

### UNITED STATES NUCLEAR REGULATORY COMMISSION REGION IV 1600 E. LAMAR BLVD. ARLINGTON, TX 76011-4511

April 10, 2014

Jeremy Browning, Site Vice President Entergy Operations, Inc. Arkansas Nuclear One 1448 SR 333 Russellville, AR 72802-0967

SUBJECT: ERRATA FOR ARKANSAS NUCLEAR ONE – NRC AUGMENTED INSPECTION TEAM FOLLOW-UP REPORT 05000313/2013012 AND 05000368/2013012

Dear Mr. Browning:

Please remove pages A3-8 and A3-9 from the NRC Inspection Report 05000313/2013012 and 05000368/2013012 and replace them with the pages enclosed with this letter. The purpose of this change is to correct an administrative error in the detailed risk evaluation associated with Unit 2.

In accordance with Title 10 of the *Code of Federal Regulations* 2.390, "Public Inspections, Exemptions, Requests for Withholding," of the NRC's "Rules of Practice," a copy of this letter, its enclosure, and your response (if any) will be available electronically for public inspection in the NRC's Public Document Room or from the Publicly Available Records (PARS) component of the NRC's Agencywide Documents Access and Management System (ADAMS). ADAMS is accessible from the NRC Web site at <u>http://www.nrc.gov/reading-rm/adams.html</u> (the Public Electronic Reading Room).

Sincerely,

/RA/

Gregory E. Werner, Chief Project Branch E Division of Reactor Projects

Dockets No.: 50-313; 50-368 Licenses No.: DRP-51; NPF-6

Enclosure: Inspection Report 05000313/2013012; 05000368/2013012 Pages A3-8 and A3-9

Electronic Distribution for Arkansas Nuclear One

J. Browning

Electronic distribution by RIV: Regional Administrator (Marc.Dapas@nrc.gov) Deputy Regional Administrator (Steven.Reynolds@nrc.gov) DRP Director (Kriss.Kennedy@nrc.gov) DRP Deputy Director (Troy.Pruett@nrc.gov) DRS Director (Acting) (Jeff.Clark@nrc.gov) DRS Deputy Director (Acting) (Geoffery.Miller@nrc.gov) Senior Resident Inspector (Brian.Tindell@nrc.gov) Resident Inspector (Matthew.Young@nrc.gov) Resident Inspector (Abin.Fairbanks@nrc.gov) Acting Branch Chief, DRP/E (Greg.Werner@nrc.gov) Senior Project Engineer, DRP/E (Michael.Bloodgood@nrc.gov) Project Engineer, DRP/E (Jim.Melfi@nrc.gov) ANO Administrative Assistant (Gloria.Hatfield@nrc.gov) Public Affairs Officer (Victor.Dricks@nrc.gov) Public Affairs Officer (Lara.Uselding@nrc.gov) Project Manager (Michael.Orenak@nrc.gov) Branch Chief, DRS/TSB (Ray.Kellar@nrc.gov) ACES (R4Enforcement.Resource@nrc.gov) OE (Roy.Zimmerman@nrc.gov) OE (Nick.Hilton@nrc.gov) OE (Lauren.Casey@nrc.gov) NRR OE (Carleen.Sanders@nrc.gov) RITS Coordinator (Marisa.Herrera@nrc.gov) Branch Chief, ACES (Vivian.Campbell@nrc.gov) Regional Counsel (Karla.Fuller@nrc.gov) Technical Support Assistant (Loretta, Williams@nrc.gov) Congressional Affairs Officer (Jenny.Weil@nrc.gov) RIV/ETA: OEDO (Jospeh.Nick@nrc.gov) ROPreports@nrc.gov OEMail Resource@nrc.gov RidsOeMailCenter Resource NRREnforcement.Resource RidsNrrDirsEnforcement Resource

| ADAMS PACKAGE: ML14101A214 |                 |           |      |            |  |                     |  |     |
|----------------------------|-----------------|-----------|------|------------|--|---------------------|--|-----|
| SUNSI Rev Compl.           | 🗵 Yes 🗆 No 🛛 Al |           | DAMS | 🗷 Yes 🗆 No |  | Reviewer Initials   |  | JLD |
| Publicly Avail             | 🗷 Yes 🗆 No      | Sensitive |      | 🗆 Yes 🗷 No |  | Sens. Type Initials |  | JLD |
| BC:DRS/EB2                 | BC:DRP/E        |           |      |            |  |                     |  |     |
| JDixon                     | GWerner         |           |      |            |  |                     |  |     |
| /RA/                       | /RA/            |           |      |            |  |                     |  |     |
| 4/8/14                     | 4/9/14          |           |      |            |  |                     |  |     |

#### File located: R:\\_REACTORS\\_ANO\2013\ANO IR 2013012 ML14083A409 R:\\_REACTORS\\_ANO\2013\ANO IR 2013012 ERRATA ML14101A219 ADAMS PACKAGE: ML14101A214

OFFICIAL RECORD COPY

T=Telephone E=E-mail

il F=Fax

the failure of once-through cooling. The evaluation of consequential loss of offsite power provided a dominant accident sequence involving a transient with consequential loss of offsite power, the loss of all feedwater to the steam generators and failure of once-through cooling.

| Table 2               |                                   |          |       |         |  |  |  |
|-----------------------|-----------------------------------|----------|-------|---------|--|--|--|
| Core Damage Sequences |                                   |          |       |         |  |  |  |
| Sequence              | Description                       | Point    | % of  | Cut Set |  |  |  |
|                       |                                   | Estimate | Total | Count   |  |  |  |
| MFW-14                | IEMFW-FW-OTC                      | 2.69E-5  | 95.6  | 6,036   |  |  |  |
| LOOP-19               | IELOOP-EFW-OTC                    | 3.79E-7  | 1.3   | 1,733   |  |  |  |
| LOOP-20-09-10         | IELOOP-SBO(EPS)-RSUB-OPR08H-      | 2.74E-7  | 1.0   | 527     |  |  |  |
|                       | DGR08H-EFW MAN-SGDEPLT            |          |       |         |  |  |  |
| MFW-15-10             | IEMFW-RPS-FWATWS                  | 1.25E-7  | 0.4   | 157     |  |  |  |
| MFW-13                | IEMFW-FW-SSRC-HPR                 | 8.98E-8  | 0.3   | 1,679   |  |  |  |
| LOOP-20-30            | IELOOP-SBO-EFW-OPR08H-DGR08H      | 8.00E-8  | 0.3   | 959     |  |  |  |
| MFW-02-09-04          | IEMFW-LOSC-RCPT-HPI               | 6.14E-8  | 0.2   | 814     |  |  |  |
| MFW-15-11             | IEMFW-RPS-RCSPRESSURE             | 3.99E-8  | 0.1   | 18      |  |  |  |
| MFW-15-09             | IEMFW-RPS-BORATION                | 3.79E-8  | 0.1   | 16      |  |  |  |
| MFW-12                | IEMFW-FW-SSCR-CSR                 | 2.63E-8  | 0.1   | 560     |  |  |  |
| Others                | All Additional Sequences Combined | 1.33E-7  | 0.5   | 3,886   |  |  |  |
| Total CCDP            | All Sequences                     | 2.81e-5  | 100.0 | 16,385  |  |  |  |

### Abbreviations

| BORATION | Failure of Emergency Boration                        |
|----------|------------------------------------------------------|
| CBO      | Controlled Bleedoff Isolated                         |
| CSR      | Containment Spray Recirculation                      |
| DGR08H   | Nonrecovery of Diesel Generator in 8 Hours           |
| EFW      | Emergency Feedwater                                  |
| EFWMAN   | Manual Control of Emergency Feedwater                |
| EPS      | Emergency Power System                               |
| FW       | Feedwater System (MFW, EFW, and auxiliary feedwater) |
| FWATWS   | Feedwater System under ATWS Conditions               |
| HPI      | High Pressure Injection                              |
| HPR      | High Pressure Recirculation                          |
| IELOOP   | Initiating Event: Loss of Offsite Power              |
| IEMFW    | Initiating Event: Loss of Main Feedwater             |
| LOSC     | Loss of RCP Seal Cooling                             |
| OPR08H   | Nonrecovery of Offsite Power in 8 Hours              |
| OTC      | Once-Through Cooling                                 |
| RCPT     | Reactor Coolant Pumps Tripped                        |
| RCSPRESS | RCS Pressure Limited                                 |
| RSUB     | Reactor Coolant Subcooling Maintained                |
| RPS      | Reactor Protection System                            |
| SBO      | Station Blackout                                     |
| SGDEPLT  | Late Depressurization of Steam Generators            |
| SSCR     | Secondary Cooling Recovered                          |

The dominant accident sequence cutsets involved a loss of main feedwater, loss of auxiliary feedwater, loss of emergency feedwater, and the failure of once-through cooling. The top ten sequence cutsets are provided in Table 2 of the detailed risk evaluation.

The results are dominated by one core damage sequence. The largest contributor is Sequence 14 from the loss of main feedwater tree. The sequence comprises a failure of all feedwater to the steam generators, including main feedwater, auxiliary feedwater, and emergency feedwater, with a loss of once-through cooling. The remainder of the sequences are dominated by failure of the emergency diesel generators without recovery of ac power.

(6) Sensitivity Analysis

The SRA performed a variety of uncertainty and sensitivity analyses on the internal events model as shown below. The results confirm the recommended Yellow finding.

## Sensitivity Analysis 1 – Transient without Loss of Main Feedwater.

The SRA ran the model using a transient as the initiator. The change in core damage frequency was  $1.10 \times 10^{-5}$  (Yellow).

### Sensitivity Analysis 2 - No consequential loss of offsite power.

The SRA ran the model without including the additional runs to calculate the change in risk from a postulated consequential loss of offsite power. The change in core damage frequency was  $2.74 \times 10^{-5}$  (Yellow).

# Sensitivity Analysis 3 – Potential Recovery of Bus 2A2

The SRA ran the model with the failure of Bus 2A2 probability set to  $6.79 \times 10^{-1}$ . This value, calculated using SPAR-H methodology, represented the probability that operators would fail to recover the bus prior to core damage, given the adverse and unknown conditions of site electrical supply. The change in core damage frequency was  $1.97 \times 10^{-5}$  (Yellow).

(7) Contributions from External Events (Fire, Flooding, and Seismic)

Manual Chapter 0609, Appendix A, Section 6.0 requires, "when the internal events detailed risk evaluation results are greater than or equal to 1.0E-7, the finding should be evaluated for external event risk contribution." The analyst noted that this detailed risk assessment evaluates an actual event in which no external events occurred. Additionally, the period of time that the events impacted plant equipment was small enough that the probability of an external initiator occurring during this time would be negligible. Therefore, the analyst assumed that the risk from external events, given the subject performance deficiency was essentially zero.