Welding Design

Module 4

Module 4 – Welding Design

- 4A Heat Flow
- 4B Residual Stress and Distortion
- 4C Fracture and Fatigue
- 4D Joint Design
- 4E Welding Symbols
- 4F Mechanical Testing

Module 4 Learning Objectives

- Basic understanding of heat flow, heat flow with moving heat sources, estimation of cooling rates and HAZ
- Basic understanding of residual stress and distortion principles and mitigation methods
- Understanding of weld design, weld joints and welding symbols
- Basic understanding and purpose of different types of destructive tests

Module 4A

- Conduction
- Radiation
- Convection

Conduction

Fourier's Law of Conduction

1-D Conduction

Conservation of Energy

Internal energy = energy in – energy out

Internal Energy change = Internal heat generation + heat in – heat out

Conservation of Energy

But using Taylor series expansion,

$$\dot{q}_{x+dx} = \dot{q}_x + \frac{\partial \dot{q}_x}{\partial x} dx$$

$$\therefore \quad \rho C_p \frac{\partial \theta}{\partial t} A dx = \dot{Q} A dx + \dot{q}_x A - \dot{q}_x A - \frac{\partial \dot{q}_x}{\partial x} dx A$$

$$\therefore \quad \rho C_p \frac{\partial \theta}{\partial t} = \dot{Q} - \frac{\partial \dot{q}_x}{\partial x}$$

Conservation of Energy

Using Fourier's law of conduction

$$\frac{\partial \dot{q}_x}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}} \left(-\lambda \frac{\partial \theta}{\partial x} \right)$$

Thus,

$$\rho C_p \frac{\partial \theta}{\partial t} = \dot{Q} + \frac{\partial}{\partial x} \left(\lambda \frac{\partial \theta}{\partial x} \right)$$

1-D Conduction

To make problem manageable, assume

no internal heat generation

$$\rho C_p \frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial \theta}{\partial x} \right)$$

 λ is constant, not dependent on x or temperature

$$\rho C_{p} \frac{\partial \theta}{\partial t} = \lambda \frac{\partial^{2} \theta}{\partial x^{2}}$$
$$\frac{\partial \theta}{\partial t} = \frac{\lambda}{\rho C_{p}} \left(\frac{\partial^{2} \theta}{\partial x^{2}}\right) = k \frac{\partial^{2} \theta}{\partial x^{2}} \quad \text{sethermal diffusivity}}$$

 $\left(\frac{\mathrm{m}^2}{\mathrm{sec}}\right)$

Conservation of Energy (Con't)

1-D Conduction Steady State without Internal Heat Generation

$$\frac{\partial^2 \theta}{\partial x^2} = \dot{Q} + \frac{1}{\kappa} \frac{\partial \theta}{\partial t} 0$$

Giving,

$$\frac{\partial^2 \theta}{\partial x^2} = 0$$

General Solution

$$\frac{\partial \theta}{\partial x} = c_1$$

$$\theta = c_1 x + c_2$$

Concept of Thermal Resistance

Concept of Thermal Resistance

but
$$\dot{q} = -\lambda A \frac{\partial \theta}{\partial x} = -\lambda A \frac{\theta_2 - \theta_1}{L} = \lambda A \frac{\theta_1 - \theta_2}{L}$$

$$R_{\text{thermal}} = \frac{\theta_1 - \theta_2}{\lambda A \frac{\theta_1 - \theta_2}{L}} = \frac{L}{\lambda A}$$

Composite Walls

Consider an extrusion process

Applying conservation of energy to the control volume

$$\rho C \frac{\partial \theta}{\partial t} A dx = \dot{Q} A dx + \dot{q}_x A - \dot{q}_{x+dx} A + \rho C V \theta_x A - \rho C V \theta_{x+dx} A$$

Using Taylor series expansion and simplifying

$$\rho C \frac{\partial \theta}{\partial t} = \dot{Q} - \frac{\partial \dot{q}_x}{\partial x} - \rho C V \frac{\partial \theta}{\partial x}$$

Using Fourier's Law of Conduction

$$\rho C \frac{\partial \theta}{\partial t} = \dot{Q} + \lambda \frac{\partial^2 \theta}{\partial x^2} - \rho C V \frac{\partial \theta}{\partial x}$$

In this case if you look at some location x with respect to time, the temperature at that location will remain constant (assuming we are past the transients from starting the process). Therefore, we can model this as a Quasi-Steady problem.

$$\rho C \frac{\partial \dot{\theta}}{\partial t} = \dot{Q} + \lambda \frac{\partial^2 \theta}{\partial x^2} - \rho C V \frac{\partial \theta}{\partial x}$$

$$0 = \dot{Q} + \lambda \frac{\partial^2 \theta}{\partial x^2} - \rho C V \frac{\partial \theta}{\partial x}$$

If the cross section of the rod is small, we can assume that the temperature is constant at every cross section. In that case we can consider the heat loss due to convection as a negative internal heat generation rate.

Consider some cross section of area A and perimeter P

$$\dot{Q}Adx = -hPdx(\theta - \theta_{\infty}) \Rightarrow \dot{Q} = -\frac{hP}{A}(\theta - \theta_{\infty})$$

Therefore,
$$\lambda \frac{\partial^2 \theta}{\partial x^2} - \rho C V \frac{\partial \theta}{\partial x} - \frac{hP}{A} (\theta - \theta_{\infty}) = 0$$

Let $\theta' = (\theta - \theta_{\infty}), \quad \frac{\partial \theta'}{\partial x} = \frac{\partial \theta}{\partial x}, \text{ and } \quad \frac{\partial^2 \theta'}{\partial x^2} = \frac{\partial^2 \theta}{\partial x^2}$
Giving, $\frac{\partial^2 \theta'}{\partial x^2} - \frac{V}{\kappa} \frac{\partial \theta'}{\partial x} - \frac{hP}{\lambda A} \theta' = 0$

Solving,

$$\theta'(x) = C_1 \exp\left(\left(\frac{V}{2\kappa} - \sqrt{\left(\frac{V}{2\kappa}\right)^2 + \frac{hP}{\lambda A}}\right)x\right) + C_2 \exp\left(\left(\frac{V}{2\kappa} + \sqrt{\left(\frac{V}{2\kappa}\right)^2 + \frac{hP}{\lambda A}}\right)x\right)$$

Applying the boundary conditions.

As
$$x \to \infty$$
 then $\theta' = 0$
 $\theta'(x = \infty) = C_1 \exp\left(\left(\frac{V}{2\kappa} - \sqrt{\left(\frac{V}{2\kappa}\right)^2 + \frac{hP}{\lambda A}}\right)\infty\right) + C_2 \exp\left(\left(\frac{V}{2\kappa} + \sqrt{\left(\frac{V}{2\kappa}\right)^2 + \frac{hP}{\lambda A}}\right)\infty\right)$

Since the second term goes to infinity than

 $C_2 = 0$

At
$$x = 0$$
 then $\theta' = (\theta_{die} - \theta_{\infty}) = \theta'_{die}$
 $\theta'(x = 0) = \theta'_{die} = C_1 \exp\left(\left(\frac{V}{2\kappa} - \sqrt{\left(\frac{V}{2\kappa}\right)^2 + \frac{hP}{\lambda A}}\right)0\right)$

Therefore, $C_1 = \theta'_{die}$ giving,

$$\theta'(x) = \theta'_{die} \exp\left(\left(\frac{V}{2\kappa} - \sqrt{\left(\frac{V}{2\kappa}\right)^2 + \frac{hP}{\lambda A}}\right)x\right)$$

Consider a very large and very thin plate – thickness (h)

Moving with the welding arc in quasi-steady region, the temperature is constant with respect to time. Form a new moving coordinate system:

$$w = x - Vt$$

Balance heat flow in y direction,

$$(\dot{q}_{y} - \dot{q}_{y+dy})dw h = -\frac{\partial \dot{q}}{\partial y}dy dw h$$

Balance heat flow in w direction,

$$(\dot{q}_{w} - \dot{q}_{w+dw}) dy h + \left[\left(\rho C_{p} V \theta \right)_{w+dw} - \left(\rho C_{p} V \theta \right)_{w} \right] dy h = - \frac{\partial \dot{q}}{\partial w} dw dy h + \frac{\partial}{\partial w} \left(\rho C_{p} V \theta \right) dw dy h$$

Conservation of energy for control volume

$$\rho C_{p} \frac{\partial \theta}{\partial t} dy dw h = \dot{Q} - \frac{\partial \dot{q}}{\partial y} dy dw h - \frac{\partial \dot{q}}{\partial w} dw dy h + \frac{\partial}{\partial w} \left(\rho C_{p} V \theta\right) dw dy h$$

Using Fourier's Law of Conduction

$$\rho C_{p} \frac{\partial \theta}{\partial t} = \dot{Q} + \frac{\partial}{\partial w} \left(\lambda \frac{\partial \theta}{\partial w} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial \theta}{\partial y} \right) + \frac{\partial}{\partial w} \left(\rho C_{p} v \theta_{w} \right)$$

Conduction Convection

Assuming constant properties and constant heat source velocity.

$$\rho C_{p} \frac{\partial \theta}{\partial t} = \dot{Q} + \lambda \, \frac{\partial^{2} \theta}{\partial w^{2}} + \lambda \, \frac{\partial^{2} \theta}{\partial y^{2}} + \rho C_{p} V \frac{\partial \theta}{\partial w}$$

For quasi-steady,

$$\frac{\partial^2 \theta}{\partial w^2} + \frac{\partial^2 \theta}{\partial y^2} = -\frac{V}{k} \frac{\partial \theta}{\partial w}$$

Heat Flow with Moving Coordinate System 3-D Solution for Semi-infinite Plate

Assuming constant properties and constant heat source velocity.

$$\rho C_{p} \frac{\partial \theta}{\partial t} = \dot{Q} + \lambda \, \frac{\partial^{2} \theta}{\partial w^{2}} + \lambda \, \frac{\partial^{2} \theta}{\partial y^{2}} + \lambda \, \frac{\partial^{2} \theta}{\partial z^{2}} + \rho C_{p} V \frac{\partial \theta}{\partial w}$$

For quasi-steady,

$$\frac{\partial^2 \theta}{\partial w^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{\partial^2 \theta}{\partial z^2} = -\frac{V}{k} \frac{\partial \theta}{\partial w}$$

Heat Flow with Moving Coordinate System 3-D Solution for Semi-infinite Plate

Heat Flow with Moving Coordinate System 3-D Solution for Semi-infinite Plate

Heat Flow with Moving Coordinate System 3-D Solution for Semi-infinite Plate

General solution:

$$\theta - \theta_0 = \frac{P}{2\pi\lambda r} \exp\left(-\frac{V}{2\kappa}(w+r)\right)$$

For arc welding P = fEI

- Where, *P* is input power
 - f is arc efficiency
 - E is arc voltage
 - *I* is arc current

Heat Flow with Moving Coordinate System 2-D Solution for Thin Plate

The temperature is the same through the thickness Of the plate.

Heat Flow with Moving Coordinate System 2-D Solution for Thin Plate

General solution:

$$\theta - \theta_0 = \frac{P}{2\pi\lambda r} \exp\left(-\frac{Vw}{2\kappa}\right) K_0\left(\frac{Vr}{2\kappa}\right)$$

 $K_0(z)$ is the modified Bessel function of the second kind and zero order.

$$K_0(z) = \int_{1}^{\infty} \frac{\exp(-zt)}{\sqrt{t^2 - 1}} dt$$

For z large $K_0(z) \cong \sqrt{\frac{\pi}{2z}} \exp(-z)$

Cooling Rate Equation

Need to know location and temp for which we need Cooling rate (slope).

Cooling Rate Equation

Consider the semi-infinite plate solution:

$$\theta - \theta_o = \frac{P}{2\pi\lambda r} \exp\left(-\frac{V(w+r)}{2\kappa}\right)$$

Notice that θ is not a function of time in the Eq.

But w is a function of time w = x - VtTherefore, we can use the chain rule $\frac{\partial \theta}{\partial t} = \frac{\partial \theta}{\partial w} \cdot \frac{\partial w}{\partial t}$ Where $\frac{\partial w}{\partial t} = -V$ Giving, $\frac{\partial \theta}{\partial t} = -V \frac{\partial \theta}{\partial w}$ Consider the semi-infinite plate solution:

$$\theta - \theta_o = \frac{P}{2\pi\lambda r} \exp\left(-\frac{V(w+r)}{2\kappa}\right)$$

Notice that θ is not a function of time in the Eq.

But w is a function of time w = x - VtTherefore, we can use the chain rule $\frac{\partial \theta}{\partial t} = \frac{\partial \theta}{\partial w} \cdot \frac{\partial w}{\partial t}$ Where $\frac{\partial w}{\partial t} = -V$ Giving, $\frac{\partial \theta}{\partial t} = -V \frac{\partial \theta}{\partial w}$ $\frac{\partial \theta}{\partial t} = -V \frac{P}{2\pi\lambda r} \cdot \exp\left(\frac{-V(w+1)}{2\kappa}\right) \cdot \left[-\frac{w}{r^2} - \frac{V}{2\kappa}\left(1 + \frac{w}{r}\right)\right]$

Heat Flow with Moving Coordinate System Peak Temperature Equations

At the peak temperature the slope of the temperature time curve must be zero.

Heat Flow with Moving Coordinate System Peak Temperature Equations

Find relationship between w and r when the point of interest reaches the peak temperature and then use thick plate solution to find peak temp.

$$\theta_{peak} - \theta_o = \frac{P}{2\pi \lambda r} e^{-\frac{V}{2\kappa}(w+r)}$$

Peak Temperature Equations

 We force the eq. to fit experimental results by specifying a known temperature θr at known location rr. Then,

$$\frac{1}{\theta_p - \theta_o} = \frac{\frac{e}{2} \left(\wp c_p \pi \left(r^2 - r_r^2 \right) \right)}{\frac{\eta_a EI}{V}} + \frac{1}{\theta_r - \theta_o}$$

For example, at fusion boundary θm is the known peak temperature and r=d/2 where (d) is the weld bead with is known location. Then,

$$\frac{1}{\theta_p - \theta_o} = \frac{\frac{e}{2} \left(\wp c_p \pi \left(y^2 - \frac{d}{2}^2 \right) \right)}{\frac{\eta_a EI}{V}} + \frac{1}{\theta_m - \theta_o}$$

Residual Stress and Distortion

Module 4B

Linear Elastic Material

6 stress strain Equations
$\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu \cdot \left(\sigma_{y} + \sigma_{z} \right) \right]$
$\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - v \cdot (\sigma_{x} + \sigma_{z}) \right]$
$\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \nu \cdot \left(\sigma_{x} + \sigma_{y} \right) \right]$
$\sigma_{xy} = \frac{\tau_{xy}}{G}$
$\sigma_{yz} = \frac{\tau_{yz}}{G}$
$\sigma_{zx} = \frac{\tau_{zx}}{G}$

Residual Stress and Distortion

Typical Material (Metal)

Thermal Strains

$$\varepsilon_{x}^{\theta} = \varepsilon_{y}^{\theta} = \varepsilon_{z}^{\theta} = \alpha \ \Delta \theta = \alpha \left(\theta - \theta_{o} \right)$$

$$\alpha = \text{coefficient of thermal expansion}$$

$$\gamma_{xy}^{\theta} = \gamma_{yz}^{\theta} = \gamma_{zx}^{\theta} = 0$$

total strain=elastic strain + thermal strain $\mathcal{E}^{t} = \mathcal{E}^{e} + \mathcal{E}^{\theta}$

Linear Elastic Perfectly Plastic Material

Example

Steel Bar between two rigid walls

y xHeating - Elastic Range $\varepsilon_x^t = 0 = \frac{\sigma_x}{E} + \alpha \Delta \theta$ $\therefore \quad \sigma_x = -\alpha E \Delta \theta = -114 \frac{\text{psi}}{{}^o F} \Delta \theta$

$$E = 20 \times 10^6 \text{ psi}$$
$$F_y = 50 \times 10^3 \text{ psi}$$
$$\alpha = 3.8 \times 10^{-6} \frac{1}{^o F}$$

Simple Distortion Example (Transverse Shrinkage)

Restraint and Temp. Distribution

Small $\Delta \theta$

No plastic strain
$$\mathcal{E}^p = 0$$

Then,

$$\sigma_x = -\frac{EKl(\alpha \cdot \Delta \theta)}{EA + Kl}$$

At the end of cooling there will be no residual stress and no distortion.

Large $\Delta \theta$ – at end of heating

Assume
$$\varepsilon^{p} = 0$$

Calculate $\sigma_{x} = -\frac{EKl(\alpha \cdot \Delta \theta)}{EA + Kl}$
If $|\sigma_{x}| > F_{y}$ then, $\varepsilon^{p} \neq 0$ and $\sigma_{x} = -F_{y}$
 $\varepsilon^{p} = F_{y} \left(\frac{A}{Kl} + \frac{1}{E}\right) - \alpha \cdot \Delta \theta$

Large $\Delta \theta$ – at end of Cooling

Assume no additional plastic deformation occurs during cooling.

Calculate

$$\sigma_{x} = \frac{EKl(\varepsilon^{p})}{EA + Kl}$$

If $\sigma_x < F_y$ then, no plastic deformation occurred

during cooling, and
$$\sigma_{xres} = \frac{EKl(\varepsilon^p)}{EA+Kl}$$

If $\sigma_x > F_y$ then, plastic deformation occurred during cooling, and $\sigma_x = F_y$ $\varepsilon^p = -F_y \left(\frac{A}{Kl} + \frac{1}{E} \right)$

4-51

Three Bar Analogy

Suppose we have 3-bar which have the same cross section area A and same material properties.

Three Bar Analogy

- Jig or fixture used (restraint) during heating
 - Small heating

$$\varepsilon_{tm} = \frac{\sigma_m}{E} + \alpha \,\Delta\theta + \varepsilon_m^p, \quad \varepsilon_m^p = 0$$

$$\varepsilon_m = -\alpha \,\Delta\theta \cdot E \qquad \text{comp. spring case}$$

$$\mathcal{E}^{P} = 0$$
$$\mathcal{E}_{tx} = 0$$

Significance of Residual Stress and Distortion

Residual Stress

- Degraded Structural Performance
- Reduced Service Life
- Dimensional Instability

Distortion

- Dimensional Tolerance and Fit-up Problems
- Reduced Strength
- Reduced Structural Stability
- Inadequate Appearance

Welding Processes and Their Consequences

During Welding

- Localized Heat Source (heating, melting solidification, and cooling)
- Non-uniform Temperature Distribution (thermal/mechanical mismatch)
- Fast Cooling Rate (phases with volume expansion)
- Weld Shrinkage (shrinkage strains created in weld & surrounding metal)
- Restraints (internal rigidity and/or external constraints preventing shrinkage)
- Initial Stress Condition (influence thermal strain and residual stress)
- Properties of Parent Material (temperature dependent yield stress and Modulus of elasticity)

Residual Stresses & Distortion Flowchart

Factors Influencing Residual Stresses & Distortion

- Physical Material Properties
 - Coefficient of thermal expansion, [α (1/°K)]
 - + As α increases distortion increases
 - Thermal conductivity, λ (W/(m·°K))
 - + As λ increases distortion decreases
- Mechanical Material Properties
 - Yield stress, F_v (ksi), modulus of elasticity, E(ksi)
- Welding Process Variables
 - Heat input, travel speed, welding sequence
- Jigs and Fixtures or other Clamping Devices
- Geometrical Properties
 - Moment of inertia, weld cross sectional area, weight of weld metal, plate thickness, joint geometries, weld length

Comparison of Material Properties

Properties	Properties Mechanical Properties				Thermal Properties				
Materials	F _{ult} [MPa]	F _y [MPa]	e [%]	E [GPa]	CTE 20 °C [mm/m°C]	rC _p [J/m³/°C]x1 0 ⁶	l [W/m-K]	T _m [°C]	T _{liq} [°C]
NICKEL BASE INCONEL 718	1375	1100	25	207	13	3.56	11.4	1298	1336
TITANIUM TI-6AL-4V	1170	1100	10	114	8.6	2.33	6.7	1660	1660
ALUMINUM 2014	185	95	18	72.4	23	2.46	192	507	638
STAINLESS STEEL 304	505	215	70	197	17.3	4.00	16.2	1427	1455

Non-Linear Distribution of Temperature and Resulting Residual Stress

Residual Stresses in Butt Joint

(B) Distribution of $\sigma_{\!_{\rm Y}}$ Along XX

Fundamental Types of Weld Distortion

Compatibility

Compatibility

2-D Elastic Compatibility

$$R = \frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} - \frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = 0$$

2-D Inelastic Compatibility

$$R' + R'' = \begin{bmatrix} \frac{\partial^2 \varepsilon'_x}{\partial y^2} + \frac{\partial^2 \varepsilon'_y}{\partial x^2} - \frac{\partial^2 \gamma'_{xy}}{\partial x \partial y} \end{bmatrix} + \begin{bmatrix} \frac{\partial^2 \varepsilon''_x}{\partial y^2} + \frac{\partial^2 \varepsilon''_y}{\partial x^2} - \frac{\partial^2 \gamma''_{xy}}{\partial x \partial y} \end{bmatrix} = 0$$

Elastic Inelastic (thermal & plastic)

Rotational Distortion in Butt Joints

In-Plane Distortion Due to Cutting

Reference: Masubuchi, K. Analytical Investigation of Residual Stresses and Distortions Due to Welding. Welding Journal 39 (12): 525s-537s (1960)

Residual Stress and Distortion

Longitudinal and Transverse Weld Shrinkage in Butt Joints

Effect of Groove Detail and Joint Thickness on Transverse Shrinkage

Effect of Weight of Weld Metal on Transverse Shrinkage

Increases of Transverse Shrinkage During Multipass Welding of A Butt Joint

Transverse Shrinkage Causing Angular Distortion

Non-uniform Transverse Weld Shrinkage in Butt Joints

Transverse Weld Shrinkage in Fillet Welded Tee-Joints

Residual Stress and Distortion

Moment of Inertia Effect on Angular Distortion in Butt Joint

Balancing the Multi-pass Weld Decreases Angular Distortion of Butt Joints

Moment of Inertia Effect on Angular Distortion in Tee-Joint

Angular Change in Fillet Welds – Unrestrained Angular Change of Unrestrained Fillet Weld

Determination of the Angular Change of Unrestrained Steel and Aluminum Fillet Welds by Plate Thickness and Fillet Weight per Unit Length of Weld

Residual Stress and Distortion

Angular Distortion in Fillet Welded Framing Structures

(A) Free Joint (Unrestrained)

(B) Restrained Joint
Angular Distortion

Effect of Fillet Weld Size on Longitudinal Deflection

Residual Stress and Distortion

Distortion Comparison Between Steel and Aluminum Weldments

Transverse Shrinkage of Butt Joint

Aluminum > Steel

Longitudinal Bending Distortion

Aluminum < Steel

Distortion Comparison Between Steel and Aluminum Weldments

Reference: Welding Handbook, Volume 1, AWS, 1991

Reduce the Amount of Welding Decrease Weld Deposit

Example: Edge Preparation and Fitup

Residual Stress and Distortion

Reduce the Amount of Welding Using Intermittent Welding Technique

Decreasing Length of Weld by Using Intermittent Welding Technique

Reduce the Amount of Welding Decrease Leg Size

Decrease Leg Size of Weld Decrease Shrinkage Force and the Tendency to Distortion

Minimize Welding Time

(d) 170 amp 25 volt 22 in/min Sheet (t=0.1345 in)

Presetting the Joints

The net effect of weld shrinkage pulls the member or connection back into proper alignment.

Reference: Design of Weldments, Omer W. Blodgett, 1976

Examples of Presetting the Joints

 (a) (b) Girder, (c) Plate, (d) Fixing of Groove Gap by Wedge in Single Pass Gas Welding
Pre-welding Position Traced in Solid Lines
Post-welding Position in Broken Lines

Reference: D. Radaj, Heat Effects of Welding, Springer-Verlag, 1992

Preheat the Joint

Effect of Preheat and Welding Variables on Angular Change of Steel Fillet Welded T-Joints

Reference: Kihara, H., Watanabe, M., Masubuchi, K., and Satoh, K., "Researches on Welding stress and shrinkage distortion in Japan", 60th Anniversary Series of the Society of Naval Architects of Japan, Vol. 4, 1959

Residual Stress and Distortion

Prestrain the Joint

(a) Elastic Prestraining

(b) Plastic Prebending

Reference: Kumose, T., Yoshida, T., and Onoue, H, Prediction of angular distortion caused by one-pass fillet welding, The Welding Journal, 33, 945-956 (1954)

Example of Elastic Prestraining

Apparatus for Welding T-Joints Submitted to Elastic Prestrain by Bolting Down Both Free Ends

Examples of Plastic Prestraining

(e) Inward Drawing of Pipe at Plane End

Use as Few Weld Passes as Possible

Minimum Number of Passes

Place Welds Near the Neutral Axis

Welding near Neutral Axis

Residual Stress and Distortion

Plan the Welding Sequence Welds are Symmetrical about Neutral Axis

Residual Stress and Distortion

Plan the Welding Sequence Welds are Symmetrical about Neutral Axis

Reference: Design of Weldments, Omer W. Blodgett, 1976

Residual Stress and Distortion

Plan the Welding Sequence Long and Thin Box Sections

Residual Stress and Distortion

Place Welds Near the Neutral Axis – Three -Member Column

Plan the Welding Sequence – Multi-Layer Welding

An Example of a Double V-Groove Butt Joint. Suitable Welding Sequence in Multi-layer Welding can Reduce Angular Distortion

Plan the Welding Sequence – Multi-Layer Welding

Reduction of Angular Distortion by Alternating Weld Pass Deposition in Double-V Groove

Plan the Welding Sequence – Backstep Welding

Plan the Welding Sequence – Backstep Welding

Reduction of Transverse Shrinkage as well as Groove Gap Distortion by Back-Step Welding: Tack Weld Sequence (a), Back-Step Welding Sequence in First Layer (b) and Cover Pass (c)

Distortion Control by Welding Sequence – Welding Sequences

Reference: K. Masubuchi, Analysis of Welded Structure, Pergamon Press

Methods of Removing Distortion – Flame (Thermal) Straightening

- Line heating
- Pine-needle heating
- Heating in cross section
- Spot heating
- Triangular heating
- Red-hot heating

Residual Stress and Distortion

Methods of Removing Distortion – Flame (Thermal) Straightening

Line Heating

Pine-needle Heating

Heating in Cross Directions

Residual Stress and Distortion

Methods of Removing Distortion – Flame (Thermal) Straightening

Spot Heating

Triangular Heating Red-hot Heating

Residual Stress and Distortion

Methods of Removing Distortion – Flame (Thermal) Straightening

Application of Flame Straightening

Residual Stress and Distortion

Methods of Removing Distortion – Flame (Thermal) Straightening

Flame Straightening by Means of Heat Strips and Heat Wedges in Different Arrangement on Bending-Distorted Girders

Reference: Vinokurov, V. A., Welding stresses and distortion, Wetherby:British Library 1977

Fracture and Fatigue

Module 4C

Linear Elastic Fracture Mechanics

For a perfect solid, the tensile strength $\sigma_{\rm T}$ can be related to Young's modulus for the material *E*.

For glass, this would be $\sigma_T = 10^6$ psi while actually it is 5×10^3 to 10^5 psi

Brittle Fracture

 Griffith – glassy materials contain crack like defects which act as stress raisers.

Brittle Fracture

For long sharp cracks

$$SCF \cong 1 + 2\sqrt{\frac{c}{a}} \cong 2\sqrt{\frac{c}{a}}$$

For $\sigma_T = \frac{E}{10}$, one gets
 $\sigma_c \cong \frac{E}{20}\sqrt{\frac{a}{c}} \rightarrow$ gives similar results to Griffith's Criterion
Back calculating crack lengths in glasses,
one gets lengths of order 25 to 2500
atomic distances or 100-10,000 A°

Linear Elastic Fracture Mechanics

Mode I

Linear Elastic Fracture Mechanics

Linear Elastic Fracture Mechanics

Mode III

Stress Intensity Factors

Stress intensity factor is used to find the stress distribution and magnitude near the crack tip. It is a function of:

- σ = applied stress
- c = half crack length (full crack length for edge cracks)

w= characteristic dimension for the part

$$K(\sigma, c, w) = f\left(\frac{c}{w}\right)\sigma\sqrt{\pi c}$$

Determined analytically or experimentally as well as by finite element analysis.

Fracture Toughness (Kc)

- Kc is a material property which indicates the stress intensity factor above which crack extension will occur
- KIC (the plane strain value of Kc) is a linear elastic facture mechanics parameter which can be used for brittle fracture
 - For real materials, some plastic deformation will occur near the crack tip.

Fracture Toughness

For plane stress, the size of the plastic zone is found from

$$F_{y} = \frac{K_{I}}{\left(\sqrt{2\pi} r_{p}\right)} \cos\left(\frac{\theta}{2}\right) \left[\left(1 + \sin\frac{\theta}{2}\right) \left(\sin\frac{\theta}{2}\right)\right]$$

where for $\theta = 0^0$

$$F_{y} = \frac{K_{I}}{\left(\sqrt{2\pi r_{p}}\right)} \qquad r_{p} = \frac{1}{2\pi} \left(\frac{K_{I}}{F_{y}}\right)^{2}$$

For plane strain,

$$r_p = \frac{1}{6\pi} \left(\frac{K_I}{F_y} \right)^2$$

For LEFM the size of the plastic zone must be small

Fatigue

- Fatigue failure resulting from cyclic deformation with large plastic strain amplitude is called low cycle fatigue
 - Failure usually occurs in ten to several hundred cycles
- Fracture resulting from many thousands of stress cycles below the elastic limit are called high cycle fatigue

Phases for Fatigue Failure

- Crack initiation stress concentrations at grain boundaries or flaws
- Crack propagation The crack propagates on every cycle of loading
- Fracture crack long enough for fracture to occur when maximum stress is reached

S-N Curve

 \rightarrow

Nonzero Mean Stress

Goodman Diagram

Goodman Diagram

 $\sigma_{_{
m min}}$

Fatigue With Varying Stress Amplitude – Miner's Rule

Miner's Rule – each cycle uses a fraction of the fatigue life.

For fully reversible tension-compression loading from S-N curve one gets,

$$\sum_{i=1}^{k} \frac{n_i}{C} \sigma_i^m = 1$$

Fatigue of Welded Joints

- The presence of welded member usually results in drastic reduction in fatigue life or stress
- Causes: Stress Concentrations generally a weld introduces stress concentrations

Joint Design

Module 4D

Common Design Requirements

Proper Weld Design to Meet Following Requirements

- Strength against rupture (excessive yielding)
- Toughness against fracture, especially under dynamic or impact loading (brittle fracture)
- Ductility (ability to stretch) to prevent welding-induced cracking or cracks due to excessive deformation
- Fatigue resistance against cyclic loading

Essential and Related Design Factors

Proper Weld Design to Meet Following Requirements

- Materials
 - Base Metal (e.g. ASTM A36)
 - Filler Metal (e.g. AWS A5.1)
- Joints/Welds
- Welding Process(es)/Procedure Qualification
 - Joint Thickness
 - Pipe Outside Diameter
 - Welding Position
- Welder Qualification (per qualified procedure)
- Workmanship (including distortion control, heat treatment)
- Inspection

Aspects of Weld Design

- Structural Connection Design Elements
- Types of Joints and Welds (AWS A3.0 Standard Terms and Definitions)
- Welding/NDE Symbols (AWS A2.4 Standard Symbols for Welding, Brazing, and Nondestructive Examination)
- Design for Strength
- Design for Fracture Resistance
- Design for Fatigue Resistance
- Effect of Residual Stress and Distortion

Structural Connection Design Elements

- Connection Types
 - Nontubular (i.e., plate)
 - Tubular
- Basic Joint Types
 - Butt Joint
 - Tee Joint (including skewed-T)
 - Lap Joint
 - Corner Joint
 - Edge Joint

- Basic Weld Types
 - Groove (CJP, PJP)
 - Further classifications see AWS A2.4 and A3.0
 - Fillet
 - Plug and Slot
 - Continuous vs. Intermittent
 - Others for Thin Joints: Spot, Seam
- Welding Positions
 - Flat (1-G or 1-F)
 - Horizontal (2-G or 2-F)
 - Vertical (3-G or 3-F)
 - Overhead (4-G or 4-F)
 - Combination (5-G, 6-G, 6-GR)

Basic Joint Types

- Tee joint
 Flange
 Lap joint
 - No joint preparation

Continuity of section

Flanges or stiffeners

- Corner joint
- Edge joint

Butt joint

• Two or more parallel, or nearly parallel members

Joint Type Examples

Basic Joint Type Extension – Flanged Joints

Butt Joint Extension – Spliced Joints

Edge Shapes of Members

Joint Design Variables

- Root Opening
- Groove Radius
- Included Angle
- Root Face (Land)
- Dihedral Angle

Basic Types of Weld

Fillet	Double-U Groove
Square Groove	Single-Bevel Groove
Single-V Groove	Double-Bevel Groove
Double-V Groove	Single-J Groove
Single-U Groove	Double-J Groove

Basic Types of Weld

Groove Weld Examples

Single-Bevel-Groove Weld

Single-V-Groove Weld (with Backing)

Groove Weld Examples

Single-Flare-Bevel-Groove Weld

Single-Flare-V-Groove Weld

Groove Weld Examples

Double-V-Groove Weld

Double-Bevel-Groove Weld

Double-J-Groove Weld

Joint Design

Groove Weld Examples

Double-Flare-Bevel-Groove Weld

Double-Flare-V-Groove Weld

Flare and Edge Welds

Edge Weld with Melt-through in a Flanged Butt Joint

Joint Design

Fillet Weld Examples

Double Fillet Weld

Single Fillet Weld

Weld Quantities Comparison

Estimated Relative Costs

Joint Design

Plug/Slot Weld vs. Fillet Weld in Hole

Fillet Welds

Joint Design

Weld Joint Nomenclature

- 1 groove angle
- 2 bevel angle
- 3 root face (land)
- 4 root opening (root gap)
- 5 groove face

- 1 throat
- 2 weld face
- 3 depth of fusion
- 4 root
- 5 fillet leg length
- 6 weld toe

Groove Weld Nomenclature

Groove Weld Nomenclature

Fillet Weld: Convex and Concave

Effective Weld Throat for Design Calculations

Joint Design

Welding Technique

Weld Beads vs. Weld Layers

ASME Section IX – Joint Procedure Variables

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	φ Groove Design	Х	Х	Х
	.2	± Backing	Х		Х
	.4	- Backing			
	.5	+ Backing			
QW-402 Joints	.6	> Fit-up Gap	Х		Х
	.10	φ Root Spacing			Х
	.11	± Retainers	Х		Х
	.18	φ Lap Joint Configuration	Х		

ASME Section IX – Base Material Procedure Variables

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessential
	.2	Maximum T Qualified	Х		
	.3	φ Penetration	Х		
QW-403 Base Materials	.6	T Limits		Х	
	.8	φ T Qualified	Х		
	.9	t pass > 1/2-in.	Х		
	.10	T Limits (S. Cir. Arc)	Х		

ASME Section IX – Technique Procedure Variables

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	φ Stringer/weave			Х
	.7	φ Oscillation			Х
.9		φ Multiply to Single Pass/Side		Х	Х
	.21	1 vs. 2 Sided Welding	Х		
QW-410	.26	± Peening			Х
Technique	.37	ϕ Single to Multiple Passes			

Module 4 – Welding Design

Welding Sequence

Special Purpose Welds

Module 4 – Welding Design

Welding Position

- F Fillet weld G - Groove weld
- 1 flat
- 2 horizontal
- 3 vertical
- 4 overhead

Welding Symbols

Module 4E

Standard Location of Elements

- Key Elements
 - Arrow
 - Reference Line
 - Tail
 - Weld Symbols
 - Supplementary
 - Symbols
 - Other Details
- Only the REFERENCE LINE and ARROW are required
- Reference line are always horizontal

Symbol without L-P denotes continuous welds

Symbol Dimensions?

- Tolerances, if required, are to be placed in tail
- Welding Symbols are usually drawn without dimension units such as inches or millimeters
- But, Welding Symbols to be used for publications or those requiring high precision should be dimensioned and have the dimensional tolerances noted within the tail.

Weld Symbols

NOTE:

(1) The reference line is shown dashed for illustrative purposes.

(2) Symbols with a perpendicular leg shall have the perpendicular leg drawn on the left side of the symbol (fillet, bevel-, J-, or flare-bevel-groove)

			GR	OOVE			
SQUARE	SCARF	٧	BEVEL	U		FLARE-V	FLARE-BEVEL
11			<u>k</u>	<u></u>	Ľ		1 <i>C</i>
-11	7/	~~			К	-76-	76-

FILLET	PLUG	SLOT	STUD	SPOT OR PROJECTION	SEAM	BACK OR BACKING	SURFACING	EDGE
<u>0</u>	<u>.</u>		<u></u> &	0 0	₽ ₽	-0-	.60	

NOTE: The reference line is shown as a dashed line for illustrative purposes.

Figure 1-Weld Symbols

Source: AWS A2.4:2007

Supplementary Symbols

			CONSUMABLE	BACKING	CONTOUR			
WELD ALL AROUND	FIELD WELD	MELT THROUGH	INSERT	OR SPACER	FLUSH OR	CONVEX	CONCAVE	
			(SQUARE)	(RECTANGLE)	FLAT			
þ		_		ЪЪ)	

- Significance of arrow
 - Arrow side below reference line
 - Other side above reference line

Arrow and Other Side Convention – Examples

Break in Arrow of Welding Symbol – Examples

Combined Weld Symbols

Combined Weld Symbols – Examples

Specification of Extent of Welding Use Multiple Arrows

Supplementary Information

Omission of Tail When No References are Required

Field Weld and All-Around Symbol

- Flag indicated field weld
- Circle indicates that the is to continue along the entire joint length (i.e., weld all around)

Welding Symbols

Specification of Extent of Welding Using Weld All-Around Symbol

WELDS

Extent of Welding Denoted by Symbols Using Weld All-Around Symbol

Location and Extent of Fillet Welds

Length and Pitch of Intermittent Welds

Dimensions of Plug and Slot Weld

Melt-Through Symbol

Melt-Through with Flange Welds

Corner-Flange

Application of "Typical" Welding Symbols Using Tail

Welding Symbols

Specification of Extent of Welding Using Tail of the Welding Symbol

SYMBOL

Specification of Completed Weld Using the Welding Symbol

The weld tail can specify the final contour of the weld as well as any addition processing steps require to achieve the contour

Supplementary Information

- The weld tail can also include supplementary information important the welder/supervisor
 - Welding procedure
 - Additional/specific welding dimensions or tolerances

Flush and Convex Contour Symbols

Standard Location of NDE Elements

Standard Location of NDE Elements

The NDE Key elements are similar to the welding key elements

Reference LineArrow	Examination Method Letter Designations	
 Examination Method Letter Designations Extent and Number of Examinations Supplementary Symbols Tail (specifications, codes or other references) 	Acoustic emission Electromagnetic Leak Magnetic practical Neutron radiographic Penetrant Proof Radiographic Ultrasonic Visual	AET ET LT MT NRT PT PRT RT UT
Combined Welding and NDE Symbols

- Welding and NDE symbols can be combined on the same reference line, or on separate multiple reference lines
- Combining welding and NDE symbols on multiple reference lines often clarifies the exact sequence of operations required

Examples of NDE Symbols

Examples of NDE Symbols

ET

PRT

Welding Symbol Applications

Complete Joint Penetration with Optional Joint Geometry

Groove Weld Size & Depth of Bevel Not Specified

Specification of Groove Weld Size (E) Only

WELD CROSS SECTION

Double-V-groove weld with root opening

Groove Weld Size without Depth of Bevel Specified

Specification of Groove Weld Size (E) and Depth of Bevel (S)

Combined Groove and Fillet Welds

NOTE: TOTAL GROOVE WELD SIZE CANNOT EXCEED 1

Root Opening of Groove Welds

Groove Angle of Groove Welds

Groove angle is placed just outside the weld symbol

Groove Angle of Groove Welds

Back or Backing Weld Symbol

Single-V-Groove Weld with Backing

Application of the Consumable Insert Symbol

Joint Geometry with Insert in Place

Joint with Root Pass Combined

Groove Welds with Back Gouging

WELD CROSS SECTION

SYMBOL

Groove Welds with Back Gouging

WELD CROSS SECTION

SYMBOL

Groove Welds with Back Gouging

WELD CROSS SECTION

SYMBOL

Module 4 – Welding Design

Size of Fillet Welds

WELD CROSS SECTION

SYMBOL

SYMBOL

SYMBOL

Length of Fillet Welds

WELD CROSS SECTION

SYMBOL

WELD

SYMBOL

Staggered Intermittent Fillet Welds

Chain Intermittent Fillet Welds

Applications of Stud Weld Symbols

Applications of Surfacing Weld Symbols

Applications of Surfacing Weld Symbols

Mechanical Testing

Module 4F

Mechanical Testing

- There are several different sources for mechanical testing methods
 - AWS B4.0M:2000 "Standard Methods for Mechanical Testing of Welds"
 - Several ASTM standards
- There are several different sources for acceptance criteria including construction documents and qualification documents
 - ASME Section IX "Welding and Brazing Qualification"
 - AWS D1.1 "Structural Welding Code Steel"
 - API 1104 "Welding of Pipelines and Related Facilities"

Mechanical Testing

- Testing Methods covered in this module
 - Hardness Testing
 - Tension Test
 - Bend Test
 - Fillet Weld Break Test
 - Fracture Toughness Test

Hardness Testing

- Hardness is shorthand for strength
- Can characterize change in properties across a weld
- Several standard techniques
 - Rockwell (ASTM E-18)
 - Brinell (ASTM E 10)
 - Vickers (ASTM E92, E384)
 - Knoop (ASTM E384)
- Differences
 - Indentation load sequence
 - Indenter shape
 - Property measured
 - Indentation depth
 - Indentation area
 - Calculation of Hardness Value
- Scales related to each other

Macrohardness Test

Microhardness Test

Vickers

Hardness Tests, Indenters, and Shapes of Indention

Brinell 10 mm sphere of steel or tungsten carbide							
Vickers	Diamond pyramid	*		HB-3006	HB-3031	HB-3030	BR-3030
Knoop macrohardne	Diamond ess pyramid		>	Brinell Indentor			
Rockwell A B C B F G E	Diamond cone 1/16 in. Diameter steel sphere 1/8 in. Diameter steel sphere			300	IO gf	3000 g	af gf
8 111 8112	8116 8113 8 ¹	114	NI-SP8	50 10 Knoop Ind	0 gf D gf dentations	500 g 100 g Vickers Inde	f f ntations
	Rockwell Indent	or					

Comparison of Hardness Tests

TEST	TEST METHOD	TEST FORCE RANGE	INDENTER TYPES	ASTM TEST METHOD	MEASURE METHOD
Rockwell	Regular	60, 100, 150 kgs	Conical Diamond & Small Ball	E 18	Depth
	Superficial	15, 30, 45 kgs	Conical Diamond & Small Ball	E 18	Depth
	Light Load	3, 5, 7 kgs	Truncated Cone Diamond	N/A	Depth
	Micro	500, 100 grams	Small Truncated Cone Diamond	N/A	Depth
	Macro	500 to 3000 kgs	5, 10 mm Ball	E 103	Depth
Micro-Hardness	Vickers	5 to 2000 grams	136° Pyramid Diamond	E 384	Area
	Knoop	5 to 2000 grams	1300 x 1720° Diamond	E 384	Area
	Rockwell Type	500, 3000 grams	Truncated Cone Diamond	N/A	Depth
	Dynamic	.01 to 200 grams	Triangular Diamond	N/A	Depth
Brinell	Optical	500 to 3000 kgs	5mm, 10 mm Ball	E 10	Area
	Depth	500 to 3000 kgs	5mm, 10 mm Ball	E 103	Depth
Shore	Regular	822 (A), 4550 (D) grams	35° Cone (A) 30° Cone (D)	D 2240	Depth
	Micro	257 (A), 1135 (D) grams	35° Cone (A) 30° Cone (D)	N/A	Depth
IRHD	Regular	597 grams	2.5 mm Ball	D 1415	Depth
	Micro	15.7 arams	.395 mm Ball	D 1415	Depth

Microhardness testing often used to characterize changes in strength across a weld and Heat Affected Zone
Hardness Relationship to Mechanical Properties

Hardness can be used to estimate material strength

- Estimated tensile strength of steel
 - 510 * HB, HB<175
 - 490 * HB, HB>175
- Estimated yield strength of steel
 - 0.33* hardness
 - (Vickers * 10/3 = Tensile yield)

Hardness & Tensile Strength

Hardness Scale Conversion

Rockwell C	Brinell	Vickers	Tensile ksi
60	654	697	
55	560	595	288
50	481	513	245
45	421	446	212
40	390	412	191
35	327	345	163
30	286	302	142
25	253	266	125

Tension Test

- Summary of Method
 - Tension testing of welded joints is done by means of a calibrated testing machine and devices
 - The test sample is pulled in tension until the sample fails
- Significance
 - Tension test provides information on properties of welded joints: load bearing capacities; joint design; and ductility

Tension Test – Summary of Method

Test coupon in the loading grips

 $Stress = \frac{Load}{Initial..Cross - Sectional..Area}$

$$Strain = \frac{Elongation}{Initial..Gauge..Length}$$

Stress-Strain Curve

Tension Test Apparatus

Modern Loading System -Computer Controlled

Conventional Loading System – for Tensile Strength Only

Tensile Test - Specimens

- All Weld Metal Tensile Test
 - Determine weld metal ultimate tensile strength, yield strength, elongation and reduction in area
- Reduced Section Tension Test (RST)
 - Determine ultimate tensile strength only
- Specimens shall be tensile tested in the as-welded condition unless the procedure qualification requires a PWHT

Tensile Test - Procedure

Welding Procedure Qualification

- Tension test specimen shall be ruptured under tensile load
- Tensile strength shall be computed by dividing the ultimate total load by the least cross-sectional area of the specimen as calculated from actual measurements made before the load is applied

Round Tension Specimen

Ultimate Tensile Strength
$$UTS = \frac{Maximum ..Load}{\left(\frac{\pi D^2}{4}\right)}$$
Yield Strength at Specified Offset $YS = \frac{Load ..@..Offset}{\left(\frac{\pi D^2}{4}\right)}$ Percent Elongation $\varepsilon_f = \frac{Final ..GaugeL ..Length - Original ..Gauge ..Length}{Original ..Gauge ..Length}$

Reduced Section Tension Specimen

Ultimate Tensile Strength UTS = <u>Maximum ...Load</u> <u>Original ...Cross - Section ...Area</u>

QW-151.1, Reduced Section – Plate

QW-462.1(a) TENSION - REDUCED SECTION - PLATE

QW-151.2, Reduced Section – Pipe

• For pipe diameters greater than 3 in.

QW-462.1(b) TENSION - REDUCED SECTION - PIPE

- QW-151.2, Reduced Section Pipe
 - For pipe diameters less than or equal to 3 in.

QW-462.1(c) TENSION - REDUCED SECTION ALTERNATE FOR PIPE

NOTES:

- (1) The weld reinforcement shall be ground or machined so that the weld thickness does not exceed the base metal thickness *T*. Machine minimum amount to obtain approximately parallel surfaces.
- (2) The reduced section shall not be less than the width of the weld plus 2y.

QW-151.3, Turned Specimen

QW-462.1(d) TENSION - REDUCED SECTION - TURNED SPECIMENS

	Standard Dimensions, in. (mm)					
	(a)	(b)	(c)	(d)		
	0.505 Specimen	0.353 Specimen	0.252 Specimen	0.188 Specimen		
A—Length of reduced section D—Dlameter	Note (1) 0.500 ± 0.010 (12.7 ± 0.25)	Note (1) 0.350 ± 0.007 (8.89 ± 0.18)	Note (1) 0.250 ± 0.005 (6.35 ± 0.13)	Note (1) 0.188 ± 0.003 (4.78 ± 0.08)		
R—Radius of fillet	¾ (10) min.	¼ (6) min.	3/16 (5) min.	1/ ₈ (3) min.		
B—Length of end section	1¾ (35) approx.	1¼ (29) approx.	7⁄8 (22) approx.	1/2 (13) approx.		
C—Diameter of end section	⅔ (19)	½ (13)	3∕8 (10)	1/4 (6)		

GENERAL NOTES:

(a) Use maximum diameter specimen (a), (b), (c), or (d) that can be cut from the section.

(b) Weld should be in center of reduced section.

(c) Where only a single coupon is required, the center of the specimen should be midway between the surfaces.

(d) The ends may be of any shape to fit the holders of the testing machine in such a way that the load is applied axially.

NOTE:

(1) Reduced section A should not be less than width of weld plus 2D.

QW-151.4, Full-Section Specimens for Pipe

• For pipe diameters less than or equal to 3 in.

QW-462.1(e) TENSION - FULL SECTION - SMALL DIAMETER PIPE

Tensile Test – Acceptance Criterion

- Reduced Section Tension per AWS D1.1
 - 4.8.3.5 Acceptance Criteria for Reduced-Section Tension Test
 - The tensile strength shall be no less than the minimum of the specified tensile range of the base metal used
- Reduced Section Tension per ASME Section IX
 - QW-153 Acceptance Criteria Tension Test
 - To pass the tension test the specimen shall have a tensile strength that is
 - not less than the minimum specified tensile strength of the base metal, or
 - not less than the minimum specified tensile strength of the weaker of the two materials if different strength materials are welded, or
 - not less than the minimum specified tensile strength of the weld metal when a weld metal having lower room temperature strength than the base metal is allowed, or
 - if specimen breaks in base metal outside the weld or fusion line, the test shall be accepted, provided the strength is not more than 5% below the minimum specified tensile strength of the base metal

Guided Bend Test

- Summary of Method
 - The specimens are guided in the bending process by a test fixture that employs a mandrel with wraparound roller or end supports with plunger
 - The maximum strain on the tension surface is controlled by the thickness of the specimen and the radius of the mandrel or plunger
- Significance
 - The ductility of a welded joint

Bend Test Apparatus

Mechanical Testing

Guided Bend Test Specimens

Transverse Bend Test Specimens

Longitudinal Bend Test Specimens

Guided Bend Test Procedure

- Specimens shall be bent in jigs
- The weld and HAZ shall be within the curved portion of the specimen if not the specimen shall be discarded
- Unless otherwise specified, the specimen shall be tested at ambient temperature and deformation shall occur in a time period between 15 seconds and 2 minutes
- Appropriate surface of the specimen, according to its type, shall be bent such that it is placed in tension
- Specimen shall be bent around the correct size mandrel (plunger) until the specimen is forced into the die until a 1/8" wire cannot be inserted between the specimen and die, or the specimen is bottom ejected if the roller type jig is used
- When specimens wider than 1-1/2" are tested, mandrel must be at least 1/4" wider than specimen

QW-161.1, Transverse Side Bend

QW-462.2 SIDE BEND

- (1a) For procedure qualification of materials other than P-No. 1 in QW-422, if the surfaces of the side bend test specimens are gas cut, removal by machining or grinding of not less than ¹/₈ in. (3 mm) from the surface shall be required.
- (1b) Such removal is not required for P-No. 1 materials, but any resulting roughness shall be dressed by machining or grinding.
- (2) For performance qualification of all materials in QW-422, if the surfaces of side bend tests are gas cut, any resulting roughness shall be dressed by machining or grinding.

QW-462.3(a) FACE AND ROOT BENDS -

QW-161.2 and 161.3, Transverse Face or Root Bend

	Y, in. (mm)			
<i>T,</i> in. (mm)	P-No. 23, F-No. 23, or P-No. 35	All Other Metals		
$\frac{1}{16} < \frac{1}{8} (1.5 < 3)$	$\mathcal{T}_{\mathcal{T}}$	Т		
¹ / ₈ - ³ / ₈ (3-10)	¹ / ₈ (3)	Т		
>3/8 (10)	¹ / ₈ (3)	³ ∕ ₈ (10)		

4-236

QW-161.6 and 161.7, Longitudinal Face or Root Bend

- Used to test materials with markedly different bending properties
 - Largely different properties between different base materials
 - Largely different properties between the weld metal and base material

QW-162.1, Bend Test Jigs

QW-162.1, Bend Test Jigs

The dimensions of the bend test jig depend on the material that is being bent

Customary Units								
Material	Thickness of Specimen, in.	A, in.	<i>B</i> , in.	<i>C</i> , in.	<i>D</i> , in.			
P-No. 23 to P-No. 21 through P-No 25; P-No. 21 through P-No. 25 with F-No. 23; P-No. 35; any P-No. metal with F-No. 33, 36, or 37	$\frac{1}{8}$ $t = \frac{1}{8}$ or less	2 ¹ ⁄ ₁₆ 16 ¹ ⁄ ₂ t	1 ¹ / ₃₂ 8 ¹ / ₄ <i>t</i>	$2\frac{3}{8}$ $18\frac{1}{2}t + \frac{1}{16}$	$1\frac{3}{16}$ $9\frac{1}{4}t + \frac{1}{32}$			
P-No. 11; P-No. 25 to P-No. 21 or P-No. 22 or P-No. 25	t^{3}_{8} $t = \frac{3}{3}$ or less	$2\frac{1}{2}$ $6\frac{2}{3}t$	1¼ 3⅓t	$3\frac{3}{8}$ $8\frac{2}{3}t + \frac{1}{8}$	$\frac{1^{11}}{4^{1}_{3}t} + \frac{1}{16}$			
P-No. 51; P-No. 49	$t^{3} = \frac{3}{8}$ or less	3 8 <i>t</i>	$1\frac{1}{2}$ 4t	$3\frac{7}{6}$ 10 <i>t</i> + $\frac{1}{8}$	$1^{15}/_{16}$ 5t + $1^{1}/_{16}$			
P-No. 52; P-No. 53; P-No. 61; P-No. 62	$\frac{3}{8}$ $t = \frac{3}{8}$ or less	3¾ 10 <i>t</i>	1 ⁷ / ₈ 5 <i>t</i>	$4\frac{5}{8}$ 12 <i>t</i> + $\frac{1}{8}$	$2^{5}/_{16}$ $6t + \frac{1}{16}$			
All others with greater than or equal to 20% elon- gation	t^{3}_{8} $t = \frac{3}{8}$ or less	1½ 4 <i>t</i>	³ / ₄ 2 <i>t</i>	$2\frac{3}{8}$ 6t + $\frac{1}{8}$	$1\frac{3}{16}$ $3t + \frac{1}{16}$			
Materials with 3% to less than 20% elongation	t = [see Note (b)]	32 ⁷ % <i>t</i> max.	167 <u>46</u> max.	$A + 2t + \frac{1}{16}$ max.	$\frac{1}{2}C + \frac{1}{32}$ max.			

Guided Bend Test – Acceptance Criterion

Bend Test per AWS D1.1

- 4.8.3.3 Acceptance Criteria for Bend Test
 - No discontinuities greater than 1/8" in any direction
 - The sum of all discontinuities greater than 1/32" but less than 1/8" should not exceed 3/8"
 - No corner cracks greater than 1/4" with no visible evidence of slag or other fusion discontinuity
- Bend Test per ASME Section IX
 - QW-163 Acceptance Criteria Bend Test
 - No discontinuities greater than 1/8" in any direction
 - Corner cracks shall not be considered unless there is evidence of weld defect

Fillet Weld Break Test

Summary of Method

- One leg of a T-joint is bent upon the other so as to place the root of the weld in tension.
- The load is maintained until the legs of the joint come into contact with each other or the joint fractures
- Significance
 - To determine the soundness of fillet welded joints

Fillet Weld Break Test Procedure

- A force as shown or other forces causing the root of the weld to be in tension shall be applied to the specimen
- The load shall be increased until the specimen fractures or bends flat upon itself
- If the specimen fractures, the fracture surfaces shall be examined visually to the criteria of the applicable standard

ASME Section IX – QW-180 Fillet Weld Test

GENERAL NOTE: Macro-test — the fillet shall show fusion at the root of the weld but not necessarily beyond the root. The weld metal and heat-affected zone shall be free of cracks.

QW-462.4(a) FILLET WELDS IN PLATE - PROCEDURE

ASME Section IX – QW-180 Fillet Weld Test

QW-462.4(d) FILLET WELDS IN PIPE - PROCEDURE

GENERAL NOTES:

(a) Either pipe-to-plate or pipe-to-pipe may be used as shown.

(b) Macro test:

(1) The fillet shall show fusion at the root of the weld but not necessarily beyond the root.

(2) The weld metal and the heat-affected zone shall be free of cracks.

Fillet Weld Break Test – Acceptance Criteria

Fillet Weld Break Test per AWS D1.1

- 4.30.4.1 Acceptance Criteria for Fillet Weld Break Test
 - Reasonably uniform appearance and free of overlap, cracks and undercut within acceptable limits of visual inspection
 - The broken specimen shall be flat upon itself or the fracture surface shall show complete root fusion with no inclusion or porosity larger than 3/32" in greatest dimension
 - The sum of the greatest dimensions of all inclusions and porosity shall not exceed 3/8" in the 6" long specimen.
- Fillet Weld Break Test per ASME Section IX
 - QW-182 Fracture Test
 - The fracture surface shall show no evidence of cracks or incomplete root fusion
 - The sum of inclusions and porosity shall not exceed 3/8" or 10% of the section

Fracture Toughness Tests – Summary of Methods

- Charpy V-notch Impact on V-notched specimen
- Dynamic Tear Three point bending of U-notched specimen loaded at high strain rate by strike
- Plane-Strain Fracture Toughness Plane-strain critical fracture toughness value obtained at slow loading rates on compact tension specimen with maximum constraint (thick specimen with deep crack) resulting in brittle fracture with little or no deformation
- Drop-Weight Nil Ductility Transition Temperature Drop weight impact on flat notched specimen with maximum fracture stress at material's yield stress

Fracture Toughness Test – Significance

- Provides a measure of resistance to crack initiation or propagation or both
- The same welding process, procedure, and weld cooling rates must be used for the test sample and the structure
- Fracture toughness of steels is sensitive to service temperature

Photograph of Typical **Brittle Fracture Surface**

Markings Shear Lip

Chevron

Shear Rupture Dimples

Fracture Toughness Test Apparatus

Charpy V-Notch Test (right: placement of specimen in anvil) Compact Tension Test

Four-Point Bending Test

Fracture Toughness Test Specimens

Fracture Toughness Test Specimens

Compact Tension Fracture Toughness Test Specimen

4-251

Mechanical Testing

Fracture Toughness Test Apparatus

Drop-Weight Nil Ductility Transition Temperature Test
Fracture Toughness Test Procedure

Orientation of Weld Metal Fracture Toughness Specimen in a Double-Groove Weld Thick Section Weldment

Fracture Toughness Test Acceptance Criteria

Charpy V-Notch Test Results

Fracture Toughness Test Acceptance Criteria

Dynamic Tear Test Results

Fracture Toughness Test Acceptance Criteria

Compact Tension Test Results