IPRenewal NPEmails

From:	Logan, Dennis
Sent:	Thursday, October 25, 2012 12:23 PM
To:	'DGray@Entergy.com'
Cc:	IPRenewal NPEmails; EndangeredSpecies Resource; Wong, Melanie; 'Julie Crocker';
	Balsam, Briana
Subject:	FW: Draft Indian Point Biological Opinion
Attachments:	IP draft Opinion 102512 Section 1 through 7.1.1.pdf

Dara,

This morning we received from NMFS the first half of the draft biological opinion for IP2 and IP3 for review. Julie's cover e-mail is below.

We are starting our review and look forward to receiving any comments that Entergy has so that we may consider them and share them with NMFS.

Dennis

From: Julie Crocker [mailto:julie.crocker@noaa.gov]
Sent: Thursday, October 25, 2012 10:54 AM
To: Logan, Dennis; Balsam, Briana; EndangeredSpecies Resource
Cc: Julie Williams
Subject: Draft Indian Point Biological Opinion

Dennis and Briana -

Please find attached the first half of our draft Biological Opinion for the effects of the continued operation of IP2 and IP3 on shortnose and Atlantic sturgeon. We are incorporating some revisions to the remainder of the Opinion and will get that to you as soon as possible but in the interest of your time, we wanted to provide you something so you could begin your review today. It is our understanding that you intend to share the draft with the applicant, Entergy. Please let us know if and when you do.

The agreed upon "due date" for the final Biological Opinion is November 28. In order to meet that deadline we are requesting that we receive comments back from you (and Entergy) by close of business Friday November 9. During that following week, we will review your comments and will be able to determine if additional time is necessary to respond to the comments. Of course, if you or Entergy need more time to complete your review, please let us know and we can discuss extending the "due date" past November 28. If you would like to schedule a time to discuss comments, please let me know. I will be in the office every day over the next 2 weeks.

Thank you,

Julie

Julie Crocker Protected Resources Division Northeast Regional Office National Marine Fisheries Service 55 Great Republic Drive Gloucester, MA 01930

Hearing Identifier:	IndianPointUnits2and3NonPublic_EX
Email Number:	3887

Mail Envelope Properties (A56E37EC1CBC8045910287CEF5E7AE6C011F5494DEA6)

Subject:	FW: Draft Indian Point Biological Opinion
Sent Date:	10/25/2012 12:23:21 PM
Received Date:	10/25/2012 12:23:22 PM
From:	Logan, Dennis

Created By: Dennis.Logan@nrc.gov

Recipients:

"IPRenewal NPEmails" <IPRenewal.NPEmails@nrc.gov> Tracking Status: None "EndangeredSpecies Resource" <EndangeredSpecies.Resource@nrc.gov> Tracking Status: None "Wong, Melanie" <Melanie.Wong@nrc.gov> Tracking Status: None "Julie Crocker'" <julie.crocker@noaa.gov> Tracking Status: None "Balsam, Briana" <Briana.Balsam@nrc.gov> Tracking Status: None "DGray@Entergy.com'" <DGray@Entergy.com> Tracking Status: None

Post Office: HQCLSTR01.nrc.gov

FilesSizeMESSAGE1985IP draft Opinion 102512 Section 1 through 7.1.1.pdf

Date & Time 10/25/2012 12:23:22 PM 644804

OptionsPriority:StandardReturn Notification:NoReply Requested:NoSensitivity:NormalExpiration Date:Recipients Received:

ENDANGERED SPECIES ACT SECTION 7 CONSULTATION DRAFT BIOLOGICAL OPINION

Agency: Nuclear Regulatory Commission

Activity: Continued Operations of the Indian Point Nuclear Generating Station F/NER/2012/02252

Conducted by: NOAA's National Marine Fisheries Service Northeast Regional Office

Date Issued:

Approved by:

Table of Contents

1.0	INTRODUCTION
2.0	BACKGROUND AND CONSULTATION HISTORY
2.1	Endangered Species Act Consultation 4
3.0	DESCRIPTION OF THE PROPOSED ACTION
3.1	NPDES/SPDES Permits
3.2	401 Water Quality Certificate
3.3	Description of Water Withdrawals
3.4	Action Area 14
4.0	STATUS OF THE SPECIES
4.1	Shortnose Sturgeon
4.2	Atlantic Sturgeon
4.2	Gulf of Maine DPS of Atlantic sturgeon
4.3	New York Bight DPS of Atlantic sturgeon
4.4	Chesapeake Bay DPS of Atlantic sturgeon
4.5	Shortnose Sturgeon in the Hudson River and the action area
4.6	Atlantic sturgeon in the Hudson River and the action area
4.7 Huo	Factors Affecting the Survival and Recovery of Shortnose and Atlantic sturgeon in the lson River
5.0	ENVIRONMENTAL BASELINE

6.0	CLIM	ATE CHANGE	
6.1	Bac	ckground Information on predicted climate change	
6.2	Spe	ecies Specific Information Related to Predicted Im	pacts of Climate Change 51
6.3	Pot	ential Effects of Climate Change in the Action Are	ea 53
6.4	Eff	ects of Climate Change in the Action Area to Atla	ntic and shortnose sturgeon 54
7.0	EFFE	CTS OF THE ACTION	
7.1	Eff	ects of Water Withdrawal	
7	7.1.1	Entrainment	
7	7.1.2	Impingement	Error! Bookmark not defined.
7 p	7.1.3 prey	Effects of Impingement and Entrainment on Sho	rtnose and Atlantic sturgeon Error! Bookmark not defined.
7	7.1.4	Summary of Effects of Water Withdrawal	Error! Bookmark not defined.
7.2	Eff	ects of Discharges to the Hudson River	Error! Bookmark not defined.
7	7.2.1	Heated Effluent	Error! Bookmark not defined.
7	2.2.2	Potential Discharge of Radionuclides to the Huds	son River Error! Bookmark not
d	lefined	l.	
7.3	Non-R	Routine and Accidental Events	Error! Bookmark not defined.
7.4	Eff	ects of Operation in light of Anticipated Future Cl	imate Change Error! Bookmark
1101 8 A		eu. IIII ATIME EEEECTS E	DDOD! BOOKMADK NOT DEFINED
0.0	INITE	$\mathbf{CP} \land \mathbf{TION} \land \mathbf{ND} SVNTHESIS OF EFFECTS = \mathbf{F}$	RROR; DOOKMARK NOT DEFINED.
9.0	She	orthose Sturgeon	Error! Bookmark not defined.
9.1	A +1	antia sturgeon	Error! Bookmark not defined.
9.2	7.1	New York Bight DPS of Atlantic sturgeon	Error! Bookmark not defined
11.0	CON(CLUSION	DOD! ROOKMADE NOT DEFINED
12.0	INCI	DENTAL TAKE STATEMENT	'RROR! BOOKMARK NOT DEFINED.
12.0	1 A	mount or Extent of Take	Frror! Bookmark not defined
12.) R	Resonable and Prudent Measures	Error! Bookmark not defined
12.	2 г. 3 т	erms and Conditions	Error! Bookmark not defined
13.0	CONS	SERVATION RECOMMENDATIONS	RROR! BOOKMARK NOT DEFINED
14.0	REIN	TITATION OF CONSULTATION	'PROP' BOOKMARK NOT DEFINED.
15.0	LITE	RATURE CITED	RROR! BOOKMARK NOT DEFINED.
	ENDIX	Г F	RROR! BOOKMARK NOT DEFINED.
АРРБ	ENDIX	а Тарана Тара Тар	RROR! BOOKMARK NOT DEFINED.
Арры			RROR! BOOKMARK NOT DEFINED.
		L III	ARRON. DOURIMARK NUT DEFINED.

APPENDIX IV	ERROR! BOOKMARK NOT DEFINED.
APPENDIX V	ERROR! BOOKMARK NOT DEFINED.

1.0 INTRODUCTION

This constitutes NOAA's National Marine Fisheries Service's (NMFS) biological opinion (Opinion) issued in accordance with section 7 of the Endangered Species Act of 1973, as amended, on the effects of the continued operation of the Indian Point Nuclear Generating Station (Indian Point) pursuant to an existing operating license issued by the Nuclear Regulatory Commission (NRC) in accordance with the Atomic Energy Act of 1954 as amended (68 Stat. 919) and Title II of the Energy Reorganization Act of 1974 (88 Stat. 1242) as well as proposed extended operating licenses.

This Opinion is based on information provided in a Biological Assessment (BA) dated December 2010, the *Final Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Supplement 38 Regarding Indian Point Nuclear Generating Unit 2 and 3* dated December 2010, a draft Supplement to that EIS dated June 2012, information submitted to us by the NRC via letter dated May 16, 2012, permits issued by the State of New York, information submitted to NMFS by Entergy and other sources of information. We will keep a complete administrative record of this consultation at the NMFS Northeast Regional Office, Gloucester, Massachusetts.

2.0 BACKGROUND AND CONSULTATION HISTORY

Indian Point Nuclear Generating Units 2 and 3 (IP2 and IP3) are located on approximately 239 acres (97 hectares (ha)) of land in the Village of Buchanan in upper Westchester County, New York (project location is illustrated in Appendix I, Figures 1 and 2). The facility is on the eastern bank of the Hudson River at river mile (RM) 43 (river kilometer (RKM) 69) about 2.5 miles (mi) (4.0 kilometers (km)) southwest of Peekskill, the closest city, and about 43 mi (69 km) north of the southern tip of Manhattan. Both IP2 and IP3 use Westinghouse pressurized-water reactors and nuclear steam supply systems (NSSSs). Primary and secondary plant cooling is provided by a once-through cooling water intake system that supplies cooling water from the Hudson River. Indian Point Nuclear Generating Station Unit 1 (IP1, now permanently shut down¹) shares the site with IP2 and IP3. IP1 is located between IP2 and IP3. In 1963, IP1 began operations. IP1 was shut down on October 31, 1974, and is in a safe storage condition (SAFSTOR) awaiting final decommissioning. Construction began on IP2 in 1966 and on IP3 in 1969.

The Atomic Energy Commission (AEC), the predecessor to the NRC, initially licensed IP2 on September 28, 1973. The AEC issued a 40-year license for IP2 that will expire on September 29, 2013. IP2 was originally licensed to the Consolidated Edison Company, which sold that facility to Entergy in September 2001. IP3 was initially licensed on December 12, 1975, for a 40-year period that will expire in December 2015. While the Consolidated Edison Company of New York originally owned and operated IP3, it was later conveyed to the Power Authority of the State of New York (PASNY – the predecessor to the New York Power Authority [NYPA]). PASNY/NYPA operated IP3 until November 2000 when it was sold to Entergy.

¹ The intake for IP1 is used for service water for IP2; however, IP1 no longer is used for generating electricity and no cooling water is withdrawn from the IP1 intake. This use is discussed fully below.

2.1 Endangered Species Act Consultation

The Endangered Species Act was enacted in 1973. However, there was no requirement in the 1973 Act for the Secretary to produce a written statement setting forth his biological opinion on the effects of the action and whether the action will jeopardize the continued existence of listed species and/or destroy or adversely modify critical habitat. It was not until Congress amended the Act in 1978 that the Secretary was required to produce a Biological Opinion. The 1973 Act, including as amended in 1978, prohibited the "take" of endangered species. NMFS could issue a Section 10 incidental take permit to those who applied for incidental take authorization. In 1982, Congress amended the Act to provide for an "Incidental Take Statement" (ITS) in a Biological Opinion that specifies the level of incidental "take," identifies measures to minimize the level of incidental "take," and exempts any incidental "take" that occurs in compliance with those measures. Until we issued a Biological Opinion with ITS for shortnose sturgeon in 2011, we had not exempted any incidental take at IP1, IP2 and IP3 from the Section 9 prohibitions against take, either through a Section 10 permit or an ITS. The ITS issued with the 2011 Opinion was only prospective, that is, it covered the period from September 28, 2013-September 28, 2033 (IP1 & 2) and December 12, 2015-December 12, 2035 (IP3)..

As explained below, beginning in 1977, EPA held a series of hearings (Adjudicatory Hearing Docket No. C/II-WP-77-01) regarding the once through cooling systems at Indian Point, Roseton, Danskammer and Bowline Point, all of which are power facilities located along the Hudson River. During the course of these hearings, Dr. Mike Dadswell testified on the effects of the Indian Point facility on shortnose sturgeon. In a filing dated May 14, 1979, NOAA submitted this testimony to the U.S. EPA as constituting NMFS "Biological Opinion on the impacts of the utilities' once through cooling system on the shortnose sturgeon." The filing notes that this opinion is required by section 7 of the ESA of 1973, as amended.

In this testimony, Dr. Dadswell provides information on the life history of shortnose sturgeon and summarizes what was known at the time about the population in the Hudson River. Dr. Dadswell indicates that at the time it was estimated that there were approximately 6,000 adult and sub-adult shortnose sturgeon in the Hudson River population (Dadswell 1979) and that the population had been stable at this number between the 1930s and 1970s. Dr. Dadswell determined that there is no known entrainment of shortnose sturgeon at these facilities and little, if any, could be anticipated. Based on available information regarding impingement at IP2 and IP3, Dadswell estimated a worst case scenario of 35 shortnose sturgeon impingements per year, including 21 mortalities (assuming 60% impingement mortality). Dadswell estimated that this resulted in a loss of 0.3-0.4% of the shortnose sturgeon population in the Hudson each year and that this additional source of mortality will not "appreciably reduce the likelihood of the survival and recovery of the shortnose sturgeon." In conclusion Dadswell stated that the once through cooling systems being considered in the case were "not likely to jeopardize the continued existence of the shortnose sturgeon because, even assuming 100% mortality of impinged fish, its contribution to the natural annual mortality is negligible." Dr. Dadswell did note that as there is no positive benefit to impingement, any reductions in the level of impingement would aid in the conservation of the species. Incidental take of shortnose sturgeon at IP2 and IP3 was not exempted from the prohibitions on take by this testimony or "biological opinion." No additional ESA consultation occurred between NRC and NMFS on the operation of IP2 and IP3 until

consultation was initiated in 2010 on the effects to shortnose sturgeon of operations during the proposed extended operating period.

In advance of relicensing proceedings, NRC began coordination with us in 2007. In a letter dated August 16, 2007, NRC requested information from us on federally listed endangered or threatened species, as well as on proposed or candidate species, and on any designated critical habitats that may occur in the vicinity of IP2 and IP3. In our response, dated October 4, 2007, we expressed concern that the continued operation of IP2 and IP3 could have an impact on the shortnose sturgeon (Acipenser brevirostrum). In a letter dated December 22, 2008, NRC requested formal consultation with us to consider effects of the proposed relicensing on shortnose sturgeon. With this letter, NRC transmitted a BA. In a letter dated February 24, 2009, we requested additional information on effects of the proposed relicensing on shortnose sturgeon. In a letter dated December 10, 2010, NRC provided the information that was available and transmitted a revised BA. In the original BA, NRC staff relied on data originally supplied by the applicant, Entergy Nuclear Operations, Inc. (Entergy). NRC sought and Entergy later submitted revised impingement data, which was incorporated into the final BA. Mathematical errors in the original data submitted to the NRC resulted in overestimates of the impingement of shortnose sturgeon that the NRC staff presented in the 2008 BA. Consultation on the effects of the proposed relicensing on shortnose sturgeon was initiated on December 10, 2010.

On June 16, 2011, we received information regarding Entergy's triaxial thermal plume study and NMFS staff obtained a copy of the study and supporting documentation from NYDEC's webpage on that date. Additional information regarding the intakes was provided by Entergy via conference call on June 20, June 22, and June 29, 2011. Supplemental information responding to specific questions raised by us regarding the thermal plume was submitted by Entergy via e-mail on July 8, July 25, and August 5, 2011. NRC provided us with a supplement to the December 2010 BA considering the new thermal plume information, on July 27, 2011. We transmitted a draft Opinion to NRC on August 26, 2011. The draft Opinion was subsequently transmitted by NRC to Entergy. Comments on the draft Opinion were received by us from NRC on September 6, 2011 and September 20, 2011. Comments were received by us from Entergy on September 6, 2011. Additionally, we received letters regarding the draft Opinion from New York State (dated September 6, 2011) and Hudson Riverkeeper (dated September 15, 2011). Additional clarifying information on the proposed action was received from NRC and Entergy throughout September 2011. We issued a Biological Opinion on October 14, 2011. In this Opinion we concluded that operation of IP2 and IP3 during the extended operating period was likely to adversely affect but not likely to jeopardize the continued existence of shortnose sturgeon.

As explained in the "Effects of the Action" section of the 2011 Opinion, we determined an average of 5 shortnose sturgeon per year are likely to be impinged at Unit 2 during the extended operating period, with a total of no more than 104 shortnose sturgeon over the 20 year period (dead or alive). Additionally, over the 20 year operating period, we estimated that an additional 6 shortnose sturgeon (dead or alive) were likely to be impinged at the Unit 1 intakes which will provide service water for the operation of Unit 2. We estimated that at Unit 3, an average of 3 shortnose sturgeon are likely to be impinged per year during the extended operating period, with a total of no more than 58 shortnose sturgeon (dead or alive) taken as a result of the operation of Unit 3 over the 20 year period. This level of take was exempted through an Incidental Take Statement that applies only to the period when the facility operates under a new operating license

(September 28, 2013 through September 28, 2033 for Units 1 and 2; December 12, 2015 through December 12, 2035 for Unit 3). The 2011 Opinion was to become effective once new operating licenses were issued by NRC. The Nuclear Regulatory Commission (NRC) has not yet made a decision on whether to issue the extended operating licenses.

As described in 50 CFR§ 402.16, reinitiation of formal consultation is required and shall be requested by the Federal agency or by the Service, where discretionary Federal involvement or control over the action has been retained or is authorized by law and: (a) the amount or extent of taking specified in the ITS is exceeded; (b) new information reveals effects of these actions that may affect listed species or critical habitat in a manner or to an extent not previously considered; (c) any of the identified actions are subsequently modified in a manner that causes an effect to the listed species that was not considered in the Opinion; or (d) a new species is listed or critical habitat designated that may be affected by the identified actions. Based on prior communications with NRC, it is our understanding that for Indian Point facilities, NRC retains discretionary involvement or control to benefit listed species, or such involvement or control is authorized by law, and that NRC will reinitiate consultation if any of the criteria above are satisfied.

On February 6, 2012, we listed five distinct population segments (DPS) of Atlantic sturgeon as threatened (Gulf of Maine DPS) or endangered (New York Bight, Chesapeake Bay, Carolina and South Atlantic DPSs) (see 77 FR 5880 and 77 FR 5914). Atlantic sturgeon occur in the Hudson River and are known to be affected by operations of IP2 and IP3.

In a letter dated May 17, 2012, NRC requested reinitiation of the 2011 consultation to consider effects of operations of IP2 and IP3 during the extended operating period on Atlantic sturgeon. As described by NRC staff in a telephone call on July 3, 2012, NRC also requests that the consultation consider effects to shortnose sturgeon and five DPSs of Atlantic sturgeon of operations of IP2 and IP3 pursuant to the existing operating licenses up until such time as extended operating licenses are issued or operations cease. Therefore, the federal actions under consideration are authorization of operations of IP2 and IP3 by the NRC pursuant to licenses issued in 1973 and 1975, respectively, and operations for 20 years beyond the expiration of the original licenses. Consultation was initiated on May 17, 2012. On July 23, 2012, Entergy submitted additional information to us and NRC regarding impingement of shortnose and Atlantic sturgeon (Entergy 2012). Subsequently, by mutual agreement of NRC and NMFS, we extended the consultation period by 60 days to allow time for review and incorporation of this new information, as appropriate. By issuing this Opinion, we withdraw the Opinion issued by us on October 14, 2011.

3.0 DESCRIPTION OF THE PROPOSED ACTION

As noted above, the proposed Federal action is the continued operation of Indian Point Units 2 and 3 pursuant to licenses issued by NRC in 1973 and 1975, respectively, as well as continued operation of IP2 and IP3 pursuant to NRC's proposed renewed operating licenses. The current 40-year licenses expire in 2013 (IP2) and 2015 (IP3). According to NRC, NRC's "timely renewal" provision (in 10 CFR 2.109(b)) provides that if a license renewal application is timely filed, which NRC asserts the Entergy application was, the current license is not deemed to have expired until the application has been finally determined (i.e., until a licensing decision is made). Thus, pursuant to this provision, the current operating licenses will not expire until the license

renewal proceeding has concluded. NRC's proposed relicensing would authorize the extended operation of IP2 and IP3 for an additional 20 years (i.e., through September 28, 2033 and December 12, 2035, respectively). In this Opinion, we consider the potential impacts of the continued operation of the facility from now through the proposed extended operation period on shortnose and Atlantic sturgeon.

Details on the operation of the facilities under the terms of the existing license and over the extended operating period, as proposed by Entergy in the license application and as described by NRC in the FEIS, DSEIS and BA, and are summarized below. Both units withdraw water from and discharge water to, the Hudson River. As described by NRC in the Final SEIS (NRC 2010), in 1972, Congress assigned authority to administer the Clean Water Act (CWA) to the US Environmental Protection Agency (EPA). The CWA further allowed EPA to delegate portions of its CWA authority to states. On October 28, 1975, EPA authorized the State of New York to issue National Pollutant Discharge Elimination System (NPDES) permits. New York's NPDES, or State Pollutant Discharge Elimination System (SPDES), program is administered by the NY Department of Environmental Conservation (NYDEC). NYDEC issues and enforces SPDES permits for IP2 and IP3.

Section 316(b) of the Clean Water Act of 1977 requires that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available (BTA) for minimizing adverse environmental impacts (33 USC 1326). EPA regulates impingement and entrainment under Section 316(b) of the CWA through the NPDES permit process. Administration of Section 316(b) has also been delegated to NYDEC, and that provision is implemented through the SPDES program.

Neither IP2 or IP3 can operate without cooling water, and NRC is responsible for authorizing the operation of nuclear facilities, as well as approving any extension of an initial operating license through the license renewal process. Intake and discharge of water through the cooling water system would not occur but for the operation of the facility pursuant to a renewed license; therefore, the effects of the cooling water system on shortnose sturgeon are a direct effect of the proposed action. NRC staff state that the authority to regulate cooling water intakes and discharges under the CWA lies with EPA, or in this case, NYDEC, as the state has been delegated NPDES authority by EPA. Pursuant to NRC's regulations, operating licenses are conditioned upon compliance with all applicable law, including but not limited to CWA Section 401 Certifications and NPDES/SPDES permits. Therefore, the effects of the proposed Federal action-- the continued operation of IP2 and IP3 as proposed to be approved by NRC, which necessarily involves the removal and discharge of water from the Hudson River-- are shaped not only by the terms of the renewed operating license but also by the NYDEC 401 Water Quality Certification and any conditions it may contain that would be incorporated into its SPDES permits. This Opinion will consider the effects of the operation of IP2 and IP3 pursuant to the extended Operating License to be issued by the NRC and the SPDES permits issued by NYDEC that are already in effect. NRC requested consultation on the operation of the facilities under the existing NRC license terms and the existing SPDES permits, even though a new SPDES permit might be issued in the future. A complete history of NYDEC permits is included in NRC's FSEIS at Section 2.2.5.3 (Regulatory Framework and Monitoring Programs) and is summarized below.

3.1 NPDES/SPDES Permits

Section 316(b) of the CWA requires that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available (BTA) for minimizing adverse environmental impacts (33 USC 1326). In July 2004, the EPA published the Phase II Rule implementing Section 316(b) of the CWA for Existing Facilities (69 FR 41576), which applied to large power producers that withdraw large amounts of surface water for cooling (50 MGD or more) (189,000 m3/day or more). The rule became effective on September 7, 2004 and included numeric performance standards for reductions in impingement mortality and entrainment that would demonstrate that the cooling water intake system constitutes BTA for minimizing impingement and entrainment impacts. Existing facilities subject to the rule were required to demonstrate compliance with the rule's performance standards during the renewal process for their NPDES permit through development of a Comprehensive Demonstration Study (CDS). As a result of a Federal court decision, EPA officially suspended the Phase II rule on July 9, 2007 (72 FR 37107) pending further rulemaking. EPA instructed permitting authorities to utilize best professional judgment in establishing permit requirements on a case by-case basis for cooling water intake structures at Phase II facilities until it has resolved the issues raised by the court's ruling.

The licenses issued by the AEC for IP2 and IP3 initially allowed for the operation of those facilities with once-through cooling systems. However, the licenses required the future installation of closed-cycle cooling systems at both facilities, by certain dates, because of the potential for long term environmental impact from the once-through cooling systems on aquatic life in the Hudson River, particularly striped bass. A closed cycle cooling system. The license for Withdraw approximately 90-95% less water than a once through cooling system. The license for IP2 was amended by the NRC in 1975, and the license for IP3 was amended by the NRC in 1976, to include requirements for the installation and operation of wet closed-cycle cooling systems at the facilities.

NRC eventually concluded that the operating licenses for the facilities should be amended to authorize construction of natural draft cooling towers at each Unit. Prior to the respective deadlines for installation of closed-cycle cooling at the Indian Point facilities, however, the NRC's authority to require the retrofit due to water quality impacts under federal nuclear licenses was superseded by comprehensive amendments to the federal Water Pollution Prevention and Control Act (the CWA) and creation of the NPDES program.

In 1975, the EPA issued separate NPDES permits for Units 2 and 3, pursuant to provisions of the CWA, chiefly § 316 (33 U.S.C. § 1326), that required both facilities to discontinue discharging heated effluent from the main condensers. The NPDES permits provided that "heat may be discharged in blowdown from a re-circulated cooling water system." The intent of these conditions was to require the facilities to install closed-cycle cooling systems in order to reduce the thermal and other adverse environmental impacts from the operation of Indian Point's CWISs upon aquatic organisms in the Hudson River. In 1977, the facilities' owners, Consolidated Edison Company of New York and PASNY/NYPA, requested administrative hearings with the EPA to overturn these conditions.

In October 1975, NYDEC received approval from the EPA to administer and conduct a State permit program pursuant to the provisions of the federal NPDES program under CWA § 402. Since then, NYDEC has administered that program under the SPDES permit program. As a result, NYDEC has the authority, under the CWA and state law, to issue SPDES permits for the withdrawal of cooling water for operations at the Indian Point facilities and for the resulting discharge of waste heat and other pollutants into the Hudson River. Compliance with the SPDES permit would be required under the Federal action given that the operating license shall be subject to the conditions imposed under the CWA.

As previously noted, in 1977 the then-owners of the Indian Point nuclear facilities sought an adjudicatory proceeding to overturn the EPA-issued NPDES permit determinations that limited the scope of the facilities' cooling water intake operations. The EPA's adjudicatory process lasted for several years before culminating in a multi-party settlement known as the Hudson River Settlement Agreement² (HRSA). The HRSA was initially a ten-year agreement whereby the owners of certain once-through cooled electric generating plants on the Hudson River, including IP2 and IP3, would collect biological data and complete analytical assessments to determine the scope of adverse environmental impact caused by those facilities. According to the NYDEC, the intent of the HRSA was that, based upon the data and analyses provided by the facilities, the Department could determine, and parties could agree upon, the best technology available to minimize adverse environmental impact on aquatic organisms in the Hudson River from these facilities in accordance with 6 NYCRR § 704.5. The Settlement obligated the utilities to undertake a series of operational steps to reduce fish kills, including partial outages during the key spawning months. In addition, the utilities agreed to fund and operate a striped bass hatchery, conduct biological monitoring, and set up a \$12 million endowment for a new foundation for independent research on mitigating fish impacts by power plants. The agreement became effective upon Public Service Commission approval on May 8, 1981. The terms of the 1980 HRSA were extended through a series of four separate stipulations of settlement and judicial consent orders that were entered in Albany County Supreme Court [Index No. 0191-ST3251]. The last of these stipulations of settlement and judicial consent orders, executed by the parties in 1997, expired on February 1, 1998.

In 1982, NYDEC issued a SPDES permit for IP2 and IP3, and other Hudson River electric generating facilities, as well as a CWA § 401 WQC for the facilities. The 1982 SPDES permit for IP2 and IP3 contained special conditions for reducing some of the environmental impact from the facilities' cooling water intakes but, based upon provisions of the HRSA, the permit did not require the installation of any technology for minimizing the number of organisms entrained by the facilities each year. Similarly, based upon provisions of the HRSA, the 1982 § 401 WQC did not make an independent determination that the facilities complied with certain applicable State water quality standards at that time, including 6 NYCRR Part 704 – Criteria Governing Thermal Discharges.

² The signatory parties to the HRSA were USEPA, the Department, the New York State Attorney General, the Hudson River Fishermen's Association, Scenic Hudson, the Natural Resources Defense Council, Central Hudson Gas & Electric Co., Consolidated Edison Co., Orange & Rockland Utilities, Niagara Mohawk Power Corp., and PASNY. Entergy was not a party to the HRSA because it did not own the Indian Point facilities at any time during the period covered by the HRSA. NOAA was not a party to the HRSA.

In accordance with the provisions of the HRSA, NYDEC renewed the SPDES permit for IP2 and IP3 in 1987 for another 5-year period. As with the 1982 SPDES permit, the 1987 SPDES permit for IP2 and IP3 contained certain measures from the HRSA that were intended to mitigate, but not minimize, the adverse environmental impact caused by the operation of the facilities' cooling water intakes. The 1987 SPDES permit expired on October 1, 1992. Prior to the expiration date, however, the owners of the facilities at that time, Consolidated Edison and NYPA, both submitted timely SPDES permit renewal applications to the Department and, by operation of the State Administrative Procedure Act (SAPA), the 1987 SPDES permit for Units 2 and 3 is still in effect today. Entergy purchased Units 2 and 3 in 2001 and 2000, respectively, and the 1987 SAPA-extended SPDES permit for the facilities was subsequently transferred to Entergy.

In November 2003, NYDEC issued a draft SPDES permit for IP2 and IP3 that required Entergy, among other things, to retrofit the Indian Point facilities with closed-cycle cooling or an equivalent technology in order to minimize the adverse environmental impact caused by the CWISs in accordance with 6 NYCRR § 704.5 and CWA § 316(b). The draft permit contains conditions which address three aspects of operations at Indian Point: conventional industrialwastewater pollutant discharges, thermal discharge, and cooling water intake. Limits on the conventional industrial discharges are not proposed to be changed significantly from the previous permit. The draft permit does, however, contain new conditions addressing the thermal discharge and additional new conditions to implement the measures NYDEC has determined to be the best technology available for minimizing impacts to aquatic resources from the cooling water intake, including the installation of a closed cycle cooling system at IP2 and IP3. With respect to thermal discharges, the draft SPDES permit would require Entergy to conduct a triaxial (three-dimensional) thermal study to document whether the thermal discharges from IP2 and IP3 comply with state water quality criteria. The draft permit states that if IP2 and IP3 do not meet state standards, Entergy may apply for a modification of those criteria in an effort to demonstrate to NYDEC that such criteria are unnecessarily restrictive and that the requested modification would not inhibit the existence and propagation of a balanced indigenous population of shellfish, fish and wildlife in the Hudson River, which is an applicable CWA water quality-related standard. The draft permit also states that Entergy may propose, within a year of the permit's becoming effective, an alternative technology or technologies that can minimize adverse environmental impacts to a level equivalent to that achieved by a closed-cycle cooling system at IP2 and IP3. In order to implement closed-cycle cooling, the draft permit would require Entergy to submit a pre-design engineering report within one year of the permit's effective date. Within one year after the submission of the report, Entergy must submit complete design plans that address all construction issues for conversion to closed-cycle cooling. In addition, the draft permit requires Entergy to obtain approvals for the system's construction from other government agencies, including modification of the operating licenses for IP2 and IP3 from the NRC. While steps are being taken to implement BTA, Entergy would be required to schedule and take annual generation outages of no fewer than 42 unit-days during the peak entrainment season among other measures. In 2004, Entergy requested an adjudicatory hearing with NYDEC on the draft SPDES permit. That SPDES permit adjudicatory process is presently ongoing, and its outcome is uncertain at this time.

There is significant uncertainty associated with the conditions of any new SPDES permit. In the 2003 draft, NYDEC determined that cooling towers were the BTA to minimize adverse environmental effects. In a 2010 filing with NYDEC, Entergy proposed to use a system of cylindrical wedgewire screens, which Entergy states would reduce impingement and entrainment mortality to an extent comparable to the reductions in impingement and entrainment loss expected to result from operation with cooling towers. As no determination has been made regarding a revised draft SPDES permit or a final permit, it is unknown what new technology, if any, will be required to modify the operation of the facility's cooling water intakes. The 1987 SPDES permit is still in effect and will remain in effect until a new permit is issued and becomes effective. No schedule is available for the issuance of a revised draft or new final SPDES permit and the content of any SPDES permit will be decided as a result of the adjudication process. Therefore, in this consultation, we have considered effects of the continued operation of the Indian Point facility through the end of extended operating period with the 1987 SPDES permit in effect. This scenario is the one defined by NRC as its proposed action in the BA provided to NMFS in which NRC considered effects of the operation of the facility during the extended operating period on shortnose and Atlantic sturgeon. Therefore, it is the subject of this consultation. However, if a new SPDES permit is issued, NRC and NMFS would have to determine if reinitiation of this consultation is necessary to consider any effects of the operation of the facility on sturgeon that were not considered in this Opinion, including operation of the facility with cylindrical wedge wire screens. It is possible the effects of the construction, layout, and use of an intake system using cylindrical wedge wire screens will affect shortnose and/or Atlantic sturgeon in a manner and to a degree that is very different from the effects considered in this Opinion, and as a result, necessitate reinitiation of this consultation.

3.2 401 Water Quality Certificate

On December 7, 1970, NYSDEC issued a certification for IP1 and IP2, pursuant to §21(b) of the Water Quality Improvement Act 1 -the precursor to §401. On April 24, 1973, NYSDEC issued a WQC for the operational testing period for IPI and IP2. On September 24, 1973, NYSDEC issued a WQC for full operation of IP1 and IP2. On May 2, 1975, NYSDEC issued a WQC for operation of Indian Point 3 ("IP3"). On April 24, 1981, NYSDEC issued a subsequent WQC for operation of IP1, IP2 and IP3. IP2 and IP3 currently operate pursuant to the 1981 WQC.

On April 6, 2009, NYDEC received a Joint Application for a federal CWA § 401 WQC on behalf of Entergy Indian Point Unit 2, LLC, Entergy Indian Point Unit 3, LLC, and Entergy Nuclear Northeast (collectively Entergy). The Joint Application for § 401 WQC was submitted to NYDEC as part of Entergy's NRC license renewal. Pursuant to the CWA, a state must issue a certification verifying that an activity which results in a discharge into navigable waters, such as operation of the Indian Point facilities, meets state water quality standards before a federal license or permit for such activity can be issued. Entergy has requested NYDEC to issue a § 401 WQC to run concurrently with any renewed nuclear licenses for the Indian Point facilities.

In a decision dated April 2, 2010, NYDEC determined that the facilities, whether operated as they are currently or operated with the addition of a cylindrical wedge-wire screen system (NYDEC notes that this proposal was made by Entergy in a February 12, 2010, submission), "do not and will not comply with existing New York State water quality standards." Accordingly, pursuant to 6 NYCRR Part 621 (Uniform Procedures), NYDEC denied Entergy's request for a

§401 WQC (NYDEC 2010). The reasons for denial, as stated by NYDEC were related to impingement and entrainment of aquatic organisms, the discharge of heated effluent, and failure to implement what NYDEC had determined to be the Best Technology Available (closed cycle cooling towers), to minimize adverse environmental impacts. Entergy has appealed the denial. The matter is currently under adjudication in the state administrative system, and the results are uncertain. If New York State ultimately issues a WQC, it may contain conditions that alter the operation of the facility and its cooling water system. If this occurs, NMFS and NRC would need to review the modifications to operations to determine if consultation would need to be reinitiated.

3.3 Description of Water Withdrawals

IP2 and IP3 have once-through condenser cooling systems that withdraw water from, and discharge water to, the Hudson River. The maximum design flow rate for each cooling system is approximately 1,870 cubic feet per second (cfs), 840,000 gallons per minute (gpm), or 53.0 cubic meters per second (m³/s). Two shoreline intake structures, one for each unit, are located along the eastern shore of the Hudson River on the northwestern edge of the site and provide cooling water to IP2 and IP3. Each structure consists of seven bays, six for circulating water and one for service water. IP2 also uses service water withdrawn from the former IP1 intake, located along the shoreline between the IP2 and IP3 intakes. The IP2 intake structure has seven independent bays, while the IP3 intake structure has seven bays that are served by a common plenum. In each structure, six of the seven bays contain cooling water pumps, and the seventh bay contains service/auxiliary water pumps. Before it is pumped to the condensers, river water passes through traveling screeens in the intake structure bays to remove debris, fish and other aquatic life.

The six IP2 circulating water intake pumps are dual-speed pumps. When operated at high speed (254 revolutions per minute (rpm)), each pump provides 312 cfs (140,000 gpm; 8.83 m3/s) and a dynamic head of 21 ft (6.4 m). At low speed (187 rpm), each pump provides 38 cfs (84,000 gpm; 5.30 m³/s) and a dynamic head of 15 ft (4.6 m). The six IP3 circulating water intake pumps are variable-speed pumps. When operated at high speed (360 rpm), each pump provides 312 cfs (140,000 gpm; 8.83 m³/s); at low speed, it provides a dynamic head of 29 ft (8.8 m) and 143 cfs (64,000 gpm; 4.05 m³/s).

As described in the FSEIS, Entergy adjusts the speed of the intake pumps to mitigate impacts to the Hudson River. Each coolant pump bay is about 15 ft (4.6 m) wide at the entrance, and the bottom is located 27 ft (8.2 m) below mean sea level. Before entering the intake structure bays, water flows under a floating debris skimmer wall, or ice curtain, into the screen wells. This initial screen keeps floating debris and ice from entering the bay. At the entrance to each bay, water also passes through a subsurface bar screen (consisting of metal bars with 3 inch clear spacing) to prevent additional large debris from becoming entrained in the cooling system. At full speed, the approach velocity in front of the screens is 1 foot per second (fps); at reduced speed, the approach velocity is 0.6 fps (Entergy 2007a). As this area is behind a bulkhead it is outside the influence of river currents. Next, smaller debris and fish that pass through the trash bars are screened out using modified Ristroph traveling screens.

The modified Ristroph traveling screens consist of a series of panels that rotate continuously. The traveling screens employed by IP2 and IP3 are modified vertical Ristroph-type traveling

NMFS Partial Draft 10-25-12

Comment [A1]: Questions to NRC and Entergy – What enforceable instrument, if any, requires such speed adjustments? For example, is this speed adjustment a condition of the NRC license and/or a requirement of the NYPDES permit? What factors determine whether a pump is run at full speed versus reduced speed? screens installed in 1990 and 1991 at IP3 and IP2, respectively. The screens were designed in concert with the Hudson River Fishermen's Association, with screen basket lip troughs to retain water and minimize vortex stress (CHGEC 1999). As each screen panel rotates out of the intake bay, impinged fish are retained in water-filled baskets at the bottom of each panel and are carried over the headshaft, where they are washed out onto a mesh using low-pressure sprays from the rear side of the machine. The 0.25-by-0.5-inch (in.) (0.635-by-1.27 centimeters (cm)) mesh is smooth to minimize fish abrasion by the mesh. Two high-pressure sprays remove debris from the front side of the machine after fish removal. From the mesh, fish return to the river via a 12-in. (30-cm) diameter pipe. For IP2, the pipe extends 200 ft (61.0 m) into the river north of the IP2 intake structure and discharges at a depth of 35 ft (11 m). The sluice system is a 12-in.-diameter (30.5-cm-diameter) pipe that discharges fish into the river at a depth of 35 ft (10.7 m), 200 ft (61 m) from shore (CHGEC 1999). The IP3 fish return system discharges to the river by the northwest corner of the discharge canal.

Studies indicated that, assuming the screens continued to operate as they had during laboratory and field testing, the screens were "the screening device most likely to impose the least mortalities in the rescue of entrapped fish by mechanical means" (Fletcher 1990). The same study concluded that refinements to the screens would be unlikely to greatly reduce fish kills. No monitoring is currently ongoing at IP2 or IP3 for impingement or entrainment or to ensure that the screens are operating per design standards, and no monitoring took place after the screens were installed. Additionally, there is no monitoring ongoing to quantify any actual incidental take of shortnose sturgeon or their prey. The proposed action under consultation, as currently defined by NRC, does not provide for any monitoring of direct or indirect effects to shortnose sturgeon.

After moving through the condensers, cooling water is discharged to the discharge canal via a total of six 96-in. (240-cm) diameter pipes. The cooling water enters below the surface of the 40-ft (12-m) wide canal. The canal discharges to the Hudson River through an outfall structure located south of IP3 at about 4.5 feet per second (fps) (1.4 meters per second (mps)) at full flow. As the discharged water enters the river, it passes through 12 discharge ports (4-ft by 12-ft each (1-m by 3.7-m)) across a length of 252 ft (76.8 m) about 12 ft (3.7 m) below the surface of the river. The increased discharge velocity, about 10 fps (3.0 mps), is designed to enhance mixing to minimize thermal impact.

The discharged cooling water is at an elevated temperature, and therefore, some water is lost because of evaporation. Based on conservative estimates, NRC estimates that this induced evaporation resulting from the elevated discharge temperature would be less than 60 cfs (27,000 gpm or 1.7 m^3 /s). This loss is about 0.5 percent of the annual average downstream flow of the Hudson River, which is more than 9000 cfs (4 million gpm or 255 m³/s). The average cooling water transient time ranges from 5.6 minutes for the IP3 cooling water system to 9.7 minutes for the IP2 system. Auxiliary water systems for service water are also provided from the Hudson River via the dedicated bays in the IP2 and IP3 intake structures. The primary role of service water is to cool components (e.g., pumps) that generate heat during operation. Secondary functions of the service water include the following:

• protect equipment from potential contamination from river water by providing cooling to intermediate freshwater systems;

NMFS Partial Draft 10-25-12

Comment [A2]: Question to NRC and/or Entergy – Where does material that is removed by the high pressure spray go? Down the sluice?

- provide water for washing the modified Ristroph traveling screens; and,
- provide seal water for the main circulating water pumps.

As noted above, additional service water is provided to the nonessential service water header for IP2 through the IP1 river water intake structure. The IP1 intake includes four intake bays each with a coarse bar screen and a single 0.125-in. (0.318-cm) mesh screen. The intake structure contains two 36-cfs² (16,000-gpm; 1.0-m³/s) spray wash pumps. The screens are washed automatically and materials are sluiced to the Hudson River.

Based on the description of the action provided in the FEIS, no major construction is proposed by Entergy during the relicensing period. Entergy may undertake some refurbishment activities. In the FEIS, NRC indicates that Entergy may replace the reactor vessel heads and control rod drive mechanisms (CRDMs) for IP2 and IP3 during the term of the renewed license. Grounddisturbing activities associated with this project would involve the construction of a storage building to house the retired components. The replacement components would arrive by barge and be transported over an existing service road by an all-terrain vehicle (Entergy 2008b). There would be no in-water work and there is no indication that effects of this refurbishment activity would extend to the Hudson River. As such, no shortnose or Atlantic sturgeon would be exposed to effects of this refurbishment activity; therefore, effects of this activity are not considered further in this Opinion.

3.4 Action Area

The action area is defined in 50 CFR 402.02 as "all areas to be affected directly or indirectly by the Federal action and not merely the immediate area involved in the action." IP2 and IP3 are located on a 239-acre (97-hectare) site on the eastern bank of the Hudson River in the village of Buchanan, Westchester County, New York, about 43 miles (mi) (69 kilometers [km) north of the southern tip of Manhattan, New York (Figures 1 and 2). The direct and indirect effects of the Indian Point facility are related to the intake of water from the Hudson River and the discharge of heated effluent back into the Hudson River. The proposed action has the potential to affect shortnose and Atlantic sturgeon in several ways: impingement or entrainment of individual sturgeon at the intakes; altering the abundance or availability of potential prey items; and, altering the riverine environment through the discharge of heated effluent and other pollutants. Therefore, the action area for this consultation includes the intake areas of IP1 (for service water), IP2 and IP3 and the region where the thermal plume extends into the Hudson River from IP2 and IP3 as described in the Effects of the Action section below.

4.0 STATUS OF THE SPECIES

We have determined that the actions considered in the Opinion may adversely affect the following listed species:

Common name	Scientific name	ESA Status
Shortnose sturgeon	Acipenser brevirostrum	Endangered
GOM DPS of Atlantic sturgeon	Acipenser oxyrinchus oxyrinchus	Threatened
New York Bight DPS of Atlantic sturgeon	Acipenser oxyrinchus oxyrinchus	Endangered
Chesapeake Bay DPS of Atlantic sturgeon	Acipenser oxyrinchus oxyrinchus	Endangered

NMFS Partial Draft 10-25-12

Comment [A3]: Question to NRC/Entergy – is this a Ristroph screen, modified ristroph screen or other type of screen? If other, please describe its operations. This section presents biological and ecological information relevant to formulating the Biological Opinion. Information on the species' life history, its habitat and distribution, and other factors necessary for its survival are included to provide background for analyses in later sections of this opinion. This section reviews the status of the species rangewide as well as the status of the species in the Hudson River where the action takes place.

4.1 Shortnose Sturgeon

Shortnose sturgeon are benthic fish that mainly occupy the deep channel sections of large rivers. They feed on a variety of benthic and epibenthic invertebrates including mollusks, crustaceans (amphipods, isopods), insects, and oligochaete worms (Vladykov and Greeley 1963; Dadswell 1979 in NMFS 1998). Shortnose sturgeon have similar lengths at maturity (45-55 cm fork length) throughout their range, but, because sturgeon in southern rivers grow faster than those in northern rivers, southern sturgeon mature at younger ages (Dadswell et al. 1984). Shortnose sturgeon are long-lived (30-40 years) and, particularly in the northern extent of their range, mature at late ages. In the north, males reach maturity at 5 to 10 years, while females mature between 7 and 13 years. Based on limited data, females spawn every three to five years while males spawn approximately every two years. The spawning period is estimated to last from a few days to several weeks. Spawning begins from late winter/early spring (southern rivers) to mid to late spring (northern rivers)³ when the freshwater temperatures increase to 8-9°C. Several published reports have presented the problems facing long-lived species that delay sexual maturity (Crouse et al. 1987; Crowder et al. 1994; Crouse 1999). In general, these reports concluded that animals that delay sexual maturity and reproduction must have high annual survival as juveniles through adults to ensure that enough juveniles survive to reproductive maturity and then reproduce enough times to maintain stable population sizes.

Total instantaneous mortality rates (Z) are available for the Saint John River (0.12 - 0.15; ages 14-55; Dadswell 1979), Upper Connecticut River (0.12; Taubert 1980b), and Pee Dee-Winyah River (0.08-0.12; Dadswell et al. 1984). Total instantaneous natural mortality (M) for shortnose sturgeon in the lower Connecticut River was estimated to be 0.13 (T. Savoy, Connecticut Department of Environmental Protection, personal communication). There is no recruitment information available for shortnose sturgeon because there are no commercial fisheries for the species. Estimates of annual egg production for this species are difficult to calculate because females do not spawn every year (Dadswell et al. 1984). Further, females may abort spawning attempts, possibly due to interrupted migrations or unsuitable environmental conditions (NMFS 1998). Thus, annual egg production is likely to vary greatly in this species. Fecundity estimates have been made and range from 27,000 to 208,000 eggs/female and a mean of 11,568 eggs/kg body weight (Dadswell et al. 1984).

At hatching, shortnose sturgeon are blackish-colored, 7-11mm long and resemble tadpoles (Buckley and Kynard 1981). In 9-12 days, the yolk sac is absorbed and the sturgeon develops into larvae which are about 15mm total length (TL; Buckley and Kynard 1981). Sturgeon larvae are believed to begin downstream migrations at about 20mm TL. Dispersal rates differ at least regionally, laboratory studies on Connecticut River larvae indicated dispersal peaked 7-12 days

³ For purposes of this consultation, Northern rivers are considered to include tributaries of the Chesapeake Bay northward to the St. John River in Canada. Southern rivers are those south of the Chesapeake Bay.

after hatching in comparison to Savannah River larvae that had longer dispersal rates with multiple, prolonged peaks, and a low level of downstream movement that continued throughout the entire larval and early juvenile period (Parker 2007). Synder (1988) and Parker (2007) considered individuals to be juvenile when they reached 57mm TL. Laboratory studies demonstrated that larvae from the Connecticut River made this transformation on day 40 while Savannah River fish made this transition on day 41 and 42 (Parker 2007).

The juvenile phase can be subdivided in to young of the year (YOY) and immature/ sub-adults. YOY and sub-adult habitat use differs and is believed to be a function of differences in salinity tolerances. Little is known about YOY behavior and habitat use, though it is believed that they are typically found in channel areas within freshwater habitats upstream of the salt wedge for about one year (Dadswell et al. 1984, Kynard 1997). One study on the stomach contents of YOY revealed that the prey items found corresponded to organisms that would be found in the channel environment (amphipods) (Carlson and Simpson 1987). Sub-adults are typically described as age one or older and occupy similar spatio-temporal patterns and habitat-use as adults (Kynard 1997). Though there is evidence from the Delaware River that sub-adults may overwinter in different areas than adults and do not form dense aggregations like adults (ERC Inc. 2007). Sub-adults feed indiscriminately; typical prey items found in stomach contents include aquatic insects, isopods, and amphipods along with large amounts of mud, stones, and plant material (Dadswell 1979, Carlson and Simpson 1987, Bain 1997).

In populations that have free access to the total length of a river (e.g., no dams within the species' range in a river: Saint John, Kennebec, Altamaha, Savannah, Delaware and Merrimack Rivers), spawning areas are located at the farthest upstream reach of the river (NMFS 1998). In the northern extent of their range, shortnose sturgeon exhibit three distinct movement patterns. These migratory movements are associated with spawning, feeding, and overwintering activities. In spring, as water temperatures reach between 7-9.7°C (44.6-49.5°F), pre-spawning shortnose sturgeon move from overwintering grounds to spawning areas. Spawning occurs from mid/late March to mid/late May depending upon location and water temperature. Sturgeon spawn in upper, freshwater areas and feed and overwinter in both fresh and saline habitats. Shortnose sturgeon spawning migrations are characterized by rapid, directed and often extensive upstream movement (NMFS 1998).

Shortnose sturgeon are believed to spawn at discrete sites within their natal river (Kieffer and Kynard 1996). In the Merrimack River, males returned to only one reach during a four year telemetry study (Kieffer and Kynard 1996). Squires (1982) found that during the three years of the study in the Androscoggin River, adults returned to a 1-km reach below the Brunswick Dam and Kieffer and Kynard (1996) found that adults spawned within a 2-km reach in the Connecticut River for three consecutive years. Spawning occurs over channel habitats containing gravel, rubble, or rock-cobble substrates (Dadswell et al. 1984; NMFS 1998). Additional environmental conditions associated with spawning activity include decreasing river discharge following the peak spring freshet, water temperatures ranging from 8 - 15° (46.4-59°F), and bottom water velocities of 0.4 to 0.8 m/sec (Dadswell et al. 1984; Hall et al. 1991, Kieffer and Kynard 1996, NMFS 1998). For northern shortnose sturgeon, the temperature range for spawning is 6.5-18.0°C (Kieffer and Kynard in press). Eggs are separate when spawned but become adhesive within approximately 20 minutes of fertilization (Dadswell et al. 1984).

Between 8° (46.4°F) and 12°C (53.6°F), eggs generally hatch after approximately 13 days. The larvae are photonegative, remaining on the bottom for several days. Buckley and Kynard (1981) found week old larvae to be photonegative and form aggregations with other larvae in concealment.

Adult shortnose sturgeon typically leave the spawning grounds soon after spawning. Nonspawning movements include rapid, directed post-spawning movements to downstream feeding areas in spring and localized, wandering movements in summer and winter (Dadswell et al. 1984; Buckley and Kynard 1985; O'Herron et al. 1993). Kieffer and Kynard (1993) reported that post-spawning migrations were correlated with increasing spring water temperature and river discharge. Young-of-the-year shortnose sturgeon are believed to move downstream after hatching (Dovel 1981) but remain within freshwater habitats. Older juveniles or sub-adults tend to move downstream in fall and winter as water temperatures decline and the salt wedge recedes and move upstream in spring and feed mostly in freshwater reaches during summer.

Juvenile shortnose sturgeon generally move upstream in spring and summer and move back downstream in fall and winter; however, these movements usually occur in the region above the saltwater/freshwater interface (Dadswell et al. 1984; Hall et al. 1991). Non-spawning movements include wandering movements in summer and winter (Dadswell et al. 1984; Buckley and Kynard 1985; O'Herron et al. 1993). Kieffer and Kynard (1993) reported that post-spawning migrations were correlated with increasing spring water temperature and river discharge. Adult sturgeon occurring in freshwater or freshwater/tidal reaches of rivers in summer and winter often occupy only a few short reaches of the total length (Buckley and Kynard 1985). Summer concentration areas in southern rivers are cool, deep, thermal refugia, where adult and juvenile shortnose sturgeon congregate (Flourney et al. 1992; Rogers et al. 1994; Rogers and Weber 1995; Weber 1996).

While shortnose sturgeon do not undertake the significant marine migrations seen in Atlantic sturgeon, telemetry data indicates that shortnose sturgeon do make localized coastal migrations. This is particularly true within certain areas such as the Gulf of Maine (GOM) and among rivers in the Southeast. Interbasin movements have been documented among rivers within the GOM and between the GOM and the Merrimack, between the Connecticut and Hudson rivers, the Delaware River and Chesapeake Bay, and among the rivers in the Southeast.

The temperature preference for shortnose sturgeon is not known (Dadswell et al. 1984) but shortnose sturgeon have been found in waters with temperatures as low as 2 to 3°C (35.6-37.4°F) (Dadswell et al. 1984) and as high as 34°C (93.2°F) (Heidt and Gilbert 1978). However, water temperatures above 28°C (82.4°F) are thought to adversely affect shortnose sturgeon. In the Altamaha River, water temperatures of 28-30°C (82.4-86°F) during summer months create unsuitable conditions and shortnose sturgeon are found in deep cool water refuges. Dissolved oxygen (DO) also seems to play a role in temperature tolerance, with increased stress levels at higher temperatures with low DO versus the ability to withstand higher temperatures with elevated DO (Niklitchek 2001).

Shortnose sturgeon are known to occur at a wide range of depths. A minimum depth of 0.6m (approximately 2 feet) is necessary for the unimpeded swimming by adults. Shortnose sturgeon

are known to occur at depths of up to 30m (98.4 ft) but are generally found in waters less than 20m (65.5 ft) (Dadswell et al. 1984; Dadswell 1979). Shortnose sturgeon have also demonstrated tolerance to a wide range of salinities. Shortnose sturgeon have been documented in freshwater (Taubert 1980; Taubert and Dadswell 1980) and in waters with salinity of 30 partsper-thousand (ppt) (Holland and Yeverton 1973; Saunders and Smith 1978). Mcleave et al. (1977) reported adults moving freely through a wide range of salinities, crossing waters with differences of up to 10ppt within a two hour period. The tolerance of shortnose sturgeon to increasing salinity is thought to increase with age (Kynard 1996). Shortnose sturgeon typically occur in the deepest parts of rivers or estuaries where suitable oxygen and salinity values are present (Gilbert 1989); however, shortnose sturgeon forage on vegetated mudflats and over shellfish beds in shallower waters when suitable forage is present.

Status and Trends of Shortnose Sturgeon Rangewide

Shortnose sturgeon were listed as endangered on March 11, 1967 (32 FR 4001), and the species remained on the endangered species list with the enactment of the ESA in 1973. Although the original listing notice did not cite reasons for listing the species, a 1973 Resource Publication, issued by the US Department of the Interior, stated that shortnose sturgeon were "in peril...gone in most of the rivers of its former range [but] probably not as yet extinct" (USDOI 1973). Pollution and overfishing, including bycatch in the shad fishery, were listed as principal reasons for the species' decline. In the late nineteenth and early twentieth centuries, shortnose sturgeon commonly were taken in a commercial fishery for the closely related and commercially valuable Atlantic sturgeon (Acipenser oxyrinchus). More than a century of extensive fishing for sturgeon contributed to the decline of shortnose sturgeon along the east coast. Heavy industrial development during the twentieth century in rivers inhabited by sturgeon impaired water quality and impeded these species' recovery; possibly resulting in substantially reduced abundance of shortnose sturgeon populations within portions of the species' ranges (e.g., southernmost rivers of the species range: Santilla, St. Marys and St. Johns Rivers). A shortnose sturgeon recovery plan was published in December 1998 to promote the conservation and recovery of the species (see NMFS 1998). Shortnose sturgeon are listed as "vulnerable" on the IUCN Red List.

Although shortnose sturgeon are listed as endangered range-wide, in the final recovery plan NMFS recognized 19 separate populations occurring throughout the range of the species. These populations are in New Brunswick Canada (1); Maine (2); Massachusetts (1); Connecticut (1); New York (1); New Jersey/Delaware (1); Maryland and Virginia (1); North Carolina (1); South Carolina (4); Georgia (4); and Florida (2). NMFS has not formally recognized distinct population segments (DPS)⁴ of shortnose sturgeon under the ESA. Although genetic information within and among shortnose sturgeon occurring in different river systems is largely unknown, life history studies indicate that shortnose sturgeon populations from different river systems are substantially reproductively isolated (Kynard 1997) and, therefore, should be considered discrete. The 1998 Recovery Plan indicates that while genetic information may reveal that interbreeding does not occur between rivers that drain into a common estuary, at this time, such

⁴ The definition of species under the ESA includes any subspecies of fish, wildlife, or plants, and any distinct population segment of any species of vertebrate fish or wildlife which interbreeds when mature. To be considered a DPS, a population segment must meet two criteria under NMFS policy. First, it must be discrete, or separated, from other populations of its species or subspecies. Second, it must be significant, or essential, to the long-term conservation status of its species or subspecies. This formal legal procedure to designate DPSs for shortnose sturgeon has not been undertaken.

river systems are considered a single population compromised of breeding subpopulations (NMFS 1998).

Studies conducted since the issuance of the Recovery Plan have provided evidence that suggests that years of isolation between populations of shortnose sturgeon have led to morphological and genetic variation. Walsh et al. (2001) examined morphological and genetic variation of shortnose sturgeon in three rivers (Kennebec, Androscoggin, and Hudson). The study found that the Hudson River shortnose sturgeon population differed markedly from the other two rivers for most morphological features (total length, fork length, head and snout length, mouth width, interorbital width and dorsal scute count, left lateral scute count, right ventral scute count). Significant differences were found between fish from Androscoggin and Kennebec rivers for interorbital width and lateral scute counts which suggests that even though the Androscoggin and Kennebec rivers drain into a common estuary, these rivers support largely discrete populations of shortnose sturgeon. The study also found significant genetic differences among all three populations indicating substantial reproductive isolation among them and that the observed morphological differences may be partly or wholly genetic.

Grunwald et al. (2002) examined mitochondrial DNA (mtDNA) from shortnose sturgeon in eleven river populations. The analysis demonstrated that all shortnose sturgeon populations examined showed moderate to high levels of genetic diversity as measured by haplotypic diversity indices. The limited sharing of haplotypes and the high number of private haplotypes are indicative of high homing fidelity and low gene flow. The researchers determined that glaciation in the Pleistocene Era was likely the most significant factor in shaping the phylogeographic pattern of mtDNA diversity and population structure of shortnose sturgeon. The Northern glaciated region extended south to the Hudson River while the southern nonglaciated region begins with the Delaware River. There is a high prevalence of haplotypes restricted to either of these two regions and relatively few are shared; this represents a historical subdivision that is tied to an important geological phenomenon that reflects historical isolation. Analyses of haplotype frequencies at the level of individual rivers showed significant differences among all systems in which reproduction is known to occur. This implies that although higher level genetic stock relationships exist (i.e., southern vs. northern and other regional subdivisions), shortnose sturgeon appear to be discrete stocks, and low gene flow exists between the majority of populations.

Waldman et al. (2002) also conducted mtDNA analysis on shortnose sturgeon from 11 river systems and identified 29 haplotypes. Of these haplotypes, 11 were unique to northern, glaciated systems and 13 were unique to the southern non-glaciated systems. Only 5 were shared between them. This analysis suggests that shortnose sturgeon show high structuring and discreteness and that low gene flow rates indicated strong homing fidelity.

Wirgin et al. (2005) also conducted mtDNA analysis on shortnose sturgeon from 12 rivers (St. John, Kennebec, Androscoggin, Upper Connecticut, Lower Connecticut, Hudson, Delaware, Chesapeake Bay, Cooper, Peedee, Savannah, Ogeechee and Altamaha). This analysis suggested that most population segments are independent and that genetic variation among groups was high.

The best available information demonstrates differences in life history and habitat preferences between northern and southern river systems and given the species' anadromous breeding habits, the rare occurrence of migration between river systems, and the documented genetic differences between river populations, it is unlikely that populations in adjacent river systems interbreed with any regularity. This likely accounts for the failure of shortnose sturgeon to repopulate river systems from which they have been extirpated, despite the geographic closeness of persisting populations. This characteristic of shortnose sturgeon also complicates recovery and persistence of this species in the future because, if a river population is extirpated in the future, it is unlikely that this river will be recolonized. Consequently, this Opinion will treat the nineteen separate populations of shortnose sturgeon as subpopulations (one of which occurs in the action area) for the purposes of this analysis.

Historically, shortnose sturgeon are believed to have inhabited nearly all major rivers and estuaries along nearly the entire east coast of North America. The range extended from the St John River in New Brunswick, Canada to the Indian River in Florida. Today, only 19 populations remain ranging from the St. Johns River, Florida (possibly extirpated from this system) to the Saint John River in New Brunswick, Canada. Shortnose sturgeon are large, long lived fish species. The present range of shortnose sturgeon is disjunct, with northern populations separated from southern populations by a distance of about 400 km. Population sizes vary across the species' range. From available estimates, the smallest populations occur in the Cape Fear (~8 adults; Moser and Ross 1995) in the south and Merrimack and Penobscot rivers in the north (\sim several hundred to several thousand adults depending on population estimates used; M. Kieffer, United States Geological Survey, personal communication; Dionne 2010), while the largest populations are found in the Saint John (~18, 000; Dadswell 1979) and Hudson Rivers (~61,000; Bain et al. 1998). As indicated in Kynard 1996, adult abundance is less than the minimum estimated viable population abundance of 1000 adults for 5 of 11 surveyed northern populations and all natural southern populations. Kynard 1996 indicates that all aspects of the species' life history indicate that shortnose sturgeon should be abundant in most rivers. As such, the expected abundance of adults in northern and north-central populations should be thousands to tens of thousands of adults. Expected abundance in southern rivers is uncertain, but large rivers should likely have thousands of adults. The only river systems likely supporting populations of these sizes are the St John, Hudson and possibly the Delaware and the Kennebec. making the continued success of shortnose sturgeon in these rivers critical to the species as a whole. While no reliable estimate of the size of either the total species population rangewide, or the shortnose sturgeon population in the Northeastern United States exists, it is clearly below the size that could be supported if the threats to shortnose sturgeon were removed.

Threats to shortnose sturgeon recovery rangewide

The Shortnose Sturgeon Recovery Plan (NMFS 1998) identifies habitat degradation or loss (resulting, for example, from dams, bridge construction, channel dredging, and pollutant discharges) and mortality (resulting, for example, from impingement on cooling water intake screens, dredging and incidental capture in other fisheries) as principal threats to the species' survival.

Several natural and anthropogenic factors continue to threaten the recovery of shortnose sturgeon. Shortnose sturgeon continue to be taken incidentally in fisheries along the east coast

and are probably targeted by poachers throughout their range (Dadswell 1979; Dovel et al. 1992; Collins et al. 1996). In-water or nearshore construction and demolition projects may interfere with normal shortnose sturgeon migratory movements and disturb sturgeon concentration areas. Unless appropriate precautions are made, internal damage and/or death may result from blasting projects with powerful explosives. Hydroelectric dams may affect shortnose sturgeon by restricting habitat, altering river flows or temperatures necessary for successful spawning and/or migration and causing mortalities to fish that become entrained in turbines. Maintenance dredging of Federal navigation channels and other areas can adversely affect or jeopardize shortnose sturgeon populations. Hydraulic dredges can lethally take sturgeon by entraining sturgeon in dredge dragarms and impeller pumps. Mechanical dredges have also been documented to lethally take shortnose sturgeon. In addition to direct effects, dredging operations may also impact shortnose sturgeon by destroying benthic feeding areas, disrupting spawning migrations, and filling spawning habitat with resuspended fine sediments. Shortnose sturgeon are susceptible to impingement on cooling water intake screens at power plants. Electric power and nuclear power generating plants can affect sturgeon by impinging larger fish on cooling water intake screens and entraining larval fish. The operation of power plants can have unforeseen and extremely detrimental impacts to riverine habitat which can affect shortnose sturgeon. For example, the St. Stephen Power Plant near Lake Moultrie, South Carolina was shut down for several days in June 1991 when large mats of aquatic plants entered the plant's intake canal and clogged the cooling water intake gates. Decomposing plant material in the tailrace canal coupled with the turbine shut down (allowing no flow of water) triggered a low dissolved oxygen water condition downstream and a subsequent fish kill. The South Carolina Wildlife and Marine Resources Department reported that twenty shortnose sturgeon were killed during this low dissolved oxygen event.

Contaminants, including toxic metals, polychlorinated aromatic hydrocarbons (PAHs), pesticides, and polychlorinated biphenyls (PCBs) can have substantial deleterious effects on aquatic life including production of acute lesions, growth retardation, and reproductive impairment (Cooper 1989; Sinderman 1994). Ultimately, toxins introduced to the water column become associated with the benthos and can be particularly harmful to benthic organisms (Varanasi 1992) like sturgeon. Heavy metals and organochlorine compounds are known to accumulate in fat tissues of sturgeon, but their long term effects are not yet known (Ruelle and Henry 1992; Ruelle and Kennlyne 1993). Available data suggests that early life stages of fish are more susceptible to environmental and pollutant stress than older life stages (Rosenthal and Alderdice 1976).

Although there is scant information available on the levels of contaminants in shortnose sturgeon tissues, some research on other related species indicates that concern about the effects of contaminants on the health of sturgeon populations is warranted. Detectible levels of chlordane, DDE (1,1-dichloro-2, 2-bis(p-chlorophenyl)ethylene), DDT (dichlorodiphenyl-trichloroethane), and dieldrin, and elevated levels of PCBs, cadmium, mercury, and selenium were found in pallid sturgeon tissue from the Missouri River (Ruelle and Henry 1994). These compounds were found in high enough levels to suggest they may be causing reproductive failure and/or increased physiological stress (Ruelle and Henry 1994). In addition to compiling data on contaminant levels, Ruelle and Henry also determined that heavy metals and organochlorine compounds (i.e. PCBs) accumulate in fat tissues. Although the long term effects of the accumulation of

contaminants in fat tissues is not yet known, some speculate that lipophilic toxins could be transferred to eggs and potentially inhibit egg viability. In other fish species, reproductive impairment, reduced egg viability, and reduced survival of larval fish are associated with elevated levels of environmental contaminants including chlorinated hydrocarbons. A strong correlation that has been made between fish weight, fish fork length, and DDE concentration in pallid sturgeon livers indicates that DDE increases proportionally with fish size (NMFS 1998).

Contaminant analysis was conducted on two shortnose sturgeon from the Delaware River in the fall of 2002. Muscle, liver, and gonad tissue were analyzed for contaminants (ERC 2002). Sixteen metals, two semivolatile compounds, three organochlorine pesticides, one PCB Aroclor, as well as polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) were detected in one or more of the tissue samples. Levels of aluminum, cadmium, PCDDs, PCDFs, PCBs, DDE (an organochlorine pesticide) were detected in the "adverse affect" range. It is of particular concern that of the above chemicals, PCDDs, DDE, PCBs and cadmium, were detected as these have been identified as endocrine disrupting chemicals. Contaminant analysis conducted in 2003 on tissues from a shortnose sturgeon from the Kennebec River revealed the presence of fourteen metals, one semivolatile compound, one PCB Aroclor, Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in one or more of the tissue samples. Of these chemicals, cadmium and zinc were detected at concentrations above an adverse effect concentration reported for fish in the literature (ERC 2003). While no directed studies of chemical contamination in shortnose sturgeon have been undertaken, it is evident that the heavy industrialization of the rivers where shortnose sturgeon are found is likely adversely affecting this species.

During summer months, especially in southern areas, shortnose sturgeon must cope with the physiological stress of water temperatures that may exceed 28°C. Flourney et al.(1992) suspected that, during these periods, shortnose sturgeon congregate in river regions which support conditions that relieve physiological stress (i.e., in cool deep thermal refuges). In southern rivers where sturgeon movements have been tracked, sturgeon refrain from moving during warm water conditions and are often captured at release locations during these periods (Flourney et al.1992; Rogers and Weber 1994; Weber 1996). The loss and/or manipulation of these discrete refuge habitats may limit or be limiting population survival, especially in southern river systems.

Pulp mill, silvicultural, agricultural, and sewer discharges, as well as a combination of non-point source discharges, which contain elevated temperatures or high biological demand, can reduce dissolved oxygen levels. Shortnose sturgeon are known to be adversely affected by dissolved oxygen levels below 5 mg/L. Shortnose sturgeon may be less tolerant of low dissolved oxygen levels in high ambient water temperatures and show signs of stress in water temperatures higher than 28°C (82.4°F) (Flourney et al. 1992). At these temperatures, concomitant low levels of dissolved oxygen may be lethal.

4.2 Atlantic Sturgeon

The section below describes the Atlantic sturgeon listing, provides life history information that is relevant to all DPSs of Atlantic sturgeon and then provides information specific to the status of each DPS of Atlantic sturgeon. Below, we also provide a description of which Atlantic sturgeon

DPSs likely occur in the action area and provide information on the use of the action area by Atlantic sturgeon.

The Atlantic sturgeon (*Acipenser oxyrinchus oxyrinchus*) is a subspecies of sturgeon distributed along the eastern coast of North America from Hamilton Inlet, Labrador, Canada to Cape Canaveral, Florida, USA (Scott and Scott, 1988; ASSRT, 2007; T. Savoy, CT DEP, pers. comm.). NMFS has delineated U.S. populations of Atlantic sturgeon into five DPSs (77 FR 5880 and 77 FR 5914). These are: the Gulf of Maine, New York Bight, Chesapeake Bay, Carolina, and South Atlantic DPSs (see Figure 1). The results of genetic studies suggest that natal origin influences the distribution of Atlantic sturgeon in the marine environment (Wirgin and King, 2011). However, genetic data as well as tracking and tagging data demonstrate sturgeon from each DPS and Canada occur throughout the full range of the subspecies. Therefore, sturgeon originating from any of the five DPSs can be affected by threats in the marine, estuarine and riverine environment that occur far from natal spawning rivers.

On February 6, 2012, we published notice in the *Federal Register* that we were listing the New York Bight, Chesapeake Bay, Carolina, and South Atlantic DPSs as endangered, and the Gulf of Maine DPS as threatened (77 FR 5880 and 77 FR 5914). The effective date of the listings was April 6, 2012. The DPSs do not include Atlantic sturgeon that are spawned in Canadian rivers. Therefore, Canadian spawned fish are not included in the listings.

As described below, individuals originating from three of the five listed DPSs may occur in the action area. Information general to all Atlantic sturgeon as well as information specific to each of the relevant DPSs, is provided below.

4.2.1 Determination of DPS Composition in the Action Area

As explained above, the range of all five DPSs overlaps and extends from Canada through Cape Canaveral, Florida. We have considered the best available information to determine from which DPSs individuals in the action area are likely to have originated. We have determined that Atlantic sturgeon in the action area likely originate from three of the five DPSs at the following frequencies: Gulf of Maine 6%; NYB 92%; and, Chesapeake Bay 2%. These percentages are based on genetic sampling of individuals (n=39) captured within the Hudson River and therefore, represent the best available information on the likely genetic makeup of individuals occurring in the action area. The genetic assignments have a plus/minus 5% confidence interval; however, for purposes of section 7 consultation we have selected the reported values above, which approximate the mid-point of the range, as a reasonable indication of the likely genetic makeup of Atlantic sturgeon in the action area. These assignments and the data from which they are derived are described in detail in Damon-Randall *et al.* (2012a).

Figure 1. Map Depicting the Boundaries of the five Atlantic sturgeon DPSs

4.2.2 Atlantic sturgeon life history

Atlantic sturgeon are long lived (approximately 60 years), late maturing, estuarine dependent, anadromous⁵ fish (Bigelow and Schroeder, 1953; Vladykov and Greeley 1963; Mangin, 1964; Pikitch *et al.*, 2005; Dadswell, 2006; ASSRT, 2007).

The life history of Atlantic sturgeon can be divided up into five general categories as described in the table below (adapted from ASSRT 2007).

⁵ Anadromous refers to a fish that is born in freshwater, spends most of its life in the sea, and returns to freshwater to spawn (NEFSC FAQ's, available at <u>http://www.nefsc.noaa.gov/faq/fishfaq1a.html</u>, modified June 16, 2011)

Age Class	Size	Description
Egg		Fertilized or unfertilized
Larvae		Negative photo- taxic, nourished by yolk sac
Young of Year (YOY)	0.3 grams <41 cm TL	Fish that are > 3 months and < one year; capable of capturing and consuming live food
Non-migrant subadults or juveniles	>41 cm and <76 cm TL	Fish that are at least age 1 and are not sexually mature and do not make coastal migrations.
Subadults	>76cm and <150cm TL	Fish that are not sexually mature but make coastal migrations
Adults	>150 cm TL	Sexually mature fish

Table 1. Descriptions of Atlantic sturgeon life history stages.

Atlantic sturgeon are a relatively large fish, even amongst sturgeon species (Pikitch *et al.*, 2005). Atlantic sturgeons are bottom feeders that suck food into a ventrally-located protruding mouth (Bigelow and Schroeder, 1953). Four barbels in front of the mouth assist the sturgeon in locating prey (Bigelow and Schroeder, 1953). Diets of adult and migrant subadult Atlantic sturgeon include mollusks, gastropods, amphipods, annelids, decapods, isopods, and fish such as sand lance (Bigelow and Schroeder, 1953; ASSRT, 2007; Guilbard *et al.*, 2007; Savoy, 2007). Juvenile Atlantic sturgeon feed on aquatic insects, insect larvae, and other invertebrates (Bigelow and Schroeder, 1953; ASSRT, 2007).

Rate of maturation is affected by water temperature and gender. In general: (1) Atlantic sturgeon that originate from southern systems grow faster and mature sooner than Atlantic sturgeon that originate from more northern systems; (2) males grow faster than females; (3) fully mature females attain a larger size (i.e. length) than fully mature males; and (4) the length of Atlantic sturgeon caught since the mid-late 20th century have typically been less than 3 meters (m) (Smith *et al.*, 1982; Smith *et al.*, 1984; Smith, 1985; Scott and Scott, 1988; Young *et al.*, 1998; Collins *et al.*, 2000; Caron *et al.*, 2002; Dadswell, 2006; ASSRT, 2007; Kahnle *et al.*, 2007; DFO, 2011).

The largest recorded Atlantic sturgeon was a female captured in 1924 that measured approximately 4.26 m (Vladykov and Greeley, 1963). Dadswell (2006) reported seeing seven fish of comparable size in the St. John River estuary from 1973 to 1995. Observations of large-sized sturgeon are particularly important given that egg production is correlated with age and body size (Smith *et al.*, 1982; Van Eenennaam *et al.*, 1996; Van Eenennaam and Doroshov, 1998; Dadswell, 2006). However, while females are prolific with egg production ranging from 400,000 to 4 million eggs per spawning year, females spawn at intervals of 2-5 years (Vladykov and Greeley, 1963; Smith *et al.*, 1982; Van Eenennaam *et al.*, 1996; Van Eenennaam and Doroshov, 1998; Stevenson and Secor, 1999; Dadswell, 2006). Given spawning periodicity and a female's relatively late age to maturity, the age at which 50 percent of the maximum lifetime egg production is achieved is estimated to be 29 years (Boreman, 1997). Males exhibit spawning periodicity of 1-5 years (Smith, 1985; Collins *et al.*, 2000; Caron *et al.*, 2002). While long-lived, Atlantic sturgeon are exposed to a multitude of threats prior to achieving maturation and have a limited number of spawning opportunities once mature.

Water temperature plays a primary role in triggering the timing of spawning migrations (ASMFC, 2009). Spawning migrations generally occur during February-March in southern systems, April-May in Mid-Atlantic systems, and May-July in Canadian systems (Murawski and Pacheco, 1977; Smith, 1985; Bain, 1997; Smith and Clugston, 1997; Caron *et al.*, 2002). Male sturgeon begin upstream spawning migrations when waters reach approximately 6° C (43° F) (Smith *et al.*, 1982; Dovel and Berggren, 1983; Smith, 1985; ASMFC, 2009), and remain on the spawning grounds throughout the spawning season (Bain, 1997). Females begin spawning migrations when temperatures are closer to 12° C to 13° C (54° to 55° F) (Dovel and Berggren, 1983; Smith, 1985; Collins *et al.*, 2000), make rapid spawning migrations upstream, and quickly depart following spawning (Bain, 1997).

The spawning areas in most U.S. rivers have not been well defined. However, the habitat characteristics of spawning areas have been identified based on historical accounts of where fisheries occurred, tracking and tagging studies of spawning sturgeon, and physiological needs of early life stages. Spawning is believed to occur in flowing water between the salt front of estuaries and the fall line of large rivers, when and where optimal flows are 46-76 cm/s and depths are 3-27 m (Borodin, 1925; Dees, 1961; Leland, 1968; Scott and Crossman, 1973; Crance, 1987; Shirey *et al.* 1999; Bain *et al.*, 2000; Collins *et al.*, 2000; Caron *et al.* 2002; Hatin *et al.* 2002; ASMFC, 2009). Sturgeon eggs are deposited on hard bottom substrate such as cobble, coarse sand, and bedrock (Dees, 1961; Scott and Crossman, 1973; Gilbert, 1989; Smith and Clugston, 1997; Bain *et al.* 2000; Collins *et al.*, 2000; Caron *et al.*, 2002; Mohler, 2003; ASMFC, 2009), and become adhesive shortly after fertilization (Murawski and Pacheco, 1977; Van den Avyle, 1983; Mohler, 2003). Incubation time for the eggs increases as water temperature decreases (Mohler, 2003). At temperatures of 20° and 18° C, hatching occurs approximately 94 and 140 hours, respectively, after egg deposition (ASSRT, 2007).

Larval Atlantic sturgeon (i.e. less than 4 weeks old, with total lengths (TL) less than 30 mm; Van Eenennaam *et al.* 1996) are assumed to undertake a demersal existence and inhabit the same riverine or estuarine areas where they were spawned (Smith *et al.*, 1980; Bain *et al.*, 2000; Kynard and Horgan, 2002; ASMFC, 2009). Studies suggest that age-0 (i.e., young-of-year), age-1, and age-2 juvenile Atlantic sturgeon occur in low salinity waters of the natal estuary (Haley,

1999; Hatin *et al.*, 2007; McCord *et al.*, 2007; Munro *et al.*, 2007) while older fish are more salt tolerant and occur in higher salinity waters as well as low salinity waters (Collins *et al.*, 2000). Atlantic sturgeon remain in the natal estuary for months to years before emigrating to open ocean as subadults (Holland and Yelverton, 1973; Dovel and Berggen, 1983; Waldman *et al.*, 1996; Dadswell, 2006; ASSRT, 2007).

After emigration from the natal estuary, subadults and adults travel within the marine environment, typically in waters less than 50 m in depth, using coastal bays, sounds, and ocean waters (Vladykov and Greeley, 1963; Murawski and Pacheco, 1977; Dovel and Berggren, 1983; Smith, 1985; Collins and Smith, 1997; Welsh et al., 2002; Savoy and Pacileo, 2003; Stein et al., 2004: USFWS, 2004: Laney et al., 2007: Dunton et al., 2010: Erickson et al., 2011: Wirgin and King, 2011). Tracking and tagging studies reveal seasonal movements of Atlantic sturgeon along the coast. Satellite-tagged adult sturgeon from the Hudson River concentrated in the southern part of the Mid-Atlantic Bight at depths greater than 20 m during winter and spring, and in the northern portion of the Mid-Atlantic Bight at depths less than 20 m in summer and fall (Erickson et al., 2011). Shirey (Delaware Department of Fish and Wildlife, unpublished data reviewed in ASMFC, 2009) found a similar movement pattern for juvenile Atlantic sturgeon based on recaptures of fish originally tagged in the Delaware River. After leaving the Delaware River estuary during the fall, juvenile Atlantic sturgeon were recaptured by commercial fishermen in nearshore waters along the Atlantic coast as far south as Cape Hatteras, North Carolina from November through early March. In the spring, a portion of the tagged fish reentered the Delaware River estuary. However, many fish continued a northerly coastal migration through the Mid-Atlantic as well as into southern New England waters where they were recovered throughout the summer months. Movements as far north as Maine were documented. A southerly coastal migration was apparent from tag returns reported in the fall. The majority of these tag returns were reported from relatively shallow near shore fisheries with few fish reported from waters in excess of 25 m (C. Shirey, Delaware Department of Fish and Wildlife, unpublished data reviewed in ASMFC, 2009). Areas where migratory Atlantic sturgeon commonly aggregate include the Bay of Fundy (e.g., Minas and Cumberland Basins), Massachusetts Bay, Connecticut River estuary, Long Island Sound, New York Bight, Delaware Bay, Chesapeake Bay, and waters off of North Carolina from the Virginia/North Carolina border to Cape Hatteras at depths up to 24 m (Dovel and Berggren, 1983; Dadswell *et al.*, 1984; Johnson et al., 1997; Rochard et al., 1997; Kynard et al., 2000; Eyler et al., 2004; Stein et al., 2004; Wehrell, 2005; Dadswell, 2006; ASSRT, 2007; Laney et al., 2007). These sites may be used as foraging sites and/or thermal refuge.

4.1.2 Distribution and Abundance

Atlantic sturgeon underwent significant range-wide declines from historical abundance levels due to overfishing in the mid to late 19th century when a caviar market was established (Scott and Crossman, 1973; Taub, 1990; Kennebec River Resource Management Plan, 1993; Smith and Clugston, 1997; Dadswell, 2006; ASSRT, 2007). Abundance of spawning-aged females prior to this period of exploitation was predicted to be greater than 100,000 for the Delaware, and at least 10,000 females for other spawning stocks (Secor and Waldman, 1999; Secor, 2002). Historical records suggest that Atlantic sturgeon spawned in at least 35 rivers prior to this period. Currently, only 16 U.S. rivers are known to support spawning based on available evidence (i.e., presence of young-of-year or gravid Atlantic sturgeon documented within the past 15 years)

(ASSRT, 2007). While there may be other rivers supporting spawning for which definitive evidence has not been obtained (e.g., in the Penobscot and York Rivers), the number of rivers supporting spawning of Atlantic sturgeon are approximately half of what they were historically. In addition, only four rivers (Kennebec, Hudson, Delaware, James) are known to currently support spawning from Maine through Virginia where historical records support there used to be fifteen spawning rivers (ASSRT, 2007). Thus, there are substantial gaps in the range between Atlantic sturgeon spawning rivers amongst northern and mid-Atlantic states which could make recolonization of extirpated populations more difficult.

There are no current, published population abundance estimates for any spawning stock or for any of the five DPSs of Atlantic sturgeon. An annual mean estimate of 863 mature adults (596 males and 267 females) was calculated for the Hudson River based on fishery-dependent data collected from 1985-1995 (Kahnle et al., 2007). An estimate of 343 spawning adults per year is available for the Altamaha River, GA, based on fishery-independent data collected in 2004 and 2005 (Schueller and Peterson, 2006). Using the data collected from the Hudson River and Altamaha River to estimate the total number of Atlantic sturgeon in either subpopulation is not possible, since mature Atlantic sturgeon may not spawn every year (Vladykov and Greeley, 1963; Smith, 1985; Van Eenennaam et al., 1996; Stevenson and Secor, 1999; Collins et al. 2000; Caron et al., 2002), the age structure of these populations is not well understood, and stage to stage survival is unknown. In other words, the information that would allow us to take an estimate of annual spawning adults and expand that estimate to an estimate of the total number of individuals (e.g., yearlings, subadults, and adults) in a population is lacking. The ASSRT presumed that the Hudson and Altamaha rivers had the most robust of the remaining U.S. Atlantic sturgeon spawning populations and concluded that the other U.S. spawning populations were likely less than 300 spawning adults per year (ASSRT, 2007).

4.1.3 Threats faced by Atlantic sturgeon throughout their range

Atlantic sturgeon are susceptible to over exploitation given their life history characteristics (e.g., late maturity, dependence on a wide-variety of habitats). Similar to other sturgeon species (Vladykov and Greeley, 1963; Pikitch *et al.*, 2005), Atlantic sturgeon experienced range-wide declines from historical abundance levels due to overfishing (for caviar and meat) and impacts to habitat in the 19th and 20th centuries (Taub, 1990; Smith and Clugston, 1997; Secor and Waldman, 1999).

Based on the best available information, NMFS has concluded that unintended catch of Atlantic sturgeon in fisheries, vessel strikes, poor water quality, water availability, dams, lack of regulatory mechanisms for protecting the fish, and dredging are the most significant threats to Atlantic sturgeon (77 FR 5880 and 77 FR 5914; February 6, 2012). While all of the threats are not necessarily present in the same area at the same time, given that Atlantic sturgeon subadults and adults use ocean waters from the Labrador, Canada to Cape Canaveral, FL, as well as estuaries of large rivers along the U.S. East Coast, activities affecting these water bodies are likely to impact more than one Atlantic sturgeon DPS. In addition, given that Atlantic sturgeon depend on a variety of habitats, every life stage is likely affected by one or more of the identified threats.

An ASMFC interstate fishery management plan for sturgeon (Sturgeon FMP) was developed and

implemented in 1990 (Taub, 1990). In 1998, the remaining Atlantic sturgeon fisheries in U.S. state waters were closed per Amendment 1 to the Sturgeon FMP. Complementary regulations were implemented by NMFS in 1999 that prohibit fishing for, harvesting, possessing or retaining Atlantic sturgeon or its parts in or from the Exclusive Economic Zone in the course of a commercial fishing activity.

Commercial fisheries for Atlantic sturgeon still exist in Canadian waters (DFO, 2011). Sturgeon belonging to one or more of the DPSs may be harvested in the Canadian fisheries. In particular, the Bay of Fundy fishery in the Saint John estuary may capture sturgeon of U.S. origin given that sturgeon from the Gulf of Maine and the New York Bight DPSs have been incidentally captured in other Bay of Fundy fisheries (DFO, 2010; Wirgin and King, 2011). Because Atlantic sturgeon are listed under Appendix II of the Convention on International Trade in Endangered Species (CITES), the U.S. and Canada are currently working on a conservation strategy to address the potential for captures of U.S. fish in Canadian directed Atlantic sturgeon fisheries and of Canadian fish incidentally in U.S. commercial fisheries. At this time, there are no estimates of the number of individuals from any of the DPSs that are captured or killed in Canadian fisheries each year.

Based on geographic distribution, most U.S. Atlantic sturgeon that are intercepted in Canadian fisheries are likely to originate from the Gulf of Maine DPS, with a smaller percentage from the New York Bight DPS.

Individuals from all 5 DPSs are caught as bycatch in fisheries operating in U.S. waters. At this time, we have an estimate of the number of Atlantic sturgeon captured and killed in sink gillnet and otter trawl fisheries authorized by Federal FMPs (NMFS NEFSC 2011) in the Northeast Region but do not have a similar estimate for Southeast fisheries. We also do not have an estimate of the number of Atlantic sturgeon captured or killed in state fisheries. At this time, we are not able to quantify the effects of other significant threats (e.g., vessel strikes, poor water quality, water availability, dams, and dredging) in terms of habitat impacts or loss of individuals. While we have some information on the number of mortalities that have occurred in the past in association with certain activities (e.g., mortalities in the Delaware and James rivers that are thought to be due to vessel strikes), we are not able to use those numbers to extrapolate effects throughout one or more DPS. This is because of (1) the small number of data points and, (2) lack of information on the percent of incidences that the observed mortalities represent.

As noted above, the NEFSC prepared an estimate of the number of encounters of Atlantic sturgeon in fisheries authorized by Northeast FMPs (NEFSC 2011). The analysis prepared by the NEFSC estimates that from 2006 through 2010 there were 2,250 to 3,862 encounters per year in observed gillnet and trawl fisheries, with an average of 3,118 encounters. Mortality rates in gillnet gear are approximately 20%. Mortality rates in otter trawl gear are believed to be lower at approximately 5%.

4.2 Gulf of Maine DPS of Atlantic sturgeon

The Gulf of Maine DPS includes the following: all anadromous Atlantic sturgeons that are spawned in the watersheds from the Maine/Canadian border and, extending southward, all watersheds draining into the Gulf of Maine as far south as Chatham, MA. Within this range, Atlantic sturgeon historically spawned in the Androscoggin, Kennebec, Merrimack, Penobscot,

and Sheepscot Rivers (ASSRT, 2007). Spawning still occurs in the Kennebec River, and it is possible that it still occurs in the Penobscot River as well. Spawning in the Androscoggin River was just recently confirmed by the Maine Department of Marine Resources when they captured a larval Atlantic sturgeon during the 2011 spawning season below the Brunswick Dam. There is no evidence of recent spawning in the remaining rivers. In the 1800s, construction of the Essex Dam on the Merrimack River at river kilometer (rkm) 49 blocked access to 58 percent of Atlantic sturgeon habitat in the river (Oakley, 2003; ASSRT, 2007). However, the accessible portions of the Merrimack seem to be suitable habitat for Atlantic sturgeon spawning and rearing (i.e., nursery habitat) (Keiffer and Kynard, 1993). Therefore, the availability of spawning habitat does not appear to be the reason for the lack of observed spawning in the Merrimack River. Studies are on-going to determine whether Atlantic sturgeon are spawning in these rivers. Atlantic sturgeons that are spawned elsewhere continue to use habitats within all of these rivers as part of their overall marine range (ASSRT, 2007). The movement of subadult and adult sturgeon between rivers, including to and from the Kennebec River and the Penobscot River, demonstrates that coastal and marine migrations are key elements of Atlantic sturgeon life history for the Gulf of Maine DPS as well as likely throughout the entire range (ASSRT, 2007; Fernandes, et al., 2010).

Bigelow and Schroeder (1953) surmised that Atlantic sturgeon likely spawned in Gulf of Maine Rivers in May-July. More recent captures of Atlantic sturgeon in spawning condition within the Kennebec River suggest that spawning more likely occurs in June-July (Squiers *et al.*, 1981; ASMFC, 1998; NMFS and USFWS, 1998). Evidence for the timing and location of Atlantic sturgeon spawning in the Kennebec River includes: (1) the capture of five adult male Atlantic sturgeon in spawning condition (i.e., expressing milt) in July 1994 below the (former) Edwards Dam; (2) capture of 31 adult Atlantic sturgeon from June 15,1980, through July 26,1980, in a small commercial fishery directed at Atlantic sturgeon from the South Gardiner area (above Merrymeeting Bay) that included at least 4 ripe males and 1 ripe female captured on July 26,1980; and, (3) capture of nine adults during a gillnet survey conducted from 1977-1981, the majority of which were captured in July in the area from Merrymeeting Bay and upriver as far as Gardiner, ME (NMFS and USFWS, 1998; ASMFC 2007). The low salinity values for waters above Merrymeeting Bay are consistent with values found in other rivers where successful Atlantic sturgeon spawning is known to occur.

Several threats play a role in shaping the current status of Gulf of Maine DPS Atlantic sturgeon. Historical records provide evidence of commercial fisheries for Atlantic sturgeon in the Kennebec and Androscoggin Rivers dating back to the 17th century (Squiers *et al.*, 1979). In 1849, 160 tons of sturgeon was caught in the Kennebec River by local fishermen (Squiers *et al.*, 1979). Following the 1880's, the sturgeon fishery was almost non-existent due to a collapse of the sturgeon stocks. All directed Atlantic sturgeon fishing as well as retention of Atlantic sturgeon by-catch has been prohibited since 1998. Nevertheless, mortalities associated with bycatch in fisheries occurring in state and federal waters still occurs. In the marine range, Gulf of Maine DPS Atlantic sturgeon are incidentally captured in federal and state managed fisheries, reducing survivorship of subadult and adult Atlantic sturgeon (Stein *et al.*, 2004; ASMFC 2007). As explained above, we have estimates of the number of subadults and adults that are killed as a result of bycatch in fisheries authorized under Northeast FMPs. At this time, we are not able to quantify the impacts from other threats or estimate the number of individuals killed as a result of

other anthropogenic threats. Habitat disturbance and direct mortality from anthropogenic sources are the primary concerns.

Riverine habitat may be impacted by dredging and other in-water activities, disturbing spawning habitat and also altering the benthic forage base. Many rivers in the Gulf of Maine DPS have navigation channels that are maintained by dredging. Dredging outside of Federal channels and in-water construction occurs throughout the Gulf of Maine DPS. While some dredging projects operate with observers present to document fish mortalities, many do not. To date we have not received any reports of Atlantic sturgeon killed during dredging projects in the Gulf of Maine region; however, as noted above, not all projects are monitored for interactions with fish. At this time, we do not have any information to quantify the number of Atlantic sturgeon killed or disturbed during dredging or in-water construction projects. We are also not able to quantify any effects to habitat.

Connectivity is disrupted by the presence of dams on several rivers in the Gulf of Maine region, including the Penobscot and Merrimack Rivers. While there are also dams on the Kennebec, Androscoggin and Saco Rivers, these dams are near the site of natural falls and likely represent the maximum upstream extent of sturgeon occurrence even if the dams were not present. Because no Atlantic sturgeon are known to occur upstream of any hydroelectric projects in the Gulf of Maine region, passage over hydroelectric dams or through hydroelectric turbines is not a source of injury or mortality in this area. While not expected to be killed or injured during passage at a dam, the extent that Atlantic sturgeon are affected by the existence of dams and their operations in the Gulf of Maine region is currently unknown. The extent that Atlantic sturgeon are affected by operations of dams in the Gulf of Maine region is currently unknown; however, the documentation of an Atlantic sturgeon larvae downstream of the Brunswick Dam in the Androscoggin River suggests that Atlantic sturgeon spawning may be occurring in the vicinity of at least that project and therefore, may be affected by project operations. The range of Atlantic sturgeon in the Penobscot River is limited by the presence of the Veazie and Great Works Dams. Together these dams prevent Atlantic sturgeon from accessing approximately 29 km of habitat, including the presumed historical spawning habitat located downstream of Milford Falls, the site of the Milford Dam. While removal of the Veazie and Great Works Dams is anticipated to occur in the near future, the presence of these dams is currently preventing access to significant habitats within the Penobscot River. While Atlantic sturgeon are known to occur in the Penobscot River, it is unknown if spawning is currently occurring or whether the presence of the Veazie and Great Works Dams affects the likelihood of spawning occurring in this river. The Essex Dam on the Merrimack River blocks access to approximately 58% of historically accessible habitat in this river. Atlantic sturgeon occur in the Merrimack River but spawning has not been documented. Like the Penobscot, it is unknown how the Essex Dam affects the likelihood of spawning occurring in this river.

Gulf of Maine DPS Atlantic sturgeon may also be affected by degraded water quality. In general, water quality has improved in the Gulf of Maine over the past decades (Lichter *et al.* 2006; EPA, 2008). Many rivers in Maine, including the Androscoggin River, were heavily polluted in the past from industrial discharges from pulp and paper mills. While water quality has improved and most discharges are limited through regulations, many pollutants persist in the benthic environment. This can be particularly problematic if pollutants are present on spawning

and nursery grounds as developing eggs and larvae are particularly susceptible to exposure to contaminants.

There are no empirical abundance estimates for the Gulf of Maine DPS. The Atlantic sturgeon SRT (2007) presumed that the Gulf of Maine DPS was comprised of less than 300 spawning adults per year, based on abundance estimates for the Hudson and Altamaha River riverine populations of Atlantic sturgeon. Surveys of the Kennebec River over two time periods, 1977-1981 and 1998-2000, resulted in the capture of nine adult Atlantic sturgeon (Squiers, 2004). However, since the surveys were primarily directed at capture of shortnose sturgeon, the capture gear used may not have been selective for the larger-sized, adult Atlantic sturgeon; several hundred subadult Atlantic sturgeon were caught in the Kennebec River during these studies.

Summary of the Gulf of Maine DPS

Spawning for the Gulf of Maine DPS is known to occur in two rivers (Kennebec and Androscoggin) and possibly in a third. Spawning may be occurring in other rivers, such as the Sheepscot or Penobscot, but has not been confirmed. There are indications of increasing abundance of Atlantic sturgeon belonging to the Gulf of Maine DPS. Atlantic sturgeon continue to be present in the Kennebec River; in addition, they are captured in directed research projects in the Penobscot River, and are observed in rivers where they were unknown to occur or had not been observed to occur for many years (e.g., the Saco, Presumpscot, and Charles rivers). These observations suggest that abundance of the Gulf of Maine DPS of Atlantic sturgeon is sufficient such that recolonization to rivers historically suitable for spawning may be occurring. However, despite some positive signs, there is not enough information to establish a trend for this DPS.

Some of the impacts from the threats that contributed to the decline of the Gulf of Maine DPS have been removed (e.g., directed fishing), or reduced as a result of improvements in water quality and removal of dams (e.g., the Edwards Dam on the Kennebec River in 1999). There are strict regulations on the use of fishing gear in Maine state waters that incidentally catch sturgeon. In addition, there have been reductions in fishing effort in state and federal waters, which most likely would result in a reduction in bycatch mortality of Atlantic sturgeon. A significant amount of fishing in the Gulf of Maine is conducted using trawl gear, which is known to have a much lower mortality rate for Atlantic sturgeon caught in the gear compared to sink gillnet gear (ASMFC, 2007). Atlantic sturgeon from the GOM DPS are not commonly taken as bycatch in areas south of Chatham, MA, with only 8 percent (e.g., 7 of the 84 fish) of interactions observed in the Mid Atlantic/Carolina region being assigned to the Gulf of Maine DPS (Wirgin and King, 2011). Tagging results also indicate that Gulf of Maine DPS fish tend to remain within the waters of the Gulf of Maine and only occasionally venture to points south. However, data on Atlantic sturgeon incidentally caught in trawls and intertidal fish weirs fished in the Minas Basin area of the Bay of Fundy.(Canada) indicate that approximately 35 percent originated from the Gulf of Maine DPS (Wirgin et al., in draft).

As noted previously, studies have shown that in order to rebuild, Atlantic sturgeon can only sustain low levels of bycatch and other anthropogenic mortality (Boreman, 1997; ASMFC, 2007; Kahnle *et al.*, 2007; Brown and Murphy, 2010). NMFS has determined that the Gulf of Maine DPS is at risk of becoming endangered in the foreseeable future throughout all of its range (i.e., is a threatened species) based on the following: (1) significant declines in population sizes and

the protracted period during which sturgeon populations have been depressed; (2) the limited amount of current spawning; and, (3) the impacts and threats that have and will continue to affect recovery.

4.3 New York Bight DPS of Atlantic sturgeon

The New York Bight DPS includes the following: all anadromous Atlantic sturgeon spawned in the watersheds that drain into coastal waters from Chatham, MA to the Delaware-Maryland border on Fenwick Island. Within this range, Atlantic sturgeon historically spawned in the Connecticut, Delaware, Hudson, and Taunton Rivers (Murawski and Pacheco, 1977; Secor, 2002; ASSRT, 2007). Spawning still occurs in the Delaware and Hudson Rivers, but there is no recent evidence (within the last 15 years) of spawning in the Connecticut and Taunton Rivers (ASSRT, 2007). Atlantic sturgeon that are spawned elsewhere continue to use habitats within the Connecticut and Taunton Rivers as part of their overall marine range (ASSRT, 2007; Savoy, 2007; Wirgin and King, 2011).

The abundance of the Hudson River Atlantic sturgeon riverine population prior to the onset of expanded exploitation in the 1800's is unknown but, has been conservatively estimated at 10,000 adult females (Secor, 2002). Current abundance is likely at least one order of magnitude smaller than historical levels (Secor, 2002; ASSRT, 2007; Kahnle et al., 2007). As described above, an estimate of the mean annual number of mature adults (863 total; 596 males and 267 females) was calculated for the Hudson River riverine population based on fishery-dependent data collected from 1985-1995 (Kahnle et al., 2007). Kahnle et al. (1998; 2007) also showed that the level of fishing mortality from the Hudson River Atlantic sturgeon fishery during the period of 1985-1995 exceeded the estimated sustainable level of fishing mortality for the riverine population and may have led to reduced recruitment. All available data on abundance of juvenile Atlantic sturgeon in the Hudson River Estuary indicate a substantial drop in production of young since the mid 1970s (Kahnle et al., 1998). A decline appeared to occur in the mid to late 1970s followed by a secondary drop in the late 1980s (Kahnle et al., 1998; Sweka et al., 2007; ASMFC, 2010). Catch-per-unit-effort data suggests that recruitment has remained depressed relative to catches of juvenile Atlantic sturgeon in the estuary during the mid-late 1980's (Sweka et al., 2007; ASMFC, 2010). In examining the CPUE data from 1985-2007, there are significant fluctuations during this time. There appears to be a decline in the number of juveniles between the late 1980s and early 1990s and while the CPUE is generally higher in the 2000s as compared to the 1990s. Given the significant annual fluctuation, it is difficult to discern any trend. Despite the CPUEs from 2000-2007 being generally higher than those from 1990-1999, they are low compared to the late 1980s. There is currently not enough information regarding any life stage to establish a trend for the Hudson River population.

There is no abundance estimate for the Delaware River population of Atlantic sturgeon. Harvest records from the 1800s indicate that this was historically a large population with an estimated 180,000 adult females prior to 1890 (Secor and Waldman, 1999; Secor, 2002). Sampling in 2009 to target young-of- the year (YOY) Atlantic sturgeon in the Delaware River (i.e., natal sturgeon) resulted in the capture of 34 YOY, ranging in size from 178 to 349 mm TL (Fisher, 2009) and the collection of 32 YOY Atlantic sturgeon in a separate study (Brundage and O'Herron in Calvo *et al.*, 2010). Genetics information collected from 33 of the 2009 year class YOY indicates that at least 3 females successfully contributed to the 2009 year class (Fisher, 2011). Therefore, while

the capture of YOY in 2009 provides evidence that successful spawning is still occurring in the Delaware River, the relatively low numbers suggest the existing riverine population is limited in size.

Several threats play a role in shaping the current status and trends observed in the Delaware River and Estuary. In-river threats include habitat disturbance from dredging, and impacts from historical pollution and impaired water quality. A dredged navigation channel extends from Trenton seaward through the tidal river (Brundage and O'Herron, 2009), and the river receives significant shipping traffic. Vessel strikes have been identified as a threat in the Delaware River; however, at this time we do not have information to quantify this threat or its impact to the population or the New York Bight DPS. Similar to the Hudson River, there is currently not enough information to determine a trend for the Delaware River population.

Summary of the New York Bight DPS

Atlantic sturgeon originating from the New York Bight DPS spawn in the Hudson and Delaware rivers. While genetic testing can differentiate between individuals originating from the Hudson or Delaware river the available information suggests that the straying rate is high between these rivers. There are no indications of increasing abundance for the New York Bight DPS (ASSRT, 2009; 2010). Some of the impact from the threats that contributed to the decline of the New York Bight DPS have been removed (e.g., directed fishing) or reduced as a result of improvements in water quality since passage of the Clean Water Act (CWA). In addition, there have been reductions in fishing effort in state and federal waters, which may result in a reduction in bycatch mortality of Atlantic sturgeon. Nevertheless, areas with persistent, degraded water quality, habitat impacts from dredging, continued bycatch in state and federally-managed fisheries, and vessel strikes remain significant threats to the New York Bight DPS.

In the marine range, New York Bight DPS Atlantic sturgeon are incidentally captured in federal and state managed fisheries, reducing survivorship of subadult and adult Atlantic sturgeon (Stein *et al.*, 2004; ASMFC 2007). As explained above, currently available estimates indicate that at least 4% of adults may be killed as a result of bycatch in fisheries authorized under Northeast FMPs. Based on mixed stock analysis results presented by Wirgin and King (2011), over 40 percent of the Atlantic sturgeon bycatch interactions in the Mid Atlantic Bight region were sturgeon from the New York Bight DPS. Individual-based assignment and mixed stock analysis of samples collected from sturgeon captured in Canadian fisheries in the Bay of Fundy indicated that approximately 1-2% were from the New York Bight DPS. At this time, we are not able to quantify the impacts from other threats or estimate the number of individuals killed as a result of other anthropogenic threats.

Riverine habitat may be impacted by dredging and other in-water activities, disturbing spawning habitat and also altering the benthic forage base. Both the Hudson and Delaware rivers have navigation channels that are maintained by dredging. Dredging is also used to maintain channels in the nearshore marine environment. Dredging outside of Federal channels and in-water construction occurs throughout the New York Bight region. While some dredging projects operate with observers present to document fish mortalities many do not. We have reports of one Atlantic sturgeon entrained during hopper dredging operations in Ambrose Channel, New Jersey. At this time, we do not have any information to quantify the number of Atlantic sturgeon killed

or disturbed during dredging or in-water construction projects are also not able to quantify any effects to habitat.

In the Hudson and Delaware Rivers, dams do not block access to historical habitat. The Holyoke Dam on the Connecticut River blocks further upstream passage; however, the extent that Atlantic sturgeon would historically have used habitat upstream of Holyoke is unknown. Connectivity may be disrupted by the presence of dams on several smaller rivers in the New York Bight region. Because no Atlantic sturgeon occur upstream of any hydroelectric projects in the New York Bight region, passage over hydroelectric dams or through hydroelectric turbines is not a source of injury or mortality in this area. The extent that Atlantic sturgeon are affected by operations of dams in the New York Bight region is currently unknown.

New York Bight DPS Atlantic sturgeon may also be affected by degraded water quality. In general, water quality has improved in the Hudson and Delaware over the past decades (Lichter *et al.* 2006; EPA, 2008). Both the Hudson and Delaware rivers, as well as other rivers in the New York Bight region, were heavily polluted in the past from industrial and sanitary sewer discharges. While water quality has improved and most discharges are limited through regulations, many pollutants persist in the benthic environment. This can be particularly problematic if pollutants are present on spawning and nursery grounds as developing eggs and larvae are particularly susceptible to exposure to contaminants.

Vessel strikes occur in the Delaware River. Twenty-nine mortalities believed to be the result of vessel strikes were documented in the Delaware River from 2004 to 2008, and at least 13 of these fish were large adults. Given the time of year in which the fish were observed (predominantly May through July, with two in August), it is likely that many of the adults were migrating through the river to the spawning grounds. Because we do not know the percent of total vessel strikes that the observed mortalities represent, we are not able to quantify the number of individuals likely killed as a result of vessel strikes in the New York Bight DPS.

Studies have shown that to rebuild, Atlantic sturgeon can only sustain low levels of anthropogenic mortality (Boreman, 1997; ASMFC, 2007; Kahnle *et al.*, 2007; Brown and Murphy, 2010). There are no empirical abundance estimates of the number of Atlantic sturgeon in the New York Bight DPS. NMFS has determined that the New York Bight DPS is currently at risk of extinction due to: (1) precipitous declines in population sizes and the protracted period in which sturgeon populations have been depressed; (2) the limited amount of current spawning; and (3) the impacts and threats that have and will continue to affect population recovery.

4.4 Chesapeake Bay DPS of Atlantic sturgeon

The Chesapeake Bay DPS includes the following: all anadromous Atlantic sturgeons that are spawned in the watersheds that drain into the Chesapeake Bay and into coastal waters from the Delaware-Maryland border on Fenwick Island to Cape Henry, VA. Within this range, Atlantic sturgeon historically spawned in the Susquehanna, Potomac, James, York, Rappahannock, and Nottoway Rivers (ASSRT, 2007). Based on the review by Oakley (2003), 100 percent of Atlantic sturgeon habitat is currently accessible in these rivers since most of the barriers to passage (i.e. dams) are located upriver of where spawning is expected to have historically occurred (ASSRT, 2007). Spawning still occurs in the James River, and the presence of juvenile and adult sturgeon in the York River suggests that spawning may occur there as well (Musick *et*

al., 1994; ASSRT, 2007; Greene, 2009). However, conclusive evidence of current spawning is only available for the James River. Atlantic sturgeon that are spawned elsewhere are known to use the Chesapeake Bay for other life functions, such as foraging and as juvenile nursery habitat prior to entering the marine system as subadults (Vladykov and Greeley, 1963; ASSRT, 2007; Wirgin *et al.*, 2007; Grunwald *et al.*, 2008).

Age to maturity for Chesapeake Bay DPS Atlantic sturgeon is unknown. However, Atlantic sturgeon riverine populations exhibit clinal variation with faster growth and earlier age to maturity for those that originate from southern waters, and slower growth and later age to maturity for those that originate from northern waters (75 FR 61872; October 6, 2010). Age at maturity is 5 to 19 years for Atlantic sturgeon originating from South Carolina rivers (Smith *et al.*, 1982) and 11 to 21 years for Atlantic sturgeon originating from the Hudson River (Young *et al.*, 1998). Therefore, age at maturity for Atlantic sturgeon of the Chesapeake Bay DPS likely falls within these values.

Several threats play a role in shaping the current status of Chesapeake Bay DPS Atlantic sturgeon. Historical records provide evidence of the large-scale commercial exploitation of Atlantic sturgeon from the James River and Chesapeake Bay in the 19th century (Hildebrand and Schroeder, 1928; Vladykov and Greeley, 1963; ASMFC, 1998; Secor, 2002; Bushnoe *et al.*, 2005; ASSRT, 2007) as well as subsistence fishing and attempts at commercial fisheries as early as the 17th century (Secor, 2002; Bushnoe *et al.*, 2005; ASSRT, 2007; Balazik *et al.*, 2010). Habitat disturbance caused by in-river work such as dredging for navigational purposes is thought to have reduced available spawning habitat in the James River (Holton and Walsh, 1995; Bushnoe *et al.*, 2005; ASSRT, 2007). At this time, we do not have information to quantify this loss of spawning habitat.

Decreased water quality also threatens Atlantic sturgeon of the Chesapeake Bay DPS, especially since the Chesapeake Bay system is vulnerable to the effects of nutrient enrichment due to a relatively low tidal exchange and flushing rate, large surface to volume ratio, and strong stratification during the spring and summer months (Pyzik *et al.*, 2004; ASMFC, 1998; ASSRT, 2007; EPA, 2008). These conditions contribute to reductions in dissolved oxygen levels throughout the Bay. The availability of nursery habitat, in particular, may be limited given the recurrent hypoxia (low dissolved oxygen) conditions within the Bay (Niklitschek and Secor, 2005; 2010). At this time we do not have sufficient information to quantify the extent that degraded water quality effects habitat or individuals in the James River or throughout the Chesapeake Bay.

Vessel strikes have been observed in the James River (ASSRT, 2007). Eleven Atlantic sturgeon were reported to have been struck by vessels from 2005 through 2007. Several of these were mature individuals. Because we do not know the percent of total vessel strikes that the observed mortalities represent, we are not able to quantify the number of individuals likely killed as a result of vessel strikes in the New York Bight DPS.

In the marine and coastal range of the Chesapeake Bay DPS from Canada to Florida, fisheries bycatch in federally and state managed fisheries pose a threat to the DPS, reducing survivorship of subadults and adults and potentially causing an overall reduction in the spawning population

(Stein et al., 2004; ASMFC, 2007; ASSRT, 2007).

Summary of the Chesapeake Bay DPS

Spawning for the Chesapeake Bay DPS is known to occur in only the James River. Spawning may be occurring in other rivers, such as the York, but has not been confirmed. There are anecdotal reports of increased sightings and captures of Atlantic sturgeon in the James River. However, this information has not been comprehensive enough to develop a population estimate for the James River or to provide sufficient evidence to confirm increased abundance. Some of the impact from the threats that facilitated the decline of the Chesapeake Bay DPS have been removed (e.g., directed fishing) or reduced as a result of improvements in water quality since passage of the Clean Water Act (CWA). We do not currently have enough information about any life stage to establish a trend for this DPS.

Areas with persistent, degraded water quality, habitat impacts from dredging, continued bycatch in U.S. state and federally-managed fisheries, Canadian fisheries and vessel strikes remain significant threats to the Chesapeake Bay DPS of Atlantic sturgeon. Studies have shown that Atlantic sturgeon can only sustain low levels of bycatch mortality (Boreman, 1997; ASMFC, 2007; Kahnle *et al.*, 2007). The Chesapeake Bay DPS is currently at risk of extinction given (1) precipitous declines in population sizes and the protracted period in which sturgeon populations have been depressed; (2) the limited amount of current spawning; and, (3) the impacts and threats that have and will continue to affect the potential for population recovery.

4.5 Shortnose Sturgeon in the Hudson River and the action area

The action area is limited to the reach of the Hudson River affected by the operations of IP2 and IP3, including IP1 to the extent its water intake services IP2, as described in the "Action Area" section above. As such, this section will discuss the available information related to the presence and status of shortnose sturgeon in the Hudson River and in the action area.

Shortnose sturgeon were first observed in the Hudson River by early settlers who captured them as a source of food and documented their abundance (Bain et al. 1998). Shortnose sturgeon in the Hudson River were documented as abundant in the late 1880s (Ryder 1888 in Hoff 1988). Prior to 1937, a few fishermen were still commercially harvesting shortnose sturgeon in the Hudson River; however, fishing pressure declined as the population decreased. During the late 1800s and early 1900s, the Hudson River served as a dumping ground for pollutants that lead to major oxygen depletions and resulted in fish kills and population reductions. During this same time there was a high demand for shortnose sturgeon eggs (caviar), leading to overharvesting. Water pollution, overfishing, and the commercial Atlantic sturgeon fishery are all factors that may have contributed to the decline of shortnose sturgeon in the Hudson River (Hoff 1988).

In the 1930s, the New York State Biological Survey launched the first scientific analysis that documented the distribution, age, and size of mature shortnose sturgeon in the Hudson River (see Bain et al. 1998). In the 1970s, scientific sampling resumed precipitated by the lack of biological data and concerns about the impact of electric generation facilities on fishery resources (see Bain et al. 1998). The current population of shortnose sturgeon has been documented by studies conducted throughout the entire range of shortnose sturgeon in the Hudson River (see: Dovel 1979, Hoff et al. 1988, Geoghegan et al. 1992, Bain et al. 1998, Bain

et al. 2000, Dovel et al. 1992).

Several population estimates were conducted throughout the 1970s and 1980s (Dovel 1979; Dovel 1981; Dovel et al. 1992). Most recently, Bain et al. (1998) conducted a mark recapture study from 1994 through 1997 focusing on the shortnose sturgeon active spawning stock. Utilizing targeted and dispersed sampling methods, 6,430 adult shortnose sturgeon were captured and 5,959 were marked; several different abundance estimates were generated from this sampling data using different population models. Abundance estimates generated ranged from a low of 25, 255 to a high of 80,026; though 61,057 is the abundance estimate from this dataset and modeling exercise that is typically used. This estimate includes spawning adults estimated to comprise 93% of the entire population or 56,708, non-spawning adults accounting for 3% of the population and juveniles 4% (Bain et al. 2000). Bain et al. (2000) compared the spawning population estimate with estimates by Dovel et al. (1992) concluding an increase of approximately 400% between 1979 and 1997. Although fish populations dominated by adults are not common for most species, there is no evidence that this is atypical for shortnose sturgeon (Bain et al. 1998).

Woodland and Secor (2007) examined the Bain et al. (1998, 2000, 2007) estimates to try and identify the cause of the major change in abundance. Woodland and Secor (2007) concluded that the dramatic increase in abundance was likely due to improved water quality in the Hudson River which allowed for high recruitment during years when environmental conditions were right, particularly between 1986-1991. These studies provide the best information available on the current status of the Hudson River population and suggests that the population is relatively healthy, large, and particular in habitat use and migratory behavior (Bain et al. 1998).

Shortnose sturgeon have been documented in the Hudson River from upper Staten Island (RM -3 (rkm -4.8)) to the Troy Dam (RM 155 (rkm 249.5); for reference, Indian Point is located at RM 43 (rkm 69))⁶ (Bain et al. 2000, ASA 1980-2002). Prior to the construction of the Troy Dam in 1825, shortnose sturgeon are thought to have used the entire freshwater portion of the Hudson River (NYHS 1809). Spawning fish congregated at the base of Cohoes Falls where the Mohawk River emptied into the Hudson. In recent years (since 1999), shortnose sturgeon have been documented below the Tappan Zee Bridge from June through December (ASA 1999-2002; Dynegy 2003). While shortnose sturgeon presence below the Tappan Zee Bridge had previously been thought to be rare (Bain et al. 2000), increasing numbers of shortnose sturgeon have been documented in this area over the last several years (ASA 1999-2002; Dynegy 2003) suggesting that the range of shortnose sturgeon is extending downstream. Shortnose sturgeon were documented as far south as the Manhattan/Staten Island area in June, November and December 2003 (Dynegy 2003).

From late fall to early spring, adult shortnose sturgeon concentrate in a few overwintering areas. Reproductive activity the following spring determines overwintering behavior. The largest overwintering area is just south of Kingston, NY, near Esopus Meadows (RM 86-94, rkm 139-152) (Dovel et al. 1992). The fish overwintering at Esopus Meadows are mainly spawning adults. Recent capture data suggests that these areas may be expanding (Hudson River 1999-

⁶ See Figure 3 for a map of the Hudson River with these areas highlighted.

2002, Dynegy 2003). Captures of shortnose sturgeon during the fall and winter from Saugerties to Hyde Park (greater Kingston reach), indicate that additional smaller overwintering areas may be present (Geoghegan et al. 1992). Both Geoghegan et al. (1992) and Dovel et al. (1992) also confirmed an overwintering site in the Croton-Haverstraw Bay area (RM 33.5 – 38,rkm 54-61). The Indian Point facility is located approximately 8km (5 miles) north of the northern extent of this overwintering area, which is near rkm 61 (RM 38). Fish overwintering in areas below Esopus Meadows are mainly thought to be pre-spawning adults. Typically, movements during overwintering periods are localized and fairly sedentary.

In the Hudson River, males usually spawn at approximately 3-5 years of age while females spawn at approximately 6-10 years of age (Dadswell et al. 1984; Bain et al. 1998). Males may spawn annually once mature and females typically spawn every 3 years (Dovel et al. 1992). Mature males feed only sporadically prior to the spawning migration, while females do not feed at all in the months prior to spawning.

In approximately late March through mid-April, when water temperatures are sustained at 8°-9° C (46.4-48.2°F) for several days⁷, reproductively active adults begin their migration upstream to the spawning grounds that extend from below the Federal Dam at Troy to about Coeymans, NY (rkm 245-212 (RM 152-131); located more than 150km (93 miles) upstream from the Indian Point facility) (Dovel et al. 1992). Spawning typically occurs at water temperatures between 10-18°C (50-64.4°F) (generally late April-May) after which adults disperse quickly down river into their summer range. Dovel et al. (1992) reported that spawning fish tagged at Troy were recaptured in Haverstraw Bay in early June. The broad summer range occupied by adult shortnose sturgeon extends from approximately rkm 38 to rkm 177 (RM 23.5-110). The Indian Point facility (at rkm 69) is located within the broad summer range.

There is scant data on actual collection of early life stages of shortnose sturgeon in the Hudson River. During a mark recapture study conducted from 1976-1978, Dovel et al. (1979) captured larvae near Hudson, NY (rkm 188, RM 117) and young of the year were captured further south near Germantown (RM 106, rkm 171). Between 1996 and 2004, approximately 10 small shortnose sturgeon were collected each year as part of the Falls Shoals Survey (FSS) (ASA 2007). Based upon basic life history information for shortnose sturgeon it is known that eggs adhere to solid objects on the river bottom (Buckley and Kynard 1981; Taubert 1980) and that eggs and larvae are expected to be present within the vicinity of the spawning grounds (rkm 245-212, RM 152-131) for approximately four weeks post spawning (i.e., at latest through mid-June). Shortnose sturgeon larvae in the Hudson River generally range in size from 15 to 18 mm (0.6-0.7 inches) TL at hatching (Pekovitch 1979). Larvae gradually disperse downstream after hatching, entering the tidal river (Hoff et al. 1988). Larvae or fry are free swimming and typically concentrate in deep channel habitat (Taubert and Dadswell 1980; Bath et al. 1981; Kieffer ad Kynard 1993). Given that fry are free swimming and foraging, they typically disperse downstream of spawning/rearing areas. Larvae can be found upstream of the salt wedge in the Hudson River estuary and are most commonly found in deep waters with strong currents,

⁷ Based on information from the USGS gage in Albany (gage no. 01359139), in 2002 mean water temperatures reached 8°C on April 10 and 15°C on April 20; 2003 - 8°C on April 14 and 15°C on May 19; 2004 - 8°C on April 17 and 15°C on May 11. In 2011, water temperatures reached 8°C on April 11 and reached 15°C on May 19. In 2012, water temperatures reached 8°C on Mar 13.

typically in the channel (Hoff et al. 1988; Dovel et al. 1992). Larvae are not tolerant of saltwater and their occurrence within the estuary is limited to freshwater areas. The transition from the larval to juvenile stage generally occurs in the first summer of life when the fish grows to approximately 2 cm (0.8 in) TL and is marked by fully developed external characteristics (Pekovitch 1979).

Similar to non-spawning adults, most juveniles occupy the broad region of Haverstraw Bay (rkm 55-64.4) RM 34-40; Indian Point is located near the northern edge of the bay) (Dovel et al. 1992; Geoghegan et al. 1992) by late fall and early winter. Migrations from the summer foraging areas to the overwintering grounds are triggered when water temperatures fall to 8°C (46.4°F) (NMFS 1998), typically in late November⁸. Juveniles are distributed throughout the mid-river region during the summer and move back into the Haverstraw Bay region during the late fall (Bain et al. 1998; Geoghegan et al. 1992; Haley 1998).

Shortnose sturgeon are bottom feeders and juveniles may use the protuberant snout to "vacuum" the river bottom. Curran & Ries (1937) described juvenile shortnose sturgeon from the Hudson River as having stomach contents of 85-95% mud intermingled with plant and animal material. Other studies found stomach contents of adults were solely food items, implying that feeding is more precisely oriented. The ventral protrusable mouth and barbells are adaptations for a diet of small live benthic animals. Juveniles feed on smaller and somewhat different organisms than adults. Common prey items are aquatic insects (chironomids), isopods, and amphipods. Unlike adults, mollusks do not appear to be an important part of the diet of juveniles (Bain 1997). As adults, their diet shifts strongly to mollusks (Curran & Ries 1937).

Telemetry data has been instrumental in informing the extent of shortnose sturgeon coastal migrations. Recent telemetry data from the Gulf of Maine indicate shortnose sturgeon in this region undertake significant coastal migrations between larger river systems and utilize smaller coastal river systems during these interbasin movements (Fernandes 2008; UMaine unpublished data). Some outmigration has been documented in the Hudson River, albeit at low levels in comparison to coastal movement documented in the Gulf of Maine and Southeast rivers. Two individuals tagged in 1995 in the overwintering area near Kingston, NY were later recaptured in the Connecticut River. One of these fish was at large for over two years and the other 8 years prior to recapture. As such, it is reasonable to expect some level of movement out of the Hudson into adjacent river systems; however, based on available information it is not possible to predict what percentage of adult shortnose sturgeon originating from the Hudson River may participate in coastal migrations.

4.6 Atlantic sturgeon in the Hudson River and the action area

Use of the river by Atlantic sturgeon has been described by several authors. The area around Hyde Park (approximately rkm134) has consistently been identified as a spawning area through scientific studies and historical records of the Hudson River sturgeon fishery (Dovel and

⁸ In 2002, water temperatures at the USGS gage at Hastings-on-Hudson (No. 01376304; the farthest downstream gage on the river) fell to 8°C on November 23. In 2003, water temperatures at this gage fell to 8°C on November 29. In 2010, water temperatures at the USGS gage at West Point, NY (No. 01374019; currently the farthest downstream gage on the river) fell to 8°C on November 23. In 2011, water temperatures at the USGS gage at West Point, NY (No. 01374019; currently the farthest downstream gage on the river) fell to 8°C on November 23. In 2011, water temperatures at the USGS gage at West Point, NY (No. 01374019) fell to 8°C on November 24. This gage ceased operations on March 1, 2012.

Berggren, 1983; Van Eenennaam *et al.*, 1996; Kahnle *et al.*, 1998; Bain *et al.*, 2000). Habitat conditions at the Hyde Park site are described as freshwater year round with bedrock, silt and clay substrates and waters depths of 12-24 m (Bain *et al.*, 2000). Bain *et al.* (2000) also identified a spawning site at rkm 112 based on tracking data. The rkm 112 site, located to one side of the river, has clay, silt and sand substrates, and is approximately 21-27 m deep (Bain *et al.*, 2000).

Young-of-year (YOY) have been recorded in the Hudson River between rkm 60 and rkm 148, which includes some brackish waters; however, larvae must remain upstream of the salt wedge because of their low salinity tolerance (Dovel and Berggren, 1983; Kahnle et al., 1998; Bain et al., 2000). Catches of immature sturgeon (age 1 and older) suggest that juveniles utilize the estuary from the Tappan Zee Bridge through Kingston (rkm 43- rkm 148) (Dovel and Berggren, 1983; Bain et al., 2000). Seasonal movements are apparent with juveniles occupying waters from rkm 60 to rkm 107 during summer months and then moving downstream as water temperatures decline in the fall, primarily occupying waters from rkm 19 to rkm 74 (Dovel and Berggren, 1983; Bain et al., 2000). Based on river-bottom sediment maps (Coch, 1986) most juvenile sturgeon habitats in the Hudson River have clay, sand, and silt substrates (Bain et al., 2000). Newburgh and Haverstraw Bays in the Hudson River are areas of known juvenile sturgeon concentrations (Sweka et al., 2007). Sampling in spring and fall revealed that highest catches of juvenile Atlantic sturgeon occurred during spring in soft-deep areas of Haverstraw Bay even though this habitat type comprised only 25% of the available habitat in the Bay (Sweka et al., 2007). Overall, 90% of the total 562 individual juvenile Atlantic sturgeon captured during the course of this study (14 were captured more than once) came from Haverstraw Bay (Sweka et al., 2007). At around 3 years of age, Hudson River juveniles exceeding 70 cm total length begin to migrate to marine waters (Bain et al., 2000).

Atlantic sturgeon adults are likely to migrate through the action area in the spring as they move from oceanic overwintering sites to upstream spawning sites and then migrate back through the area as they move to lower reaches of the estuary or oceanic areas in the late spring and early summer. Atlantic sturgeon adults are most likely to occur in the action area from May – September. Tracking data from tagged juvenile Atlantic sturgeon indicates that during the spring and summer individuals are most likely to occur within rkm 60-170. During the winter months, juvenile Atlantic sturgeon are most likely to occur between rkm 19 and 74. This seasonal change in distribution may be associated with seasonal movements of the saltwedge and differential seasonal use of habitats.

Based on the available data, Atlantic sturgeon may be present in the action area year round. As explained above, Atlantic sturgeon in the action area are likely to have originated from the New York Bight DPS, Chesapeake Bay DPS and Gulf of Maine DPS, with the majority of individuals originating from the New York Bight DPS, and the majority of those individuals originating from the Hudson River.

4.7 Factors Affecting the Survival and Recovery of Shortnose and Atlantic sturgeon in the Hudson River

There are several activities that occur in the Hudson River that affect individual shortnose and Atlantic sturgeon. Impacts of activities that occur within the action area are considered in the "Environmental Baseline" section (Section 5.0, below). Activities that impact sturgeon in the Hudson River but do not necessarily overlap with the action area are discussed below.

4.7.1 Hudson River Power Plants

The mid-Hudson River provides cooling water to four large power plants: Indian Point Nuclear Generating Station, Roseton Generating Station (RM 66, rkm 107), Danskammer Point Generating Station (RM 66, rkm 107), and Bowline Point Generating Station (RM 33, rkm 52.8). All of these stations use once-through cooling. The Lovett Generating Station (RM 42, rkm 67) is no longer operating.

In 1998, Central Hudson Gas and Electric Corporation (CHGEC), the operator of the Roseton and Danskammer Point power plants initiated an application with us for an incidental take (ITP) permit under section 10(a)(1)(B) of the ESA.⁹ As part of this process CHGEC submitted a Conservation Plan and application for a 10(a)(1)(B) incidental take permit that proposed to minimize the potential for entrainment and impingement of shortnose sturgeon at the Roseton and Danskammer Point power plants. These measures ensure that the operation of these plants will not appreciably reduce the likelihood of the survival and recovery of shortnose sturgeon in the wild. In addition to the minimization measures, a proposed monitoring program was implemented to assess the periodic take of shortnose sturgeon, the status of the species in the project area, and the progress on the fulfillment of mitigation requirements. In December 2000, Dynegy Roseton L.L.C. and Dynegy Danskammer Point L.L.C. were issued incidental take permit no. 1269 (ITP 1269). At the time the ITP was issued, Atlantic sturgeon were not listed under the ESA; therefore, the ITP does not address Atlantic sturgeon.

The ITP exempts the incidental take of two shortnose sturgeon at Roseton and four at Danskammer Point annually. This incidental take level is based upon impingement data collected from 1972-1998. NMFS determined that this level of take was not likely to reduce the numbers, distribution, or reproduction of the Hudson River population of shortnose sturgeon in a way that appreciably reduces the likelihood of shortnose sturgeon to survive and recover in the wild. Since the ITP was issued, the number of shortnose sturgeon impinged has been very low. Dynegy has indicated that this may be due in part to reduced operations at the facilities which results in significantly less water withdrawal and therefore, less opportunity for impingement. While historical monitoring reports indicate that a small number of sturgeon larvae were entrained at Danskammer, no sturgeon larvae have been observed in entrainment samples collected since the ITP was issued. While the ITP does not currently address Atlantic sturgeon, the number of interactions with Atlantic sturgeon at Roseton and Danskammer that have been reported to NMFS since the ITP became effective has been very low.

⁹ CHGEC has since been acquired by Dynegy Danskammer L.L.C. and Dynegy Roseton L.L.C. (Dynegy), thus the current incidental take permit is held by Dynegy. ESA Section 9 prohibits take, among other things, without express authorization through a Section 10 permit or exemption through a Section 7 Incidental Take Statement.

4.7.2 Scientific Studies permitted under Section 10 of the ESA

The Hudson River population of shortnose and Atlantic sturgeon have been the focus of a prolonged history of scientific research. In the 1930s, the New York State Biological Survey launched the first scientific sampling study and documented the distribution, age, and size of mature shortnose sturgeon (Bain *et al.* 1998). In the early 1970s, research resumed in response to a lack of biological data and concerns about the impact of electric generation facilities on fishery resources (Hoff 1988). In an effort to monitor relative abundance, population status, and distribution, intensive sampling of shortnose sturgeon in this region has continued throughout the past forty years. Sampling studies targeting other species, including Atlantic sturgeon, also incidentally capture shortnose sturgeon.

There are currently three scientific research permits issued pursuant to Section 10(a)(1)(A) of the ESA that authorize research on sturgeon in the Hudson River. The activities authorized under these permits are presented below.

NYDEC holds a scientific research permit (#16439, which replaces their previously held permit #1547) authorizing the assessment of habitat use, population abundance, reproduction, recruitment, age and growth, temporal and spatial distribution, diet selectivity, and contaminant load of shortnose sturgeon in the Hudson River Estuary from New York Harbor (RKM 0) to Troy Dam (RKM 245). NYDEC is authorized to use gillnets and trawls to capture up to 240 and 2,340 shortnose sturgeon in year one through years three and four and five, respectively. Research activities include: capture; measure, weigh; tag with passive integrated transponder (PIT) tags and Floy tags, if untagged; and sample genetic fin clips. A first subset of fish will also be anesthetized and tagged with acoustic transmitters; a second subset will have fin rays sampled for age and growth analysis; and a third subset will have gastric contents lavaged for diet analysis, as well as blood samples taken for contaminants. The unintentional mortality of nine shortnose sturgeon is anticipated over the five year life of the permit. This permit expires on November 24, 2016.

In April 2012, NYDEC was issued a scientific research permit (#16436) which authorizes the capture, handling and tagging of Atlantic sturgeon in the Hudson River. NYDEC is authorized to capture 1,350 juveniles and 200 adults. The unintentional mortality of two juveniles is anticipated annually over the five year life of the permit. This permit expires on April 5, 2017.

A permit was issued to Dynegy¹⁰ in 2007 (#1580, originally issued as #1254) to evaluate the life history, population trends, and spacio-temporal and size distribution of shortnose sturgeon collected during the annual Hudson River Biological Monitoring Program. This permit was recently reissued to Entergy in August 2012 as permit #17095; the permit will expire in 2017. The permit holders are authorized to capture up to 82 shortnose sturgeon adults/juveniles and 82 Atlantic sturgeon annually to measure, weigh, tag, photograph, and collect tissue samples for genetic analyses. Dynegy is also authorized to lethally take up to 40 larvae of each species annually. No lethal take of any juvenile, subadult or adult sturgeon is authorized.

¹⁰ Permit 1580 was issued by NMFS to Dynegy on behalf of "other Hudson River Generators including Entergy Nuclear Indian Point 2, L.L.C., Entergy Nuclear Indian Point 3, L.L.C. and Mirant (now GenOn) Bowline, L.L.C."

4.7.3 Hudson River Navigation Project

The Hudson River navigation project authorizes a channel 600 feet wide, New York City to Kingston narrowing to 400 feet wide to 2,200 feet south of the Mall Bridge (Dunn Memorial Bridge) at Albany with a turning basin at Albany and anchorages near Hudson and Stuyvesant, all with depths of 32 feet in soft material and 34 feet in rock; then 27 feet deep and 400 feet wide to 900 feet south of the Mall Bridge (Dunn Memorial Bridge); then 14 feet deep and generally 400 feet wide, to the Federal Lock at Troy; and then 14 feet deep and 200 feet wide, to the southern limit of the State Barge Canal at Waterford; with widening at bends and widening in front of the cities of Troy and Albany to form harbors 12 feet deep. The total length of the existing navigation project (NYC to Waterford) is about 155 miles. The only portion of the channel that is regularly dredged is the North Germantown and Albany reaches. Dredging is scheduled at times of year when sturgeon are least likely to be in the dredged reaches; no interactions with sturgeon have been observed.

4.7.4 Tappan Zee Bridge Replacement Project

The U.S. Federal Highway Authority (FHWA), the New York Department of Transportation (DOT), the New York State Thruway Authority (NYSTA) are planning to replace the existing Tappan Zee Bridge. A Record of Decision was signed in September 2012 and construction may start as soon as Fall 2012. Construction is expected to take 5 years. We issued a Biological Opinion to FHWA, as the lead Federal agency, in June 2012. This Opinion concluded that the proposed bridge replacement project may adversely affect but was not likely to jeopardize the continued existence of shortnose sturgeon or any DPS of Atlantic sturgeon. The ITS included with the Opinion exempts the lethal take of 2 shortnose sturgeon and 2 Atlantic sturgeon (from the Gulf of Maine, New York Bight or Chesapeake Bay DPS), as well as the capture and injury of shortnose and Atlantic sturgeon from the Gulf of Maine, New York Bight and Chesapeake Bay DPS. Injury and mortality may occur as a result of exposure to underwater noise from pile driving or capture in the dredge bucket. FHWA carried out a pile installation demonstration project in spring 2012 and no injured or dead sturgeon were observed.

4.7.5 Other Federally Authorized Actions

We have completed several informal consultations on effects of in-water construction activities in the Hudson River and New York Harbor permitted by the U.S. Army Corps of Engineers (USACE). This includes several dock and pier projects. No interactions with shortnose or Atlantic sturgeon have been reported in association with any of these projects.

We have also completed several informal consultations on effects of private dredging projects permitted by the USACE. All of the dredging was with a mechanical dredge. No interactions with shortnose or Atlantic sturgeon have been reported in association with any of these projects.

4.7.6 State Authorized Fisheries

Atlantic and shortnose sturgeon may be vulnerable to capture, injury and mortality in fisheries occurring in state waters. Information on the number of sturgeon captured or killed in state fisheries is extremely limited and as such, efforts are currently underway to obtain more information on the numbers of sturgeon captured and killed in state water fisheries. We are currently working with the Atlantic States Marine Fisheries Commission (ASMFC) and the

coastal states to assess the impacts of state authorized fisheries on sturgeon. We anticipate that some states are likely to apply for ESA section 10(a)(1)(B) Incidental Take Permits to cover their fisheries; however, to date, no applications have been submitted. Below, we discuss the different fisheries authorized by the states and any available information on interactions between these fisheries and sturgeon.

American Eel

American eel (*Anguilla rostrata*) is exploited in fresh, brackish and coastal waters from the southern tip of Greenland to northeastern South America. American eel fisheries are conducted primarily in tidal and inland waters. In the Hudson River, eels between 6 and 14 inches long may be kept for bait; no eels may be kept for food (due to potential PCB contamination). Eels are typically caught with hook and line or with eel traps and may also be caught with fyke nets. Sturgeon are not known to interact with the eel fishery.

Shad and River herring

Shad and river herring (blueback herring (*Alosa aestivalis*) and alewives (*Alosa pseudoharengus*)) are managed under an ASMFC Interstate Fishery Management Plan. In 2005, the ASMFC approved a coastwide moratorium on commercial and recreational fishing for shad. In May 2009, ASMFC adopted Amendment 2 to the ISFMP for Shad and River Herring, which closes all recreational and commercial fisheries unless each state can show its fisheries are sustainable. New York has submitted a Sustainable Fishing Plan that is currently under review. The plan prohibits the taking of river herring in any state waters, except for Hudson River stocks, for which it proposes partial closure in the tributaries and a five-year commercial gillnet fishery in the lower river. Although now closed, in the past this fishery was known to capture Atlantic and shortnose sturgeon.

Striped bass

Fishing for striped bass occurs within the Hudson River. Striped bass are managed by ASMFC through Amendment 6 to the Interstate FMP, which requires minimum sizes for the commercial and recreational fisheries, possession limits for the recreational fishery, and state quotas for the commercial fishery (ASMFC 2003). Under Addendum 2, the coastwide striped bass quota remains the same, at 70% of historical levels. Data from the Atlantic Coast Sturgeon Tagging Database (2000-2004) shows that the striped bass fishery accounted for 43% of Atlantic sturgeon recaptures; however, no information on the total number of Atlantic sturgeon caught by fishermen targeting striped bass fishery is available. No information on interactions between shortnose sturgeon and the striped bass fishery is available; however, because shortnose sturgeon can be caught in hook and line fisheries as well as in otter trawls, if this gear is used in areas of the river and estuary where shortnose sturgeon are present, there could be some capture of shortnose and Atlantic sturgeon in this fishery.

4.7.7 Other Impacts of Human Activities in the Action Area

Impacts of Contaminants and Water Quality

Historically, shortnose sturgeon were rare in the lower Hudson River, likely as a result of poor water quality precluding migration further downstream. However, in the past several years, the water quality has improved and sturgeon have been found as far downstream as the

Manhattan/Staten Island area. It is likely that contaminants remain in the water and in the action area, albeit to reduced levels. Sewage, industrial pollutants and waterfront development has likely decreased the water quality in the action area. Contaminants introduced into the water column or through the food chain, eventually become associated with the benthos where bottom dwelling species like sturgeon are particularly vulnerable. Several characteristics of shortnose sturgeon life history including long life span, extended residence in estuarine habitats, and being a benthic omnivore, predispose this species to long term repeated exposure to environmental contaminants and bioaccumulation of toxicants (Dadswell 1979).

Principal toxic chemicals in the Hudson River include pesticides and herbicides, heavy metals, and other organic contaminants such as PAHs and PCBs. Concentrations of many heavy metals also appear to be in decline and remaining areas of concern are largely limited to those near urban or industrialized areas. With the exception of areas near New York City, there currently does not appear to be a major concern with respect to heavy metals in the Hudson River, however metals could have previously affected sturgeon.

PAHs, which are products of incomplete combustion, most commonly enter the Hudson River as a result of urban runoff. As a result, areas of greatest concern are limited to urbanized areas, principally near New York City. The majority of individual PAHs of concern have declined during the past decade in the lower Hudson River and New York Harbor.

PCBs are the principal toxic chemicals of concern in the Hudson River. Primary inputs of PCBs in freshwater areas of the Hudson River are from the upper Hudson River near Fort Edward and Hudson Falls, New York. In the lower Hudson River, PCB concentrations observed are a result of both transport from upstream as well as direct inputs from adjacent urban areas. PCBs tend to be bound to sediments and also bioaccumulate and biomagnify once they enter the food chain. This tendency to bioaccumulate and biomagnify results in the concentration of PCBs in the tissue concentrations in aquatic-dependent organisms. These tissue levels can be many orders of magnitude higher than those observed in sediments and can approach or even exceed levels that pose concern over risks to the environment and to humans who might consume these organisms. PCBs can have serious deleterious effects on aquatic life and are associated with the production of acute lesions, growth retardation, and reproductive impairment (Ruelle and Keenlyne 1993). PCB's may also contribute to a decreased immunity to fin rot (Dovel *et al.* 1992). Large areas of the upper Hudson River are known to be contaminated by PCBs, and this is thought to account for the high percentage of shortnose sturgeon in the Hudson River exhibiting fin rot. Under a statewide toxics monitoring program, the NYSDEC analyzed tissues from four shortnose sturgeon to determine PCB concentrations. In gonadal tissues, where lipid percentages are highest, the average PCB concentration was 29.55 parts per million (ppm; Sloan 1981) and in all tissues ranged from 22.1 to 997.0 ppm. Dovel (1992) reported that more than 75% of the shortnose sturgeon captured in his study had severe incidence of fin rot. Given that Atlantic sturgeon have similar sensitivities to toxins as shortnose sturgeon it is reasonable to anticipate that Atlantic sturgeon have been similarly affected. In the Connecticut River, coal tar leachate was suspected of impairing sturgeon reproductive success. Kocan (1993) conducted a laboratory study to investigate the survival of sturgeon eggs and larvae exposed to PAHs, a by-product of coal distillation. Only approximately 5% of sturgeon embryos and larvae survived after 18 days of exposure to Connecticut River coal-tar (i.e., PAH) demonstrating that contaminated sediment

is toxic to shortnose sturgeon embryos and larvae under laboratory exposure conditions (NMFS 1998). Manufactured Gas Product (MGP) waste, which is chemically similar to the coal tar deposits found in the Connecticut River, is known to occur at several sites within the Hudson River and this waste may have had similar effects on any sturgeon present in the action area over the years.

Point source discharge (i.e., municipal wastewater, paper mill effluent, industrial or power plant cooling water or waste water) and compounds associated with discharges (i.e., metals, dioxins, dissolved solids, phenols, and hydrocarbons) contribute to poor water quality and may also impact the health of sturgeon populations. The compounds associated with discharges can alter the pH of receiving waters, which may lead to mortality, changes in fish behavior, deformations, and reduced egg production and survival.

Heavy usage of the Hudson River and development along the waterfront could have affected shortnose sturgeon throughout the action area. Coastal development and/or construction sites often result in excessive water turbidity, which could influence sturgeon spawning and/or foraging ability.

The Hudson River is used as a source of potable water, for waste disposal, transportation and cooling by industry and municipalities. Rohman *et al.* (1987) identified 183 separate industrial and municipal discharges to the Hudson and Mohawk Rivers. The greatest number of users were in the chemical industry, followed by the oil industry, paper and textile manufactures, sand, gravel, and rock processors, power plants, and cement companies. Approximately 20 publicly owned treatment works discharge sewage and wastewater into the Hudson River. Most of the municipal wastes receive primary and secondary treatment. A relatively small amount of sewage is attributed to discharges from recreational boats.

Water quality conditions in the Hudson River have dramatically improved since the mid-1970s. It is thought that this improvement may be a contributing factor to the improvement in the status of shortnose sturgeon in the river. However, as evidenced above, there are still concerns regarding the impacts of water quality on sturgeon in the river; particularly related to legacy contaminants for which no new discharges may be occurring, but environmental impacts are long lasting (e.g., PCBs, dioxins, coal tar, etc.)

5.0 ENVIRONMENTAL BASELINE

Environmental baselines for biological opinions include the past and present impacts of all state, federal or private actions and other human activities in the action area, the anticipated impacts of all proposed federal projects in the action area that have already undergone formal or early Section 7 consultation, and the impact of state or private actions that are contemporaneous with the consultation in process (50 CFR 402.02). The environmental baseline for this Opinion includes the effects of several activities that may affect the survival and recovery of the listed species in the action area.

As described above, the action area is limited to the area where direct and indirect effects of the Indian Point facility are experienced and by definition is limited in the Hudson River to the intake areas of IP1 (for service water), IP2 and IP3 and the region where the thermal plume

extends into the Hudson River from IP2 and IP3. The discussion below focuses on effects of state, federal or private actions, other than the action under consideration, that occur in the action area.

5.1 Federal Actions that have Undergone Formal or Early Section 7 Consultation

The only Federal actions that occur within the action area are the operations of the Indian Point facility and research activities authorized pursuant to Section 10 of the ESA (discussed above). No Federal actions that have undergone formal or early section 7 consultation occur in the action area.

Impacts of the Historical Operation of the Indian Point Facility

IP1 operated from 1962 through October 1974. IP2 and IP3 have been operational since 1973 and 1975, respectively. Since 1963, shortnose and Atlantic sturgeon in the Hudson River have been exposed to effects of this facility. Eggs and early larvae would be the only life stages of sturgeon small enough to be vulnerable to entrainment at the Indian Point intakes (openings in the wedge wire screens are 6mm x 12.5 mm (0.25 inches by 0.5 inches); eggs are small enough to pass through these openings but are not expected to occur in the immediate vicinity of the Indian Point site.

Studies to evaluate the effects of entrainment at IP2 and IP3 occurred from the early 1970s through 1987, with intense daily sampling during the spring of 1981-1987. As reported by the NRC in its FSEIS considering the proposed relicensing of IP2 and IP3 (NRC 2011), entrainment monitoring reports list no shortnose or Atlantic sturgeon eggs or larvae at IP2 or IP3. Given what is known about these life stages (i.e., no eggs expected to be present in the action area; larvae only expected to be found in the deep channel area away from the intakes) and the intensity of the past monitoring, it is reasonable to assume that this past monitoring provides an accurate assessment of past entrainment of sturgeon early life stages. Based on this, it is unlikely that any entrainment of sturgeon eggs and larvae occurred historically.

We have no information on any monitoring for impingement that may have occurred at the IP1 intakes. Therefore, we are unable to determine whether any monitoring did occur at the IP1 intakes and whether shortnose or Atlantic sturgeon were recorded as impinged at IP1 intakes. Despite this lack of data, given that the IP1 intake is located between the IP2 and IP3 intakes and operates in a similar manner, it is reasonable to assume that some number of shortnose and Atlantic sturgeon were impinged at the IP1 intakes during the time that IP1 was operational. However, based on the information available to us, we are unable to make a quantitative assessment of the likely number of shortnose and Atlantic sturgeon impinged at IP1 during the period in which it was operational.

The impingement of shortnose and Atlantic sturgeon at IP2 and IP3 has been documented (NRC 2011). Impingement monitoring occurred from 1974-1990, and during this time period, 21 shortnose sturgeon were observed impinged at IP2. For Unit 3, 11 impinged shortnose sturgeon were recorded. At Unit 2, 251 Atlantic sturgeon were observed as impinged during this time period, with an annual range of 0-118 individuals (peak number in 1975); at Unit 3, 266 Atlantic sturgeon were observed as impinged, with an annual range of 0-153 individuals (peak in 1976). No monitoring of the intakes for impingement has occurred since 1990.

While models of the current thermal plume are available, it is not clear whether this model accurately represents past conditions associated with the thermal plume. As no information on past thermal conditions are available and no monitoring was done historically to determine if the thermal plume was affecting shortnose or Atlantic sturgeon or their prey, it is not possible to estimate past effects associated with the discharge of heated effluent from the Indian Point facility. No information is available on any past impacts to shortnose sturgeon prey due to impingement or entrainment or exposure to the thermal plume. This is because no monitoring of sturgeon prey in the action area has occurred.

6.0 CLIMATE CHANGE

The discussion below presents background information on global climate change and information on past and predicted future effects of global climate change throughout the range of the listed species considered here. Additionally, we present the available information on predicted effects of climate change in the action area and how listed sturgeon may be affected by those predicted environmental changes over the life of the proposed action. Climate change is relevant to the Status of the Species, Environmental Baseline and Cumulative Effects sections of this Opinion; rather than include partial discussion in several sections of this Opinion, we are synthesizing this information into one discussion. Effects of the proposed action that are relevant to climate change are included in the Effects of the Action section below (section 7.0 below).

6.1 Background Information on predicted climate change

The global mean temperature has risen 0.76°C (1.36°F) over the last 150 years, and the linear trend over the last 50 years is nearly twice that for the last 100 years (IPCC 2007a). Precipitation has increased nationally by 5%-10%, mostly due to an increase in heavy downpours (NAST 2000). There is a high confidence, based on substantial new evidence, that observed changes in marine systems are associated with rising water temperatures, as well as related changes in ice cover, salinity, oxygen levels, and circulation. Ocean acidification resulting from massive amounts of carbon dioxide and other pollutants released into the air can have major adverse impacts on the calcium balance in the oceans. Changes to the marine ecosystem due to climate change include shifts in ranges and changes in algal, plankton, and fish abundance (IPCC 2007b); these trends have been most apparent over the past few decades.

Climate model projections exhibit a wide range of plausible scenarios for both temperature and precipitation over the next century. Both of the principal climate models used by the National Assessment Synthesis Team (NAST) project warming in the southeast by the 2090s, but at different rates (NAST 2000): the Canadian model scenario shows the southeast U.S. experiencing a high degree of warming, which translates into lower soil moisture as higher temperatures increase evaporation; the Hadley model scenario projects less warming and a significant increase in precipitation (about 20%). The scenarios examined, which assume no major interventions to reduce continued growth of world greenhouse gases (GHG), indicate that temperatures in the U.S. will rise by about $3^{\circ}-5^{\circ}$ C ($5^{\circ}-9^{\circ}$ F) on average in the next 100 years which is more than the projected global increase (NAST 2000). A warming of about 0.2° C (0.4° F) per decade is projected for the next two decades over a range of emission scenarios (IPCC 2007). This temperature increase will very likely be associated with more extreme

precipitation and faster evaporation of water, leading to greater frequency of both very wet and very dry conditions. Climate warming has resulted in increased precipitation, river discharge, and glacial and sea-ice melting (Greene *et al.* 2008).

The past three decades have witnessed major changes in ocean circulation patterns in the Arctic, and these were accompanied by climate associated changes as well (Greene et al. 2008). Shifts in atmospheric conditions have altered Arctic Ocean circulation patterns and the export of freshwater to the North Atlantic (Greene et al. 2008, IPCC 2006). With respect specifically to the North Atlantic Oscillation (NAO), changes in salinity and temperature are thought to be the result of changes in the earth's atmosphere caused by anthropogenic forces (IPCC 2006). The NAO impacts climate variability throughout the northern hemisphere (IPCC 2006). Data from the 1960s through the present show that the NAO index has increased from minimum values in the 1960s to strongly positive index values in the 1990s and somewhat declined since (IPCC 2006). This warming extends over 1000m (0.62 miles) deep and is deeper than anywhere in the world oceans and is particularly evident under the Gulf Stream/ North Atlantic Current system (IPCC 2006). On a global scale, large discharges of freshwater into the North Atlantic subarctic seas can lead to intense stratification of the upper water column and a disruption of North Atlantic Deepwater (NADW) formation (Greene et al. 2008, IPCC 2006). There is evidence that the NADW has already freshened significantly (IPCC 2006). This in turn can lead to a slowing down of the global ocean thermohaline (large-scale circulation in the ocean that transforms lowdensity upper ocean waters to higher density intermediate and deep waters and returns those waters back to the upper ocean), which can have climatic ramifications for the whole earth system (Greene et al. 2008).

While predictions are available regarding potential effects of climate change globally, it is more difficult to assess the potential effects of climate change over the next few decades on coastal and marine resources on smaller geographic scales, such as the Hudson River, especially as climate variability is a dominant factor in shaping coastal and marine systems. The effects of future change will vary greatly in diverse coastal regions for the U.S. Additional information on potential effects of climate change specific to the action area is discussed below. Warming is very likely to continue in the U.S. over the next 25 to 50 years regardless of reduction in GHGs, due to emissions that have already occurred (NAST 2000). It is very likely that the magnitude and frequency of ecosystem changes will continue to increase in the next 25 to 50 years, and it is possible that rate of change will accelerate. Climate change can cause or exacerbate direct stress on ecosystems through high temperatures, a reduction in water availability, and altered frequency of extreme events and severe storms. Water temperatures in streams and rivers are likely to increase as the climate warms and are very likely to have both direct and indirect effects on aquatic ecosystems. Changes in temperature will be most evident during low flow periods when they are of greatest concern (NAST 2000). In some marine and freshwater systems, shifts in geographic ranges and changes in algal, plankton, and fish abundance are associated with high confidence with rising water temperatures, as well as related changes in ice cover, salinity, oxygen levels and circulation (IPCC 2007).

A warmer and drier climate is expected to result in reductions in stream flows and increases in water temperatures. Expected consequences could be a decrease in the amount of dissolved oxygen in surface waters and an increase in the concentration of nutrients and toxic chemicals

due to reduced flushing rate (Murdoch et al. 2000). Because many rivers are already under a great deal of stress due to excessive water withdrawal or land development, and this stress may be exacerbated by changes in climate, anticipating and planning adaptive strategies may be critical (Hulme 2005). A warmer-wetter climate could ameliorate poor water quality conditions in places where human-caused concentrations of nutrients and pollutants other than heat currently degrade water quality (Murdoch et al. 2000). Increases in water temperature and changes in seasonal patterns of runoff will very likely disturb fish habitat and affect recreational uses of lakes, streams, and wetlands. Surface water resources in the southeast are intensively managed with dams and channels and almost all are affected by human activities; in some systems water quality is either below recommended levels or nearly so. A global analysis of the potential effects of climate change on river basins indicates that due to changes in discharge and water stress, the area of large river basins in need of reactive or proactive management interventions in response to climate change will be much higher for basins impacted by dams than for basins with free-flowing rivers (Palmer et al. 2008). Human-induced disturbances also influence coastal and marine systems, often reducing the ability of the systems to adapt so that systems that might ordinarily be capable of responding to variability and change are less able to do so. Because stresses on water quality are associated with many activities, the impacts of the existing stresses are likely to be exacerbated by climate change. Within 50 years, river basins that are impacted by dams or by extensive development may experience greater changes in discharge and water stress than unimpacted, free-flowing rivers (Palmer et al. 2008).

While debated, researchers anticipate: 1) the frequency and intensity of droughts and floods will change across the nation; 2) a warming of about 0.2°C (0.4°F) per decade; and 3) a rise in sea level (NAST 2000). A warmer and drier climate will reduce stream flows and increase water temperature resulting in a decrease of DO and an increase in the concentration of nutrients and toxic chemicals due to reduced flushing. Sea level is expected to continue rising: during the 20th century global sea level has increased 15 to 20 cm (6-8 inches).

6.2 Species Specific Information Related to Predicted Impacts of Climate Change

6.2.1 Shortnose sturgeon

Global climate change may affect shortnose sturgeon in the future. Rising sea level may result in the salt wedge moving upstream in affected rivers. Shortnose sturgeon spawning occurs in fresh water reaches of rivers because early life stages have little to no tolerance for salinity. Similarly, juvenile shortnose sturgeon have limited tolerance to salinity and remain in waters with little to no salinity. If the salt wedge moves further upstream, shortnose sturgeon spawning and rearing habitat could be restricted. In river systems with dams or natural falls that are impassable by sturgeon, the extent that spawning or rearing may be shifted upstream to compensate for the shift in the movement of the saltwedge would be limited. While there is an indication that an increase in sea level rise would result in a shift in the location of the salt wedge, for most spawning rivers there are no predictions on the timing or extent of any shifts that may occur; thus, it is not possible to predict any future loss in spawning or rearing habitat. However, in all river systems, spawning occurs miles upstream of the saltwedge. It is unlikely that shifts in the location of the saltwedge would eliminate freshwater spawning or rearing habitat. If habitat was severely restricted, productivity or survivability may decrease.

The increased rainfall predicted by some models in some areas may increase runoff and scour spawning areas and flooding events could cause temporary water quality issues. Rising temperatures predicted for all of the U.S. could exacerbate existing water quality problems with DO and temperature. While this occurs primarily in rivers in the southeast U.S. and the Chesapeake Bay, it may start to occur more commonly in the northern rivers. Shortnose sturgeon are tolerant to water temperatures up to approximately 28°C (82.4°F); these temperatures are experienced naturally in some areas of rivers during the summer months. If river temperatures rise and temperatures above 28°C are experienced in larger areas, sturgeon may be excluded from some habitats.

Increased droughts (and water withdrawal for human use) predicted by some models in some areas may cause loss of habitat including loss of access to spawning habitat. Drought conditions in the spring may also expose eggs and larvae in rearing habitats. If a river becomes too shallow or flows become intermittent, all shortnose sturgeon life stages, including adults, may become susceptible to strandings. Low flow and drought conditions are also expected to cause additional water quality issues. Any of the conditions associated with climate change are likely to disrupt river ecology causing shifts in community structure and the type and abundance of prey. Additionally, cues for spawning migration and spawning could occur earlier in the season causing a mismatch in prey that are currently available to developing shortnose sturgeon in rearing habitat; however, this would be mitigated if prey species also had a shift in distribution or if developing sturgeon were able to shift their diets to other species.

6.2.2 Atlantic sturgeon

Global climate change may affect all DPSs of Atlantic sturgeon in the future; however, effects of increased water temperature and decreased water availability are most likely to effect the South Atlantic and Carolina DPSs. Rising sea level may result in the salt wedge moving upstream in affected rivers. Atlantic sturgeon spawning occurs in fresh water reaches of rivers because early life stages have little to no tolerance for salinity. Similarly, juvenile Atlantic sturgeon have limited tolerance to salinity and remain in waters with little to no salinity. If the salt wedge moves further upstream, Atlantic sturgeon spawning and rearing habitat could be restricted. In river systems with dams or natural falls that are impassable by sturgeon, the extent that spawning or rearing may be shifted upstream to compensate for the shift in the movement of the saltwedge would be limited. While there is an indication that an increase in sea level rise would result in a shift in the location of the salt wedge, at this time there are no predictions on the timing or extent of any shifts that may occur; thus, it is not possible to predict any future loss in spawning or rearing habitat. However, in all river systems, spawning occurs miles upstream of the saltwedge. It is unlikely that shifts in the location of the saltwedge would eliminate freshwater spawning or rearing habitat. If habitat was severely restricted, productivity or survivability may decrease.

The increased rainfall predicted by some models in some areas may increase runoff and scour spawning areas and flooding events could cause temporary water quality issues. Rising temperatures predicted for all of the U.S. could exacerbate existing water quality problems with DO and temperature. While this occurs primarily in rivers in the southeast U.S. and the Chesapeake Bay, it may start to occur more commonly in the northern rivers. Atlantic sturgeon prefer water temperatures up to approximately 28°C (82.4°F); these temperatures are

experienced naturally in some areas of rivers during the summer months. If river temperatures rise and temperatures above 28°C are experienced in larger areas, sturgeon may be excluded from some habitats.

Increased droughts (and water withdrawal for human use) predicted by some models in some areas may cause loss of habitat including loss of access to spawning habitat. Drought conditions in the spring may also expose eggs and larvae in rearing habitats. If a river becomes too shallow or flows become intermittent, all Atlantic sturgeon life stages, including adults, may become susceptible to strandings or habitat restriction. Low flow and drought conditions are also expected to cause additional water quality issues. Any of the conditions associated with climate change are likely to disrupt river ecology causing shifts in community structure and the type and abundance of prey. Additionally, cues for spawning migration and spawning could occur earlier in the season causing a mismatch in prey that are currently available to developing sturgeon in rearing habitat.

6.3 Potential Effects of Climate Change in the Action Area

Information on how climate change will impact the action area is extremely limited. Available information on climate change related effects for the Hudson River largely focuses on effects that rising water levels may have on the human environment. The New York State Sea Level Rise Task Force (Spector in Bhutta 2010) predicts a state-wide sea level rise of 7-52 inches by the end of this century, with the conservative range being about 2 feet. This compares to an average sea level rise of about 1 foot in the Hudson Valley in the past 100 years. Sea level rise is expected to result in the northward movement of the salt wedge. The location of the salt wedge in the Hudson River is highly variable depending on season, river flow, and precipitation so it is unclear what effect this northward shift could have. Potential negative effects of a shift in the salt wedge include restricting the habitat available for early life stages and juvenile sturgeon which are intolerant to salinity and are present exclusively upstream of the salt wedge. While there is an indication that an increase in sea level rise would result in a shift in the location of the salt wedge, at this time there are no predictions on the timing or extent of any shift that may occur.

Air temperatures in the Hudson Valley have risen approximately 0.5° C (0.9° F) since 1970. In the 2000s, the mean Hudson river water temperature, as measured at the Poughkeepsie Water Treatment Facility, was approximately 2° C (3.6° F) higher than averages recorded in the 1960s (Pisces 2008). However, while it is possible to examine past water temperature data and observe a warming trend, there are not currently any predictions on potential future increases in water temperature in the action area specifically or the Hudson River generally. The Pisces report (2008) also states that temperatures within the Hudson River may be becoming more extreme. For example, in 2005, water temperature on certain dates was close to the maximum ever recorded and also on other dates reached the lowest temperatures recorded over a 53-year period. Other conditions that may be related to climate change that have been reported in the Hudson Valley are warmer winter temperatures, earlier melt-out and more severe flooding. An average increase in precipitation of about 5% is expected; however, information on the effects of an increase in precipitation on conditions in the action area is not available.

Sea surface temperatures have fluctuated around a mean for much of the past century, as

measured by continuous 100+ year records at Woods Hole (Mass.), and Boothbay Harbor (Maine) and shorter records from Boston Harbor and other bays. Periods of higher than average temperatures (in the 1950s) and cooler periods (1960s) have been associated with changes in the North Atlantic Oscillation (NAO), which affects current patterns. Over the past 30 years however, records indicate that ocean temperatures in the Northeast have been increasing; for example, Boothbay Harbor's temperature has increased by about 1°C since 1970. While we are not able to find predictive models for New York, given the geographic proximity of these waters to the Northeast, we assume that predictions would be similar. For marine waters, the model projections are for an increase of somewhere between $3-4^{\circ}$ C by 2100 and a pH drop of 0.3-0.4 units by 2100 (Frumhoff *et al.* 2007). Assuming that these predictions also apply to the action area, one could anticipate similar conditions in the action area over that same time period; considering that the proposed action will occur until 2035, we could predict an increase in ambient water temperatures of 0.034-0.045 per year for an overall increase of 0.078-1.035°C.

6.4 Effects of Climate Change in the Action Area to Atlantic and shortnose sturgeon As there is significant uncertainty in the rate and timing of change as well as the effect of any changes that may be experienced in the action area due to climate change, it is difficult to predict the impact of these changes on shortnose and Atlantic sturgeon. IP2 could operate until 2033 and IP3 could operate until 2035; thus, we consider here, likely effects of climate change over this time period.

Over time, the most likely effect to shortnose and Atlantic sturgeon would be if sea level rise was great enough to consistently shift the salt wedge far enough north which would restrict the range of juvenile sturgeon and may affect the development of these life stages. Upstream shifts in spawning or rearing habitat in the Hudson River are limited by the existence of the Troy Dam (RKM 250, RM 155), which is impassable by sturgeon. Currently, the saltwedge normally shifts seasonally from Yonkers to as far north as Poughkeepsie (RKM 120, RM 75). Given that sturgeon currently have over 75 miles of habitat upstream of the salt wedge before the Troy Dam, it is unlikely that the saltwedge would shift far enough upstream to result in a significant restriction of spawning or nursery habitat. The available habitat for juvenile sturgeon could decrease over time; however, even if the saltwedge shifted several miles upstream, it seems unlikely that the decrease in available habitat would have a significant effect on juvenile sturgeon because there would still be many miles of available low salinity habitat between the salt wedge and the Troy Dam.

In the action area, it is possible that changing seasonal temperature regimes could result in changes in the timing of seasonal migrations through the area as sturgeon move to spawning and overwintering grounds. There could be shifts in the timing of spawning; presumably, if water temperatures warm earlier in the spring, and water temperature is a primary spawning cue, spawning migrations and spawning events could occur earlier in the year. However, because spawning is not triggered solely by water temperature, but also by day length (which would not be affected by climate change) and river flow (which could be affected by climate change), it is not possible to predict how any change in water temperature or river flow alone will affect the seasonal movements of sturgeon through the action area.

Any forage species that are temperature dependent may also shift in distribution as water

temperatures warm. However, because we do not know the adaptive capacity of these individuals or how much of a change in temperature would be necessary to cause a shift in distribution, it is not possible to predict how these changes may affect foraging sturgeon. If sturgeon distribution shifted along with prey distribution, it is likely that there would be minimal, if any, impact on the availability of food. Similarly, if sturgeon shifted to areas where different forage was available and sturgeon were able to obtain sufficient nutrition from that new source of forage, any effect would be minimal. The greatest potential for effect to forage resources would be if sturgeon shifted to an area or time where insufficient forage was available; however, the likelihood of this happening seems low because sturgeon feed on a wide variety of species and in a wide variety of habitats.

Limited information on the thermal tolerances of Atlantic and shortnose sturgeon is available. Atlantic sturgeon have been observed in water temperatures above 30°C in the south (see Damon-Randall *et al.* 2010); in the wild, shortnose sturgeon are typically found in waters less than 28°C. In the laboratory, juvenile Atlantic sturgeon showed negative behavioral and bioenergetics responses (related to food consumption and metabolism) after prolonged exposure to temperatures greater than 28°C (82.4°F) (Niklitschek 2001). Tolerance to temperatures is thought to increase with age and body size (Ziegweid *et al.* 2008 and Jenkins *et al.* 1993), however, no information on the lethal thermal maximum or stressful temperatures for subadult or adult Atlantic sturgeon is available. Shortnose sturgeon, have been documented in the lab to experience mortality at temperatures of 33.7°C (92.66°F) or greater and are thought to experience stress at temperatures above 28°C. For purposes of considering thermal tolerances, we consider Atlantic sturgeon to be a reasonable surrogate for shortnose sturgeon given similar geographic distribution and known biological similarities.

Normal surface water temperatures in the Hudson River can be as high as 24-27°C at some times and in some areas during the summer months; temperatures in deeper waters and near the bottom are cooler. A predicted increase in water temperature of 3-4°C within 100 years is expected to result in temperatures approaching the preferred temperature of shortnose and Atlantic sturgeon (28°C) on more days and/or in larger areas. This could result in shifts in the distribution of sturgeon out of certain areas during the warmer months. Information from southern river systems suggests that during peak summer heat, sturgeon are most likely to be found in deep water areas where temperatures are coolest. Thus, we could expect that over time, sturgeon would shift out of shallow habitats on the warmest days. This could result in reduced foraging opportunities if sturgeon were foraging in shallow waters.

As described above, over the long term, global climate change may affect shortnose and Atlantic sturgeon by affecting the location of the salt wedge, distribution of prey, water temperature and water quality. However, there is significant uncertainty, due to a lack of scientific data, on the degree to which these effects may be experienced and the degree to which shortnose or Atlantic sturgeon will be able to successfully adapt to any such changes. Any activities occurring within and outside the action area that contribute to global climate change are also expected to affect shortnose and Atlantic sturgeon in the action area. While we can make some predictions on the likely effects of climate change on these species, without modeling and additional scientific data these predictions remain speculative. Additionally, these predictions do not take into account the adaptive capacity of these species which may allow them to deal with change better than

predicted.

7.0 EFFECTS OF THE ACTION

This section of an Opinion assesses the direct and indirect effects of the proposed action on threatened and endangered species or critical habitat, together with the effects of other activities that are interrelated or interdependent (50 CFR 402.02). Indirect effects are those that are caused by the proposed action and occur later in time, but are still reasonably certain to occur. Interrelated actions are those that are part of a larger action and depend upon the larger action for their justification. Interdependent actions are those that have no independent utility apart from the action under consideration (50 CFR 402.02). This Opinion examines the likely effects of the proposed action on listed species and their habitat in the action area within the context of the species current status, the environmental baseline and cumulative effects. The effects of the proposed action are the effects of the continued operation of IP2 and IP3 pursuant to the existing and proposed renewed licenses proposed to be issued by the NRC pursuant to the Atomic Energy Act. NRC has requested consultation on the proposed extended operation of the facilities under the same terms as in the existing licenses and existing SPDES permits.

The proposed action has the potential to affect shortnose and Atlantic sturgeon in several ways: impingement or entrainment of individual sturgeon at the intakes; altering the abundance or availability of potential prey items; and, altering the riverine environment through the discharge of heated effluent and other pollutants.

7.1 Effects of Water Withdrawal

Under the terms of the existing licenses and the proposed renewal licenses, IP2 and IP3 will continue to withdraw water from the Hudson River for cooling. Both units utilize once through cooling and will continue to use once through cooling during the extended operating period, assuming no changes are made to the proposed action. Section 316(b) of the CWA requires that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impacts. According to the draft SPDES permit for the facility, the NYDEC has determined for CWA purposes that the sitespecific best technology available to minimize the adverse environmental impacts of the IP cooling water intake structures is closed-cycle cooling (NYDEC 2003b). IP2 and IP3 currently operate pursuant to the terms of the SPDES permits issued by NYDEC in 1987 but administratively extended since then. NYDEC issued a draft SPDES permit in 2003. Its final contents and timeframe for issuance are uncertain, given it is still under adjudication at this time. While it is also uncertain that the facility will be able to operate under the same terms as those in its existing license and SPDES permit, NRC sought consultation on its proposal to renew the license for the facility under the same terms as the existing license and SPDES permit, which authorize once through cooling. Here, we consider the impacts to shortnose and Atlantic sturgeon of the continued operation of IP2 and IP3 with the existing once through cooling system and existing SPDES permits from now through the duration of the proposed license renewal period for IP2 and IP3 (i.e., through September 2033 and December 2035, respectively). But, it is important to note that changes to the effects of the action, including but not limited to changes in the effects of the cooling water system, as well as changes in other factors, may trigger reinitiation of consultation (see 50 CFR 402.16).

7.1.1 Entrainment

Entrainment occurs when small aquatic life forms are carried into and through the cooling system during water withdrawals. Entrainment primarily affects small organisms with limited swimming ability that can pass through the screen mesh, used on the intake systems. Once entrained, organisms pass through the circulating pumps and are carried with the water flow through the intake conduits toward the condenser units. They are then drawn through one of the many condenser tubes used to cool the turbine exhaust steam (where cooling water absorbs heat) and then enter the discharge canal for return to the Hudson River. As entrained organisms pass through the intake they may be injured from abrasion or compression. Within the cooling system, they encounter physical impacts in the pumps and condenser tubing; pressure changes and shear stress throughout the system; thermal shock within the condenser; and exposure to chemicals, including chlorine and residual industrial chemicals discharged at the diffuser ports (Mayhew et al. 2000 in NRC 2011). Death can occur immediately or at a later time from the physiological effects of heat, or it can occur after organisms are discharged if stresses or injuries result in an inability to escape predators, a reduced ability to forage, or other impairments.

7.1.1.1 Entrainment of Shortnose Sturgeon

The southern extent of the shortnose sturgeon spawning area in the Hudson River is approximately RM 118 (rkm 190), approximately 75 miles (121 km) upstream of the Indian Point facility. The eggs of shortnose sturgeon are demersal, sinking and adhering to the bottom of the river, and, upon hatching the larvae in both yolk-sac and post-yolk-sac stages remain on the bottom of the river, primarily upstream of RM 110 (rkm 177) (NMFS 2000). Because eggs do not occur near the IP intakes, there is no probability of entrainment. Shortnose sturgeon larvae are 20mm (0.8 inches) in length at the time they begin downstream migrations (Buckley and Kynard 1995). Because of intolerance to salinity, larvae occur only in freshwater, above the salt wedge. The location of the salt wedge in the Hudson River varies both seasonally and annually, depending at least partially on freshwater input (e.g., rainfall, snow melt). In many years, the salt wedge is located upstream of the Indian Point intakes; in those years, larvae would not be expected to occur near the IP intakes as the salinity levels would be too high. However, at times when the salt wedge is downstream of the intakes, which is most likely to occur in the late summer, there is the potential for shortnose sturgeon larvae to be present in the action area. Larvae occur in the deepest water and in the Hudson River, they are found in the deep channel (Taubert and Dadswell 1980; Bath et al. 1981; Kieffer and Kynard 1993). Larvae grow rapidly and after a few weeks are too large to be entrained by the cooling water intake; thus, any potential for entrainment is limited to any period when individuals are small enough to pass through the openings in the mesh screens that coincide with a period when the salt wedge is located downstream of the intakes. Given the distance between the intake and the deep channel (2000 feet; 610 meters) where any larvae would be present if in the action area, larvae are unlikely to occur near the intake where they could be susceptible to entrainment.

Studies to evaluate the effects of entrainment at IP2 and IP3 conducted since the early 1970s employed a variety of methods to assess actual entrainment losses and to evaluate the survival of entrained organisms after they are released back into the environment by the once-through cooling system. IP2 and IP3 monitored entrainment from 1972 through 1987. Entrainment monitoring became more intensive at Indian Point from 1981 through 1987, and sampling was conducted for nearly 24 hours per day, four to seven days per week, during the spawning season

in the spring. As reported by NRC, entrainment-monitoring reports list no shortnose sturgeon eggs or larvae at IP2 or IP3. During the development of the HCP for steam electric generators on the Hudson River, NMFS reviewed all available entrainment data. In the HCP, NMFS (2000) lists only eight sturgeon larvae collected at any of the mid-Hudson River power plants (all eight were collected at Danskammer (approximately 23 miles upstream of Indian Point), and four of the eight may have been Atlantic sturgeon). Entrainment sampling data supplied by the applicant (Entergy 2007b) include large numbers of larvae for which the species could not be determined; however, NRC has indicated that as sturgeon larvae are distinctive it is unlikely that sturgeon larvae would occur in the "unaccounted" category as it is expected that if there were any sturgeon larvae in these samples they would have been identifiable. Entergy currently is not required to conduct any monitoring program to record entrainment at IP2 and IP3; however, it is reasonable to use past entrainment results to predict future effects. This is because: (1) there have not been any operational changes that make entrainment more likely now than it was during the time when sampling took place and, (2)there have been no changes in the locations where sturgeon spawn which would increase the exposure of eggs or larvae to entrainment. Additionally, the years when intense entrainment sampling took place overlap with two of the years (1986 and 1987; Woodland and Secor 2007) when shortnose sturgeon recruitment is thought to have been the highest and therefore, the years when the greatest numbers of shortnose sturgeon larvae were available for entrainment. Reliance on the lack of observed entrainment of shortnose sturgeon during sampling at IP2 and IP3 is also reasonable given the known information on the location of shortnose sturgeon spawning and the distribution of eggs and larvae in the river.

NRC was not able to provide NMFS with any historical monitoring data from the IP1 intakes and it is not clear if any monitoring at IP1 ever occurred. However, given that the IP1 intake (used for service water for IP2) is located adjacent to the IP2 and IP3 intakes and that intake velocity and screen size is comparable to IP2 and IP3 it is reasonable to expect that the potential for entrainment of early life stages of shortnose sturgeon at the IP1 intake is comparable to the potential for entrainment of early life stages of shortnose sturgeon at the IP2 and IP3 intakes.

Based on the life history of the shortnose sturgeon, the location of spawning grounds within the Hudson River, and the patterns of movement for eggs and larvae, it is extremely unlikely that any shortnose sturgeon early life stages would be entrained at IP2 and/or IP3. This conclusion is supported by the lack of any eggs or larvae positively identified as sturgeon and documented during entrainment monitoring at IP2 or IP3. Provided that assumption is true, NMFS does not anticipate any entrainment of shortnose sturgeon eggs or larvae in the future when IP2 and IP3 are operating pursuant to their current licenses or when they are operating pursuant to their extended operating license (i.e., through September 2033 and December 2035, respectively). It is important to note that this determination is dependent on the validity of the assumption that none of the unidentified larvae were shortnose sturgeon. All other life stages of shortnose sturgeon are too big to pass through the screen mesh and could not be entrained at the facility. As NMFS expects that the potential for entrainment of shortnose sturgeon at the IP1 intake is comparable to IP2 and IP3, NMFS does not anticipate any entrainment of any life stage of shortnose sturgeon at the IP1 intake, as used for service water for IP2.

7.1.1.2 Entrainment of Atlantic sturgeon

In order to be entrained, Atlantic sturgeon would need to be small enough to pass through the mesh of the traveling screens (0.25-by-0.5-inch (in.) (0.635-by-1.27 centimeters (cm)). Eggs are adhesive and demersal and occur only on the spawning grounds. At hatching, Atlantic sturgeon larvae are approximately 7.8 mm TL (Smith 1980, 1981)). As described above, the location of spawning in a given year is likely dependent on the location of the salt wedge; the most recent reports of spawning have been upstream of river kilometer 112 (Van Eenennaam *et al.*, 1996; Kahnle *et al.*, 1998; Bain *et al.*, 2000). Young-of-year (YOY) have been recorded in the Hudson River between rkm 60 and rkm 148; which, because young of year are not likely to make extensive upstream movements, indicates that spawning likely occurs upstream of these areas. Larvae must remain upstream of the salt wedge because of their low salinity tolerance (Dovel and Berggren, 1983; Kahnle *et al.*, 1998; Bain *et al.*, 2000).

As noted above, the location of the salt wedge in the Hudson River varies both seasonally and annually, depending at least partially on freshwater input. In many years, the salt wedge is located upstream of the Indian Point intakes; in those years, larvae would not be expected to occur near the IP intakes as the salinity levels would be too high. However, at times when the salt wedge is downstream of the intakes, which is most likely to occur in the late summer, there is the potential for Atlantic sturgeon larvae to be present in the action area. Like shortnose sturgeon, Atlantic sturgeon larvae occur in the deepest water and in the Hudson River, they are found in the deep channel (Taubert and Dadswell 1980; Bath et al. 1981; Kieffer and Kynard 1993). Larvae grow rapidly; at hatching larvae are within 2 mm of the size of the opening of the mesh, in a short time they are too large to be entrained by the cooling water intake. Any potential for entrainment is limited to any period when individuals are small enough to pass through the openings in the mesh screens that coincide with a period when the salt wedge is located downstream of the intakes. Given the distance between the intake and the deep channel (2,000 feet; 610 meters) where any larvae would be present if in the action area, larvae are unlikely to occur near the intake where they could be susceptible to entrainment. No Atlantic sturgeon larvae have been documented as entrained at IP2 or IP3. The nearest documentation of Atlantic sturgeon larvae to IP2 and IP3 is at the Danskammer facility, approximately 23 miles upstream.

Based on the life history of Atlantic sturgeon, the location of spawning grounds within the Hudson River, and the patterns of movement for eggs and larvae, it is extremely unlikely that any Atlantic sturgeon early life stages would be entrained at IP2 and/or IP3. This conclusion is supported by the lack of any eggs or larvae positively identified as sturgeon and documented during entrainment monitoring at IP2 or IP3. Provided that assumption is true, we do not anticipate any entrainment of shortnose sturgeon eggs or larvae in the future when IP2 and IP3 are operating pursuant to their current licenses or when they are operating pursuant to their extended operating license (i.e., through September 2033 and December 2035, respectively). It is important to note that this determination is dependent on the validity of the assumption that none of the unidentified larvae were Atlantic sturgeon. All other life stages of Atlantic sturgeon are too big to pass through the screen mesh and could not be entrained at the facility. As we expect the potential for entrainment of Atlantic sturgeon at the IP1 intake is comparable to IP2 and IP3, we do not anticipate any entrainment of any life stage of Atlantic sturgeon at the IP1 intake, as used for service water for IP2.