ATTACHMENT 4

LaSalle County Station Calculation L-003230, Revision 1b, "CW Inlet Temperature Uncertainty Analysis"

же-20-12. **СС-АА-309-1001-<u>Ан. 1</u>** Revision 7 Page 7 of 2⁴ жизоч 30 68

	_		IMENT 1	90 C
	D		is Cover Sheet 1 of 5	PG-20-12
Design Analysis			Last Page No. ° #	5
Analysis No.: 1 L-003230			Revision: 2 001B Major	Minor M
Title: 3 CW Inlet T	emperature l	Jncertainty Ana	alysis	
EC/ECR No.: 4 389270			Revision: 5 000	
Station(s): 7	LaSalle			ent(s): ''
Unit No.: *	1,2		1TE-CW010 (TE)	2TE-CW010 (TE)
Discipline: *		20-12	1TE-CW011 (TE)	2TE-CW011 (TE)
Descrip. Code/Keyword: "	104	640 11	1TT-CW010 (TT)	2TE-CW010 (TT)
Safety/QA Class: "	NSR		1TT-CW011 (TT)	2TE-CW011 (TT)
System Code: 12	CW		U1 Computer Point F285	U2Computer Point F285
Structure: 13	N/A		U1 Computer Point F286	U2Computer Point F286
	CONTRO	LLED DOCUM	ENT REFERENCES 15	
Document No.:		From/To	Document No.:	From/To
MA				
				· · · · · · · · · · · · · · · · · · ·
Is this Design Analysis Saf	eguards Info	ormation? 16	Yes 🗌 No 🖾 lif y	es, see SY-AA-101-106
Does this Design Analysis cor	ntain Unverifie	ed Assumptions	s? '' Yes 🗌 No 🛛 If ye	es, ATI/AR#:
This Design Analysis SUPE	RCEDES: "	N/A		in its entirety.
Description of Revision (lis	t changed pa	ges when all pa	ages of original analysis wer	e not changed): "
The purpose of this calculatic Loops. The purpose of this m Indication Loops for a temper Specification 3.7.3 per EC 38	inor revision ature of 107°	is to evaluate t	he loop uncertainty for the C	W Inlet Temperature
This minor revision corrects a	a typographic	al error in Secti	ion 7 which has no effect on	this calculation
The following sections are aft revisions.): Section 4.0 (revis				
This minor revision has no im	pact on the c	current total und	certainty.	
Preparer: 20 Joe I	Prostko		Jaconto	6-19-12
Method of Review: ²¹ Det	Print Na ailed Review		Sign Name	
Reviewer: ²²			te Calculations (attached)	Testing
neviewer: -	J. VA.	J W YK		<u>6/19/12</u>
Review Notes: 23 Inde	pendent revie	ew 🖾 🛛 Pe	er réview 🔲 🦻	
(For External Analyses Only) External Approver: 24				
Exelon Reviewer: 25	Print Na	me	Sign Name	Date
	Print Na		Sign Name	Date
Independent 3rd Party Revie	ew Reqd? 26	Yes 🗌	No 🖾	
Exelon Approver: 27	Tabeth La	Karias	Elizabeth Lachs	uis 6/20/12

CALCULATION PAGE		2
CALCULATION NO. L-003230	Revision 001B	PAGE NO. / of 4/5
		36-20-12

4 Design Inputs

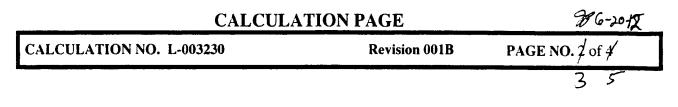
Revise section 4.1.2 to read as follows:

4.1.2 The resistance value equivalent to the temperature value of interest (107° F) for the RTDs was obtained from the Minco calibration reports for the RTDs installed at LaSalle (Ref.5.4.10). The highest of the four resistances values was 116.190 Ω . This value will be used to determine the M&TE error for the indicating loop (applied to Module 2). The change in resistance per 1° F change in temperature (0.214 Ω /° F) was also obtained using the actual resistance values in the calibration reports for 107° F and 108° F. A temperature point of interest lower than 107° F would result in a lower resistance value used to calculate the M&TE error, Therefore the value at 107°F bounds all lesser resistance values.

6 Calculations

Revise section 6.2.1.2.1 to read as follows:

6.2.1.2.1 Measurement & Test Equipment Error MTE2


HP 34401A

Reference Accuracy is the manufacturer's accuracy ($\pm 0.01\%$ reading + 0.001% of range for the 1k Ω) as a 2 σ value (Section 5.4.6). The highest reading of interest is 107°F. The Minco calibration reports for the RTDs show that the highest resistance value for this temperature is 116.190 Ω . (Section 4.1.2)

RAMTE₂₀ = $\pm 0.01\% \text{ x } 116.190\Omega + (0.00001 \text{ x } 1000\Omega)$ = $\pm 0.0116\Omega + 0.01\Omega = 0.0216\Omega$ = $\pm 0.0216\Omega \text{ x } 1^{\circ}\text{F}/0.214\Omega = 0.101^{\circ}\text{F}$ RAMTE2 = $\pm 0.051^{\circ}\text{F}$

The manufacturer also specifies a Temperature coefficient for this range $(1k\Omega)$ for 0°C to 18°C and 28°C to 55°C as 0.0006% of reading + 0.0001% of range per °C. The normal turbine building ambient temperature in the zone where the transmitter is installed varies from 83°F to 102°F(Ref. 5.5.2). For additional conservatism, this range is expanded to 75°F to 102°F (or 23.9°C to 38.9°C). The lower temperature (23.9°C) is within the range where the coefficient is not applicable, so the applicable ΔT is: (38.9°C - 28°C) or 10.9°C

TEMTE2₂₀ = $\pm (0.0006\% \times 116.190\Omega) + (0.000001 \times 1000\Omega)$

 $= \pm 0.00070\Omega + 0.001\Omega = \pm 0.00170\Omega$ $= \pm 0.00170\Omega \times 1^{\circ}F/0.214\Omega = 0.00794^{\circ}F$ RAMTE2 $= \pm 0.00397^{\circ}F$

The temperature error is a degradation of the specified accuracy and is not considered an additional random error. Therefore, the total M&TE error for the HP 34401A is:

MTE2 = $\pm [(0.051^{\circ}F)^{2} + (0.00397^{\circ}F)^{2}]^{1/2}$

MTE2 = $\pm 0.0512^{\circ}F$

Fluke 45 (medium speed)

Reference Accuracy is the manufacturer's accuracy $[\pm (0.05\% \text{ reading} + 2 \text{ LSD} + 0.02\Omega)]$ as a 2 σ value (Section 5.4.6) [The LSD for the Fluke 45 is 0.01 Ω .] The highest reading of interest is 107°F. The Minco calibration reports for the RTDs show that the highest resistance value for this temperature is 116.190 Ω . (Section 4.1.2)

 $RA_{2\sigma} = \pm (0.05\% \text{ x } 116.190\Omega) + [(2 \text{ x } 0.01\Omega) + 0.02\Omega]$ = \pm 0.0581\Omega + 0.04\Omega = 0.0981\Omega = \pm 0.0981\Omega \pm x 1^\text{`F}/0.214\Omega = 0.458^\text{`F}}

MTE2 = $\pm 0.229^{\circ}F$

The Fluke 45 (med. speed) M&TE error is bounding and will be used to evaluate total loop uncertainty.

CALCUL	4 5		
CALCULATION NO. L-003230	Revision 001B	PAGE NO. \$ of \$	
		¥620-12	

Revise section 6.2.1.2.4 to read as follows:

6.2.1.2.4 Calibration Error CAL2

The total calibration error for the M&TE is:

CAL2 = $\pm [(MTE2)^2 + (STD2)^2 + (ST2)^2]^{1/2}$ = $\pm [(0.229^{\circ}F)^2 + (0)^2 + (0.18)^2]^{1/2}$

 $CAL2 = \pm 0.291^{\circ}F$

Revise section 6.2.1.6 to read as follows:

6.2.1.6 Total Random Error $\sigma 2$

σ2	=	$\pm [(RA2)^{2} + (CAL2)^{2} + (\sigma T2)^{2} + (\sigma 2in)^{2} + (\sigma 2PS)^{2}]^{1/2}$
σ2	-	$\pm [(0.285^{\circ}\text{F})^{2} + (0.291^{\circ}\text{F})^{2} + (0.045^{\circ}\text{F})^{2} + (0.150^{\circ}\text{F})^{2} + (0^{\circ}\text{F})^{2}]^{1/2}$

 $\sigma 2 = \pm 0.436^{\circ} F$

7 Summary and Conclusion (Total Error)

Revise section 7.1.3 to read as follows:

To obtain a more accurate value of the UHS temperature using these instruments, the average of the available values can be taken. This assumes that the four readings are sensing the same input temperature and that there is little effect between the input and the measurement point.

$$T_{CWAverage} = \frac{T_{1TE-CW010} + T_{1TE-CW011} + T_{2TE-CW010} + T_{2TE-CW011}}{4}$$

The accuracy of this process is considered the same as the accuracy of summing networks addressed in References 5.1.1 and 5.1.2, or by the multiple test criterion of Reference 5.1.4 Section 3.2.

In all of these cases the final random uncertainty (σ) is the square root sum of the squares of the individual channel random uncertainties considering the multiplier for each of the uncertainties is one divided by the number of channels that are being averaged. The non-random uncertainty (e) will remain the same as for a single loop (Ref. 5.1.4, Section 3.2).

CALCULATION PAGE55CALCULATION NO. L-003230Revision 001BPAGE NO. f of f% 6-20-Q% 6-20-Q

$$\sigma_{Average} = \sqrt{\left(\frac{\sigma_1}{n}\right)^2 + \left(\frac{\sigma_2}{n}\right)^2 + \left(\frac{\sigma_3}{n}\right)^2 + \cdots + \left(\frac{\sigma_n}{n}\right)^2}$$

If all of the instrument loops are identical then this equation will reduce to:

$$\sigma_{Average} = \frac{\sigma_i}{\sqrt{n}} + e$$

Thus for the CW temperatures, the accuracy of the average of the readings for **two loops** will be:

$$\sigma_{Average} = \frac{0.717}{\sqrt{2}} + e = 0.508 + 0.018 = 0.53 \,^{\circ}\text{F}$$

Conculsions

The increase in CW Inlet Temperature Indication from 101.5° F to 107° F results in an increase in the resistance values used in this analysis from 115.013Ω to 116.190Ω . This increase in resistance, results in a 0.001° F increase in the Total Calibration Error (CAL2). This Total Calibration Error is used to calculate the Total Random Error $\sigma 2$. This minor revision 001B shows that Total Calibration Error increase does not change the Total Random Error $\sigma 2$. Therefore based on the Total Random Error $\sigma 2$ not changing, the total uncertainty remains the same.

ATTACHMENT 2 Design Analysis Minor Revision Cover Sheet

3

Design Analysis (Minor Revision)		Last Page No	. • 12
Analysis No.: '	-003230	Revision: 2 001A	
Title: ³ C	W Inlet Temperature Uncerta	inty Analysis	
EC/ECR No.: 4 3	68598	Revision: ⁵ 0	
Station(s): 7	LaSalle		
Unit No.: *	1/2		
Safety/QA Class: *	Non – Safety Related	ł	
System Code(s): 10	CW		
Is this Design Analy	sis Safeguards Information	? '' Yes 🗌 No 🖂	If yes, see SY-AA-101-106
Does this Design Anal	ysis contain Unverifled Assum	ptions? 12 Yes 🗌 No 🔀	If yes, ATI/AR#:
This Design Analysis	s SUPERCEDES: " N/A	····	in its entirety.
	correct typo's on steps 6.3.	emperature value of interes 1.4 and 6.3.1.5. The affect	t discussed in step 4.1.2 of ted pages include pages 4
Disposition of Chan	jes. ·		
corresponded to a p approved amendme value of 101.5°F. A statement has bee	ending amendment to Tec ent limited the maximum CV en added to the calculation	stating the temperature va	RS-07-112). The final 25°F opposed to the original lue of interest is bounded
is conservative.	ering has reviewed the cal	culation and determined that	It using a value of 101.5°F
The typographical e	rrors that were identified ha	ad no affect on the results c	of this calculation.
Preparer: 16 Cindy	Snyder Print Name	_ Cinder huppe	1/4/08 Date
Method of Review: 17	Detailed Review 🛛 🛛 A	Iternate Calculations	Testing
Reviewer: 18	T.J. VanWyk	Mault	1/4/08
Review Notes: ¹⁹	Print Name Independent review	Peer review	J (Date
(For External Analyses Only) External Approver: X	• N/A		
Exelon Reviewer ²¹	Print Name N/A	Sign Name	Date
Exelon Approver: 22	Print Name	Sign Name 	Date <u> Date</u> <u> Date</u> Date Date

CALCULATION NO. L-003230

Revision 001A PAGE NO. 4 of 14

- 3.1 Evaluation of M&TE errors for the digital multimeter is based on the assumption that the test equipment listed in Section 4.5 is used.
- 3.2 It is assumed that the calibration standard of the equipment utilized is more accurate than the M&TE equipment by a ratio of at least 4:1 such that the calibration standard errors can be considered negligible with respect to the M&TE specification per Section2.6. This is considered a reasonable assumption since M&TE equipment is certified to its required accuracy under laboratory conditions.

4 DESIGN INPUTS

- 4.1 The new instrument loops will consist of the following components: high accuracy RTD temperature elements, temperature transmitters, precision input resistors at the field input to the I/O card, and the D/A conversion in the PPC I/O equipment. The loop components evaluated in this document have the following specifications:
- 4.1.1 New Minco RTDs in the existing thermowells (replacing the existing thermocouples). The new RTDs have the following performance specifications (Ref. 5.4.1):

Repeatability: ±0.2°F

[The RTDs are designed to EN60751 Class A specifications with high precision and repeatability requirements. Thus, this specification could be considered to be at a 3σ confidence level. However, for conservatism, this specification will be used as a 2σ value.]

Drift: $\pm 0.1^{\circ}$ F/year (Ref. 5.4.3)

[The study in Reference 5.5.3 shows that RTDs are inherently stable, and after the first few months following installation RTDs attain a stable condition from which it may not drift sufficiently to exceed accuracy limits. RTD cross-calibration is performed to identify if an element has experienced significant drift. Although the RTDs are not separately calibrated, for conservatism the vendor's drift value will be expanded using the loop calibration interval of 4 years (+ 1 year late factor).]

- 4.1.2 The resistance value equivalent to a bounding temperature value of interest (101.5°F) for the RTDs was obtained from the Minco calibration reports for the RTDs installed at LaSalle (Ref. 5.4.10). The highest of the four resistance values was 115.013Ω. This value will be used to determine the M&TE error for the indicating loop (applied to Module 2). The change in resistance per 1°F change in temperature (0.214Ω/°F) was also obtained using the actual resistance values in the calibration reports for 101.5°F and 102.5°F. (A temperature value of 101.5°F conservatively bounds Technical Specification surveillance value of 101.25°F.)
- 4.1.3 New ifm® efector600 TR2432 temperature transmitter modules. These new modules have the following performance specification (Ref.5.4.4, 5.4.5):

Accuracy (includes drift):	±0.54°F / 2 years
"Temperature Drift":	±0.1% of measured range/ 10°C

[Note: Ref. 5.4.5 indicates that the accuracy specification includes drift error and is warranted to hold the accuracy and drift within the specified value for 2 years. It further states that testing is performed on 100% of the devices after production to verify conformance with these specifications. Therefore, these values are 3 σ confidence level. It also states that the accuracy specification includes the resolution error and electronic component drift, and that there are no other environmental influences that will affect the accuracy specification.]

CALCULATION PAGE CALCULATION NO. L-003230 **Revision 001A** PAGE NO. 12 of 14 6.3 PPC I/O MODULE ERRORS (MODULE 3) 6.3.1 Random Error o3 6.3.1.1 Reference Accuracy RA3 Reference Accuracy is ± 0.025% calibrated range (Ref. 5.4.9). The calibrated range is 30°F to $120^{\circ}F (120^{\circ}F - 30^{\circ}F = 90^{\circ}F).$ $RA3_{2\sigma} =$ ±0.00025 x 90°F = 0.0225°F RA3 ±0.0113°F = 6.3.1.2 Calibration Error CAL3 The I/O module is not separately calibrated; indication is verified during loop calibration. CAL3 =±0°F 6.3.1.3 Drift Error D3 The vendor does not specify a drift error specification for the I/O module. D3 = ± 0°F 6.3.1.4 Random Input Error o3in σ3in σ2 = $= \pm 0.436^{\circ}F$ 6.3.1.5 Total Random Error o3 $= \pm [(RA3)^{2} + (CAL3)^{2} + (\sigma D3)^{2} + (\sigma 3in)^{2}]^{1/2}$ $= \pm [(0.0113^{\circ}F)^{2} + (0.0^{\circ}F)^{2} + (0^{\circ}F)^{2} + (0.436^{\circ}F)^{2}]^{1/2}$ σЗ σ3 $= \pm 0.436^{\circ}F$ σ3 6.3.2 Non-Random Error Σe3 Humidity Error e3H 6.3.2.1 No humidity effect errors are provided by the manufacturer'; specified RH for PPC equipment is 20 to 80% RH. The I/O module is located in EQ Zone C1A, (Section 4.6), where expected RH levels are 20 to 50%. Humidity errors are negligible. (Reference 5.1.2, Appendix I) e3H = 06.3.2.2 Radiation Error e3R No radiation errors are provided in the manufacturer's specifications. Per Section 2.8, it is reasonable to consider the normal radiation effect as negligible. Therefore,

e3R = 0

6.3.2.3 Seismic Error e2S

No seismic effect errors are provided in the manufacturer's specifications. A seismic event defines a particular accident condition. Therefore, there is no seismic error for normal operating conditions

e3S = 0

ATTACHMENT 1 Design Analysis Major Revision Cover Sheet

Analysis No.: ' L-003230 Title: ' CW Inlet Temperature Uncerta	1	Last lage no.	14 Att. J Erce JI
Title: 3 CW Inlet Temperature Uncerta	Revisio		
Title, Ow met remperature oncerta	inty Analysis		
EC/ECR No .: 1 266 927	Revisio	n: ' O	
Station(s): ⁷ LaSalle		Comp	onent(s): "
Unit No.: * 1, 2	1TE-CV	V010 (TE)	2TE-CW010 (TE)
Discipline: " (The DEE, IN	Da ITE-CV	VO11 (TE)	2TE-CW011 (TE)
Descrip. Code/Keyword: "104	1TT-CV	V010 (TT)	2TT-CW010 (TT)
Safety/QA Class: '' NS	1TT-CV	V011 (TT)	2TT-CW011 (77)
System Code: " CW	U1 Con	puter Point F285	U2 Computer Point F285
Structure: "N/A	U1 Con	puter Point F286	U2 Computer Point F286
CONTROLLED	DOCUMENT R	FERENCES *	
Document No.: From	n/To Docum	ent No.:	From/To
		· · · · · · · · · · · · · · · · · · ·	
Is this Design Analysis Safeguards Informatio	n? * Ye	s 🗌 No 🛛 If	yes, see SY-AA-101-106
Description American and the University of Acars			
Does this Design Analysis contain Unverified Assu	mpuons? Ye	s 🗌 No 🛛 If	yes, ATI/AR#:
This Design Analysis SUPERCEDES: "	mpuons?" Ye	SLINO XIII	yes, ATI/AR#: in its entirety.
	partials): " Revis	ed Total Uncertain	in its entirety.
This Design Analysis SUPERCEDES: " Description of Revision (list affected pages for uncertainty using 2 σ Single Sided random error to	partials): " Revis	ed Total Uncertain	in its entirety.
This Design Analysis SUPERCEDES: " Description of Revision (list affected pages for puncertainty using 2σ Single Sided random error to in Section 6.2.1.3. Preparer: 20 T. J. Van Wyk Print Name	partials): "Revis erm. Added refer	ed Total Uncertain ence to ISA-RP67	In its entirety. In its entir
This Design Analysis SUPERCEDES: " Description of Revision (list affected pages for uncertainty using 2σ Single Sided random error to in Section 6.2.1.3. Preparer: 20 T. J. Van Wyk Primt Name Method of Review: 21 Detailed Review ⊠ Reviewer: 22 Vikram R. Shah	partials): "Revis erm. Added refer	ed Total Uncertain ence to ISA-RP67 unce to ISA-RP67 sign Name atlogs (attached	In its entirety. In its entir
This Design Analysis SUPERCEDES: " Description of Revision (list affected pages for uncertainty using 2\$\sigma\$ Single Sided random error to in Section 6.2.1.3. Preparer: 20 T. J. Van Wyk Print Name Method of Review: 21 Detailed Review 🔀	partials): "Revis erm. Added refer	ed Total Uncertain ence to ISA-RP67 unce to ISA-RP67 sign Name atlong (attached Sign Name	In its entirety. In its entir
This Design Analysis SUPERCEDES: " Description of Revision (list affected pages for uncertainty using 2σ Single Sided random error to in Section 6.2.1.3. Preparer: 20 T. J. Van Wyk Preparer: 20 T. J. Van Wyk Method of Review: 21 Detailed Review ⊠ Reviewer: 22 Vikram R. Shah	partials): " Revis erm. Added refer	ed Total Uncertain ence to ISA-RP67 unce to ISA-RP67 sign Name atlong (attached Sign Name	In its entirety. In its entir
This Design Analysis SUPERCEDES: " Description of Revision (list affected pages for uncertainty using 2\$\sigma\$ Single Sided random error to in Section 6.2.1.3. Preparer: 20 T. J. Van Wyk Preparer: 20 T. J. Van Wyk Method of Review: 21 Detailed Review 🕅 Reviewer: 22 Vikram R. Shah Review Notes: 23 Independent review 🕅	partials): " Revis erm. Added refer	ed Total Uncertain ence to ISA-RP67 unce to ISA-RP67 sign Name atlong (attached Sign Name	In its entirety. In its entir
This Design Analysis SUPERCEDES: " Description of Revision (list affected pages for uncertainty using 2σ Single Sided random error to in Section 6.2.1.3. Preparer: ²⁰ T. J. Van Wyk Preparer: ²⁰ T. J. Van Wyk Method of Review: ²¹ Detailed Review ⊠ Vikram R. Shah Print Name Review Notes: ²² Independent review ∑ (For External Analyses Only) External Approver: ²⁴	partials): " Revis erm. Added refer	ed Total Uncertain ence to ISA-RP67 unce to ISA-RP67 sign Name atlong (attached Sign Name	In its entirety. In its entir
This Design Analysis SUPERCEDES: " Description of Revision (list affected pages for uncertainty using 2σ Single Sided random error to in Section 6.2.1.3. Preparer: 20 T. J. Van Wyk Preparer: 20 T. J. Van Wyk Print Name Method of Review: 21 Detailed Review ⊠ Reviewer: 22 Vikram R. Shah Print Name Independent review ∑ (For External Analyses Only) External Approver: 24	partials): " Revis erm. Added refer	ed Total Uncertain ence to ISA-RP67 und (() () Sign Name atlogs (attached Sign Name	In its entirety. In its entir
This Design Analysis SUPERCEDES: " Description of Revision (list affected pages for uncertainty using 2σ Single Sided random error to in Section 6.2.1.3. Preparer: 20 T. J. Van Wyk Preparer: 20 T. J. Van Wyk Print Name Method of Review: 21 Detailed Review ⊠ Reviewer: 22 Vikram R. Shah Print Name Independent review ⊠ (For External Analyses Only) External Approver: 24 Exelon Reviewer: 23 Print Name Print Name Print Name	partials): " Revis erm. Added refer	ed Total Uncertain ence to ISA-RP67 und f (left Sign Name Sign Name	in its entirety. hty section to evaluate total 04.02-2000. Corrected typo 8/1/07 Date Date

N.

ો

CC-AA-309-1001

Revision 1

			CHMENT 1 Insis Cover Sheet	Pag	e 1.1 (2)
					Page No. 14
Analysis No.	L-003230		Revision 000	L	
EC/ECR No.	361689		Revision 000		
Title:	CW Inlet Temperatur	re Uncertainty Ana	alysis		
Station(s)	LaSalle		Compo	onent(s)	
Unit No.:	1, 2	_	ITE-CW010 (TE)	2TE-CW01	O (TE)
Discipline	Water IND	c, dee	1TE-CW011 (TE)	2TE-CW01	1 (下記)
Description C	ode/ 5/2 100		1TT-CW010 (++)	2TT-CW01	0 ()
Keyword				211-04401	
Safety Class	NSR		1TT-CW011 (TT)	2TT-CW01	1 (17)
System Code	CW		U1 Computer Point F285	U2 Compu	er Point F285
Structure	N/A		U1 Computer Point F286	U2 Comput	er Point F286
	CC	NTROLLED DOC	CUMENT REFERENCES		
Document No	•	From/To	Document No.		From/To
Is this Design	Analysis Safeguards	3?	Yes 🗌 No 🕅		
Does this Des	Analysis Safeguards ign Analysis Contair	Unverified Assu	Imptions? Yes 🗌 No 🕅	ATI/AR#	plete
Does this Des		Unverified Assu		ATI/AR# If yes, com Attachmen	
Does this Des Is a Suppleme	ign Analysis Contain ental Review Require . J. Van Wyk	Unverified Assu	Imptions? Yes ☐ No ⊠ Yes ☐ No ⊠	lf yes, com	3
Does this Des Is a Suppleme Preparer	ign Analysis Contain ental Review Require . J. Van Wyk Print Na	Unverified Assu	Imptions? Yes 🗌 No 🕅	lf yes, com	
Does this Des Is a Suppleme Preparer	ign Analysis Contain ental Review Require . J. Van Wyk	n Unverified Assu	Imptions? Yes No X Yes No X Mar W Sign Name	lf yes, com	$\frac{5/2}{0}$ Date $\frac{5/2}{2}$
Does this Des Is a Suppleme Preparer	ign Analysis Contain ental Review Require . J. Van Wyk Print Nar 7. R. Shah Print Nar	n Unverified Assu	Imptions? Yes No X Yes No X Mar W Sign Name Sign Name	If yes, com Attachmen	13 5/2/00 Date 5/2/00 Date
Does this Des Is a Suppleme Preparer Reviewer	ign Analysis Contain ental Review Require . J. Van Wyk Print Nai . R. Shah Print Nai iew 🏹 Deta	n Unverified Assu	Imptions? Yes No X Yes No X Mar W Sign Name	If yes, com Attachmen	13 5/2/00 Date 5/2/00 Date
Does this Des Is a Suppleme Preparer Reviewer Method of Rev	ign Analysis Contain ental Review Require . J. Van Wyk Print Nai V. R. Shah Print Nai iew I Deta	n Unverified Assu	Imptions? Yes No X Yes No X Mar W Sign Name Sign Name	If yes, com Attachmen	13 5/2/00 Date 5/2/00 Date
Does this Des is a Suppleme Preparer Reviewer Method of Rev Review Notes: Approver	ign Analysis Contain ental Review Require J. J. Van Wyk Print Nar R. Shah Print Nar iew I Deta L. L. Lehman Print Nar Print Nar	n Unverified Assu	Imptions? Yes No X Yes No X Mar Un Sign Name Alternate Calculations	If yes, com Attachmen	$\frac{5/2/00}{Date}$
Does this Des Is a Suppleme Preparer Reviewer Method of Rev Review Notes:	ign Analysis Contain ental Review Require J. J. Van Wyk Print Nai R. Shah Print Nai Deta L. L. Lehman Print Nai	n Unverified Assu	Imptions? Yes No X Yes No X May Up Sign Name Sign Name Alternate Calculations	If yes, com Attachmen	$\frac{3}{\frac{5}200}$ Date $\frac{312100}{2100}$ Date $\frac{312100}{5000}$
Does this Des Is a Suppleme Preparer T Reviewer V Method of Rev Review Notes: Approver (For External Analyses (Exelon Review	ign Analysis Contain ental Review Require . J. Van Wyk Print Nai . R. Shah Print Nai iew Deta Print Nai Print Nai Print Nai Print Nai	n Unverified Assu	Imptions? Yes No X Yes No X May Up Sign Name Sign Name Alternate Calculations	If yes, com Attachmen	$\frac{3}{\frac{5}200}$ Date $\frac{312100}{2100}$ Date $\frac{312100}{5000}$
Does this Des Is a Suppleme Preparer T Reviewer V Method of Rev Review Notes: Approver (For External Analyses (Exelon Review	ign Analysis Contain ental Review Require . J. Van Wyk Print Nar V. R. Shah Print Nar iew ⊠ Deta Deta Deta Print Nar Print Nar Print Nar Print Nar Print Nar Print Nar Print Nar Print Nar	t Unverified Assu	Imptions? Yes No X Yes No X May University Sign Name Alternate Calculations Sign Name Sign Name	If yes, com Attachmen	$\frac{3}{2 / 0}$ Date $\frac{3}{2 / 0}$ Date $\frac{3}{2 / 0}$ Date $\frac{3}{2 / 0}$ Date Date
Does this Des Is a Suppleme Preparer Reviewer Method of Rev Review Notes: Approver (For External Analyses (Exelon Review Approver	ign Analysis Contain ental Review Require . J. Van Wyk Print Nai . R. Shah Print Nai iew Deta Print Nai Print Nai Print Nai Print Nai	n Unverified Assu	Imptions? Yes No X Yes No X May University Sign Name Alternate Calculations Sign Name Sign Name	If yes, com Attachmen	$\frac{3}{2/00}$ Date $\frac{3/2/00}{2400}$ Date $\frac{3/2/00}{2400}$ Date

1

CALCULATION TABLE OF CONTENTS

CALCULATION NO. L-003230	Revision 001	PAGE NO. 2
SECTION:	PAGE NO.	SUB-PAGE NO.
TABLE OF CONTENTS	2	
PURPOSE / OBJECTIVE	3	
METHODOLOGY AND ACCEPTANCE CRITERIA	3	
ASSUMPTIONS AND LIMITATIONS	4	
DESIGN INPUT	3	
REFERENCES	6	
CALCULATIONS	7	
SUMMARY AND CONCLUSIONS (Total Error)	13	
ATTACHMENTS:		
A. Minco® Quotation 160056-2, January 26, 2006	A1-A1	
B. Minco® Drawing S100995, dated 4/27/99	B1– B1	
C. E-mail from Keith Jensen of Minco® to Vikram Shah of LaSalle dated 7/25/06	C1– C1	
D. ifm efector600® TR2432 Operating Instructions, 701724/01, dated 02/04 (Partial)	D1 D2	
E. Letter from Ameera Shah of ifm efector to Vikram Shah of LaSalle dated 7/26/06	E1 E1	
F. Fluke® 45 Dual Display Multimeter User's Manual, Rev. 4, dated 07/97 (Specification Page only)	F1– F1	
G. SOLA® SDN Power Supplies Specifications for SDN 2.5-24-100P	G1– G1	
H. RTP® RTP2000 Setup and Installation Guide, UG-2000-001, dated 9/12/02 (Partial)	H1–H1	
I. Minco Report of Calibration for Platinum RTD, Model S100995PD, Serial No. P/N366 (Partial)	1 – 2	
J. HP 34401A Multimeter User's Guide, Edition 4, printed February 1996 (Specification Page only)	J1– J1	

9

PAGE NO. 3 of 14

3

1 PURPOSE / OBJECTIVE

CALCULATION NO. L-003230

1.1 The purpose of this calculation is to evaluate the loop uncertainty for the CW Inlet Temperature Indication Loops. These are revised instrument loops that were implemented by EC359060 for Unit 1 and EC359114 for Unit 2.

Revision 001

1.2 These instrument loops provide Ultimate Heat Sink (UHS) temperature indication via the Plant Process Computer (PPC). These new loop configurations replaced the existing thermocouples 1(2)CW010/011 (the sensing elements for computer points F285/F286) with new RTD temperature sensing elements and new temperature compensators (transmitters), and relocated the computer inputs to the appropriate Input/Output (I/O) analog input cards.

2 METHODOLOGY AND ACCEPTANCE CRITERIA

- 2.1 The methodology used for this calculation is based on NES-EIC-20.04 "Analysis of Instrument Channel Setpoint Error and Instrument Loop Accuracy", Rev. 4 (Reference 5.1.2). Additionally, for calculating the average uncertainty using up to four indicating loops, the multiple test criterion of ASME PTC 19.1 (Ref. 5.1.4), Section 3.2 was used.
- 2.2 The instrumentation evaluated in this calculation provides indication (via the Plant Process Computer) for Ultimate Heat Sink Temperature. This is a non-safety indication loop, but the indication is used to verify the Technical Specification SR 3.7.3.1 is met. In accordance with Reference 5.1.2, Appendix D, a Level 3 evaluation is appropriate for this analysis.
- 2.2.1 However, in response to questions during the NRC review of the License Amendment Request to increase the UHS temperature surveillance requirement value, this analysis will evaluate all uncertainty terms and determine the total uncertainty value using methodology consistent with safety-related indicating loops (Reference 5.1.2, Appendix D, Level 2).
- 2.2.2 For additional conservatism, this calculation will determine the total uncertainty using methodology consistent with safety-related actuation loops (Reference 5.1.2, Appendix D, Level 1), but applying the random error as a 2σ single sided uncertainty value. (Reference 5.1.5, Section 8, p.53)
- 2.3 Temperature, humidity and pressure errors, when available from the manufacturer, are to be evaluated with respect to the conditions specified in the station EQ Zones. If not provided, an evaluation must be made to ensure that the environmental conditions are bounded by the manufacturer's specified operational limits. If the environmental conditions are bounded, these error effects are considered to be included in the manufacturer's reference accuracy.
- 2.4 Published instrument vendor specifications are considered to be based on sufficiently large samples so that the probability and confidence level meets the 2σ criteria, unless stated otherwise by the vendor (Reference 5.1.2, Appendix A, Section 8.0).
- 2.5 For normal error analysis, normal vibrations and seismic effects are considered negligible or capable of being calibrated out in accordance with Appendix I of Reference 5.1.2.
- 2.6 The calibration standard error is considered negligible; the calibration standard error (STD) is more accurate than the M&TE by a ratio of at least 4:1 (Reference 5.1.2, Appendix A, Section 5.1.4).
- 2.7 The insulation resistance error is considered negligible unless the instrumentation is expected to operate in an abnormal or harsh environment (Reference 5.1.2, Appendix A, Section 7.0).
- 2.8 Reference 5.1.2, Appendix I states that the effects of normal radiation are small and accounted for in the periodic calibration process. Outside of containment during normal operation, the uncertainty introduced by radiation effects on components is considered to be negligible.

CALCULATION NO. L-003230

Revision 001

9

3 ASSUMPTIONS AND LIMITATIONS

- 3.1 Evaluation of M&TE errors for the digital multimeter is based on the assumption that the test equipment listed in Section 4.5 is used.
- 3.2 It is assumed that the calibration standard of the equipment utilized is more accurate than the M&TE equipment by a ratio of at least 4:1 such that the calibration standard errors can be considered negligible with respect to the M&TE specification per Section2.6. This is considered a reasonable assumption since M&TE equipment is certified to its required accuracy under laboratory conditions.

4 DESIGN INPUTS

- 4.1 The new instrument loops will consist of the following components: high accuracy RTD temperature elements, temperature transmitters, precision input resistors at the field input to the I/O card, and the D/A conversion in the PPC I/O equipment. The loop components evaluated in this document have the following specifications:
- 4.1.1 New Minco RTDs in the existing thermowells (replacing the existing thermocouples). The new RTDs have the following performance specifications (Ref. 5.4.1):

Repeatability: ±0.2°F

[The RTDs are designed to EN60751 Class A specifications with high precision and repeatability requirements. Thus, this specification could be considered to be at a 3σ confidence level. However, for conservatism, this specification will be used as a 2σ value.]

Drift: $\pm 0.1^{\circ}$ F/year (Ref. 5.4.3)

[The study in Reference 5.5.3 shows that RTDs are inherently stable, and after the first few months following installation RTDs attain a stable condition from which it may not drift sufficiently to exceed accuracy limits. RTD cross-calibration is performed to identify if an element has experienced significant drift. Although the RTDs are not separately calibrated, for conservatism the vendor's drift value will be expanded using the loop calibration interval of 4 years (+ 1 year late factor).]

- 4.1.2 The resistance value equivalent to the temperature value of interest (101.5°F) for the RTDs was obtained from the Minco calibration reports for the RTDs installed at LaSalle (Ref. 5.4.10). The highest of the four resistance values was 115.013 Ω . This value will be used to determine the M&TE error for the indicating loop (applied to Module 2). The change in resistance per 1°F change in temperature (0.214 Ω /°F) was also obtained using the actual resistance values in the calibration reports for 101.5°F and 102.5°F.
- 4.1.3 New ifm® efector600 TR2432 temperature transmitter modules. These new modules have the following performance specification (Ref.5.4.4, 5.4.5):

Accuracy (includes drift):	±0.54°F / 2 years
"Temperature Drift":	±0.1% of measured range/ 10°C

[Note: Ref. 5.4.5 indicates that the accuracy specification includes drift error and is warranted to hold the accuracy and drift within the specified value for 2 years. It further states that testing is performed on 100% of the devices after production to verify conformance with these specifications. Therefore, these values are 3 σ confidence level. It also states that the accuracy specification includes the

CAL	CULATION NO.	L-003230	Revision 001	PAGE NO. 5 of 14
		and electronic componer ne accuracy specification.		other environmental influences
4.1.4	4 PPC I/O input c	ard. The I/O input cards t	ave the following performance	ce specification (Ref.5.4.9): [20
	Accurac	cy: ±0.025%	6 of full scale (30°F to 120°F)	
4.2			uctor types as the RTD, and nnection on the RTD (Ref. 5.	therefore there is no emf drop (4.2).
4.3	The Instrument Loperformance spec		0LA® SDN 2.5-24-100P (Ref.	5.4.8), which has the following
	Output tolerance: Temperature rang Humidity:	•		temperature related changes)
4.4		nal resistor at the input te 5.3 f \pm 0.02% (Reference 5.3		le 3) is a high-precision resiste
4.5	a Fluke 45 DMM of procedures (Ref.	or an HP 34401A, and re 5.2.1 and 5.2.2) each spe	ading the indicated temperate	RTD input), measured with eith ure at the PPC. The calibration brated using either the Fluke 4 DMM.
4.5.	1 Reference Accu	uracy for the Fluke 45 (me	edium speed) on the 300 Ω rat	nge is:
	(± 0.05	% reading + 2 LSD + 0.0	2Ω) (Ref. 5.4.6) [2σ]	
4.5.	2 Reference Accu	uracy for the HP 34401A of	on the 1k Ω range is:	
	± (0.019	% reading + 0.001% rang	e) (Ref. 5.4.7) [2σ]	
	Temperature co	pefficient for the HP 3440	IA on the 1k Ω range is (for 0°	°C to 18°C and 28°C to 55°C):
			6 of range /°C) (Ref. 5.4.7)	[2o]
	± (0.000	50 % OF reading + 0.000 F	6 01 range / 0) (nel. 3.4.7)	[20]
4.6	LOCAL SERVICE	E ENVIRONMENTS (Ref.	5.5.2)	
	[······································	Table 4.6	
		TDs Ifm efecto	r600 TR2432 Plant Process (Computer
	EQ Zone	H7	C1A	
	Location	Turbine Bldg	Control Room (Computer Room)
	Temperature	83°F to 102°F		ormal: 65 to 85°F)
	Pressure	0 "wc	0.125 to +3.0 *	
	Humidity [Note: Per reference	39 to 47% RH 5.5.2, the normal expected hurr	idity in this zone is 20 to 50% RH]	[see note below]
4.7	Calibration Tolera	ance		

CALCULATION NO. L-003230

5 <u>REFERENCES</u>

5.1 METHODOLOGY

- 5.1.1 ANSI/ISA-S67.04-Part 1-1994, "Setpoints for Nuclear Safety Related Instrumentation"
- 5.1.2 NES-EIC-20.04, "Analysis of Instrument Channel Setpoint Error and Instrument Loop Accuracy," Revision 4
- 5.1.3 ANSI/ISA TR67.04.09, "Graded Approaches to Setpoint Determination," dated 10/15/05
- 5.1.4 ASME PTC 19.1, Part 1, "Measurement Uncertainty," 1985
- 5.1.5 ISA-RP67.04.02-2000, "Methodologies for the Determination of Setpoints for Nuclear Safety-Related Instrumentation."

5.2 PROCEDURES

- 5.2.1 LIP-CW-501 [New loop-specific calibration procedure in development; tracked by EC359060]
- 5.2.2 LIP-CW-601 [New loop-specific calibration procedure in development; tracked by EC359114]

5.3 LASALLE STATION DRAWINGS

- 5.3.1 1E-2-4022ZC "Schematic Diagram, Circulating Water System CW Pt. 3," as revised by EC359114. 1E-1-4022ZC "Schematic Diagram, Circulating Water System CW Pt. 3," Revision D.
- 5.3.2 1 E-2-4707AA, "Wiring Diag Analog Input Cab 2C91-P607 AITs 1,2,3,4 Left Side," as revised by EC359114,
 1 E-1-4707AA, "Wiring Diag Analog Input Cab 1C91-P607 AITs 1,2,3,4 Left Side," Revision R.

5.4 VENDOR PRODUCT INFORMATION

- 5.4.1 Minco® Quotation 160056-2, January 26, 2006
- 5.4.2 Minco® Drawing S100995, dated 4/27/99
- 5.4.3 E-mail from Keith Johnson or Minco® to Vikram Shah of LaSalle dated 7/25/06
- 5.4.4 ifm efector600® TR2432 Operating Instructions, 701724/01, dated 02/04
- 5.4.5 Letter from Ameera Shah of ifm efector to Vikram Shah of LaSalle dated 7/26/06
- 5.4.6 Fluke® 45 Dual Display Multimeter Users Manual, Revision 4, dated 07/97
- 5.4.7 HP 34401A Multimeter User's Guide, Edition 4, printed February 1996
- 5.4.8 SOLA® SDN Power Supplies Specifications for SDN 2.5-24-100P
- 5.4.9 RTP® 8436 Series Analog Input Cards Technical Manual, 981-0021-211A, Rev. A, dated 04-96
- 5.4.10 Minco Report of Calibration for Platinum RTD, Model S100995PD, Serial No. P/N366

5.5 OTHER REFERENCES

- 5.5.1 LaSalle Technical Specifications, Sections 3.7.3, B 3.7.3, Amendments 178/164
- 5.5.2 LaSalle UFSAR, Rev. 16, Tables 3.11-18 and 3.11-24
- 5.5.3 EPRI TR-103099, "Effects of Resistance Temperature Detector Aging on Cross-Calibration Techniques," Final Report dated June 1994

CALCULATION NO. L-003230

Revision 001

)

6 CALCULATIONS

6.1 RTD ERRORS (MODULE 1)

- 6.1.1 Random Errors o1
- 6.1.1.1 RTD Reference Accuracy RA1

The RTD Reference Accuracy is $\pm 0.2^{\circ}$ F (Section 4.1.1). This is a 2σ value.

 $RA1_{2\sigma} = \pm 0.2^{\circ}F/2$ **RA1 = ± 0.1^{\circ}F**

6.1.1.2 RTD Calibration Error CAL1

The RTDs are not separately calibrated. Therefore, there is no calibration tolerance for this module. (The loop calibration tolerance is applied to Module 2, which is the module that is adjusted during loop calibration.)

CAL1 = 0

6.1.1.3 RTD Setting Tolerance ST1

The RTDs are not separately calibrated. Therefore, there is no setting tolerance for this module. (The loop calibration tolerance is applied to Module 2, which is the module that is adjusted during loop calibration.)

ST1 = 0

6.1.1.4 Random Input Errors σ1in

The RTDs are the first modules in the loop. Therefore,

σ1in = 0

6.1.1.5 Drift Error D1

The RTD Drift value (IDE) specified by the vendor is $\pm 0.1^{\circ}$ F/year. [2 σ] The RTDs are not separately calibrated: RTD cross-calibration is performed to identify if an RTD has experienced significant drift. For conservatism the vendor's drift value will be expanded using the loop calibration interval (Section 4.1.1). The interval for these indicating loops is 4 years. The 25% late factor is 1year. (VDP is the vendor drift period, or 1 year in this case.)

D1 _{2σ}	=	[IDE] x [(SI + LF)/VDP)] ^{1/2}
	=	$[0.1^{\circ}F] \times [(4 \text{ years } + 1 \text{ year})/1 \text{ year}]^{1/2}$
	=	0.1°F x 2.236
	=	0.224°F
D1	=	0.112°F

6.1.1.6 RTD Random Error σ1

σ1	=	± 0.150 °F
	=	± 0.150 °F
	=	$\pm \left[\left(0.1^{\circ} F\right)^{2} + \left(0\right)^{2} + \left(0\right)^{2} + \left(0\right)^{2} + \left(0.112\right)^{2} \right]^{1/2} \right]^{1/2}$
σ1	=	$\pm [(RA1n)^{2} + (CAL1)^{2} + (ST1)^{2} + (\sigma 1in)^{2} + (D1)^{2}]^{1/2}$ $\pm [(0.1^{\circ}F)^{2} + (0)^{2} + (0)^{2} + (0)^{2} + (0.112)^{2}]^{1/2}$

CALCULATION NO. L-003230	Revision 001	PAGE NO. 8 of 14

6.1.2 Non-Random Errors **Σe1**

RTDs are passive devices that produce a resistance signal proportional to temperature. As such, they are not affected by the following non-random effects.

Humidity Effects:	eH1 = 0
Static Pressure Effects:	eSP1 = 0
Ambient Pressure Effects:	eP1 = 0
Power Supply Effects:	eV1 = 0
Seismic Effects:	eS1 = 0
Radiation Effects:	eR1 = 0
Process Effects:	ePr1 = 0

6.1.2.1 Insulation Resistance Errors eIR1

Insulation Resistance error is to be evaluated where actuation functions are expected to operate in an abnormal or harsh environment (Section 2.7). There are no terminal blocks in 100% relative humidity areas, therefore,

Since the RTD extension wires are made of the same material as the RTD itself, there is no emf rise or drop across the RTD head terminals (Section 4.2)

6.1.2.3 Temperature Errors eT1

RTDs are designed to exhibit a precise temperature effect that is used to develop the input signal to the loop. Since the RTDs are designed to function at temperatures well above the system design temperature, there is no temperature error other than the reference accuracy error. Therefore,

eT1 0 Ŧ

Non-Random Input Errors e1in 6.1.2.4

The RTD is the first module in the loop. Therefore,

0 e1in =

6.1.2.5 Non-Random Error **Se1**

> Σe1 = eH1 + eSP1 + eP1 + eV1 + eS1 + eR1 + eT1 + eIR1 + ePr1 + eIR1 + eRD1 + e1in =

Σe1 0°F =

6.2 **TEMPERATURE TRANSMITTER ERRORS (MODULE 2)**

- 6.2.1 Random Error o2
- 6.2.1.1 Reference Accuracy RA2

Reference Accuracy is $\pm 0.54^{\circ}$ F (Section 4.1.3). This is a 3σ value.

RA2 = ± 0.54°F / 3 ± 0.18°F =

CALCULATION NO. L-003230	Revision 001	PAGE NO. 9 of 14

Per Reference 5.4.5, this accuracy includes drift and is warranted for 2 years. The calibration interval is 4 years. The 25% late factor is 1 year. (VDP is the vendor drift period, or 2 years in this case.) The formula for applying the surveillance interval to Drift will be applied to the entire RA2 error term.

RA2	=	± 0.285°F
	=	± [0.18°F] x [1.581139]
	=	$\pm [0.18^{\circ}F] \times [(4) \text{ years } + 1 \text{ year})/2 \text{ years})]^{1/2}$
RA2	=	± [IDE] x [(SI + LF)/VDP)] ^{1/2}

6.2.1.2 Calibration Error CAL2

The loop is calibrated using a variable resistance input, measured with a Fluke 189 DMM, and reading the indicated temperature at the PPC.

6.2.1.2.1 Measurement & Test Equipment Error MTE2

HP 34401A

Reference Accuracy is the manufacturer's accuracy ($\pm 0.01\%$ reading + 0.001% of range for the 1k Ω) as a 2 σ value (Section 5.4.6). The highest reading of interest is 101.5°F. The Minco calibration reports for the RTDs show that the highest resistance value for this temperature is 115.013 Ω . (Section 4.1.2)

RAMTE2	= ± 0.050°F
	$= \pm 0.0215\Omega \times 1^{\circ}F/0.214\Omega = 0.100^{\circ}F$
	$= \pm 0.0115\Omega + 0.01\Omega = 0.0215\Omega$
RAMTE ₂₀	$= \pm 0.01\% \times 115.013\Omega + (0.00001 \times 1000\Omega)$

The manufacturer also specifies a Temperature coefficient for this range (1k Ω) for 0°C to 18°C and 28°C to 55°C as 0.0006% of reading + 0.0001% of range per °C. The normal turbine building ambient temperature in the zone where the transmitter is installed varies from 83°F to 102°F(Ref. 5.5.2). For additional conservatism, this range is expanded to 75°F to 102°F (or 23.9°C to 38.9°C). The lower temperature (23.9°C) is within the range where the coefficient is not applicable, so the applicable Δ T is: (38.9°C - 28°C) or 10.9°C

RAMTE2	= ± 0.00395°F
	= ± 0.00169Ω x 1°F/0.214Ω = 0.00789°F
	$= \pm 0.00069\Omega + 0.001\Omega = \pm 0.00169\Omega$
TEMTE220	$= \pm (0.0006\% \times 115.013\Omega) + (0.000001 \times 1000\Omega)$

The temperature error is a degradation of the specified accuracy and is not considered an additional random error. Therefore, the total M&TE error for the HP 34401A is:

MTE2 = $\pm [(0.050^{\circ}F)^2 + (0.00395^{\circ}F)^2]^{1/2}$

MTE2 = ± 0.0502°F

Fluke 45 (medium speed)

Reference Accuracy is the manufacturer's accuracy [\pm (0.05% reading + 2 LSD + 0.02 Ω)] as a 2 σ value (Section 5.4.6). [The LSD for the Fluke 45 is 0.01 Ω .] The highest reading of interest is 101.5°F. The Minco calibration reports for the RTDs show that the highest resistance value for this temperature is 115.013 Ω . (Section 4.1.2)

 $\mathsf{RA}_{2\sigma} = \pm (0.05\% \times 115.013\Omega) + [(2 \times 0.01\Omega) + 0.02\Omega]$

CALCULA	ION NO.	L-0032	30		Revisi	on 001	PAG	E NO . 1	0 of 14
			575Ω + 0.04 975Ω x 1°F/						
	MTE2	= ± 0.22	28°F						
The F	luke 45 (me	d. speed	d) M&TE en	or is bour	nding and will I	be used to eva	aluate to	tal loop u	incertainty
6.2.1.2.2 Tł		n standa	ndard Error ard error is e		as negligible (Section 3.2).			
6.2.1.2.3	Loop C	alibratio	n Tolerance	ST2					
Τ	ne calibratio ST2	n tolerar =	nce for this i ± 0.54°F / 3	•	loop is ± 0.54	°F (Section 4.	7).	[3σ]	
	ST2	=	± 0.18°F						
6.2.1.2.4 Ti	ne total calib CAL2	=	rror for the ± [(MTE2) ² ± [(0.228°F) ² + (ST2) ²] ^{1/2} ⊦ (018) ²] ^{1/2}				
	CAL2	=	± 0.29°F						
TI m	easuring rai	tates the nge / 10	e "temperatu °C (Ref. 4.1	. 3) [3σ]. T	rror for the terr his is applied 120°F = 90°F	in this calcula			
TI Va	ne normal tu	urbine bu 3°F to 10	uilding ambi)2°F(Ref. 5.	ent tempe	erature in the z additional cons	one where the			
	σT2 _{3σ}	=	± (0.1% * \$ ± [(0.001 * ± 0.135 °F	90°F)/10	°C x (27°F x 5′	°F/9°C)			
	σ T2	=	± 0.045°F						
6.2.1.4 R	andom Inpu	t Error o	2in						
	ơ2in	=	σ1 =	± 0.	150°F				
6.2.1.5 P	ower Supply	/ Effects	σ2PS						

The transmitter specifications are valid for voltages between 20 and 30 vDC. The 24-volt power supply variability is less than \pm 2% all errors combined (4.3). This is equal to 23.5vDC to 24.5vDC. Therefore,

 $\sigma 2PS = \pm 0$ °F

I

CALCUI	LATION NO.	L-003230	Revision 001	PAGE NO. 11 of 14
6.2.1.6	Total Ran	dom Error ơ2		
	σ2 σ2	$= \pm [(RA2)^{2} + (CA)^{2} + (CA)^{2} + \pm [(0.285^{\circ}F)^{2} + (CA)^{2} + \pm (CA)^{2} + CA)^{2} + CA^{2} + CA^{2$	$(0.290^{\circ}F)^{2} + (\sigma T2)^{2} + (\sigma 2in)^{2} + (\sigma 2F)^{2}$ $(0.290^{\circ}F)^{2} + (0.045^{\circ}F)^{2} + (0.15^{\circ}F)^{2}$	S) ²] ^{1/2} 0°F) ² + (0°F) ²] ^{1/2}
	σ2	= ± 0.436°F		
6.2.2	Non-Random	Error Σe2		
6.2.2.1	Humidity Err	or e2H		
	at the instru during norm	ment location are within the al conditions. (Reference	ne operating limits of the module	tions, and the humidity condition a. Humidity errors are negligible
	e2H =	= 0		
6.2.2.2	Radiation Er	ror e2R		
		normal radiation effect a		Per Section 2.8, it is reasonable
6.2.2.3	Seismic Erro	or e2S		
			in the manufacturer's specificat Therefore, there is no seismic e	ions. A seismic event defines a ror for normal operating condition
	e2S :	= 0		
6.2.2.4	Static Press	ure Offset Error e2SP		
	The transmit	tter is an electrical device	and therefore not affected by s	tatic pressure.
	e2SP	= 0		
6.2.2.5	Ambient Pre	ssure Error e2P		
	The transmit	ter is an electrical device	and therefore not affected by a	mbient pressure.
	e2P =	= 0		
6.2. 2.6	Process Erro	or e2Pr		
			put from an RTD. Any errors as accounted for as RTD errors. T	
	e2Pr =	= 0		
6.2.2.7	Non-Randon	n Input Error e2in		
	e2in =	Σe1 = 0		
6.2.2.8	Total Non-Ra	andom Error Σ e2		
	Σe2	= e2H + e2R + e2 = 0 + 0 + 0 + 0 +	2S + e2SP + e2P + e2Pr + e2in 0 + 0 + 0	

1

3

()

5.3.1 Ra 5.3.1.1 5.3.1.2 5.3.1.3					· · · · · · · · · · · · · · · · · · ·		
5.3.1.1 5.3.1.2 5.3.1.3	PC I/O MODU	JLE ER	RORS (MODULE 3))			
5.3.1.2	andom Error	ơ 3					
5.3.1.2 5.3.1.3	Reference Ac	curacy	RA3				
5.3.1.3	Reference Ad 120°F (120°F RA3 ₂₀	– 30°F		ed range (Ref. 5.4.9). The ca	alibrated range is 30°F to		
5.3.1.3	RA3	=	±0.0113°F				
5.3.1.3							
6.3.1.3	Calibration E			ed; indication is verified durir	a loop calibration		
				eu, indication is venneu duni	יש ויטיף כמויטו מוטרו.		
	CAL3	=	±0°F				
	Drift Error D3						
				specification for the I/O mode	ule.		
	D3	=	± 0°F				
5.3.1.4	Random In	put Erro					
	σ3in	=	σ2 = ± 0.437°F				
5.3.1.5	Total Rand	om Erro	or σ3				
	σ3 σ 3	= ± [(F = ± [(O	A3) ² + (CAL3) ² + (c .0113°F) ² + (0.0°F) ²	$(D3)^{2} + (\sigma3in)^{2} + (\sigma3r)^{2}]^{1/2}$ + $(0^{\circ}F)^{2} + (0.436^{\circ}F)^{2}]^{1/2}$			
	σ3	= ± 0.	436°F				
6.3.2 No	on-Random E	rror Σe	3				
5.3.2.1 I	Humidity Erro	or e3H					
1	No humidity e 80% RH. The	effect er I/O mo	dule is located in EC	the manufacturer'; specified Q Zone C1A, (Section 4.6), w Reference 5.1.2, Appendix I)			
	e3H =	-		· · · · /			
6.3.2.2	Radiation Err						

No radiation errors are provided in the manufacturer's specifications. Per Section 2.8, it is reasonable to consider the normal radiation effect as negligible. Therefore,

e3R = 0

6.3.2.3 Seismic Error e2S

No seismic effect errors are provided in the manufacturer's specifications. A seismic event defines a particular accident condition. Therefore, there is no seismic error for normal operating conditions

e3S = 0

ï

1

	LATION NO.	L-003230	Revision 001	PAGE NO. 13 of 14
6.3.2.4	Static Press	ure Offset Error e3SP		
	The I/O mod	lule is an electrical device	and therefore not affected by s	static pressure.
	e3SP	= 0		
6.3.2.5	Ambient Pre	ssure Error e3P		
	The I/O mod	lule is an electrical device	e and therefore not affected by a	ambient pressure.
	e3P :	= 0		
6.3.2.6	Process Erro	or e3Pr		
	the conversion		urrent input from the transmitter sistance, and resistance to curre I 2. Therefore,	
	e3Pr =	= 0		
6.3.2.7	Input Signal	Resistor Error e3SR		
	e3SR	= ± (0.02% * Span) = ± 0.0002 * 90°F = ± 0.018 °F	(Section 4.4)	
	e3SR	= ± 0.018°F		
6.3.2.8	Non-Randon	n Input Error e3in		
	e3in =	Σ e2 = 0		
6.3.2.9	Total Non-R	andom Error Σe3		
	Σe3	= e3H + e3R + e3S + e = 0 + 0 + 0 + 0 + 0 + 0	e3SP + e3P + e3Pr + e3SR + e4 + 0.018 + 0	3in
	Σ e 3	= 0.018		
7 SUN	IMARY AND (CONCLUSION (TOTAL E	ERROR)	
7.1.1	As discussed i for this indica		2.1, Level 2 methodology is ap	plied for determining Total E
	TE	$= \sigma 3 + \Sigma e 3$		
		$= \pm (0.436^{\circ}F) + 0.$ = $\pm 0.454^{\circ}F$.018°F	

Using the Level 2 methodology (1 σ random error), total uncertainty for one CW Inlet Temperature Indication loop is \pm 0.454°F

7.1.2 As discussed in Methodology Section 2.2.2, the methodology applied for determining Total Error for this indication loop calculates the random error at a 2σ level for a single sided variable:

TE	=	1.645 [*] σ3 + Σe3
	=	+ (1.645*(0.436°F))+ 0.018°F
	=	+ 0.717°F + 0.018°F
	=	+ 0.735°F
ΤE	=	+ 0.74°F

Therefore, using methodology similar to Level 1 (20 Single Sided random uncertainty), the total uncertainty for one CW Inlet Temperature Indication loop is + 0.74°F

[2 σ Single Sided]

7.1.3 To obtain a more accurate value of the UHS temperature using these instruments, the average of the available values can be taken. This assumes that the four readings are sensing the same input temperature and that there is little effect between the input and the measurement point.

$$T_{CWAverage} = \frac{T_{1TE-CW010} + T_{1TE-CW011} + T_{2TE-CW010} + T_{2TE-CW011}}{4}$$

The accuracy of this process is considered the same as the accuracy of summing networks addressed in References 5.1.1 and 5.1.2, or by the multiple test criterion of Reference 5.1.4 Section 3.2.

In all of these cases the final random uncertainty (σ) is the square root sum of the squares of the individual channel random uncertainties considering the multiplier for each of the uncertainties is one divided by the number of channels that are being averaged. The non-random uncertainty (e) will remain the same as for a single loop (Ref. 5.1.4, Section 3.2).

$$\sigma_{Average} = \sqrt{\left(\frac{\sigma_1}{n}\right)^2 + \left(\frac{\sigma_2}{n}\right)^2 + \left(\frac{\sigma_3}{n}\right)^2 + \cdots + \left(\frac{\sigma_n}{n}\right)^2}$$

If all of the instrument loops are identical then this equation will reduce to:

$$\sigma_{Average} = \frac{\sigma_i}{\sqrt{n}} + e$$

Thus for the CW temperatures, the accuracy of the average of the readings for two loops will be:

$$\sigma_{Average} = \frac{0.717}{\sqrt{2}} + e = 0.308 + 0.018 = 0.53 \text{ °F}$$

M		N	C	0
A critical	con	ponent	of your	success

L-003230 Rev. 001 Attachment A Page A1 (final) 7300 Commerce Lane Minneapolis, MN 55432 U.S.A. Customer Service Telephone: 763-571-3123 Sales Inquiries Fax: 763-571-0927 Purchase Order Fax: 763-571-0942 E-Mail: custserv@minco.com

QUOTATION

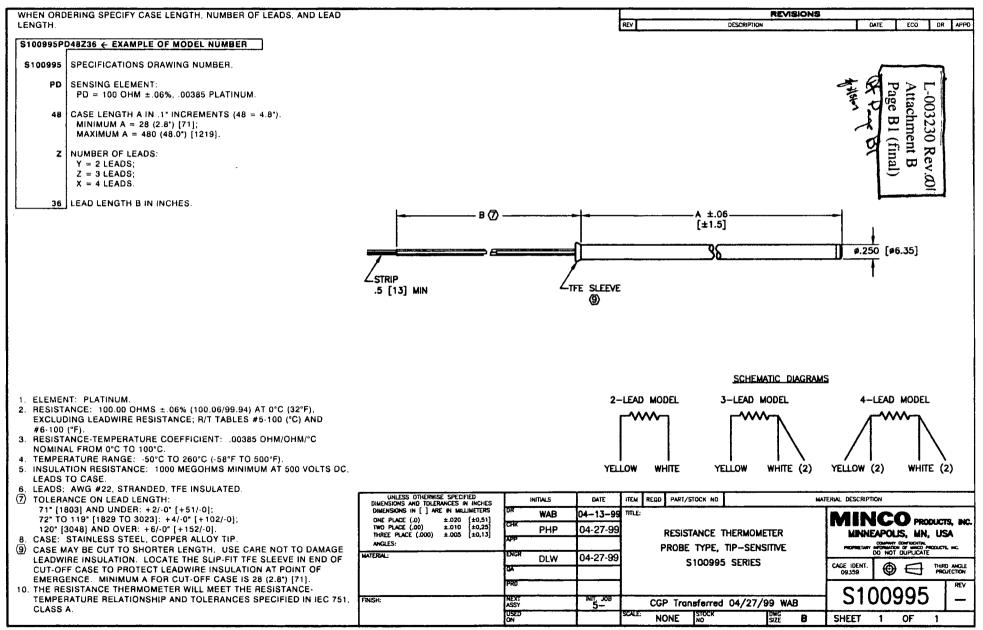
То:	Vikram Shah Exelon Corporation LaSalle County Nuclear Station 2601 N 21st Marsailles Road Marseilles IL 61341-9757	Quote No: Page: Date: RFQ:	160056-2 1 January 26, 2006 RTD Assemblies
Phone: Fax:	815-415-3828 Fax Order to 763-571-0942 or E-Mail Order to custserv@minco.com	CC:	Thermo/Cense, Inc. 942 Turret Court Mundelein, IL 60060 Phone: 847-949-8070,8071 Fax: 847-949-8074

Please Reference Above Quote Number When Placing Your Order.

Description	Quantity	Unit Price U.S. \$
Minco Part # ASSEMBLY	1 - 9	162.60
Assembly Consisting Of:		
CGASSY		
CH359P2T6		
FG113-1		
FG750F8M12		
XS853PD157X4		
X = Class A sensor.		
Single Element RTD assembly		
	1 - 9	425.00
Test charge for a chart of temperature readings at .1F intervals from -272F to 932F		
	CH359P2T6 FG113-1 FG750F8M12 XS853PD157X4 X = Class A sensor. Single Element RTD assembly Minco Part # XRT07 Test charge for a chart of temperature readings at .1F intervals	Minco Part # ASSEMBLY1 - 9Assembly Consisting Of:1 - 9CGASSYCH359P2T6FG113-1FG750F8M12FG750F8M12XS853PD157X4X = Class A sensor.Single Element RTD assemblyMinco Part # XRT071 - 9Test charge for a chart of temperature readings at .1F intervals1 - 9

- Notes:
 These assemblies will replace the existing head that is on the thermowell. This is due to not knowing how long the replacement probe would need to be. The drawing does not provide a
- knowing how long the replacement probe would need to be. The drawing does not provide all of this information to determine the proper length. Lead time for these parts is also relatively short as compared to a special probe.
- 2. 1. Probe length is 15.6". This is the necessary length of the probe to fit in the thermowell and fit into the connection head.
 - 2. The probe diameter is .25", but will fit in the thermowell without any reduction in performance.
 - 3. Drift specifications on the S852 sensor is listed as +/- .2 F per year, repeatability is also +/- .2

F. This specification assumes cycling throughout the full temperature range of the sensor, from - 50C to 260C. A smaller temperature cycle will change the amount of drift.



Print Date: 07/28/2006 10:12

VanWyk, Thomas J.

From: Sent: To: Subject: Keith Jensen [Keith.Jensen@minco.com] Wednesday, July 26, 2006 9:22 AM Shah, Vikram R. Fwd: Exelon Corporation L-003230 Rev. 00) Attachment C Page C1 (final)

100995.pdf

>>> Keith Jensen 7/25/2006 3:50 PM >>> Vikram Shah 815-415-3828 Exelon Corporation Marsailles IL vikram.shah@exelon.com

XS853PD157X4 RFQ 160056~2

The S100995 probe meets the EN60751 Class A +/- 0.06% @ OC sensor accuracy requirements

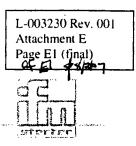
Minco estimates the drift per year over the range of 30F to 120F would be expected to be around 0.1F or less (PHP)

The drawing is attached

Keith Jensen 763-586-2908 Applications Engineer MINCO PRODUCTS INC. Minneapolis MN keith.jensen@minco.com

L-003230 Rev. 001 Attachment D Page DI of D2 Store of Store

CE


Sachnr. 701724/01 02/04

Technical data

	ot., reverse polarity prot. / overload prot., watchdog
Voltage drop [V]	
	· · · · · · · · · · · · · · · · · · ·
	0.2 (Pt 1000 element)
	2.0 (Pt 100 element)
Power-on delay time (s)	
Response time switching output [m	s]
Analogue output (measuring range	scaleable)
Max. load current output $[\Omega]$	(UB - 10) x 50; 700 at UB = 24 V
Min. load with voltage output $[\Omega]$.	
Response time analogue output (ms	s]
Accuracy	
Switching output [°C/°F]	$ \pm 0.3 / \pm 0.54$
Analog output [°C/°F]	<i>.</i>
Display [°C/°F]	$\dots \dots \pm (0.3 / \pm 0.54 + \frac{1}{2} \text{ Digit})$
Resolution	÷
Switching output (°C/°F)	
Analogue output [°C/°F]	
Temperature drift [% of value of me	easuring range/10 K] ± 0.1
Housing material stain	ess steel (304S15); EPDM/X (Santoprene);
	PC (Macrolon); Pocan; FPM (Viton)
J 1 - 1	
Protection	IP 67, III
insulation resistance $(M\Omega)$	> 100 (500 V DC)
	50 (DIN / IEC 68-2-27, 11ms)
Vibration resistance [g]	20 (DIN / IEC 68-2-6, 10 - 2000 Hz)
EMC	20 (DIN / IEC 68-2-6, 10 - 2000 Hz)
EN 61000-4-2 ESD:	4/8 KV
EN 61000-4-3 HF radiated:	
EN 61000-4-4 Burst:	

٩

referring to UL: see page 21 (Electrical connection).
 2) 41 mA when the display is switched off; the values apply to the operating voltage = 24 V and unloaded outputs.

ifm efector inc. 782 Springdate Drive, Exton, PA 19341 • 800-441-8246 • Fax: 800-329-0436 • www.ifmefector.com

July 26, 2006

Mr. Vikram Shah Exelon Corporation 2601 N 21st Rd. Marseilles, Illinois 61341

Dear Vikram:

This letter is in response to your concern about the specifications of the **ifm efector** TR2432 temperature sensor. The following points should clarify the questions that you had:

- After production, 100% of the sensors are verified and tested to the specifications listed on our datasheet.
- The analog accuracy specification of (+/- 0.54°F) already includes the analog resolution value of (0.1°F), and is inclusive of any electronic component drift.
- The temperature drift specification is the electronic drift that occurs for every 10°C change in temperature that occurs in the application. This drift is in addition to the accuracy specification.
- There are no other environmental influences that will affect the accuracy specification.
- These sensors have a warranty period of 2 years.

Please contact me if you have any further questions, or if you require any additional information.

Best regards,

MueroSheh

Ameera Shah Product Support Engineer Fluid Sensors Team

SPECIFICATIONS - OHMS

L-003	230 Rev. 104
Attac	hment F
Page	F1 (final)
3	512-1

Attachment F: Fluke 45 Accuracy Specifications

OHMS

Range	Resolution			Typical Full	Max Current	
	Medium	Fast	Ассигасу	Full Scale Voltage	Through the Unknown	
300Ω		10 mΩ	100 MΩ	0.05% + 2 + 0.02Ω	0.25	1 mA
3 kΩ		100 MΩ	1Ω	0.05% + 2	0.24	120 <i>µ</i> A
30 kΩ	-	1Ω	10Ω	0.05% + 2	0.29	14 µA
300 kΩ	_	10Ω	100Ω	0.05% + 2	0.29	1.5 <i>µ</i> A
3 MΩ	_	100Ω	1 kΩ	0.06% + 2	0.3	150 µA
30 MΩ		1 kΩ	10 kΩ	0.25% + 3	2.25	320 µA
300 MΩ*	-	100 kΩ	1 ΜΩ	2%	2. 9	320 µA
100Ω	1 mΩ		_	0.0 5 % + 8 + 0.02Ω	0.09	1 mA
1000Ω	10 mΩ	-		0.05% + 8 + 0.02Ω	0.10	120 µA
10 kΩ	100 mΩ		—	0.05% + 8	0.11	14 µA
100 kΩ	1Ω	1		0.05% + 8	0.11	1.5 μA
1000 kΩ	10Ω	-		0.06% + 8	0.12	150 µA
10 MΩ	100Ω	-		0.25% + 6	1.5	150 µA
100 MΩ*	100 kΩ	_	_	2%+2	2.75	320 µA

ranges cannot measure below 3.2 M Ω and 20 M Ω , respectively. "UL" (underload) is shown on the display for resistances below these nominal points, and the computer interface outputs "+1E-9".

Open Circuit Voltage

3.2 volts maximum on the 100 Ω , 300 Ω , 30 M Ω , 100 M Ω , and 300 M Ω ranges, 1.5 volts maximum on all other ranges.

Input Protection

500V dc or rms ac on all ranges

88

Power Supplies

SDN™ Specifications (Single Phase)

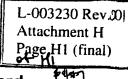
L-003230 Rev. 01 Attachment G Page G1 (final) 1.4

Catalog Number

BOLA/ HEVIOU 1361 1 10 A.

Description	SDN 2.5-24-100P	SDN 4-24-100LP	SDN 5-24-100P	SDN 10-24-100P	SDN 20-24-100P				
· · · · · · · · · · · · · · · · · · ·		ir	nput						
Nominal Voltage			115/230 VAC auto seleci						
-AC Range	85-132/176-284 VAC								
-DC Range ⁴	90-375 VDC 210-375 VDC N/A								
-Frequency		47 · 63 Hz							
Nominel Current'	1.3 A. / 0.7 A	2.1 A/ 1.0 A	2.2 A/ 1.0 A	5 A / 2 A typ.	9 A/ 3.9 A				
-inrush current max.	typ. < 25 A	typ). < 20 A	lyp. <	40 A				
Efficiency (Louses ²)	> 87.5% typ (8.8 W)	> 88% typ (13.1 W)	> 88% typ (16.4 W)	> 88% typ (32.7 W)	> 90% typ (48 W)				
ower Factor Correction			Units Fulfil EN81000-3-2						
		Ot	utput						
Nominal Voltage	24 VDC (22.5 - 28.5 VDC adj.)	24 VDC (22.5 - 25.5 VDC adj.)		24 VDC (22.5 · 28.5 VDC adj.)	·····				
Tolerance			ination Line, load, time and temperal						
-Ripple ¹		· · · · · · · · · · · · · · · · · · ·	< 50 mVpp						
Nominal Current	2.5 A (60 W)	3.8 A (92 W)	5A (120 W)	10 A (240 W)	20 A (480 W)				
-Post Current'	1.6x Nominal Current < 2 sec.	4.2 A max at 23 8V	6 A 2x Nominal Current < 2 sec.	12 A 2x Nominal Current < 2 sec.	25 A 2x Nominal Current < 2 sec.				
-Current Limit	Fold	Forward (Current rises, voltage	drops to maintain constant power du	ning overload up to max peak our	ternt)				
Holdup Times	> 50 ms	> 100 ms	> 100		> 20 ms				
Parallel Operation	Single or Paralle	el use is selectable via Front Pa	nel Switch (SDN4 should not be use	d in paralitel as Class 2 rating wou					
	1								
	General EN61000-6-3, -4: Class B EN55011, EN55022 Radiated and Conducted including Annex A.								
EMC: -Emissions		EN61000-6-3, -4: Class B I	EN55011, EN55022 Radiated and Co	anducted including Annex A.					
	EN51000-6-1, -2; EN51000-4-2	2 Level 4, EN61000-4-3 Lovel 3;	EN55011, EN55022 Radiated and Co EN61000-4-6 Level 3: EN81000-4-4 m resistance according to VDE 0160	Level 4 input and Level 3 output	EN61000-4-5 Isolation Clas				
-Emissions	EN60950; EN50178; EN60204	2 Level 4, EN61000-4-3 Lovel 3; 4, EN61000-4-11; Transies 9, UL508 Listed, cULus; UL6095	EN6 1000-4-6 Level 3: EN6 1000-4-4	I Level 4 input and Level 3 output W2 over entire load range. EC) EN61000-3-2, IEC60079-15	(Class 1, Zone 2, Hazardou:				
-Ersisələns -İmmunity	EN60950; EN50178; EN60204 Location, Groups A. B. C, Storage: -25°C+85°C Operation	2 Level 4, EN61000-4-3 Lovel 3; 4, EN61000-4-11; Transies 8, UL508 Listed, cULus; UL8095 D w/ T3A temp class up to 60°C con10°-60°C full power with of Operation up to 50% load permis	; EN6 1000-4-6 Level 3: EN6 1000-4-4 nt resistance according to VDE 0160 50, cRUus, CE (LVD 73/23 & 93/68/E C Ambient.) SEMI F47 Sag Immunity.	Level 4 input and Level 3 output M2 over entire lead range. EC) EN61000-3-2, IEC80079-15 SDN2.5 & SDN4 - UL60950 testi ar derating to half power from 60 ^{or} mounting orientation. The relative	(Class 1, Zone 2, Hazardou: ng to include approval as C to 70°C (Convection coolin				
-Emissions -Immunity Approvals Temperature	EN60950; EN50178; EN60204 Location, Groups A. B. C, Storage: -25°C+85°C Operation	2 Level 4. EN61000-4-3 Lovel 3. 4. EN61000-4-11; Transies 8. UL508 Listed, cULus; UL8095 D w/ T3A temp ctass up to 60°C on10°-60°C full power with o Operation up to 50% load permis noncondensing; IEC 68-2-2	EN61000-4-6 Level 3: EN61000-4- nt resistance according to VDE 0160 50, cRUus, CE (LVD 73/23 & 93/68/E Cambient.) SEMI F47 Sag Immunity, Class 2 power supply. peration to 70°C possible with a linear stable with sideways or front side up	Level 4 input and Level 3 output M2 over entire lead range. EC) EN61000-3-2, IEC80079-15 SDN2.5 & SDN4 - UL60950 testi ar derating to half power from 60 ^{or} mounting orientation. The relative	(Class 1, Zone 2, Hazardou: ng to include approval as C to 70°C (Convection coolin				
-Emissions -Immunity Approvels Temperature #TBF:	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage: -25°C+85°C Operation no torced air required). C	2 Level 4, EN61000-4-3 Level 3, 4, EN61000-4-11; Transie 8, UL506 Listed, cUL.us; UL-8095 D w/ T3A temp class up to 60°C on10°-60°C tril power with o pperstion up to 50% load permis noncondensing; IEC 68-2-2 > 640	EN6 1000-4-6 Level 3: EN6 1000-4- Int resistance according to VDE 0.160 50, cRUus, CE (LVD 73/23 & 93/68/E Cambient,) SEMI F47 Sag Immunity. Class 2 power supply. peration to 70°C possible with a linea sable with sideways or front side up 2. 68-2-3. For operation below -10°C, (DD0 hours	Lovel 4 input and Lovel 3 output M2 over entire load range. EC) EN61000-3-2, IEC60079-15 SDN2.5 & SDN4 - UL60950 testi ar derating to half power from 60° mounting orientation. The relative contact Technical Services.	(Class 1, Zone 2, Hazardou ng to include approval as C to 70°C (Convection coolin b humidity is < 80% RH, > 510,000 hours				
-Eroisalons -Inamunity Approvals Temperature IETEF: - Standard	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage: -25°C+85°C Operation no torced air required). C	2 Level 4, EN61000-4-3 Level 3, 4, EN61000-4-11; Transie 8, UL506 Listed, cUL.us; UL-8095 D w/ T3A temp class up to 60°C on10°-60°C tril power with o pperstion up to 50% load permis noncondensing; IEC 68-2-2 > 640	EN6 1000-4-6 Level 3: EN6 1000-4- Int resistance according to VDE 0 160 50, cRUus, CE (LVD 73/23 & 93/68/E CAmbient.) SEMI F47 Sag Immunity, Class 2 power supply. peration to 70°C possible with a lines sable with sideways or from side up 2, 68-2-3. For operation below - 10°C	Lovel 4 input and Lovel 3 output M2 over entire load range. EC) EN61000-3-2, IEC60079-15 SDN2.5 & SDN4 - UL60950 testi ar derating to half power from 60° mounting orientation. The relative contact Technical Services.	(Class 1, Zone 2, Hazardou ng to include approval as C to 70°C (Convection coolin humidity is < 80% RH,				
-Enstaalons -Intimunity Approvals	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage, -25°C+85°C Operation no torced air required). C > 820,000 hours	2 Level 4. EN61000-4-3 Level 3. 4. EN61000-4-11; Transies 8. UL508 Listed, cUL.us; UL-8095 D w/ T3A temp class up to 60°C on10°-60°C trill power with of perstion up to 50% load permis noncondensing; IEC 68-2-2 2 640 Beilcare fissue 6 M nat continuous short-circuit, ove	EN6 1000-4-6 Level 3: EN6 1000-4- in resistance according to VDE 0160 50, cRUus, CE (LVD 73/23 & 93/68/E 2 Ambient.) SEMI F47 Sag Immunity. Class 2 power supply. peration to 70°C possible with a linear sable with siteways or front side up 2. 68-2-3. For operation below -10°C, .000 hours lethod 1 Case 3 @ 40C	Lovel 4 input and Lovel 3 output M2 over entire load range. EC) EN61000-3-2, IEC80079-15 SDN2.5 & SDN4 - UL60950 testi ar derating to half power from 60° mounting orientation. The relative contact Technical Services. > 600,000 hnurs 1 (IEC536), degree of protection II	(Class 1, Zone 2, Hazardouz ng to include approval as C to 70°C (Convection coolin humidity is < 90% RH, > 510,000 hours MiL217F @ 30C				
-Emissions -Immunity Approvels Temperature ETBF: - Standard Warranty General Protection/Safety	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage, -25°C+85°C Operation no torced air required). C > 820,000 hours	2 Level 4, EN61000-4-3 Lovel 3; 4, EN61000-4-11; Transien 8, UL-508 Listed, cUL,us; UL-8095 D w/ T3A temp class up to 60°C on10°-60°C full power with of peration up to 50% load permis noncondensing; IEC 68-2-2 2 640 Beilcare tssue 6 M nst continuous chort-circuit, ove S	EN6 1000-4-6 Level 3: EN6 1000-4-4 nt resistance according to VDE 0.160 50, cRUus, CE (LVD 73/23 & 93/68/E Cambient, JSMI F47 Sag Immunity, Ctass 2 power supply. peration to 70°C possible with a linea sable with sideways or front side up 2. 68-2:3. For operation below -10°C, (000 hours lethod 1 Case 3 @ 40C 5 yeara rload, open-circuit. Protection class 1	Lovel 4 input and Lovel 3 output W2 over entire load range. EC) EN61000-3-2, IEC60079-15 SDN2.5 & SDN4 - UL60950 test ar derating to half power from 60° mounting orientation. The relative contact Technical Services. > 600,000 hnurs (IEC536), degree of protection II 0)	(Class 1, Zone 2, Hazardouz ng to include approval as C to 70°C (Convection coolin humidity is < 90% RH, > 510,000 hours MiL217F @ 30C				
-Erofsalons -Immunity Approvals Temperature #TBF: -Standard Warrenty	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage, -25°C+85°C Operation no torced air required). C > 820,000 hours	2 Level 4, EN61000-4-3 Lovel 3; 4, EN61000-4-11; Transier 8, UL:506 Listed, cUt.us; UL:8095 D w/ T3A temp class up to 60°C cm10°-60°C full power with of Deration up to 50% load permis noncondensing; IEC 68-2-2 > 640 Beilcare Issue 6 M nat continuous short-circuit, ove Steen LED and DC O	EN6 1000-4-6 Level 3: EN6 1000-4- in resistance according to VDE 0160 50, cRUus, CE (LVD 73/23 & 93/68/E C Ambient.) SEMI F47 Sag Immunity. Class 2 power supply. peration to 70°C possible with a linear sable with siteways or front side up 2. 68-2-3. For operation below -10°C, 1000 hours lethod 1 Case 3 @ 40C 5 years rload, open-circuit. Protection class 1 Safe low voltage: SELV (acc. EN6095	Lovel 4 input and Lovel 3 output W2 over entire load range. EC) EN61000-3-2, IEC60079-15 SDN2.5 & SDN4 - UL60950 test ar derating to half power from 60° mounting orientation. The relative contact Technical Services. > 600,000 hnurs (IEC536), degree of protection II 0)	(Class 1, Zone 2, Hazardou ng to include approval as C to 70°C (Convection coolin humidity is < 80% RH, > 510,000 hours MiL217F @ 30C				
-Eroisalons -Insmunity Approvals Temperature IETEF: - Standard Warranty General Protection/Safety	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage: -25°C+85°C Operation no torced air required). C > 820,000 hours Protected again	2 Level 4, EN61000-4-3 Lovel 3; 4, EN61000-4-11; Transien 8, UL-508 Listed, cULus; UL-8095 D w/ T3A temp class up to 60°C on10°-60°C tuil power with of pperation up to 50% load permis noncondensing; IEC 68-2-2 2 640 Beilcore Issue 6 M nat continuous short-circuit, ove S Green LED and DC Q Inetz	EN6 1000-4-6 Level 3: EN6 1000-4-4 ht resistance according to VDE 0 160 50, cRUus, CE (LVD 73/23 & 93/68/E CAmbient.) SEMI F47 Sag Immunity, Class 2 power supply. perstion to 70°C possible with a linea sable with sideways or front side up 2, 68-2-3. For operation below - 10°C, (000 hours lethod 1 Case 3 @ 40C 5 years rload, open-circuit. Protection class 1 Safe low voltago: SELV (acc. EN6095 K signal (N.O. Solid State Contact re	Level 4 input and Level 3 output W2 over entire lead range. EC) EN61000-3-2, IEC80079-15 SDN2.5 & SDN4 - UL60950 testi ar derating to half power from 60° mounting orientation. The relative contact Technical Services. > 600,000 hnurs (IEC536), degree of protection H 0) ated 200 mA / 60 VIDC)	(Class 1, Zone 2, Hazardou ng to include approval as C to 70°C (Convection coolin humidity is < 80% RH, > 510,000 hours MiL217F @ 30C				
-Emissions -Immunity Approvels Temperature STBF: - Standard Warranty General Protection/Safety Status Indicators Fusing -Instruction	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage, -25°C. +85°C Operation no torced air required). C > 820,000 hours Protected again	2 Level 4, EN61000-4-3 Lovel 3; 4, EN61000-4-3 Lovel 3; 4, EN61000-4-11; Transies 5, UL-506 Listed, cULus; UL-8095 D w/ T3A temp class up to 60°C con10°-60°C tuil power with of pperation up to 50% load permis noncondensing; IEC 68-2-2 2 640 Beilcare fissue 6 M Beilcare fissue 6 M Inst continuous short-circuit, ove S Green LED and DC 0 Insta internally fused. External 10 A sl ng high currents for short period	EN6 1000-4-6 Level 3: EN6 1000-4- in resistance according to VDE 0160 50, cRUus, CE (LVD 73/23 & 93/68/E Cambient.) SEMI F47 Sag Immunity, Class 2 power supply. peration to 70°C possible with a linear stable with sideways or front side up 2, 68-2-3. For operation below -10°C, (000 hours lethod 1 Case 3 @ 40C 5 years rload, open-circuit, Protection class 1 Safe low voltage: SELV (acc.EN6095 SK signal (N.O. Solid State Contact re aillation	Level 4 input and Level 3 output M2 over entire lead range. EC) EN61000-3-2, IEC80079-15 SDN2.5 & SDN4 - UL60950 testi ar derating to half power from 60° mounting orientation. The relative contact Technical Services. > 600,000 hnurs + (IEC536), degree of protection H 0) ated 200 mA / 60 VDC) mmendod to protect input wiring. revitching. Fusing may be require	(Class 1, Zone 2, Hazardou ng to include approval as C to 70°C (Convection coolin > humidity is < 80% RH, > 510,000 hours MIL217F @ 30C				
-Emissions -Immunity Approvals Temperature #TBF: - Standard Warranty Seneral Protection/Safety Status Indicators Fusing -Ingut Cutput	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage, -25°C+85°C Operation no torced air required). C > 820,000 hours Protected again Outputs are capable of provide	2 Level 4, EN61000-4-3 Lovel 3, 4, EN61000-4-3 Lovel 3, 4, EN61000-4-11; Transies 5, UL:506 Listed, cULus; UL:8095 D w/ T3A temp class up to 60°C cm10°-60°C full power with of Deperation up to 50% load permis noncondensing; IEC 68-2-2 > 640 Beilicare issue 6 M estimate issue 6 M Reference issue 6 M Beilicare issue 6 M Seen LED and DC O Inetz internally fused External 10 A al ng high currents for short period O/P current railing cannot be to	EN6 1000-4-6 Level 3: EN6 1000-4-4 ht resistance according to VDE 0 160 50, cRUus, CE (LVD 73/23 & 93/68/E Cambient.) SEMI F47 Sag Immunity, Class 2 power supply. peration to 70°C possible with a linear stable with sideways or front side up 2, 68-2-3. For operation below - 10°C, (000 hours lethod 1 Case 3 @ 40C 5 years rload, open-circuit. Protection class 1 Safe low voltago: SELV (acc.EN6095 SK signal (N.O. Solid State Contact re ailation letw acting fusing for the input is reco	Level 4 input and Level 3 output M2 over entire lead range. EC) EN61000-3-2, IEC60079-15 SDN2.5 & SDN4 - UL60950 testi ar derating to half power from 60° mounting orientation. The relative contact Technical Services. > 600,000 hnurs -> 600,000 hnurs	(Class 1, Zone 2, Hazardou ng to include approval as C to 70°C (Convection coolin > humidity is < 80% RH, > 510,000 hours MIL217F @ 30C				
-Emissions -Immunity Approvals Temperature ETBF: - Standard Warranty Seneral Protection/Safety Status Indicators -using -Input Output Mounting	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage, -25°C+85°C Operation no torced air required). C > 820,000 hours Protected again Outputs are capable of provide Simple snap-on system for DIN input. IP20-reted screw to	2 Level 4, EN61000-4-3 Lovel 3; 4, EN61000-4-3 Lovel 3; 4, EN61000-4-11; Transies 5, UL506 Listed, cULus; UL8095 D w/ T3A temp class up to 60°C cm10°-60°C full power with of Deperation up to 50% load permis noncondensing; IEC 68-2-2 > 640 Beilcare Issue 6 M est continuous short-circuit, ove S Green LED and DC 0 Insta internally fused External 10 A al internally fused External 10 A al mg high currents for short period O/P current rating cannot be to Rail TS36/7.5 or TS35/15 or charminals, connector size range:	EN6 1000-4-6 Level 3: EN6 1000-4-4 ht resistance according to VDE 0 160 50, cRUus, CE (LVD 73/23 & 93/68/E CAmbient.) SEMI F47 Sag Immunity, Class 2 power supply. person to 70°C possible with a lines asable with sideways or front side up 2. 68-2-3. For operation below - 10°C, (000 hours lethod 1 Case 3 @ 40C 5 years rload, open-circuit. Protection class 1 Safe low voltago: SELV (acc. EN6095 3K signal (N.O. Solid State Contact re aillation lew acting fusing for the input is reco is of time for inductive load startup or lerated. Continuous current overticad	Level 4 input and Level 3 output M2 over entire load range. EC) EN61000-3-2, IEC60079-15 SDN2:5 & SDN4 - UL60950 testi ar derating to half power from 60° mounting orientation. The relative contact Technical Services. > 600,000 hnurs -> 600,000 hnurs	(Class 1, Zone 2, Hazardou ng to include approval as C to 70°C (Convection cooli > humidity is < 80% RH, > 510,000 hours MIL217F @ 30C 20 (IEC 529) 20 (IEC 529) 20 (IEC 529)				
-Emissions -Immunity Approvals Temperature #TBF: - Standard Warranty Seneral Protection/Safety Status Indicators Fusing -Imput Output Mounting Connections	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage, -25°C+85°C Operation no torced air required). C > 820,000 hours Protected again Outputs are capable of provide Simple snap-on system for DIN input. IP20-reted screw to	2 Level 4. EN61000-4-3 Lovel 3; 4. EN61000-4-3 Lovel 3; 4. EN61000-4-11; Transies 5. UL508 Listed, cULus; UL8095 D w/ T3A temp class up to 60°C cn10°-60°C tril power with of Departion up to 50% load permis noncondensing; IEC 68-2-2 > 640 Beilcara Issue 6 M est continuous chort-circuit, ove 3 Green LED and DC 0 Inetz internally fused External 10 A al ng high currents for short period C/P current railing cannot be to Rail T335/7.5 or T535/15 or cha arminals, connector size range: iput. Two connectors per output	EN6 1000-4-6 Level 3: EN6 1000-4-4 ht resistance according to VDE 0 160 S0, cRUus, CE (LVD 73/23 & 93/68/E CAmbient.) SEMI F47 Sag Immunity, Class 2 power supply. person to 70°C possible with a lines asable with sideways or front side up 2. 68-2-3. For operation below - 10°C, (000 hours lethod 1 Case 3 @ 40C 5 years rload, open-circuit. Protection class 1 Safe low voltago: SELV (acc. EN6095 KK signal (N.O. Solid State Contact re alilation level of time for inductive load statup or lerated. Continuous current overfuad assis-morntod (optional screw moun 18-10 AWG (1 5-6 mm2) for solid con	Lovel 4 input and Lovel 3 output M2 over entire load range. EC) EN61000-3-2, IEC80079-15 SDN2.5 & SDN4 - UL60950 testi ar derating to half power from 60° mounting orientation. The relative contact Technical Services. > 600,000 hnurs (IEC636), degree of protection I 0) ated 200 mA / 60 VDC) mmended to protect input wiring. revitching. Fusing may be required allows for reliable fuse tripping. ting set SDN-PMBRK2 required). inductors, 16-12 AWG (0.5-4 mm2) (1.5 - 6 mm2) for solid conductor	(Class 1, Zone 2, Hazardou ng to include approval as C to 70°C (Convection cooli > humidity is < 80% RH, > 510,000 hours MIL217F @ 30C 20 (IEC 529) 20 (IEC 529) 20 (IEC 529)				
-Emissions -Immunity Approvals Temperature #TBF: - Standard Warranty Seneral Protection/Safety Status Indicators Fusing -Imput Output Mounting Connections	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage, -25°C+85°C Operation no torood air required). C > 820,000 hours Protected again Outputs are capable of provide Simple snap-on system for DIN Input. IP20-reted some la Output. IP20-reted some la Output. IP20-reted some la	2 Level 4. EN61000-4-3 Lovel 3; 4. EN61000-4-11; Transies 8. UL506 Listed, ctit.us; UL3095 D w/ T3A temp ctase up to 60°C on10°-60°C trill power with of Depration up to 50% load permis noncondensing; IEC 68-2-2 > 640 Beilcare tssue 6 M est continuous short-circuit, ove S Green LED and DC Insta internally fused External 10 A al ng high currents for short period O/P current rating cannot be to C/P current rating cannot be to Rail TS35/7.5 or TS35/15 or cha aminals, connector size range: uput: Two connectors per output Fully enclosed meta	EN6 1000-4-6 Level 3: EN6 1000-4-4 Int resistance according to VDE 0.160 S0, cRUus, CE (LVD 73/23 & 93/68/E CAmbient.) SEMI F47 Sag Immunity, Class 2 power supply. peration to 70°C possible with a lines asable with sideways or front side up 2, 68-2-3. For operation below - 10°C ,000 hours lethod 1 Case 3 @ 40C 5 years rload, open-circuit. Protection class 1 Safe low voltago: SELV (acc. EN6095 K signal (N.O. Solid State Contact re aillation letrated. Continuous current overfload assis-morandad (optional screw moun 18-10 AWG (1 5-6 mm2) for solid cu ft, connector size range. 16-10 AWG	Level 4 input and Level 3 output M2 over entire load range. EC) EN61000-3-2, IEC60079-15 SDN2.5 & SDN4 - UL60950 testi ar derating to half power from 60° mounting orientation. The relative contact Technical Services. > 600,000 hnurs 600,000 hnurs i (IEC536), degree of protection I 0) ated 200 mA / 60 VIDC) mmended to protect input wiring. rewitching. Fusing may be required allows for reliable fuse tripping. ting set SDN-PMBRK2 required). inductors, 16-12 AWG (0.5-4 mm2) (1.5 - 6 mm2) for solid conductor keep out small parts. 70 mm above and beto	(Class 1, Zone 2, Hazardous ng to include approval as C to 70°C (Convection coolir humidity is < 80% RH, > 510,000 hours MIL217F @ 30C P20 (IEC 529) P20 (IEC 529)				
-Emissions -Immunity Approvals Temperature ETBF: - Standard Warranty General Protection/Safety Status Indicators Fusing -Input Output Mounting Connections Case	EN60950; EN50178; EN60204 Location, Groups A, B, C, Storage, -25°C+85°C Operation no torood air required). C > 820,000 hours Protected again Outputs are capable of provide Simple snap-on system for DIN Input. IP20-reted some la Output. IP20-reted some la Output. IP20-reted some la	2 Level 4, EN61000-4-3 Lovel 3; 4, EN61000-4-11; Transies 8, ULS06 Listed, cULus; UL8095 D w/ T3A temp class up to 60°C cm10°-60°C full power with of Departion up to 50% load permis noncondensing; IEC 68-2-2 > 640 Beilcom Issue 6 M est continuous short-circuit, ove S Green LED and DC 0 Inst internally fused External 10 A al internally fused External 10 A al minals, connector size range: igut: Two connectors per output Fully enclosed meta 4,88 m, x 2 4,88 m, x 2	EN6 1000-4-6 Level 3: EN6 1000-4-4 In resistance according to VDE 0.160 S0, cRUus, CE (LVD 73/23 & 93/68/E CAmbient.) SEMI F47 Sag Immunity, Class 2 power supply. peration to 70°C possible with a lines asable with sideways or front side up 2. 68-2-3. For operation below -10°C .000 hours lethod 1 Case 3 @ 40C S years rload, open-circuit. Protection class 1 Safe low voltago: SELV (acc.EN6095 K signal (N.O. Solid State Contact re allation letrated. Continuous current overfload assis-mornlod (optional screw moun 18-10 AWG (1 5-6 mn/2) for solid con rt, connector size range. 16-10 AWG I housing with fine ventilation qrid to 25 mm above and below, 25 mm	Level 4 input and Level 3 output M2 over entire load range. EC) EN61000-3-2, IEC60079-15 SDN2.5 & SDN4 - UL60950 testi ar derating to half power from 60° mounting orientation. The relative contact Technical Services. > 600,000 hnurs 600,000 hnurs i (IEC536), degree of protection I 0) ated 200 mA / 60 VIDC) mmended to protect input wiring. rewitching. Fusing may be required allows for reliable fuse tripping. ting set SDN-PMBRK2 required). inductors, 16-12 AWG (0.5-4 mm2) (1.5 - 6 mm2) for solid conductor keep out small parts. 70 mm above and beto	(Class 1, Zone 2, Hazardous ng to include approval as C to 70°C (Convection coolin > humidiky is < 80% FRH, > 510,000 hours MiL217F @ 30C P20 (IEC 529) P20 (IEC 529)				

specified with low input, worst use officiency and po ngs aro co Looses are heat dissipation in walls at full load, nominal input line


All peak current is calculated at 24 Volt levels Full load, 100 VAC input (g l'_{amb} = +25°C

Not UE listed for DC linput.

Ripple/noise is stated as typical values when measured with a 20 MHz, bandwidth scope and 50 Ohm resistor.

Visit our website at www.solaheviduty.com or

contact Technical Services at (800) 377-4384 with any questions.

8436/32 8-Channel Isolated Low-Level Analog Input Card

The RTP8436/32 8-Channel Isolated Analog Input Card provides high accuracy low-level $(\pm 160 \text{ mV})$ analog measurements. Sampling transformers provide channel-to-channel isolation. Very high noise immunity is characteristic of the transformer multiplexer, achieving 160 dB of common mode rejection. Immunity to noise is further enhanced with a two-pole low pass filter, set to provide 70 dB of normal mode rejection at 60 Hz.

Analog to digital conversion is performed by a 16-bit switched capacitor successive approximation A/D converter. A precision voltage source provides a self-test function for the card's amplifiers and A/D converter. No field adjustments are necessary after the initial factory setup.

Specifications

Input Signal Range:	± 160 mV
Multiplexer Type:	8-channel solid state multiplexer with individual transformers for complete channel-to-channel isolation
Sample Rate:	50 samples per second per channel
Accuracy:	0.025% of Full Scale
Temperature Ranges:	-25° to +85°C (-13° to +185°F), storage 0° to +55°C (+32° to +131°F), standard operating -20° to +60°C (-4° to +140°F), extended operating
	Note: Input measurements may not meet the accuracy specification at the upper or lower ends of the extended operating range.
Isolation:	600 VAC RMS or 400 VDC 1500 VAC @ 60 Hz for 60 seconds withstand
Common Mode Voltage:	600 VAC RMS or 400 VDC continuous
Common Mode Rejection:	–160 dB at 60 Hz (100 Ω unbalanced)
Common Mode Crosstalk:	–150 dB at 60 Hz
Normal Mode Rejection:	2-pole low-pass filter, -70 dB at 60 Hz
Input Impedance:	5 $M\Omega$ in parallel with 10 pF at 50 samples/second per channel
Input Bias Current:	8 nA maximum at 50 samples/second per channel
Input Source Impedance:	100 Ω maximum to meet accuracy specification

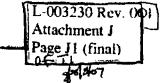
= 115200

L-003230 Rev. 09(Attachment I Page II of I2

* * * Report of Calibration * * * for Platinum Resistance Thermometer Model S100995PD Serial No. P/N366

2TE-CWOIL

				A	003230 Rev. 0 ttachment I age I2 (final)] 115	200
T(°F) F	R(ohms)	T(°F)	R(ohms)	T(°F)		T(°F)	R(ohms)
100.1 100.2 100.3 100.4 100.5 100.6 100.7 100.8	114.692 114.713 114.735 114.756 114.777 114.799 114.820 114.842 114.863 114.884	105.0 105.1 105.2 105.3 105.4 105.5 105.6 105.7 105.8 105.9	115.762 115.784 115.805 115.827 115.848 115.869 115.891 115.912 115.934 115.955	110.0 110.1 110.2 110.3 110.4 110.5 110.6 110.7 110.8 110.9	116.832 116.854 116.875 116.896 116.918 116.939 116.961 116.982 117.003 117.025	115.0 115.1 115.2 115.3 115.4 115.5 115.6 115.7 115.8 115.9	117.901 117.922 117.944 117.965 117.986 118.008 118.029 118.051 118.072 118.093
101.1 101.2 101.3 101.4 101.5 101.6 101.7 101.8	114.906 114.927 114.949 114.970 114.992 115.013 115.034 115.056 115.077 115.099	106.0 106.1 106.2 106.3 106.4 106.5 106.6 106.7 106.8 106.9	115.976 115.998 116.019 116.041 116.062 116.083 116.105 116.126 116.148 116.169	111.0 111.1 111.2 111.3 111.4 111.5 111.6 111.7 111.8 111.9	117.046 117.067 117.089 117.110 117.132 117.153 117.174 117.196 117.217 117.238	116.0 116.1 116.2 116.3 116.4 116.5 116.6 116.7 116.8 116.9	118.115 118.136 118.157 118.179 118.200 118.221 118.243 118.264 118.286 118.307
102.1 1 102.2 1 102.3 1 102.4 1 102.5 1 102.6 1 102.7 1 102.8 1	115.120 115.142 115.163 115.206 115.227 115.249 115.270 115.291 115.313	107.0 107.1 107.2 107.3 107.4 107.5 107.6 107.7 107.8 107.9	116.190 116.212 116.233 116.255 116.276 116.297 116.319 116.340 116.362 116.383	112.0112.1112.2112.3112.4112.5112.6112.7112.8112.9	117.260 117.281 117.303 117.324 117.345 117.367 117.380 117.410 117.431 117.452	117.0 117.1 117.2 117.3 117.4 117.5 117.6 117.7 117.8 117.9	118.328 118.350 118.371 118.392 118.414 118.435 118.456 118.478 118.499 118.520
103.1 1 103.2 1 103.3 1 103.4 1 103.5 1 103.6 1 103.6 1 103.7 1 103.8 1	115.377 115.399 115.420 115.441 115.463 115.484 115.506	108.2 108.3 108.4 108.5 108.6 108.7 108.8	116.404 116.426 116.447 116.469 116.511 116.533 116.554 116.576 116.597	113.2 113.3 113.4 113.5 113.6 113.7 113.8	117.474 117.495 117.516 117.538 117.559 117.580 117.602 117.623 117.645 117.666	118.0 118.1 118.2 118.3 118.4 118.5 118.6 118.7 118.8 118.9	118.542 118.563 118.585 118.606 118.627 118.649 118.670 118.670 118.713 118.734
104.1 1 104.2 1 104.3 1 104.4 1 104.5 1 104.6 1 104.7 1 104.8 1	L15.570 L15.591 L15.613 L15.634 L15.655 L15.677 L15.698 L15.720	109.2 109.3 109.4 109.5 109.6 109.7 109.8	116.618 116.640 116.661 116.683 116.704 116.725 116.747 116.768 116.789 116.811	114.2 114.3 114.4 114.5 114.6 114.7 114.8	117.687 117.709 117.730 117.751 117.773 117.794 117.816 117.837 117.858 117.880	119.0 119.1 119.2 119.3 119.4 119.5 119.6 119.7 119.8 119.9	118.798 118.819 118.841 118.862 118.883 118.905 118.926
105.0 1	15.762	110.0	116.832	115.0	117.901	120.0	118.969



Attachment J: HP 34401A Accuracy Specifications

Chapter 8 Specifications **DC Characteristics**

DC Characteristics

			Accuracy Specifications ± (% of reading + % of range) [1]							
Function	Range [3]	Test Current or Burden Voltage	24 Hour [2] 23°C ± 1°C	90 Day 23°C ± 5°C	1 Year 23°C <u>-</u> 5°C	Temperature Coefficient /°C 0°C ~ 18°C 28°C ~ 55°C				
DC Voltage	100.0000 mV		0.0030 + 0.0030	0.0040 + 0.0035	0.0050 + 0.0035	0.0005 + 0.0005				
	1.000000 V		0.0020 + 0.0006	0.0030 + 0.0007	0.0040 + 0.0007	0.0005 + 0.0001				
	10.00 000 V		0.0015 + 0.0004	0.0020 + 0.0005	0.0035 + 0.0005	0 0005 + 0.0001				
	100.0000 V		0.0020 + 0.0006	0.0035 + 0.0006	0.0045 + 0.0006	0.0005 + 0.0001				
	1000.000 V	<u> </u>	0.0020 + 0.0006	0.0035 + 0.0010	0.0045 + 0.0010	0.0005 + 0.0001				
Resistance	100.0000 D	t mA	0.0030 + 0.0030	0.008 + 0.004	0.010 + 0.004	0.0006 + 0.0005				
[4]	1.000 000 k Ω	1 mA	0.0020 + 0.0005	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001				
	10.00000 kΩ	A µ 100	0.0020 + 0.0005	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001				
	100.0000 kQ	10 μ Α	0.0020 + 0.0005	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001				
	1.000000 MΩ	5 µA	0.002 + 0.001	0.008 + 0.001	0.010 + 0.001	0.0010 + 0.0002				
	10.00000 MQ	500 nA	0.015 + 0.001	0.020 + 0.001	0.040 + 0.001	0.0030 + 0.0004				
	100.0000 MΩ	500 nA // 10 MΩ	0.300 + 0.010	0.800 + 0.010	0.800 + 0.010	0.1500 + 0.0002				
DC Current	10.00000 mA	< 0.1 V	0.005 + 0.010	0.030 + 0.020	0.050 + 0.020	0.002 + 0.0020				
	100.0000 mA	< 0.6 V	0.01 + 0,004	0.030 ± 0.005	0.050 + 0.005	0.002 + 0.0005				
	1.000000 A	< 1 V	0.05 + 0.006	0.080 + 0.010	0.100 + 0.010	0.005 + 0.0010				
	3.000000 A	< 2 V	0.10 + 0.020	0.120 + 0.020	0.120 + 0.020	0.005 + 0.0020				
Continuity	1000.0 Ω	1 mA	0.002 + 0.010	0 008 + 0.020	0.010 + 0.020	0.001 + 0.002				
Diode Test	1.0000 V	1 m A	0.002 + 0.010	0.008 + 0.020	0.010 + 0.020	0.001 + 0.002				
DC:DC Ratio	100 mV to		(Input Accuracy)	+ (Reference Accu	iracy)					
	1000 V				n for the HI-LO input ation for the HI-LO ref					

Transfer Accuracy (typical)

 $\frac{c}{24}$ hour $^{\circ}_{5}$ of range error) 2

Conditions:

• Within 10 minutes and + 0.5°C.

- Within ±10% of initial value.
- Following a 2-hour warm-up.
- Fixed range between 10% and 100% of full scale.
- Using 6½ digit slow resolution (100 PLC).
- Measurements are made using accepted metrology practices.