
Table B-3 Fault/Fault Mode Set 3 [B5]. .. B-4
Table B-4 Fault/Fault Mode Set 4 [B6]. .. B-4
Table B-5 Fault/Fault Mode Set 5 [B8]. .. B-5
Table B-6 Fault/Fault Mode Set 6 [B9]. .. B-7
Table B-7 Fault//Fault Mode Set 7 [B10]... B-8
Table B-8 Fault/Fault Mode Set 8 [B11] ... B-9
Table B-9 Fault/Fault Mode Set 9 [B12].. B-10
Table B-10 Fault/Fault Mode Set 10 [B1]. .. B-11
Table B-11 Defect Attributes in [B1] ... B-15

v

1. INTRODUCTION

This RIL is a result of Commission directions to “report the progress made with respect to
identifying failure modes” for use in assurance of digital safety systems as stated in Staff
Requirements Memorandum (SRM) M080605B, “Meeting with Advisory Committee on Reactor
Safeguards (ACRS),” dated June 26, 2008 [1]. Findings from staff investigations on the efficacy
Software Fault Modes and Effects Analysis (SFMEA)1 for use in software assurance are also
included in this RIL.

This research information letter (RIL) is the second in a series of three letters (RIL-1001,
RIL-1002, and RIL-1003) that collectively respond to digital instrumentation and control (DI&C)
related directions in the SRM. RIL-1001, “Software -Related Uncertainties in the Assurance of
Digital Safety Systems – Expert Clinic Findings, Part 1,” was published on May 4, 2011 [3].
RIL-1003 will discuss the feasibility of applying failure mode analysis to quantification of risk
associated with digital safety systems.

The insights described in this letter are interim results of a broader research effort to support
improved regulatory guidance for staff to make reasonable assurance determinations of DI&C
safety systems.

1.1. Objectives

The objectives of this RIL are to:

1. “Report the progress made with respect to identifying and analyzing DI&C failure modes,”
as directed by the Commission in SRM M080605B [1].

2. Report the findings resulting from the staff investigation on “the efficacy of SFMEA as a

method for identifying faults leading to system failure,” i.e., performance-degradation of a
safety function2 in response to ACRS recommendation #4 as detailed in [4].

3. Formally transfer knowledge regarding these research results to licensing reviewers in the

Office of Nuclear Reactor Regulation (NRR) and the Office of New Reactors (NRO).

4. Add to the basis established in RIL-1001 for research results to be reported in RIL-1003,
“Feasibility of Applying Failure Mode Analysis to Quantification of Risk Associated with
Digital Safety Systems—Expert Clinic Findings, Part 3.”

1 Whereas the term, “failure modes and effects analysis (FMEA)” is used in the context of the
overall DI&C system, the corresponding concept for software (and other forms of complex logic)
in a DI&C system is “fault modes and effects analysis.” Logic does not fail in the traditional sense
of degradation of a hardware component but the system could fail, due to a pre-existing logic
fault, triggered by some combination of inputs and system-internal conditions.” [2] (See Appendix
A)

2 This objective satisfies the staff commitment to the ACRS detailed in NRC staff response letter
dated December 7, 2010 [4] (See Background).

6

1.2. Scope

The scope of this research is limited to organizing existing knowledge about identified failure
modes for purposes of determining the level of safety of a digital I&C safety system in an NPP.
The use of the failure modes for other purposes or applications is outside the scope of this work.

Related topics such as guidance for reviewing specific methods for failure mode analysis (such
as Failure Modes and Effects Analysis), system hazard analysis, development assurance,
defensive measures, preventative approaches, and hardware/software interactions are outside
the scope of this RIL and are addressed or will be addressed through ongoing or future Office of
Nuclear Regulatory Research (RES) efforts with input from the NRC licensing offices.

Although this RIL is not intended to address issues related to quantifying the reliability of digital
systems, the results and conclusions may provide insights for probabilistic risk assessment
purposes in related RES efforts (see Appendix E).

2. ORGANIZATION OF REMAINING SECTIONS

Section 3 summarizes the history that led to this RIL. Section 4 presents the regulations and
guidance pertinent to the content in this report. Section 5 describes the research method.
Section 6 presents the findings. Section 7 summarizes the conclusions and presents the next
steps. A glossary of terms used is presented in Section 8. Section 9 through Section 11 list
respectively the experts consulted, literature cited, and literature reviewed but not cited during
the research that led to this document.

The appendices contain information that supports and supplements the discussion presented in
the main body of this document. Appendix A discusses the usage of the terms fault, error,
failure, event, state, and mode in the context of characterizing behavior. Appendix B presents
the fault and fault modes found. Appendix C presents several methods that can be called
Software Fault Modes and Effects Analysis. Appendix D discusses the use of failure modes to
organize operating experience. An overview of research on failure-mode analysis for PRA
activities in which the NRC staff is involved in are discussed in Appendix E.

7

3. BACKGROUND

On June 26, 2008, the Commission issued SRM-M080605B directing the staff to “report the
progress made with respect to identifying and analyzing digital I&C failure modes, and discuss
the feasibility of applying failure mode analysis to quantification of risk associated with digital
I&C” [1]. The Office of Nuclear Reactor Regulation (NRR) took the lead in effecting the
response with support from RES. On June 6, 2009, the Commission was orally briefed about
the progress [5].

The Commission direction to the staff has its roots in long standing agency wide efforts to risk
inform the licensing process [6]. As part of that effort, the RES staff began supporting
investigations, such as NUREG/CR-6962, “Traditional Probabilistic Risk Assessment Methods
for Digital Systems,” on state-of-the art probabilistic risk assessment (PRA) methodologies for
software based DI&C systems [7].

The following information provides an overview (aided with Figure 1) of the history of the
initiating concerns and how these concerns are addressed by NRC research activities. In
Figure 1, white boxes represent documents that communicate the concerns resulting in staff
work efforts, shaded boxes annotated with a circle represent ongoing work, dark-shaded boxes
represent completed work, and boxes annotated with a star represent future work.

Figure 1 Inter-related research work products

The Advisory Committee on Reactor Safeguards (ACRS) raised concerns at various meetings
that digital system failure modes were not well understood, and formally brought the concerns to
the Commission’s attention [8] after reviewing DI&C ISG-03, “Interim Staff Guidance on Review

8

of New Reactor Digital Instrumentation and Control Probabilistic Risk Assessments”[9] on
April 11, 2008 [10]. The ACRS discussed its recommendations with the Commission on June 5,
2008 [11] which led to SRM-M080605B [1].

The NRC research activity, “Analytical Assessment of DI&C Systems" described in
Section 3.1.5 of the Digital Systems Research Plan fiscal year (FY) 2010 - FY2014 [12], was
formulated partly to support the NRR response to the Commission. Execution of this plan
included expert elicitation activities, which are described in Appendix B of RIL-1001 [3]. The
NRC staff also performed additional research to validate these findings through a literature
review and discussions with experts who were not part of the elicitation activities described in
Appendix B of RIL-1001 [3].

Section 3.1.5 of [12] was also intended to address, in part, Objective 2 (stated above), as a
response [4] to ACRS’ suggestion that “Software FMEA methods should be investigated and
evaluated to examine their suitability for identifying critical software failures that could impair
reliable and predictable DI&C performance” [13]. Further amplifying the need for this research,
the NRC licensing staff has also raised concerns that a complete set of failure modes is not
known and the frequencies of occurrence for known digital system failure modes are not
available.3

To identify research issues of common interest and collaboration opportunities under a bilateral
agreement between the NRC and the Institut de Radioprotection et de Sûreté Nucléaire (IRSN),
the latter’s DI&C experts reviewed the NRC Digital Systems Research Plan and indicated
interest in the research described in Section 3.1.5. A collaborative effort was conducted on one
of the topics of common interest, Software Fault Modes and Effects Analysis (SFMEA), which
primarily contributed to Objective 2 and resulted in NUREG/IA-0254 [2]. The results of the
collaboration with IRSN provided an independent check on the information obtained from the
NRC expert elicitation activities about the efficacy of SFMEA as a method for identifying faults
leading to system failures impairing a safety function. The effort also resulted in the
identification of a set of DI&C system failure modes which are discussed in Section 6.1.1.1.

An overview of ongoing work and future work in Figure 1 is discussed in Section 7.

3 Data from operating experience cannot be aggregated and is statistically insignificant, spotty, and
scattered. The staff has indicated that operating experience and failure mode data provided by
industry to support claims of digital equipment reliability in submittals such as Benefits Associated
with Expanding Automatic Diverse Actuation System Functions [14] has been insufficient [15].

9

4. APPLICABLE NRC REGULATIONS AND GUIDANCE ON FAILURE
MODE ANALYSES

Title 10, Chapter 1, of the Code of Federal Regulations (CFR), regulatory guides (RGs), and
other NRC-generated documents require or endorse only one method for failure mode analysis.
This method is called a Failure Mode and Effects Analysis (FMEA). FMEA documentation has
been accepted to support determinations of reasonable assurance for I&C hardware. The
regulations and guidance do not provide prescriptive acceptance criteria on the format, or
content of a failure mode analysis [16].

The following regulations directly mention and require identification of failure modes or failure
mode analyses:

• 10 CFR 50.34(f)(2)(xxii) states that any application regarding B&W designed plants shall
“Perform a failure modes and effects analysis of the integrated control system (ICS) to
include consideration of failures and effects of input and output signals to the ICS.”

• 10 CFR 50.73(b)(2)(ii)(E) states that Licensee Event Reports shall contain “The failure
mode, mechanism, and effect of each failed component, if known.”

• 10 CFR Part 50, “Domestic Licensing of Production and Utilization Facilities,”
Appendix A, III., “Protection and Reactivity Control Systems”

General Design Criterion 23 – “Protection System Failure Modes” states that the
protection system shall be designed to fail into a safe state or into a state demonstrated
to be acceptable on some other defined basis if conditions such as disconnection of the
system, loss of energy (e.g., electric power, instrument air), or postulated adverse
environments (e.g., extreme heat or cold, fire, pressure, steam, water, and radiation) are
experienced.

• 10 CFR 50, Appendix K, “ECCS Evaluation Models,” I.D.1 — “Single Failure Criterion,”
states that “An analysis of possible failure modes of ECCS equipment and of their
effects on ECCS performance must be made.”

Failure mode identification and analysis has also been used to satisfy the following regulations:

• 10 CFR 50.55a(h), “Protection and Safety Systems,” incorporates by reference IEEE

Standard 603-1991 “IEEE Standard Criteria for safety systems for Nuclear power
Generating Stations4,” which in Section 5.1, “Single Failure Criterion,” states that:

“The safety systems shall perform all safety functions required for a design basis event
in the presence of: (1) any single detectable failure within the safety systems concurrent
with all identifiable but non-detectable failures; (2) all failures caused by the single
failure; and (3) all failures and spurious system actions that cause or are caused by the

4 Regulations in10 CFR Part 50.55a(h)(1) incorporates by reference IEEE Std 603-1991, including
the correction sheet dated January 30, 1995.

10

design basis event requiring the safety functions. The single-failure criterion applies to
the safety systems whether control is by automatic or manual means.”

In addition to Section 5.1, Clause 4 includes the following statements:

4. Safety system designation. A specific basis shall be established for the design
of each safety system of the nuclear power generating station. The design basis
shall also be available as needed to facilitate the determination of the adequacy
of the safety system, including design changes. The design basis … shall
document as a minimum:

…

4.8 The conditions having the potential for functional degradation of safety
system performance and for which provisions shall be incorporated to retain the
capability for performing the safety functions …5

• 10 CFR 50, Appendix A, III, “Protection and Reactivity Control Systems”

Criterion 21 – Protection System Reliability and Testability. The protection system shall
be designed for high functionality reliability and in-service testability commensurate with
the safety functions to be performed. Redundancy and independence designed into the
protection system shall be sufficient to assure that (1) no single failure results in loss of
the protection function and (2) removal from service of any component or channel does
not result in loss of the required minimum redundancy unless the acceptable reliability of
operation of the protection system can be otherwise demonstrated.

• RG 1.53, Revision 2, “Application of the Single-Failure Criterion to Safety Systems” [17]

endorses IEEE 379-2000 [18], which suggests that documentation of a single failure
analysis through an FMEA may be acceptable. Experience from staff reviews of FMEAs
has shown that “Each system must be independently assessed to conclude that FMEA
is sufficiently detailed to provide a useful assessment of the potential failures and effects
of those failures” [16].

• Part II of RG 1.70, Revision 3, “Standard Format and Content of Safety Analysis Reports
for Nuclear Power Plants, LWR Edition” [19] communicates that the staff found it
acceptable that FMEAs be provided for various systems. Specific to I&C systems, [19]
states that FMEAs should be provided for the reactor trip system according to Section
7.2.2, and engineered safety feature system according to Section 7.3.2. Specific to
Control Systems Not Required for Safety of [19], Section 7.7.2, states that “analyses

5 For emerging digital safety systems, characterized by increasing inter-connectivity, interactions,
and dependence on software, FMEA does not suffice for satisfying Clause 4.8. FMEA does not
suffice because “the conditions having the potential for functional degradation of safety system
performance” are not limited to a failure of some part of the system. “Functional degradation of
safety system performance” can occur due to unintended interactions and couplings, even when
no component of the system fails. Alternative analytical approaches are needed, for which
early-stage exploration has started; these investigations should continue. See Draft RIL-1101
“Technical basis to review hazard analysis of digital safety systems” [ML13331A003].

11

should demonstrate that the protection systems are capable of coping with all (including
gross) failure modes of the control systems.”

12

5. RESEARCH METHOD

The results presented in this RIL were obtained through an expert elicitation process
(Section 5.1) and supplemented with subsequent NRC research activities (Section 5.2) to
strengthen the findings and improve the degree of validity of the reported results.

5.1. NRC Expert Elicitation

Information from a select group of experts was captured in individual elicitation interviews, group
discussions held during a 2-day expert clinic (see Appendix B of RIL-1001 [3]), and post-clinic
discussions. Table 14 (Section 09) lists the experts who participated in this elicitation process,
their affiliation, and their initials. Information provided by interviewed experts is cited with the
use of their initials in the remainder of this RIL (e.g., [AW] stands for Alan Wassyng).

5.2. Supplemental NRC Research Activities

The NRC staff also sought information from other sources because the expert elicitation did not
result in a set of digital safety system failure modes for use in determinations of reasonable
assurance of digital safety systems. Specifically, additional research was needed to find failure
modes appropriate for evaluating systems like those described in new reactor licensing
applications.6 The supplemental information was also reviewed to validate that the information
obtained was representative of the larger DI&C community.

The staff reviewed more than 150 publications from various technical meetings, conferences,
journals, and non-published documents from organizations7 that have worked on or are
performing work on the topics addressed in this RIL. The literature review included Software
Fault Modes and Effects Analysis (SFMEA) - related publications. Results and insights also
were obtained from licensee and applicant-submitted documents, NRC safety evaluation
reports, the collaborative effort with IRSN, and other ongoing research activities.8 Additional
experts, not present at the expert elicitation activities, also were engaged (See Section 09,
Table 15). The staff sought diverse perspectives through these supplemental research activities
to improve validity of the results reported in this RIL.

6 Systems that included features outside previous operating experience such as more software,
interconnections, interactions, and potential feedback paths.

7 Such as NASA, Jet Propulsion Laboratory, etc.
8 See Appendix E for a description of PRA related work and the Halden Research Project

Collaboration.

13

6. FINDINGS

Section 6.1 presents the DI&C safety system (Objective 1) failure modes identified. Section 6.2
reports the findings on the efficacy of Software Fault Modes and Effects Analysis (SFMEA) as a
method for identifying faults leading to system failures impairing a safety function (Objective 2).

The information obtained included some terms that had multiple meanings in the sources cited
and referenced. For the purpose of integrating information drawn from these sources and
references unambiguously, more specific (narrower) definitions of some terms have been
selected. Please see Section 8 Glossary and Appendix A. Efforts outside the scope of this RIL
continue toward a consistent vocabulary across internal and external stakeholders and relevant
standards.

6.1. Digital System Failure Modes Findings

The surveyed technical community has not identified a complete set of (generic or “standard”)
digital system failure modes suitable for use in reasonable assurance determinations in a digital
system like those seen in recent new reactor licensing applications (see Footnote 8). Some
experts indicated that it is unlikely that anyone can identify a complete set of failure modes that
can occur in a moderately complex digital system [MH, AW, PM, DC]9. Dr. Michael Holloway
[MH] summarized that “A comprehensive set depends on the complexity of the system; for any
system that is moderately complex, you can never be sure that you’ve got a comprehensive
set.” A comprehensive, complete set is needed to ensure that no critical unanalyzed conditions
are missed during a regulatory review of a Failure Mode and Effects Analysis (FMEA).
STUK [20] also reported that “software failure modes are generally unknown—software modules
do not fail, they only display incorrect behavior.”

As reported in [21], many companies that develop safety critical systems in other industries
(e.g., aerospace and automotive industries) use two or three generic failure modes10 for
analysis in the early stages of development. Two or three high-level generic failure modes,
however, are not sufficiently informative for use in assurance of a DI&C safety system11 with
more software, interconnections, interactions, and potential feedback paths than systems for
which operating experience has been accumulated.

Section 6.1.1 presents system level DI&C failure modes found through the expert elicitation
process and supplemental research activities.12 The failure modes identified by each source

9 See Table 14 and Table 15 to decode expert initials. Information provided by interviewed experts
is cited by the use of their initials in this RIL.

10 Examples provided in this reference include: function not provided when required; function
provided when not required; function incorrect [21].

11 NRC sponsored Brookhaven National Laboratory that included another set of three generic failure
modes: Failure to generate a signal in time (omission failure), Spurious signal (generation of
signal when it is not required), and Adverse effects on other functions (systems, operators). They
cautioned, however, that for PRA “the level of modeling detail is established by the objectives of
the study and the resources available” [22].

12 Readers note that the failure modes reported in this section may also be reported in the non-cited
references. See Section 11.0.

14

are presented as separate sets (Sets A through K shown in Table 1 through Table 11); patterns
are seen across these sets. For the purpose of reporting the progress made with respect to
identifying digital system failure modes (Objective 2) and to summarize what has been learned,
the staff synthesized information gleaned from sets A through K shown in Table 1 through Table
11 into one generic13 set (Set L). Section 6.1.2 presents this synthesis of identified generic
digital safety system failure modes. This study does not claim that Set L is complete. A specific
system may exhibit some failure mode not identified in Set L. This study does not claim that Set
L is the best possible synthesis for all kinds of purposes; other synthesized characterizations
are possible and may be useful for other purposes. However, for the purpose of NPP safety
system analysis and safety assurance, Set L is more informative than Sets A-K; the extent of its
utility will be explored in future work.

There are other ongoing efforts at the NRC and among stakeholder organizations to identify and
analyze failure modes for different objectives and purposes. A description of the NRC research
projects is provided in Appendix E: Failure Mode Related Efforts by NRC PRA Staff and Other
Stakeholders. Descriptions of research from stakeholder organizations, such as work reported
in the Electrical Power Research Institute’s (EPRI’s) “Hazard Analysis Methods for Digital
Instrumentation and Control Systems” [23], is integrated where appropriate in the body or
appendices of this report.14

6.1.1. Digital System Failure Modes Identified

Sections 6.1.1.1 through 6.1.1.10 provide an overview of different failure modes as
characterized in various sources. Discussions on the utility of these sets of failure modes for
the purpose of organizing data from operating experience of unwanted and possibly unsafe
behaviors of a digital safety system of a kind that may be used in NPPs are also included.

The primary focus is on identified system-level functional failure modes, in terms of behavior
change, as manifested at the system output. Some failure modes found were characterized in
the context of software or some other component, but are analyzed here for insights into how
system-level failure modes can be characterized. The technical community does not consider
these sets of failure modes standard or complete.

6.1.1.1. Reference Set A - NRC/IRSN Collaboration

Table 1 shows a set of failure modes, Reference Set A, elicited from IRSN [2]. The failure
modes are characterized in terms of behavior change, as manifested at the output of a software
module. This set was selected as the baseline (reference set) because it was the most
informative characterization of known digital system failure modes before work on RIL-1002
began.

13 Generic means that the failure modes apply to a broad range of digital safety systems. Additional
failure modes may be found in specific designs.

14 See Section 6.1.1.11, Footnote 20, and Section B.2.9 for descriptions and insights obtained from
EPRI’s research.

15

Table 1 Reference Set A - NRC/IRSN Collaboration [2]

ID Failure Modes Elaboration Remarks

A.1 Failure to perform the module
function at the required time

Deviation from requirement in
time domain

Includes:
• Function completion too

early
• Function completion too

late
• No function completion
May not be discovered in
controlled tests.

A.2 Failure to perform the module
function with correct value

Deviation from requirement in
value domain

Application-specific
examples:
• value zero
• value too low
• value too high
• value stuck at previous

A.3 Performance of an unwanted
function by the module

Deviation from expected
performance of the module

Application-specific example:
Module interrupt service
routine interrupts function
processing.
May be difficult to detect
during system testing

A.4 Interference or unexpected
coupling with another module.

Deviation from expected
system performance due to
module interactions

More prevalent in
software-reliant complex
systems and networked
systems.

May not be discovered in
controlled tests or revealed in
design FMEA.

Since the set of failure modes is small, it would seem to ease the burden of gathering and
organizing data from operating experience. These failure modes, however, are not discernible
by direct observation of the physical state of the failed system, as in the case of a simple
electromechanical relay or similar hardware device. Additional information is needed (e.g.,
run-time history) to determine if the intended function was executed in a timely manner (failure
mode A.1 in Table 1) or, in the case of a multi-valued output, whether the value was incorrect
(failure mode A.2 in Table 1).

Failure mode A.3 occurs when a module performs an unintended or unexpected function, but it
could also have secondary effects. For example, the unintended or unexpected function could
cause the system to respond in a way that deviates from the expected performance of the
system. For example, a module could have an integrated function prioritization routine that
interrupts the cyclic processing of background functions in a manner that causes the

16

background functions to cease operating. This in turn could cause the system to fail to meet
schedule constraints on performing background testing functions.

Failure mode A.4 is a case where a module (module X) may produce a correct, timely output,
but the output interferes with the performance of another module (module Y) in a system.
Often, module X and module Y may satisfy their respective specifications when evaluated
individually or even under integrated testing (which is not exhaustive due to its effort-intensive,
time-intensive nature). Even after failure of module Y in operation, it may be difficult to identify
such interference from the externally observable states of modules X and Y. Significant
investigative effort is needed to detect this class of failure modes.

Reference Set A could be used to aggregate and organize operating experience data to
estimate the historic frequency at which failure modes A.1, A.2, A.3 and A.4 occurred.
However, in the case of a complex digital safety system for a NPP, the historic frequency of
occurrence of failure modes A.1, A.2, A.3, and A.4 (in Table 1) would not be very informative
about the future likelihood of occurrence because of differences across systems and their
environments, as explained in Appendix D: Operating Experience and Failure Modes.

The same limitation occurs in other sets of failure modes, which are discussed in
Section 6.1.1.2 through Section 6.1.1.10. In these sections, Reference Set A is used for
comparison with characterizations reported in these sections and accompanying tables.

6.1.1.2. Failure Mode Set B

In [8], the ACRS provided an “example list” of processor-level “failure modes” as a starting point
for the NRC’s study to identify a “comprehensive” set of failure modes for a digital safety
system. In this example, a “task” implies a “real-time program executing under control of a
kernel or operating system”; the “real-time program” is some unit of work in the application
software.

In Table 2, failure mode B.1 through failure mode B.6 can be abstracted into the behavior
change of a digital safety system (within which these tasks are executing), as manifested at its
output, in the following manner. Failure modes B.1, B.2, B.3, B.4, and B.6 can be mapped (⇒)
into failure mode A.1 (see Table 1). Failure mode B.5 can be mapped into failure mode A.2.
Failure mode B.5 also can be mapped into failure mode A.3. However, the characterization of
failure mode B.5, by itself, does not provide enough information to determine whether the
system-level effect is failure mode A.2 or failure mode A.3. While Set B may be useful for
diagnostic analysis at a component level, its value addition over Reference Set A is unclear for
the purpose of organizing operating experience data.

17

Table 2 Failure Mode Set B [8].

ID Failure Modes Elaboration Remarks/Mapping

B.1 Task Crash The control software task
exits unexpectedly. ⇒A.2

B.2 Task Hang The process goes into an
infinite loop. ⇒A.1

B.3 Task Late Response
The output of the task
exceeds the specified
response time.

⇒A.1

B.4 Task Early Response The output of the task is too
early ⇒A.1

B.5 Task Incorrect Response
The output of the task is
timely but violates
specifications.

⇒{A.2 or A.3}

B.6 Task No Response
There is no output from the
task (but the task is not
suspended).

⇒A.1

Also, there could be some other kind of task-level “misbehavior” that prevents progress of
execution of an application program without anything “failing” (e.g., a task waiting or blocked for
something else). The wait could be indefinite, in case of a deadlock condition. Consider
collecting experiential data about digital system failures at such a level of detail: First, the set of
“failure modes” would have to be expanded to cover missed cases, such as those discussed
above. Next, each failure incident would have to be analyzed to identify the particular “mode.”
In current practice, such information is not available. Secondly, the information may not be
enough to determine future likelihood of occurrence from past frequency of occurrence for the
same reasons that were mentioned in the discussion for Table 1 above.

6.1.1.3. Failure Mode Set C

In “Effective Application of Software Safety Techniques for Automotive Embedded Control
Systems,” [24], which is based on SAE Standard ARP 5580 [25] and tried in the automotive
component industry, failure mode set {C.1, C.2, C.3, C.4} is considered applicable to all
software components. As shown in Table 3, failure mode C.1 is mappable into failure mode
A.1. With failure mode C.2, if no output is produced, the failure mode corresponds to {B.1 or
B.2 or B.6}, all of which map into A.1. Further, in C.2, if an output is produced, the failure mode
corresponds roughly to {B.2 or B.6}, both of which map into A.1.

Failure mode C.3 could correspond to B.3 or B.4 (both mappable into A.1). Failure mode C.4
corresponds roughly to B.5 (mappable into A.2 or A.3). Thus, in Failure Mode Set C, failure
mode C.1 through failure mode C.4 are not more informative than Reference Set A.

18

In [24], failure modes C.5 and C.6 are considered applicable only to interrupt service routines
(ISR). However, failure mode C.5 could apply to any called routine. Furthermore, if failure
mode C.5 does not complete or return, it could block the progress of the calling routine or
program. The effect is similar to failure mode B.5 above.

Table 3 Failure Mode Set C [24].

ID Failure Modes Elaboration Remarks/Mapping

C.1 Failure to execute ⇒A.1

C.2 Executes incompletely No output produced
Output produced

⇒{B.1 or B.2 or B.6}⇒A.1
⇒{B.2 or B.6}⇒A.1

C.3 Executes with incorrect timing
Includes:
• incorrect activation time
• incorrect execution time

⇒A.1

C.4 Erroneous execution Includes incorrect output
value

Similar to B.5.
⇒{A.2 or A.3}

C.5 Failure to return

Subsumes “failure to
complete” failure mode
Effect: Prevents execution of
tasks with lower priority.

Similar to B.5. ⇒{A.2 or A.3}
Applicable only to “interrupt
service routine” (ISR) type of
software

C.6 Returns incorrect priority

Applicable only to ISR in an
operating system using
priority-based scheduling of
tasks.

Failure mode C.6 provides more specific information about a misbehaving interrupt service
routine (ISR). However, a system-specific analysis is needed to determine the effect on the
system behavior. If the analysis finds that system safety is affected, [24] suggests means of
mitigation be devised. However, addition of components may create new hazards and may
increase system complexity. In contrast, the developer should consider correcting the defect
(eliminating the failure mode). If correctness of the original software cannot be assured, it is
unclear how correctness of the mitigating means could be assured. While Set C may be useful
for diagnostic analysis at a component level, its value addition over Reference Set A is unclear
for the purpose of organizing operating experience data.

6.1.1.4. Failure Mode Set D

“Software FMEA Techniques” [26] suggests a generic set of failure modes for consideration at
the early stage of the system development lifecycle to analyze the effects of failures, identify
commensurate requirements and constraints, rework the architecture, and iterate until all
identified failure modes are addressed.

19

Failure Mode Set D was developed from experience in the analysis of automotive embedded
systems (called electronic control units) for controlling brakes, steering, and engine throttle. In
Table 4, failure mode D.1 is an abstraction of all possible combinations of incorrect inputs (i.e.,
the analysis examines the effect of all incorrect sets of inputs). Similarly, failure mode D.2 is an
abstraction of all possible combinations of incorrect outputs (i.e., the analysis examines the
effect of all incorrect sets of outputs). Failure mode D.2 roughly corresponds to B.5 and C.4.

Failure modes D.2, D.3, D.4, and D.5 require system design information at a level of detail that
may not be available at the system architecture design phase or even at the software
architecture design phase. Furthermore, system level analysis requires consideration of the
failure modes of the elements of the system, which, in [26] are the same as the set {C.1, C.2,
C.3, C.4} discussed above. Often, this level of detail is not developed at the system and
software architecture design phases of the development lifecycle for a new system.

Table 4 Failure Mode Set D [26].

ID Failure Modes Elaboration Remarks

D.1 Input value incorrect ⟹A.2

D.2 Output value corrupted Logically complete set
Similar to B.5 and C.4
⟹A.2 or A.3

D.3 Blocked interrupt
Does not map to Set A. This
level of detail is not available
at the system level.

D.4 Incorrect interrupt return
Includes:
• incorrect priority
• failure to return

Does not map to Set A. Does
not map to Set A. This level
of detail is not available at the
system level.

D.5 Priority errors
Causality-oriented
characterization.

D.6 Resource conflict Logically complete set of
resource conflicts.

Causality-oriented
characterization.
⇒A.4.

In [26] and in an interview with the NRC, [PG] cautions about the significant (often prohibitive)
amount of effort required to perform a FMEA on software elements15. While Set D may be
useful for diagnostic analysis at a component level, its value addition over Reference Set A is
unclear for the purpose of organizing operating experience data.

6.1.1.5. Failure Mode Set E

In “Industry Survey of Digital I&C Failures” [27], Korsah, et al., report failure modes identified in
a variety of surveyed failure databases. Many of these databases are identified in ANSI/IEEE

15 Software FMEA requires identification of the failure mode of every algorithm and every variable.

20

Std 500-1984, “IEEE Standard Reliability Data for Pumps and Drivers, Actuators, and Valves”
[28]. IEEE Std 500-1984 databases have been used by various industries to organize
instrumentation failure data. Table 5 summarizes the relationship of the Failure Mode Set E
failures with the Reference Set A categories.

Table 5 Failure Mode Set E [27].

ID Failure Modes Elaboration Remarks/Mapping

E.1 Zero or maximum output Original Source: [28] ⟹A.2

E.2 No change of output with
change of input

Has “no change on demand”
[28] ⟹A.2

E.3 Functioned without signal Has “change without
demand” [28] ⟹A.3

E.4 No function with signal
A special case of E.2.
It could also be the “zero
output case” of E.1.

⟹A.2

E.5 Erratic output Original Source: [28]

Could have effects that are
different from A.2 (output has
incorrect value, but it may be
stable) and should be
considered for inclusion in a
set more comprehensive than
A – see Set L in Table 13.

E.6 High output Original Source: [28] ⟹A.2

E.7 Low output Original Source: [28] ⟹A.2

E.8 Functioned at improper signal
level

May be viewed as a special
case of E.3 or E.5
⟹A.3

E.9 Intermittent Operation

The term “intermittent” is
sometimes used for a case
where failure occurs
intermittently. However,
users logging operational
experience data might not
have such a meaning
consistently.

Could have effects that are
different from A.2 (output has
incorrect value, but it may be
stable) and should be
considered for inclusion in a
set more comprehensive than
A – see Set L in Table 13.

Set E lacks the information provided by failure mode A.1 (incorrectness in time) and failure
mode A.4 (unwanted effect on some other item). Thus, in this respect, Failure Mode Set E is
not as informative as Reference Set A. However, failure mode E.5 and failure mode E.9 could
have effects that are different from failure mode A.2 (output has incorrect value, but it may be
stable) and should be considered for inclusion in a set more comprehensive and informative
than Reference Set A – see Failure Mode Set L in Table 13.

21

6.1.1.6. Failure Mode Set F

Dr. Sergio Guarro abstracted Failure Mode Set F from databases of anomalies and failures at
the National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory
(JPL). Failure mode F.1 is specific to a servo-controlled function and oriented to causality rather
than behavior change observable at output. Failure mode F.1 maps to failure mode A.1, failure
mode A.2, or failure mode A.3, depending on the type of failure. Failure mode F.2 maps into
failure mode E.4, which maps into failure mode A.2. Failure mode F.3 maps into failure mode
E.4, which maps into failure mode A.2. Failure mode F.5 could map into any of failure mode
E.1, failure mode E.2, failure mode E.5, failure mode E.6, or failure mode E.7, which map into
failure mode A.2 (except failure mode E.5). Table 6 summarizes the relationship of the Failure
Mode Set F failures with Reference Set A.

Table 6 Failure Mode Set F

ID Failure Modes Elaboration Remarks/Mapping

F.1 Continuous Control Failure

Control set point too high
Control set point too low
Control algorithm
overcorrecting
Control algorithm under
correcting

Causality-oriented
characterization.
⇒A.1 or
⇒A.2 or
⇒A.3

F.2 Failure to Activate Upon demand ⇒E.4⇒A.2

F.3 Inadvertent Activation Includes premature
activation. ⇒A.3

F.4 Redundancy Management
Failure

Application-specific
examples:
VMC and SIGI redundancy
management failure
Does not map to Reference
Set A.

F.5 Failure to Run Correctly

⇒ A.1, A.2, A.3, or A.4.
⇒E.1⇒A.2 or
⇒E.2⇒A.2 or
⇒E.5 or
⇒E.6⇒A.2 or
⇒E.7⇒A.2.
Application-specific
examples:
• Value zero
• Value too low
• Value too high
• Value stuck at previous

6.1.1.7. Failure Mode Set G

In “How FMEA Improves Hardware and Software Safety & Design Reuse” [29], Bidokhti
identifies Failure Mode Set G for a functional FMEA performed at the top-level software
architecture. Failure modes G.1, G.2, and G.3 are the same as failure modes C.1, C.2, and

22

C.3, but failure mode G.4, “Errors in the assigned functioning,” is not specific or clear enough to
be usable consistently. If the intended meaning is “mistake in allocation of a function to a
software element,” then the characterization is causality-oriented rather than in terms of
behavior change, as manifested at the output.

Bidokhti also mentions other types of FMEA. For hardware-software interface issues, a set of
failure modes are identified as failure to update value; incomplete update of value; value update
occurs at incorrect time; and errors in value or message. Conceptually, these failure modes
correspond to G.1, G.2, G.3, and G.4, respectively.

Table 7 summarizes the relationship of the Failure Mode Set G failures with Reference Set A.

Table 7 Failure Mode Set G [29]

ID Failure Modes Elaboration Remarks/Mapping

G.1 Failure to Execute Conceptually, failure to
update value ⇒C.1⇒A.1

G.2 Incomplete Execution Conceptually, incomplete
update of value

⇒C.2⇒{B.1 or B.2 or
B.6}⇒A.1
⇒C.2⇒{B.2 or B.6}⇒A.1

G.3 Execution at an incorrect time Conceptually, value update
occurs at incorrect time ⇒C.3⇒A.1

G.4
Errors in the assigned
functioning

Conceptually, errors in value
or message

Does not map to Set A.
Causality-oriented. This level
of detail is not available at the
system level.

6.1.1.8. Failure Mode Set H [30]

In “Failure Modes and Effects Analysis (FMEA) and Systematic Design” [30], Murdoch, et al.,
cluster failures into two groups {H.1, H.2}, which could be viewed as generic failure modes,
since the authors use the expression, “A system may generally fail in one of two ways.”
However, H1 is a causality-oriented characterization, and H2 is mappable into A.4. Failure
modes H1 and H2 could also be viewed as categories of failures rather than failure modes.

Table 8 summarizes the relationship of the Failure Mode Set H failures with Reference Set A.

Table 8 Failure Mode Set H [30].

ID Failure Modes Elaboration Remarks/Mapping

H.1 System Failure resulting from
component failure H.1 is causality-oriented Does not map to Set A.

H.2
Unintended functioning when
all components are behaving
according to specification.

 ⇒A.4

23

6.1.1.9. Failure Mode Set I - FMEA Approach for Reliability Modeling of Digital I&C [31]

In “A Generic Failure Modes and Effects Analysis (FMEA) Approach for Reliability Modeling of
Digital Instrumentation and Control (I&C) Systems” [31], Chu, et al., characterize two failure
modes for analog output signals, I.1 and I.2. While these modes may be typical of analog
hardware failures, a system function failure due to software could also result in other incorrect
values. Chu et al. characterize four failure modes for digital output signals, I.3, I.4, I.5, and I.6.
However, only binary valued outputs are considered, even though digital outputs can be
multi-valued (e.g., motor speed to adjust fluid flow rate). Thus, the Set, I, by itself, is not
sufficient for characterizing failure modes of digital safety systems in general.

Table 9 summarizes the relationship of the Failure Mode Set I failures with Reference Set A.

Table 9 Failure Mode Set I [31]

ID Failure Modes Elaboration Remarks/Mapping

I.1 Signal fails high Applicable to analog signals

Only binary valued outputs
are considered even though
multi-valued digital outputs
are possible in digital I&C

safety systems.

I.2 Signal fails low
This failure mode includes
loss of signal. Applicable to
analog signals

I.3 Normally closed, fails closed
(NCFC)

Applies to digital signals

I.4 Normally closed, fails open
(NCFO)

I.5 Normally open, fails closed
(NOFC)

I.6 Normally open, fails open
(NOFO)

6.1.1.10. Failure Mode Set J – WGRisk Activities16 [32]

In “A Summary of Taxonomies of Digital System Failure Modes Provided by the DIGREL Task
Group” [32], and “Development of Best Practice Guidelines on Failure Modes Taxonomy
Reliability Assessment of Digital I&C Systems for PSA” [33], Chu, Holmberg, et al., reported
Failure Mode Set J. Failure mode J.1 and failure mode J.5 do not appear to provide any
information more than failure mode J.7. Failure mode J.6 (causality-oriented) is subsumed in
failure mode J.5. Thus, the seven failure modes identified in Failure Mode Set J have
effect-oriented information equivalent to four failure modes: J.2, J.3, J.4, and J.7. Failure mode
J.2 corresponds to failure mode A.1. Failure mode J.3 corresponds to failure mode A.3. Failure
mode J.4 corresponds to failure mode A.4. Failure mode J.7 (no actuation signal when
demanded) may be viewed as a special case of failure mode A.2 (failure to perform the function
with correct value). Thus, Failure Mode Set J does not provide any more information than

16 Note that these failure modes are compiled from intermediate results of ongoing and evolving
work. These examples of failure modes compiled for this work were compiled from 10 different
organizations participating in the WGRISK Group for a Reactor Protection System. See
Appendix E, Section E.2 for more information.

24

Reference Set A. The latter is more comprehensive because failure mode A.2 is more
comprehensive than failure mode J.7 for the purpose of safety assurance.17

Table 10 summarizes the relationship of the Failure Mode Set J failures with Reference Set A.

Table 10 Failure Mode Set J – WGRisk Activities [32] and [33].

ID Failure Modes Elaboration Remarks/Mapping

J.1 Failure to actuate ⇒A.2

J.2 Failure to actuate in time ⇒A.1

J.3 Spurious actuation ⇒A.3

J.4 Adverse effects on other
functions ⇒A.4

J.5 Loss of function
⇒A.1 or

⇒A.2

J.6 Loss of communication Causality-oriented
⇒J.5⇒A.1, or

⇒A.2

J.7 No actuation signal when
demanded ⇒A.2 (special case)

6.1.1.11. Failure Mode Set K

EPRI’s ongoing Hazard Analysis Methods for Digital Instrumentation and Control Systems
project, in part, researched, evaluated, and developed different methods for identifying ways in
which adverse impact on nuclear safety and operability can occur [34]. Industry sponsored this
work, because plants were experiencing unexpected/unwanted behaviors from some DI&C
systems, even after extensive FMEAs [35]. EPRI summarized its interim project report [23] in a
presentation to the ACRS on September 19, 2013 [36]. Some of the methods tried by EPRI do
not use the term “failure modes” but other terms such as guidewords, deviations, or unsafe
control actions [23] [36]. Table 11 shows a set of “failure modes” identified in the Functional
Failure Modes and Effects Analysis method.

Table 11 Failure Mode Set K [23],[36]

ID Failure Modes Elaboration Remarks/Mapping

K.1 No Function ⇒A.1

K.2 Partial Function ⇒A.1

K.3 Over Function ⇒A.3

17 It is acknowledged that Set J is more informative than Reference Set A for diagnostic analysis.

25

K.4 Degraded Function ⇒A.4 or A.2

K.5 Intermittent Function ⇒E.9 no mapping to
Reference Set A

K.6 Unintended Function ⇒A.3

6.1.1.12. Summary of Failure Mode Correlations to Reference Set A

Table 12 summarizes the correlation of Failure Mode Set B through Failure Mode Set K with
Reference Set A. Readers should note that not all failure modes mapped to Reference Set A.
Reference Set A does not constitute a complete set of digital system failure modes.

Table 12 Summary of Failure Mode Correlations to Reference Set A

ID

A.1 A.2 A.3 A.4

Failure to perform
the module function
at the required time

Failure to perform
the module function
with correct value

Performance of an
unwanted function
by the module

Interference or
unexpected
coupling with
another module

B.1 X

B.2 X

B.3 X

B.4 X

B.5 X X

B.6 X

C.1 X

C.2 X

C.3 X

C.4 X X

C.5 X X

C.6

D.1 X

26

Table 12 Summary of Failure Mode Correlations to Reference Set A

ID

A.1 A.2 A.3 A.4

Failure to perform
the module function
at the required time

Failure to perform
the module function
with correct value

Performance of an
unwanted function
by the module

Interference or
unexpected
coupling with
another module

D.2 X X

D.3

D.4

D.5

D.6 X

E.1 X

E.2 X

E.3 X

E.4 X

E.5

E.6 X

E.7 X

E.8 X

E.9

F.1 X X X

F.2 X

F.3 X

F.4

F.5 X X X X

27

Table 12 Summary of Failure Mode Correlations to Reference Set A

ID

A.1 A.2 A.3 A.4

Failure to perform
the module function
at the required time

Failure to perform
the module function
with correct value

Performance of an
unwanted function
by the module

Interference or
unexpected
coupling with
another module

G.1 X

G.2 X

G.3 X

G.4

H.1

H.2 X

I.1

I.2

I.3

I.4

I.5

I.6

J.1 X

J.2 X

J.3 X

J.4 X

J.5 X X

J.6 X X

J.7 X

28

Table 12 Summary of Failure Mode Correlations to Reference Set A

ID

A.1 A.2 A.3 A.4

Failure to perform
the module function
at the required time

Failure to perform
the module function
with correct value

Performance of an
unwanted function
by the module

Interference or
unexpected
coupling with
another module

K.1 X

K.2 X

K.3 X

K.4 X X

K.5

K.6 X

Some other reported “failure modes” are not included in Table 2 through Table 11 because
those failure modes could not be related to the system function level or because of differing
interpretations of the term “failure mode.” For example, failure modes of digital components
such as microprocessors, and static random access memory (SRAM), which can be found in
references such as [31] and [37], are not included in Table 2 through Table 11 because the
failure modes listed are specific to such digital hardware components. Appendix B lists
examples that do not align with the definition of “failure mode” used in this RIL, but are aligned
with the definitions of “fault” or “fault mode.”

6.1.2. A Synthesized Set of Digital System Failure Modes

The sets of failure modes in Section 6.1.1 exhibit patterns that indicate utility from different
sources and perspectives. For the purpose of reporting the progress made with respect to
identifying digital I&C failure modes (Objective 2), Table 13 shows a set of digital system failure
modes (L.1-L.9) synthesized from informative characterizations reported in Section 6.1.1 such
that Set L is more informative than any one set reported in Section 6.1.1.

29

Table 13 Failure Mode Set L – Characterization of Failure Modes of a “Generic” Digital
Safety System.

ID Failure Mode Elaboration Remarks/Mapping

L.1 No output upon demand Includes no change in output
or no response for any input ⟹A.2

L.2 Output without demand e.g., Unwanted response ⟹A.3

L.3 Output value incorrect Incorrect response to input or
set of inputs

⟹A.2

Includes:

• Value too high or too low;

Value stuck at previous value,
e.g., ON, OFF

L.4 Output at incorrect time
Too early;

Too late.
⟹A.1

L.5 Output duration too short or
too long.

This mode is specific to
continuous functions.

No direct mapping, but
related to A.1, C.3 and F.1

L.6 Output intermittent
Functions correctly
intermittently Example:
Loose connection

⟹E.9

No mapping to Reference Set
A

L.7 Output flutters

Unwanted oscillation; output
fluctuates rapidly Example:
Unstable servo-loop.

Could damage equipment.

⟹E.5

No mapping to Reference Set
A

L.8 Interference

Affects another system, often
resulting from unwanted,
unintended interactions,
coupling, or side effects.

⟹A.4

30

Table 13 Failure Mode Set L – Characterization of Failure Modes of a “Generic” Digital
Safety System.

ID Failure Mode Elaboration Remarks/Mapping

L.9 Byzantine behavior

Possible in a distributed
system.

Could affect redundant
elements of a system.

Could be caused by software
(e.g., propagating and
worsening effect of round-off
error).

Could be caused by
hardware, (e.g., single-bit
hardware fault caused
Amazon S3 system failure in
2008) [33].

⇒J.4⇒A.4

Although Set L in Table 13 is the most informative generic set synthesizable from the surveyed
literature, there may be other system-specific failure modes, worthy of distinct identification,
because the corresponding consequences can be distinguished usefully. Failure mode L.5
through failure mode L.8, at some moment, could be construed to be a special case of one of
the other failure modes (L.1, L.2, L.3, or L.4) in failure mode Set L; these are identified distinctly,
because the consequences could be different or the recovery paths could be different. A
particular system may not exhibit all of the failure modes in Set L. For example, failure mode
L.5 would not be useful in a system that provides only discrete outputs, (i.e., does not provide
any continuous control function). A particular system may also exhibit unexpected or undesired
behaviors not characterized in Set L.

Nevertheless, Set L could be used beneficially to support, in part, development of the design
basis of a system, as well as in the diagnostic analysis of performance-degradation during
operation. The extent of its utility in NPP safety system analysis and safety assurance will be
explored in future work.

6.2. Efficacy of SFMEA for Identifying Faults Leading to System
Failures

Software is not subject to wear and tear or degradation in the same manner as hardware and
does not exhibit failure in that sense. The potential effect of faulty software is considered in
terms of system failure modes (i.e., performance-degradation of the safety function) and is
identified in Section 6.1. The appendices provide more information on the efficacy of Software
Fault Modes and Effects Analysis (SFMEA) as a method for identifying faults that may lead to
system failure, i.e., performance-degradation of a safety function (Objective 2). Appendix B
includes software faults and fault modes identified in the technical literature reviewed and
identified by interviewed experts. Correlation and synthesis of software fault modes was not

31

performed because the number of faults found was very large. Many faults and fault modes
reported in Appendix B may not apply to some software systems.

The staff found six distinct SFMEA processes which are described in Appendix C: Software
Fault Modes and Effects Analysis Methods.18 The methods found were all adapted from
methods originally intended to address hardware failures. None of the methods found were
developed for purposes of assurance of software or digital safety systems similar to those seen
in recent new reactor licensing applications.19 In addition to Appendix C, please see
NUREG/IA-0254 [2] for more information on SFMEA.

18 Other SFMEA processes were also found but are not discussed in detail because of similarities to
the six that are discussed in Appendix C.

19 KAERI has applied SFMEA to a small, critical software module, finding a defect that could not be
found with testing and formal verification. However, KAERI does not claim that it is scalable to
such systems.

32

7. CONCLUSIONS

This RIL is part of an ongoing research effort to improve regulatory guidance concerning digital
safety systems (See Figure 1). Following are the conclusions with respect to objectives 1 and 2
stated in Section 1.1.

7.1. Failure Modes Identified

The staff identified eleven sets of DI&C system failure modes by interviewing subject matter
experts and by performing an extensive literature review. These failure mode sets are not
supported by documented public consensus, and are not endorsed by any accepted standards
for use in determinations of reasonable assurance of a digital I&C safety system with features
such as software, interconnections, interactions, and potential feedback paths.

The failure modes listed in Failure Mode Sets B – K were compared to Reference Set A
because it contained the most informative characterizations of known digital system failure
modes before work on RIL-1002 began. This comparison of the DI&C failure modes found
resulted in one synthesized system level generic set.

The staff’s analysis of the synthesized set of generic failure modes found that they could be
used beneficially to support partial development of the design basis of a DI&C safety system for
use in the nuclear industry. The synthesized set could also be useful in the analysis of
performance-degradation during operation.

The synthesized set of system level DI&C failure modes, however, may not be helpful for
determining the level of safety of a DI&C safety system. Additional critical generic and
system—specific failure modes may exist. Some or all of the failure modes identified may not
manifest in a particular system. In addition, the staff also learned that a digital system may
experience unintended or undesired behaviors without the occurrence of a failure. As such, the
synthesized set may not be comprehensive for purposes of making determinations of
reasonable assurance.

See Section 7.3, Next Steps, for a discussion of the staff’s continuing research efforts to support
licensing reviews of digital safety systems.

7.2. SFMEA

Appendix B lists the software faults and fault modes obtained by the staff throughout this
research effort. Appendix C describes six different SFMEA techniques that were adapted from
techniques originally developed for analyzing hardware failures. No sound technical basis was
found to require or endorse that any of the SFMEA techniques be performed or submitted as
part of licensing applications. Therefore, changes to established regulations and guidance is
not recommended.

33

7.3. Next Steps

RIL-1002 will be followed by RIL-1003, which will discuss the feasibility of applying failure mode
analysis to quantification of risk associated with digital safety systems. RIL-1003 will complete
the staff’s work required by SRM M080605B [1]. RES will continue to track progress of external
research on identification and analysis of digital safety failure modes.20 The NRC has
requested that EPRI review the findings in this report and explore a common position on a
generic set of digital safety system failure modes for analysis or for organizing operating
experience.

The NRC will continue to explore common ground with potential utility for reducing uncertainties
in safety assurance.

A broader hazard analysis approach will be introduced in RIL-1101, which includes the technical
basis to support NRC licensing staff in the evaluation of an applicant’s digital safety system
hazard analysis (HA) submission. A project has also been established to investigate the use of
Safety Demonstration (or Assurance Case) Framework21 as discussed in Section A.6 of
RIL-1001.

Research to establish an HA-based framework for assurance of digital safety systems is
continuing. The RES staff is working with the NRC licensing staff to address related topics
outside the scope of this RIL in other ongoing or future RES projects.

20 The failure modes reported as Failure Mode Set J in Section 6.1.1.10 is from an ongoing and
evolving research effort in which NRC is participating. NRC will continue following this work until
results are finalized.

21 A safety demonstration framework or assurance case seeks to demonstrate the satisfaction of a
safety goal through a logical (argument based) organization and integration of evidence from
verification, validation, and audit activities in digital system development.

34

8. GLOSSARY

8.1. Selection of Definitions

Expert elicitation participants and technical references identified a divergence and lack of
agreement on the vocabulary to discuss the topic with a common understanding [DC, PM, and
MH] [39] [40]. The glossary focuses on terms that are not commonly understood in the same
way in the sources informing the content of this RIL, removing or reducing ambiguity by
selecting and using more specific definitions. Definitions in this RIL are based on definitions
traceable to authoritative sources22, approximately in the following selection order:

1. definitions provided by 10 CFR Part 50, “Domestic Licensing of Production and
Utilization Facilities”

2. IEEE 603 – IEEE Standard Criteria for Safety Systems for Nuclear Power Generating

Stations

3. IEEE Standard 100

4. IEC 60050

5. other engineering standards

6. common acceptable dictionary

The intended usage-scope of these definitions is limited to this RIL. The meanings of
compound words, terms, and expressions are derived from the meanings of their constituent
words, as defined in this glossary. Where a word is not defined explicitly in the glossary, it is
understood in terms of common usage as defined in published dictionaries of the English
language. Notes are included to explain the meaning derived from such composition. Notes
are also used to explain the derivation or adaptation from published definitions to suit the scope
of this document. Notes are also provided where definitions have been modified based on
learning that occurred after the public release of RIL-1001.

8.2. Definitions

Assure: Confirm the certainty of correctness of the claim, based on evidence and reasoning.

Notes:
1. For example, by proof

2. Derived forms:
2.1. Assurance

22 Authoritative sources may choose to modify definitions of the terms included in this glossary after
public release of this RIL. This RIL communicates intermediate results of a long term NRC
research effort. Definitions of future NRC documents may modify the definitions in this RIL with
consideration of new information.

35

2.2. Assurable
2.3. Assurability

3. Claim: A true-false statement about the value of a defined property of a system.
(Adapted from ISO/IEC TR 15026-1:2010 Systems and software engineering – Systems
and software assurance – Part 1: Concepts and vocabulary, revised as ISO/IEC DIS
15026-1:2013. Examples: (1) The system is safe. (2) Property X of the system holds.

3.1. The statement includes the following:

3.1.1. Limitations on the value of the property associated with the claim.

3.1.2. Limitations on the uncertainty of the property value meeting its limitations.

3.1.3. Limitations on conditions under which the claim is applicable.

3.2. The statement may also include the following:

3.2.1. Condition-related uncertainty.

3.3. A limitation may have a single value, may have multiple single values, may have a
range of values, may have multiple ranges of values, or may be multi-dimensional. The
boundary of a limitation may be incremental or conditional or probabilistic.

4. Evidence: Data supporting the existence or verity of something. (Adapted from 3.1936
in ISO/IEC/IEEE 24765 Systems and software engineering – vocabulary, 2010)

5. Reason: Argument: A logical sequence or series of statements from a premise to a
conclusion. (Adapted from http://www.merriam-webster.com/dictionary/argument.
Derived forms:

5.1. Reasoning: The use of reason.
5.2. Reasonable: Being in accordance with reason.

(http://www.merriam-webster.com/dictionary/reasonable)
6. Assurance of a safety system means that the certainty of correctness of the claim about

its “safety property” is confirmed.

7. Assurance of software means that the certainty of correctness of the claim about its
contribution to the “safety property” is confirmed. It is expected that the contribution will
correspond to the allocation of requirements and constraints necessary for supporting
the system safety property.

Byzantine behavior: In a distributed system, arbitrary behavior in response to a failure or fault
[41].

Note: Arbitrary behavior of an element that results in disruption of the intended system
behavior.

Complexity: (A) (software) The degree to which a system or component has functionality,
design or implementation that is difficult to understand and verify. (definition (1)(A) in [42]).

(B) (software) Pertaining to any of a set of structure-based metrics that measure the attribute in
Definition 1A in Ref. [42]. (definition (1)(B) in [42]).

36

http://www.merriam-webster.com/dictionary/argument
http://www.merriam-webster.com/dictionary/reasonable

Note 1: There is no universally accepted definition of the term “complexity.”23
 The notes below

give some other definitions of complexity to illustrate the diversity of perspectives.

Note 2: Conversely (changing negative expression to positive) Simplicity: The degree to which
a system or component functionality, design or implementation can be understood and verified.

Note 3: The number of linearly independent paths (one plus the number of conditions) through
the source code of a computer program is an indicator of control flow complexity, known as
McCabe's cyclomatic complexity [43].

Note 4: In nontechnical language, we can define the effective complexity of an entity as the
length of a highly compressed description of its regularities [44].

Note 5: An ill-defined term that means many things to many people [45].

Note 6: A system is classified as complex if its design is unsuitable for the application of
exhaustive simulation and test, and therefore its behavior cannot be verified by exhaustive
testing. Source: Defence Standard 00-54, Requirements for safety related electronic hardware
in defence equipment, UK Ministry of Defence, 1999.

Component: Constituent, elemental, or most primitive parts of a system.

Control System: (A) “an assemblage of control apparatus coordinated to execute a planned
set of control.” (B) a system in which a desired effect is achieved by operating on the various
inputs to the system until the output, which is a measure of the desired effect, falls within
acceptable range of values.” (C) “A system in which deliberate guidance or manipulation is used
to achieve a prescribed value of a variable.” (D) “A system in which a desired effect is achieved
by operating on inputs until the output, which is a measure of the desired effect, falls within an
acceptable range of values.” Note: All definitions are from [42].

Error: The difference between a computed, observed, or measured value or condition and the
true, specified, or theoretically correct value or condition (definition 8A in [42]).

Failure: The termination of the ability of an item to perform a required function [42] [46].24

Notes:

1. The following definitions represent the perspectives of different disciplines to reinforce
the definition given above:

1.1. The termination of the ability of an item to perform a required function (Definition (1)(A)
in [42]).

1.2. The termination of the ability of a functional unit to perform its required function
(Definition (1)(N) in [42]).

23 Research is needed to clarify complexity within the context of system safety evaluation.
24 Reference [46] includes a note that this concept as defined does not apply to items consisting of

software only.

37

1.3. An event in which a system or system component does not perform a required function
within specified limits; a failure may be produced when a fault is encountered
(Definition (1)(O) in [42]).

1.4. The termination of the ability of an item to perform its required function (Definition 9 in
[42] from “nuclear power generating station”).

1.5. The loss of ability of a component, equipment, or system to perform a required function
(Definition 13 in [42] Safety systems equipment in “nuclear power generating stations”).

1.6. An event that may limit the capability of equipment or a system to perform its function(s)
(Definition 14 in [42] “Supervisory control, data acquisition, and automatic control”).

1.7. The termination of the ability of an item to perform a required function (Definition 15 in
[42] “nuclear power generating systems”)

2. After failure, the item has a fault [46].
3. “Failure” is an event, as distinguished from “fault” which is a state [46].

4. This concept as defined does not apply to items consisting of software only [46].

Failure mode: (A) The effect by which a failure is observed to occur (adapted from definition 1
in [42]). (B) The manner in which failure occurs. (adapted from definition 4 in [42]). Note - A
failure mode is usually characterized by the manner in which a failure occurs.

Fault: the state of an item characterized by inability to perform a required function, excluding
the inability during preventive maintenance or other planned actions, or due to lack of external
resources [46]. 25

Notes

1. A fault is often the result of a failure of the item itself but may exist without prior
failure. (191-05-01 in [46])

2. Following are other definitions, relating “fault” and “defect”:

a. a defect or flaw in a hardware or software component (Definition 13 in
[42]

b. a defect in a hardware device or component; for example, a short circuit
or broken wire (Definition 9 in [42])

c. Synonym: physical defect

3. The following definition is specific to software: An incorrect step, process, or
data definition in a computer program (Definition (7)(A) in [42]).

Fault Mode: One of the possible states of a faulty item, for a given required function [46].

Fault Tree Analysis (FTA): An analysis to determine which fault modes of the subitems or
external events, or combinations thereof, may result in a stated fault mode of the item,
presented in the form of a fault tree [191-16-05 in [46]]

25 This definition is different than the definition of Fault used in RIL-1001 because of learning that
occurred while performing supplemental research activities for RIL-1002.

38

Hazard: Potential for harm

Hazard Analysis (HA): The process of examining a system throughout its lifecycle to identify
inherent hazards and contributory hazards, and requirements and constraints to eliminate,
prevent, or control them.

Notes:

1. “Hazard identification” part of HA includes the identification of losses (harm) of
concern.

2. This definition is narrower than many definitions of HA, some of which
correspond to the NRC’s usage of the term “safety analysis” (as in a safety
analysis report).

a. The scope of the definition excludes the verification that the
requirements and constraints have been satisfied.

b. Various HA definitions and descriptions identify artifacts (results,
including intermediate results) of HA by different names. The
expression “requirements and constraints” used in this definition (to
align and integrate them in well-established systems engineering terms)
subsumes them.

c. The scope of the definition does not include quantification explicitly.
Where appropriate (e.g., for a hardware component, quantification of its
reliability would be implicit in the activity of formulating requirements and
constraints).

Latent Fault: An existing fault that has not been recognized.

Mistake: (A) A human action that produces an unintended result (definition 1 in [42]: electronic
computation). Note: Common mistakes include incorrect programming, coding, and manual
operation [42]. (B) A human action that produces an incorrect result (definition C [42]:
software).

Safety System: System designed (1) to initiate automatically the operation of appropriate
systems including the reactivity control systems, to assure that specified acceptable fuel design
limits are not exceeded as a result of anticipated operational occurrences [10 CFR Part 50,
Appendix A, Criterion 20, “Protection System Functions”]; and (2) to sense accident conditions
and to initiate the operation of systems and components important to safety [10 CFR Part 50,
Appendix A, Criterion 20]. (3) A system that is relied upon to remain functional during and
following design basis events to ensure: (i) the integrity of the reactor coolant pressure
boundary, (ii) the capability to shut down the reactor and maintain it in a safe shutdown
condition, or (iii) the capability to prevent or mitigate the consequences of accidents that could
result in potential offsite exposures comparable to the 10 CFR Part 100, “Reactor Site Criteria,”
guidelines [47].26

26 A safety system includes but is not limited to a) emergency negative reactivity insertion, b)
emergency core cooling, c) post-accident radiation removal, d) containment isolation, and e)
post-accident heat removal.

39

Note: IEEE 603-2009 states that “a safety system shall encompass all of the elements required
to achieve a safety function.” In addition, “safety functions include but are not limited to the
following: a) emergency negative reactivity insertion, b) emergency core cooling, c)
post-accident radiation removal, d) containment isolation, and e) post-accident heat removal”
[48].

Software Fault Mode and Effects Analysis: A qualitative method of reliability analysis, which
involves the study of the fault modes, which can exist in every sub item of the item, and the
determination of the effects of each fault mode on other sub items of the item and on the
required functions of the item.

System: A combination of interacting elements organized to achieve one or more stated
purposes [49].

40

9. EXPERTS CONSULTED

Table 14 identifies experts consulted during the NRC’s DI&C expert elicitation activity, including
the initials used in this RIL to refer to them. Table 15 identifies experts consulted after the
NRC’s DI&C expert elicitation activity, including the symbols used in this RIL to reference their
names.

Table 14 Experts Interviewed during NRC’s DI&C Expert Elicitation Activity.

Abbreviation Expert and
Affiliation Abbreviation Expert and

Affiliation

AW Alan Wassyng
McMaster University JH Jorgen Hansson

Carnegie-Mellon University

BJ Barry Johnson
University of Virginia JM John McDermid

University of York

CW Chris Johnson
University of Glasgow LS Lorenzo Stringini

City University, London

DC Darren Cofer
Rockwell Collins MB Manfred Broy

Technical University of Munich

DD Dan Dvorak
NASA JPL MD Mike Dewalt

Federal Aviation Administration

DW David Ward
MIRA Ltd. MH Michael Holloway

NASA Langley

GH Gerard Holzman
NASA JPL PJ Paul Jones

Food and Drug Administration

JH Jamie Harper
NASA Goddard PM Paul Miner

NASA Langley

JB Jens Braband
TS RA SD RAMSS RB Robin Bloomfield

City University, London

JG John Goodenough
Carnegie Mellon University SS Stefan Schaan

Siemens

JK John Knight
University of Virginia SP Steve Prusha

NASA JPL

41

Table 15 Experts Consulted during Additional NRC Research Activities.

Abbreviation Expert and
Affiliation

Communications with
NRC

HH Herbert Hecht
SoHaR Inc.

Tele-meeting
October 10, 2010

PG Pete Goddard
TRW Automotive

Tele-meeting
September 10, 2010

RC Ram Chillarege
Chillarege Inc.

Tele-meeting
September 1, 2010

RL Robyn Lutz
NASA JPL

Private Communications
w. S. Birla

SG Sergio Guarro
Asca Inc

Informal Presentations
December 22, 2010 and

February 23, 2011

42

10. CITED LITERATURE

[1] A. Vietti-Cook, “SRM M8065B, Memorandum: Staff Requirements Meeting with Advisory
Committee on Reactor Safeguards (ACRS), Thursday, June 5, 2008, Commissioners’
Conference Room, One White Flint North, Rockville, MD,” June 2008, Available:
http://www.nrc.gov/reading-rm/doc-
collections/commission/srm/meet/2008/m20080605b.pdf, Agencywide Documents Access
and Management System (ADAMS) Accession Number: ML081780761.

[2] L. Betancourt, S. Birla, J. Gassino, and P. Regnier, NUREG/IA 0254 Suitability of Fault
Modes and Effects Analysis for Regulatory Assurance of Complex Logic in Digital
Instrumentation and Control Systems, Nuclear Regulatory Commission, 2011 Available:
http://pbadupws.nrc.gov/docs/ML1120/ML11201A179.pdf,

 ADAMS Accession Number: ML11201A179.

 [3] U.S. Nuclear Regulatory Commission, “Research Information Letter
1001-Software-Related Uncertainties in the Assurance of Digital Safety Systems -Expert
Clinic Findings, Part 1,” Available:
http://pbadupws.nrc.gov/docs/ML1112/ML111240017.pdf,

 ADAMS Accession Number: ML111240017.

[4] R.W. Borchardt, “Response to Advisory Committee on Reactor Safeguards
Recommendations on Draft Final Digital Instrumentation and Control Interim Staff
Guidance-06, ‘Licensing Process’,” Dec. 2010,

 ADAMS Accession Number: ML103130193.

[5] “United States Nuclear Regulatory Commission Briefing on Digital Instrumentation and
Control Transcript,” Jun. 2009, Available: http://www.nrc.gov/reading-rm/doc-
collections/commission/tr/2009/20090604a.pdf.

[6] U.S. Nuclear Regulatory Commission, “Final PRA Policy Statement,” Aug. 1995, Available:
http://www.nrc.gov/reading-rm/doc-collections/commission/policy/60fr42622.pdf.

[7] T.L. Chu, G. Martinez-Guridi, M. Yue, J. Lehner, and P. Smanta, NUREG/CR 6962,
“Traditional Probabilistic Risk Assessment Methods for Digital Systems,” U.S. Nuclear
Regulatory Commission, 2008 Available:
http://pbadupws.nrc.gov/docs/ML0831/ML083110448.pdf,

 ADAMS Accession Number: ML0803110448.

[8] W. Shack, “Digital Instrumentation and Control Systems Interim Staff Guidance, ACRS
Letter to NRC Commission,” Apr. 2008, ADAMS Accession Number: ML081050636.

[9] U.S. Nuclear Regulatory Commission, “Interim Staff Guidance on Review of New Reactor
Digital Instrumentation and Control Probabilistic Risk Assessments” Available:
http://pbadupws.nrc.gov/docs/ML0805/ML080570048.pdf.

[10] ACRS, “Advisory Committee on Reactor Safeguards 551st Meeting Transcript,” Apr. 2008,
Available: http://www.nrc.gov/reading-rm/doc-
collections/acrs/tr/fullcommittee/2008/acrs041108-551.pdf

43

http://www.nrc.gov/reading-rm/doc-collections/commission/srm/meet/2008/m20080605b.pdf
http://www.nrc.gov/reading-rm/doc-collections/commission/srm/meet/2008/m20080605b.pdf
http://pbadupws.nrc.gov/docs/ML1120/ML11201A179.pdf
http://pbadupws.nrc.gov/docs/ML1112/ML111240017.pdf
http://www.nrc.gov/reading-rm/doc-collections/commission/tr/2009/20090604a.pdf
http://www.nrc.gov/reading-rm/doc-collections/commission/tr/2009/20090604a.pdf
http://www.nrc.gov/reading-rm/doc-collections/commission/policy/60fr42622.pdf
http://pbadupws.nrc.gov/docs/ML0831/ML083110448.pdf
http://pbadupws.nrc.gov/docs/ML0805/ML080570048.pdf
http://www.nrc.gov/reading-rm/doc-collections/acrs/tr/fullcommittee/2008/acrs041108-551.pdf
http://www.nrc.gov/reading-rm/doc-collections/acrs/tr/fullcommittee/2008/acrs041108-551.pdf

[11] U.S. Nuclear Regulatory Commission, “U.S. Nuclear Regulatory Commission Meeting with
Advisory Committee on Reactor Safeguards Transcript,” Available:
http://www.nrc.gov/reading-rm/doc-collections/commission/tr/2008/20080605b.pdf

[12] US, NRC Digital System Research Plan FY 2010-FY 2014 Available:
http://pbadupws.nrc.gov/docs/ML1005/ML100541484.pdf,

 ADAMS Accession Number: ML100541484.

[13] S. Abdel-Khalik, “Draft Final Digital Instrumentation & Control Interim Staff Guidance-06:
Licensing Process,” Oct. 2010, ADAMS Accession Number: ML102850357.

[14] Erin Engineering, “Benefits and Risks Associated with Expanding Automated Diverse
Actuation System Functions”, EPRI, 2008, Available:
http://pbadupws.nrc.gov/docs/ML0908/ML090860465.pdf,
ADAMS Accession Number: ML090860465.

[15] R.W. Borchardt, “Status of The Nuclear Regulatory Commission Staff Efforts to Improve
the Predictability and Effectiveness of Digital Instrumentation and Control Reviews,”
Available: http://www.nrc.gov/reading-rm/doc-
collections/commission/secys/2009/secy2009-0061/2009-0061scy.pdf.

[16] NRC, Licensing Process Interim Staff Guidance, Nuclear Regulatory Commission, 2011
Available: http://pbadupws.nrc.gov/docs/ML1101/ML110140103.pdf,
ADAMS Accession Number ML110140103.

[17] U.S. Nuclear Regulatory Commission, Regulatory Guide 1.53, Rev. 2, “Application of the
Single Failure Criterion to Safety Systems,” Available:
http://pbadupws.nrc.gov/docs/ML0332/ML033220006.pdf.

[18] IEEE 379-2000, IEEE Standard Application of the Single Failure Criterion to Nuclear
Power Generating Station Safety Systems Available:
http://standards.ieee.org/findstds/standard/379-2000.html

[19] U.S. Nuclear Regulatory Commission, Part II of Regulatory Guide 1.70 Rev. 3, “Standard
Format and Content of Safety Analysis Reports for Nuclear Power Plants LWR Edition,”
Available: http://pbadupws.nrc.gov/docs/ML0113/ML011340108.pdf,
ADAMS Accession Number: ML011340108.

[20] P. Haapanen, “STUK-YTO-TR 190 Failure mode and effects analysis of software-based
automation systems,” Helsinki: Radiation and Nuclear Safety Authority, 2002.

[21] T. Stålhane, S. Farfeleder, and O. Daramola, “Safety Analysis Based on Requirements,”
Available: www.cesarproject.eu.

[22] T. -L. Chu, G. Martinez-Guridi, M. Yue, P. Samanta, G. Vinod, and J. Lehner, “Workshop
on Philosophical Basis for Incorporating Software Failures in A Probabilistic Risk
Assessment,” Available: http://pbadupws.nrc.gov/docs/ML0927/ML092780607.pdf,
ML092780607.

[23] Hazard Analysis Methods for Digital Instrumentation and Control Systems.
 EPRI, Palo Alto, CA: 2013. 3002000509

44

http://www.nrc.gov/reading-rm/doc-collections/commission/tr/2008/20080605b.pdf
http://pbadupws.nrc.gov/docs/ML1005/ML100541484.pdf
http://pbadupws.nrc.gov/docs/ML0908/ML090860465.pdf
http://www.nrc.gov/reading-rm/doc-collections/commission/secys/2009/secy2009-0061/2009-0061scy.pdf
http://www.nrc.gov/reading-rm/doc-collections/commission/secys/2009/secy2009-0061/2009-0061scy.pdf
http://pbadupws.nrc.gov/docs/ML1101/ML110140103.pdf
http://pbadupws.nrc.gov/docs/ML0332/ML033220006.pdf
http://standards.ieee.org/findstds/standard/379-2000.html
http://pbadupws.nrc.gov/docs/ML0113/ML011340108.pdf
http://www.cesarproject.eu/
http://pbadupws.nrc.gov/docs/ML0927/ML092780607.pdf

[24] B.J. Czerny, J.G. D’Ambrosio, B.T. Murray, and P. Sundaram, “2005-01-0785 Effective
Application of Software Safety Techniques for Automotive Embedded Control Systems,”
Warrendale, PA: SAE International, 2005 Available:
http://www.sae.org/technical/papers/2005-01-0785.

[25] SAE, SAE ARP 5580 SAE ARP 5580, “Recommended Failure Modes and Effects Analysis
(FMEA) Practices for Non-Automotive Applications,” 2001.

[26] P.L. Goddard, “Software FMEA Techniques,” Proceedings of the Annual Reliability and
Maintainability Symposium, IEEE, 2000, pp. 118–123 Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=816294.

[27] K. Korsah, M.D. Muhlheim, and D.E. Holcomb, “ORNL/TM-2006/626 Industry Survey of
Digital I&C Failures,” Oak Ridge National Laboratory/Nuclear Regulatory Commission,
2007 Available: http://www.ornl.gov/~webworks/cppr/y2007/rpt/125413.pdf.

[28] ANSI/IEEE, “ANSI/IEEE 500-1984 IEEE Standard Reliability Data for Pumps and Drivers,
Actuators, and Valves”, ANSI/IEEE, 1984 Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=35066.

[29] N. Bidokhti, “How FMEA Improves Hardware and Software Safety & Design Reuse,”
International Workshop on Software Reuse and Safety (RESAFE-2006), Torino, Italy:
Available: www.favaro.net/john/RESAFE2006/papers/Bidokhti.pdf.

[30] J. Murdoch, J.A. McDermid, and P. Wilkinson, “Failure Modes and Effects Analysis
(FMEA) and Systematic Design,” International System Safety Conference, 2001 Available:
ftp://ftp.cs.york.ac.uk/pub/hise/Failure%20Modes%20&%20Effects%20Analysis.pdf.

[31] T. -L. Chu, M. Yue, G. Martinez-, and J. Lehner, “A Generic Failure Modes and Effects
Analysis (FMEA) Approach for Reliability Modeling of Digital Instrumentation and Control
(I&C) Systems,” 10th International Probabilistic Safety Assessment and Management
Conference, Seattle, WA 2010.

[32] T. -L. Chu, M. Yue, and W. Postma, “A Summary of Taxonomies of Digital System Failure
Modes Provided by the DIGREL Task Group,” PSAM 11, Helsinki, Finland: 2012, ADAMS
Accession Number: ML120680552.

[33] J. -E. Holmberg, S. Authén, and A. Amri, “Development of Best Practice Guidelines on
Failure Modes Taxonomy Reliability Assessment of Digital I&C Systems for PSA,” PSAM
11, Helsinki, Finland, 2012.

[34] B.J. Geddes and R.C. Torok, “Digital System Failure Mode Analysis Methodologies,”
NPIC&HMIT (2010), Las Vegas, NV, American Nuclear Society, 2010, pp. 1690–1696.

[35] R. Torok and B. Geddes, “Systems Theoretic Process Analysis (STPA) Applied to a
Nuclear Power Plant Control System,” March 2013, Available:
http://psas.scripts.mit.edu/home/wp-
content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf.

[36] R. Torok, B. Geddes, and D. Blanchard, “Update on Digital Instrumentation and Control
Projects - Failure Modes - Hazard Analysis Methods - Operating Experience Review - PRA

45

http://www.sae.org/technical/papers/2005-01-0785
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=816294
http://www.ornl.gov/%7Ewebworks/cppr/y2007/rpt/125413.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=35066
http://www.favaro.net/john/RESAFE2006/papers/Bidokhti.pdf
ftp://ftp.cs.york.ac.uk/pub/hise/Failure%20Modes%20&%20Effects%20Analysis.pdf
http://psas.scripts.mit.edu/home/wp-content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf
http://psas.scripts.mit.edu/home/wp-content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf

Insights,” September 2013, Available:
http://pbadupws.nrc.gov/docs/ML1327/ML13277A646.pdf.

[37] S.M. Cetiner, K. Korsah, and M.D. Muhlheim, “Survey on Failure Modes and Failure
Mechanisms in Digital Components and Systems,” NPIC&HMIT (2009), Sixth American
Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control,
and Human-Machine Interface Technologies, LaGrange Park, IL: American Nuclear
Society, 2009.

[38] Amazon S3 Team, “Amazon S3 Availability Event July 20, 2008,” Amazon Web Services
Available: http://status.aws.amazon.com/s3-20080720.html.

[39] N.G. Leveson, Safeware: System Safety and Computers, Addison-Wesley Professional,
1995.

[40] SoHaR, “Software Failure Modes and Effects Analysis {FMEA},” November 2011,
Available: www.sohar.com/proj_pub/download/SoHaR_FMEA_Final.pdf.

[41] F. Schneider, Understanding Protocols for Byzantine Clock Synchronization, Cornell
University, Available: http://hdl.handle.net/1813/6699.

[42] IEEE “IEEE Standards Dictionary: Glossary of Terms and Definitions,” IEEE Std
100-2000.

[43] T.J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering, Vol.
SE-2, December. 1976, pp. 308–320.

[44] M. Gell-Mann and S. Lloyd, “Effective Complexity,” June 2003, Available:
http://www.santafe.edu/media/workingpapers/03-12-068.pdf.

[45] G.W. Flake, The Computational Beauty of Nature: Computer Explorations of Fractals,
Chaos, Complex Systems, and Adaptation, Cambridge, Mass: MIT Press, 1998 QA76.6
.F557 1998.

[46] IEC 60050-191 International Electrotechnical Vocabulary - Chapter 191: Dependability
and Quality of Service, IEC, 1990.

[47] Institute of Electrical and Electronic Engineers (IEEE) 603-1991, IEEE Standard Criteria for
Safety Systems for Nuclear Power Generating Stations, 1991 Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=159411.

[48] IEEE Standard 603-2009, “Standard Criteria for Safety Systems for Nuclear Power
Generating Stations,” 2009 Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5325914.

[49] IEEE Std 15288-2008 “Systems and Software Engineering System Life Cycle Processes,”
ISO/IEC 15288:2008(E) (Revision of IEEE Std 15288-2004, 2008), pp. 1–84.

46

http://pbadupws.nrc.gov/docs/ML1327/ML13277A646.pdf
http://status.aws.amazon.com/s3-20080720.html
http://www.sohar.com/proj_pub/download/SoHaR_FMEA_Final.pdf
http://hdl.handle.net/1813/6699
http://www.santafe.edu/media/workingpapers/03-12-068.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=159411
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5325914

11. LITERATURE REVIEWED BUT NOT CITED

[NC1] IEEE, “A Discussion of the Term Failure Mode,” IEEE Std 500-1984, Dec. 1983, pp. 22–
26.

[NC2] D. Vallespir and J. Herbert, “A Framework to Evaluate Defect Taxonomies,” 2009.
Available:
http://sedici.unlp.edu.ar/bitstream/handle/10915/20983/2634.pdf%3Fsequence%3D1

[NC3] N. Ozarin and M. Siracusa, “A Process for Failure Modes and Effects Analysis of
Computer Software,” Reliability and Maintainability Symposium, 2003. Annual, 2003, pp.
365–370.

[NC4] T.L. Chu, G. Martinez-Guridi, M. Yue, and J. Lehner, “A Review of Software-Induced
Failure Experience,” American Nuclear Society 5th Int. Meeting on Nuclear Power
Instrumentation Control and Human Machine Interface Technology, American Nuclear
Society, 2006.

[NC5] W. Li and H. Zhang, “A Software Hazard Analysis Method for Automotive Control
System,” Computer Science and Automation Engineering (CSAE), 2011 IEEE
International Conference on, 2011, pp. 744–748.

[NC6] E. Fronczak, “A Top-Down Approach to High-Consequence Fault Analysis for Software
Systems,” Proceedings The Eighth International Symposium on Software Reliability
Engineering, 1997, p. 259.

[NC7] ACRS, “ACRS Digital I&CS Subcommittee Transcript,” June 2011, Available:
www.nrc.gov/reading-rm/doc-collections/acrs/agenda/2011/

 ADAMS Accession Number: ML111711584.

[NC8] B.J. Czerny, J.G. D’Ambrosio, P.O. Jacob, B.T. Murray, and P. Sundaram,
“2004-01-1666 An Adaptable Software Safety Process for Automotive Safety-Critical
Systems,” Warrendale, PA: SAE International, 2004 Available:
http://www.sae.org/technical/papers/2004-01-1666

[NC9] C. Price and N. Snooke, “An Automated Software FMEA,” Singapore: 2008 Available:
http://users.aber.ac.uk/nns/publications/papers/SFMEA_ISSRC.pdf

[NC10] M. Grottke, A.P. Nikora, and K.S. Trivedi, “An Empirical Investigation of Fault Types in
Space Mission System Software,” Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference on, 2010, pp. 447–456.

[NC11] K. Korsa, M.S. Cetiner, M.D. Mulheim, and Poore III, Willis P., “An Investigation of
Digital Instrumentation and Control System Failure Modes,” 7th ANS Topical Meeting on
Nuclear Power Plant Instrumentation, Control, and Human-Machine Interface
Technology, Las Vegas, NV, 2010 Available:
http://www.osti.gov/bridge/product.biblio.jsp?osti_id=1038464

47

http://sedici.unlp.edu.ar/bitstream/handle/10915/20983/2634.pdf%3Fsequence%3D1
http://www.nrc.gov/reading-rm/doc-collections/acrs/agenda/2011/
http://www.sae.org/technical/papers/2004-01-1666
http://users.aber.ac.uk/nns/publications/papers/SFMEA_ISSRC.pdf
http://www.osti.gov/bridge/product.biblio.jsp?osti_id=1038464

[NC12] U.S. Nuclear Regulatory Commission, “Branch Technical Position 7-21: Guidance on
Digital Computer Real-Time Performance, Revision 5 [ML070550070],” March 2007,
ADAMS Accession Number: ML070550070.

[NC13] B.M. Cook, “Classification of I&C Systems: A Practical Approach,” NPIC&HMIT 2010,
Las Vegas, NV: American Nuclear Society, 2010, pp. 99–119.

[NC14] A. Vietti-Cook, “COMGEA-11-0001 – UTILIZATION OF EXPERT JUDGMENT IN
REGULATORY DECISION MAKING,” March 2011,

 ADAMS Accession Number: ML110740304.

[NC15] G. Apostolakis, “COMGEA-11-0001, UTILIZATION OF EXPERT JUDGMENT IN
REGULATORY DECISION MAKING,” January. 2011, Available: www.nrc.gov/reading-
rm/doc-collections/commission/comm-secy/2011/2011-0001comgea.pdf,
ADAMS Accession Number: ML110200139.

[NC15] U.S. Nuclear Regulatory Commission, “Common Q Safety Evaluation, Non-Proprietary
Version,” ADAMS Accession Number: ML003740165.

[NC16] H. Hecht, X. An, and M. Hecht, “Computer Aided Software FMEA,” Computer Press,
2004.

[NC17] A. Avizienis, “Dependability and Its Threats: A Taxonomy,” Building the Information
Society:, J. -C. Laprie, B. Randell, and R. Jacquart, eds., Boston: Kluwer Academic
Publishers, 2004, pp. 91–120.

[NC18] R.R. Lutz and I.C. Mikulski, “Empirical analysis of safety-critical anomalies during
operations,” Software Engineering, IEEE Transactions on, vol. 30, 2004, pp. 172–180.

[NC19] R. Lutz and A. Nikora, “Failure Assessment,” ISHEM ’05, Napa, CA: 2005.

[NC20] Reliability Analysis Center, “94-12203 Failure Mode, Effects, and Criticality Analysis
(FMECA),” Reliability Analysis Center, 1993.

[NC21] Omnicon Group Inc., “Failure Modes and Effects Analysis (Brochure),” February 2004,
Available:
www.omnicongroup.com/images/pdf/brochures/OmniconSWFMEABrochureRevJ8.5x11
.pdf

[NC22] N. Ozarin, “Failure Modes and Effects Analysis during Design of Computer Software,”
IEEE, 2011, pp. 201–206 Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1285448.

[NC23] M. Hecht, E. Shokri, S. Meyers, E. Nguyen, W. Greenwell, and A. Lam, “Failure Modes
and Effects Analysis for a Software-Intensive Satellite Control System,” 26th
International System Safety Conference 2008: ISSC 2008 ; Vancouver, Canada, 25 - 29
August 2008, Red Hook, NY: Curran, 2009, pp. 612–622.

[NC24] D.R. Wallace and D.R. Kuhn, “Failure Modes in Medical Device Software: an Analysis of

48

http://www.nrc.gov/reading-rm/doc-collections/commission/comm-secy/2011/2011-0001comgea.pdf
http://www.nrc.gov/reading-rm/doc-collections/commission/comm-secy/2011/2011-0001comgea.pdf
http://www.omnicongroup.com/images/pdf/brochures/OmniconSWFMEABrochureRevJ8.5x11.pdf
http://www.omnicongroup.com/images/pdf/brochures/OmniconSWFMEABrochureRevJ8.5x11.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1285448

15 Years of Recall Data,” 2001, pp. 301–311.

[NC25] D. Andra, “Failure Modes Presentation,” 2002, Available:
www.wdtb.noaa.gov/workshop/wdm/originals/FailureModes.pdf

[NC26] Pacific Northwest National Laboratory (PNNL), “Failure Modes: Meaning, Identification
& Analysis in SW-Intensive DI&C System for Nuclear Power Plant Safety Functions
(Draft, PNNL D19.Second Evolution),” December 2009.

[NC27] M. Dixit, D. Brenchley, S. Shoemaker, R. Sullivan, and J. Young, “Failure Modes:
Meaning, Identification & Analysis is SW-Intensive DI&C Systems (Draft PNNL Report,
D19),” February 2010.

[NC28] H. Zhang, “Fast Abstract: A Study on SFMEA Method for UML-based Software,” 20th
International Symposium on Software Reliability Engineering, Mysuru, India: IEEE
Computer Society, 2009

[NC29] W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl, NUREG 0492 Fault Tree
Handbook, 1981.

[NC30] N. Bidokhti, “FMEA is Not Enough,” IEEE, 2009, pp. 333–337 Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4914698

[NC31] Westinghouse, WCAP-16438-NP, Rev.3, APP-GW-JJ-004, Rev. 0 FMEA of AP1000
Protection and Safety Monitoring System (Non-Proprietary), 2011
ADAMS Accession Number: ML110670191.

[NC32] Federal Aviation Administration, “Guide to Reusable Launch and Reentry Vehicle
Reliability Analysis,” April 2005, Available:
www.faa.gov/about/office_org/headquarters_offices/ast/licenses_permits/media/FAA_A
ST_Guide_to_Reliability_Analysis_v1.pdf

[NC33] IEC, IEC 61508, Edition 2.0, International Standard: Functional Safety of
Electrical/Electronic/Programmable Electronic Safety Related Systems - Part 4:
Definitions and Abbreviations, IEC, 2010.

[NC34] B. Li, “Integrating Software into PRA (Probabilistic Risk Assessment),” Ph.D., University
of Maryland, College Park, 2004.

[NC35] L. Buglione and A. Abran, “Introducing Root-Cause Analysis and Orthogonal Defect
Classification at Lower CMMI Maturity Levels,” Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.3192

[NC36] G.Y. Park, D.I. Kim, and C.H. Jung, “Issues on Validation of Programmable Logic
Design for Digital Instrumentation and Control System,” NPIC&HMIT (2010), Las
Vegas, NV, American Nuclear Society, 2010, pp. 954–963.

[NC37] N. Carte and D. Halverson, “Licensing Process for Digital Safety Systems,” NPIC&HMIT
2010, Las Vegas, Nevada: American Nuclear Society, 2010, pp. 1001–1008.

49

http://www.wdtb.noaa.gov/workshop/wdm/originals/FailureModes.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4914698
http://www.faa.gov/about/office_org/headquarters_offices/ast/licenses_permits/media/FAA_AST_Guide_to_Reliability_Analysis_v1.pdf
http://www.faa.gov/about/office_org/headquarters_offices/ast/licenses_permits/media/FAA_AST_Guide_to_Reliability_Analysis_v1.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.3192

[NC38] AREVA NP Inc., ANP-10310NP Methodology for 100% Combinatorial Testing of the
U.S. EPR(TM) Priority Module, Non-Proprietary Version, AREVA NP Inc., 2011
ADAMS Accession Number: ML111010480.

[NC39] B. Nolan, B. Brown, L. Balmelli, T. Bohn, and U. Wahli, Model Driven Systems
Development with Rational Products, [United States?] : IBM, International Technical
Support Organization, 2008.

[NC40] N. Snooke, “Model-based Failure Modes and Effects Analysis of Software,” Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1253

[NC41] N. Snooke and C. Price, “Model-Driven Automated Software FMEA,” IEEE, 2011, pp. 1–
6 Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5754453.

[NC42] T.L. Chu, M. Yue, G. Martinez-Guridi, K. Mernick, J. Lehner, and A. Kuritzky,
NUREG/CR-6997 Modeling a Digital Feedwater Control System Using Traditional
Probabilistic Assessment Methods, Brookhaven National Laboratory/NRC, 2009
Available: www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6997/

[NC43] R. Stattel, “Oconee Digital Safety System Licensing Experience,” NPIC&HMIT (2010),
Las Vegas, NV: American Nuclear Society, 2010, pp. 977–991.

[NC44] B. Geddes, N. Thuy, and R. Torok, “1016731 Operating Experience Insights on
Common-Cause Failures in Digital Instrumentation and Control Systems,” EPRI, 2008
Available:
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=0000000000010
16731

[NC45] J. Dehlinger and R.R. Lutz, “PLFaultCAT: A Product-Line Software Fault Tree Analysis
Tool,” Automated Software Engineering, Vol. 13, January 2006, pp. 169–193.

[NC46] N. Bidokhti, “Practical Software Failure Analysis Presentation,” June 2008, Available:
www.opsalacarte.com/pdfs/Tech_Papers/Practical_SW_Failure_Analysis_for_Applied_
Reliability_Symposium_June_2008.pdf

[NC47] E. Piljugin, S. Authén, and J. -E. Holmberg, “Proposal for the Taxonomy of Failure
Modes of Digital System Hardware for PSA,” PSAM 11, Helsinki, Finland: 2012.

[NC48] G. -Y. Park, H. -S. Eom, S. -W. Cheon, S. -C. Jang, and D. -H. Kim, “Quantitative Safety
Analysis of Nuclear Safety Software,” NPIC&HMIT (2010), Las Vegas, NV, American
Nuclear Society, 2010, pp. 1297–1304.

[NC49] Duke Energy /Oconee Nuclear Station, RPS/ESPS Failure Modes and Effects Analysis
Summary Calculation, Non-Proprietary Version, 2009
ADAMS Accession Number: ML091770437.

[NC50] J. Liu, J. Dehlinger, and R. Lutz, “Safety Analysis of Software Product Lines Using
State-Based Modeling,” IEEE, 2011, pp. 21–30 Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1544718

50

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1253
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5754453
http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6997/
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001016731
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001016731
http://www.opsalacarte.com/pdfs/Tech_Papers/Practical_SW_Failure_Analysis_for_Applied_Reliability_Symposium_June_2008.pdf
http://www.opsalacarte.com/pdfs/Tech_Papers/Practical_SW_Failure_Analysis_for_Applied_Reliability_Symposium_June_2008.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1544718

[NC51] J.B. Bowles and C. Wan, “Software Failure Modes and Effects Analysis for a Small
Embedded Control System,” IEEE, 2011, pp. 1–6, Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=902433

[NC52] G. -Y. Park, “Software FMEA Analysis for Safety Software,” International Conference on
Nuclear Engineering, Brussels, Belgium: ASME

[NC53] WCAP-16592-NP, Revision 2 Software Hazard Analysis of AP1000TM Protection and
Safety Monitoring System (Non-Proprietary), 2010 ADAMS
Accession Number: ML103370195.

[NC54] G. -Y. Park, S. -W. Cheon, K.C. Kwon, K.Y. Koh, P.H. Seong, E. Jee, and S. Cha,
“Software Qualification Activities for Safety Critical Software,” NPIC&HMIT (2009),
Tennessee: American Nuclear Society, 2009.

[NC55] G. -Y. Park, H. -S. Eom, D. -H. Kim, and H.G. Kang, “Software Reliability Assessment of
Reactor Protection System,” Transactions of the American Nuclear Society (ANS), vol.
103, 2010.

[NC56] T. Hobson, “Software Safety: Examples, Definitions, Standards, Techniques,”
November 2008, Available: www.cs.not.ac.uk/~cah/G53QAT/Schedule08.html

[NC57] European Cooperation for Space Standardization, ECSS-Q-80-03 Space Product
Assurance: Methods and Techniques to Support the Assessment of Software
Dependability and Safety (Draft), 2006 Available:
http://www.ecss.nl/forums/ecss/dispatch.cgi/home/showFile/100623/d20060426090708/
No/Draft-ECSS-Q-80-03A(1March2006).pdf

[NC58] National Aeronautics and Space Administration (NASA), NSTS 22206 Revision D Space
Shuttle: Requirements for Preparation and Approval of Failure Mode and Effects
Analysis (FMEA) and Critical Items List (CIL), 1993.

[NC59] R.J. Duphily, Aerospace Report No. TOR-2009 (8591) -13 Space Vehicle Failure
Modes, Effects, and Criticality Analysis (FMECA) Guide, 2011 Available:
www.everyspec.com/USAF/TORs/TOR2009-8591-13_21606

[NC60] NASA, “Standard for Performing a Failure Mode and Effects Analysis (FMEA) and
Establishing a Critical Items List (CIL) (DRAFT): Flight Assurance Procedure
(FAP) - 322-209,” Nov. 2011, Available: http://rsdo.gsfc.nasa.gov/documents/Rapid-III-
Documents/MAR-Reference/GSFC-FAP-322-208-FMEA-Draft.pdf

[NC61] R.R. Lutz, “Targeting Safety-Related Errors during Software Requirements Analysis,”
SIGSOFT Softw. Eng. Notes, Vol. 18, December. 1993, pp. 99–106.

[NC62] S. Perry, R.L. Wears, and R.I. Cook, “The Role of Automation in Complex System
Failures,” Journal of Patient Safety, Vol. 1, March. 2005, pp. 56–61.

[NC63] N. Ozarin, “The Role of Software Failure Modes and Effects Analysis for Interfaces in
Safety-and Mission-Critical Systems,” IEEE, 2008, pp. 1–8 Available:

51

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=902433
http://www.ecss.nl/forums/ecss/dispatch.cgi/home/showFile/100623/d20060426090708/No/Draft-ECSS-Q-80-03A(1March2006).pdf
http://www.ecss.nl/forums/ecss/dispatch.cgi/home/showFile/100623/d20060426090708/No/Draft-ECSS-Q-80-03A(1March2006).pdf
http://www.everyspec.com/USAF/TORs/TOR2009-8591-13_21606
http://rsdo.gsfc.nasa.gov/documents/Rapid-III-Documents/MAR-Reference/GSFC-FAP-322-208-FMEA-Draft.pdf
http://rsdo.gsfc.nasa.gov/documents/Rapid-III-Documents/MAR-Reference/GSFC-FAP-322-208-FMEA-Draft.pdf

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519009.

[NC64] C. Raspotnig, V. Katta, A.L. Opdahl, and T. Stålhane, HWR 1002 Towards Approaches
for Analysis and Argumentation of Systems Safety and Security: Comparison of
Techniques and Conceptual Model, 2011.

[NC65] AREVA NP Inc., ANP-10309NP U.S. EPR Protection System: Technical Report,
Non-Proprietary Version, 2011 Available:
http://pbadupws.nrc.gov/docs/ML1119/ML11195A295.pdf,
ADAMS Accession Number: ML11195A295

[NC66] R. Lutz and A. Patterson-Hine, “Using Fault Modeling in Safety Cases,” IEEE, 2008, pp.
271–276 Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4700333.

[NC67] R. Lutz, “What Software Product Lines Can Tell Us about Sustainable, Long-lived
Systems,” Nov. 2009 Available:
http://www.cs.iastate.edu/~sandeepk/publications/SPLC10_lutz_weiss_krishnan_yang.
pdf

[NC68] J. Gray, “Technical Report 85.7 Why Do Computers Stop and What Can Be Done About
It?” 1985 Available: www.hpl.hp.com/techreports/tandem/TR-85.7.html.

[NC69] “NRC: Glossary - Reasonable” Available:
 http://www.nrc.gov/reading-rm/basic-ref/glossary/reasonable.html.

[NC70] C. Eckert, “Identification and Elimination of Systemic Problems,” Proceedings of the
Society of Maintenance and Reliability Professionals Annual Symposium, St. Louis,
MO: 2009.

[NC71] G. -Y. Park, K.C. Kwon, E. Jee, K.Y. Koh, and P.H. Seong, “Safety Activities on
Safety-Critical Software for Reactor Protection System,” Transactions of the American
Nuclear Society (ANS), vol. 96, Jun. 2007, pp. 237–238.

[NC72] G. -Y. Park, “Software Qualification Activities for Safety Critical Software,” March. 2014,
Available: https://ric.nrc-gateway.gov/Docs/Abstracts/parkg-y-th27-hv.pdf.

52

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4519009
http://pbadupws.nrc.gov/docs/ML1119/ML11195A295.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4700333
http://www.cs.iastate.edu/%7Esandeepk/publications/SPLC10_lutz_weiss_krishnan_yang.pdf
http://www.cs.iastate.edu/%7Esandeepk/publications/SPLC10_lutz_weiss_krishnan_yang.pdf
http://www.hpl.hp.com/techreports/tandem/TR-85.7.html
http://www.nrc.gov/reading-rm/basic-ref/glossary/reasonable.html
https://ric.nrc-gateway.gov/Docs/Abstracts/parkg-y-th27-hv.pdf

APPENDIX A. THE VOCABULARY RELATED TO FAILURE MODES –
A DISCUSSION

Terms such as failure, fault, defect, error, and mode are commonly used in different ways,
leading to ambiguity and confusion. To avoid misunderstanding, RIL-1002 uses each of these
terms as defined in the Glossary27 and based on authoritative28 sources. This discussion
explains the rationale underlying the selected definitions.

The scope and context of this discussion is limited29 to a software-dependent safety system,
where the criticality is of the highest level and the system consists of safety-related elements
only.

The discussion starts with an introduction of basic concepts (failure; fault; defect; error; mistake;
stimulus-response; event-action; state and mode) and progresses to a combination of those
concepts (e.g., fault mode) demonstrating the consistency of the combinational terms with the
constituent terms and the value of maintaining such consistency.

A.1. Failure

In the context of engineered systems, especially those with sensors, actuators and control logic,
the term “failure” has been used to mean “termination of the ability of an item to perform a
required function” 30 [A1](also see [A2] and definitions 1A, 1N, 1O, 9, 13, 14 and 15 in [A3]).
The term, “failure” implies that the system or component of concern was once31 able to perform
its required function [MB]. Failure is an event [A1], signifying termination or loss of function.
This widely accepted definition is similar to and consistent with the definition of “single failure”
stated in Title 10 of the Code of Federal Regulations (10 CFR) Part 50, Appendix A “General
Design Criteria for Nuclear Power Plants”: “A single failure means an occurrence which results
in the loss of capability of a component to perform its intended safety functions.” In this
definition, “loss of capability” has the same meaning as “termination of the ability” in the
International Electrotechnical Commission (IEC) definition given above. The term “occurrence”
in the definition given in Appendix A of 10 CFR Part 50 maps into the term “event” mentioned
above and in reference [A1].

The concept of “failure” is well-known, well-accepted and well-understood in the context of
physical components and systems with physical elements. Physical components fail as a result
of applied excessive loading, or wear and tear due to physical degradation processes or
mechanisms. Examples of failure of physical systems and components (which were functioning
correctly) include:

1. A fluid flow control (shut-off) valve is unable to stop or resume flow.
2. A motor is unable to provide motion, motive force, or motive torque.

27 Exceptions arise when quoting or citing references, which use these terms in meanings different
from the one in the RIL-1002 glossary.

28 Authoritative definitions are those accepted with a broad consensus, usually evidenced by
inclusion in an accepted standard by a reputable standards organization.

29 While the discussion may have much broader applicability, the scope is kept narrow for ease of
explanation.

30 This definition is widely accepted.
31 i.e., at the start of operation.

A-1

3. A pipe is no longer able to transport fluid from its source to destination at a specified flow
rate.

4. A resistor ceases to provide the specified resistance.

A.2. Reason for Avoiding the Term “Failure” for Software

The concept of “failure” as explained in Section A.1 does not apply to software [A1]. Some
experts assert that use of the term, failure, for software may be meaningless or perhaps
misleading [DC, PM, and MH]. The rationale is that “Software does not exhibit random wear-out
failures as does hardware; it is an abstraction [A4].” That is, “Software itself does not fail; it is a
design for a machine … Software-related computer [system] failures are always systematic
[A4].”

Software items are of a different nature than hardware items in the applicability of the concept of
failure, as explained above. If the software item does not perform a function under a specific
condition, it was not able to do so from the beginning of operation. “If the item is a software
system or component and is able to perform its function correctly from inception, it will continue
to perform its function; it will not break” [MB]. A software item either performs a function under a
given condition or it does not; the ability to perform a function is never lost. That is, software
does not break down or wear out. This is why the term “failure” as defined in the glossary
should not be used for a software item.

A.3. Fault

The International Electrotechnical Vocabulary, in 191-05-01, defines “fault” as the state of an
item characterized by inability to perform a required function, excluding the inability during
preventive maintenance or other planned actions, or due to lack of external resources.”[A1]

Note the close relationship of this definition with the definition of failure “termination of the ability
of an item to perform a required function,” where “termination of the ability” is an EVENT. Then,
fault is the resulting STATE of the item. Also, note that an item need not “fail” to reach a fault
state. It may be faulty (it may be in a state characterized by the inability to perform a required
function) to begin with, as discussed in Section A.2 above in the case of software.

The International Electrotechnical Vocabulary, in 191-05-20, defines “latent fault” as “an existing
fault that has not yet been recognized” (i.e., discovered) [A1]. In software operating in a system
of highest criticality (e.g., for nuclear reactor safety), one would not expect the system to be
commissioned with a known fault in the safety critical software. However, the system may still
have a latent fault, particularly if it is complex. In such a system, testing, by itself, cannot assure
the absence of a fault. For that reason, other approaches are needed to defend against a
potential latent fault.

In [A3] definition 14 characterizes “fault” as a defect32 in a hardware or software component,
where the term “defect” connotes a deficiency or inadequacy that may impair the intended
function. However, some researchers distinguish between fault and defect as follows: a fault is

32 In software, it is “designed in” [DC, GH], i.e., resulting from some inadequacy in its engineering,
rather than resulting from degradation. In hardware, it may also be the result of some inadequacy
in its manufacturing, fabrication, or construction.

A-2

a logical (function level) abstraction, whereas a defect is described in terms of some physical
characteristic. It may be possible to map many defects at the physical or implementation level
into a single fault at the function level. Then, the abstraction reduces the number of conditions
or cases to be considered in an analysis. On the other hand, a single defect at the physical or
implementation level may lead to multiple faults at the function level. Therefore, it would be
more useful and less confusing to treat fault and defect as different concepts, and the definition
of fault given in the International Electrotechnical Vocabulary should be used.

Appendix B provides examples of faults and a discussion on potential classification schemes.

A.4. Error

Often, the term “error” is used in the sense of “defect” or “fault” as evident in many of the
surveyed publications. Furthermore, often, in the same system or the same publication, the
term “error” is also used in other ways.

The community interested in “fault tolerant systems” does not recommend using “error” to mean
“fault” or “defect.” In the context of this discussion, usage of the term “error” is limited to mean,
“Any discrepancy between a computed, observed, or measured value or condition and the true,
specified, or theoretically correct value or condition” (adapted from combination of definitions 1
and 12 in [A3]). This definition is consistent with definitions 3A, 4, 5, 6, 8A, 11, and 12 [A3].
Note that even the selected definition allows for a wide range of usages. For example, in a
closed loop control system, the specified value may be the setpoint and the discrepancy
between the observed value and the setpoint may not indicate any unwanted or undesirable
behavior; in fact, it may be natural to the control scheme and the controlled system.

Many of the surveyed publications have also used the term “error” to mean a human mistake.
To avoid ambiguity, RIL-1002 avoids usage of the term “error” in that meaning. A mistake is
defined as a human action (or inaction) that produces an unintended or incorrect result (adapted
from definitions 1 and 3 in [A3]).

ISO/IEC/IEEE 24765:2010(E) in 3.1719 (definition of mistake) notes that “The fault tolerance
discipline distinguishes between a human action (a mistake), its manifestation (a hardware or
software fault), the result of the fault (a failure), and the amount by which the result is incorrect
(the error).” [A5]

A.5. Stimulus-Response, Event-Action, State-Mode - Concepts to
Characterize Behavior

The stimulus-response relationship is a useful paradigm to characterize behavior in many fields
of science and provides the underpinning for conceiving, specifying, designing, analyzing, and
evaluating engineered systems. Discretization of the behavior space (e.g., into sub-behaviors)
is a useful way of decomposing or organizing the problem space (or requirements space) for an
engineered system. For example, certain sub-behaviors can only occur under certain
conditions or are required only under certain conditions. The concept of discretizing the
behavior space is used in engineering safety into engineered systems, e.g., detection of a
hazardous condition, such as failure (a change in condition) of a critical valve, and using it as a
stimulus to select (switch to) mitigating behavior.

A-3

An occurrence of some change33 in conditions can be abstracted into the concept, “event.”
When this change serves as a stimulus to enable an action or to select some group of actions
(i.e., change in sub-behavior) or to cause an action by an item, the concept of “event” is useful
in understanding, describing, or specifying the behavior of the item. Following are some other
examples of an event, given in ISO/IEC/IEEE 24765-2010 (E) [A5]:

• a timer expiration
• an external interrupt
• an internal signal
• an internal message

The existence of a certain set of stable conditions can be abstracted into the concept “state.”
For example, the state may be an abstraction of the values of a set of variables that
characterize the behavior of an item. In the example of the valve, introduced earlier, its two
stable states for normal operation are: OPEN; CLOSED.

Mode is defined (definition 8 in [A3] and definition 1 in ISO/IEC/IEEE 24765-2010 (E) §3.1806
[A5]) as a set of related features or functional capabilities of a product. Mapping into the
vocabulary used in the discussion above, “product” maps into “item” and “set of related features
or functional capabilities” maps into sub-behavior.

These standards cite the following examples:
• online mode
• offline mode
• maintenance mode

Taking the example of an operating nuclear reactor, the term “mode” is used to refer to different
sub-behaviors or groups of behaviors such as:

• on power (starting up; raising power; operating at reduced power; operating at full
power; reducing power)

• hot shut down(reactor is sub-critical and coolant temperature is above a certain
threshold)

• cold shut down (reactor is sub-critical and coolant temperature is below a certain
threshold)

• etc.

From these examples, it can be seen that the term “mode” and “state” are related, such that the
term “mode” clusters a number of states into one region of related behaviors. The term “state”
can also be used in this manner (i.e., a state can be an abstraction of a set of finer-grained
states). Technically, “mode” and “state” have the same meaning; the differences lie in popular
usage.

With the various examples given above, it can be seen that the state-based event-driven
paradigm34 provides a unified means to describe or specify normal operational, as well as
off-normal non-operational behaviors. The vocabulary used to characterize different kinds of
conditions should be consistent with this paradigm.

33 Example in the case of a normally functioning valve: Termination of its ability to perform its
required function.

34 Example formalisms: Finite state machine or automaton; extended finite state machine.

A-4

A.6. Failure Modes

Although the term, “failure mode” is used very commonly, its usage is not supported by the
International Electrotechnical Vocabulary 60050 Chapter 191: Dependability and Quality of
Service, amended, 1999-03 [A1].

IEEE Std 500-1984 P&V (withdrawn) defines “Failure Mode” as the effect35 by which a failure is
observed to occur [A6]. However, even for components such as pumps, valves, and actuators,
which are simpler than the DI&C systems being introduced in NPPs, the authors of this standard
found differences in usage and intended meanings of the basic terms.

IEEE Std 500-1984 P&V in Section 1.3, defines failure as “the termination of the ability of an
item or equipment to perform a required function.” Essentially this definition is the same as in
Section A.1 above.

In order to assist in a common understanding and usage of basic terms, IEEE Std 500-1984
P&V published Appendix A [A7], discussing these terms. In its Section A5, it recognized
“failure” to be an event, as characterized in Section A.1 above. IEEE Std 500-1984 P&V in
Section 1.3 defines failure mode as “the effect by which a failure is observed to occur.” Then,
IEEE Std 500-1984 P&V, in Section A5 of the Appendix, explains that “A failure mode provides
a descriptive characterization of the failure event in generic terms” with the intent of
distinguishing the term, “failure mode” from the mechanism causing the failure and from the
effect36 propagated to a higher level assembly or other elements of a system with multiple levels
of assembly.

In contrast, the International Electrotechnical Vocabulary has deprecated the terms “failure
mode,” “failure modes and effects analysis”, and “failure modes, effects and criticality analysis.”
However, this discussion uses the term “failure mode” while referring to usage in cited
publications [A1]. In the examples of failures given in Section A.1, each is an example of one
“failure mode37” for each type of component. For a given type of component, there may be
several “failure modes,” e.g., the following “failure modes” of a fluid flow control (shut-off) valve,
which has two stable states (open; closed), and changes state, responding to inputs (OPEN;
CLOSE):

1. No output upon demand: If it receives input to change its state, it does not, i.e., it stays
where it is

2. Output without demand: It changes state without input.
3. Output at incorrect time: State change is not completed within the required time interval

after input.
4. Output intermittent: Upon receiving input, sometimes the valve responds correctly, but

not at other times (exhibiting one of the other failure modes in this list38).
5. Output flutters: When the input signal OPEN is given, the valve does not change from

the CLOSED state to a stable OPEN state, but its position fluctuates; or, when the input

35 Effect does not have the same meaning here, as denoted by the letter E in FMEA.
36 Here, effect has the meaning denoted by the letter E in FMEA.
37 The term is used herein as used popularly, although inconsistent with ISO/IEC 60051-191 [A1].
38 Comparing this list with the failure modes L.1-L.8 in Table 13, L.5 and L.8 are not applicable to

the 2-position valve: L.5 applies to an element with continuous control and L.8 applies to a
distributed system.

A-5

signal CLOSE is given, the valve does not transition from the OPEN state to a stable
CLOSED state, but its position fluctuates.

In each of the five modes above, the behavior is exhibited in repeated occurrences of the input.

A.7. Fault Modes

A term related to fault is “fault mode” which is defined as “one of the possible states of a faulty
item, for a given required function [A1]. Referring to the example of the valve given in Section
A.3, according to IEC 60051-191 [A1] these are fault modes – not failure modes. The subject of
fault modes for software items is further discussed in Appendix B.

A.8. Bibliography

[A1] IEC, “IEC 60050-191 International Electrotechnical Vocabulary - Chapter 191:
Dependability and Quality of Service,” IEC, IEC60050-191, 1990.

[A2] U.S. Nuclear Regulatory Commission, “Research Information Letter 1001:
Software-Related Uncertainties in the Assurance of Digital Safety Systems - Expert Clinic
Findings, Part 1.”

[A3] IEEE, “IEEE 100 The Authoritative Dictionary of IEEE Standards Terms Seventh Edition,”
IEEE Std 100-2000, 2000.

[A4] Nancy G. Leveson, Safeware: System Safety and Computers. Addison-Wesley
Professional, 1995.

[A5] IEEE, “24765-2010 - Systems and Software Engineering - Vocabulary,” Standard
24765-2010, 2010.

[A6] ANSI/IEEE, “IEEE Standard Reliability Data for Pumps and Drivers, Actuators, and
Valves,” ANSI/IEEE, ANSI/IEEE 500-1984, 1984.

[A7] IEEE, “A Discussion of the Term Failure Mode,” IEEE Std 500-1984, pp. 22–26, Dec.1983.

A-6

APPENDIX B. IDENTIFIED SOFTWARE FAULTS AND FAULT
MODES SETS

Section 6.1.1 reported digital system instrumentation and control (I&C) failure modes identified
during the expert elicitation process and supplemental NRC research activities. This appendix
reports the software faults39, fault modes40, and classification and taxonomy schemes that were
identified.41

B.1. Software Faults and Fault Modes Identified by Source

After analyzing the information available, more faults and fault modes were found than can be
presented.42 This section presents some fault and fault mode sets found through the expert
elicitation process and supplemental NRC research activities. The staff found that faults, fault
modes, and effects resulting from activated faults or fault modes were often identified in the
technical literature as “failure modes” or “software failure modes.” Because of the large number
of faults and fault modes, correlation analysis and fault synthesis similar to failure mode
correlation and synthesis in Sections 6.1.1.12 and 6.1.2 was not performed. The staff also
could not assemble a set of faults and fault modes of greatest concern for software that could
be used for assurance of a digital safety system similar to those seen in recent new reactor
licensing applications. Experts indicated that it may not be possible to generate a complete list
of suitable faults and fault modes [JK, GH, MH].

The faults and fault mode sets reported in this document are limited to references reviewed for
the purposes listed in Section 1.1. A section is dedicated to each source reviewed. Faults and
fault modes are reported in tables that consist of 3 columns. The first column provides an
identification number for each fault and fault mode. The second and third columns present the
faults and fault modes. Faults and fault modes may be repeated in multiple sections. Columns
are shaded if no information was found for the respective category. Other characterizations of
the faults and fault mode sets presented are possible. Faults and fault modes may exist that
are not listed in this section.

B.1.1. Fault/Fault Mode Set 1

In his paper, “How FMEA Improves Hardware and Software Safety & Design Reuse”43 [B3], N.
Bidokhti states that “there are many categories” of software faults and provides five example

39 The state of an item characterized by inability to perform a required function, excluding the
inability during preventive maintenance or other planned actions, or due to lack of external
resources” [B1].

40 One of the possible states of a faulty item for a required function [B2].
41 Consistent definitions of the terms “failure”, “failure mode” and “fault” are not used in the technical

literature. This appendix reports “faults” as defined in this RIL. The sources cited may have
referred to faults as errors, failures, bugs, etc. See the Glossary and Appendix A for information
on the definitions chosen for RIL-1002.

42 Terminology consistent with definitions used in this RIL replaces the original wording in this
section where possible in the tables below. It was not possible to replace the terminology by
some authors.

43 This is the same source of Failure Mode Set G in Section 6.1.1.7.

B-1

categories: Requirements faults, Interface faults, Fault Tolerance faults, Resource Usage
faults, and Data faults.

Example faults and fault modes are provided in the paper, organized into two of the example
categories: Requirement Faults and Interface faults. The author seems to acknowledge that
his examples and definitions may not be suitable for every situation. He states that it is
essential that “definition of [faults], categories of [faults], and [fault] modes are well understood
and accepted by all team members,” before any identification and analysis begins.

Table B-1 Fault/Fault Mode Set 1 [B3].

ID Faults Fault Modes

1.1 Incorrect requirements

1.2 Ambiguous requirements

1.3 Conflicting requirements

1.4 Exceptional condition not
specified

1.5 Test points or monitors not
specified

1.6

Message based interface
fault

No message received

1.7 Invalid message received

1.8 Message received out of
sequence.

1.9 Duplicate message received

1.10 Message not acknowledged

1.11 Message acknowledged out of
sequence

1.12 Duplicate acknowledge
received

B.1.2. Fault/Fault Mode Set 2

In their paper titled “Failure Modes in Embedded Systems and Its Prevention” [B4], the authors
stated that two main groups of faults are possible: hardware and software. The authors state
that their list contains “some examples” of software faults.

B-2

Table B-2 Fault/Fault Mode Set 2 [B4].

ID Faults Fault Modes

2.1

Buffer overflow:

computer memory is smaller
than the programmer
expected

2.2

Dangling pointers:

Common in non-safe
programming languages in
which the human
programmer is responsible
for making sure every
pointer points to the right
memory location at all times.

2.3 Resource leaks (such as
memory leaks)

2.4
Race conditions: specific
relative timing events that
lead to unexpected
behavior.

2.5

Semantic design: the
meaning of an arrow
between two subsystems in
a visual software
environment not interpreted
the same way by the
hardware.

B.1.3. Fault/Fault Mode Set 3

Czerny et al, in “Effective Application of Software Safety Techniques for Automotive Embedded
Control Systems” [B5]44, provided a set of variable fault and fault modes. The paper stated that
“In addition to potential variable [fault] modes, potential processing logic fault modes may be
considered.” Analysis of processing logic faults and fault modes includes examining
computational operators and operations (e.g., addition, subtraction, multiplication, comparison).

44 This set of fault modes are from the same source as Failure Mode Set C.

B-3

Table B-3 Fault/Fault Mode Set 3 [B5].

ID Faults Fault Modes

3.1
Variable type – Analog

Fault

High

Low

3.2
Variable Type – Boolean

Fault

True when False

False when True

3.3

Enumerated Example
Values

Faults

A when it should be B,

B when it should be C,

C when it should be A, or

C when it should be B

B.1.4. Fault/Fault Mode Set 4

A paper by Vyas and Mittal, “Operation Level Safety Analysis for Object Oriented Software
Design Using SFMEA” [B6], presents a bottom up approach to identifying faults and fault modes
in methods used in object oriented code. Four fault and fault mode cause types are listed as
“failure modes”: “Precondition Violation Failure Modes, Parametric Failure Modes, Method Call
or Invoke Failure Modes, and Post Conditional Failure Modes.”

Table B-4 Fault/Fault Mode Set 4 [B6].

ID Faults Fault Modes

4.1
Incorrect method
response with
precondition violated

4.2
Precondition satisfied but
corresponding exception
is raised.

4.3
Constraints on Parameter
Value faults

Constraint is false but
exception is not raised,
constraint is true but
exception is raised.

B-4

Table B-4 Fault/Fault Mode Set 4 [B6].

ID Faults Fault Modes

4.4
Method m1 invokes m2 in
wrong order (if invocation
of m2 is condition based)

4.5
m1 invokes m2 by wrong
parameters (if m2 is
parameterized)

4.6
m1 (of class A) fails to
invoke m2 (of class B)
because lack of instance
of class B

4.7
m1 invokes m2 in wrong
order (if invocation of m2
is condition based)

4.8
m1 invokes m2 by wrong
parameters (if m2 is
parameterized)

B.1.5. Fault/Fault Mode Set 5 NUREG/CR – Appendix C (BNL)

This fault set was obtained from a document that was originally an appendix to NRC
NUREG/CR-6962 [B7]. The appendix did not appear in the final document but it was released
publicly for feedback from the Advisory Committee on Reactor Safeguards [B8].

Table B-5 Fault/Fault Mode Set 5 [B8].

ID Faults Fault Modes

5.1

Software runs into an
infinite loop

Software stops generating
outputs and deadlocks
between processes. More
specific fault modes include:

Halt/Termination with Clear
message, and

Halt/Termination without
clear message.

B-5

Table B-5 Fault/Fault Mode Set 5 [B8].

ID Faults Fault Modes

5.2 Software generates
incorrect output.

Runs with evidently wrong
results, and

Runs with wrong results that
are not evident.

5.3

Software runs with
misleading commands to
the user, incomplete or
incorrect display of
information.

Incomplete or incorrect
information displayed.

5.4 Timing/order fault

5.5 Interrupt induced fault

5.6 Omission of a function or
attribute fault.

5.7 Unintended function or
attribute fault.

5.8
Incorrect implementation of
a function or an attribute
fault.

5.9 Data faults.

B.1.6. Fault/Fault Mode Set 6

In their paper, “Experience Report: Contributions of SFMEA to Requirements Analysis” [B9],
Lutz and Woodhouse postulated four data faults types and four event fault types. The data fault
types are: Absent Data, Incorrect Data, Timing of Data Wrong, and Duplicate Data. The event
fault types are: Halt/Abnormal Termination, Omission, Incorrect Logic/Event, and Timing/Order.

B-6

Table B-6 Fault/Fault Mode Set 6 [B9].

ID Faults Fault Modes

6.1

Lost or missing messages,
absence of sensor input
data, lack of input or
output, failure to receive
needed data, missing
commands, missing
updates of data values,
data loss due to hardware
failures, software process
or sensor does not send
the data needed for correct
functioning.

6.2

Bad data, flags or variables
set to values that don’t
accurately describe the
spacecraft’s state or the
operating environment,
erroneous triggers, limits,
deadbands, delay timers,
erroneous parameters,
wrong command outputs,
or wrong parameters to the
right commands, spurious
or unexpected signals.

6.3

Data arrive too late to be
used or be accurate, or too
early to be used or be
accurate; obsolete data are
used in control decisions
(data age), inadvertent,
spurious (unexpected) or
transient data.

6.4
Redundant copies of data,
data overflow, data
saturation.

6.5
Open, stuck, hung, and
deadlocked at this point
(event) in the process.

6.6
Event does not occur but
process continues
execution, jumps, skips,

B-7

Table B-6 Fault/Fault Mode Set 6 [B9].

ID Faults Fault Modes
short.

6.7

Behavior is wrong, logic is
wrong, branch logic is
reversed, wrong
assumptions about state,
preconditions, “don’t cares”
aren’t truly so; event (e.g.,
command issued) is wrong
to implement the intent or
requirement.

6.8

Event occurs at wrong time
or in wrong order, event
occurs too early, too late,
the sequence of events is
incorrect, an event that
must precede another
event doesn’t occur as it
should, iterative events
occur intermittently rather
than regularly, events that
should occur only once
instead occur iteratively.

B.1.7. Fault/Fault Mode Set 7

In the paper titled “FMEA Performed on the Spinline3 Operational System Software as Part of
the TIHANGE 1 NIS Refurbishment Safety Case” [B10], Ristord and Esmenjaud provided a list
of “five general failure modes.” This list of “five general failure modes” contains effects (as
defined by this RIL): the operating system stops, the program stops with a clear message, the
program stops without a clear message, the program runs producing obviously wrong results,
and the program runs producing apparently correct but wrong results. The authors also defined
“context specific” faults for code that was grouped into blocks of code instructions referred to as
“block instructions.” Correct behavior was defined first; the faults and fault modes identified
were derived from the definition of correct behavior.

Table B-7 Fault//Fault Mode Set 7 [B10].

ID Faults Fault Modes

7.1 The block instructions
execution does not end

B-8

Table B-7 Fault//Fault Mode Set 7 [B10].

ID Faults Fault Modes
through the “exit” point

7.2
The block instruction
execution time does not
meet time limits

7.3

The block instruction does
not perform the intended

actions or performs
unintended actions:

It modifies code memory or
constants

It does not provide
expected outputs.

It modifies the variables that
it shall not modify.

It does not interact as
expected with I/O boards.

It does not interact as
expected with CPU

resources.

It modifies code memory or
constraints.

B.1.8. Fault/Fault Mode Set 8

Becker and Flick, in their paper “A Practical Approach to Failure Modes, Effects, and Criticality
Analysis (FMECA) for Computing Systems” [B11], lists “some typical” faults and fault modes
organized into categories describing the effect of the faults and fault modes. The categories
included effects at the software and hardware level. Hardware effects not listed in Table B-8
include: slow response, startup failure, and loss of external system.

Table B-8 Fault/Fault Mode Set 8 [B11]

ID Faults Fault Modes

8.1
Unsolicited termination of the
normal and correct
processing

No fault mode provided.

8.2
No fault provided. Termination of required

processing without an
associated notification of
termination.

8.3
No fault provided. Process ceases to perform its

required services but
continues performing actions

B-9

Table B-8 Fault/Fault Mode Set 8 [B11]

ID Faults Fault Modes
and consumes resources
without notification of its
status.

8.4 Duplicate messages Application in a different end
state.

8.5 Application failing to send a
message. No fault mode provided.

8.6
Fault (specific fault not
provided) occurs while writing
a checkpoint file.

Checkpoint file not in a
consistent state

8.7 No fault provided. Design limit of size of a
database is reached.

8.8 No fault provided. Application is unable to send
a service request message.

B.1.9. Fault/Fault Mode Set 9 – WGRisk Activities

Chu et al, in [B12], identified faults and fault modes by considering the architecture of an
example digital system. Table B-9 lists the faults and fault modes identified by examining “the
software program running on a particular microprocessor.”

Table B-9 Fault/Fault Mode Set 9 [B12].

ID Faults Fault Modes

9.1 Erroneous operation of data
acquisition

Incorrect value

Incorrect validity

No value

No validity

9.2 Erroneous operation for logic
processing

Failure to actuate (including
failure to hold)

Spurious failure

9.3 Erroneous operation for
voting logic

Incorrect voting

No vote

B-10

Table B-9 Fault/Fault Mode Set 9 [B12].

ID Faults Fault Modes

9.4 Erroneous operation for
priority actuation logic

Incorrect priority

No priority

B.1.10. Fault/Fault Mode Set 10

The faults and fault modes found in IEEE Standard 1044TM-2009 [B1] standard are listed in
Table B-10. Examples of faults listed in the standard are for information only and are not
exhaustive. Additional information on this standard is provided in Section B.2.2.

Table B-10 Fault/Fault Mode Set 10 [B1].

ID Fault Fault Modes

10.1

Defect in data definition,
initialization, mapping,
access, or use, as found in a
model, specification or
implementation.

Variable not assigned initial
value or flag

Incorrect data type or
column size

Incorrect variable name
used

Valid range undefined

Incorrect relationship
cardinality in data model

Missing or incorrect value in
pick list

10.2

Defect in specification or
implementation of an
interface (e.g., between user
and machine, between two
internal software modules,
between software module
and database, between
internal and external software
components, between
software and hardware)

Incorrect module interface
design or implementation

Incorrect report layout
(design or implementation)

Incorrect or insufficient
parameters passed

Cryptic or unfamiliar label
or message in user
interface

Incomplete or incorrect
message sent or displayed

Missing required field on
data entry screen

B-11

Table B-10 Fault/Fault Mode Set 10 [B1].

ID Fault Fault Modes

10.3

Defect in decision logic,
branching, sequencing, or
computational algorithm, as
found in natural language
specifications or in
implementation logic.

Missing else clause

Incorrect sequencing of
operations

Incorrect operator or
operand in expression

Missing logic to test for or
respond to an error
condition (e.g., return code,
end of file, null value)

Input value not compared
with valid range

Missing system response in
sequence diagram

Defect in description of
software or its use,
installation, or operation.

Nonconformity with the
defined rules of a language.

10.4
Defect in description of
software or its use,
installation or operation

10.5 Nonconformity with the
defined rules of a language

10.6 Nonconformity with defined
standard.

10.7 Defect for which there is no
defined type.

10.8 Something is incorrect,
inconsistent, or ambiguous

10.9 Something is absent that
should be present

10.10 Something is present that
need not be.

B-12

Table B-10 Fault/Fault Mode Set 10 [B1].

ID Fault Fault Modes

10.11

Defects inserted during
requirements definition
activities (e.g., elicitation,
analysis or specification):

Function required to meet
customer goals omitted from
requirements specification.

Incomplete use case
specification

Performance requirements
missing or incorrect

Security requirements
missing or incorrect

Function incorrectly specified
in requirements specifications

Function not needed to meet
customer goals specified in
requirements specifications

10.12
Defects inserted during
coding or analogous activities

Incorrect variable typing.

Incorrect data initialization

Module interface not coded
as designed.

10.13 Defect inserted during
product build or packaging

Wrong source file included
in build.

Wrong .EXE file included in
distribution/deployment
package.

Wrong localization
parameters in .INI file

B-13

Table B-10 Fault/Fault Mode Set 10 [B1].

ID Fault Fault Modes

10.14
Defect inserted during
documentation of instructions
for installation or operation

Incorrect menu choices
listed in User Manual.

Incorrect task or navigation
instructions in online help.

Missing installation
pre-requisite in product
specifications.

Wrong version identifier in
product release notes.

B.2. Fault Classification and Taxonomy Schemes

A complete list of software faults and fault modes was not found45. The technical community
has recognized that there is a need to establish a common language to improve communication
about software faults and fault modes. Computer scientists, companies, and standards
organizations have developed several classification systems and taxonomies that seek to
establish a framework for defining, characterizing, and cataloging faults and fault modes to
support software design and development. This section describes a few classification
approaches and taxonomies46:

a. Heisenbugs, Bohrbugs, and Mandlebug classifications

b. IEEE STD 1044-2009, Standard Classification for Software Anomalies

c. Boris Beizer’s Classification of Software Bugs

d. IBM’s Orthogonal Defect Classification (ODC)

e. Hewlett Packard’s Defect Origins, Types, and Modes

f. MITRE’s Common Weakness Enumeration (CWE)

g. Avizienis/Laprie/Randell/Landwehr Taxonomy47

h. A Taxonomy Based on PRA Requirements

i. EPRI’s Hierarchy of Software Interactions and Faults

45 Many faults and fault modes are known but more are expected to be found in the future.
46 This list is not exhaustive. Other classification systems and taxonomies may exist.
47 This taxonomy was used in NUREG/CR-7151 titled “Development of a Fault Injection-Based

Dependability Assessment Methodology for Digital I&C Systems.”

B-14

B.2.1. Heisenbugs, Bohrbugs, and Mandelbugs

This set of “software bugs”48 classifications originated in the paper “Why do Computers Stop
and What Can be Done about It?” [B13] by Jim Gray. Although no formal definition of the terms
was provided, Gray said that bugs could be classified as either Heisenbugs or Bohrbugs.
Heisenbugs were understood to be “soft” meaning that “they go away when you look at them.”
That is, Heisenbugs are transient faults or bugs that change when one inspects the bug.
Although the term “Mandelbugs” was adopted by computer scientists and is sometimes used as
a synonym for Heisenbugs, others have used this term to mean that it is a very complex bug
that has the appearance of being chaotic or that it changes when it is inspected (it’s a Bohrbug
that appears to be a Heisenbug). The other type of software bugs are Bohrbugs, which can be
understood as “solid” and easily detectable by standard techniques. A lesser used term is a
“Schrodinger bug” which can be described as code that should have never worked. This
classification approach has been used to analyze faults in past JPL/NASA space missions
[B14]. Although these terms are used by the software community, no standard definition was
found for these terms.

B.2.2. IEEE STD 1044-2009, Standard Classification for Software
Anomalies

IEEE Standard 1044TM-2009 [B1] provides an approach to “the classification of software
anomalies, regardless of when they originate or when they are encountered within the project,
product, or system life cycle.” The main focus of the standard is to provide a list of attributes
that can be used to classify identified defects in software products discovered by any
organization. The document recognizes that “there are other attributes of failures or defects that
are of unique value to specific applications or business requirements,”; that is, it is expected that
organizations and individuals may tailor the classification attribute values in this standard. The
classification process is also to be defined by the organization using a process provided in this
standard. Table B-11 lists the set of defect attributes in [B1].

Table B-11 Defect Attributes in [B1]

Attribute Definition

Defect ID Unique identifier

Description Description of what is missing, wrong, or unnecessary

Status Current state within defect report life cycle

Asset The software asset (product, component, module, etc.) containing the defect.

Artifact The specific software work product containing the defect.

Version detected Identification of the software version in which the defect was detected.

48 The term “software bugs” includes faults and failures as used by Gray.

B-15

Version corrected Identification of the software version in which the defect was corrected.

Priority
Ranking for processing assigned by the organization responsible for the
evaluation, resolution, and closure of the defect relative to other reported
defects.

Severity
The highest failure impact that the defect could (or did) cause, as determined
by (from the perspective of) the organization responsible for software
engineering.

Probability Probability of recurring failure caused by this defect.

Effect The class of requirement that is impacted by a failure caused by a defect.

Type A categorization based on the class of code within which the defect is found
or the work product within which the defect is found.

Mode
A categorization based on whether the defect is due to incorrect
implementation or representation, the addition of something that is not
needed or an omission.

Insertion activity The activity during which the defect was injected/inserted.

Detection activity The activity during which the defect was detected.

Failure reference(s) Identifier of the failure(s) caused by the defect.

Change reference Identifier of the corrective change request initiated to correct the defect.

Disposition Final disposition of defect report upon closure.

B.2.3. Boris Beizer’s Classification Scheme49

In Chapter 2 of Boris Beizer’s book “Software Testing Techniques – Second Edition,” a
“Taxonomy of Bugs” is presented [B15]. He chose the term “bug” because at the time he wrote
the book word “standards [were] inconsistent with one another and with themselves in the
definition of ‘fault,’ ‘error,’ and ‘failure.’” Beizer acknowledged that “there is no universally
correct way to categorize bugs … [and that] bugs are difficult to categorize.” In addition, “the
severity of a bug, for the same bug with the same symptoms, depends on context.” That is, a
uniquely identified bug will have context-based effects.

In Table 2.1 of his book, Beizer provided the following major categories under which software
bugs can be grouped:

1. Requirements

49 All quotes from Software Testing Techniques, Second edition, by Boris Beizer. Copyright © 1990
by Boris Beizer. The information is reprinted with permission of Van Nostrand Reinhold, New
York.

B-16

2. Features and Functionality
3. Structural Bugs
4. Data
5. Implementation and Coding
6. Integration
7. System and Software Architecture
8. Testing
9. Other, Unspecified

In the only Appendix to his book “Bug Statistics and Taxonomy,” he provided up to five levels of
subcategories to express and detail the bug taxonomy for each major category. His example of
structural bugs (#3 above) demonstrates the taxonomy:

1. 3xxx – Structural Bugs in Implemented Software
2. 32xx – Processing bugs
3. 322xx – Expression evaluations
4. 3222 – Arithmetic expressions
5. 3222.1 – Wrong operator

Beizer noted that the taxonomy may grow to include more subcategories (with a suggested
format of xxxx.x.x). The author warned that “Bug statistics tell you nothing about the coming
release, only the bugs of the previous release.”

B.2.4. IBM’s Orthogonal Defect Classification (ODC)

Orthogonal defect classification [B16][B17] is a classification based on a set of attributes defined
by IBM (the technical lead was [RC]). It is a classification approach intended to lie between
Statistical Defect Models50 and Causal Analysis (quantitative and qualitative classification
extremes). The term “defect” is defined as “a necessary change” in ODC. The definition of
“defect” in ODC is not the same definition used in this RIL. Faults, errors, and mistakes as
defined in this RIL are all of “defects” according to ODC.

The set of attributes used for this classification scheme are:

1. Activity: the activity that was being performed at the time the defect was discovered.
2. Triggers: The environment or condition that had to exist for the defect to surface.
3. Impact: The effect or issue that the defect complicates.
4. Target: The high level identity of the entity that was fixed.
5. Defect Type: The nature of the actual correction that was made.
6. Qualifier: Captures the element of either nonexistent or wrong or irrelevant

implementation in relation to defect type.
7. Source: Identifies the origin of the target.
8. Age: The history of the target.

50 Statistical Defect Models (SDM) are tools that attempt to predict the reliability of a software
product. SDMs attempt to measure the number of defects that remain after a software product
has been deployed, the failure rate of that product, and the short term defect detection rate [B9].

B-17

Defect types consist of:

1. Assignment/Initialization
2. Checking
3. Algorithm/Method
4. Function/Class/Object
5. Timing/Serialization
6. Interface/O-O Messages
7. Relationship
8. Documentation

Defects are qualified by:

1. Missing: defect was caused by an omission
2. Incorrect: defect was caused by a commission
3. Extraneous: defect was caused by to something not relevant or pertinent to the

document or code.

B.2.5. Hewlett Packard’s Defect Origins, Types and Modes

This classification approach specifies defects via three dimensions: origins, types, and modes
[B18]. Origins are the source of the defect, not where the defect is discovered in the lifecycle
process, but where it could have or should have first been corrected. The possible origins are:
specifications/requirements, design, code, environmental support, documentation, or other.
Types are coarse-grained categorizations and differ for each origin (and also include “other”).
The modes are: missing, unclear, wrong, changed, better way. In summary, the origin specifies
“where”, the type specifies “what”, and the mode specifies “why.”

B.2.6. MITRE’s Common Weakness Enumeration (CWE)

CWE [B19] is a “dictionary of known software weaknesses51” [B20] intended for use by the
cyber security community. The dictionary was developed in order to establish a common
language for describing cyber security weaknesses. The project is sponsored by the National
Cyber Security Division of the U.S. Department of Homeland Security and is maintained by the
MITRE Corporation. In addition to defining software weakness terms, the CWE project also
includes entries and metadata, which have been used to create taxonomies of software
weaknesses and to demonstrate the relationship between the defined terms.

51 Weaknesses are defined as “a type of mistake in software that, in proper conditions, could
contribute to the introduction of vulnerabilities within that software. This term applies to mistakes
regardless of whether they occur in implementation, design, or other phases of the SDLC.”
Weaknesses include “flaws, faults, bugs, vulnerabilities, and other errors in software
implementation, code, design, or architecture that if left unaddressed could result in systems and
networks being vulnerable to attack” [http://cwe.mitre.org/about/faq.html#A.1].

B-18

http://cwe.mitre.org/about/faq.html%23A.1

This dictionary includes a taxonomy which is evidence of how hard it is to obtain a list of known
faults and categorize them. As of November 1, 2011, the CWE listed 886 entries. The entries
defined include 157 categories52, 693 weaknesses, 27 views53 and 9 compound elements54.
The level of detail for each weakness varies. “Class Weaknesses” are the most abstract
entries; they are independent of specific languages or technology. “Base weaknesses” are
described in an abstract fashion but with sufficient details for detection and prevention. “Variant
Weaknesses” are described at a very low level of detail, typically limited to a specific language
or technology [B21].

Several organizations have adopted or are adhering to the definitions provided on the CWE
Web site even though the dictionary shows the status of every entry listed on the CWE Web site
as either “Draft” or “Incomplete.” There is no guarantee that the list of terms is complete and
that new weaknesses will not be found.

The staff searched the CWE for faults and fault modes that may occur when software is used in
digital safety systems. Not all of the faults and fault modes listed in the CWE dictionary would
apply to every case proposed by a licensee or applicant. Eliminating the irrelevant known
weaknesses was a challenge for the NRC staff because the CWE is so large. The CWE Web
site provides several graphical depictions of how the entries are related and how they can be
categorized [B22]. For a depiction of just the categories with some vulnerabilities see [B23].
Finding the faults that could apply to software used in digital safety systems was like searching
for a “needle-in-a-haystack.” Some entries that are relevant to digital safety systems in the
CWE include: Indicator of Poor Code Quality [B24], Resource Management Errors [B25],
Improper Restriction of Operations within the Bounds of a Memory Buffer [B26], Improper Input
Validation [B27], and Concurrent Execution using Shared Resource Synchronization (‘Race
Condition’) [B28].

B.2.7. Avizienis/Laprie/Randell/Landwehr Taxonomy

In their paper, “Basic Concepts and Taxonomy of Dependable and Secure Computing” [B29],
Avizienis, Laprie, Randell, and Landwehr faults have eight “basic viewpoints”: phase of
creation, system boundaries, phenomenological cause, dimension, objective, intent, capability,
and persistence. There are “256 different combined fault classes” that are possible but not all
fault classes can be classified by the eight viewpoints. They identified “31 likely combinations”
of fault classes but also state that “more combinations may be identified in the future.”

B.2.8. A Taxonomy Based on PRA Requirements

In the paper, “Integrating Software into PRA: A Software-Related Failure Mode Taxonomy”
[B30], Li et al. (authors from the University of Maryland and NASA), describe a taxonomy
“established based on the principles derived from taxonomy theory, other classifications, and
the PRA requirements” as described in the paper. The taxonomy presented consists of four

52 Category is defined as “a CWE entry that contains a set of other entries that share a common
characteristic.”

53 A View is a “subset of CWE entries that provide a way of examining CWE content.”
54 Compound Element is defined as a CWE entry “that closely associates two or more CWE

entries.”

B-19

levels. It begins from two general types of software faults: internal faults and interaction faults.
More specific types of faults and fault modes are described through a four level hierarchy.

B.2.9. EPRI’S Hierarchy of Software Interactions and Faults

In Appendix B of [B31], EPRI researchers propose a digital failure analysis taxonomy that
includes examples of failure modes, failure mechanisms, faults, and defensive measures for
generic hardware and software implemented at various levels of abstraction. The taxonomy
proposes organizing software faults into four levels of a hierarchy: Binaries (Level 1), Tools
(Level 2), Application and Operating System Software (Level 3), and System Architecture (Level
4). Example fault modes (called Failure Modes), their causes (Failure Mechanisms), and ways
to address them (Defensive Measures) in [B31] do not form a comprehensive listing.

B.3. Summary of Software Faults and Fault Modes Found

This Appendix presents the software faults and fault modes identified during the expert
elicitation process and in the technical literature reviewed. In addition, several taxonomy and
classification schemes were discussed. The potential fault and fault mode space for software in
it is large. Some faults and fault modes reported in this Appendix may be applicable to some
digital systems containing software but not to others. Critical faults and fault modes that are not
listed may also exist. Further analysis of the fault modes listed in this chapter using any of the
techniques discussed in Appendix C will not provide assurance that the software is fault free.
The benefits of further analysis of the faults and fault modes reported (See Appendix C) are
marginal.

B.4. Bibliography

[B1] Software & Systems Engineering Standards Committee, IEEE 1044, IEEE Standard
Classification for Software Anomalies, IEEE, 2010.

[B2] IEC, IEC60050-191 International Electrotechnical Vocabulary - Chapter 191:
Dependability and Quality of Service, IEC, 1990.

[B3] N. Bidokhti, “How FMEA Improves Hardware and Software Safety & Design Reuse,”
International Workshop on Software Reuse and Safety (RESAFE-2006), Torino, Italy:
Available: www.favaro.net/john/RESAFE2006/papers/Bidokhti.pdf.

[B4] S. Khaiyum and Y.S. Kumaraswamy, “Failure Modes in Embedded Systems and Its
Prevention,” Journal of Software Engineering Research, Jun. 2011, Available:
http://astronomyjournal.yolasite.com/resources/2.pdf.

[B5] B.J. Czerny, J.G. D’Ambrosio, B.T. Murray, and P. Sundaram, 2005-01-0785 Effective
Application of Software Safety Techniques for Automotive Embedded Control Systems,
Warrendale, PA: SAE International, 2005 Available:
http://www.sae.org/technical/papers/2005-01-0785

[B6] P. Vyas and R.K. Mittal, “Operation Level Safety Analysis for Object Oriented Software
Design Using SFMEA,” IEEE, 2009, pp. 1675–1679 Available:

B-20

http://www.favaro.net/john/RESAFE2006/papers/Bidokhti.pdf
http://astronomyjournal.yolasite.com/resources/2.pdf
http://www.sae.org/technical/papers/2005-01-0785

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4809269

[B7] T.L. Chu, G. Martinez-Guridi, M. Yue, J. Lehner, and P. Smanta, NUREG/CR- 6962
Traditional Probabilistic Risk Assessment Methods for Digital Systems (NUREG/CR-6962),
U.S. Nuclear Regulatory Commission, 2008 Available:
http://pbadupws.nrc.gov/docs/ML0831/ML083110448.pdf, ADAMS Accession Number:
ML083110448.

[B8] “Draft NUREG/CR-XXXX, "Approaches for Using Traditional Probabilistic Risk Assessment
Methods for Digital Systems, Appendix C: Modeling Of Software Failures,” Available:
http://pbadupws.nrc.gov/docs/ML0726/ML072690238.pdf.

[B9] R.R. Lutz and R.M. Woodhouse, “Experience Report: Contributions of SFMEA to
Requirements Analysis,” ICRE, 1996, pp. 44–51.

[B10] L. Ristord and C. Esmenjaud, “FMEA Performed on the SPINLINE3 Operational System
Software as part of the TIHANGE 1 NIS Refurbishment Safety Case,” CNRA/CSNI
workshop on Licensing and Operating Experience of Computer-Based I&C Systems,
Hluboka nad Vltavou, Czech Republic: Nuclear Energy Agency: Committee on the
Safety of Nuclear Installations, 2001, pp. 37–50 Available: http://www.oecd-
nea.org/nsd/docs/2002/csni-r2002-1-vol2.pdf.

[B11] J.C. Becker and G. Flick, “A practical approach to failure mode, effects and criticality
analysis (FMECA) for computing systems,” IEEE Comput. Soc. Press, 2012, pp. 228–
236 Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=618602.

[B12] T. -L. Chu, M. Yue, and W. Postma, “A Summary of Taxonomies of Digital System
Failure Modes Provided by the DIGREL Task Group,” PSAM 11, Helsinki, Finland: 2012
ADAMS Accession Number: ML120680552.

[B13] J. Gray, Technical Report 85.7 Why Do Computers Stop and What Can Be Done About
It?, 1985 Available: www.hpl.hp.com/techreports/tandem/TR-85.7.html.

[B14] M. Grottke, A.P. Nikora, and K.S. Trivedi, “An empirical investigation of fault types in
space mission system software,” Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference on, Dependable Systems and Networks (DSN),
2010 IEEE/IFIP International Conference on, 2010, pp. 447–456.

[B15] B. Beizer, Software Testing Techniques Second Edition, 1990.

[B16] “Orthogonal Defect Classification,” IBM Research Available:
http://researcher.watson.ibm.com/researcher/view_group.php?id=480

[B17] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, and
M. -Y. Wong, “Orthogonal Defect Classification-A Concept for In-Process
Measurements,” IEEE Transactions on Software Engineering, Vol. 18, November. 1992,
pp. 943–956, Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=177364.

B-21

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4809269
http://pbadupws.nrc.gov/docs/ML0831/ML083110448.pdf
http://pbadupws.nrc.gov/docs/ML0726/ML072690238.pdf
http://www.oecd-nea.org/nsd/docs/2002/csni-r2002-1-vol2.pdf
http://www.oecd-nea.org/nsd/docs/2002/csni-r2002-1-vol2.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=618602
http://www.hpl.hp.com/techreports/tandem/TR-85.7.html
http://researcher.watson.ibm.com/researcher/view_group.php?id=480
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=177364

[B18] J.T. Huber, “A Comparison of IBM’s Orthogonal Defect Classification to Hewlett
Packard’s Defect Origins, Types, and Modes,” 1999, Available:
https://www.stickyminds.com/sites/default/files/article/file/2012/XDD2883filelistfilename1
_0.pdf

[B19] MITRE, “Common Weakness Enumeration Homepage,” Common Weakness
Enumeration Available: http://cwe.mitre.org/.

[B20] S.M. Christey, J.E. Kenderdine, J.M. Mazella, B. Miles, and R.A. Martin, eds., “Common
Weakness Enumeration: A Community-Developed Dictionary of Software Weakness
Types (CWE Version 2.1),” September 2011, Available:
http://cwe.mitre.org/data/published/cwe_v2.1.pdf.

[B21] “CWE Glossary,” Common Weakness Enumeration, Available:
http://cwe.mitre.org/documents/glossary/index.

[B22] “PDFs with Graphical Depictions of CWE (2.2),” Common Weakness Enumeration
Available: http://cwe.mitre.org/data/pdfs.html.

[B23] MITRE, “Development View with Categories Highlighted,” Common Weakness
Enumeration, Available: http://cwe.mitre.org/data/pdf/699_cats_only_colored.pdf.

[B24] “CWE: 398: Indicator of Poor Code Quality,” Common Weakness Enumeration,
Available: http://cwe.mitre.org/data/definitions/398.html.

[B25] “CWE-399: Resource Management Errors,” Common Weakness Enumeration,
Available: http://cwe.mitre.org/data/definitions/399.html.
[B26] “CWE-119: Improper Restriction of Operations within the Bounds of a Memory
Buffer,” Common Weakness Enumeration, Available:
http://cwe.mitre.org/data/definitions/119.html.

[B27] “CWE-20: Improper Input Validation,” Common Weakness Enumeration, Available:
http://cwe.mitre.org/data/definitions/20.html.

[B28] “CWE-362: Concurrent Execution using Shared Resource with Improper
Synchronization (’Race Condition’),” Common Weakness Enumeration, Available:
http://cwe.mitre.org/data/definitions/362.html.

[B29] A. Avizienis, “Dependability and Its Threats: A Taxonomy,” Building the Information
Society:, J. -C. Laprie, B. Randell, and R. Jacquart, eds., Boston: Kluwer Academic
Publishers, 2004, pp. 91–120.

[B30] B. Li, M. Li, K. Chen, and C. Smidts, “Integrating Software into PRA: A Software-Related
Failure Mode Taxonomy,” Risk Analysis, Vol. 26, August. 2006, pp. 997–1012.

[B31] Hazard Analysis Methods for Digital Instrumentation and Control Systems.
EPRI, Palo Alto, CA: 2013. 3002000509

B-22

https://www.stickyminds.com/sites/default/files/article/file/2012/XDD2883filelistfilename1_0.pdf
https://www.stickyminds.com/sites/default/files/article/file/2012/XDD2883filelistfilename1_0.pdf
http://cwe.mitre.org/
http://cwe.mitre.org/data/published/cwe_v2.1.pdf
http://cwe.mitre.org/documents/glossary/index
http://cwe.mitre.org/data/pdfs.html
http://cwe.mitre.org/data/pdf/699_cats_only_colored.pdf
http://cwe.mitre.org/data/definitions/398.html
http://cwe.mitre.org/data/definitions/399.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/362.html

APPENDIX C. SOFTWARE FAULT MODES AND EFFECTS
ANALYSIS METHODS

This appendix presents more details on staff findings on the efficacy of Software Fault55 Modes
and Effects Analysis (SFMEA) as a method for identifying faults leading to system failure, i.e.,
performance-degradation of a safety function. Although no accepted or proposed standards
were found for SFMEA56, “companies have taken the traditional methods used for hardware and
modified them for software” [C9]. Methods that are based on Failure Modes and Effects
Analysis (FMEA) are referred to as SFMEA and are documented in technical literature.
Representative SFMEA processes and applications found in the literature are presented in this
appendix. Observations on the similarities and differences are presented with conclusions
pertinent to the efficacy of SFMEA as a method for identifying faults leading to system failures
impairing a safety function.

C.1. SFMEA in Literature Reviewed

C.1.1. System and Detailed Level SFMEA

In his paper “Software FMEA Techniques” [C10], Goddard described two types of SFMEA:
System level and Detailed level SFMEA. Both techniques are described as being applied
during system design stages.

System level is applied early in the software design after the architecture has been developed
and functions have been assigned to separate software elements in the architecture. This
analysis is focused on top level software design - that is software elements are treated as black
boxes, the code has not yet been written. The authors state that system level SFMEA should
be updated as the top level software design progresses and in parallel with detailed design
SFMEA.

Detailed SFMEA is applied late in the design process when, at minimum, pseudo code is
available. Software requirements documentation, top level design descriptions, and detailed
design descriptions should also be available. In performing the analysis, fault modes for each
variable and each algorithm in each software element needs to be postulated. The effects of
each postulated fault mode must then be traced through the code to the output signals. In both
the article and his interview with the NRC, [PG] stated that “detailed level SFMEA is becoming
moot”57 because it is labor intensive. In particular, detailed SFMEA “may not be cost effective
for systems with adequate hardware protections. [C10]”

55 Whereas the term, “failure modes and effects analysis (FMEA)” is used in the context of the
overall DI&C system, the corresponding concept for software (and other forms of complex logic)
in a DI&C system is “fault modes and effects analysis.” Logic does not fail in the traditional sense
of degradation of a hardware component but the system could fail, due to a pre-existing logic
fault, triggered by some combination of inputs and system-internal conditions.” [C1]

56 The staff did find FMEA standards used for analysis of hardware that includes references: the
following references to this footnote: [C2],[C3],[C4],[C5],[C6],[C7], and [C8].

57 Tele-meeting between NRC and [PG] held on September 10, 2010.

C-1

During his interview, [PG] stated that “the intent of the software FMEA is not to verify the quality
of the software … the entire intent of the software FMEA is to demonstrate that should
something go wrong whether it’s hardware induced or software induced that the software
architecture is such that it will catch that something went wrong and that it will handle it in a safe
manner.” The important assumption is that it is possible to move to a safe state once something
goes wrong. [PG] further noted that “showing that you can detect something, a discrepancy, is
miles away from showing that you can isolate it correctly, make some kind of recovery
technique and push forward.” There is no indication that the SFMEA methods in this reference
are suitable for assurance or for identifying faults that lead to system failures impairing a safety
function.

C.1.2. Functional, Interface, and Detailed SFMEA

Bowles and Wan built on the work of Goddard and provided an example of the SFMEA process
applied to a ball-in-a-tube system in their paper “Software Failure Modes and Effect Analysis for
a Small Embedded Control System” [C11]. Bowles and Wan described three types of SFMEA:
functional, interface, and detailed (compared to system and detailed SFMEA as described by
Goddard [C10]).

In performing the functional SFMEA, Bowles and Wan divided their program into four distinct
software functions. The paper identified three fault modes each for two of the software
functions and traced the effects of the fault modes (the local effect, next-level effect, and system
effect). The local effect is the immediate consequence of the activated fault. The next-level
effect is the consequence of the local effect. The system level effect is the failure that occurs at
the system level. For example, the ball-in-tube system in this paper is designed to keep a small
ball suspended at a predetermined height. Activated faults have local effects that lead to other
effects which ultimately result in the system not being able to maintain the ball at the
predetermined height.

For the interface SFMEA, Bowles and Wan identified three interfaces either between software
modules or software-hardware elements of the system and provided four fault modes for one of
the interfaces. For their example, local and system effects were identified for each of the four
faults of one interface identified.

The detailed SFMEA was described as analyzing “the effect of individual software variable
[faults] on the system output.” The paper listed faults applicable to a few possible variable types
and provided a table example of detailed SFMEA for one computation used in their example
system.

In this paper, Bowles and Wan caution that “detailed SFMEA can be most effectively applied to
software for systems which do not have effective hardware memory protection, processing
results protection, and memory transfer protection.” The SFMEA tables provided in Bowles’ and
Wan’s paper include remarks suggesting that design changes are needed. There is no
indication that the SFMEA methods in this reference are suitable for assurance or for identifying
faults that lead to system failures impairing a safety function.

C-2

C.1.3. SFMEA for Requirements Analysis

Lutz and Woodhouse, in the paper “Experience Report: Contributions of SFMEA to
Requirements Analysis”[C12] describe their use of SFMEA process in combination with a
process similar to Fault Tree Analysis (FTA) during the requirements analysis stage of the
software lifecycle on 24 software modules on two spacecraft systems. The SFMEA process is
described as “forward searching to identify Cause/Effect relationships” in which data or software
behavior can result in unwanted effects. Fault modes were analyzed through two tables: A
Data Table for analyzing communication faults (data read or received by the software process)
and an Events Table to analyze software process faults (single actions such as “perform a
calculation, sample a sensor value, and command an antenna to slew to another position”).
The tables were used to identify concerns and vulnerable areas with sufficient detail so a reader
could determine whether a requirement needed to be changed. Each table contained four
columns. The data table columns consisted of: Data Item, Data Fault Type, Description, and
Effect. The event table columns consisted of: Event, Event Fault Type, Description, and Effect.
The data and event fault types are listed in Appendix B, which discusses fault modes.

Lutz and Woodhouse noted that “like most failure analysis methods, SFMEA is time consuming;
much of it is tedious; and it depends on the domain knowledge of the analyst and accuracy of
the documentation” and that “unlike hardware, a complete list of failure modes for software
cannot be assembled.” Despite the detractions, Lutz and Woodhouse “found that SFMEA was
feasible and useful for requirements analysis in a large well-documented system.” There is no
indication in this work that SFMEA is appropriate for assurance or for identifying faults leading to
system failures impairing a safety function.

C.1.4. SFMEA for Model-Based and Object Oriented Environments

H. Hecht, in collaboration with X. An and M. Hecht, found SFMEA useful in model-based or
object oriented design environments, specifically when Unified Modeling Language tools are
used [C13][C14]. The approach is described for two lifecycle phases: concept and
design/implementation. The authors also state that the techniques (with the aid of a computer)
can be used to organize Verification and Validation activities. These authors stated that there
are fundamentally “two approaches for partitioning software for a system FMEA: functional or
by output variables, considering one variable at a time.” Both approaches are problematic
because “functional partitions of a program are subjective and different analysts can come up
with different lists of functions for a given program” and that “generating a software FMEA based
on failures of a single output variable misses conditions in which a programming error affects
multiple variables.” In light of these issues, Hecht et al, sought to automate the SFMEA process
for use in the concept, design/implementation, and verification and validation (V&V) phases of
the software lifecycle of model based or object oriented designed software.

The analysis process discussed in Hecht’s work is derived from MIL STD-1629 [C4]. The
SFMEA worksheet lists the following columns: ID, Component, Fault Mode58, Local Effect,
Next-Higher-Level Effect, System Effect, Severity, Detection Method, Compensation, and
Remarks. In this process, components are the methods of the object oriented structures in a

58 The article uses the column “Failure Mode.” The column heading was replaced for this appendix
with “Fault Mode” for terminology consistency.

C-3

software program. The Fault Modes used are a compressed set based on fault mode set
provided in the STUK report [C15] but others can be defined by the analyst. The analyst is also
to provide the information for the compensation and remarks columns.

C.1.5. Code Level SFMEA

Nathaniel Ozarin in three papers: [C16][C17][C18], argued that SFMEA is best performed at the
code level (comparable to detail level as described by Goddard in [C10]). He argued that
“moving from the lowest level of analysis to the highest level – typically from the method level to
the module or package level – a FMEA becomes less accurate, less precise, less tedious, and
less time-consuming … a FMEA is based increasingly on the stated intent … and less on the
actual product behavior”[C16]. Ozarin used his technique to determine if a single software
variable can cause catastrophic events or other serious effects. The result of his analysis is to
make the source code “more robust in specific areas before deployment.” Ozarin provides no
indication that SFMEA can be used to identify faults leading to system failures impairing a safety
function.

The details of the process are articulated in reference [C16] of this appendix. Ozarin specifically
looks at situations where “a software variable is assigned an unintended value” and follows six
steps for the SFMEA process. The six steps are:

1) System and Software Familiarization
2) Database Tool Development
3) Developing Rules and Assumptions
4) Developing Descriptive [Fault]59 Modes
5) Determining System Effects of Individual [Faults] 60
6) Generating the Report

The system and software familiarization is the first step because he recommends that SFMEA
“should not be performed by the people who developed the code.” The purpose of the database
tool development stage is to develop tables to organize the information obtained through the
SFMEA process. The proposed tables include a table to organize the different parts of the
software program (for example, classes could be considered parts of the program). A second
table defines the functions of each subroutine. The third table lists the appropriate variables
(both input and output). A third table organizes the input and output variables of the program.
In step 4 rules and assumptions are outlined for performing the analysis. In step 5, fault modes
are developed that specify how a variable can take on a value that negatively affects the
subroutines that use the variable. The effects of each fault are considered in step 5. In step 6,
the findings and conclusions of the analysis are presented in report format.

59 The word used in the reference is “failure.” It was replaced in this appendix for consistency
based on the definitions provided in the Glossary.

60 The word used in the reference is “failure.” It was replaced in this appendix for consistency
based on the definitions provided in the Glossary.

C-4

C.1.6. Automated Code Level SFMEA

Snooke et al., through references [C20], [C21], [C22], [C23], has explored automating his
version of a SFMEA process. Snooke’s work stems from the observation that “code level
software FMEA has been performed for some years, but has been considered impractical
except when applied to small pieces of highly critical code” [C22]. Snooke proposes a three
step process. The first step is that “the source code of the software to be analyzed [be] parsed
and transformed into a fault propagation model” [C22]. The second step involves injection and
propagation of faulty input and output variables. The third step is identification of system level
effects by mapping the functions of the software program to variables that implement the
functions. Snooke notes that “this work is clearly program language dependent … model
construction has been achieved for a large subset of the JAVA language.” Furthermore, the
work he describes “does not cover all constructs in all languages.” Snooke states that other
tools and processes could be used to make modifications after performance of an SFMEA
[C23]. Snooke also writes that “generally the response might be to identify and remove
unintended interactions and improve error checking” [C23].

C.1.7. Other Versions of the SFMEA Process

A few other sources were found describing a SFMEA process (See [C24],[C25],[C26],[C27]).
These are not discussed to the extent of the examples above because they contained no new
information. Reference [C24] provided an example of SFMEA for an object oriented software
framework that utilized a block diagram of the code to develop a list of possible fault modes
which would be traced from lower level effects up to system level effects. Reference [C25] “did
not involve a detailed analysis of the software.” The process used in [C26] is similar to
Goddard’s work [C10]. Park et al, in “Software FMEA Analysis for Safety Software” [C27], used
SFMEA to analyze an Automatic Test and Interface Processor for a reactor protection system.
Details about the process used in [C27] were not provided. The article did state that function
blocks were used to represent the code and that the fault modes considered fell under
functional, input, and output categories. The process, as described, in [C27] has elements of
the detailed process descriptions provided in this appendix. Other non-public documents were
also reviewed but are not discussed. No new information was obtained in these non-public
documents.

C.1.8. Similarities and Differences among Sources Cited

Each of the versions of the “SFMEA” process found shared some similarities but also had some
differences. All of the examples describe a process where the software is broken down into
more manageable parts for analysis, they evaluated fault modes (see Appendix B for a listing of
the fault modes found), and traced the effects of activating those fault modes. The level of
abstraction of the software considered was different and ranged from very high level (e.g,,
system-level, functional) to more detailed (e.g., code level, interface level). The extent to which
the effects were traced also differed. The software lifecycle stages in which the SFMEA
process was applied ranged from the requirements stage to late in the design stage. The
processes described all had limitations to specific software languages, design environments, or
were not to be used under certain conditions (such as software systems with memory
protection) [C10].

C-5

C.2. Efficacy of SFMEA in Identifying Faults

The staff acknowledges that the variations of the SFMEA process reviewed have been useful in
various stages of the software lifecycle61; however, the staff also found that:

• The potential fault space in software of moderate complexity is large [C1]. Many

faults and fault propagation paths are difficult to identify because they “may be
masked by some other functionality.” [JM].62

• No standard process for performing an SFMEA was found. The variations of the
SFMEA process reviewed were not applicable to all coding languages or
software systems.

• It is difficult to consider all the possible effects of any identified fault on the
system. That is, analysis of a fault mode may not provide certainty that any
system will fail in any particular way because the effects can depend on time or
situation dependent conditions that may apply only under very specific
circumstances.

• The techniques reviewed do not identify faults resulting from system-system and
system-environment interactions [C19]63

In summary, the contribution of the reviewed SFMEA techniques toward assurance of software
would be marginal.

C.3. Bibliography

[C1] L. Betancourt, S. Birla, J. Gassino, and P. Regnier, “Suitability of Fault Modes and Effects
Analysis for Regulatory Assurance of Complex Logic in Digital Instrumentation and Control
Systems,” Nuclear Regulatory Commission, NUREG/IA-0254, April. 2011.

[C2] International Electrotechnical Commission, Analysis Techniques for System Reliability:
Procedure for Failure Mode and Effects Analysis (FMEA). Geneva: International
Electrotechnical Commission, 2006.

[C3] SAE, “SAE J1739, Potential Failure Mode and Effects Analysis in Design (Design FMEA),
Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes
(Process FMEA),” SAE International, Standard J1739, January. 2009.

[C4] “Military Standard: Procedures for Performing a Failure Mode, Effects and Criticality
Analysis,” U.S. Department of Defense, MIL-STD-1629A, November 1980.

61 The methods described in this appendix indicate that SFMEA was useful to the authors and
practitioners during software design.

62 See Appendix B for a list of faults and fault modes identified during the expert elicitation process
and in the technical literature reviewed.

63 EPRI Report Number 3002000509 “Hazard Analysis Methods for Digital Instrumentation and
Control Systems.” published in June 2013 also includes this conclusion.

C-6

[C5] SAE, “SAE ARP 5580, Recommended Failure Modes and Effects Analysis (FMEA)
Practices for Non-Automotive Applications,” Standard SAE ARP 5580, 2001.

[C6] Chrysler Corporation, Ford Motor Company, General Motors Corporation, and Automotive
Industry Action Group, Potential Failure Mode and Effects Analysis (FMEA): Reference
Manual. [Southfield, MI]: Chrysler LLC, Ford Motor Co., General Motors Corp., 2008.

[C7] “352-1987: IEEE Guide for General Principles of Reliability Analysis of Nuclear Power
Generating Station Safety Systems,” ANSI/IEEE, 1987.

[C8] British Standards Institution Group, BS EN 60812:2006 Analysis techniques for system
reliability. Procedure for Failure Mode and Effects Analysis (FMEA). British Standards
Institution Group, 2006.

[C9] N. Bidokhti, “How FMEA Improves Hardware and Software Safety & Design Reuse,”
presented at the International Workshop on Software Reuse and Safety (RESAFE-2006),
Torino, Italy, 2011.

[C10] P. L. Goddard, “Software FMEA Techniques,” 2000, pp. 118–123.

[C11] J. B. Bowles and C. Wan, “Software Failure Modes and Effects Analysis for a Small
Embedded Control System,” 2011, pp. 1–6.

[C12] R. R. Lutz and R. M. Woodhouse, “Experience Report: Contributions of SFMEA to
Requirements Analysis,” in ICRE, 1996, pp. 44–51.

[C13] H. Hecht, Xuegao An, and M. Hecht, “Computer Aided Software FMEA for Unified
Modeling Language Based Software,” pp. 243–248.

[C14] H. Hecht, X. An, and M. Hecht, “More Effective V&V By Use of Software FMEA.”

[C15] P. Haapanen, Failure Mode and Effects Analysis of Software-Based Automation
Systems. Helsinki: Radiation and Nuclear Safety Authority, 2002.

[C16] N. Ozarin, “Failure Modes and Effects Analysis during Design of Computer Software,”
2011, pp. 201–206.

[C17] N. Ozarin and M. Siracusa, “A Process for Failure Modes and Effects Analysis of
Computer Software,” presented at the Reliability and Maintainability Symposium, 2003.
Annual, 2003, pp. 365–370.

[C19] Song, Yao, “Applying System-Theoretic Accident Model and Processes (STAMP) to

Hazard Analysis (2012),” Open Access Dissertations and Theses. Paper 6801.
Available:
http://digitalcommons.mcmaster.ca/cgi/viewcontent.cgi?article=7836&context=opendisse
rtations

C-7

http://digitalcommons.mcmaster.ca/cgi/viewcontent.cgi?article=7836&context=opendissertations
http://digitalcommons.mcmaster.ca/cgi/viewcontent.cgi?article=7836&context=opendissertations

[C18] N. Ozarin, “The Role of Software Failure Modes and Effects Analysis for Interfaces in
Safety- and Mission-Critical Systems,” presented at the SysCon 2008-IEEE International
Systems Conference, Montreal, Canada, 2008.

[C20] C. Price and N. Snooke, “An Automated Software FMEA,” Singapore, 2008.

[C21] N. Snooke and J. Bell, “Combining Functional Modelling and Qualitative Fault
Propagation to Enable Failure Mode Effects Analysis of Software Systems,” presented at
the ECAI MONET workshop, Riva, Italy, 2006.

[C22] N. Snooke and C. Price, “Model-Driven Automated Software FMEA,” 2011, pp. 1–6.

[C23] N. Snooke, “Model-based Failure Modes and Effects Analysis of Software.”

[C24] Tadeusz Cichocki; Janusz Gorski, “Failure Mode and Effect Analysis for Safety-Critical
Systems with Software Components,” presented at the 19th International Conference,
SAFECOMP 2000, Rotterdam, the Netherlands, 2000.

[C25] T. -L. Chu, M. Yue, G. Martinez-, and J. Lehner, “A Generic Failure Modes and Effects
Analysis (FMEA) Approach for Reliability Modeling of Digital Instrumentation and Control
(I&C) Systems,” presented at the 10th International Probabilistic Safety Assessment and
Management Conference, Seattle, WA, 2010.

[C26] B. J. Czerny, J. G. D’Ambrosio, B. T. Murray, and P. Sundaram, “Effective Application of
Software Safety Techniques for Automotive Embedded Control Systems,” SAE
International, Warrendale, PA, 2005-01-0785, April. 2005.

[C27] G. -Y. Park, “Software FMEA Analysis for Safety Software,” presented at the
International Conference on Nuclear Engineering, Brussels, Belgium.

C-8

APPENDIX D. OPERATING EXPERIENCE AND FAILURE MODES

Consistent with regulations and regulatory guidance, failure mode identification and analysis
has been useful, as applied in the past by licensees and accepted by the NRC licensing staff for
regulatory evaluation (for example, FMEA documentation has been reviewed64 to ensure that
the single failure criterion was satisfied65 and has resulted in operational interactions controls
such as testing and maintenance66)67.

For new reactor designs, the staff has continued the practice accepting and reviewing FMEAs to
ensure that the single failure criterion has been met. FMEAs can be a part of Inspections,
Tests, Analyses, and Acceptance Criteria (ITAAC) for systems under development. For
example, the U.S. EPR design, U.S. EPR Tier 1, Table 2.4.1-7 (PS ITAAC), Item 4.18 requires
the performance of an FMEA for the Protection System [D1].

This appendix discusses practice in the organization of operating experience for a “traditional68”
electromechanical device, a 3-phase AC, squirrel cage induction motor, and suitability of a
similar approach for complex software.

D.1. Failure Modes of Induction Motors: Example usage

Three-phase AC squirrel cage induction motors vary over a wide range in combinations of size,
power, and speed, but the engineering principles and key functional elements are the same,
namely:

1. stator; stator winding
2. rotor; armature
3. casing or housing
4. shaft
5. bearings

Because the functional elements are the same across the whole range of motors, the
associated failure mechanisms are the same, and their effect on the behavior of the whole
motor is the same; thus, a compact, complete set of well-defined failure modes that apply to all
squirrel cage induction motors can be identified. The following failure69 modes are from

64 Information reviewed for these purposes is not limited to FMEA documentation.
65 ISG-06[ML11014010] states that “an FMEA is a method for document a single failure analysis

which is in accordance with IEEE Std 379-2000 as endorsed by RG 1.53 Revision. 2.”
66 Internal NRC experts stated that FMEA has been used to demonstrate that necessary

surveillances were identified for credible failures [Norbert Carte]. This information is supported by
SECY-77-439 [ML060260236]. Supporting evidence can also be found by searching licensee
provided License Amendment Requests.

67 FMEA does not address common cause failure (CCF) when a CCF is rooted in a systemic cause
such as an engineering deficiency, it is pervasive (i.e., its effects cannot be pinpointed or isolated,
but could occur at many hard-to-find places).

68 Characterized by long-term stability in engineering principles and design realizations.
69 Note: Usage of the term, failure mode, across guidance documents is not consistent with the

definition selected in RIL-1002. In this case, it is mixed up with failure mechanisms.

D-1

Chapter 14 of the Handbook of Reliability Prediction Procedures for Mechanical Equipment on
the U.S. Navy’s Naval Sea System Command Web site [D2]:

1. open winding
2. shorted winding
3. worn bearing; worn sleeve bearing
4. cracked Housing
5. sheared (armature) shaft
6. cracked rotor laminations
7. worn brushes (applicable to a direct current (DC) motor with brushes; not applicable to

an induction motor)

Yet, operating-experience data for the specific failure modes listed above was not found. A
literature search revealed that frequency of failure data is most often organized by component.
This organization was found useful, because the key functional elements, their failure
mechanisms, the dominant, failure modes manifested at the motor-level remained the same for
all 3-phase AC squirrel cage induction motors. The underlying reasons are (1) the same
engineered principles and key functional elements are used in all these motors, and (2) their
dominant conditions of use fall in the same general pattern.

For example, data for large (200 hp) motors can be found in the IEEE Recommended Practice
for the Design of Reliable Industrial and Commercial Power Systems (IEEE Std 493-1997) [D3].
Specifically, Table 3-17 presents the raw number of failures for each component, and Table
3-19 presents the percentage of failures that pertain to failure initiators, failure contributors, and
underlying causes.

D.2. Digital System Failure Modes: Utility in organizing operating
experience data

Digital safety systems emerging in NPPs are complex, the underlying engineering, design, and
implementation paradigms vary widely, and even for similar systems, conditions of use are
sufficiently different to challenge meaningful aggregation and organization of data from
operating experience according to system level failure modes such as those characterized in
Section 6.1. Furthermore, when a system failure is caused by software or by some other
systemic factor, “part replacement” (as in traditional electromechanical devices) does not correct
the problem. The cause has to be removed or corrected; then, it is not the same system
anymore. Aggregation of failure data across such changes would not support meaningful
analysis as simply as it does for replaced parts.

D.3. Bibliography

[D1] AREVA NP, Inc., “AREVA Design Control Document Rev. 3 - Tier 1 Chapter 02 - System
Based Design Descriptions and ITAAC - Sections 2.4 Instrumentation of Control
Systems - 2.4.1 Protection System,” Aug. 2011, Available:
http://pbadupws.nrc.gov/docs/ML1123/ML11231A066.pdf,
ADAMS Accession Number: ML11231A066.

D-2

http://pbadupws.nrc.gov/docs/ML1123/ML11231A066.pdf

[D2] Naval Surface Warfare Center Carderock Division, “Chapter 14: Electric Motors,”
Handbook of Reliability Prediction Procedures for Mechanical Equipment, 2011, Available:
http://www.navsea.navy.mil/nswc/carderock/pub/mechrel/products/handbook.aspx.

[D3] IEEE, 493-1997 (Gold Book), 1998, Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=757619

D-3

http://www.navsea.navy.mil/nswc/carderock/pub/mechrel/products/handbook.aspx
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=757619

APPENDIX E. FAILURE MODE RELATED EFFORTS BY NRC PRA
STAFF AND OTHER STAKEHOLDERS

There is additional work related to identification of digital safety system failure modes that is
directly sponsored by the NRC, indirectly sponsored through NRC international collaborative
efforts70, or sponsored by other stakeholders with interests in the nuclear industry. These
efforts are ongoing and are not expected to impact or change the results presented in this RIL.
A summary of these efforts is presented in this appendix.

E.1. Probabilistic Risk Assessment Research

As described in the background of this RIL, the Commission, through its 1995 PRA Policy
Statement, has encouraged the use of PRA technology in all regulatory matters to the extent
supported by the state of the art in PRA methods and data. Because there is no consensus on
how to quantify the reliability of digital systems, the NRC is performing research on the
development of probabilistic models for digital I&C for inclusion in nuclear power plant (NPP)
probabilistic risk assessments (PRAs).

Brookhaven National Laboratory (BNL) is supporting the NRC in this research through a series
of projects on digital I&C system reliability modeling and quantification. Previous BNL projects
have focused on reliability modeling and quantification of digital system hardware and on a
review of available quantitative software reliability methods (QSRMs) that can be used to
quantify software failure rates and probabilities of digital systems at NPPs. In addition, this
previous work involved identification of a set of desirable characteristics for QSRMs. In current
work, two candidate QSRMs have been selected based on a structured comparison of the
previously identified QSRMs against the set of identified desirable characteristics for further
investigation through a case study.

While these two areas of research (i.e., digital I&C PRA and analytical assessment of digital I&C
systems) are closely related, they address different regulatory objectives. The findings and
conclusions in the body of this RIL are focused toward assurance of safety critical digital
systems. The PRA research is focused on developing methods and tools to support future risk
informed approaches. The evaluation of appropriate failure modes for probabilistic risk
assessment will be discussed in future NRC reports.71

E.2. Working Group on Risk Assessment (WGRisk) Activities and
Results

The U.S. Government actively participates in Organisation for Economic Co-operation and
Development (OECD) activities. The NRC specifically collaborates through the Nuclear Energy
Agency (NEA), which is a specialized agency within OECD [E1]. The Committee on the Safety
of Nuclear Installations (CSNI), which is a committee under the NEA [E2] created and directed

70 The staff has also been exposed to relevant information through presentations at conferences
and other meetings with experts from other organizations interested in the digital safety systems.
These other organizations include NASA, Society of Automotive Engineers, etc.

71 PRA experts in the RES staff have indicated that the failure modes, faults, and fault modes, and
SFMEA approaches discussed in this RIL may have potential uses for PRA applications. Staff
working on both the PRA related failure mode research and failure mode research for safety
assurance are coordinating to ensure technical consistency between the two efforts.

E-1

the Working Group on Risk Assessment to set up a task group to coordinate an activity on DI&C
system risk.72 The NRC joined this effort to complement the work previously described in
Section E.1above.

One workshop has been held and two others are scheduled73 to discuss and share experiences
with modeling and quantifying NPP DI&C systems in a PRA context. A resulting action from this
interaction has been to develop a taxonomy of failure modes of digital components for the
purposes of performing PRA.74 Preliminary work has been done to create the taxonomy but this
work is not complete or publicly available, however, some papers based on the work have been
presented at the Probabilistic Safety Assessment International Conference (PSAM 11, 2012) in
Helsinki. The NRC will continue participating in this effort. All learning from this working group
will be shared with other internal NRC research efforts considering the use of digital system
failure modes.

Relevant failure modes identified in the WGRisk published papers are in Table 10, “Failure
Mode Set J - Summary of Failure Mode Taxonomies,” in Section 6.1.1.10. Relevant fault
modes are located in Appendix B. The failure and fault mode examples provided for Failure
Mode Set J and Fault Mode Set 9 are from the following 10 organizations:

• Brookhaven National Laboratory (BNL)
• Canadian Nuclear Safety Commission (CNSC)
• Electricity of France (EDF)
• Institut de Radioprotection et de Suerte Nucleaire (IRSN)
• Japan Nuclear Energy Safety Organization (JNES)
• Korean Atomic Energy Research Institute (KAERI)
• Nuclear Research and Consultancy Group (NRG)
• Nordic Nuclear Energy Research (NKS)
• Ohio State University (OSU)
• Technical Research Centre of Finland (VTT)

E.3. Halden Research Project Efforts

The NRC actively collaborates with the Halden Reactor Project (HRP)75 in Norway on topics of
mutual interest.76 The staff regularly attends meetings organized by the HRP that update all
stakeholders on ongoing research projects and closely related research by other organizations.

At the meeting held on October 1-7, 2011, at Sandefjord, Norway, NRC staff attended a
presentation of ongoing research on cost-efficient methods and processes for safety relevant
embedded systems (CESAR)77 [E3], which contained information relevant to SRM M080605B
and the recommendations resulting from the ACRS 576th meeting (October 20, 2010).
Relevant information from this interaction is presented in the main body of this RIL.

72 This information obtained via email/conversation with Gabriel Taylor
73 As of this writing.
74 Note that the WGRisk Group has not adopted the terminology used in this RIL. Their efforts are

producing both failure modes and fault modes.
75 Like the WGRisk Group, the HRP is also operates under the auspices of OECD’s NEA.
76 The U.S. has participated (and been one source of funding) in the Halden Research Project since

1958.
77 CESAR is a European project funded under the ARTEMIS Joint Undertaking. See references for

more information

E-2

E.4. Bibliography

[E1] NEA, “The Nuclear Energy Agency Website,” Organisation for Economic Co-Operation and
Development Nuclear Energy Agency Available: http://www.oecd-nea.org/nea/

[E2] NEA/CSNI, “Committee on the Safety of Nuclear Installations (CSNI) Webpage,”
Committee on the Safety of Nuclear Installations Available: http://www.oecd-
nea.org/nsd/csni/

[E3] CESAR/ARTEMIS Joint Undertaking, “Cost Efficient Methods and Processes for Safety
Relevant Embedded Systems,” CESAR Project Available: http://www.cesarproject.eu/

E-3

http://www.oecd-nea.org/nea/
http://www.oecd-nea.org/nsd/csni/
http://www.oecd-nea.org/nsd/csni/
http://www.cesarproject.eu/

