

New Shielding Analysis Method for General Payload (LLW) Type B Shipping Casks

NRC expects increased rigor for General Payload (LLW) Cask shielding analyses

• A "general" payload may contain any mixture of isotopes, and has an arbitrary geometry and material composition

Previous Approach

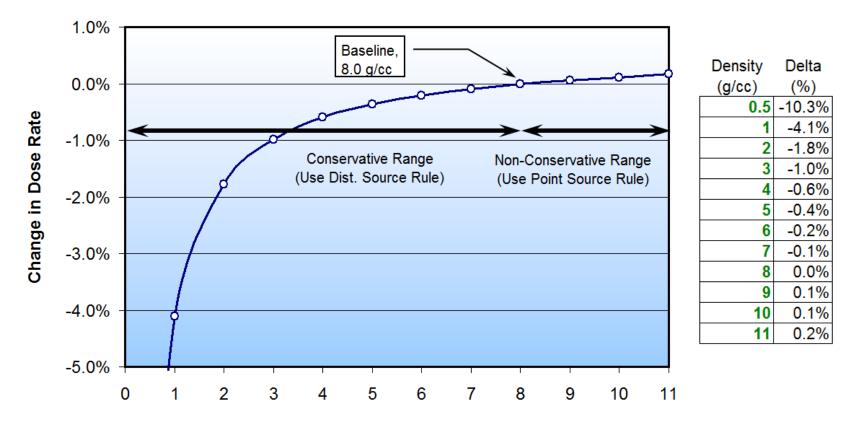
- Analyses based on "Worst Case" payloads (often Co-60 point sources)
- Smearing, or averaging payload materials & sources allowed
- Assurance of Normal Condition of Transport (NCT) compliance based on user loading practices
- Effects of variable material compositions, material densities and source densities not rigorously analyzed
- Payload/Source redistribution (under Hypothetical Accident Conditions) not addressed

New Requirements

- All potential payloads allowed by cask specs must be demonstrably bounded by analyses
 - Material compositions/densities
 - $_{\odot}$ Source distributions within cask cavity
- Potential source redistribution Under NCT and HAC must be addressed
- Penetrating radiation produced from Beta sources must be addressed

- General Analysis (vs. payload-specific approach)
- Finite Set of Analyses that Bounds:
 - All Possible Payload Materials/Densities
 - All Possible Gamma Energies (or isotopes)
 - All Possible Geometric Source Configurations
 - Any Potential Source Redistributions (under HAC)
 - Mixed Payloads Containing:
 - Multiple Source Energies
 - Multiple Source Materials and Densities
 - Multiple Source Concentrations
 - Distributed and Concentrated Sources (together in cask)

New Analysis – Basic Principles



- Point source bounding for any source with a given (γ /sec)
 - Concentrated (higher peak cask exterior dose rates)
 - No self-shielding
 - $\circ\,$ Point source placed in worst-case location within cavity
- Cavity filled with maximum activity density material (γ/sec-gram) bounding for any distributed source
 - \circ Bounds lower source strength density material
 - Bounds any partially filled cavity
 - Issues of source strength variation within payload, or location of payload within cavity all disappear
- For a given activity density (Ci/g), lower g/cc payloads are bounded when modeled at a higher g/cc

New Analysis – Basic Principles

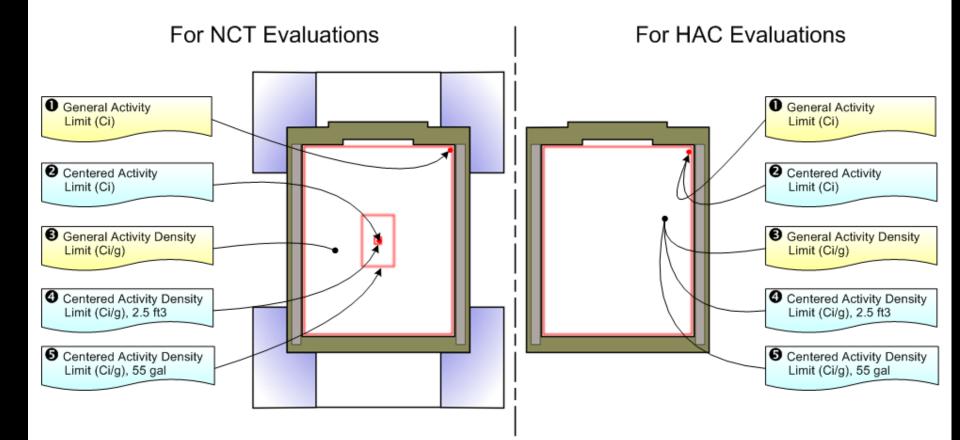
 Demonstration of effect of g/cc changes while holding specific activity (Ci/g) constant

Density (g/cc)

Point Source Analyses

- Used to establish limits on payload source strength (γ /sec)
- Payload materials (self-shielding) conservatively neglected
- Point source placed at worst location in cavity
- Analysis performed for several gamma energies

Distributed Source Analyses


- Used to determine limits on activity density, in γ /sec per gram of material
- Analysis conservatively based on cask cavity filled with maximum activity density material
- Payload modeled as minimum attenuation material at maximum density (e.g., 8.0 g/cc)

O Zirconium is minimum attenuation material at most energies
 O Analysis bounding for all other materials and all lower densities

• Analysis performed at several gamma energies

 NCT and HAC Configuration Modeled for Point and Distributed-Case Analyses

Method of Determining Source Limits

- Per-source-particle dose rates are determined over each regulatory surface (i.e., a 1.0 γ/sec source modeled)
 - NCT: 2-meter side plane, package side, bottom and top
 - $\circ\,$ HAC: 1-meter side, top and bottom plane
- Determine the maximum per-source-particle dose rate that applies for each regulatory limit (2-m NCT, Package NCT, 1-m HAC)
- Divide dose rate limits by max per-source-particle dose rates to yield limiting source strengths, in γ/sec (which would produce peak dose rates right at limits)
- Select lowest limiting source strength as allowable value
- For distributed cases, divide allowable source strength by modeled payload mass to determine allowable source strength density (mass = bounding density x cavity vol.)

Final Product of Shielding Analyses

 Limits on Source Strength (γ/sec) and Source Density (γ/sec-gram) for Various Gamma Energies and/or Isotopes

	Source Limits	
Gamma Energy (MeV)	Source Strength (y/sec)	Source Density (γ/sec-gram)
3.50	7.903E+09	3.502E+05
2.75	1.045E+10	5.471E+05
2.25	1.477E+10	8.879E+05
1.83	2.426E+10	1.701E+06
1.50	4.776E+10	3.988E+06
1.17	1.641E+11	1.092E+07
0.90	8.629E+11	3.447E+07
0.70	1.815E+12	1.164E+08
0.50	6.237E+12	7.702E+08
Co-60	1.073E+11	7.997E+06
Cs-137	2.305E+12	1.556E+08

Application of Analysis Results

- Determine gamma energy for payload
- Determine total payload source strength (γ/sec)
- Determine maximum source strength density (γ/sec-gram) that occurs within payload
 - Maximum that occurs anywhere, within any material, or for any component within payload
 - Smearing or averaging is not allowed
- Compare source strength and source strength density to their respective limits (from analysis), based on gamma energy
- If <u>either</u> the source strength or source strength density limit is met, the <u>payload is acceptable</u> for shipment

Beta Sources

- Converted into equivalent gamma source, based on:
 - Beta source strength
 - $_{\odot}$ Beta source energy distribution
 - $_{\odot}$ Source and waste liner material composition
- Then treated like any other gamma source using process
 described earlier

Neutron Sources

- Significant neutron sources not qualified for shipment in most general payload (LLW) casks, e.g., the 8-120B.
- To qualify neutron sources, they should be analyzed separately, using traditional methods.

 $_{\odot}$ They would be added to gamma sources using sum of fractions

- Entire process repeated for....
 - Each gamma energy level
 - Each payload source component
- Determine fraction of limit for each energy/component
 - \circ May use γ /sec or γ /sec-gram limit, whichever gives <u>lower</u> fraction
- Sum fractions for all gamma energies and/or payload components
- Sum-of-fractions may not exceed 1.0
- Payload splitting (into source components) generally used for mix of distributed and concentrated sources
 - \circ Distributed sources qualified under γ /sec-gram limit
 - $\circ~$ Concentrated sources qualified under γ/sec limit

Payload Splitting Example

- Distributed Source
 - Cs-137 resin beads
 - Fills cask cavity
- Concentrated Source

 Co-60 (metal)
 - Anywhere in cavity
- γ/sec fraction for Co-60 source added to γ/sec-gram fraction for resin bead source

+	Source 1	Source 2
Isotope	Cs-137	Co-60
Source Strength (γ/sec)	3.0 x 10 ¹⁴	5.0 x 10 ¹⁰
Mass (grams)	3.7 x 10 ⁶	10.0
Source Str. Density (y/sec-gram)	8.1 x 10 ⁷	5.0 x 10 ⁹
Allowable Source Strength (γ/sec)	2.305 x 10 ¹²	1.073 x 10 ¹¹
Allowable Source Str. Density (γ/sec-gram)	1.556 x 10 ⁸	7.997 x 10 ⁶
Payload/Allowable Source Strength Fraction	130	0.466
Payload/Allowable Source Str. Density Fraction	0.521	625
Selected Fraction	0.521	0.466
Sum of Fractions	0.987	

Thank You