
Data Validation Package

May 2012
Water Sampling at the
Bluewater, New Mexico, Disposal Site

July 2012

Contents

Sampling Event Summary			
Sample Location Map, Bluewater, New Mexico, Disposal Site			
Data Assessment Summary			
Water Sampling Field Activities Verification Checklist			
Laboratory Performance Assessment			
Compling Overlity Control Aggregation	•••••	• • • • • • • • • • • • • • • • • • • •	1 (
Sampling Quality Control Assessment Certification	••••••		20
Attachment 1—Assessment of Anomalous Data			
Potential Outliers Report		٠	
Attachment 2—Data Presentation	, ·		
Groundwater Quality Data			
Static Water Level Data		-	
Time-Concentration Graphs			
Attachment 3—Sampling and Analysis Work Order			
Attachment 4—Trip Report			,

Sampling Event Summary

Site:

Bluewater, New Mexico, Disposal Site

Sampling Period:

May 15, 2012

Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Included in the sampling was a new location (SIMPSON), which is a private well near the site. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). One duplicate sample was collected from monitoring well Y2(M).

Alluvium wells are completed in the alluvial sediments in the former channel of the Rio San Jose, which was covered by basalt lava flows known as the El Malpais, and are identified by the suffix (M). Bedrock wells are completed in the San Andres Limestone/Glorieta Sandstone hydrologic unit and are identified by the suffix (SG).

The LTSP requires monitoring for molybdenum, selenium, uranium, and polychlorinated biphenyls (PCBs); PCB monitoring occurs only during November sampling events. This event included sampling for an expanded list of analytes to support a regional groundwater investigation being conducted by the New Mexico Environment Department.

Analytical results for the required constituents for the alluvium wells are provided in Table 1. Alluvium point-of-exposure (POE) well X(M) could not be sampled because it was dry. The U.S. Nuclear Regulatory Commission (NRC)-approved alternate concentration limit (ACL) for uranium continues to be exceeded in point-of-compliance (POC) well T(M). The current concentration of 0.55 milligram per liter (mg/L) is greater than the ACL of 0.44 mg/L. The uranium concentration in well T(M) had an upward trend since DOE began sampling in 1998 through 2010, and appears to have stabilized. The cause of the elevated uranium concentrations is being evaluated.

Table 1. May 2012 Groundwater Monitoring Analytical Results for the Alluvium Wells

				Alluviu	m Wells		
Constituent	ACL	E(M) (Bkgd)	F(M) (POC)	T(M) (POC)	Y2(M) (PCBs)	21(M) (Dwngrd)	22(M) (Dwngrd)
Molybdenum (mg/L)	0.10	0.00049	0.0010	0.023	0.0016	0.00087	0.00073
Selenium (mg/L)	0.05	ND	0.0011	0.0037	0.0010	0.0090	0.0068
Uranium (mg/L)	0.44	0.00012	0.0073	0.55	0.0048	0.13	0.31

Key: ACL = alternate concentration limit; Bkgd = background well; Dwngrd = downgradient well; mg/L = milligrams per liter; ND = not detected; POC = point-of-compliance well; PCB = polychlorinated biphenyls monitoring well

Alluvium wells 21(M) and 22(M) were installed downgradient of well T(M) in July 2011; well 21(M) is located near the site boundary where alluvial groundwater apparently leaves the site. The uranium concentration in well 21(M) was 0.13 mg/L, which exceeds the Uranium Mill Tailings Radiation Control Act (UMTRCA) maximum concentration limit (MCL) of 0.044 mg/L (40 CFR 192, Table 1). This occurrence is also being evaluated by DOE.

Analytical results for the required constituents for the bedrock wells are provided in Table 2. The selenium and uranium concentrations did not exceed NRC-approved ACLs in the POC wells, and no constituents exceeded their respective UMTRCA MCLs at the POE well. The slotted steel pipe in the POC wells is highly corroded, which may affect constituent concentrations. A new well has been completed between the two POC wells and will be sampled in November 2012.

Table 2. May 2012 Groundwater Monitoring Analytical Results for the Bedrock Wells

			Bedroc	k Wells	
Constituent	elenium (mg/L) 0.05	L(SG) (Bkgd)	OBS-3 (POC)	S(SG) (POC)	I(SG) (POE)
Selenium (mg/L)	0.05	ND	ND	0.013	ND
Uranium (mg/L)	2.15	0.0050	0.0076	0.44	0.0080

Key: ACL = alternate concentration limit; Bkgd = background well; mg/L = milligrams per liter; ND = not detected; POC = point-of-compliance well; POE = point-of-exposure well

The well record for the SIMPSON well indicates that it may be completed in the Chinle Formation. This formation overlies the San Andres Limestone, and the well completion zone may be recharged by alluvial groundwater. The uranium concentration for this sampling event was 0.0033 mg/L.

Richard K. Johnson

Site Lead, S.M. Stoller Corporation

Doto

Sample Location Map, Bluewater, New Mexico, Disposal Site

DVP—May 2012, Bluewater, New Mexico RIN 12044518 Page 4 **Data Assessment Summary**

Water Sampling Field Activities Verification Checklist

Project	bluewater, inivi	Date(s) of water	r Sampling	May 15, 2012	
Date(s) of Verification	July 2, 2012	Name of Verifie	r	Gretchen Baer	
		Response (Yes, No, NA)		Comments	
Is the SAP the primary docum	ent directing field procedures?	Yes	. '		
List other documents, SOPs, i	instructions.			er dated April 16, 2012. ve No. BLU-2011-01.	
2. Were the sampling locations s	specified in the planning documents sampled?	Yes	With the exception	on of one dry location, X(M).	
Was a pre-trip calibration cond documents?	ducted as specified in the above-named	Yes	Pre-trip calibration	on performed on May 15, 2012.	
4. Was an operational check of t	he field equipment conducted daily?	Yes			
Did the operational checks me	eet criteria?	Yes	slightly below the this measuremen		ceptable fo
	alkalinity, temperature, specific conductance, d measurements taken as specified?	Yes		E(M), S(SG), and OBS-3 did not mee ample aliquots for all analytes were fil	
6. Was the category of the well of	documented?	Yes		·	
7. Were the following conditions	met when purging a Category I well:		•		
Was one pump/tubing volume	purged prior to sampling?	Yes			
Did the water level stabilize pr	ior to sampling?	Yes	• . •		
Did pH, specific conductance, sampling?	and turbidity measurements stabilize prior to	Yes			· .
Was the flow rate less than 50	00 mL/min?	Yes	•	· .	
If a portable pump was used, installation and sampling?	was there a 4-hour delay between pump	NA			
	and the second s				

Water Sampling Field Activities Verification Checklist (continued)

	Response (Yes, No, NA)	Comments
8. Were the following conditions met when purging a Category II well:		• • • • • • • • • • • • • • • • • • •
Was the flow rate less than 500 mL/min?	Yes	Monitoring wells L(SG), S(SG), and OBS-3 are purged and sampled according to the program directive. Three casing volumes are purged (or purged to dryness) then one set of parameters is recorded before collecting the sample. No stabilization was required.
- Was one pump/tubing volume removed prior to sampling?	Yes	
Were duplicates taken at a frequency of one per 20 samples?	Yes	A duplicate sample was collected for location Y2(M).
Were equipment blanks taken at a frequency of one per 20 samples that were collected with nondedicated equipment?	NA	An equipment blank was not required.
1. Were trip blanks prepared and included with each shipment of VOC samples?	NA	
Were QC samples assigned a fictitious site identification number?	Yes	Location ID 2074 was used for the duplicate sample.
Was the true identity of the samples recorded on the Quality Assurance Sample Log or in the Field Data Collection System (FDCS) report?	Yes	
3. Were samples collected in the containers specified?	Yes	· · · · · · · · · · · · · · · · · · ·
4. Were samples filtered and preserved as specified?	Yes	
5. Were the number and types of samples collected as specified?	Yes	
Were chain of custody records completed and was sample custody maintained?		The COC was not signed and dated upon sample
7. Are field data sheets signed and dated by both team members (hardcopies) or are dates present for the "Date Signed" fields (FDCS)?	No Yes	relinquishment.
8. Was all other pertinent information documented on the field data sheets?		
9. Was the presence or absence of ice in the cooler documented at every sample location?	Yes	Presence of ice was inadvertently not documented at
Were water levels measured at the locations specified in the planning documents?	No Yes	location E(M).

Laboratory Performance Assessment

General Information

Report Number (RIN): 12044518

Sample Event:

May 15, 2012

Site(s):

Bluewater, New Mexico

Laboratory:

ALS Laboratory Group, Fort Collins, Colorado

Work Order No.:

1205261

Analysis:

Metals and Wet Chemistry

Validator:

Gretchen Baer

Review Date:

July 2, 2012

This validation was performed according to the *Environmental Procedures Catalog*, (LMS/PRO/S04325, continually updated) "Standard Practice for Validation of Laboratory Data." The procedure was applied at Level 3, Data Validation. See attached Data Validation Worksheets for supporting documentation on the data review and validation. All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 3.

Table 3 Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Alkalinity, Bicarbonate	WCH-A-003	EPA 310.1	EPA 310.1
Alkalinity, Carbonate	WCH-A-004	EPA 310.1	EPA 310.1
Chloride	MIS-A-039	SW-846 9056	SW-846 9056
Calcium, Magnesium, Potassium, Sodium	LMM-01	SW-846 3005A	SW-846 6010B
Arsenic, Molybdenum, Selenium, Uranium	LMM-02	SW-846 3005A	SW-846 6020A
Nitrate + Nitrite as N	WCH-A-022	EPA 353.2	EPA 353.2
Sulfate	MIS-A-044	SW-846 9056	SW-846 9056
Total Dissolved Solids	WCH-A-033	EPA 160.1	EPA 160.1

Data Qualifier Summary

Analytical results were qualified as listed in Table 4. Refer to the sections below for an explanation of the data qualifiers applied.

Table 4. Data Qualifier Summary

Sample Number	ole Number Location Analyte(s)		Flag	Reason
1205261-1	Y2(M) dup, 2074	Sodium	J	Serial dilution failure
1205261-4	E(M)	Selenium	. U	Less than 5 times the calibration/method blank
1205261-6	I(SG)	Selenium	U	Less than 5 times the calibration/method blank
1205261-7	L(SG)	Selenium	U	Less than 5 times the calibration/method blank
1205261-8	OBS-3	Selenium	U	Less than 5 times the calibration/method blank
1205261-12	Y2(M)	Sodium	J	Serial dilution failure

Sample Shipping/Receiving

ALS Laboratory Group in Fort Collins, Colorado, received 12 water samples on May 17, 2012, accompanied by a Chain of Custody form. Copies of the air bill numbers were included in the receiving documentation. The Chain of Custody form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The Chain of Custody form was complete with no errors or omissions, with the following exceptions. The Chain of Custody was not signed as relinquished and the filtration status for sample OBS-3 was not described correctly.

Preservation and Holding Times

The sample shipment was received intact with the temperature inside the iced cooler at 0.1 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL. Some alkalinity detection limits were 20 mg/L, which is above the Line Item Code required detection limit of 10 mg/L. High concentrations of alkalinity as bicarbonate present in most samples required analysis using reduced sample aliquot sizes. The MDLs were elevated accordingly. The reported MDLs for all analytes demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for all analytes. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear curve. Compliance requirements for continuing calibration checks are established to ensure that the instrument continues to be capable of producing acceptable qualitative and quantitative data. All laboratory instrument calibrations were performed correctly in accordance with the cited methods. All calibration and laboratory spike standards were prepared from independent sources.

Methods EPA 160.1, 310.1

There are no initial or continuing calibration requirements associated with the alkalinity or total dissolved solids methods.

Method EPA 353.2

Calibrations for nitrate + nitrite as N were performed using five calibration standards on May 18, 2012. The calibration curve correlation coefficient values were greater than 0.995 and

the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency resulting in seven verification checks. All calibration check results were within the acceptance criteria.

Method SW-846 6010B

Calibrations for calcium, magnesium, potassium, and sodium were performed on May 26, 2012, using three calibration standards. The correlation coefficient values were greater than 0.995. The absolute values of the intercepts were less than 3 times the MDL, with the exception of the intercepts for potassium and sodium. These intercepts were less than 3 times the reporting limits and all results were above the reporting limits. Initial and continuing calibration verification checks were made at the required frequency resulting in 6 verification checks. All calibration checks met the acceptance criteria. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curve near the PQL and all results were within the acceptance range.

Method SW-846 6020A

Calibrations were performed for arsenic, molybdenum, selenium, and uranium on May 30 and June 1, 2012, using four calibration standards. The calibration curve correlation coefficient values were greater than 0.995. The absolute values of the calibration curve intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency resulting in 18 verification checks. All calibration checks met the acceptance criteria. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curve near the PQL and all results were within the acceptance range. Mass calibration and resolution verifications were performed at the beginning of each analytical run in accordance with the analytical procedure. Internal standard recoveries associated with requested analytes were stable and within acceptable ranges.

Method SW-846 9056

Calibrations for chloride and sulfate were performed using seven calibration standards on April 12, 2012. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency resulting in five verification checks. All calibration checks met the acceptance criteria.

Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Methods without sample preparation do not require the analysis of a method blank. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis. All method blank and calibration blank results were below the PQL for all analytes. In cases where a blank concentration exceeds the MDL, the associated sample results are qualified with a "U" flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Analysis

ICP interference check samples ICSA and ICSAB were analyzed at the required frequency to verify the instrumental interelement and background correction factors. All check sample results met the acceptance criteria.

Matrix Spike Analysis

Matrix spike and matrix spike duplicate (MS/MSD) samples are used to measure method performance in the sample matrix. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spike recoveries met the acceptance criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. The replicate results met these criteria, demonstrating acceptable laboratory precision.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Metals Serial Dilution

Serial dilutions were prepared and analyzed for the metals analyses to monitor chemical or physical interferences in the sample matrix. Serial dilution data are evaluated when the concentration of the undiluted sample is greater than 50 times the MDL. All evaluated serial dilution data were acceptable with one exception. A serial dilution for sodium did not meet the acceptance criteria. The associated sodium results are qualified with a "J" flag as an estimated value.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers.

Chromatography Peak Integration

The integration of analyte peaks was reviewed for all ion chromatography data. All peak integrations were satisfactory.

Electronic Data Deliverable (EDD) File

A revised EDD file arrived on July 9, 2012, that included corrections to some filtration status fields. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

SAMPLE MANAGEMENT SYSTEM **General Data Validation Report**

RIN: 12044518 Lab Cod	e: PAR Validator: Gretchen Baer	Validation Date: 7/2/2012
Project: Bluewater	Analysis Type: 🗹 Metal	s General Chem Rad Organics
# of Samples: 12 Matrix:	WATER: Requested Analysis Comp	oleted: <u>Yes</u>
Chain of Custody	Sample	
Present: OK Signed: OK	Dated: <u>ÔK</u> Integrity: <u>O</u>	K Préservation: ÓK Temperature: ÓK
Select Quality Parameters	.	
✓ Holding Times	All analyses were completed within the app	plicable holding times.
Detection Limits	There are 20 detection limit failures.	
Field/Trip Blanks		
Field Duplicates	There was 1 duplicate evaluated.	•

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

RIN:

12044518

'Lab Code: PAR

Non-Compliance Report: Detection Limits

Project: Bluewater

Validation Date: 7/2/2012

Ticket	Location	Lab Sample ID	Method Code	Lab Method	Analyte Name	Result	Qualifier	Reported Detection Limit	Required Detection Limit	Units
FT 183 2	074	1205261-1	WCH-A-003	EPA310:1	Bicarbonate	210		20	10.	MG/L
FT 183 2	074	1205261-1	WCH-A-004	EPA310.1	Alkalinity, Carbonate (CO3) as C	20	Ų	20	10	MG/L
FT 184 12	1(M)	1205261-2	WCH-A-003	EPA310:1	Bicarbonate	270	1	20	Ho	MG/L
FT 184 2	1(M)	1205261-2	WCH-A-004	EPA310:1	Alkalinity, Carbonate (CO3) as C	20			10	MG/L
FT 185 2	2(M)	1205261-3	WCH-A-003	EPA310:1	Bicarbonate	330	T	20	10	MG/L
FT 185 2	2(M)	1205261-3	WCH-A-004	EPA310.1	Alkalinity, Carbonate (CO3) as C	20		<u> </u>	10	MG/L
FT 178 F	(M)	1205261-5	WCH-A-003	EPA310.1	Bicarbonate	1180		20.	10	MG/L
(FT 178 F	(M)	1205261-5	WCH-A-004	EPA310:1	Alkalinity, Carbonate (CO3) as C	20			10·	MG/L
FT 180 (I	(SG)	1205261-6	WCH-A-003	EPA310.1	Bicarbonate	200	1	20	10:	MG/L
(FT 180 II)	SG)	1205261-6	WCH-A-004	EPA310.1	Alkalinity, Carbonate (CO3) as C	20				MG/L
(FT 181 L	(SG)	1205261-7	WCH-A-003	EPA310.1	Bicarbonate	540	1	20.	10	MG/L
(FT 181 L	(SG)	1205261-7	WCH-A-004	EPA310.1	Alkalinity, Carbonate (CO3) as C	20	h	20	10	MG/L
(FT.182 S	S(SG)	1205261-9	WCH-A-003	EPA310.1	Bicarbonate	390	1	20	10	MG/L
FT 182 S	(SG)	1205261-9	WCH-A-004	EPA310.1	Alkalinity, Carbonate (CO3) as C	20	U	20	10	MG/L
GT 742 S	IMPSON	1205261-10	WCH-A-003	EPA310.1	Bicarbonate	210			10	MG/L
GT 742 S	MPSON	1205261-10	WCH-A-004	EPA310.1	Alkalinity, Carbonate (CO3) as C	20	þ	20:	10	MG/L
FT 176 T		1205261-11	WCH-A-003	EPA310.1	Bicarbonate	 420		<u> </u>	10	MG/L
FT 176 T	(M)	1205261-11	WCH-A-004	EPA310.1	Alkalinity, Carbonate (CO3) as C	20	u	20	10'	MG/L
FT 177 Y	2(M)	1205261-12:	WCH-A-003	EPA310.1	Bicarbonate	210		20	103	MG/L
FT 177 Y	2(M)	1205261-12	WCH-A-004	EPA310.1	Alkalinity, Carbonate (CO3) as C	20	μ	20'	10	MG/L

Page 1 of 1

SAMPLE MANAGEMENT SYSTEM

Metals Data Validation Worksheet

RIN: 12044518

Lab Code: PAR

Date Due: 6/14/2012

Matrix: __Water

Site Code: BLU

Date Completed: 6/14/2012

Method Analyte Type	Date Analyzed	The state of the s					Method	ethod LCS		MSD %R	Dup. RPD	ICSAB %R	Serial Dil.	CRI %R		
31.			Int:	R^2	ICV	CCV	ICB	ССВ	Blank			,,,,,,				• • •
Calcium	ICP/ES	05/26/2012	0:0210	1.0000	ОК	OK	ОК	ОК	OK.	100.0	106.0	104.0	1.0	104.0	1.0	104.0
Magnesium	ICP/ES	05/26/2012	0.0070	1.0000	ОК	OK	ОК	ОК	OK)	98.0	98.0	97.0	1.0	103.0	0.0	101:0.
Potassium	ICP/ES	05/26/2012	-1.4360	1:0000	ОК	ОК	ОК	ОК	ОК	98.0	109.0	109:0	0.0		[·]	77.0
Sodium	ICP/ES	05/26/2012	-0.1150	1.0000	OK	OK.	ОК	OK	OK:	97.0	105.0	103.0	1.0		11.0	83:0
Aršenic.	ICP/MS	06/01/2012	-0.0300	1.0000	ОК	OK	ОК	OK	OK	96.0				101.0]	110:0
Arsenic	ICP/MS	05/30/2012	-0.0050	1.0000	ОК	OK!	ОК	OK	OK.	101.0	103.0	104.0	1:0	101.0		112.0
Molybdenum	ICP/MS	05/30/2012	-0.0040	1.0000	ОК	ОК	OK.	OK	OK	100.0	105.0	105.0	0.0	96.0		102.0
Selenium	ICP/MS	06/01/2012	-0.0410	1.0000	ОК	ОК	ОК	ОК	OK:	106.0		÷		100.0	-	108.0
Selenium	ICP/MS	05/30/2012	-0.0320	1.0000	ОК	ОК	ОК	OK	OK.	101.0	109.0	107.0	2.0	106.0		127.0
Uranium	ICP/MS	05/30/2012	0.0000	1.0000	ОК	ОК	ОК	OK:	ОК	101.0	105.0	110.0	3:0	101.0	1.0	95,0

SAMPLE MANAGEMENT SYSTEM

Wet Chemistry Data Validation Worksheet

RIN: 12044518

Lab Code: PAR

Date Due: 6/14/2012

Matrix: Water

Site Code: BLÜ

Date Completed: 6/14/2012

Analyte	Date Analyzed		CALIBRATION						LCS	MS:	MSD %R	DUP RPD	Serial Dil
		Int.	R^2	ICV	ccv	ICB	ССВ	Blank				·	
Alkalinity, Carbonate (CO3) as	05/22/2012							OK					
ALKALINITY, Total as CaCO3	05/22/2012								100:00				
Bicarbonate	05/22/2012							OK:				0	
CHLORIDE	04/12/2012	-0.089	1.0000	OK		OK:							·
CHLORIDE	05/17/2012				OK		,OK	:ΘK;	90.00	.97:0 ⁻	98.0	1.00	
CHLORIDE	05/17/2012									95:0			
Nitrate+Nitrite as N	05/18/2012	0.000	0.9998	OK	ОК	OK:	OK	OK.	91.00	95.0	89:0;	1.00	
Nitrate+Nitrite as N	05/18/2012	0.000	0.9997	OK	ÖK	OK;	OK-						
SULFATE	04/12/2012	0:316	1.0000	OK.		ОК							
SULFATE	05/17/2012			;	OK		OK	OK	93.00	100:0	102.0	1.00].
SÜLFATE	05/17/2012									100.0			
TOTAL DISSOLVED SOLIDS	05/21/2012							ОК	99.00			2.00	
TOTAL DISSOLVED SOLIDS.	05/21/2012											1.00	

Sampling Quality Control Assessment

The following information summarizes and assesses quality control for this sampling event.

Sampling Protocol

Sample results for all monitoring wells met the Category I or II low-flow sampling criteria and were qualified with an "F" flag in the database, indicating the wells were purged and sampled using the low-flow sampling method. The groundwater sample results for the wells E(M), L(SG), OBS-3, and S(SG) were further qualified with a "Q" flag in the database, indicating the data are considered qualitative because these are Category II wells. The location SIMPSON is a domestic well (Category IV).

Equipment Blank Assessment

No equipment blanks were taken. All samples were collected using dedicated equipment that did not require equipment blanks.

Field Duplicate Analysis

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. The relative percent difference for duplicate results that are greater than 5 times the POL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the POL. A duplicate sample was collected from location Y2(M) (field duplicate ID 2074). The duplicate results met the criteria, demonstrating acceptable overall precision.

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

Validation Report: Field Duplicates

RIN: 12044518 Lab Code: PAR Project: Bluewater: Validation Date: 17272012

Duplicate: 2074	Sample: Y	2(M)		*						
	Sample			Duplicate			•			
Analyte	Result	Flag	Error Dilution	Result	Flag	Error	Dilution	RPD	ŖĘŖ	Units
Alkalinity, Carbonate (CO3) as CaCO3	20	Ü	.Ť	20	Ü		1.			MG/L
Arsenic.	13		, 30	î.6.			10	20.69		UG/L
Bicarbonatè	210		'n	210			İ	O;		MG/L
Calcium	62000		1.	60000			16	3.28		UG/L
CHLORIDE	14	٠.	5	16			5	13.33		MG/L
Magnesium	17000		. 1	17000			1	0-		UG/L
Molybdenum	1.6		10	1.5			10			UG/L
Nitrate+Nitrite as N	1:3		1	1.4			1	7.41		MG/L
Pôtaśśium	3100		1	3100			1,	0.		UG/L
Selenjum	1		10	1,6			10			UG/L
Sodium	48000		1	51000	E		1	6.06		ŲG/L
SULFATE	92:		. 5	95			5	3.21		MG/L
TOTAL DISSOLVED SOLIDS	41Ô		1	410			1	Ó		MG/L
Üranium	4.8		10	4.6			10	.4.26;		ÚĞ/L

Certification

All laboratory analytical quality control criteria were met except as qualified in this report. The data qualifiers listed on the SEEPro database reports are defined on the last page of each report. All data in this package are considered validated and available for use.

Laboratory Coordinator:

Steve Dorwin

7-24-2012

Data Validation Lead:

Gretchen Baer

Date

Attachment 1 Assessment of Anomalous Data

Potential Outliers Report

Potential Outliers Report

Potential outliers are measurements that are extremely large or small relative to the rest of the data and, therefore, are suspected of misrepresenting the population from which they were collected. Potential outliers may result from transcription errors, data-coding errors, or measurement system problems. However, outliers may also represent true extreme values of a distribution and indicate more variability in the population than was expected.

Statistical outlier tests give probabilistic evidence that an extreme value does not "fit" with the distribution of the remainder of the data and is therefore a statistical outlier. These tests should only be used to identify data points that require further investigation. The tests alone cannot determine whether a statistical outlier should be discarded or corrected within a data set.

There are three steps involved in identifying extreme values or outliers:

- 1. Identify extreme values that may be potential outliers by generating the Outliers Report using the Sample Management System from data in the SEEPro database. The application compares the new data set with historical data and lists the new data that fall outside the historical data range. A determination is also made if the data are normally distributed using the Shapiro-Wilk Test.
- 2. Apply the appropriate statistical test. Dixon's Extreme Value test is used to test for statistical outliers when the sample size is less than or equal to 25. This test considers both extreme values that are much smaller than the rest of the data (case 1) and extreme values that are much larger than the rest of the data (case 2). This test is valid only if the data without the suspected outlier are normally distributed. Rosner's Test is a parametric test that is used to detect outliers for sample sizes of 25 or more. This test also assumes that the data without the suspected outliers are normally distributed.
- 3. Scientifically review statistical outliers and decide on their disposition.

No values from this sampling event were identified as potential outliers. Potential anomalies in the field parameters were also examined for patterns of repeated high or low bias, which suggest a systematic error due to instrument malfunction. No such patterns were found and all the results from this sampling event are acceptable as qualified.

Data Validation Outliers Report - No Field Parameters

Comparison: All Historical Data Laboratory: ALS Laboratory Group

RIN: 12044518

Report Date: 7/10/2012

	The second second second		ngan ser sin galanting above 16 hagin in		Current Qualifiers		Historical Maximum Qualifiers		Historical Minimum Qualifiers			Number of Data Points		Statistical Outlier
Site Code	Location Code	Sample .ID	Sample Date	Analyte	Result	Lab Data	Result	Lab Data	Result			N	N Below Detect	Outilei
BLU01	F(M)	N001	05/15/2012	Chloride	11	F	13	F	11.5		F.	6	0	No
BLU01	· F(M)	N001	05/15/2012	Sulfate	99	_. F	130	F	102		F	6	0	No
BLU01	I(SG)	N001	05/15/2012	Uranium	0.008	F	0.00636	F	0.0011		F	5	0	No
BLU01	OBS-3	0001	05/15/2012	Sodium	350	FQ	475	FQ	390			5	0	No
BLU01	S(SG)	0001	05/15/2012	Selenium	0.013	FQ	0.011		0.000029	U _.	FQ	9	6	No
BLU01	T(M)	N001	05/15/2012	Chloride	36	F	58	F	37.7		F	6	0	No
BLU01	T(M)	N001	05/15/2012	Nitrate + Nitrite as Nitrogen	47	. F	66	F	48		F .	8	0	No
BLU01	T(M)	N001	05/15/2012	Sulfate	220	F	290	· F	241		F	6	0	No
BLU01	Y2(M)	N002	05/15/2012	Molybdenum	0.0015	F	0.003	F	0.00157		F	5	0	No
BLU01	Y2 <u>(</u> M)	N001	05/15/2012	Sulfate	92	F	110	F	92.2		F	5	0	No
BLU01	Y2(M)	N002	05/15/2012	Uranium	0.0046	F	0.0053	F	0.0047	*	. F	6	0	No

STATISTICAL TESTS:

The distribution of the data is tested for normality or lognormality using the Shapiro-Wilk Test Outliers are identified using Dixon's Test when there are 25 or fewer data points. Outliers are identified using Rosner's Test when there are 26 or more data points. See Data Quality Assessment: Statistical Methods for Practitioners, EPA QC/G-9S, February 2006.

Data Validation Outliers Report - Field Parameters Only

Comparison: All Historical Data Laboratory: Field Measurements

RIN: 12044518

Report Date: 7/10/2012

Site Code	Location Code	Sample ID	Sample Date	Analyte	Cu Result	ı rrent Qualifie Lab ™E	ors. Data **≸F		al Maximum Qualifiers Lab Data		cal Minimum Qualifiers: Lab Data	∵Dat	mber of a Points N Below Detect	Statistical -:Outlier
BLU01	F(M)	N001	05/15/2012	Oxidation Reduction Potential	177.9		F 1	140.7	F	-117.1	F	11	0	No
BLU01	F(M)	N001	05/15/2012	Turbidity	1.35		F	15.4	F	2.89	F	11	. 0 ·	No
BLU01	I(SG)	N001	05/15/2012	· pH	7.87		F	9.37	F	8.02	F	5	0	No
BLU01	I(SG)	N001	05/15/2012	Specific Conductance	1435		F '	1267	F	894	F	5	0	No
BLU01	I(SG)	N001	05/15/2012	Turbidity	5.26		F	9.92	F	7.21	·F	5	0	No
BLU01	Y2(M)	N001	05/15/2012	Turbidity	0.85	4	F	7.98	F	0.9	F	10	0	No

STATISTICAL TESTS:

The distribution of the data is tested for normality or lognormality using the Shapiro-Wilk Test Outliers are identified using Dixon's Test when there are 25 or fewer data points.

Outliers are identified using Rosner's Test when there are 26 or more data points.

See Data Quality Assessment: Statistical Methods for Practitioners, EPA QC/G-9S, February 2006.

Attachment 2
Data Presentation

Groundwater Quality Data

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site REPORT DATE: 7/10/2012 Location: 21(M) WELL

Parameter	Units	Sa Date	mple ID		th R	ange .S)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (as CaCO₃)	mg/L	05/15/2012	N001	139.6		149.6	20		U	F	#	20	
Arsenic	mg/L	05/15/2012	N001	139.6	-	149.6	0.0028		•••	F	#	0.00015	
Bicarbonate	: mg/L	05/15/2012	N001	139.6	-	149.6	270			F	#	20	
Calcium	mg/L	05/15/2012	N001	139.6	-	149.6	170			F	#	0.012	
Chloride	mg/L	05/15/2012	N001	139.6	-	149.6	150		<u>.</u>	F .	#	4	
Dissolved Oxygen	mg/L	05/15/2012	N001	139.6		149.6	4.24	•		F	#		
Magnesium	mg/L	05/15/2012	N001	139.6	-	149.6	41			F	#	0.013	
Molybdenum	mg/L	05/15/2012	N001	139.6	-	149.6	0.00087		В	F	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	N001	139.6	-	149.6	7.9			F .	#	0.05	
Oxidation Reduction Potential	mV	05/15/2012	·· N001	139.6	-	149.6	79.1			F	#		
pH ·	s.u.	05/15/2012	N001	139.6	-	149.6	7.28		, · · · · · · · · · · ·	F	#		,
Potassium	mg/L	05/15/2012	N001	139.6	-	149.6	7.9	•		F	#	0.11	
Selenium	mg/L	05/15/2012	N001	139.6	-	149.6	0.009		·	F	#	0.00032	
Sodium	mg/L	05/15/2012	N001	139.6	-	149.6	180			F	#	0.066	
Specific Conductance	umhos /cm	05/15/2012	N001	139.6	-	149.6	1934			F	#		
Sulfate	mg/L	05/15/2012	N001	139.6	-	149.6	490			F	#	10	
Temperature	С	05/15/2012	N001	139.6	-	149.6	16.35			F ·	#		
Total Dissolved Solids	mg/L	05/15/2012	N001	139.6	-	149.6	1300	.		F	#	40	
Turbidity	NTU	05/15/2012	N001	139.6	-	149.6	2.05			F	#		
Uranium	mg/L	05/15/2012	N001	139.6	-	149.6	0.13			F	# .	0.000029	

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site REPORT DATE: 7/10/2012 Location: 22(M) WELL

Parameter	Units	Sa Date	mple ID	Dept (F	h Ra t BL		•	Result		Lab	Qualifiers Data	S QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (as CaCO ₃)	mg/L	05/15/2012	N001	136.83	-		20		U		F.	#	20	
Arsenic	mg/L	05/15/2012	N001	136.83	-	146.83	0.0038				F	#	0.00015	
Bicarbonate	mg/L	05/15/2012	N001	136.83	-	146.83	330				F	#	20	
Calcium	mg/L	05/15/2012	N001	136.83	•	146.83	100				F	#	0.012	
Chloride	mg/L	05/15/2012	N001	136.83	-	146.83	36				F	#	4	-
Dissolved Oxygen	mg/L	05/15/2012	N001	. 136.83	-	146.83	0.67		3.00		F	#		
Magnesium	mg/L	05/15/2012	N001	136.83	-	146.83	27	-	•		F	#	0.013	
Molybdenum	mg/L	05/15/2012	N001	136.83	-	146.83	0.00073		В		F	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	N001	136.83	-	146.83	29				F	#	0.2	
Oxidation Reduction Potential	mV	05/15/2012	N001	136.83	-	146.83	90.9				F	#		<u> </u>
pH	s.u.	05/15/2012	N001	136.83	-	146.83	7.29				F	#		
Potassium	mg/L	05/15/2012	N001	136.83	-	146.83	6.2				F	#	0.11	
Selenium	mg/L	05/15/2012	N001	136.83	-	146.83	0.0068				F	#	0.00032	 .
Sodium	mg/L	05/15/2012	N001	136.83	-	146.83	150				F	#	0.066	
Specific Conductance	umhos /cm	05/15/2012	N001	136.83	-	146.83	1426				F	#		
Sulfate	mg/L	05/15/2012	N001	136.83	-	146.83	240				F	#	10	
Temperature	С	05/15/2012	N001	136.83	-	146.83	15.84				F	#		
Total Dissolved Solids	mg/L	05/15/2012	N001	136.83	-	146.83	940	······································			F .	#	40	
Turbidity	NTU	05/15/2012	N001	136.83	-	146.83	1.51				F	#		
Uranium	mg/L	05/15/2012	N001	136.83	-	146.83	0.31				F	#	0.000029	

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site

REPORT DATE: 7/10/2012

Location: E(M) WELL State Plane coordinates established with GPS Mapping Grade, Local coordinates source AutoCAD drawing

Parameter	Units	. Sa Date	mple ID		pth Ra Ft BLS		Result	Lab	Qualifier Data	S QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (as CaCO ₃)	mg/L	05/15/2012	0001	68.6	-	89.8	5	U	FQ	#	5	
Arsenic	mg/L	05/15/2012	0001	68.6	-	89.8	0.00007	В	FQ	#	0.000015	
Bicarbonate	mg/L	05/15/2012	0001	68.6	-	89.8	8.9		FQ	#	5	
Calcium	mg/L	05/15/2012	0001	68.6	-	89.8	240		FQ	#	0.012	
Chloride	mg/L	05/15/2012	0001	68.6	-	89.8	32		FQ	#	4	
Dissolved Oxygen	mg/L	05/15/2012	N001	68.6	-	89.8	0.64		FQ	#	· · · · · · · · ·	
Magnesium	mg/L	05/15/2012	0001	68.6	-	89.8	56	:	FQ _.	#	0.013	
Molybdenum	mg/L	05/15/2012	0001	68.6		89.8	0.00049	В	FQ	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	0001	68.6		89.8	0.01	U	FQ	#	0.01	
Oxidation Reduction Potential	mV	05/15/2012	N001	68.6		89.8	-26.6		FQ	#		
pH	s.u.	05/15/2012	N001	68.6		89.8	7.62		FQ	.#		
Potassium	mg/L	05/15/2012	0001	68.6	-	89.8	4.9		FQ	#	0.11	
Selenium	mg/L	05/15/2012	0001	68.6	-	89.8	0.000069	В	UFQ	#	0.000032	
Sodium	mg/L	05/15/2012	0001	. 68.6	-	89.8	55		FQ	#	0.0066	
Specific Conductance	umhos /cm	05/15/2012	N001	68.6	-	89.8	1552		FQ	#		
Sulfate	mg/L	05/15/2012	0001	68.6	-	89.8	780		FQ	#	10	
Temperature	С	05/15/2012	N001	68.6	-	89.8	15.35		FQ	#		
Total Dissolved Solids	mg/L	05/15/2012	0001	68.6	-	89.8	1200		FQ	#	40	
Turbidity	NTU	05/15/2012	N001	68.6	-	89.8	15.9		FQ	#	·	
Uranium	mg/L	05/15/2012	0001	68.6		89.8	0.00012	· · · · · · · · · · · · · · · · · · ·	FQ	- #	0.000029	

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site
REPORT DATE: 7/10/2012
Location: F(M) WELL State Plane coordinates established with GPS Mapping Grade, Local coordinates source AutoCAD drawing

Parameter	Units	Sa Date	mple ID		pth R			Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (as CaCO ₃)	mg/L	05/15/2012	N001	94.2	-	114.87	20		U	F	#	20	-
Arsenic	mg/L	05/15/2012	N001	94.2	-	114.87	0.0012			F	#	0.000015	
Bicarbonate	mg/L	05/15/2012	N001	94.2	-	114.87	180			F	#	20	
Calcium	mg/L	05/15/2012	N001	94.2	•	114.87	74			F	#	0.012	
Chloride	mg/L	05/15/2012	N001	94.2	-	114.87	11			F	#	1	
Dissolved Oxygen	mg/L	05/15/2012	N001	94.2	-	114.87	3.05			F	#		
Magnesium	mg/L	05/15/2012	N001	94.2	-	114.87	19			F	#	0.013	
Molybdenum	mg/L	05/15/2012	N001	94.2	-	114.87	0.001			F	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	N001	94.2	•	114.87	0.7			F	#	0.01	
Oxidation Reduction Potential	mV	05/15/2012	N001	94.2	-	114.87	177.9			F	#		
pH	s.u.	05/15/2012	N001	94.2	-	114.87	7.71		,	F	#		
Potassium	mg/L	05/15/2012	N001	94.2	-	114.87	2.9	· · · · · ·		F	#	0.11	
Selenium	mg/L	05/15/2012	N001	94.2	-	114.87	0.0011			F	#	0.000032	
Sodium	mg/L	05/15/2012	N001	94.2	-	114.87	19 .			F	#	0.0066	<u> </u>
Specific Conductance	umhos /cm	05/15/2012	N001	94.2	-	114.87	569			F	#		
Sulfate	mg/L	05/15/2012	N001	94.2	-	114.87	99			F	#	2.5	
Temperature	С	05/15/2012	N001	94.2	-	114.87	14.81		 	F	#		
Total Dissolved Solids	mg/L	05/15/2012	N001	94.2	-	114.87	370			F	#	20	
Turbidity	NTU	05/15/2012	N001	94.2	-	114.87	1.35			F	#		
Uranium	mg/L	05/15/2012	N001	94.2	-	114.87	0.0073			F	#	0.000029	

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site REPORT DATE: 7/10/2012

Location: I(SG) WELL State Plane coordinates established with GPS Mapping Grade, Local coordinates source AutoCAD drawing

Parameter	Units	Sa Date	mple ID		Depth Range (Ft BLS)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (as CaCO ₃)	mg/L	05/15/2012	N001	0	- 0	20		U	F	#	20	
Arsenic	mg/L	05/15/2012	N001	0	- 0	0.00058			F	#	0.000015	
Bicarbonate	mg/L	05/15/2012	N001	0	- 0	200			F.	#	20	
Calcium	mg/Ĺ	05/15/2012	N001	0	- 0	39			Ę	#	0.012	
Chloride	mg/L	05/15/2012	N001	0	- 0	170			F	#	4	
Dissolved Oxygen	mg/L	05/15/2012	N001	0	- 0	0.38			F	#		
Magnesium	mg/L	05/15/2012	N001	0	- 0	28		· · · · · · · · · · · · · · · · · · ·	F	#	0.013	
Molybdenum	mg/L	05/15/2012	N001	0	- 0	0.00078		В	F	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	N001	0	- 0	0.01		U	F	#	0.01	
Oxidation Reduction Potential	mV	05/15/2012	N001	0	- 0	-221.8			F	#		
pH	s.u.	05/15/2012	N001	. 0	- 0	7.87	•		F	#		
Potassium	mg/L	05/15/2012	N001	0	- 0	9.7			F	#	0.11	
Selenium	mg/L	05/15/2012	N001	0	- 0	0.0001			UF	#	0.000032	
Sodium	mg/L	05/15/2012	N001	0	- 0	180			F	#	0.066	
Specific Conductance	umhos /cm	05/15/2012	N001	0	- 0	1435			F	#		
Sulfate	mg/L	05/15/2012	N001	0 .	- 0	230			F	#	10	
Temperature	С	05/15/2012	N001	0	- 0	17.68	1100-10		F	#		
Total Dissolved Solids	mg/L	05/15/2012	N001	0	- 0	850		,	F	#	40	
Turbidity	NTU	05/15/2012	N001	0	- 0	5.26			F	#		
Uranium	mg/L	05/15/2012	N001	0	- 0	0.008			F	#	0.000029	

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site REPORT DATE: 7/10/2012

Location: L(SG) WELL State Plane coordinates established with GPS Mapping Grade, Local coordinates source AutoCAD drawing

Parameter	Units	Sai Date	mple . ID		Depth Rang (Ft BLS)		Re	sult	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (as CaCO ₃)	mg/L	05/15/2012	N001	0	- 0		20		Ü	FQ	#	20	
Arsenic	mg/L	05/15/2012	N001	0	- 0)	0.00024			FQ	#	0.000015	
Bicarbonate	mg/L	05/15/2012	N001	0	- 0)	540			FQ	#	20	
Calcium	mg/L	05/15/2012	N001	0	- 0)	160			FQ	#	0.012	
Chloride	mg/L	05/15/2012	N001	0	- 0)	180			- FQ	#	10	
Dissolved Oxygen	mg/L	05/15/2012	N001	0	- 0)	3.42			FQ	#		
Magnesium	mg/L	05/15/2012	N001	0	- C)	72			FQ	#	0.013	
Molybdenum	mg/L	05/15/2012	N001	0	- 0) .	0.00041		В	FQ	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	N001	0	- C)	0.025			FQ	#	0.01	
Oxidation Reduction Potential	mV	05/15/2012	N001	0	- C)	-61.9			FQ	#	<u>.</u>	
рН	s.u.	05/15/2012	N001	0	- C)	6.9			FQ	#	·	
Potassium	mg/L	05/15/2012	N001	0	- 0)	14			FQ	#	0.11	
Selenium	mg/L	05/15/2012	N001	0.	- 0)	0.000095		В	UFQ	#	0.000032	
Sodium	mg/L	05/15/2012	N001	0	- 0)	260			FQ	#	0.33	
Specific Conductance	umhos /cm	05/15/2012	N001.	.0	- 0)	2547			FQ	#		
Sulfate	mg/L	.05/15/2012	N001	0	- 0)	560		-	FQ	#	25	
Temperature	С	05/15/2012	N001	. 0	- 0)	18.76	-	,	FQ	#		
Total Dissolved Solids	mg/L	05/15/2012	N001	0	·- 0)	1700			FQ	#	80	+
Turbidity	NTU	05/15/2012	N001	0	- C)	2.32			FQ	#.		
Uranium	mg/L	05/15/2012	N001	0	- C)	0.005			FQ	#	0.000029	

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site
REPORT DATE: 7/10/2012
Location: OBS-3 WELL State Plane coordinates established with GPS Mapping Grade, Local coordinates source AutoCAD drawing

Parameter	Units	Sa Date	mple ID		th R	ange S)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (as CaCO ₃)	mg/L	05/15/2012	0001	152.4	-	350	5	U	FQ	#	5	
Arsenic	mg/L	05/15/2012	0001	152.4	-	350	0.000077	В	FQ	#	0.000015	
Bicarbonate	mg/L	05/15/2012	0001	152.4	-	350	34		FQ	#	5	
Calcium	mg/L	05/15/2012	0001	152.4	-	350	110		FQ	#	0.012	
Chloride	mg/L	05/15/2012	0001	152.4	-	350	650		FQ	#	10	
Dissolved Oxygen	mg/L	05/15/2012	N001	152.4	-	350	1.24		FQ	#	-	
Magnesium	mg/L	05/15/2012	0001	152.4	-	350	140		FQ	#	0.013	
Molybdenum	mg/L	05/15/2012	0001	152.4	-	350	0.00032	U ,	FQ	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	0001	152.4	-	350	0.044		FQ	#	0.01	
Oxidation Reduction Potential	mV	05/15/2012	N001	. 152.4	-	350	-133.3		FQ	#		
рН	s.u.	05/15/2012	N001	152.4	-	350	7.08		FQ	.#	,	
Potassium	mg/L	05/15/2012	0001	152.4	-	350	20		FQ	#	0.11	
Selenium	mg/L	05/15/2012	0001	152.4	-	350	0.00039	,	UFQ	#	0.000032	
Sodium	mg/L	05/15/2012	0001	152.4	-	350	350		FQ	#	0.33	
Specific Conductance	umhos /cm	05/15/2012	N001	152.4		350	3533		FQ	#		
Sulfate	mg/L	05/15/2012	0001	152.4	-	350	790		FQ	#	25	
Temperature	С	05/15/2012	N001	152.4	-	350	19.54	-	FQ	#		
Total Dissolved Solids	mg/L	05/15/2012	0001	152.4	-	350	2500		FQ	#	80	
Turbidity	NTU	05/15/2012	N001	152.4	-	350	82.8		FQ	#		
Uranium	mg/L ′	05/15/2012	0001	152.4	-	350	0.0076		FQ	#	0.000029	

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site
REPORT DATE: 7/10/2012
Location: S(SG) WELL State Plane coordinates established with GPS Mapping Grade, Local coordinates source AutoCAD drawing

Parameter	Units	Sa Date	mple ID	D	epth R (Ft BL			Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (as CaCO ₃)	mg/L	05/15/2012	0001	159	-		20		U	FQ	#	20	
Arsenic	mg/L	05/15/2012	0001	159	-	280	0.00023			FQ	#	0.000015	
Bicarbonate	mg/L	05/15/2012	0001	159		280	390			FQ	#	20 .	
Calcium	mg/L	05/15/2012	0001	159	-	280	340			FQ	#	0.012	
Chloride _	mg/L	05/15/2012	0001	159	•	280	520	-		FQ	#	10	
Dissolved Oxygen	mg/L	05/15/2012	N001	159	-	280	2.69			FQ	#		
Magnesium ·	mg/L	05/15/2012	0001	159	-	280	170		٠.	FQ	#	0.013	
Molybdenum	mg/L	05/15/2012	0001	. 159	-	280	0.001			FQ	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	0001	159	-	280	3			FQ	#	0.05	
Oxidation Reduction Potential	mV	05/15/2012	N001	159	-	280	-138.2			FQ	#		
pH	s.u.	05/15/2012	N001	159	-	280	7.03		-	FQ	#		
Potassium	mg/L	05/15/2012	0001	159	-	280	21		• •	FQ	#	0.11	
Selenium	mg/L	05/15/2012	0001	159	-	280	0.013			FQ	#	0.000032	
Sodium	mg/L	05/15/2012	0001	159	-	280	360			FQ	#	0.33	
Specific Conductance	umhos /cm	05/15/2012	N001	159	-	280	4265			FQ	#	······································	
Sulfate	mg/L	05/15/2012	0001	159	-	280	1200			FQ	# .	25	
Temperature	C	05/15/2012	N001	159		280	17.82			FQ	#		
Total Dissolved Solids	mg/L	05/15/2012	. 0001	159	-	280	3200			FQ	#	80	· · · · · ·
Uranium	mg/L	05/15/2012	0001	159	_	280	0.44			FQ	#	0.000029	

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site REPORT DATE: 7/10/2012 Location: SIMPSON WELL GPS of coordinates during sampling conducted 5/15/2012 by SM Stoller Corporation

Parameter	Units	Sa Date	mple ID	D	epth Range (Ft BLS)	Result	Lab .	Qualifiers Data QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (as CaCO ₃)	mg/L	05/15/2012	N001	0	- 0	20	U	#	20	
Arsenic	mg/L	05/15/2012	N001 .	0	- 0	0.00065		#	0.000015	
Bicarbonate	mg/L	05/15/2012	N001	0	- 0	210		#	20	
Calcium .	mg/L	05/15/2012	N001	0	- 0	260		#	0.012	
Chloride	mg/L	05/15/2012	N001	0	- 0	120		#	4	
Dissolved Oxygen	mg/L	05/15/2012	N001	0 .	- 0	7.91		#	B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Magnesium	mg/L	05/15/2012	N001	0	- 0	47		#	0.013	
Molybdenum	mg/L	05/15/2012	N001	0	- 0	0.0006	В	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	N001	0	- 0	7.9		#	0.05	
Oxidation Reduction Potential	ĺωΛ	05/15/2012	N001	0	- 0	117.5		* #		-
рН	s.u.	05/15/2012	N001	0 .	- 0	7.4	-	#		
Potassium	mg/L	05/15/2012	N001	0	- 0	3.6		, #	0.11	•
Selenium	mg/L	05/15/2012	N001	0	- 0	0.042		#	0.00032	
Sodium	mg/L	05/15/2012	N001	0	- 0	110		#	0.0066	
Specific Conductance	umhos /cm	05/15/2012	N001	. 0	- 0	1842		. #		
Sulfate	mg/L	05/15/2012	N001	. 0	- 0	570		#	10	
Temperature	С	05/15/2012	N001	0	- 0	16.65		#		
Total Dissolved Solids	mg/L	05/15/2012	N001	0	·	1400		#	40	
Turbidity	NTU	05/15/2012	N001	0	- 0	1.2		# .		
Uranium	mg/L	05/15/2012	N001	0	- 0	0.0033		#	0.000029	,

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site
REPORT DATE: 7/10/2012
Location: T(M) WELL State Plane coordinates established with GPS Mapping Grade, Local coordinates source AutoCAD drawing

Parameter	Units	Sar Date	mple ID		epth Ra (Ft BL			Result	Lab	Qualifiers Data	S QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (as CaCO ₃)	mg/L	05/15/2012	N001	128	-	133	20		Ü	F	#	20	-
Arsenic	mg/L	05/15/2012	N001	128	-	133	0.003			·F	#	0.00015	
Bicarbonate	mg/L	05/15/2012	N001	128	-	133	420			F	#	20	
Calcium	mg/L	05/15/2012	N001	128	•	133	120			F	#	0.012	
Chloride	mg/L	05/15/2012	N001	128	-	133	36			F	#	4 .	
Dissolved Oxygen	mg/L	05/15/2012	N001	128	-	133	1.21			F	#		•
Magnesium	mg/L	05/15/2012	N001	128	-	133	30			F	#	0.013	
Molybdenum	mg/L	05/15/2012	N001	128	-	133	0.023			F	#	0.00032	-
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	N001	128		133	47			F	.#	0.5	
Oxidation Reduction Potential	mV	05/15/2012	N001	128	•-	133	63.3		-	F	#		
pН	s.u.	05/15/2012	N001	128	-	133	6.99			F	#		٠.
Potassium	mg/L	05/15/2012	N001	128		133	5.5	·	· · · · · · · · · · · · · · · · · · ·	F	#	0.11	
Selenium	mg/L	05/15/2012	N001	128	_	133	0.0037			F .	#	0.00032	
Sodium	mg/L	05/15/2012	N001	128	-	133	180	· · · · · · · · · · · · · · · · · · ·	 	F	#	0.066	
Specific Conductance	umhos /cm	05/15/2012	N001	128	-	133	1673			F	#		
Sulfate	mg/L	05/15/2012	N001	128	-	133	220			F	#	10	
Temperature	С	05/15/2012	N001	128	-	133	18.96	~ .		. F	#		
Total Dissolved Solids	mg/L	05/15/2012	N001	128	-	133	1200		* .	F	#	40	· · · · · · · · · · · · · · · · · · ·
Turbidity	NTU	05/15/2012	N001	128	-	133	1.96			F	#		.
Uranium	mg/L	05/15/2012	N001	128	-	133	0.55			F	#	0.000029	

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site

REPORT DATE: 7/10/2012

Location: Y2(M) WELL State Plane coordinates established with GPS Mapping Grade, Local coordinates source AutoCAD drawing

Parameter	Units	Sam Date	ple ID	Dept (F	h Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Carbonate (as CaCO ₃)	mg/L	05/15/2012	N001	98	- 123	20	U	F	#	20	
Alkalinity, Carbonate (as CaCO ₃)	mg/L	05/15/2012	N002	98	- 123	20	U	F	#	20	
Arsenic	mg/L	05/15/2012	N001	98	- 123	0.0013		F	#	0.00015	
Arsenic	mg/L	05/15/2012	N002	98	- 123	0.0016	·	F	#	0.00015	
Bicarbonate	mg/L	05/15/2012	N001	98	- 123	210		F	#	20	
Bicarbonate	mg/L	05/15/2012	N002	98	- 123	210		F	#	20	
Calcium	mg/L	05/15/2012	N001	98	- 123	62		`F	#	0.012	
Calcium	mg/L	05/15/2012	N002	98	- 123	60		F	#	0.012	,
Chloride	mg/L	05/15/2012	N001	98	- 123	14		F	#	1	
Chloride	mg/L	05/15/2012	N002	98	- 123	16	•	F	#	1 .	
Dissolved Oxygen	mg/L	05/15/2012	N001	98	- 123	5.61		F	. #		
Magnesium	mg/L	05/15/2012	N001	98	- 123	. 17		F	#	0.013	
Magnesium	mg/L	05/15/2012	N002	98	- 123	17		F	#	0.013	
Molybdenum	mg/L	05/15/2012	N001	98	- 123	0.0016	-	, F	#	0.00032	
Molybdenum	mg/L	05/15/2012	N002	98	- 123	0.0015		F	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	N001	98	- 123	1.3		F	#	0.01	
Nitrate + Nitrite as Nitrogen	mg/L	05/15/2012	N002	98	- 123	1.4		F	#	0.01	
Oxidation Reduction Potential	mV	05/15/2012	N001	98	- 123	160.6	•	, F	#		
На	s.u.	05/15/2012	N001	98	- 123	7.57		F	#		
Potassium	mg/L	05/15/2012	N001	. 98	- 123	3.1		F	#	0.11	
Potassium	mg/L	05/15/2012	N002	98	- 123	3.1		F	#	0.11	,

Groundwater Quality Data by Location (USEE100) FOR SITE BLU01, Bluewater Disposal Site

REPORT DATE: 7/10/2012

Location: Y2(M) WELL State Plane coordinates established with GPS Mapping Grade, Local coordinates source AutoCAD drawing

Parameter	Units	Sam Date	ple ID		oth Ran Ft BLS		Result	Lab	Qualifiers Data	. QA	Detection Limit	Uncertainty
Selenium	mg/L	05/15/2012	N001	98	-	123	0.001		F	#	0.00032	
Selenium	mg/L	05/15/2012	N002	98	-	123	0.0016		F	# -	0.00032	•
Sodium	mg/L	05/15/2012	N001	98	- .	123	48		JF	#	0.0066	v.
Sodium	mg/L	05/15/2012	N002	98	-	123	51	E	JF	#	0.0066	
Specific Conductance	umhos /cm	05/15/2012	N001	. 98		123	648		F	#	·	
Sulfate	mg/L	05/15/2012	N001	98	-	123	92		F	. #	2.5	
Sulfate	mg/L	05/15/2012	N002	98	-	123	95		F	#	2.5	
Temperature	С	05/15/2012	N001	98	-	123	14.14		F	#		
Total Dissolved Solids	mg/L	05/15/2012	N001	98	-	123	410		F	#	20	
Total Dissolved Solids	mg/L	05/15/2012	N002	98	-	123	410		F	#	20	
Turbidity	NTU	05/15/2012	N001	98	-	123	0.85		F	#		
Uranium	mg/L	05/15/2012	N001	98	-	123	0.0048		F	#	0.000029	
Uranium	mg/L.	05/15/2012	N002	98	_	123	0.0046		F	#	0.000029	

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.

Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.

X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

Low flow sampling method used. Less than 3 bore volumes purged prior to sampling.

Parameter analyzed for but was not detected. U

G Possible grout contamination, pH > 9. J Estimated value. Q Qualitative result due to sampling technique. R Unusable result.

X Location is undefined.

QA QUALIFIER:

Validated according to quality assurance guidelines.

This page intentionally left blank

Static Water Level Data

This page intentionally left blank

STATIC WATER LEVELS (USEE700) FOR SITE BLU01, Bluewater Disposal Site

REPORT DATE: 7/4/2012

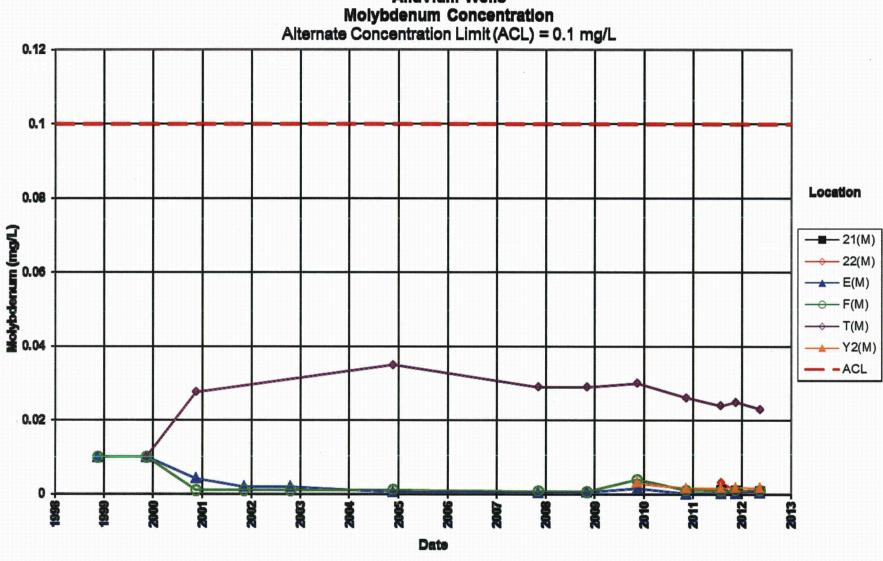
Location	Flow	Top of Casing Elevation (Ft)	Measurement		Depth From	Water	Water
Code	Code		Date	Time	Top of Casing (Ft)	Elevation (Ft)	Level Flag
21(M)		6587.8	05/15/2012	16:30:15	127.93	6459.87	
22(M)		6600.33	05/15/2012	15:19:46	136.38	6463.95	
E(M)		6613.08	05/15/2012	09:38:12	81.53	6531.55	
F(M)	- E	6600.31	05/15/2012	10:59:57	113.5	6486.81	***************************************
I(SG)		6616.17	05/15/2012	17:42:13	196.82	6419.35	
L(SG)		6602.6	05/15/2012	11:32:06	159.34	6443.26	
T(M)		6609.4	05/15/2012	13:56:25	134.08	6475.32	
X(M)		en e	05/15/2012	07:39:00		Tartura da esta esta esta esta esta esta esta est	D
Y2(M)		6605.4	05/15/2012	10:26:04	117.43	6487.97	

FLOW CODES: B BACKGROUND N UNKNOWN

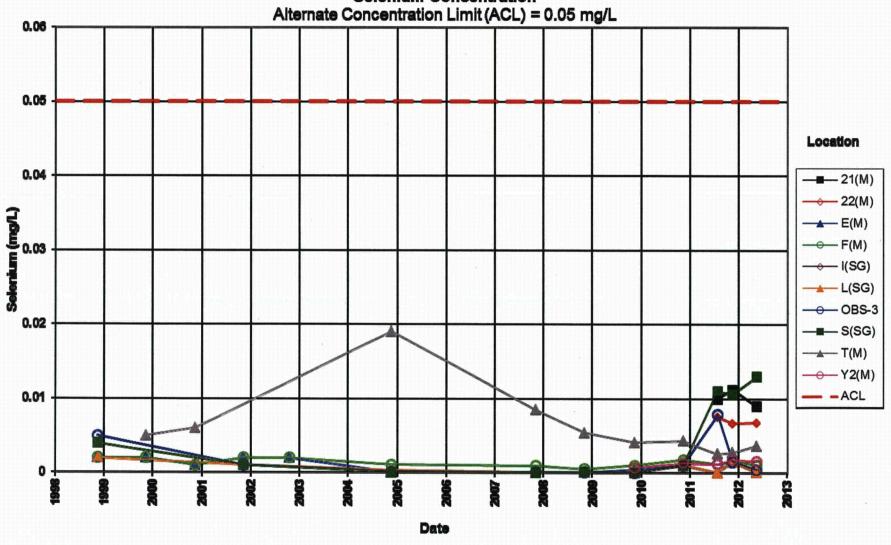
C CROSS GRADIENT O ON SITE D DOWN GRADIENT U UPGRADIENT F OFF SITE

WATER LEVEL FLAGS: D Dry

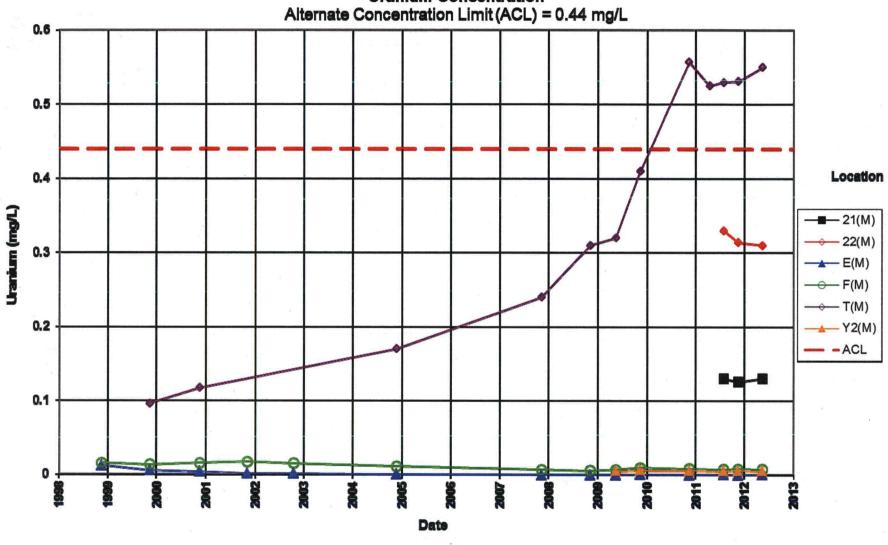
F Flowing


B Below top of pump

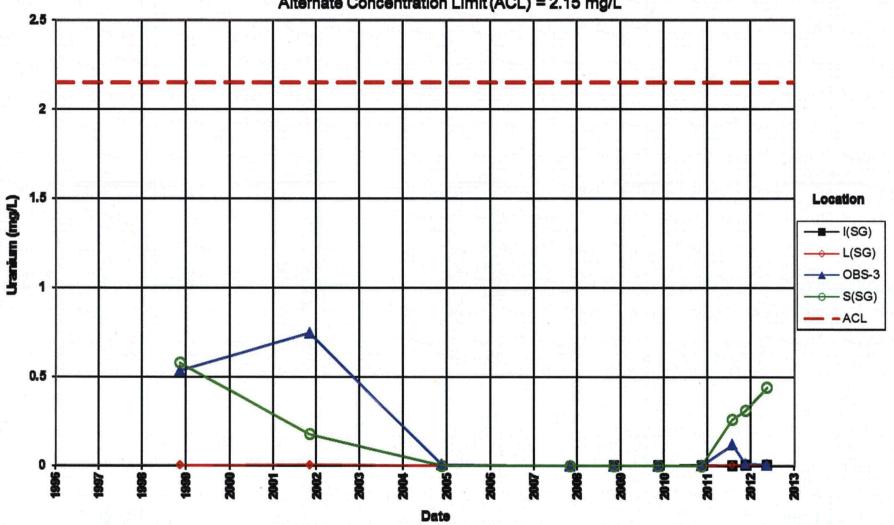
This page intentionally left blank


Time-Concentration Graphs

This page intentionally left blank


Biuewater Disposal Site Alluvium Wells Molybdenum Concentratio

Bluewater Disposal Site Alluvium and Bedrock Wells Selenium Concentration



Bluewater Disposal Site Alluvium Wells Uranium Concentration

Bluewater Disposal Site Bedrock Wells Uranium Concentration

Alternate Concentration Limit (ACL) = 2.15 mg/L

Attachment 3
Sampling and Analysis Work Order

This page intentionally left blank

established 1959

Task Order LM00-501 Control Number 12-0555

April 16, 2012

U.S. Department of Energy Office of Legacy Management ATTN: Dr. April Gil Site Manager 2597 Legacy Way Grand Junction, CO 81503

SUBJECT:

Contract No. DE-AM01-07LM00060, S.M. Stoller Corporation (Stoller)

May 2012 Environmental Sampling at the Bluewater, New Mexico, Site

REFERENCE: Task Order LM00-501-03-203-402, Bluewater, New Mexico, Disposal Site

Dear Dr. Gil:

The purpose of this letter is to inform you of the upcoming sampling event at Bluewater, New Mexico. Enclosed are the map and tables specifying sample locations and analytes for monitoring at the Bluewater site. Water quality data will be collected at this site as part of the environmental sampling currently scheduled to begin the week of May 14, 2012.

The following list shows the monitoring wells (with zone of completion) scheduled for sampling during this event.

Monitoring Wells*

E(M) Al F(M) Al T(M) Al Y2(M) Al X(M) Al L(SG) Sg S(SG) Sg OBS-3 Sg I(SG) Sg 21(M) Al 22(M) Al

*NOTE: Al = alluvium; Sg = San Andres-Glorieta

Domestic Well

Simpson

All samples will be collected as directed in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Access agreements are being reviewed and are expected to be complete by the beginning of fieldwork.

Dr. April Gil Control Number 12-0555 Page 2

Please contact me at (970) 248-6022 if you have any questions.

Sincerely,

Richard K. Johnson

Site Lead

RKJ/lcg/lb

Enclosures (3)

cc: (electronic)
Karl Stoeckle, DOE
Steve Donivan, Stoller
Bev Gallagher, Stoller
Lauren Goodknight, Stoller
Richard Johnson, Stoller
EDD Delivery
rc-grand.junction
File: BLU 410.02(A)

The S.M. Stoller Corporation

2597 Legacy Way

Grand Junction, CO 81503

(970) 248-6000

Fax (970) 248-6040

Sampling Frequencies for Locations at Bluewater, New Mexico

Location ID	Quarterly	Semiannually	Annually	Triennially	Not Sampled	Notes
Monitorin	THE RESERVE AND ADDRESS OF THE PARTY OF THE					
E(M)		X	and the second			PCBs in November only
Y2(M)		X				PCBs in November only
F(M)		Х				PCBs in November only
T(M)		X				PCBs in November only
X(M)		X				Usually dry
L(SG)		X				
S(SG)		X				
OBS-3	y na marmaran.	X				
I(SG)	go to consider the same of	X				
21(M)		X				
22(M)		X				
Domestic	Well					gant gera dilike :
Simpson	CONTRACTOR OF	X				

Sampling conducted in May and November.

Constituent Sampling Breakdown

Site	Bluewater				
Analyte	Groundwater	Surface Water	Required Detection Limit (mg/L)	Analytical Method	Line Item Code
Approx. No. Samples/yr	10	. 0			
Field Measurements					
Alkalinity					
Dissolved Oxygen	X				
Redox Potential	X				
pH	X				
Specific Conductance	X				
Turbidity	Х				
Temperature	X				
Laboratory Measurements					
Aluminum		212-10-10-10 227-0 (30-0)			
Ammonia as N (NH3-N)					
Arsenic	X		0.0001	SW-846 6020	LMM-02
Bicarbonate	X		10	SM2320 B	WCH-A-003
Calcium	X		5	SW-846 6010	LMM-01
Carbonate	X		10	SM2320 B	WCH-A-004
Chloride	Х		0.5	SW-846 9056	WCH-A-039
Iron					
Lead					
Magnesium	X		5	SW-846 6010	LMM-01
Manganese					
Molybdenum	X		0.003	SW-846 6020	LMM-02
Nickel					
Nickel-63					
Nitrate + Nitrite as N (NO3+NO2)-N	×		0.05	EPA 353.1	WCH-A-022
	E(M), Y2(M), F(M), T(M), and				
PCBs	X(M) only		0.0005	SW-846 8082	PEP-A-006
Potassium	X		1	SW-846 6010	LMM-01
Radium-226	Carlos Production				
Radium-228					
Selenium	Х		0.0001	SW-846 6020	LMM-02
Silica					
Sodium	X		1	SW-846 6010	LMM-01
Strontium					
Sulfate	X		0.5	SW-846 9056	MIS-A-044
Sulfide					
Total Dissolved Solids	X		10	SM2540 C	WCH-A-033
Total Organic Carbon	- 0		0.000		
Uranium	X		0.0001	SW-846 6020	LMM-02
Vanadium				7	
Zinc Total No. of Analytes	15	0			

Note: All analyte samples are considered unfiltered unless stated otherwise. All private well samples are to be unfiltered. The total number of analytes does not include field parameters.

Attachment 4 Trip Report This page intentionally left blank

Memorandum

DATE:

May 24, 2012

TO:

Dick Johnson

FROM:

Jeff Walters

SUBJECT:

Sampling Trip Report

Site: Bluewater, NM.

Dates of Sampling Event: May 14-15, 2012

Team Members: Kyle Turley and Jeff Walters

Number of Locations Sampled: 10 monitoring wells and 1 domestic well were sampled for Ca,

K, Mg, Na, As, Mo, Se, U, Cl, Alk-Carb, Alk-Bicarb, SO₄, TDS, (NO₃+NO₂)-N.

Locations Not Sampled/Reason: Monitoring well X(M) was dry.

Location Specific Information:

TICKET NUMBER	SAMPLE DATE	LOCATION	Description		
KFT 175 5/15/2012		E(M)	Cat II-Turbidity was 15 NTUs so sample was filtered. Water looked very clear except for what appeared to be scale from the well casing.		
KFT 177	5/15/2012	Y2(M)	Cat I		
KFT 178	5/15/2012	F(M)	Cat I		
KFT 176	5/15/2012	T(M)	Cat I		
KFT 186		X(M)	Dry		
KFT 181	5/15/2012	L(SG)	Listed as Cat II but is purged and sampled with a submersible electric pump by a program directive.		
KFT 182	5/15/2012	S(SG)	Listed as Cat II but is purged and sampled with a submersible electric pump by a program directive. Sample was filtered.		
KFT 179	5/15/2012	OBS-3	Listed as Cat II but is purged and sampled with a submersible electric pump by a program directive. Sample was filtered		
KFT 180	5/15/2012	I(SG)	Cat I		
KFT 184	5/15/2012	21(M)	Cat I		
KFT 185	5/15/2012	22(M)	Cat I		
KGT 742	5/15/2012	SIMPSON	Cat IV- Domestic well		

Field Variance: None.

Quality Control Sample Cross Reference: The following is the false identification assigned to

the quality control sample:

FALSE ID	TRUE ID	SAMPLE TYPE	ASSOCIATED MATRIX	TICKET NUMBER
2074	Y2(M)	Duplicate	Groundwater	, KFT 183

RIN Number Assigned: All samples were assigned to RIN 12044518.

Sample Shipment: Samples were shipped overnight via FedEx to ALS Laboratory Group in Ft Collins, CO, from the FedEx office in Farmington, NM, on May 16, 2012.

Well Inspection Summary: Well inspections were conducted at all sampled wells. All wells were in good condition.

Equipment: Wells L(SG), S(SG), and OBS-3 are equipped with dedicated electric submersible pumps. All other wells are equipped with dedicated bladder pumps. The 300ft water level indicator worked intermittingly until probe was cleaned thoroughly. All other equipment and meters operated adequately.

Water Level Measurements: Water levels collected in all sampled wells are in the Field Data Collection System (FDCS) Water Sampling Logs.

Institutional Controls: All gates were appropriately closed and locked during the sampling event.

Fences, Gates, Locks: All were in good condition. Signs: No missing or vandalized signs were observed. Trespassing/Site Disturbances: None observed

Note: This sampling event was completed in one day. The Project Manager asked to have the sampling sequence and procedure recorded in this trip report for future reference.

- First, well X(M) was confirmed dry.
- Then, well L(SG) was set up to purge. The purge took about 3 hours. While L(SG) was purging, wells E(M), Y2(M), and F(M) were sampled. Then L(SG) was sampled.
- Next, Well OBS-3 was set up to purge. This well usually goes dry at about 85 gallons so it
 was purged until dry then we ate lunch while awaiting recovery. After lunch, we sampled
 OBS-3.
- After OBS-3, well S(SG) was set up to purge. The purge took about 2 hours. While S(SG) was purging, wells T(M), SIMPSON, and 22(M) were sampled. Then S(SG) was sampled.
- After packing all equipment needed for purging with the electric pumps, wells 21(M) and I(SG) were sampled respectively.

Site Issues:

Disposal Cell/Drainage Structure Integrity: N/A Vegetation/Noxious Weed Concerns: N/A Maintenance Requirements: N/A

Corrective Action Taken: N/A

(JW/lcg)

cc: (electronic)
April Gil, DOE
Steve Donivan, Stoller

Dick Johnson, Stoller EDD Delivery

Data Validation Package for the Bluewater, New Mexico, Disposal Site, May 2012

The U.S. Department of Energy (DOE) has prepared a Data Validation Package containing the water sampling data generated from the May 2012 sampling event at the Bluewater, New Mexico, Site. At your request, you are receiving a hard copy of the report.

The report is also available for your review on the Internet at the DOE Office of Legacy Management (LM) website – www.lm.doe.gov. From the LM website home page, select the United States map icon titled Legacy Management Sites. Then select Bluewater Disposal Site from the drop-down list. The report will be available on the Bluewater Disposal Site page of the LM website under Site Documents and Links.

