ENCLOSURE 2 TO NL-12-097

IP-CALC-EG-00217, "EMERGENCY DIESEL GENERATOR STORAGE TANK LEVEL SETPOINTS," REV. 5

ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 3 DOCKET NO. 50-286 ATTACHMENT 9.2

ENGINEERING CALCULATION COVER PAGE

ANO-1	ANO-2		GGNS	□ IP-2	 ⊠ II	 р.з Г] PLP
			RBS				j . <u>c</u> .
NP-GGNS-3					• • •		
		EC #	<u>32406</u>		⁽²⁾ P	age 1 of	<u>74</u>
₍₃₎ Design Basis C	alc. 🛛 YES		(4) 🗌 C	ALCULATION	\boxtimes] EC Marku	р
⁽⁵⁾ Calculation I	No: IP3-CALC	C-EG-002	17			⁽⁶⁾ Revisio	on: 5
-				ank Level Set		⁽⁸⁾ Editori	
⁽⁹⁾ System(s):	EDG (Fuel Oil)	(10) Review	v Org (Departr	nent):	Design 1&	C
⁽¹¹⁾ Safety Class:		⁽¹²⁾ Component/Equipment/Structure Type/Number:					
Safety / Quality Related		LC-1204S		LC-1	LC-1207S		
		LC-1205S	LI-1134	LC-1	208S		
			LC-1206S	LI-1135	LC-1	209S	
⁽¹³⁾ Document Type: Calc		EDG-31-FC	D-STNK	EDG-31-FO-DTNK		NK	
⁽¹⁴⁾ Keywords (Description/Topical Codes):		EDG-32-FC	D-STNK	EDG	-32-FO-DT	NK	
EDG, Fuel Oil, Level Switches		EDG-33-FC	D-STNK	EDG	-33-FO-DTI	NK	
Level Indication, Day tank							
		71.1	PEVEWS	· · · · · · · · · · · · · · · · · · ·		P 14	ę
	Name/Signature/Date Bruce Shepard Rob		Name/Signature/Date (1 bert Schimpf			ne/Signatur	re/Date
		ign Verifier iewer			rvisor/Appi		
1 min sville	nu jijie		nments Attac	ched		nments Atta	ached

ATTACHMENT 9.3

CALCULATION REFERENCE SHEET

CALCULATION	CALC	CULATI	ON NO:	IP3-CAI	LC-EG-002	217
REFERENCE SHEET		REVISION: _5				
 EC Markups Incorporated NONE 3. 4. 	(N/A to	NP cal	culations)			
II. Relationships:	Sht	Rev	Input Doc	Output Doc	Impact Y/N	Tracking No.
1. IP-CALC-11-00058	}	1	X			
2. IP-CALC-11-00011	[0	Q			
3. IP-RPT-09-00014	1	1		X	N	
4. 3-SOP-EL-009				X	Y	
5. 3-SOP-EL-001				X	Y	
6. ESOMS (log readings)				X	Y	
7. 3-PT-R160A/B/C					Ý	
	 		·····			
						· · · · ·
					Ĺ	
III. CROSS REFERENCES: 1. NONE 2. 3. 4. 5.						
IV. SOFTWARE USED:						
		elease	:	Disk/CD No.		
V. DISK/CDS INCLUDED:						
Title: <u>NONE</u> Ver	sion/R	elease		Disk/CD No.		
VI. OTHER CHANGES: NONE						

RECORD OF REVISION

ATTACHMENT 9.4

Sheet 1 of 1

Revision **Record of Revision** SUPERSEDES IP3-CALC-EG-00217 REV 3 4 SUPERSEDES IP3-CALC-EG-00217 REV 4 Removes the various EDG loading scenarios & usage calculations and adds 5 reference to Mechanical EDG fuel oil usage calculation. General revision of all sections of the calculation.

TABLE OF CONTENTS

SECTION	DESCRIPTION PAGE
	Table of Contents4
1.0	PURPOSE
2.0	ASSUMPTIONS
3.0	REFERENCES
4.0	ATTACHMENTS
5.0	LOOP FUNCTION
6.0	BLOCK DIAGRAM
7.0	UNCERTAINTY EQUATIONS
8.0	MODULE UNCERTAINTY (en)
9.0	CALCULATE CHANNEL UNCERTAINTY (CU)
10.0	EDG TANKS
11.0	ANALYTICAL LIMIT (AL) OR NOMINAL PROCESS LIMIT (NPL)
12.0	DETERMINE SETPOINT (TS)
13.0	DETERMINE AS FOUND VALUE (AFV)
14.0	SUMMARY
15.0	EDG F.O. STORAGE TANK FIELD CALIBRATION CONSIDERATIONS
TABLE 1 - Slop	e Effect on Measurements for EDG Fuel Oil Storage Tanks No. 31, 32 & 33

Attachments

Pages

1	
2	
6	DELETED - 0 pages
	DELETED - 0 pages
11	DELETED - 0 pages
12	
	1.5-

Total: 74 pages

- 1.0 PURPOSE
- 1.1. This calculation identifies the Channel uncertainty and the appropriate settings for the EDG Underground Fuel Oil Storage Tank (FOST) Level Switches (LS), (LC-1204S, LC-1205S & LC-1206S). The switches provide:
 - LOW Alarm function and
 - LOW-LOW Stop the fuel oil transfer pumps at low-low oil level to protect them from effects of vortexing or inadequate NPSH.
- 1.2 This calculation identifies the uncertainty for EDG Underground Fuel Oil Storage Tank Level Indicators (LI-1133, LI-1134 & LI-1135) and the dipstick readings (level indication by sounding tank). Table 1 (attached) identifies Tank slope effect on Setpoint, volume, and sounding tube measurements.
- 1.3. This calculation uses EDG Day Tank level switches (LC-1207S, LC-1208S & LC-1209S) actuation points to document storage considerations.
- NOTE: Revision 5 is a major revision. Therefore it is not practical to identify each line change. This revision supersedes Revision 4 which is available from records for comparing any changes and previous calculation results.

2.0 ASSUMPTIONS

- 2.1 The displacer trip level sheets from Magnetrol have 100°F as the lowest temperature listed, although certification lists temperature range as 35°F-110°F. Tanks are underground, and temperature variations are assumed to be minimal. Extrapolation down to 30°F is based on data points at 100°F and 200°F. Function with respect to process temperature is assumed to be linear over this range (see attachment 4.2). The 30°F temperature is considered conservative based on Attachment 4.10 & 4.14. Additionally, it is considered conservative to evaluate the uncertainty associated with temperature effect (TE) based on a postulated nominal calibration temperature of 70 °F with temperature excursions between 30°F and 110°F or ±40 °F. This span is considered conservative based on the specified span of 35°F to 110°F (see attachments 4.2, 4.10 & 4.14).
- 2.2 Oil displaced by equipment/hardware installed inside the tank is considered negligible.
- 2.3 It is assumed conservative to interpolate values by Lagrange's Interpolation formula using a minimum of six known values about the unknown. The values for volume and inches in Table 1 were interpolated using this methodology, based upon Ref. 3.2. Values used in this calculation which are not in the table were linearly interpolated from adjacent table values.
- 2.4 The effects of normal vibration (or a minor seismic event that does not cause an unusual event) on the level switches is assumed to be dampened out by the fluid surrounding the displacers and; therefore seismic effects (SE) are considered to be negligible. For post-accident operability considerations, it is noted that a design basis accident coincident with a design basis earthquake is not postulated. It is assumed that following a SSE seismic event the setpoint of the Magnetrol switches and Uehling indicator readings cannot be warranted until the instrumentation has been functionally evaluated and subjected to a calibration check. Additionally, it is assumed that Magnetrol switch contacts may chatter causing a false alarm or pump start/stop signal during, but not following, a SSE.

- 2.5 For a displacer type level switch, based upon Engineering Judgment, it is assumed the As-Left-Tolerance will be \leq 2.4 x RA (Where RA is the reference accuracy of the device).
- 2.6 This calculation uses fuel oil specific gravity of 0.83 for all settings, unless stated otherwise.
- 2.7 Fuel specific gravity is maintained between 0.83 and 0.89 (see attachment 4.5). Volume required in tank has previously been calculated in gallons (Ref. 3.10 & 3.21) at lowest density (0.83 specific gravity) to maximize required volume. The evaluation in Ref. 3.10 identifies that as specific gravity increases the required volume for operation at any specific load decreases. Review of the adjusted low (net) heat values in BTUs per gallon and BTUs per LB for the range of allowed fuel density indicates that as the density is increased, BTUs per gallon increases, and the required volume for any specific load would decrease.
- 2.8 The conversion from gallons to inches in Table 1 is not based on volume measurements. The conversion basis is found in Calculation 200 (Ref. 3.2). Tank tilt has negligible effect on volume measurements.
- 2.9 Inch values of calculations will be rounded-off to 5/100th (0.05) of an inch.
- 2.10 Final gallon values of calculations will be rounded-off to whole gallons.
- 2.11 This calculation assumes normal plant <u>operating</u> conditions (non-seismic/non-harsh environment).
- 2.12 Magnetrol displacer (float) calculations are from the available manufacturer information (Magnetrol installation drawing, see attachment 4.2). Actual performance of displacers versus design settings was field verified (see attachment 4.15).
- 2.13 The Level Indicators LI-1133, LI-1134 & LI-1135 (manometer/bubbler) are calibrated for a liquid specific gravity (SG) of 0.86 based on attachment 4.12. It should be noted that SG less then 0.86 is acceptable since the read indication would be lower then the actual tank level and more than required (Indication would be conservative). Additionally, it should be noted that SG above 0.86 is considered conservative due to the increase in BTU/gallon (see reference 3.21) and indicator SG allowance. NOTE: Presently the Operations Graphs TC-25B & D show a correction factor for SG change (see Attachment 4.12).
- 2.14 Tank coating reduces usable tank volume by less than 20 gallons, based upon engineering judgment, since:
 - tank coating was identified to reduce total tank volume by ~25 gallons (ref. 3.2),
 - <82% of the tank heads coating material is in the usable volume area, and heads are less than 24% of the total surface area of the tank,
 - <40% of the cylinder tank coating material is in the usable volume area [107.5" diameter cylinder portion of tank, ¼ of surface area is below 15.7" elevation (and floor is twice as thick), and ¼ is above the 91.5" elevation], 76% of the total surface area of the tank,</p>
 - <58% of the total tank coating material is in the usable volume area.

- 3.0 REFERENCES
- 3.1 ISA-RP67.04, Part II, "Methodologies for the Determination of setpoints for Nuclear Safety-Related Instrumentation", dated September 1994.
- 3.2 IP3-TS-200 calculation "Diesel Generator Fuel Oil Storage Tanks Capacity Calculation", dated 1/19/90, (Including Margin Rev. 0A dated 10/01/1999).
- 3.3 EN-IC-S-010-MULTI, Instrument Loop Accuracy and Setpoint Calculation Methodology.
- 3.4 Technical Specification 3.8.1 "AC Sources Operating".
- 3.5 Technical Specification 3.8.3 "Diesel Fuel Oil and Starting Air".
- 3.6 Final Safety Analysis Report (FSAR),
- 3.7 Drawings:
 - (1) 9321-F-20303, "Flow Diagram Fuel Oil to Diesel Generators".
 - (2) IP3V-0353-0002 (FP 9321-05-2990), "Fuel Oil Storage Tank (7700 GAL)".
 - (3) IP3V-0186-0043 & IP3V-0186-0046 (FP 9321-05-20324 sheets 1 & 2), "Outline Model VITX-5D, 3X6JLC 4 Stage".
- 3.8 EN-DC-126, Revision 4, Engineering Calculation Process
- 3.9 EN-DC-115, Revision 12, Engineering Change Process
- 3.10 IP-CALC-11-00058, Revision 1, IP3 Emergency Diesel Generator (EDG) Fuel Oil Consumption Licensing Basis Calculation.
- 3.11 Preventive Maintenance Procedure "Diesel Generator Fuel Oil Storage Tank NO. 31 Level Indicator", IC-PM-LI-1133, 1134 & 1135.
- 3.12 Modification MMP 94-3-132, "EDG Fuel Oil Tank Level Indicator LI-1133, LI-1134, LI-1135 Replacement, "dated 10/21/94.
- 3.13 Alarm Response Procedures, 3-ARP-011, "Panel SHF Electrical", Rev. 34.
- 3.14 WR No. 94-03803-3 "DG F.O. Storage Tank 31 Level", dated 8/8/94. Implements IP3 SCR-94-010, 8/9/94, Change Low & Low-Low settings on level switch (LC-1204S)
- 3.15 WR No. 94-03803-14 "DG F.O. Storage Tank 32 Level", dated 11/30/94. Implements IP3 SCR-94-026, 10/28/94, Change Low & Low-Low settings on level switch (LC-1205S)
- 3.16 WR No. 94-03803-11 "DG F.O. Storage Tank 33 Level", dated 11/15/94. Implements IP3 SCR-94-027, 10/28/94, Change Low & Low-Low settings on level switch (LC-1206S)

IP3-CALC-EG-00217 Rev. 5

- 3.17 IP-3 Calculation 204 "Diesel Generator Fuel Oil Consumption," dated 2/6/90.
- 3.18 System Operating Procedures, 3-SOP-EL-009 "Filling the Diesel FOST's" Rev. 20.
- 3.19 Plant Equipment Database in Asset Suite (IAS)
- 3.20 Periodic Testing of Diesel Generator Units Used as Onsite Electric Power Systems at Nuclear Power Plants, REG GUIDE 1.108, 1977
- 3.21 IP-CALC-11-00011, Revision 0, Evaluation of Emergency Diesel Generator (EDG) Fuel Oil Usages Accounting for Issues identified During the IP3 2010 NRC CDBI.
- 3.22 0-CY-1810 Rev. 11, Diesel Fuel Oil Monitoring, Chemistry Procedure
- 3.23 IP-RPT-09-00014, Rev. 1, Critical Submergence Evaluation Related to Surface Vortices in Nuclear Safety and Augmented Quality Tanks/Pumps at IPEC

- 4.0 ATTACHMENTS
- 4.1 DELETED
- 4.2 Magnetrol Drawing D-1257 (FP 9321-05-7214 Rev. 0, 1/22/70) "Magnetrol Installation Dimensions Model A-153-F-TDM & A-153-F-E.P.-TDM"
- 4.3 Gould Pumps Bowl Engineering Data, Document # 22.13, October 1, 1986, "Minimum Submergence Required for Vortex Suppression".
- 4.4 Telephone Discussion Documentation form, 6/5/91, A. Cerwin to T. Fricke.
- 4.5 Telephone Discussion Documentation form, 11/10/93, F. Granitto to D. Wilson.
- 4.6 DELETED
- 4.7 DELETED
- 4.8 DELETED
- 4.9 DELETED
- 4.10 U.S. Environmental Protection Agency (EPA), 1995, Review of Mathematical Modeling for Evaluating Soil Vapor Extraction Systems, Office of Research and Development, Washington, D.C. EPA/540/R-95-513 – Figure 1. "Average Shallow Ground Water Temperature in the United States"
- 4.11 DELETED
- 4.12 IP3-RPT-EDG-01632, "Operation Graphs, TC-25A through TC-25D Diesel Generator Fuel Oil Storage Tanks Slope and Specific Gravity Compensation, "dated 10/21/95.
- 4.13 FAX MESSAGE, from A.E. Vazquez of Uehling, to R.F. Jones of MDM Engineering, "Certificate of Calibration" dated 12/18/95.
- 4.14 Specification for "Liquid Level Switches", No. 9321-05-252-20, Revision 2, Pages 3, 4 & 5, dated 9/19/95.
- 4.15 Telecopy Transmittal Sheet IP3, To R. JONES (I&C), From M. Pactong (Mech Eng), dated 12/1/95.

5.0 LOOP FUNCTION

5.1 <u>General</u>

There are 3 EDG Underground Fuel Oil Storage Tanks (FOST). Each tank has three level indication/monitoring devices or capabilities. Functions considered within the scope of this calculation are; LOW & LOW-LOW tank level switch (Displacer Type), tank level indicator (Manometer/Bubble type) and level indicator (Dipstick). The instrumentation is further described below:

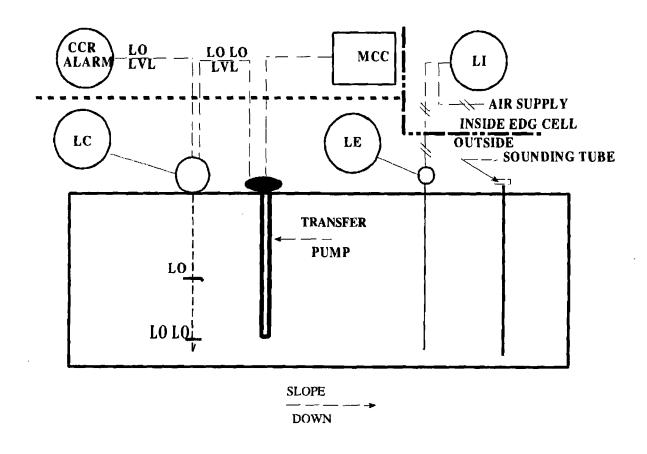
5.2 Level Switches (LC-1204S, LC-1205S, & LC-1206S)

Each EDG Underground Storage Tank has one Magnetrol Level Switch (LS), with separate actions for one control circuit and one alarm circuit on each Magnetrol LS. Each LS has two (2) setpoints which actuate on decreasing tank level. The low (LOW) level setting on each tank actuates a CCR alarm; alerting operators that action to replenish the storage tank volume is required. Level switch actuation at the low-low (LOW-LOW) level stops the Underground Fuel Oil Storage Tank transfer pump to provide protection from vortexing or inadequate NPSH. The LOW and LOW-LOW LS setpoints for each tank envelope the volume of fuel oil required for specified EDG operation.

The LS's are Magnetrol model A-153-FTDM (Reference 3.19). They use 2 Karbate displacers that operate two DPDT micro-switches. The specified service is #2 diesel fuel oil, atmospheric pressure, at 35° - 110°F; specific gravity 0.84 to 0.89. They have tag numbers of LC-1204S, LC-1205S & LC-1206S for tanks 31, 32 & 33 respectively. There is one device in each tank. Each device controls two circuits. Each circuit operates from an independent micro-switch. One switch is in the control circuitry for the pump motor, the other actuates a CCR alarm. See Attachments 4.2 and 4.14.

5.3 Level Indicators (LI-1133, LI-1134 & LI-1135)

The Level Indicators (LI's) provide the following functions:


- (1) Indication of tank level,
- (2) Provide an indication of tank leakage (In-Leakage, Out-Leakage) and
- (3) Following an event, which requires EDG operation, the indicators provide indication of tank level approaching the FOST transfer pump STOP setpoint.

The LI's are located in the cell for each EDG and provide FOST tank level readout. The LI's are Uehling Instrument Co. model 55R173 (Reference 3.19). They consist of a manometer (with readout), a pneumatic hand pump (for air supply), and a dip tube (process interface bubbler). When the hand pump is operated a flow of air passes through tubing to the dip tube; when air bubbles escape from the submerged open end, the air pressure in the tube equalizes to the hydrostatic head of the tank fuel oil. As the tank fuel oil head varies, the air pressure in the dip tube changes correspondingly. The air pressure is indicated on the manometer in inches and equivalent gallons. The manometer and hand pump are located in each EDG cell. The dip tube is located in each underground storage tank. The manometer fill fluid is Diazene-42. The specified service is #2 diesel fuel oil, atmospheric pressure at 35° - 110°F; specific gravity 0.86. They have tag numbers of LI-1133, LI-1134 & LI-1135 for tanks 31, 32 & 33 respectively. There is one device in each tank. Operations Graph TC-25B and TC-25D show the relationship between level in inches and gallons.

5.4 Dipstick

Each EDG FOST has a specific location for sounding the tank with a Dipstick, the sounding tube. The Dipstick is stored near the sounding tubes for the underground storage tanks. The Dipstick has markings in inches. Manual measurements are made at the sounding tube location for each tank. The specified service is for the EDG fuel oil (#2 diesel) storage tanks. No tag number is associated with the Dipstick. There is one Dipstick for the three EDG tanks. Operations Graph TC-25A and TC-25C show the relationship between level in inches and gallons for each tank. Additionally the relationship between Sounding tube measurement and each tank volume was documented in IP3-RPT-EDG-01632, and is shown in Table 1 of this calculation.

6.0 BLOCK DIAGRAM

See Reference 3.7(2) for tank dimensions and specific device locations

DEVICE	EDG TK 31	EDG TK 32	EDG TK 33	NOTE:
<u>LC</u> SWITCH	LC-1204S	LC-1205S	LC-1206S	e₁ for LOW-LOW & e₂ for LOW LVL
<u>LI</u> INDICATOR	LI-1133	LI-1134	LI-1135	e _{6&7} for LOW-LOW & e _{4&5} for LOW LVL
<u>LE</u> ELEMENT	YES	YES	YES	N/A
SOUND TUBE	YES	YES	YES	e ₃ (for DIPSTICK)

FIGURE 1 LOOP DIAGRAM TYPICAL

IP3-CALC-EG-00217 Rev. 5

7.0 UNCERTAINTY EQUATIONS

 $\begin{array}{l} \mathsf{CU} = \pm (\mathsf{PM}^2 + \mathsf{PE}^2 + \mathsf{e}_1{}^2 + \mathsf{e}_2{}^2 + \dots + \mathsf{e}_n{}^2 + \mathsf{JRE}^2)^{1/2} \pm \mathsf{B} & \text{Where,} \\ \mathfrak{o} = \pm (\mathsf{RA}^2 + \mathsf{DR}^2 + \mathsf{TE}^2 + \mathsf{RE}^2 + \mathsf{SE}^2 + \mathsf{HE}^2 + \mathsf{PS}^2 + \mathsf{ALT}^2 + \mathsf{SP}^2 + \mathsf{MTE}^2)^{1/2} \pm \mathsf{B} \end{array}$

- 7.1 Uncertainty terms taken to be either negligible or not applicable (not included elsewhere in the evaluation) are:
 - PE There is no primary element, therefore, PE is not applicable
 - IRE Mild environment & switches are OFF-ON not analog, therefore, IRE is not applicable
 - B No process or module bias identified, therefore, relative to the magnitude of known uncertainties, any bias that may be inherent in the loops is considered to be negligible (The effects of slope are accounted for in scaling for each tank)
 - RE Non-radiological environment, therefore, RE is not applicable
 - SE Per assumption 2.11 Seismic Error (SE) is not applicable
 - HE Humidity changes are within the operating range of the devices and are considered to be negligible
 - PS The switch is an OFF-ON device not analog and is not affected by power supply changes
 - SP The tanks are at atmospheric pressure, therefore, any static pressure effect is negligible
- 7.2 Uncertainty Allowances to Address
 - (1) PM Process Measurement Effect
 - (2) e_n Equipment Uncertainties
 - (3) ALT or CT Calibration Uncertainties
 - (4) Other Uncertainties

7.2.1 Process Measurement effects (PM)

Fuel oil may be supplied at various SGs of 0.83 to 0.89 (Ref. 3.22). The Chemistry Supervisor at IP3, responsible for the fuel oil monitoring data, indicated that the average SG of existing fuel oil is 0.84 SG and does not vary significantly when new fuel is added to the storage tanks (See Attachment 4.5). Chemistry testing identified the following EDG FOST density values based upon field testing, which are numerically equivalent to SG values

11/18/11 - 31 EDG FOST - 0.8482 grams/ml = SG of 0.8482 11/18/11 - 32 EDG FOST - 0.8449 grams/ml = SG of 0.8449 11/18/11 - 33 EDG FOST - 0.8482 grams/ml = SG of 0.8482

Ref. 3.10 identified Btu/LB, Btu/Gal, and required fuel gallons calculated at various SG between 0.83 & 0.89. As EDG FOST SG increases (Ref. 3.10 & 3.21); the volume of the fuel oil required for EDG operation decreases. Review of this information indicates an uncorrected indicator elevation is equivalent in work (for low net heat value, Ref. 3.10) within 0.05% for any of the allowed SG readings (0.83 to 0.89), based upon:

 $[0.83 \times Btu/LB(@0.83 SG)/Btu/Gal(@0.83 SG)]/[0.89 \times Btu/LB(@0.89 SG)/Btu/Gal(@0.89 SG)] = 1 \pm 0.001 \\ [0.83 \times 18762 / 125987.6] / [0.8348 \times 18736.9 / 126572.5] = 1.000 = 100.02\% \\ [0.83 \times 18762 / 125987.6] / [0.8448 \times 18686.2 / 127754.5] = 1.000 = 100.03\%$

[0.83 x 18762 / 125987.6] / [0.8550 x 18635.4 / 128936.5] = 1.000 = 100.02% [0.83 x 18762 / 125987.6] / [0.8654 x 18584.7 / 130118.5] = 1.000 = 100.04% [0.83 x 18762 / 125987.6] / [0.8762 x 18523.8 / 131300.5] = 1.000 = 99.99% [0.83 x 18762 / 125987.6] / [0.8871 x 18462.9 / 132581] = 1.001 = 100.05% [0.83 x 18762 / 125987.6] / [0.890 x 18447.2 / 132884.4] = 1.000 = 100.04%

.: Corrected gallon value = (0.830/current SG) x Actual gallon required

Magnetrol_Switch

This calculation uses fuel oil specific gravity (0.83 SG) for both the low-low and low magnetrol switch action. Any density changes resulting from the effects of temperature variations are included in the temperature effects (TE) for the Magnetrol level switches. Therefore, net adverse effect of PM on the Magnetrol Switches is negligible, (See Attachment 4.5 and Assumption 2.7). At higher densities, both low-low and low magnetrol switch action would be slightly lower.

 $PM_{SG-LL} = (1/8" / 0.1 [SG change]) \times 0.06 [SG change] = 0.075"$ $PM_{SG-L} = (1" / 0.1 [SG change]) \times 0.06 [SG change] = 0.6"$

Dipstick

PM for sounding (internal 3" stilling pipe to within 2" of bottom) the tank is attributed to, process turbulence (if pump is running or tank is being filled) and or uncertainty in identification of wet to dry interface due to wicking on the dipstick. This PM value cannot be calculated, therefore, a value of $\pm 0.50^{\circ}$ will be used in the evaluation. This value is considered conservative enough to include Readability error of approximately 1/4 of 1/16th of an inch or 0.0156".

<u>Uehling indicators</u>

Historically, the required fuel volume was calculated at a SG of 0.83 to maximize the required gallons value. The Uehling indicators are calibrated for a SG of 0.86. Density changes due to temperature increases or decreases will result in an increase/ decrease (respectively) in the actual tank level. However, the level indication, because it is based on head pressure, will remain almost unchanged and will therefore reflect the effective level relative to EDG run time. This is due to the increase in BTU/gallon (or Lbs of fuel/gallon). The effect of density changes due to temperature changes on the fuel available for EDG running time requirements are considered to be negligible.

For the required level indication, the actual gallon value is sufficient to provide the fuel inventory required to meet the EDG running time requirements, regardless of SG value. If the SG is less than 0.86, the uncorrected read elevation, and gallons, would be less than actual height and gallon value. If the SG is greater than 0.86, then the uncorrected read elevation, and gallons, is more than actual height and gallon value. If the SG >0.86, then the potential difference in SG from the calibrated 0.86 value will impact the total net heat value of unusable fuel oil below the switch actuation point, see sect. 7.2.1.2.

7.2.1.1 Uehling Indicators - Process impact for fuel oil SG (SGe)

The impact per ± 0.01 of SG changes is approximately 1.16% change in elevation reading (and resultant gallons), or a total of approximately +/-3.5% of reading for allowed SG span of 0.83 to 0.89. PM for indicator includes readability.

 $SG_e = 100 (0.87 - 0.85 / 0.86) = 2.32\%$ for a 0.02 SG change at any specific value $SG_e = 2.32\% / 2 = \pm 1.16\%$ for a ± 0.01 SG change (The SGe has linear impact on gallons)

Operators use graphs TC-25B or TC-25D to convert the indicated EDG tank level to gallons. The graphs identify the SG correction calculation to be used for a corrected tank level to achieve the ± 50 gallon accuracy identified in IP3-RPT-EDG-01632.

Corrected inch value = (0.860/current SG) x Actual inch reading from LI

7.2.1.2 Indication SG error at low-low switch setpoint evaluation (SG_{ie I-I})

At the low-low switch setpoint (17.1") the process error is small, both for level and gallons required. For a nominal setpoint (from Section 12.1) of 17.1", the LI is 20.17" (Low value for Tank 33, Tank 31 & 32 would be approximately 1" lower - See Table 1 for slope correction). From REF 3.12 the indicator does not measure level below 6" from the tank bottom. Therefore, measured head (mh) @ LI:

mh = (20.17" - 6.0") = 14.17" (See Table 1) SG_{ie I-1} = Indication Error = SG_e x mh SG_{ie I-1} = $\pm 1.16\%$ x (0.03/0.01) x 14.17" = $\pm 0.492"$ [for ± 0.03 SG]

The following is the potential impact on required indicated gallons due to SG >0.86 SG_{ie I-1} = $\pm 0.492^{\circ}$ = $\pm 0.5^{\circ}$ [rounded, max. SG_{ie I-1} change, or ± 36 , round to 40, gallons required]

7.2.1.3 Indication SG error at Low switch setpoint evaluation (SG_{iel})

From REF 3.12 the indicator does not measure level below 6" from the tank bottom. For a nominal switch setpoint of 87.0" the LI is 89.27" for tank 31 & 32, 90.07" for tank 33 (See Table 1 for slope correction). Therefore, measured head @ LI (mh) = (90.07" - 6.0") = 84.07"

 $SG_{ie!} = Indication Error = SG_e \times mh$ $SG_{ie!} = Indication Error = \pm 1.16\% \times 84.07" = \pm 0.975"$ [per ±0.01 SG, ±2.93" max. change ±0.03 SG]

7.2.1.4 Bounding indication SG error evaluation

For bounding level at top of tank (108") @ LI (mh) = (108" - 6.0") = 102"Bounding Indication Error = $\pm 1.16\% \times 102" = \pm 1.18"$ [per ± 0.01 SG, $\pm 3.5"$ max. change ± 0.03 SG]

Therefore, indication could be 3.5" lower than actual when the tank is full of fuel oil @ 0.83 SG, or 3.5" higher than actual when the tank is full of fuel oil @ 0.89 SG.

7.2.2 Other Dipstick Uncertainties (Indicator Readability)

Readability effect (Approximately 1/4 of 1/16th of an inch, the smallest marking) for the Dipstick is included in the PM value (See Section 7.2.1).

7.2.3 Uehling Indicator PM for indicator readability, for use in this Calculation

Readability effect for the manometer (Approximately 1/4 of 1/4 of an inch) is included in the PM value for the Uehling indicators (See Section 8.1.8). For conservatism a value of $1.25 \times RA$ will be used to envelope readability error of .0625" and any unidentified PM uncertainties (pump running turbulence, etc.).

RA = level at the indicator $\pm 1/8$ " (see Section 8.1.1) PM = ± 0.16 "

8.1 Level Switch (LC-1204S, LC-1205S & LC-1206S) -Magnetrol model A-153-FTDM (Reference 3.19

& See Attachment 4.2) (e_1) for LOW-LOW level (17.1" pump protection level) & (e_2) for LOW level (87" or 87.5" for low level alarm)

Level Indicator, Dipstick (e₃)

Level Indicator (LI-1133, LI-1134 & LI-1135) -Uehling model 55R173 (tank 31 & 32 @ 87.5" level - e_4), (tank 33 @ 87" level - e_5), (tank 31 & 32 @ 17.1" level - e_6) & (tank 33 @ 17.1" level - e_7)

- 8.1.1 Reference Accuracy (RA)
 - Magnetrol Switch

Magnetrol specifies an accuracy of $\pm 1/4^{\circ}$ for the actuation diaphragm and switch (See attachment 4.4)

Dipstick

Based on Engineering Judgment, an accuracy value of $\pm 1/16$ " is applied for this device (the smallest marking).

Uehling indicators

Uehling specifies an accuracy of ±1/8" of level measurement (See attachment 4.13)

8.1.2 Drift (DR)

Past performance Data is not available and vendors do not provide a drift factor for these devices. Based on Engineering Judgment, for devices of this type, it is assumed that drift is accounted for in (RA). Therefore, a value of 0.0 will be used for DR in this evaluation.

8.1.3 Temperature Effect (TE)

<u>Magnetrol</u>

Each EDG FOST tank is located underground, with the switch housing flange approx. 38" above the tank cylinder. The temperature of the fuel oil (density, viscosity) affects the displacer point of action. Normal environment of the EDG underground FOST tank location is $35^{\circ}F - 110^{\circ}F$ [use $70^{\circ}F + /-40^{\circ}F$] (See Attachment 4.2).

The Magnetrol installation drawings show the switch settings at temperature from 100° to 300°F. Compensation to 30°F is by extrapolating the 100° and 200° values. Values are approximately 0.5" per 100°F.

 $TE = \pm (40^{\circ}F) \times 0.5^{*}/100^{\circ}F$ (See Assumption 2.1) TE = $\pm 0.2^{*}$

Dipstick

For the Dipstick indicator the TE is not applicable

<u>Uehling</u>

For the Uehling indicators the TE is not applicable (See attachment 4.13)

- 8.1.4 Measurement and Test Equipment uncertainty (MTE)
 - <u>Magnetrol switches</u>
 - MTE₁: Tape measure (or Dipstick), accuracy ±1/16"
 - MTE₂: When taking measurements, an error due to flex in the tape measure or flex in the cable can occur. Therefore, an error of ±1/2" is a conservative estimate. Due to this conservative estimate indicator Readability is not evaluated as a separate uncertainty.

 $MTE = \pm (MTE_1^2 + MTE_2^2)^{1/2"}$ MTE = $\pm (0.0625^2 + 0.5^2)^{1/2"}$ MTE = $\pm 0.5"$

Dipstick

MTE for the dipstick is not applicable

• Uehling Indicators

Calibration is not required; therefore, MTE for the Uehling indicators is not applicable (See attachment 4.13)

- 8.1.5 As-Left Tolerance = (ALT) NOTE: ALT is equal to Calibration Tolerance (CT).
 - Magnetrol switches

The As-Left Tolerance is the technician precision in setting the tolerance of a device during installation or verification. The instrument surveillance procedure for these switches does not presently require measuring or resetting of the displacers.

Since no specific instrument calibration procedure is approved for LC-1204S, LC-1205S or LC-1206S, the As-Left tolerance will be evaluated based on Assumption 2.5.

 $ALT = \pm 2.4 \times (RA)$ $ALT = \pm 2.4 \times (0.25")$ $ALT = \pm 0.60"$

Dipstick

ALT for the Dipstick is not applicable

Uehling indicators

Calibration is not required; therefore, ALT/CT for the Uehling indicators is not applicable (See attachment 4.13)

- 8.2 Magnetrol Level Switch Uncertainty (e₁) & (e₂), and As-Found Tolerance (AFT)
 - 8.2.1 LOW-LOW Level Switch (Lower Displacer) uncertainty (e1)

 $e_1 = \pm (RA^2 + DR^2 + TE^2 + MTE^2 + ALT^2)^{1/2}$ $e_1 = \pm (0.25^2 + 0.0^2 + 0.20^2 + 0.50^2 + 0.60^2)^{1/2}$ $e_1 = \pm 0.84^{"}$

8.2.2 LOW Level Switch (Upper Displacer) uncertainty (e₂)

The value of e_2 is based on the uncertainty associated with the LOW-LOW Level displacer, which is similar to the LOW Level Displacer, therefore e_2 is the same as the e_1 value.

 $e_2 = \pm (e_1^2)^{1/2}$ $e_2 = \pm (0.84^2)^{1/2}$ $e_2 = \pm 0.84^{"}$

The LOW-LOW Level setting & LOW Level setting relationship has impact on the fuel oil inventory between the two displacer settings. Since the low-low and low switch As-Found values, with uncertainty are used for evaluating available fuel oil, there is no need to separately evaluate the uncertainty of the difference between the values.

8.2.3 As-Found Tolerance (AFT) for the Magnetrol Switches

As-Found Tolerance (AFT) for the Magnetrol Switches will be determined by: $AFT = \pm (RA^2 + DR^2 + ALT^2)^{1/2}$ $AFT = \pm (0.25^2 + 0.0^2 + 0.60^2)^{1/2}$ $AFT = \pm 0.65^{"}$

8.3 Level Indicator (dipstick direct reading) Uncertainty (e₃).

The dip stick direct reading uncertainty only includes RA (see 8.1.1) $e_3 = \pm (RA^2)^{1/2} = \pm (0.0625^2)^{1/2}$ $e_3 = \pm 0.0625''$

8.4 Level Indicator Uncertainty - Manometer/Bubbler Reading (e₄ / e₅ / e₆ / e₇)

The dip stick direct reading uncertainty only includes RA (see 8.1.1) $e_5 = e_4 = e_6 = e_7 = \pm (RA^2)^{1/2} = \pm (0.125^2)^{1/2}$ $e_5 = e_4 = e_6 = e_7 = \pm 0.125''$

- 9.0 CALCULATE CHANNEL UNCERTAINTY
- 9.1 Magnetrol Switch (LS)
- 9.1.1 FOR LOW-LOW SWITCH SETTING (CU₁):

 $CU_{1} = \pm (PM_{SG+LL}^{2} + PE^{2} + e_{1}^{2} + IRE^{2})^{1/2} \pm B^{"}$ $CU_{1} = \pm (0.075^{2} + 0^{2} + 0.84^{2} + 0^{2})^{1/2} \pm 0^{"} \text{ (see Section 7.2.1 \& 8.2.1)}$ $CU_{1} = \pm 0.84^{"}$

9.1.2 FOR LOW SWITCH SETTING (CU₂):

 $\begin{array}{l} \text{CU}_2 = \pm \left(\text{PM}_{\text{SG-L}}^2 + \text{PE}^2 + \text{e}_2^2 + \text{IRE}^2\right)^{1/2} \pm \text{B}^{"} \\ \text{CU}_2 = \pm \left(0.6^2 + 0^2 + 0.84^2 + 0^2\right)^{1/2} \pm 0^{"} \text{ (see Section 7.2.1 \& 8.2.2)} \\ \text{CU}_2 = \pm 1.03^{"} \end{array}$

IP3-CALC-EG-00217 Rev. 5

EC-32406 Markup

- 9.2 Uehling Indicator Manometer/Bubbler Reading
- 9.2.1 Evaluate CU₄/CU₅/CU₆/CU₇ For Tank 31, 32 & 33
 - 9.2.1.1 FOR LI AT LOW LS SETTING: (CU4/CU5) [without correction for SG]

 $e_4 = e_5 = \text{level at the indicator } \pm 1/8"$ (see Section 8.1.1) $PM = \pm RA \times 1.25$ $PM = \pm 0.125" \times 1.25 = 0.15625" - \text{Round to } 0.16"$ $PM = \pm 0.16"$ $CU_4 = CU_5 = \pm (e_4^2 + PM^2)^{1/2} = \pm (0.125^2 + 0.16^2)^{1/2} = \pm 0.2"$ $CU_4 = CU_5 = \pm 0.2"$

9.2.1.2 FOR LI AT LOW-LOW LS SETTING: (CU₆/CU₇) - [without correction for SG]

 $e_6 = e_7 = \text{level at the indicator } \pm 1/8"$ (see Section 8.1.1) $PM = \pm RA \times 1.25$ $PM = \pm 0.125" \times 1.25 = 0.15625" - \text{Round to } 0.16"$ $PM = \pm 0.16"$ $CU_6 = CU_7 = \pm (e_4^2 + PM^2)^{1/2} = \pm (0.125^2 + 0.16^2)^{1/2} = \pm 0.2"$ $CU_6 = CU_7 = \pm 0.2"$

- 9.2.2 Evaluate CU₄/CU₅/CU₆/CU₇ For Tank 31, 32 & 33 [corrected for SG]
 - 9.2.2.1 Evaluate CU₄ (tank 31 & 32) & CU₅ (tank 33) (@ TS LOW Setpoint) CU₄ and CU₅ have essentially the same considerations at 6804 gallon (87" & 87.5") alarm value -

 $e_4 = e_5 = \text{level at the indicator } \pm 1/8"$ (see Section 8.1.1) $PM = \pm 0.16"$ $CU_4 = CU_5 = \pm (e_4^2 + PM^2 + SG_{ie1}^2)^{1/2}$ $CU_4 = CU_5 = \pm (0.125^2 + 0.16^2 + 2.93^2)^{1/2} = \pm 2.94"$ - Round to 2.95" $CU_4 = CU_5 = \pm 2.95"$

9.2.2.2 Evaluate CU_6 (tank 31 & 32) & CU_7 (tank 33) (@ TS LOW-LOW Setpoint) CU_6 and CU_7 have essentially the same considerations at 17.1" pump shut off value - RA = level at the indicator $\pm 1/8$ " (see Section 8.1.1)

 $\begin{array}{l} e_6 = e_7 = \text{level at the indicator } \pm 1/8" \text{ (see Section 8.1.1)} \\ \text{PM} = \pm 0.16" \\ \text{CU}_6 = \text{CU}_7 = \pm \left(\text{RA}^2 + \text{PM}^2 + \text{SG}_{\text{ie} \mid \text{i} \mid}^2\right)^{1/2} \\ \text{CU}_6 = \text{CU}_7 = \pm \left(0.125^2 + 0.16^2 + 0.5^2\right)^{1/2} = \pm 0.5397" \text{ - Round to } 0.55" \\ \text{CU}_6 = \text{CU}_7 = \pm 0.55" \end{array}$

9.3 FOR DIPSTICK LEVEL INDICATION (TANK SOUNDING)

The dip stick (direct reading) uncertainty includes e_3 (see 8.3) & PM (see 7.2.1). $CU_3 = \pm (e_3^2 + PM^2)^{1/2} \pm (0.0625^2 + 0.50^2)^{1/2}$ $CU_3 = \pm 0.5^{"}$ [This reading is uncorrected for any SG effects] $CU_3 = \pm 0.5^{"}$ (see section 8.3)

10.0 EDG TANKS

10.1 EVALUATE ERROR DUE TO TANK SLOPE FOR TABLE 1 - [Ref. Att 4.12 - IP3-RPT-EDG-01632]

10.1.1 EVALUATE ERROR DUE TO SLOPE OF TANK NO. 31 AND NO. 32

The change in height over horizontal 51.0" is 1.0625" (See Attachment 4.12)

TAN $\varphi = \frac{1.0625"}{51.0"} = 0.0208333$ $\therefore \varphi = 1.1935^{\circ}$ (tank tilt in degrees)

Determine AH Between The Tank Centerline and The Pump Location

The distance between the centerline and the pump is 61.0" (Ref. 3.7.2)

 $\Delta H = TAN \phi \times 61.0" = \therefore 0.0208333 \times 61.0" = 1.2708"$

:. For any height at the tank centerline (H), the height at the pump will be H-1.2708" (INPUT FOR TABLE 1)

Determine <u>AH</u> Between The Tank Centerline and The Level Switch Location

The distance between the centerline and the level switch is 79.0" (Ref. 3.7.2)

 $\Delta H = TAN \phi \times 79.0^{"} = \therefore 0.0208333 \times 79.0 = 1.6458^{"}$

 \therefore For any height at the tank centerline (H), the height at the level switch is H-1.6458" (INPUT FOR TABLE 1)

Determine AH Between The Tank Centerline and The Level Indicator Location

The distance between the centerline and the level indicator is 30.0" (Ref. 3.7.2)

 $\Delta H = TAN \phi \times 30.0^{\circ} = \therefore 0.0208333 \times 30.0 = 0.6249^{\circ}$

 \therefore For any height at the tank centerline (H), the height at the level indicator is H+ 0.6249" (INPUT FOR TABLE 1)

Determine <u>AH</u> Between The Tank Centerline and The Sounding Tube Location

The distance between the centerline and the Sounding Tube is 81.0" (Ref. 3.7.2)

 $\Delta H = TAN \phi \times 81.0" = \therefore 0.0208333 \times 81.0 = 1.6875"$

 \therefore For any height at the tank centerline (H), the height at the sounding tube is H+ 1.6875" (INPUT FOR TABLE 1)

10.1.2 EVALUATE ERROR DUE TO SLOPE OF TANK NO. 33

The change in height over 51.0" is 1.4375" (See Attachment 4.12)

 $\mathsf{TAN} \ \phi = \frac{1.4375^{"}}{51.0"} = 0.0281863$

 $\therefore \varphi = 1.6145^{\circ}$ (tank tilt in degrees)

Determine AH Between The Tank Centerline and The Pump Location

The distance between the centerline and the pump is 61.0" (Ref. 3.7.2)

 $\Delta H = TAN \phi x 61.0^{\circ} = \therefore 0.0281863 x 61.0^{\circ} = 1.7194^{\circ}$

 \therefore For any height at the tank centerline (H), the height at the pump will be H-1.7194" (INPUT FOR TABLE 1)

Determine AH Between The Tank Centerline and The Level Switch Location

The distance between the centerline and the level switch is 79.0" (Ref. 3.7.2)

 $\Delta H = TAN \phi \times 79.0^{\circ} = \therefore 0.0281863 \times 79.0 = 2.2267^{\circ}$

 \therefore For any height at the tank centerline (H), the height at the level indicator is H-2.2267" (INPUT FOR TABLE 1)

Determine <u>AH</u> Between The Tank Centerline and The Level Indicator Location

The distance between the centerline and the level indicator is 30.0" (Ref. 3.7.2)

 $\Delta H = TAN \phi \times 30.0^{\circ} = \therefore 0.0281863 \times 30.0 = 0.8456^{\circ}$

 \therefore For any height at the tank centerline (H), the height at the level switch is H+ 0.8456" (INPUT FOR TABLE 1)

Determine AH Between The Tank Centerline and The Sounding Tube Location

The distance between the centerline and the sounding tube is 81.0" (Ref. 3.7.2)

 $\Delta H = TAN \phi \times 81.0" = \therefore 0.0281863 \times 81.0 = 2.2831"$

 \therefore For any height at the tank centerline (H), the height at the sounding tube is H+ 2.2831" (INPUT FOR TABLE 1)

10.2 DETERMINE EDG FUEL REQUIREMENT

Technical Specification Task Force Change Traveler TSTF-501A identifies allowed standard format changes to Technical Specifications to identify need for 7 days of EDG fuel oil storage, and AOT if only 6 days of EDG fuel oil storage is maintained. The 6 day and 7 day terms replace actual gallon values to minimize future Technical Specification changes and allow the 50.59 controlled site procedures and programs to control and justify the required volumes.

Fuel is to be stored in site tanks for operation of each EDG for total of either 6 or 7 days (144 or 168 hours) at 24 hour maximum profile. Site tanks are defined as the local EDG FOST and other site tanks, which are maintained to the same fuel oil standards, and would contain the EDG oil until transferred to the EDG FOST. Existing IP3 Technical Specification required volume for each EDG is 5365 gallons, based upon minimum safeguards loading for 48 hours. Prior EDG fuel oil calculations identified 5871 gallons required to operate the EDG at nameplate loading for 48 hours. After review of the required volumes, size of the EDG FOST, and the fuel oil used during EDG required testing, it was decided that fuel oil for 40 hours of EDG operation at 24 hour maximum profile would provide adequate fuel oil while allowing for required testing without requiring unreasonable frequency of EDG FOST refill.

From reference 3.10, we have the following information regarding fuel oil required for each EDG: [24 hour maximum profile is ½ hour @ 2000KW, 2 hour @ 1950KW & 21½ hour @ 1750KW]

- 23,940 gallons, @ SG of 0.83, for 7 day (168 hour) operation at 24 hour maximum profile
- 20,520 gallons, @ SG of 0.83, for 6 day (144 hour) operation at 24 hour maximum profile
- 6,840 gallons, @ SG of 0.83, for 48 hour operation at 24 hour maximum profile
- 141 gallons/hr, @ SG of 0.83, at 100% (1750KW) EDG loading

The required number of gallons to run the EDG for a specified time varies based upon the actual SG of the fuel oil to be used, based upon the mass and volumetric low (net) heat available. The relationship may be approximated by the following formula:

[Gallons @ 0.83 SG] x 0.83 / [actual SG] = Gallons @ actual SG 6,840 gallons & 141 gal/hr at 0.83 SG is equivalent to: 6,601 gallons & 136 gal/hr at 0.86 SG or 6,376 gallons & 131.5 gal/hr at 0.89 SG

10.2.1 Required fuel oil for 40 hours operation of an EDG [part of 144 and/or 168 hour requirement]

Fuel oil for 40 hours of EDG operation at 24 hour maximum profile is stored in each EDG FOST: 6,840 gallons – (8 x 141 gallons) = 6,840 - 1128 = 5,712 gallons @ SG 0.83 6,601 gallons – (8 x 136 gallons) = 6,601 - 1088 = 5,513 gallons @ SG 0.86

Less than 5,712 gallons @ 0.83 SG [or equivalent] will cause entry into associated FSAR/TRM AOT

10.2.2 Required fuel oil be stored in tanks other than the EDG FOST - for an additional 128 hours operation of an EDG [part of 144 hour (6 day) and/or 168 hour (7 day) requirement]

Fuel for 128 hours (168-40) of EDG operation at 24 hour maximum profile stored in other site tanks: 23,940 gallons – 5,712 gallons = 18,228 gallons @ SG 0.83 for each EDG

Less than 18,228 usable gallons @ 0.83 SG [or equivalent] for any EDG will cause entry into associated FSAR/TRM AOT and needs to be evaluated for impact on Technical Specification Requirements. A minimum of 36,456 gallons (2x 18,228, for two IP3 EDG operable), and a minimum of 54,684 gallons (3x 18,228, for three IP3 EDG operable), is required to be stored in tanks other than the EDG FOST. Reduction below the 7-Day required amount, by up to 3,420 gallons @ SG 0.83 results in 6-Day AOT entry for the specified EDG. 6840 (for 48 hours)/2 = 3420 (for 24 hours)

GT2/GT3 Fuel Oil Tank volume is 583 gallons/inch, and is equipped with a Varec 2500 ATG measuring tape (accurate to +/-0.5"). The required IP3 gallons should include an additional 1,000 gallon allowance for reading accuracy, and a minimum log reading of 55,684 gallons for 3 EDG operable (NO AOT).

10.3 EDG F.O. Day Tank Considerations

There are 3 EDG (Emergency Diesel Generator) Fuel Oil (FO) 175 gallon Day Tanks, one for each EDG. The EDG Fuel Oil Day Tank has level switches which actuate when the tank level is at specific levels, Level Switches (LC-1207S, LC-1208S & LC-1209S):

- 90% [Fill valve opens on decreasing level or closes on increasing level],
- 65% [EDG FO storage tank transfer pump start (auto stop between 65% & 90% rising level)] and
- 50%/30% [EDG day tank low level alarm, see CR-IP3-2011-05558 for conflicting information]

Evaluate the EDG Fuel Oil Day Tank volumes at 65% and 50%/30% to identify the time EDG may operate at EDG 100% Load (1750 KW) before day tank empties, with no EDG FOST transfer pump makeup.

EDG Fuel Oil Day Tank volume: 65% x 175 gallon = 113.75 gallons EDG Full Load fuel usage: 141 gallons/hr, @ SG of 0.83 [Reference 3.10]

:. Therefore: <u>113.75 gals x 60 min /hr</u> = 48.4 minutes to tank empty 141 gallons/hr

EDG Fuel Oil Day Tank volume: 50% x 175 gallon = 87.5 gallons EDG Full Load fuel usage: 141 gallons/hr, @ SG of 0.83

:. Therefore: <u>87.5 gals x 60 min /hr</u> = 37.2 minutes to tank empty 141 gallons/hr

EDG Fuel Oil Day Tank volume: 30% x 175 gallon = 52.5 gallons EDG Full Load fuel usage: 141 gallons/hr, @ SG of 0.83

:. Therefore: 52.5 gals x 60 min /hr = 22.3 minutes to tank empty 141 gallons/hr

11.0 ANALYTICAL LIMIT (AL) OR NOMINAL PROCESS LIMIT (NPL)

No AL is established in the FSAR or Technical Specifications.

The IPEC underground FOST was not designed to hold seven days' worth of ultra low sulfur fuel oil with the EDG operating at its maximum load profile conditions. Thus, the strategy has always been that to meet the seven day EDG run stipulation of Regulatory Guide 1.137, the FOST would be provided with fuel oil on an as needed basis from an on site reserve supply. Because of this strategy with respect to the necessity of re-filling the FOST, in addition to the seven day time, IPEC also contains in its current licensing basis a 48 hour EDG operating time period specifically related to the initial FOST fuel oil usable volume. It is not cited in nor is it a requirement of Regulatory Guide 1.137. This IPEC specific interim time period must also be addressed by the License Amendment Request (LAR) process. FOST fuel oil usable and stored volumes, and the corresponding EDG run time, will change. The newly determined FOST volumes and associated EDG run time will not be put in the Technical Specifications but will be placed in the Technical Specification Bases or the FSAR/TRM.

This calculation is to support a planned Technical Specification Amendment request associated with EDG FO volumes in accordance with TSTF-501A. Technical Specifications would identify the need for 7 days and/or 6 days worth of fuel, to be stored in each EDG FOST and other on-site tanks. There is then a need to place a specific EDG FOST volume requirement in a 50.59 controlled document, such as the FSAR/TRM or Technical Specification Basis. Reference 3.10 indicates the EDG FOST is not large enough to store 48 hours worth of useable fuel [past Technical Specification requirement], so the basis for a new volume will be established in this calculation.

11.1 PROCESS LIMIT (NPL) FOR EDG FOST (FSAR/TRM):

Considerations -

Maximum volume in any EDG FOST is 7650 gallons to prevent flooding of the local indicators, per 3-SOP-EL-009.

Unusable fuel gallons based upon allowed as-found for pump shut-off switch (section 13.1). 5712 usable gallons of fuel oil for 40 hours operation of EDG operation at 24 hour rating (section 10.2.1). Additional fuel volume in each EDG FOST to account for periodic testing of each EDG will be based on approximately six hours of full load testing operation (TS SR 3.8.1.2 & 3.8.1.3 or return to service testing): 141 gal/hr [100%, 1750KW] x 6 hours = 846 gallons @ 0.83 SG

Therefore, FSAR/TRM Process Limit will be 5712 [@ 0.83 SG] useable gallons of fuel oil (or 5513 gallons @ 0.86 SG) to be stored in each EDG FOST, which would provide for 40 hours of EDG operation at 24 hour maximum profile load and 18,228 useable gallons of fuel oil for 128 hours of EDG operation at 24 hour maximum profile to be stored in other site tanks (Sect. 10.2.1).

11.1.1 NPL for FSAR/TRM value for EDG FOST usable gallons – Dipstick

<u>Tank 33</u>	<u>Tank 31 & 32</u>	Using Dipstick
5712	5712	Useable gallons [40 hours @ SG of 0.83] (Sect. 10.2.1)
956	915	* Unusable gallons [Difference due to tank tilt] (Sect. 13.1)
20	20	Coating of tank - margin (Ref. 3.2 & 2.14)
6688	6647	Total gallons @ SG 0.83

* Tank unusable gallons are based upon the allowed As-Found value for pump shut-off switch.

For Tank 31 & 32 NPL = 5712 usable gals, 6647 gals in the tank (See Table 1) NPL = 87.69898 @ the sounding tube (round to 87.7") NPL = 87.7" For Tank 31 & 32

- For Tank 33 NPL = 5712 usable gals, 6688 gals in the tank (See Table 1) NPL = 88.87515" @ the sounding tube (round to 88.88") NPL = 88.88" For Tank 33
- 11.1.2 NPL for FSAR/TRM value for EDG FOST usable gallons Indicator

<u>Tank 33</u>	Tank 31 & 32	Using Uehling Indicators [Calibrated at 0.86 SG]
5513	5513	Useable gallons [40 hours @ SG of 0.86] (Sect. 10.2.1)
956	915	* Unusable gallons [Difference due to tank tilt] (Sect. 13.1)
20	20	Coating of tank - margin (Ref. 3.2)
40	40	Margin & Specific Gravity (SG) – (Sect 7.2.1.2)
<u>50</u> 6579	<u>50</u>	Indication accuracy (Ref. 8.4.1)
6579	6538	Total gallons @ SG 0.86

* Tank unusable gallons are based upon the allowed As-Found value for pump shut-off switch.

For Tank 31 & 32 -

NPL = 5513 usable gals, 6538 gallons by indicator in the tank, @ SG 0.86 (See Table 1) NPL = 85.16" on the Indicator (round up to 85.2") [86.2" @ SG 0.86 at the sounding tube] NPL = 85.2" on the Indicator - For Tank 31 & 32

For Tank 33 -

NPL = 5513 usable gals, 6579 gallons by indicator in the tank, @ SG 0.86 (See Table 1) NPL = 85.93" on the Indicator (round up to 85.95") [86.8" @ SG 0.86 at the sounding tube] NPL = 85.95" on the Indicator - For Tank 33

11.2 NOMINAL PROCESS LIMIT (NPL) FOR LOW-LOW LEVEL DISPLACER SETTING LIMIT:

To protect the fuel oil transfer pumps from the damaging effects of vortexing, the IP3 FSAR and the manufacturer pump submergence data indicates a low level pump cut-off of 12" (See Attachment 4.3). This protection contributes unusable gallons in the tanks, and is different due to tank slope (0.50° for tank 33 and 0.375" for tank 31 & 32) from the switch down to the pump.

From the Rockaway Tank drawing and the Gould Pumps outline drawings; the pump suction is 3.875" above the tank bottom as shown below (Reference 3.7 (2) & (3)).

 $(\frac{108}{2})$ + 78 - 129.75 + 2 - 0.375 = 3.875"

The tolerance on all pump dimensions is +1/8" or +1/8" per 5', which ever is greater. The total dimensional error applied will be +3/8". (ref. 3.7 (3))

Therefore, for pump protection the NPL will be based on the manufacturer's submergence value plus distance from tank bottom plus the dimensional error.

NPL = 12" + 3.875" + 0.375" = 16.25"

For Tank 31 & 32 NPL = 16.250° @ the pumps [15.875 @ the switch], NPL = 788 gals in the tank (See Table 1)

For Tank 33 NPL = 16.250" @ the pumps [15.7427 @ the switch], NPL = 818 gals in the tank (See Table 1)

IP3-CALC-EG-00217 Rev. 5

11.3 NOMINAL PROCESS LIMIT (NPL) REVISED LOW LEVEL DISPLACER SETTING LIMIT:

Maximum level in any EDG FOST is 7650 gallons to prevent flooding of the local indicators, per 3-SOP-EL-009

Fuel volume required to account for periodic testing of each EDG will be based on approximately six hours of full load operation per TS SR 3.8.1.2 & 3.8.1.3 or return to service testing:

141 gal/hr [full load operation] x 6 hours = 846 gallons @0.83 SG

NPL for alarm to be based on maximum level minus the fuel allowance for testing is:

7650 - 846 = 6804 gallons @0.83 SG

11.3.1 Nominal process limit (NPL) - Low Level Alarm value to protect FSAR/TRM value

By design, an alarm will be actuated when there is 6804 gallons of fuel in any EDG FOST. (Ref 3.13)

For Tank 31 & 32 NPL = 86.58466" @ the switch NPL = 6804 gals in the tank (See Table 1). NPL = 86.585" (round to 86.6") - For Tank 31 & 32 NPL = 86.6"

For Tank 33 NPL = 86.00376" @ the switch NPL = 6804 gals in the tank (See Table 1) NPL = 86.004" (round to 86.0") - For Tank 33 NPL = 86.0"

12.0 DETERMINE SETPOINT (TS)

 $TS \approx NPL \pm (CU + Margin)$

Positive values of CU is used for process variables that decrease towards the analytical limit.

12.1 LOW-LOW LEVEL DISPLACER SETPOINT SETTING:

Nominal TS of 17.1" @ the switch was implemented for tanks 31, 32, & 33 in 1994

12.1.1 Lower Displacer Setting for pump protection - For Tank 31 & 32

TS = NPL + CU - For Tank 31 & 32 TS = 15.875" + 0.84" (See Section 11.2 and 9.1.1) TS = 16.715" @ the switch = 844 gals - Calculated setting (round to 16.7")

Implemented - For Tank 31 & 32 (see TABLE 1) TS = 17.1° @ the switch = 870 gallons

Existing implemented setting is conservative.

12.1.2 Lower Displacer Setting for pump protection - For Tank 33

TS = NPL + CU - For Tank 33 TS = 15.7427" + 0.84" (See Section 11.2 and 9.1.1) TS = 16.5827" @ the switch = 875 gals - Calculated setting (round to 16.6")

Implemented - For Tank 33 (see TABLE 1) $TS = 17.1^{\circ}$ @ the switch = 910 gallons

Existing implemented setting is conservative.

12.1.3 Lower Displacer Setting - LOW-LOW switch field setting, TS =17.1" (see Section 12.1)

Level switch displacer calibrations referenced from tank bottom to bottom of displacer. From the Magnetrol installation drawing (Att. 4.2), the lower switch transfers on decreasing level of at least 1.125" (1 1/8") above the bottom of the lower displacer. Therefore the bottom of the lower displacer will be the setpoint ($TS_{LOW-LOW}$) minus 1.125":

LOW-LOW field setting = 17.1" - 1.125" = 15.975"

From the Tank Bottom to the Bottom of the Displacer (TBBD)

12.2 LOW LEVEL DISPLACER SETPOINT SETTING:

This evaluation for the Upper Displacer Setting Limit will consider 6804 gallon alarm identified in Section 11.3.

12.2.1 Upper Displacer Setting for low level 6804 gallon alarm setting - For Tank 31 & 32

TS = NPL + CU_{LOW} TS = 86.585° + 1.03" (See Section 11.3.1 and 9.1.2) TS = 87.615° @ the Switch, Rounded to 87.6°

For Tank 31 & 32 (see TABLE 1) 6874 gallons TS = 87.6" @ the Switch = 6874 gals = 89.9" @ indicator = 90.95" @ sounding tube (See TABLE 1)

*

12.2.2 Upper Displacer Setting for low level 6804 gallon alarm setting - For Tank 33

 $TS = NPL + CU_{LOW}$ TS = 86.004" + 1.03" (See Section 11.2.2 and 9.1.2) TS = 87.034" @ the Switch, Rounded to 87.05"

For Tanks 33 (see TABLE 1) 6874 gallons TS = 87.05" @ the Switch = 6874 gals = 90.1" @ indicator = 91.55" @ sounding tube (See TABLE 1)

12.2.3 Upper Displacer Setting - LOW Level switch field setting (see Section 12.2)

Level switch displacer field settings are referenced from tank bottom to bottom of displacer. From the Magnetrol installation drawing (Att. 4.2), the upper switch transfers on decreasing level 3.5" (3 1/2") above the bottom of the upper displacer. Therefore, the upper displacer will be set at the setpoint (TS_{LO}) minus 3.5":

Tank 31 & 32 -For field setting based on 6804 gallons in the tank, TS =87.6" (see Section 12.2.1) LOW setting = 87.6" - 3.5" = 84.1" From the Tank Bottom to the Bottom of the Displacer (TBBD)

Tank 33 -For field setting based on 6804 gallons in the tank, TS =87" (see Section 12.2.2) LOW setting = 87.05" - 3.5" = 83.55" From the Tank Bottom to the Bottom of the Displacer (TBBD)

12.3 TANK LEVEL - FSAR/TRM MINIMUM LOW LEVEL INDICATION:

12.3.1 MINIMUM LEVEL INDICATION - Dipstick

The EDG FOST minimum Dipstick indication required volume is 6647 gallons, @ 0.83 SG, for tank 31 & 32 volume and 6688 gallons, @ 0.83 SG, for tank 33 volume (see section 11.1.1), using the dipstick @ the sounding tube.

From TABLE 1 this minimum volume is equivalent to 87.7" for Tank 31 & 32 and 88.88" for Tank 33. The dipstick channel uncertainty (CU) associated with using the dipstick @ the sounding tube is ± 0.50 ". The CU will be added to 87.7" for Tank 31 & 32 and to 88.88" for Tank 33; to determine the minimum read setting (TS) for the fuel oil to be measured in the tanks in Operations procedures.

TS for Tank 31 & 32

TS = 87.7" + CUTS = 87.7" + 0.50" = 88.2"TS = 88.2" = 6682 gallons (See TABLE 1) - @ 0.83 SG

TS for Tank 33

TS = 88.88" + CUTS = 88.88" + 0.50" = 89.38" (Round up to 89.4") TS = 89.4" = 6726 gallons (See TABLE 1) - @ 0.83 SG

12.3.1 MINIMUM LOW LEVEL INDICATION - Indicator

The EDG FOST minimum Indicator required volume is 6538 gallons, @ 0.86 SG, for tank 31 & 32 volume and 6579 gallons, @ 0.86 SG, for tank 33 volume (see section 11.1.2) when the tank level indicators are used to obtain level. From TABLE 1 this volume is equivalent to 85.2" at the Level Indicators for Tank 31 & 32 and 85.95" at the Level Indicator for Tank 33. The tables (see section 11.1.2) identifying these values already include specific allowances for indicator uncertainty and SG affects, therefore additional allowances would not be appropriate.

TS for Tank 31 & 32 Indication

TS = 85.2" @ the Indicator = 6538 gallons @ SG 0.86

TS for Tank 33 indication

TS = 85.95" @ the Indicator = 6579 gallons @ SG 0.86

13.0 DETERMINE AS FOUND VALUE (AFV)

13.1 LOW-LOW LEVEL DISPLACER AS FOUND VALUES:

The SRSS of RA, DR and ALT will be subtracted from the pump cut-off setpoint (TS) to determine the minimum As-Found Value for the pump cutoff switch level setting. The SRSS of RA, DR and ALT will be added to the pump TS for inventory control maximum As-Found Value.

 $\begin{array}{l} \mathsf{AFV}_{L\text{-}L} = \mathsf{TS} \pm (\mathsf{RA}^2 + \mathsf{DR}^2 + \mathsf{ALT}^2)^{1/2} \\ \mathsf{AFV}_{L\text{-}L} = 17.1" \pm (0.25^2 + 0 + 0.60^2)^{1/2} \\ \mathsf{AFV}_{L\text{-}L} = 17.1" \pm 0.65" \end{array}$

 $AFV_{L-L} = 16.45"$ (Lower AV for Pump Protection) $AFV_{L-L} = 17.75"$ (Upper AV for Inventory Control)

For Tank 31 & 32 (see TABLE 1) $AFV_{L-L L} = 826$ gals $AFV_{L-L H} = 915$ gals

For Tank 33 (see TABLE 1) AFV_{L-L L} = 866 gals AFV_{L-L H} = 956 gals

13.2 LOW LEVEL DISPLACER AS FOUND VALUE:

TS elevation was determined in Section 12.2. To determine the minimum As Found Value for fuel oil 6804 gallon alarm setting; the SRSS of RA, DR and ALT for the switch will be subtracted from the Low Level Alarm calculated trip setpoint (TS). To determine the maximum As Found alarm value, the SRSS of RA, DR and ALT for the switch will be added to the the Low Level Alarm calculated trip setpoint (TS), for impact on tank fill.

13.2.1 As Found Value for Low Setpoint Setting at 6804 gallon alarm setting - For Tank 31 & 32 (see TABLE 1)

 $AFV_{L} = TS \pm (RA^{2} + DR^{2} + ALT^{2})^{1/2}$ $AFV_{L} = 87.55" \pm (0.25^{2} + 0 + 0.60^{2})^{1/2}$ $AFV_{L} = 87.55" \pm 0.65"$

 $AFV_{LL} = 86.9"$ (Lower AV for Inventory Control) $AFV_{LH} = 88.2"$ (Upper AV for tank fill)

 $AFV_{L-L} = 6827$ gals (Lower AV for Inventory Control) $AFV_{LH} = 6914$ gals (Upper AV for tank fill)

13.2.2 As Found Value for Low Setpoint Setting at 6804 gallon alarm setting - For Tank 33 (see TABLE 1)

 $AFV_{L} = TS \pm (RA^{2} + DR^{2} + ALT^{2})^{1/2}$ $AFV_{L} = 87.05" \pm (0.25^{2} + 0 + 0.60^{2})^{1/2}$ $AFV_{L} = 87.05" \pm 0.65"$

 $AFV_{LL} = 86.4$ " (Lower AV for Inventory Control) $AFV_{LH} = 87.7$ " (Upper AV for tank fill)

 $AFV_{LL} = 6830$ gals (Lower AV for Inventory Control) AFV_{LH} = 6919 gals (Upper AV for tank fill)

14.0 SUMMARY - For 0.83 SG Fuel Oil

EDG FOST TANK CAPACITY: 7.693 GAL (CALCULATED REF. 3.2) 7,700 GAL (DES. SPEC.)

14.1 LOW-LOW LEVEL DISPLACER SETTING

This Section addresses the LOW-LOW Level Displacer Calculated Setting For Pump STOP and Inventory Control

14.1.1 TANK 31 & 32

NOMINAL PROCESS LIMIT:	788 GAL (16.25" @ the pumps) (Sect. 11.2)
TRIP SETPOINT (LO-LO):	870 GAL (17.1" @ the switch) (Unusable Fuel, Pump Protection & Inventory Control) (Section 12.1)
AS FOUND VALUE:	826 GAL (LO) (16.45" @ the switch); 915 GAL (HI) (17.75" @ the switch)

14.1.2 TANK 33

NOMINAL PROCESS LIMIT:	818 GAL (16.25" @ the pumps) (Sect. 11.2)
TRIP SETPOINT (LO-LO):	<u>910 GAL</u> (17.1" @ the switch) (Unusable Fuel, Pump Protection & Inventory Control) (Section 12.1)
AS FOUND VALUE:	<u>866 GAL(LO)</u> (16.45" @ the switch); <u>956 GAL (HI)</u> (17.75" @ the switch)

14.2 LOW LEVEL DISPLACER CALCULATED SETTINGS (Alarm prior to FSAR/TRM minimum value, Operator to Initiate Tank Refill)

This Section addresses the LOW Level Displacer (Alarm) Calculated Setting Based on 6804 gallons @ 0.83 SG

14.2.1 TANK 31 & 32

NOMINAL PROCESS LIMIT:	<u>6804 GAL</u> (86.585" @ the switch) (Sect. 11.3.1)
ALARM SETPOINT (LO):	6874 GAL (87.55" @ the switch) (CCR ALARM)
AS FOUND VALUE:	6822 GAL (86.85" @ the switch) (Sect. 13.2.1)

14.2.2 TANK 33

NOMINAL PROCESS LIMIT:	6804 GAL (86.004" @ the switch) (Sect. 11.3.1)
ALARM SETPOINT (LO):	6874 GAL (87.05" @ the switch) (CCR ALARM)
AS FOUND VALUE:	<u>6830 GAL</u> (86.4" @ the switch) (Sect. 13.2.2)

115 GALLONS IN EDG F.O. DAY TANK IS NOT CONSIDERED FOR THIS FUNCTION IN THIS CALCULATION

14.3 DIPSTICK MEASUREMENT READING TO ASSURE COMPLIANCE WITH FSAR/TRM INVENTORY

14.3.1 TANK 31 & 32

NOMINAL PROCESS LIMIT:6647 GAL (87.7" @ the sounding tube) (Sect. 11.1.1)MIN SOUNDED READING:6682 GAL (88.2" @ the sounding tube) (Sect. 12.3.1)

14.3.2 TANK 33

NOMINAL PROCESS LIMIT:	6688 GAL (88.9" @ the sounding tube) (Sect. 11.1.1)
MIN SOUNDED READING:	6726 GAL (89.4" @ the sounding tube) (Sect. 12.3.1)

14.4 INDICATOR READING TO ASSURE COMPLIANCE WITH FSAR/TRM INVENTORY

14.3.1 TANK 31 & 32

NOMINAL PROCESS LIMIT: <u>85.2" @ the Indicator</u> or <u>6538 gallons</u> @ SG 0.86 (Sect. 11.1.2 & 12.3.1)

14.3.2 TANK 33

NOMINAL PROCESS LIMIT: 85.95" @_the Indicator or 6579 gallons @ SG 0.86 (Sect. 11.1.2 & 12.3.1)

EC-32406 Markup

15.0 EDG F.O. STORAGE TANK FIELD CALIBRATION CONSIDERATIONS

15.1 LEVEL SWITCH DISPLACER CALIBRATIONS

The following is based on field measurements (Att. 4.15) using the bottom of the tank as the reference point, as shown on drawing FP 9321-05-2990-0. It is not always practical to measure the displacer positions while they are in the tank, but it is possible to use the mounting flange as the reference and measure how far down the displacers are to be set on the activating cable. Field measurements were made to determine the distance from:

Flange to Tank Bottom (DFTB) and

Flange face to the bottom of the displacer (FFBD).

Each tank has a slightly different mounting flange dimension, so each DFTB and FFBD is different.

Tank Bottom to the Bottom of the Displacer (TBBD) TBBD based upon field measurements, without access to the bottom of the tank, is calculated based upon the listed DFTB and FFBD values.

The measurement from the flange face to the bottom of the displacer (FFBD) will be determined by DFTB - TBBD

15.1.1 Field Measurement Review - Lower Displacer Setting - LOW-LOW switch setting, TS =17.1" (see Section 12.1)

Field value -	DFTB Measured	FFBD Measured	TBBD (Design)
TANK 31 =	145.0625"	129.0625"	15.975"
TANK 32 =	144.75"	128.875"	15.975"
TANK 33 =	145.5"	129.625"	15.975"

As-Left Tolerance = $\pm 0.60^{\circ}$, As-Found Tolerance = $\pm 0.65^{\circ}$ [comparison of Measured to calculated]

FOR TANK 31 FFBD = DFTB - TBBD (LOW-LOW)FFBD = 145.0625" - 15.975" FFBD = 129.0875" (calculated)

FFBD Measured = 129.0625" TBBD (measurement based) = 16°

FOR TANK 32 FFBD = DFTB – TBBD (LOW-LOW) FFBD = 144.75" - 15.975" FFBD = 128.775" (calculated)

FFBD Measured = 128.875" TBBD (measurement based) = 15.875"

FOR TANK 33 FFBD = DFTB - TBBD (LOW-LOW) FFBD = 145.5" - 15.975" FFBD = 129.525" (calculated)

FFBD Measured = 129.625" TBBD (measurement based) = 15.875"

All readings are within tolerance.

15.1.2 Field Measurement Review - Upper Displacer Setting - LOW switch setting, TS =87.5" (Tank 31 & 32) & 87" (Tank 33) (see Section 12.2)

Field value -DFTB MeasuredFFBD MeasuredTBBD (Design)TANK 31 =145.0625"61.5625"84.1"TANK 32 =144.75"62.75"84.1"TANK 33 =145.5"62.0"83.55"

As-Left Tolerance = $\pm 0.60^{\circ}$, As-Found Tolerance = $\pm 0.65^{\circ}$ [comparison of Measured to calculated]

FOR TANK 31 FFBD = DFTB - TBBD (LOW) FFBD = 145.0625" - 84.1" FFBD = 60.9625" (calculated)

FFBD Measured = 61.5625" TBBD (measurement based) = 83.5"

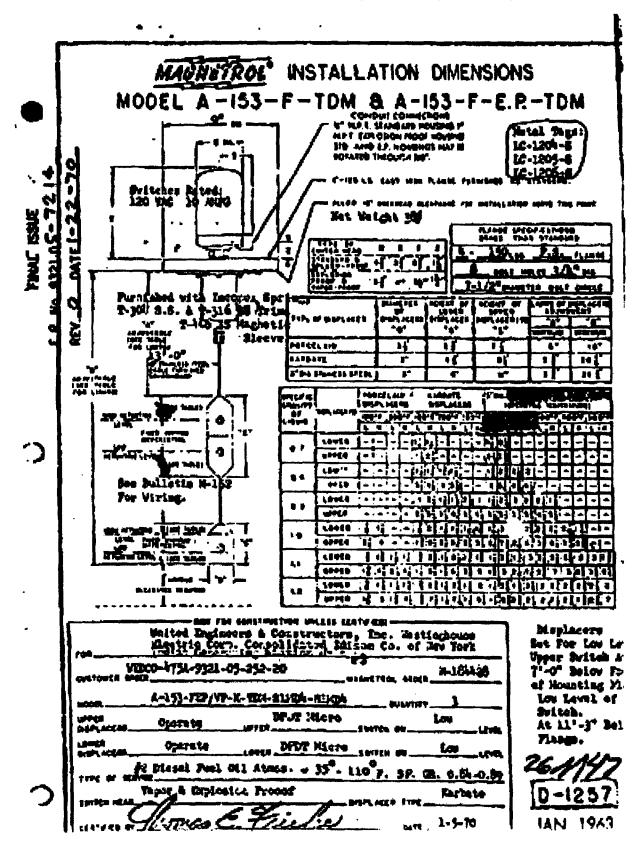
FOR TANK 32 FFBD = DFTB - TBBD (LOW) FFBD = 144.75" - 84.1" FFBD = 60.65" (calculated)

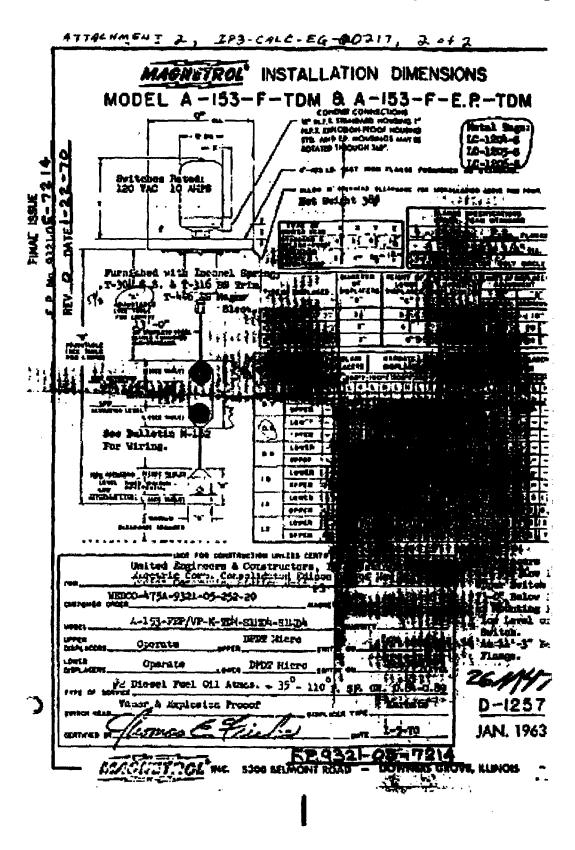
FFBD Measured = 62.75" TBBD (measurement based) = 82"

FOR TANK 33 FFBD = DFTB - TBBD (LOW) FFBD = 145.5" - 83.55" FFBD = 61.95" (calculated)

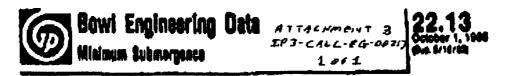
FFBD Measured = 62.0" TBBD (measurement based) = 83.5"

Prior field measurements for Tank 32 are not within As-Left tolerances for the alarm setting.

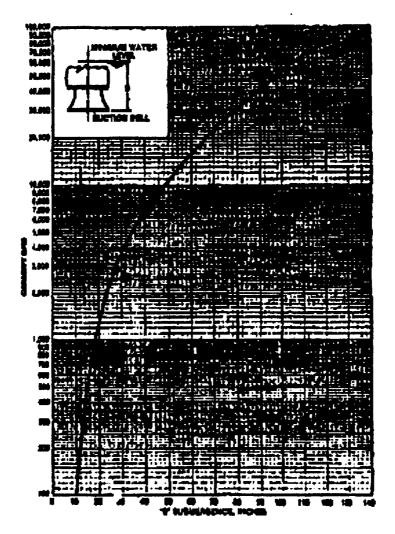

- 15.2 Conclusions From Field Measurement Review
 - 15.2.1 All AS-Left Measurements for Tanks 31, 32 & 33 LOW-LOW LEVEL settings are within the ALT requirements for the switches (see Section 8.1.5). Therefore, the pump protection and inventory control functions of the LOW-LOW Level switch are satisfactory.
 - 15.2.2 All AS-Left Measurements for Tanks 31 & 33 LOW LEVEL settings are within the ALT requirements for the switches (see Section 8.1.5). Therefore, The Alarm function (6804 gallons) will identify to Operators that action is required to initiate tank refill.
 - 15.2.3 The AS-Left Measurement for Tank 32 LOW LEVEL setting is not within the ALT requirement for the switch. Therefore, the field setting (TBBD) needs to be changed from 82" to 84.1" to provide the required Alarm Function (6804 gallons) to properly identify to Operators that action is required to initiate tank refill. The action, to implement this setting change, is required to implement the Technical Specification Amendment change.


TABLE 1 - EDG Fuel Oil height in tank at devices for specific gallons Slope Effect on Measurements for EDG Fuel Oil Storage Tanks No. 31, 32 & 33											
Gallons	H (In)	H (In) @S. Tube	H (In) @S. Tube	H (In) @L SW	H (In) @L SW,	H (In) @ PMP,	H (In) @ PMP,	H (In) @L IND	H (In) @ IND		
& 31, 32, 33 @ CL	TK 31,32, 33 @ CL	TK 31 &32 ≕H @ CL +1.6875	TK 33 =H @ CL +2.2831	TK 31 &32 =H @ CL -1.6458	TK 33 =H @ CL -2.2267	TK 31 &32 =H @ CL -1.2708	TK 33 =H @ CL -1.7194	TK 31 & 32 =H @ CL +.6250	TK. 33 =H CL + .8456		
175.96	6.435	8.1225	8.7181	4.7892	4.2083	5.1642	4.7156	7.06	7.28		
271.21	8.58	10.2675	10.8631	6.9342	6.3533	7.3092	6.8606	9.205	9.4		
378.99	10.725	12.4125	13.0081	9.0792	8.4983	9.4542	9.0056	11.35	11.5		
497.78	12.87	14.5575	15.1531	11.2242	10.6433	11.5992	11.1506	13.495	13.7		
626.36	15.015	16.7025	17.2981	13.3692	12.7883	13.7442	13.2956	15.64	15.8		
704.44	16.25	17.9375	18.5331	14.6042	14.0233	14,9792	14.5306	<u>16.875</u>	17.0		
717.3	16.45	18.1375	18.7331	14,8042	14.2233	15.1792	14.7306	17.075	17.2		
755.3	17.0208	18.7083	19.3039	15.375	14.7941	15.75	15.3014	17.6458	17.8		
760.06	17.1	18.7875	19.3831	15.4542	14.8733	15.8292	15.3806	17.725	17.9		
763.66	17.16	18.8475	19.4431	15.5142	14.9333	15.8892	15.4406	17.785	18.0		
784.5	17.4694	19.1569	19.7525	15.8236	15.2427	16.1986	15.75	18.0944	18		
787.51	17.5208	19.2083	19.8039	15.875	15.2941	16.25	15.8014	18.1458	18.		
795.875	17.6458	19.3333	19.9289	16	15.4191	16.375	15.9264	18.2708	18,4		
812.6	17.8958	19.5833	20.1789	16.25	15.6691	16.625	16.1764	18.5208	18.1		
817.58	<u>17.9694</u>	19.6569	20.2525	16.3236	15.7427	16.6986	16.25	18.5944	18		
826.1	<u>18.09</u> 58	19.7833	20.3789	16.45	15.8691	16.825	16.3764	18.7208	18.		
844.69	18.3708	20.0583	20.6539	16.725	16.1441	17.1	16.6514	18.9958	19.2		
851.91	18.4767	20.1642	20.7598	16.8309	16.25	<u> </u>	16.7573	19.1017	19.:		
863.43	18.6458	20,3333	20.9289	17	16.4191	17.375	16.9264	19.2708	19./		
865.53	18.6767	20.3642	20.9598	17.0309	16.45	17.4059	16.9573	19.3017	19.		
870.3	18.7458	20.4333	21.0289	17.1	16.5191	17.475	17.0264	19.3708	19.		
875.3	18.8194	20.5069	21.1025	17.1736	16.5927	17.5486	17.1	19.4444	19		
884	18.9458	20.6333	21.2289	17.3	16.7191	17.675	17.2264	19.5708	19.7		
908.84	19.305	20.9925	21.5881	17.6592	17.0783	18.0342	17.5856	19.93	20.1		
910.33	19.3267	21.0142	21.6098	17.6809	17.1	18.0559	17.6073	19.9517	20.		
915.17	19.3958	21.0833	21.6789	17.75	17.1691	18.125	17.6764	20.0208	20.2		
924.27	19.5267	21.2142	21.8098	17.8809	17.3	18.2559	17.8073	20.1517	20.3		
955.79	19.9767	21.6642	22.2598	18.3309	17.75	18.7059	18.2573	20.6017	20.0		
1061.23	21.45	23.1375	23.7331	19.8042	19.2233	20.1792	19.7306	22.075	22.		
1220.04	23.595	25.2825	25.8781	21.9492	21.3683	22.3242	21.8756		24.4		
1384.69	25.74	27.4275	28.0231	24.0942	23.5133	24.4692	24.0206		26.5		
1554.72	27.885	29.5725	30.1681	26.2392	25.6583	26.6142	26.1656		28.		
1729.62	30.03	31.7175	32.3131	28.3842	27.8033	28.7592	28.3106		30.1		
1908.75	32.175	33.8625	34.4581	30.5292	29.9483	30.9042	30.4556		33.0		
2092.16	34.32	36.0075	36.6031	32.6742	32.0933	33.0492	32.6006		35.1		
2278.16	36.465	38.1525	38.7481	34.8192	34.2383	35.1942	34.7456		37.:		
2467.43	38.61	40.2975	40.8931	36.9642	36.3833	37,3392	36.8906		39.4		
2659.62	40.755	42.4425	43.0381	39.1092	38.5283	39.4842	39.0356	41.38	41.6		
2854.41	42.9	44.5875	45.1831	41.2542	40.6733	41.6292	41.1806	43.525	43.7		
3050.62	45.045	46.7325	47.3281	43.3992	42.8183	43.7742	43.3256		45.8		
3247.93	47.19	48.8775	49.4731	45.5442	44.9633	45.9192	45.4706		48.0		
3446.93	49.335	51.0225	51.6181	47.6892	47.1083	48.0642	47.6156	49.96	50.1		
3646.55	51.48	53.1675	53.7631	49.8342	49.2533	50.2092	49.7606	52.105	52.3		
3846.45	53.625	55.3125	55.9081	51.9792	51.3983	52.3542	51.9056	54.25	54.4		
3900.04	54.2	55.8875	56.4831	52.5542	51.9733	52.9292	52,4806	54.825	55.0		
4046.34	55.77	57.4575	58.0531	54.1242	53.5433	54.4992	54.0506	56.395	56.6		
4245.96 4444.97	57.915 60.06	59.6025 61.7475	<u>60.1981</u> 62.3431	56.2692 58.4142	<u>55.6883</u> 57.8333	56.6442 58.7892	56.1956 58.3406	<u>58.54</u> 60.685	<u>58.7</u> 60.9		

		Slope Effect o		nts for EDG	Fuel Oil Stor	rage Tanks I	Vo. 31, 32 &		
Gallons	H (In)	H (In) @S. Tube	H (In) @S. Tube	H (In) @L SW	H (In) @L SW,	H (In) @ PMP,	H (In) @ PMP,	H (In) @L IND	H (In) C IND
TK 31, 32, 33 @ CL	TK 31,32, 33 @ CL	TK 31 &32 =H @ CL +1.6875	TK 33 =H @ CL +2.2831	TK 31 &32 =H @ CL -1.6458	TK 33 = H @ CL -2.2267	TK 31 &32 =H @ CL -1.2708		TK 31 & 32 =H @ CL +.6250	TK. 33 =} CL + .84
4642.27	62.205	63.8925	64.4881	60.5592	59.9783	60.9342	60.4856	62.83	<u>63</u> .
4838.49	64.35	66.0375	66.6331	62.7042	62.1233	63.0792	62.6306	64.975	65.
5033.27	66.495	68.1825	68.7781	64.8492	64.2683	65.2242	64.7756	67.12	67.
5225.47	68.64	70.3275	70.9231	66.9942	66.4133	67.3692	66.9206	69.265	69.
5414.73	70.785	72.4725	73.0681	69.1392	68.5583	69.5142	69.0656	71.41	71.
5600.73	72.93	74.6175	75.2131	71.2842	70.7033	71.6592	71.2106	73.555	73.
5741	74.567	76.2545	76.8501	72.9212	72.3403	73.2962	72.8476	75.192	75
5780	75.026	76.7135	77.3091	73.3802	72.7993	73.7552	73.3066	75.651	75
5784.14	75.075	76.7625	77.3581	73.4292	72.8483	73.8042	73.3556	75.7	75.
5963.27	77.22	78.9075	79.5031	75.5742	74.9933	75.9492	75.5006	77.845	78.
6121	79.153	80.8405	81.4361	77.5072	76.9263	77.8822	77.4336	79.778	79
6137.22	79,353	81.0405	81.6361	77.072	77.1263	78.0822	77.6336	79.978	80
6138.17	79.365	81.0525	81.6481	77.7192	77.1383	78.0942	77.6456	79.99	80.
6160	79.638	81.3255	81.9211	77.9922	77.4113	78.3672	77.9186	80.263	80
6168.73	79.7458	81.4333	82.0289	78.1	77.5191	78.475	78.0264	80.3708	80.
6176.21	79.8384	81.5259	82.1215	78.1926	77.6117	78.5676	78.129	80.4634	8
6191.48	80.0294	81,7169	82.3125	78.3836	77.8027	78.7586	78.31	80.6544	8
6199.64	80.133	81.8205	82.4161	78.4872	77.9063	78.8622	78.4136	80.758	80.
6201.31	80.1544	81.8419	82.4375	78.5086	77.9277	78.8836	78.435	79.5294	
6208.89	80.25	81.9375	82.5331	78.6042	78.0233	78.9792	78.5306	80.875	81.
6215.04	80.3267	82.0142	82.6098	78.6809	78.1	79.0559	78.6073	80.9517	81.
6216.32	80.3428	82.0303	82.6259	78.697	78.1161	79.072	78.6234	80.9678	
6218.87	80.375	82.0625	82.6581	78.7292	78.1483	79.1042	78.6556		81.
6220.52	80.3958	82.0833	82.6789	78.75	78.1691	79.125	78.6764	81.0208	81.
6231.11	80.5294	82.2169	82.8125	78.8836	78.3027	79.2586	78.81	81.1544	8
6238.15	80.6184	82.3059	82.9015	78.9726	78.3917	79.3476	78.899	81.2434	8
6240.999	80.6544	82.3419	82.9375	79.0086	78.4277	79.3836	78.935	81.2794	
6248.55	80.75	82.4375	83.0331	79.1042	78.5233	79.4792	79.0306	81.375	81
6254.68	80.8277	82.5152	83.1108	79.1819	78.601	79.5569	79.1083	81.4527	81
6258.406	80.875	82.5625	83.1581	79.2292	78.6483	79.6042	79.1556		
6266.41	80.9767	82.6642	83.2598			79.7059	79,2573	81.6017	81.
6308.2	81.51	83.1975	83.7931	79.8642	79.2833	80.2392	79.7906	82.135	82
6472.86	83.655	85.3425	85.9381	82.0092	81.4283	82.3842	81.9356	84.28	84.
6631.66	85.8	87.4875	88.0831	84.1542	83.5733	84.5292	84.0806	86.425	86.
6636.77	85.8705	87.558	88.1536	84.2247	83.6438	84.5997	84.1511	86.4955	86.
6642.23	85.9455	87.633	88.2286	84.2997	83.7188	84.6747	84.2261	86.5705	86.
6649.46	86.0455	87.733	88.3286	84.3997	83.8188	84.7747	84.3261	86.6705	86.
6651.23	86.07	87.7575	88.3531	84.4242	83.8433	84.7992	84.3506	86.695	86
6668.36	86.308	87.9955	88.5911	84.6622	84.0813	85.0372	84.5886	86.933	87.
6669.49	86.35	88.0375	88.6331	84.7042	84.1233	85.0792	84.6306	86.975	87.
6671	86.3705	88.058	88.6536	84.7247	84.1438	85.0997	84.6511	86.9955	87
6698.24	86.7255	88.413	89.0086	85.0797	84.4988	85.4547	85.0061	87.3505	87.
6707.14	86.8505	88.538	89.1336	85.2047	84.6238	85.5797	85.1311	87.4755	87.
6716.72	87	88.6875	89.2831	85.3542	84.7733	85.7292	85.2806	87.625	87.
6721	87.059	88.7465	89.3421	85.4132	84,8323	85.7882	85.3396	87.684	87.
6728.07	87.1458	88.8333	89.4289	85.5	84.9191	85.875	85.4264	87.7708	<u>87.</u>
6741	87.319	89.0065	89.6021	85.6732	85.0923	86.0482	85.5996	87.944	88.
6742	87.342	89.0295	89.6251	85.6962	85.1153	86.0712	85.6226	87.967	88.


TABLE 1 - EDG Fuel Oil height in tank at devices for specific gallons Slope Effect on Measurements for EDG Fuel Oil Storage Tanks No. 31, 32 & 33									
Gallons	H (In)	H (In) @S. Tube	H (In) @S. Tube	H (In) @L SW	H (In) @L SW,	H (In) @ PMP,	H (In) @ PMP,	H (In) @L IND	H (In) @L IND
TK 31, 32, 33 @ CL	TK 31,32, 33 @ CL	TK 31 &32 =H @ CL +1.6875	TK 33 =H @ CL +2.2831	TK 31 &32 =H @ CL -1.6458	TK 33 = H @	TK 31 &32 =H @ CL -1.2708		TK 31 & 32 =H @ CL +.6250	TK. 33 =H @ CL + .8456
6743.47	87.3717	89.05928	89.65488	85.72598	85.14508	86.10098	85.65238	87.99678	88.217
6754.97	873519	89.2065	89.8021	85.8732	85.2923	86.2482	85.7996	88.144	88.36
6757.54	87.57	89.2575	89.8531	85,9242	85.3433	86.2992	85.8506	88.195	88.41
6762	- 87.6323	89.3198	89.9154	85.9865	85.4056	86.3615	85.9129	88.2573	88.47
6762.94	87.6458	89.3333	89.9289	86	85.4191	86.375	85.9264	88.2708	88.49
6781	87.902	89.5895	90.1851	86.2562	85.6753	86.6312	86.1826	88.527	88.74
6782.77	87.9268	89.6143	90.2099	86.281	85.7001	86.656	86.2074	88.5518	88.77
6784.05	87.945	89.6325	90.2281	86.2992	85.7183	86.6742	86.2256	88.57	88.79
6787.59	87.9958	89.6833	90.2789	86.35	85.7691	86.725	86.2764	88.6208	88.84
6794.46	88.1024	89.7899	90.3855	86.4566	85.8757	86.8316	86.383	88.7274	88.9
6799.94	88.174	89.8615	90.4571	86.5282	85.9473	86.9032	86.4546	88.799	89.01
6800.17	88.1757	89.8632	90.4588	86.5299	85.949	86.9049	86.4563	88.8007	89.02
6801	88.187	89.8745	90.4701	86.5412	85.9603	86.9162	86.4676	88.812	89.03
6803.75	88.2267	89.9142	90.5098	86.5809	86	86.9559	86.5073	88.8517	89.07
6808.56	88.299	89.9865	90.5821	86.6532	86.0723	87.0282	86.5796	88.924	89.14
6811.24	88.335	90.0225	90.6181	86.6892	86,1083	87.0642	86.6156	88.96	89.18
6827,89	88.5767	90.2642	90.8598	86.9309	86.35	87.3059	86.8573	89.2017	89.42
6832.6	88.6458	90.3333	90.9289	87	86.4191	87.375	86.9264	89.2708	89.49
6840.06	88.7574	90.4449	91.0405	87.1116	86.5307	87.4866	87.038	89.3824	89.6
6848.52	88.8824	90.5699	91,1655	87.2366	86.6557	87.6116	87.163	89.5074	89.
6850	88.8998	90.5873	91.1829	87.254	86.6731	87,629	87.1804	89.5248	89.74
6872	89.2267	90.9142	91.5098	87.5809	87	87.9559	87.5073	89.8517	90.07
6897.28	89.6058	91.2933	91.8889	87.96	87.3791	88.335	87.8864	90.2308	90.4
6899.98	89.6458	91.3333	91.9289	88	87.4191	88.375	87.9264	90.2708	90.49
6929.24	90.09	91.7775	92.3731	88.4442	87.8633	88.8192	88.3706	90.715	90.93
6936.88	90.2067	91.8942	92.4898	88.5609	87.98	88.9359	88.4873	90.8317	91.05
6938.14	90.2267	91.9142	92.5098	88.5809	88	88.9559	88.5073	90.8517	91.07
7066.53	92.235	93.9225	94.5181	90.5892	90.0083	90.9642	90.5156	92.86	93.00
7195.11	94.38	96.0675	96.6631	92.7342	92.1533	93.1092	92,6606	95.005	95.22
7313.9	96.525	98.2125	98.8081	94.8792		95.2542	94.8056		97.37
7421.68	98.67	100.3575	100.9531	97.0242		97.3992	96.9506		99.5
7516.94	100.815	102.5025	103.0981	99.1692		99.5442	99.0956		101.66
7597.4	102.96	104.6475	105.2431	101.3142		101.6892	101.2406	103.585	103.80
7659.37	105.105	106.7925	107.3881	103.4592	102.8783	103.8342	103.3856	105.73	105.95
7692.89	107.25								

Attachment 2 Page 1 of 2 Magnetrol Drawing D-1257 (FP 9321-05-7214 Rev. 0,1/22/70) " Magnetrol Installation Dimensions Model A-153F-TDM & A-153-F-E.P.-TDM".



ATTACHMENT 3 Gould pumps Bowl Engineering Data, # 22.13, October 1, 1986, "Minimum Submergence Required for Vortex Suppression".

MINIMUM SUBMERGENCE REQUIRED FOR VORTEX SUPPRESSION

NOTE: 1. Submergence values above are for Vortax free operation. Check performance curves for NPSH required. Submergence to satisfy NPSH requirements may be greater than "2".

2. Committee and other ideal more contracting the regime of distance between pures committee and other ideal more contraction. Therein to Figure DB and 70 in Hydrautic instatute of refer to factory for more information regarding your perdicular installation, as less than ideal conditions will require additional submergenes.

	IMENT 4
Telephone Discussion Do A Cerwin t	ocumentation form, 6/5/91, to T. Fricke.
NEW YORK POW	ER AUTHORITY
TELEPHONE DISCUSSION	DOCUMENTATION FORM
	HMENIT 4 RLC-どG-00211
	TIME AND AN OUTGOING X
CRUE DAIR	INCONTHO
0	
BETWEEN HANTHONY CREWIN	OF THE AUTHORITY
AND THOMAS FRICKE	OF MAGNETROL INC
AND THOMAS FRICKS	OF 117HONE / 10-0
AND	07
REPERENCE EDG FUEL ON STOLAGE	These level Switch
SUBJECT ACCURACY / REPEATAbility	07 JELPOINES
DISCUBSION/ACTION:	(is marke presticiate)
Vendor states that the davice	
were purchased connercial gr	ade And do Not have a
specified Accuracy Repeatability	During Acceptance
testing by masne these	devices are tested to
a = to Acceptance band. T	the Accuracy is based on
have along the divid many	in a do ara mada and
how close the physical measure	
the repeatability is within	17

DISTRIBUTION:

NUC GEN FILES NO.

KOD 6/5/51 DATE SFGHATURE

ATTACHMENT 5 Telephone Discussion Documentation form, 11/10/93, F. Granitto to D. Wilson.

ATING NMENT 5 IPB-CALC- 84-80217 1 8f 1
NEW YORK POWER AUTHORITY MUCLEAR ENGINEERING & DESIGN SECTION TELEPHONE DISCUSSION DOCUMENTATION FORM
CALL DATE NOV 10, 1993 TINE 10:00 AM OUTGOING K
BETWEEN FERNAND Granitto OF THE AUTHORITY
AND DANIEL WILSON OF NYPA . IP.3 CHEM. SUPV.
AND0P
REFERENCE EDG FUEL OIL
SUBJECT FUEL OIL DESIGN SPECS
DISCUSSION/ACTION:
DAN INDICATED THERE IS MINIMAL TEMP VARIATION
AROUND THE EDG STORAGE TANKS AND THE FUEL OIL
SPECIFIC GRAVITY WILL NOT BE EFFECTED BY THE AT.
DAN STATED THAT THE SP. GR. OF THE FUEL OIL
MUST BE IN THE DESIGN SPEC OF 0.83 - 0.89. THE
AVERAGE SP. GR is 0.84 AND THE LAST READENG
RECORDED FOR SP GR. WAS 0.836. NHEN ADDING
NEW FUEL TO THE STORAGE TANKS, THE SP. GR WILL
NOT VARY DUENTHE LARGE AMOUNT OF FUEL EXISTING IN
THE TANK AS COMPARED TO THE ADDED FUEL- DISTRIBUTION:
NUC CEN FILES NO.

NOD FILE NO

ATTACHMENT 10

U.S. Environmental Protection Agency (EPA). 1995. *Review of Mathematical Modeling for Evaluating Soil Vapor Extraction Systems*. Office of Research and Development, Washington, D.C. EPA/540/R-95-513.

For depths greater than 100 cm, the mean annual soil temperature remains relatively stable throughou the year and can be estimated from the average shallow ground water temperatures shown in Figure 1.

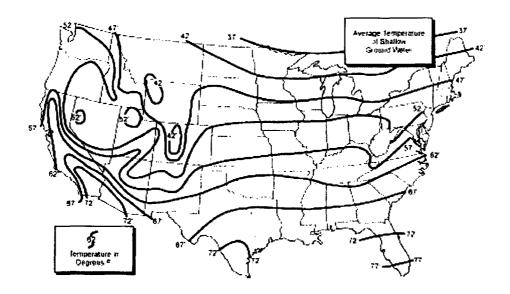


Figure 1. Average Shallow Ground Water Temperatures in the United States

ATTACHMENT 12

IP3-RPT-EDG-01632, "Operation Graphs, TC-25A through TC-25D Diesel Generator Fuel Oil Storage Tanks Slope and Specific Gravity Compensation, dated 10/21/95.

> ATTARHOFNT 12 SP3-CALC-EG-PO217 1 01 15

HEW YORK POWER ANTHORITY

INDIAN POINT 3 NUCLEAR POWER PLANT

193-297-800-01632 REY. 0

CPERATION GRAPHS TC-25% THROUGH TC-25D Direkt Generator fuel oil storage takes slope and specific gravity compensation

SHOFF PREPARED ST REVIEND BT Jern T. Sers ifeter APPROVED DTI

193-897-809-01633 884. 0 ATTRCAMENT 12 293-CALC-66-08217 20815

Purposet

- 11 This report provides the documentation of the methodology used to correct the 31, 32 5 33 Diesel Generator Fuel Dil Storage Tank Inch vs. Gallon Graphs (Operations Graphs TC-253, -258, -250 ± -25D). The original graph, Operation Graph TC-25 was based on calculation 200 which does not consider tank slope.
- 21 Energency Diesel Generator (EDG) Level Indicators L1-3133, L1-1136 and L1-2135 are calibrated for No. 2 diesel fuel with a specific gravity of 0.86. This report details the zethodology of when and how the indicators can be compensated for a change in specific gravity.

Discussions

Tant Slope

Calculation 200. Dissel Generator Fuel Oil Storage Tanks Capacity calculation was performed to produce a graph of level versus volume of fuel oil contained in the EDG Fuel storage tanks. This information was then used to produce Operations Graph TC-25 Rev 0 The EDG fuel bil storage tanks were designed to be installed with a 3° slope over a working distance of 14°2° distance (reference drawing IP3V-353-6062). With this design elope the nominal level at the vertical conterline of the tank yields level values which can be converted to gallons using Calculation 200. To measure the nominal level of the dissel Fuel oil the level indicator readings and the dip stick readings need to be corrected to B demorting level equivalent to compensate for tank slope. Calculation 200 dows not consider tank slope

During the implementation of MNP 94-3-132 EDG Rev.1 actual slope measurements were taken for all three MDG fuel oil tanks (see attachment 1). Using these measurements "as built" slope correction factors were determined. The following correction factors were applied to the level indicators and dipatick measurements to obtain the equivalent tank centerline elevation:

					Level Indicator	Dipstick
31	KDG Puel	011	Storage	7ank	0 625*	1.688*
32	EDG Puel	oi1	Storage	7ank	0.6251	1.688*
33	ROG Fuel	011	Storage	Tank	0 045*	2.283*

When developing the new graphs the inch vs gallon curve was offset by the above factors since the level indicator and dipstick readings indicate nore fuel due to the tank slope. This was accomplished by adding the correction factors to the H column of attachment 2 of Calculation 200. Since there are different correction factors required for the level indicator and the dipstick, separate curves were generated. In addition separate curves were required because the correction factors for NDG Fuel Oil Storage Tank 31 and 32 were different than for Tank 33. Attachment 2 is the tabulated inch vs gallons tables (corrected for Tank slope) used to develop the

page 1 OP 3

АТРАСАНЕМТ 12 IPJ-RPT-BDG-01632 REV. 0 IP3- САСС-ЕД-ОФУ17 3 04 15

Operations Graphs TC-35A, -35B, -25C and -25D.

Operations Graphs TC-25A through TC-25D indicate nominal level and reflect the actual amount of fuel oil in the storage tanks based on a reading that is corrected to the level represented at tank centerline.

Specific Gravity

EDG Fuel Gil Level Indicators 11-1133, 11-1134 and LI-1135 have a calibrated scale for fuel oil with a specific gravity (55) of 0.88. The allowable SG range for No. 2 bissel fuel oil is .83 to .89. In order to determine the fuel oil level to the 150 gallons instrument accuracy, the following correction for specific gravity deviation must be applied:

Actual Compensated = 0.85 x indicator inch rending level in inches current SG value

The SG compensated gallon reading can then be obtained by utilizing the appropriate Operations Graph (TC-25B or TC-25p).

in the past 5 years the SG has not deviated by more than \pm 0.012. This translates to a worst case possible error of 150 gallens. To alleviate Operation personnel from applying a SG compensation to the level indication reading the following has been applied:

If the actual 83 is below 0.86 the level indicators will indicate less fuel than is actually in the tank. Since the indicator reading is in the conservative direction, no correction is required.

If the SG is above 0.86 the indicators will indicate more fuel than is actually in the tank. To compensate for this condition. 150 gallons of oil has been added to the Technical Specification required level. This 150 gallon accounts for a SG deviation up to 0.872. Such though the highest SG value observed in the past 5 years was 0.872 the allowable S5 range is .0) to .09. If the SG goes above 0.872 the indicator reading must be compensated for SG or the tanks must be manually sounded to ensure that the Technical Specification requirements of stored fuel has been not. Chemistry procedure RR-CR-045 requires that the Control Room Supervisor and the shift manager be notified if the recorded EG is greater than 0.872.

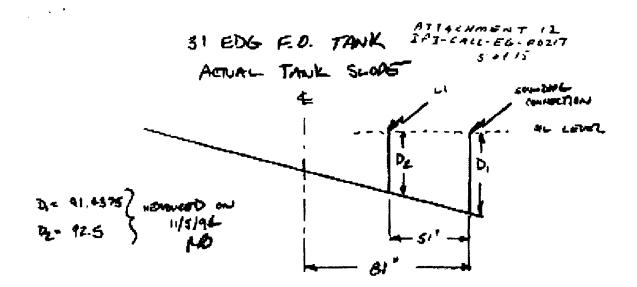
Conclusions

Operations graphs 7C-25A. -25B. -25C and -25D reflect nominal level, the curves have been edjusted to compensate for the actual tank slopes. Calculation 200. Diesel Generator Fuel Oil Storage Tanks Capacity calculation does not consider tank slope. Attachment 2 of calculation 200 was adjusted for both the level indicator and digetick readings to compensate for tank slope.

EDG level indicators 21-1133.-1134 and -1139 are calibrated for No. 2 fuel oil with a SG of 0.86. The specific gravity can very between .83

.

173-RFT-RD9-01632 REY. 0 173-CALC-06-00217


and .89. To measure the fuel oil to the 150 gallons instrument securacy the indicator reading must be compensated for 55 deviation from 0.86. If the SG drops below 0.86 a correction is not required because the level indicator will read conservatively. For SO deviation between .360 and .872, no SG compensation is required because 150 gallons of fuel was added to the Technical Specification level requirements to account for the possible error due to the increase on SG. For SG greater than 0.872 the level indicator reading must be compensated for SG deviation or the SDG fuel oil storage tank(s) must be manually sounded to ensure Technical Specification requirements.

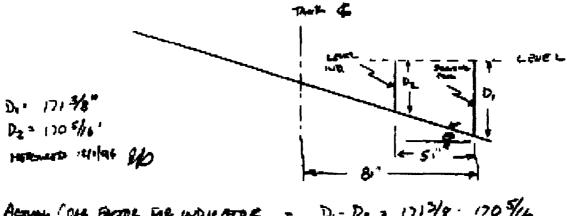
This information will be utilized to resolve ACTS Number 13463. Calculation IP3-CALC-EG-09217 did not consider the tank slope when determining the unusable fuel volume when determining the RDG storage Yanks Setpoints.

Xeferences:

SMP 94-3-132 EDG Rev. 1 1930-439-1390 Rev. 1 Calculation 200 Operations Graph TC-23 Rev. 0 Operations Graph TC-258 Rev. 0 Operations Graph TC-258 Rev. 0 Operations Graph TC-250 Rev. 0 Operations Graph TC-250 Rev. 0

page 3 CF 3

Coll FACTOR DETWEEN Some connection 4 L1 = D1-D2 = 92.5-9443; - 10625"

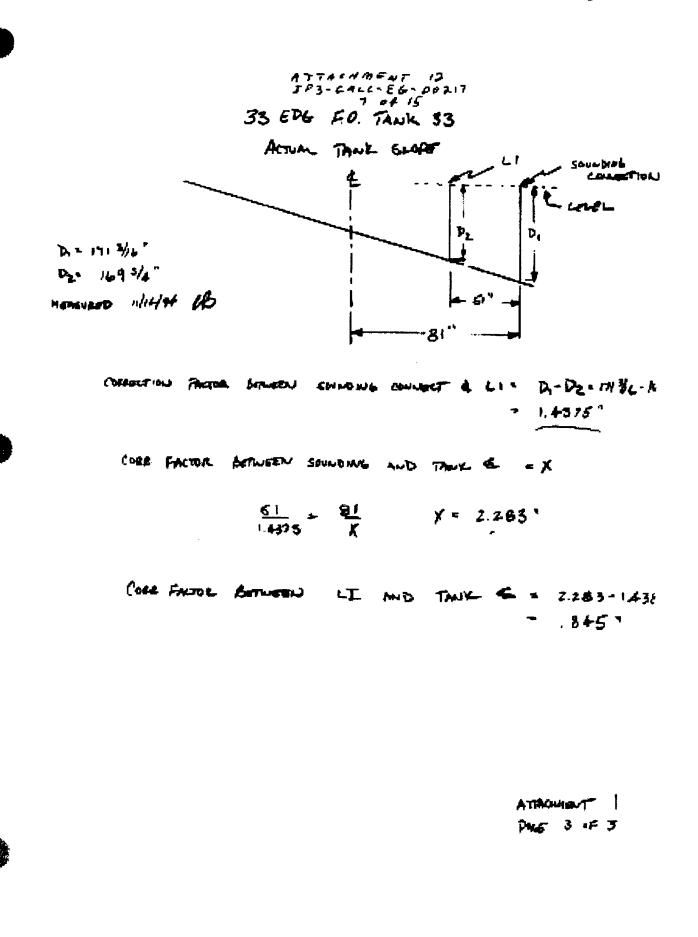

CORE FACTOR STRUCTURE SOUNDING AND TAKE & C.X.

Coef. FALTOR BOTHERD LI & TANK 5 . 1688-1.063 = .625

ATTROMENT !

9779644547 12 EP3-CALL-E4-B4217 \$ 88 15

ACTUM TANK SLOTE FIR EDG FO TAINK 32


Acron (OLE FORTOR TOR INDIRATOR - DI-DES 1717/8- 1705/16 1/16 = 1.0655" Ŧ

AMORE CORR FACTOR FOR TANK CONTERLINE - TANGEBI = 1.688" 4 SAVAGINE COMMERTION

CORE THORE BETWEEN LI & THAT COMPLEINE - 1.688-1.653 1. . 625

> ATTICALIT 1 REZ OF 3

···· •

Gallons	inch e	5 (H+ 1688)	,
$ \begin{array}{c} 3.05 \\ 15.5 \\ .75.96 \\ .73.21 \\ .73.21 \\ .73.99 \\ .97.78 \\ .26.36 \\ .43.66 \\ .308.84 \\ .061.23 \\ .220.04 \\ .394.69 \\ .554.72 \\ .729.62 \\ .554.72 \\ .729.62 \\ .508.75 \\ .902.16 \\ .278.16 \\ .278.16 \\ .278.16 \\ .265.9.62 \\ .3954.41 \\ .3050.62 \\ .247.93 \\ .555.5 \\ .344.45 \\ .265.9.62 \\ .3954.41 \\ .3050.62 \\ .247.93 \\ .344.97 \\ .3645.55 \\ .344.45 \\ .245.56 \\ .3444.97 \\ .3645.55 \\ .3444.97 \\ .3645.55 \\ .3444.97 \\ .3645.55 \\ .3444.97 \\ .3645.55 \\ .3444.97 \\ .3645.55 \\ .3444.97 \\ .3645.55 \\ .3784.14 \\ .963.27 \\ .3784.14 \\ .963.27 \\ .3784.14 \\ .963.27 \\ .3784.14 \\ .963.27 \\ .3784.14 \\ .963.27 \\ .3784.14 \\ .963.27 \\ .3784.14 \\ .963.27 \\ .3784.14 \\ .963.27 \\ .3784.14 \\ .963.27 \\ .3784.65 \\ .3794.05 \\ .3794.05 \\ .3794.05 \\ .3794.05 \\ .3794.54 \\ .459 \\ .3797.4 \\ .669.37 \\ .3785.37 \\ .3666.51 \\ .47659.37 \\ .47659.37 \\ .47659.37 \\ .47659.37 \\ .47659.37 \\ .4666.51 \\ .447 \\ .47659.37 \\ .47659.37 \\ .47659.37 \\ .47659.37 \\ .47659.37 \\ .47659.37 \\ .47659.37 \\ .47659.37 \\ .4666 \\ .447 \\ .$	J. 833 5.978 8.123 10.268 12.413 14.558 16.703 18.848 20.993 23.138 25.283 27.428 29.573 31.718 33.288 40.298 42.588 40.298 55.313 57.458 59.603 51.749 53.893 53.183 57.458 59.603 51.749 53.893 53.1993 83.1993 83.1993 843 87.488 89.633 91.778 923 95.058 1002.5503 104.648 107.25 107.25	а 7 та 2 РЗ С	LUMAGNIT 12 CALL-EGI-00211 8 OF 15 DATA FOR PERATIONS GRAPH TC-25A Ban O MUSE FRAM CALEMATION 200 MUSENT 2
++ 7666.51	obtained by	where polations.	

ATTACHNENT 2

Pres 1 + F. f

.

.

GALLONS	INCHES CH+	0.625)
33.05	2.77	
95.5	4 915	ATTERMENT 12
175.96	7.06	エメヨー ビカレビー あぼーブリア
271.21	9.205	9 04 15
378,99	11.35	
497.75	13.495	
626.36	15.64	DATA FOR
753.66	17.785 19.93	
908.84 1061.23	22.075	OPERATIONS GRAPH TC-250
1220.04	24,22	
1384.69	26.365	Lev. O
1554.72	28 51	
1729.62	30.655	
1908.75	32.6	
2092.16	34.945	
2278.16	37.09	
2467.43	39.235	
2659.62	41.38	
2854.41	43.525	
3050.62	45.67	A H MILLE FROM CALLATION 200
3247.93	47.815	4. 4. Marting Lines, cherring and
3446.93	49.96	ATTACHART 2
3645.55	52.105 54.25	hällä finansikundiaan t
3846.45 4046.34	56.395	
4245.96	50.54	
4444.97	60.685	
4642.27	62.83	
4838.49	64.975	
5033.27	67.12	
5225.47	69.265	
5414.73	71.41	
5600.73	73.555	
5784.14	75.7	
5963.27	77.845	
6138.17	79.99 82.135	
6308.2 6472.86	84.28	
6631.66	86.425	
6784.05	88.57	
6929.24	90.715	
7066.33	92.46	
7195.11	95.005	
7313.9	97 15	
7421.68	59.295	
7515.94	101,44	
7597.4	103.585	
7659.37	105.73	
7683 12 44	107.25	

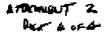
++ 7683.12 obtained by interpolations

ATTRONHENT Z. Buc 2 .F +

IP3-CALC-EG-00217 Rev. 5 EC-32406 Markup Page 53 of 74

•

•

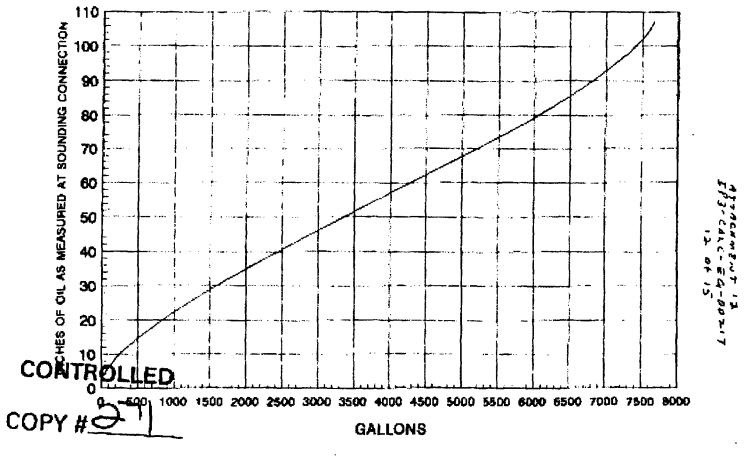

GALLONS	NENES (4 + 2,28	3")
33.05 95.5 175.96	4.428 6.573 8.718	ATTALMMENT 12 203-CALC-CG-00217 10 04 15
271,21 378,99 497,70 626,36	10,863 13,008 15,153 17,298	Dana For
763,65 908,84 1061,23 1220.04	19-443 21.588 23.733 25.878	OPERATIONS CRAPH 7C-25C
1384.69 1554.72 1729.62	28.023 30.168 32.568 32.315	
1904.75 2092.16 2278.16 2467.43	34.459 36.603 38.748 40.893	
2659.62 2854.41 3050.62	43.038 45 1#3 47.328	T I HWE FAN CALCULATION BOD
2247,93 3446.93 2646.55 3846.45	49.47) 51.618 53.763 55.908	ATTION MENT 2
4046.34 4243.96 4444.97	58.053 60.198 62.343	
4642、27 4838、49 5033_27 5225、47	64,488 66,633 68.778 70,923	
5414.73 5600.72 5784.14	73 068 75.213 77 358	
5963.27 6138.17 6308.2 6472.86	79.503 81 648 83.793 85.938	
6633.66 6786.05 6929.24	48,083 90,228 92,373	
7066.53 7195.11 7313.9 7421.68	94.318 96.663 98.808 100.953	
7516,94 7597.4 7655.6 AF	103.098 105.243 107.25	
7597.4 7655.6 MF	105.243	hav

ATTACHNENT Z OUR ENE 4

÷.

LLONS INCH (4+ 0.845") GALLONS 3.05 2.99 ATTALNMENT 12 5.5 75.96 5.135 IP3 - CALC - E4 - BOXIT 11 07 15 9.425 71.21 78.99 FOR DATA 13.715 97.78 -26.36 15.46 OPERATIOUS GRAPH TC. 250 63.66 18.005 108.84 20.15 22.295 .061.23 Rev.O 220.04 24.44 .384.69 554.72 .729.62 .908.75 28.73 30.875 33.02 092-16 35.165 37.31 278.16 :467.43 :659.62 39.455 41.6 43.745 45.89 48.035 1954.41 1050.62 1247.93 * N UNING FROM CALEMATION 200 50.18 :446.93 52.325 1646.55 ATRACKHENT 2 846.45 54.41 56.515 58.76 1046.34 .444.97 1642.27 60.905 63.05 4838.49 1033.27 1225.47 65.195 67.34 69.485 \$414.73 71.63 600.73 5784.14 5963.27 25.92 78.065 80 21 313**8.17** 82.355 5308.2 5472.86 84.5 86.645 88.79 90.935 5784.05 5929.24 066.53 93.08 95.225 97.37 '313.9 '421.68 '516.94 99.515 101.66 1597.4 7659.37 103.805 105.95 1679.69 44 107.25

7679.69 obtained by interpolation

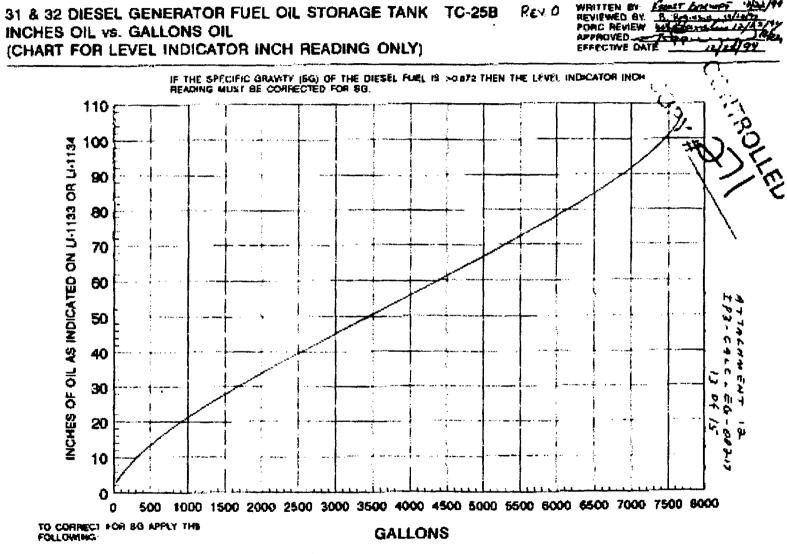


Page 55 of 74

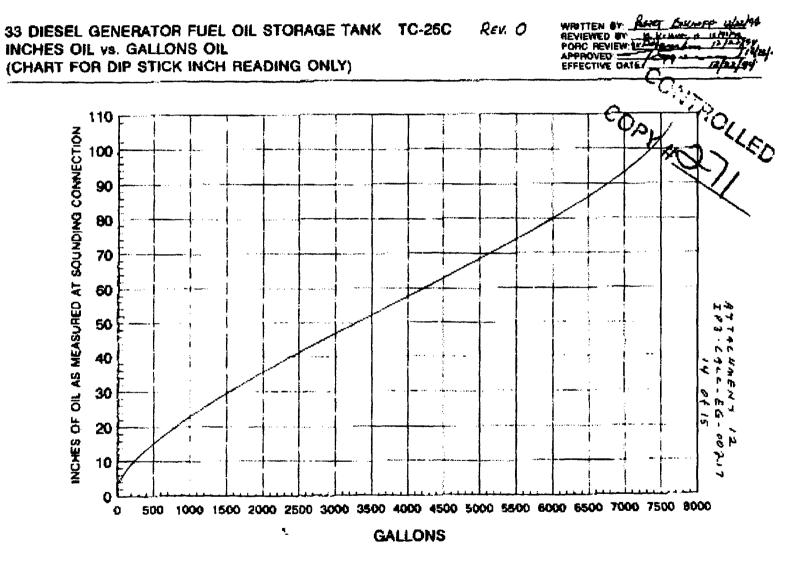
FEV. O

31 & 32 DIESEL GENERATOR FUEL OIL STORAGE TANK TC-25A INCHES OIL V8. GALLONS OIL (CHART FOR DIP STICK INCH READING ONLY)

WAITTEN ON BUCT NOT WART



CURVE COMPENSATES FOR TANK SLOPE

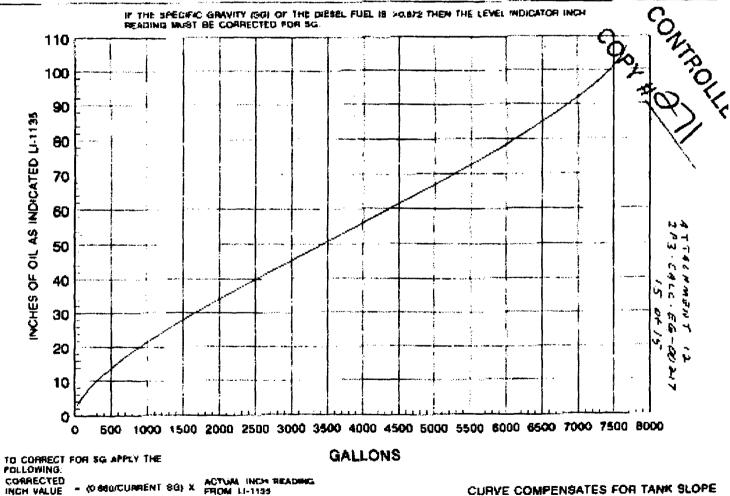


Page 56 of 74

CURVE COMPENSATES FOR TANK SLOPE

Page 57 of 74

Page 58 of 74


WRITTEN BY PORC REVIEW

APPROVED

PIPECTINE ONTE

CURVE COMPENSATES FOR TANK SLOPE

RAV. O 33 DIESEL GENERATOR FUEL OIL STORAGE TANK TC-25D INCHES OIL VS. GALLONS OIL (CHART FOR LEVEL INDICATOR INCH READING ONLY)

IP3-CALC-EG-00217 Rev. 5

ATTACHMENT 13

FAX MESSAGE, from A.E. Vazquez of Uehling, to R.F. Jones of MDM Engineering, "Certificate of Calibration" dated 12/18/95.

era Geny Awarus, Paleson, NJ UBA 07503 + 1	Pone (201) 742-5710 • PAK (201) 742-1205
	PAGE 1 CF 2
TERATUL FAR MERRAGE	DATE: 13/18/35
To: for Joers Fre York fontr Adtricty Indian Poirt Suchanar, Bi Fai 914-736-8877	ATTOCNOIENT 13 IPJ-CALL-CG-00211 1 OF 2
Prom: Alley yasques Uneling instrument corpary Paterbon, by Par 201-742-1205	

REPERENCE: P. D. 59464646

COPY OF CENTIFICATE OF CALLERATION YOLLOWS.

•

Paulor Fox Nuts 757	1 Due Infal Line 2
"Las Trees	- C. Russy
10.000 DE 3. 60	Color De 2 Mary
141 (-CKO)	
	and the second sec

L DEAVE HARANG MAIN AND CONTRAS + GALERS + MATCHERS + C. (MAID RESPONDED + Secondors

۰.

673 GARY Avenue, Patencen, NJ USA 07503

Phone (201) 745 97:00 + FAX (201) 742-1006

AT TOLEMENT 13 Downbur 15, 1995 353-CALC-CG-COZIZ 2 45 2 Certificate of Calibration

Re: (4) Lichting Gauge Model 1 SR173, Secial Nes. 78524 - 78527 New York Powie Authority P.O. 59454648

Ushing Instrument Company bareby certifies the the above referenced gauges were calibrated based on tank dimensional and specific gravity data provided by the purchaser along with fixed factors such as the indicating fluid used, the bore of the Pytex manymener take and its relationship to the well. The calibration is fixed permanently on the calibrated scoles. No recalibration is required for the life of the gauge provided it is used for its original increded purpose.

Gauge accuracy is equivalent to the minimum reading resolution shown on the only and scale provided the gauge is used for his original second of perpose, as specified, installed per manufacturers instructions and maintains 4 is proper operating condition. A stack measurement, at the pressure pipe location, will correspond to the gauge reading within a 1/8 inch.

Cutified by: A. B. Varquer

ATTACHMENT 14

Specification for "Liquid Level Switches", No. 9321-05-252-20, Revision 2, Pages 3, 4, & 5, dated 9/19/95

ATTACHAENT 14 IP3-CALC-EG+00217 \$ 01 3

2. Dusign Data

C. Decall Requirements for Displacement-Type Controls:

Iten No.	Bo. Res'd.	Zas Ho.	Service
1	1	LC+12048	Fuel Gil Sporage Tack No. 21
1	1	LC-12958	Puel OLE Starage Tink No. 22
3	1	1C-12065 ·	Puel Oil Storage Tank No. 23
•	1	1C-12075	Fuel Oil Day Teak No. 21
5	L	1C-12085	Fuel Oil Day Tenk No. 22
6	ĩ	LC-12095 -	Fuel Oil Day Tanh Ho, 23

1. The following information applies to all items listed above:

```
Fluid: Diesel Fuel, No. 2 fuel oil, commercial grade.
Specific Gravity: 0.86 (Range 0.89 - 0.84)
Pressure: Atmospheric
Semperature: 40°F (Range X3 - 110°F)
Type: Displacement, top mounting style, with 4° - 1500 eaches staal
flampet connection.
Displacer Diemster Limitarics: A 4° schedule 60 pipe (3.626 inches inside
diameter) standpipe is provided in all tenks
if design conditions require displacers
larger than 3° diameter, the vendor shall
state the mext larger pipe size required to
```

contain the displacers and furnish corresponding size mounting Element. Trim & Displacer Katerial: Suitable for service and conditions stated. Switches: Bry contact type micro-switches for 120 wolt A.C.-10 mps.

2. The following information applies to item nos. 1,2 and3 histed above:

Type of Control: Two level stage, entrop differential each stage. Switch Contects: D.P.D.T. Switch Housing: Taporproof, suitable for ourdoors, fully exposed to wrather, with two conduct connections.

P. Rautyment and Services to be Furnished by the Seller:

The solier shall design, fabricate and deliver liquid level switches as specified in Section I-2-B and I-2-C.

- E. Equipment and Services to be Furmished by Others:
 - 1. Unloading and installation of equipment.
 - 2. Diternal piplag and viriag.

Spec. No. 9321-05-252-20 Spec. No. 9321-01-252-20 Page 3 of 5

÷

	ATTALAMENT 14 IPZ-CALL-EG-BOZIT 2 01 3
) ; 4	D. Upper Switch Action: Transfer on failing level, reset on rising level. Function-slars for fuel rafill. Lower Switch Action: Transfer on failing level, reset on rising level. Function-pump cut-out. Distance from tank mounting to upper switch actuation level 7 feat-0 (nches: Distance from tank mounting to lower switch actuation level 11 failes parties Langth of stafficer responsion cable from tank mounting to lower and stafficer responsion.
N	cable: 2 feat-3 inches
ð	4. The following information applies to items not, 4, 5 and 6 listed on page L. Type of Control: Three Level stage tandem type. Switch Contacts: Upper and lower switch - one (1) S.F.D.T. each switch. Niddle switch - one (1) D.P.D.T
	Switch Housing: Splash-proof, with two (1) conduit connections.
-	The following description of operation refers to the level points as defined on the shotch on Instrument Spec. Shost So. 5, forming a part of this specificati
21	1. At level point #1, upper switch to transfer on ricing level.
7 7	2. At level point #2, upper switch to reset on falling level.
39" 45	 Amount of Hquid Invel travel between level points #1 6 #2 to be a minimum; wender to state.
43	 At level point #3, middle pwitch to transfer on falling level.
	 Niddle switch to reset on rising level at lavel point \$1, or anywhere y between level points \$3 & \$1.
	6. At laval point #6, lower switch to transfer on falling level.
	7. Lower witch to result on minimum rise of liquid level above level point 66, or at any point between points #3 6 F4; vendor to define.
	The three ewitches will be used to provide the following functions:
	Oper Buitch: On rising level, close velve in fill line to task, On felling level, open valve in fill line to task.
	Hiddle Switch: On falling level, start fill pump. On rising level, stop fill pump.
	Lower Switch: On falling lavet, alarm low level. On riving level, reset slare.
_	\$per. No. 9321-03-232-20 \$per. No. 9321-01-232-20 Page 4 of 5

ATTALNMENT 14 IP3 - CALC-BG-00217 J#4 3 SECTION II

CENERAL SPECIFICATIONS

1. North Included

Seiler shall furnish and deliver the equipment herein specified.

2. Acceptance tests

If acceptance tests are used, the Owner will make them at his own expense.

Such tests will be made six months after the equipment has been put into regular service. Conditions of tests and by the Owner, prior to acceptance, shall be suitably established by the Seller and the Owner. Additional tests may be made within one year after commensing operation to determine whether the equipment mease this specification under all conditions of operation. Seller will be given the opportunity to withese these tests at his own expense. Tests will be completed within five years after shipment of equipment.

). Performance

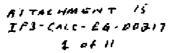
The equipment supplied shall be of ample capacity to perform its function adequately under the conditions herein specified, and shall in all its parts operate successfully at all specified conditions up to and including the maximum specified condition without undue noise, overheating, straining of parts, wast or vibration.

> Spec. No. 9321-05-252-20 Spec. No. 9321-01-252-20 Page 5 of 5

j,

ŝ,

(


EC-32406 Markup

ATTACHMENT 15

Telecopy transmittal Sheet IP3, To R. Jones (I&C), From M. Pactong (MECH ENG). 12/1/95

CPB ULIE Engineering ID1914-736-8875

Je. 01/55 15:00 No.007 Plus

TELECOPY TRANSMITTAL SHEET

IP3 DESIGN ENGINEERING - BLDG, 2

MECHANICAL/CIVIL-STRUCTURAL

Daves 12-114

Seeding Not 914-736-8877 Configuration Not: 914-736-3174 914-736-3845

CNIF Te.

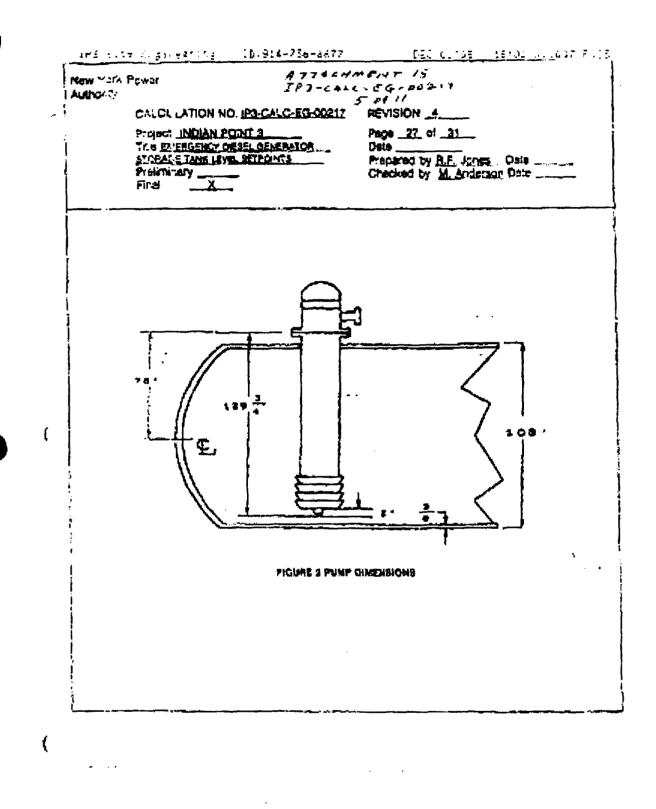
MAR WA Ferma: Mern: ENG!

Number of pages including transmittal sheet: Trase find attached 11 Grand Ach change 5 the to find times and FLING ALFEVEN Let we know w 1 Tames Par Rindrsims. 11 - Asard S are In us I scatch - DEM 4- PRVIDW <u>då</u>. .m the MARAS ACTA

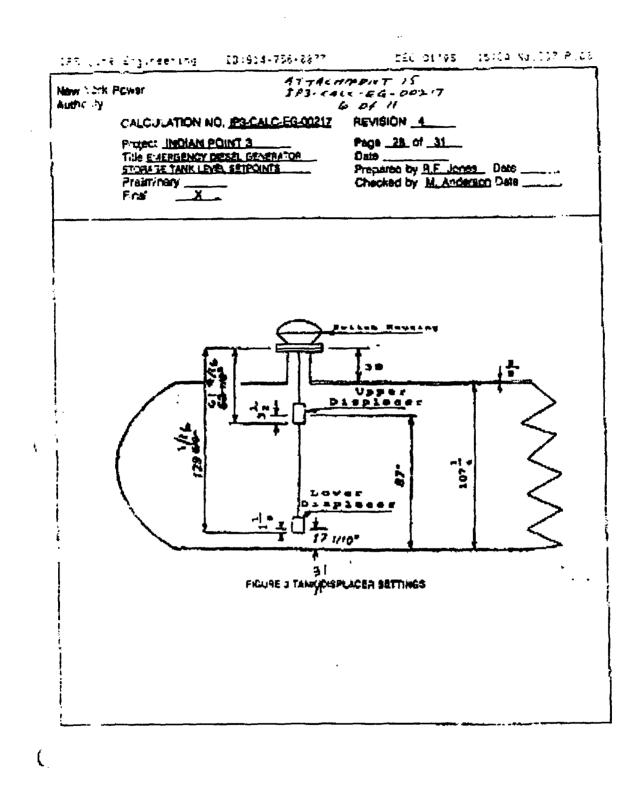
	w Mark Power Inchy	ATTALHMENT IS IP3-LALC-EG-DODIT 2 of H				
	CALCULATION NO. J Project <u>INDIAN POIN</u> Trie <u>EXTERGENCY DESE</u> <u>STORAGE TANK LEVELS</u> Freiminery Freiminery	13	Page _23, of _39			
	Calculated Volume + 50 gala:	<u>.</u> ,				
	The setfoint (LOW):	Terk 21 8 05 Terk 31	8911 GAL	USING EVE INDICATION (CT = 5 10 GAL) USING EVE INDICATION (CT = 1 50 GAL)		
	ALLOWARS E VALUE:	Tark 31 & A3 Tark 33	<u>9937 9.44</u> 9077 9.41	USING LVL INDICATION (CT = ± 50 GAL) USING LVL INDICATION (CT = ± 50 GAL)		
	ARALYTICAL LINST:	33 Tank St 8, 35 Farm 33	2774 QAL 6453 QAL	Using LVL indication (CT = \pm 30 Gal using LVL indication (CT = \pm 60 Gal		
1	Par Relatence () + Joch Speci II in the shou'd be added 17 the storage term (gg2) (jall + 21 GAL + 7000 (Jall			in be accentained in the storage farite. This a Statisticatory:		
	LEVEL SWITCH DISPLACES	I CAUBRATIONS				
ļ	Prom the "Sugneral Installation starting (Art. 2), the float aptitings determine the settch usigning as follows:					
í	•≤a) construction the resolution assuments word case specific gravity of 0.5 for the lust of.					
	The inner switch the character therefore	the bottom of the	lower deplacer	and 1.125" (1 1/19") above the bottom of t not be set at the solptist (TS) minus 1.125": alima lange bottom		
n and an and a state of the sta	The issuer switch the cholecer. Therefore Lower betting Porting groet switch	the bottom of the 3 + 17.1" - 1 126" BOLSIAIS on decree	lower deplacer - (0.905) - 48* 89709 Javel 2.5*	nd be use of the solpart (TS) minus 1.257: aligne lange instigant (3 1/27) above the bosom of the upper :		

- -

.


ſ

Ċ

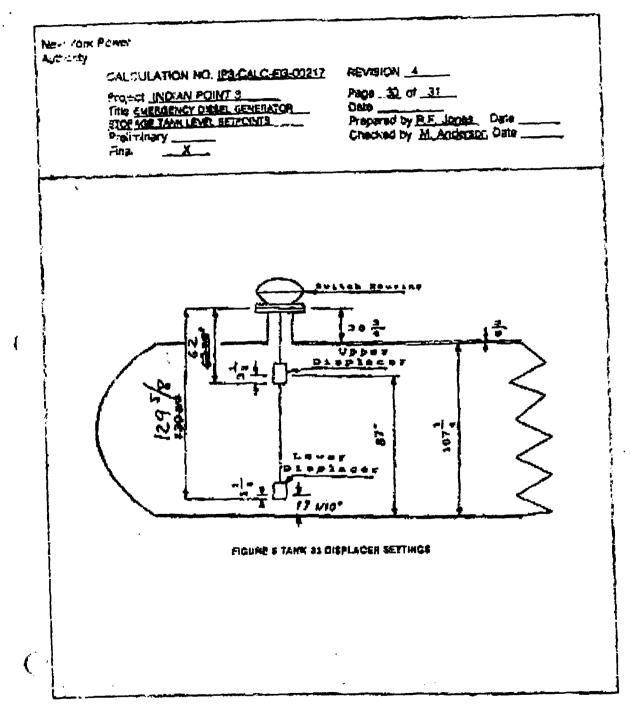

		- AT	Tạc MM #	er 15	_		
hev: York P	TABACALENEA-DURIT						
un:							
	CALCULATION NO						
	Project INDIAN P			Paga <u>24</u> of <u>39</u> Date Prepared by <u>R.F. Jonés</u> Date			
	THE EMERGENCY D	L SETPONTS					
	Proli Tanary		Checked by L				
	fina X	•					
	ister os. This méasur fan - Each tenir has a						
The Trac Diate tany Low	iolic way table shows sums : rom sta switch map : rom stange in Ti pice : rom stange in Ti pice : rom stange in Ti pice : rom stange in the placer sating = th displacer sating =	ank Bottom (DPTS OFTB - Jower sets OFTB - upper sets	10 the boaton (\$) - Tenk Inter Eng (187	at the displacer . Qie. (107.257) -	See Rigures 3 4	के इति	
The Trac Dist tany Low	folie y folie way table shows sung : rom the awlich arge :rom flange is th p damention ar daplacer soting =	DISTANCE PANSE TO	to the bollow i \$ ~ Tenk inter Eng (18") ting (83.6") TABLE 2 SPLACER SET	TING 6 XSPLACER	See Rigures 3 4	9 8 5): Na (0.3757) - mai SPLAGER	
The mate Dist: tany Low Upp	The way table shows sumption the switch map from flange is Tr to demonstration of deplacer sating = of deplacer sating =	DETE Some sets OFTE Some sets OFTE Some sets OFTE Some sets OFTE Some sets OFTE Some sets OFTE Some sets PLAISE TO TANK ECTIONS	to the bolton a) - Tenk Inter (15") (15") TABLE 2 SPLACER SET LOWER (SETINA DECOMAL	TINGS FRACTIONAL	UPPER DI SECIMAL	9 8 5): Na (0.3757) - mai SPLAGER	
The mate Dist: tany Low Upp	Sun y Sun y Sun ; rom the awlich sun ; rom flange is Tr p screenion ir do placer sating = tr dr placer sating = tr dr placer sating = PLANCS MEIGHT	DISTANCE PANK DISTANCE	to the bollow (187) Eng (187) Ing (83.5*) TABLE 2 SPLACER SET LOWER (SETIN	TINGS FRACTIONAL	See Riguros 3 4 one wait theckne UPPER 31 SETTIN	9 8 5): Ha (0.3757) - #H (0.3757) - #H SPLACER IGS	
The The Dist tany Low Upp	Sun y Sun y Sun ; rom the awlich sun ; rom flange is Tr p screenion ir do placer sating = tr dr placer sating = tr dr placer sating = PLANCS MEIGHT	DETE Lower set OFTE Lower set OFTE Lower set OFTE upper set OFTE DISTANCE PROM FLANSE TO TANK ECTTONS	to the bolton a) - Tenk Inter (15") (15") TABLE 2 SPLACER SET LOWER (SETINA DECOMAL	TINGS FRACTIONAL	UPPER DI SECIMAL	9 8 5): Ha (0.3757) - #H (0.3757) - #H SPLACER IGS	
The The Dist tany Low Upp	PLANCE PLANCE	DETE Lower set OFTE Lower set OFTE Lower set OFTE upper set OFTE DISTANCE PROM FLANSE TO TANK ECTTONS	to the bolton a) - Tenk Inter (15") (15") TABLE 2 SPLACER SET LOWER (SETINA DECOMAL	TINGS FRACTIONAL	LIPPER DI SECTION SECTION SECTION	9 8 5): Ha (0.3757) - #H (0.3757) - #H SPLACER IGS	
The material Day Low Upp	PLANCE PLANCE	DFTB Lower set OFTB Lower set OFTB Lower set OFTB upper set OFTB Upper set OISTANCE PROM PLANSE TO TANK ECTTON OFTCH	to the bolton in a) - Tenk inter (187) TABLE 2 SPLACER SET LOWER (SETINN DSCR44 (LOWER (SETINN DSCR44 (LOWER (SETINN DSCR44 (LOWER (SETINN)	TINGS FRACTIONAL	UPPER DI SECIMAL	9 8 5): Ha (0.3757) - #H (0.3757) - #H SPLACER IGS	
The Twist Digit Low Upp	isten y iste wog table shows sung; rom ste awlich mes rom stenge is Tr pice scientich in displacer sating = et displacer sating = et displacer sating = ist displacer sating =	DFTB Lower set OFTB Lower set OFTB Lower set OFTB upper set OFTB Upper set OISTANCE PROM PLANSE TO TANK ECTTON OFTCH	to the bolton in a) - Tenk inter (187) TABLE 2 SPLACER SET LOWER (SETINN DSCR44 (LOWER (SETINN DSCR44 (LOWER (SETINN DSCR44 (LOWER (SETINN)	TINGS FRACTIONAL	LIPPER DI SECTION SECTION SECTION	9 8 5): Ha (0.3757) - #H (0.3757) - #H SPLACER IGS	

Mars. Va		44.07 15
Authorg		11 - EG-00217 4 0f 11
•	CALCULATION NO. 123-CALC-55-00	· · ·
	Project INDIAN POINT 3	Page _26 of _39
	Title EMERGENCY DESEL GENERATOR	Date
	STORAGE TANK LEVEL SETPONTS	Prepared by <u>8.F. Jones</u> Date Checked by <u>M. Anderson</u> Oate
	Final X	CHERNER AL INCLUSION 428.9
-	The selected should be performed using the a	New indicating switches, LC-12049, LC-12059 & L outding technique, a Caldivation Totarance of a 315 iffes the value in inches which should be read for the Louisr sank slope.
	Tenk 31	
	Terk 32	
	Tavê \$3	
	The level switch displaces for each task should b a CT of the 316°.	e positioned in accordance with settings lipted in TAI
	Existing discomenced on which specify the empoli- tio new entrings. Documents include:	na, FBAR & Tech. Spec. volumes must to be revised
	 Mostly Surveilance Task 197-WI Rev. 4 Committenial Log Sheets ALARM RESPONSE PROCESSING ARA 11 	

. .

· · ·

(


.

1144 LT 217 667 173 [24614-736-0877 TEC 61 PR ((SPCI AD COUP PLIT Nor SCIR POWE ATTACHMENT IS, IP3 - CALL - E4-00217 7 64 1) Authority CALCULATION NO 193-CALC EB-00217 REVISION 4 Project INDIAN POINT 3 Page 39 of 31 Data Prepared by R.F. Jones Date Fielminary Checked by M. Anderson Date _ Final STAN NORPERS 과 추 ÷ Upper Displacer ſ -107 P ****** 17 1/10* FIGURE & TANK 32 DIPLACER SETTINGS

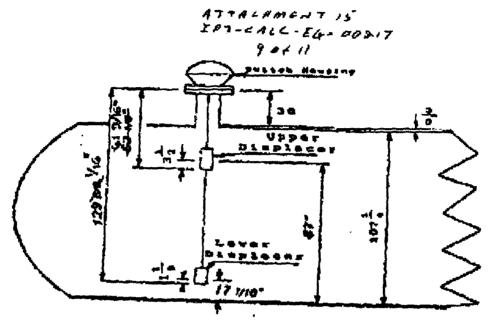
183 - 118 - 197 arriva - 101914-736-8627

DEC 71196 (Erice Gallion Price

ATT +CNMENT IS SP3-CALL-EG-BOZIT 8 OF 11

. -

ł

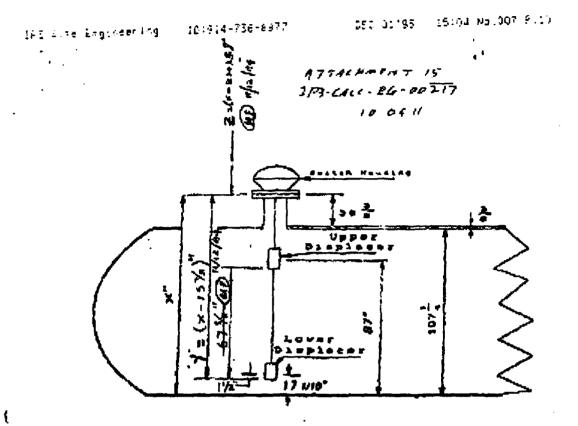

ŧ

193 wire Engineering (diata-756-8477) 220 01/05 (1:04 No.067 P.06

.

. .

31 Displacer Semines


DISPLACER SETTINGS

TANK	PLANCE	DISTANCE FROM FLANCE IG	LOWER DISPLACES SETTINGS		UPPER DESTLACER SETTING	
	[DECISAL 129 -0470	TENETIONAL 129 Mas	51-5525	TRACTIONAL
*: (FIG. 1)	14.000	115 1915	117.414	488-575.	44-117-	48-2/8-
13 (FIG. 4)	38,373	145.000	10 999	114	62.300	62 1/2
1916. 55	36,754	146.175	135 395	130 3/8	57.875	62 7/8

NGT .. Differences in the displaces sailings are due to sounding flange elevation 4111:1101.00.

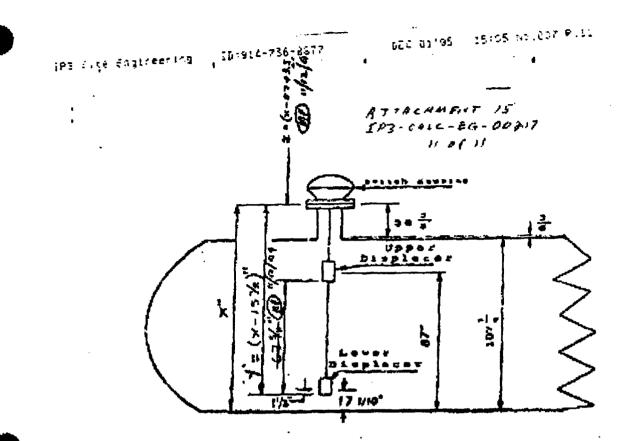
• • .

ATTACHMENT B

Tank 32 Displacer Settings

X =
$$\frac{1843}{12 \times \frac{7}{8}}$$
 inches
 $7 = \frac{12 \times \frac{7}{8}}{10 \times 10}$ inches
 $2 = \frac{62 \sqrt{4}}{10 \times 10}$ inches
ATTACHMENT B
SCR 193-94-0026

11/14


· · .

Ĺ

¢

{

Tank 33 Displacer Sentings

• •

ATTACHMENT 9.1

DESIGN VERIFICATION COVER PAGE

Sheet 1 of 1

DESIGN VERIFICATION COVER PAGE

	NO-1 NPS	□ ANO-2 □ VY	IP-2 GGNS	⊠ IP-3 ∏RBS	☐ JAF ☐ W3			
Document No. IP3-CALC-EC	Document No.Revision No.Page 1 of 4IP3-CALC-EG-002175							
Title: Emergency Diesel Generator Storage Tank Level Setpoints								
	Quality Related Augmented Quality Related							
DV Method:	🛛 Des	sign Review	Alternate	Calculation	Qualific	ation Testing		

VERIFICAT	ION REQUIRED	DISCIPLINE	VERIFICATION COMPLETE AND COMMENTS RESOLVED (DV print, sign, and date)
		Electrical	· · · · · · · · · · · · · · · · · · ·
		Mechanical	ΔΛ
	\boxtimes	Instrument and Control	R. A. Schimpf / See IAS
		Civil/Structural	
		Nuclear	1
Originator:	<u>B. Shepard /</u> Prir	Shephend z/14/12_ ments Have Been Resolved	

ATTACHMENT 9.6

Sheet 1 of 3

IDENTIFICATION:				DISCIPLINE:			
Document Title:	Civil/Structural						
Emergency Diesel Gen							
Doc. No.:				⊠I & C ⊡Mechanical			
IP3-CALC-EG-00217		Rev. 5	QA Cat. SR	Nuclear			
	R. A. Schimpf	Sce IAS	See IAS	Other			
Verifier:	Print	Sign	Date	đ			
Manager authorization for supervisor performing							
Verification.							
D N/A	N/A						
	Print	Sign	Date				
METHOD OF VERIFICA	METHOD OF VERIFICATION:						
Design Review 🛛		Alternate Calculations	Qualif	ication Test 🔲			

The following basic questions are addressed as applicable, during the performance of any design verification. [ANSI N45.2.11 - 1974] [NP QAPD, Part II, Section 3][NP NQA-1-1994, Part II, BR 3, Supplement 3S-1].

- NOTE The reviewer can use the "Comments/Continuation sheet" at the end for entering any comment/resolution along with the appropriate question number. Additional items with new question numbers can also be entered.
 - 1. Design Inputs Were the inputs correctly selected and incorporated into the design?

(Design inputs include design bases, plant operational conditions, performance requirements, regulatory requirements and commitments, codes, standards, field data, etc. All information used as design inputs should have been reviewed and approved by the responsible design organization, as applicable.

All inputs need to be retrievable or excerpts of documents used should be attached.

See site specific design input procedures for guidance in identifying inputs.) Yes \boxtimes No \square N/A \square

- Assumptions Are assumptions necessary to perform the design activity adequately described and reasonable? Where necessary, are assumptions identified for subsequent re-verification when the detailed activities are completed? Are the latest applicable revisions of design documents utilized? Yes X No XA XA
- 3. Quality Assurance Are the appropriate quality and quality assurance requirements specified? Yes ⊠ No □ N/A □

4. Codes, Standards and Regulatory Requirements - Are the applicable codes, standards and regulatory requirements, including issue and addenda properly identified and are their requirements for design met? Yes 🕅 No 🗖 N/A 5. Construction and Operating Experience – Have applicable construction and operating experience been considered? Yes 🖾 No 🗖 N/A 6. Interfaces - Have the design interface requirements been satisfied and documented? Yes 🖾 No 🗖 N/A 7. Methods - Was an appropriate design or analytical (for calculations) method used? Yes 🖾 No 🗖 N/A 8. Design Outputs - Is the output reasonable compared to the inputs? Yes 🖾 No 🗖 N/A 9. Parts, Equipment and Processes - Are the specified parts, equipment, and processes suitable for the required application? Yes 🗖 No 🗖 N/A 🖾 10. Materials Compatibility - Are the specified materials compatible with each other and the design environmental conditions to which the material will be exposed? Yes 🗖 No 🗖 N/A 🖾 11. Maintenance requirements - Have adequate maintenance features and requirements been specified? Yes 🛛 No 🗖 N/A 12. Accessibility for Maintenance - Are accessibility and other design provisions adequate for performance of needed maintenance and repair? Yes 🔲 No 🗖 N/A 🖾 13. Accessibility for In-service Inspection – Has adequate accessibility been provided to perform the in-service inspection expected to be required during the plant life? Yes 🗖 No 🗖 N/A 🖾 14. Radiation Exposure - Has the design properly considered radiation exposure to the public and plant personnel? Yes 🗖 No 🗖 N/A 🛛 15. Acceptance Criteria - Are the acceptance criteria incorporated in the design documents sufficient to allow verification that design requirements have been satisfactorily accomplished? Yes 🛛 No 🗖 N/A 16. Test Requirements - Have adequate pre-operational and subsequent periodic test requirements been appropriately specified? Yes 🖾 No 🗖 N/A

ATTACHMENT 9.6

Sheet 3 of 3

- Handling, Storage, Cleaning and Shipping Are adequate handling, storage, cleaning and shipping requirements specified?
 Yes □ No □ N/A ⊠
- 18. Identification Requirements Are adequate identification requirements specified?
 Yes □ No □ N/A ☑
- 19. Records and Documentation Are requirements for record preparation, review, approval, retention, etc.. adequately specified? Are all documents prepared in a clear legible manner suitable for microfilming and/or other documentation storage method? Have all impacted documents been identified for update as necessary?
 Yes No No N/A X
- 20. Software Quality Assurance- ENN sites: For a calculation that utilized software applications (e.g., GOTHIC, SYMCORD), was it properly verified and validated in accordance with EN- IT-104 or previous site SQA Program?
 ENS sites: This is an EN-IT-104 task. However, per ENS-DC-126, for exempt software, was it verified in the calculation?
 Yes □ No □ N/A ⊠
- 21. Has adverse impact on peripheral components and systems, outside the boundary of the document being verified, been considered?
 Yes □ No □ N/A ⊠

ATTACHMENT 9.7

Sheet 1 of 1

DESIGN VERIFICATION COMMENT SHEET

Comments / Continuation Sheet

Question #	Comments	Resolution	Initial/Date
	None		
		_	
		<u>}</u>	
		}	
	+	<u>+</u>	<u>├</u> ──────────────────────
	<u> </u>	<u> </u>	<u></u> -
		<u> </u>	
··			
	L		
		·	
			
	<u></u>		
	<u> </u>	<u> </u>	
	<u> </u>	<u> </u>	
			<u>├</u>
		{	
	L	L	L