
Control Tests for Concrete

Objectives

- Purpose
- Frequency
- Planning
- Testing fresh concrete

Purpose of Control Testing

 Provides assurance that specified properties are achieved

 Provides feedback for mixture adjustments

Frequency of Control Testing

 Random tests occur to accept a material or component

 Process control tests are nonrandom and occur often to allow process adjustments

 Frequency depends on uniformity of materials

Frequency of Control Testing

 Process control tests occur twice per day at a batch plant

 Frequency reduces as material uniformity is established for a project

 ASTM C1451, Standard Practice for Determining Uniformity of Ingredients of Concrete From a Single Source

Avoiding Problems

QA/QC Plan

- Communication & Planning
- Pre-Construction Meeting
 - Owner
 - Architect/Engineer
 - General Contractor
 - Sub-Contractors
 Ready-Mix Supplier
 Concrete Contractor
 - QA/QC Inspector

Qualification of Personnel

- Knowledge and Skills
- Certification Required
 - ASTM C94
 - ◆ ACI 318
- ACI Concrete Field Testing Technician
- ACI Concrete Strength Testing Technician
- ACI Concrete Laboratory
 Testing Technician

Testing Fresh Concrete

- Sampling
- Temperature
- Consistency
- Density and yield
- Air content
- Strength

Reference Documents ASTM

- C31, Standard Practice for Making and Curing Concrete Test Specimens in the Field
- C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
- C138, Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete
- C143, Standard Test Method for Slump of Hydraulic Cement Concrete
- C172, Standard Practice for Sampling Freshly Mixed Concrete
- C173, Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method
- C231, Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
- C1064, Standard Test Method for Temperature of Freshly Mixed Portland Cement Concrete

Sampling and Testing Fresh Concrete

 Purpose: to obtain a truly representative sample of the freshly mixed concrete

• ASTM C172

 Required for all tests except temperature

ASTM C172 Procedure

- 1 ft³ minimum
- All water added
- Middle portion of batch
- Composite samples
- Re-mixed
- Time limits

Frequency of Sampling

 Once per day, per class, but not less than:

- Once for each 115 m³ (150 yd³) of each class placed each day, but not less than:
- Once for each 500 m²
 (5000 ft²) of slab or wall
 surface area placed each
 day

Temperature ASTM C1064

 <u>Purpose of Test</u>: To determine if fresh concrete temperature falls within allowable specification limits.

ASTM C1064 Procedure

 Place device in concrete with at least 75 mm (3 in) clear cover in all directions

 Allow temperature to stabilize over at least 2 minutes

Complete test within 5 minutes of sampling

Typical Specification Limits

ASTM C94

ACI 306-For Cold Weather Concreting:
 Section Size Min. Temperature

```
< 12 in. 55° F (13° C)

12-36 in. 50° F (10° C)

36-72 in. 45° F (7° C)

> 72 in. 40° F (5° C)

Do Not Exceed 90°F (32°C)
```

ACI 305-For Hot Weather Concreting:
 Try Not to Exceed 90°F (32°C)

Controlling Temperature

ACI 305- Hot Weather Concreting

ACI 306- Cold Weather Concreting

Slump ASTM C143

 <u>Purpose of Test</u>: To determine consistency of fresh concrete and to check uniformity from batch to batch.

Importance of Slump

- Slump is NOT a measure of Workability!!
- Do NOT compare slumps from different concrete mix designs.

Should Design Mixtures for Placement Conditions not Slump.

ASTM C143 Procedure

 Place concrete in 3 equal layers within cone

Vertically raise cone steadily

 Measure height distance of original center

Typical Specification Limits

• ASTM C94:

Specified Slump

≤ 2 in.

2-4 in.

> 4 in.

Tolerance

± ½ in.

± 1 in.

± 1½ in.

If Specified "Not to Exceed"

Max.Slump

≤ 3 in.

>3 in.

Tolerance

- 1½ in.

- 2½ in.

Controlling Slump (Control Consistency)

- w/cm
- Wash Water
- Agg. Moisture
- Temperature
- Haul Time
- Mixing Time
- Admixture Dosage
 - Water Reducers
 - Air-Entrainers

How about water added on site?

ACI 301, ACI 302, ASTM C94 <u>all allow</u>
 limited addition of water...

 If water addition is allowed, the w/c ratio and the maximum water content may not be exceeded

Density and Yield ASTM C138

 Purpose of Test: To find the weight per cubic foot of fresh concrete, which is used for determining yield and cement factor.

Importance of Yield

- Ready Mixed Concrete is sold on the basis of the volume of fresh, unhardened concrete (m³ or yd³).
- Should receive amount ordered an billed

ASTM C138 Procedure

 Place concrete into container of known mass and volume

Measure mass of concrete and calculate density

Calculate yield using batch weights

Calculate air content using theoretical density

Typical Specification Limits

ASTM C94

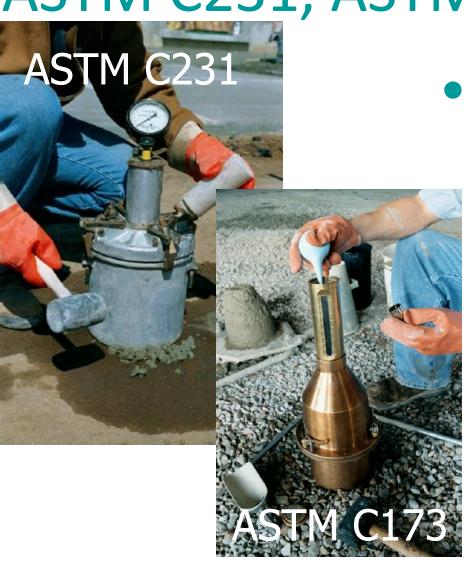
Material Tolerance

• Cement: ±1%

• SCM's: ±1%

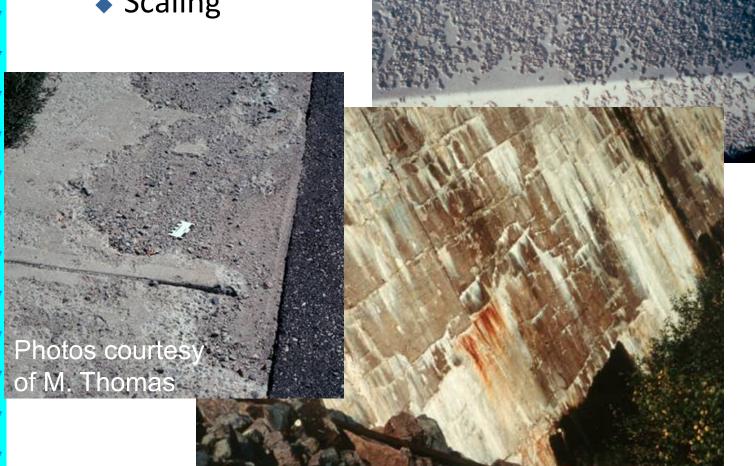
Aggregate: ±2%

Water: ±1%


Admixtures: ±3%

Controlling Yield and Under Ordering

- Water content
- Air Content
- Subgrade
 - moisture content
 - levelness (highs & lows)
 - overexcavation
- Distortion of Forms
- Waste (4-10%)


Air Content ASTM C231, ASTM C173

Purpose of Test: To determine the air content of fresh
 concrete.

Importance of Air

- Durability
 - Freeze-Thaw
 - Scaling

ASTM C231 Procedure

- Place concrete
- Apply pressure
- Release and read gauge
- Make corrections for aggregates

ASTM C173 Procedure

- Place concrete
- Add alcohol and water
- Seal container, shake and roll
- Release and read

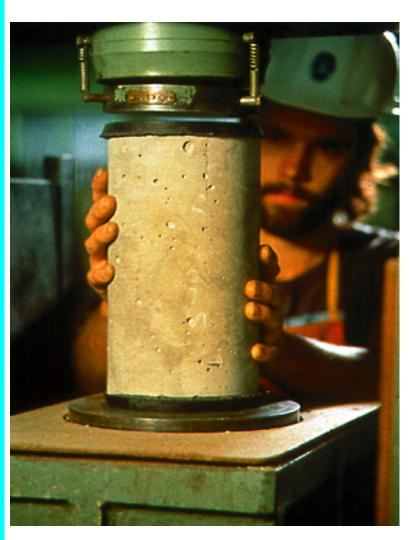
Air Content Acceptance

- <u>+</u> 1.5 of the Specified Percentage
- Low Additional Dosage of Admixture
- High
 - Additional Revolutions in Mixer/Agitator
 - Air Detraining Admixtures
 - Vibrator in Mixer/Agitator
- Not To Exceed total Mixing or Agitating Time

Controlling Air Content

- Cement content;
 - fineness, alkali
- Aggregates;
 - fineness, shape
- Admixtures
- w/c
- Slump;
 - ◆ <3-in., >6-in.
- Temperature
- Altitude
- Mixing speed, time, capacity

- Transportation
- Placement; pumping
- Consolidation
- Finishing



Compressive Strength ASTM C31

 Purpose of Test: To check for adequacy of mix proportions for strength.

Importance of Strength

• To determine acceptance of strength for form removal, and service of structure.

ASTM C39

ASTM C31 Procedure

Place concrete into molds on level ground

 Move as little as possible, leaving the specimens near the placement site

 Shelter the specimens from hot or cold weather

Strength Tests

Test Methods

◆ ASTM C39 – Cylinders

◆ ASTM C78 – Simple Beam

◆ ASTM C496 – Tensile Splitting

Transporting Test Specimens

- At least 8 hours after final set
- Packed in a sturdy box
- Surrounded with wet sand or wet saw dust
- Protected against freezing
- Transport time less than 4 hours

Test Cylinders at the Lab

- ASTM C39 Testing Cylinders
- Capping
 - ASTM C617 Capping
 - ◆ ASTM C1231 Unbonded Caps
- Measurements
- Testing
 - Maximum Load
 - Strength, within 10 psi
- Conical Failure

Controlling Cylinder Strength

- w/cm
- Water Added
- Air Content
- Aggregate Bond
- Handling
- Curing Temperature
- Testing Errors

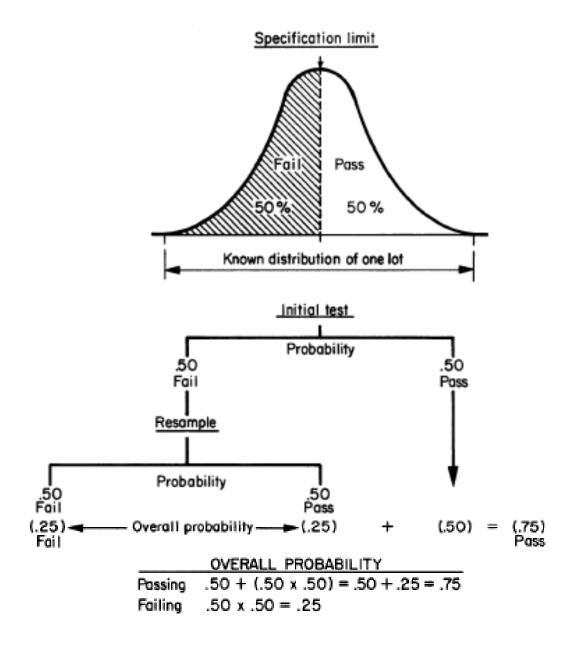
Typical Specification Limits

ASTM C94 (ACI 318)

- The average of any three consecutive strength tests shall be equal to, or greater than, the specified strength, f'_c .
- No individual strength test shall be more than 500 psi [3.5 MPa] below the specified strength, f'_{c} .

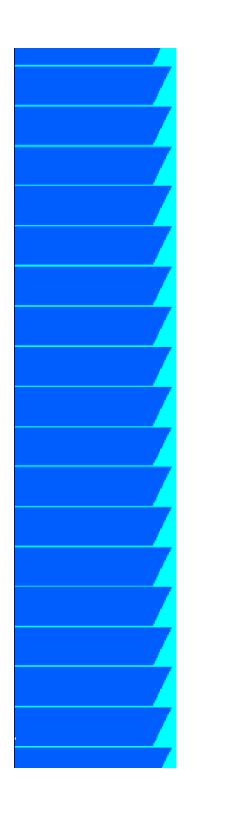
Low Strengths

Test	Individual Strengths f' _c = 3000	Average of 2 Strengths	Average of 3 Tests	Evaluation
1	3110 + 3080 = 6190	3095	-	OK
2	3060 + 3020 = 6080	3040	-	OK
3	3120 + 3160 = 6280	3140	3092	OK
4	2980 + 3010 = 5990	2995	3058	OK
5	2800 + 2860 = 5660	2830	2988	Avg of 3
6	3040 + 3100 = 6140	3070	2965	Avg of 3
7	2510 +2460 = 4970	2485	2795	< 500 psi Avg of 3


What to Do?

- Increase Cementitious Materials
- Reduce W/CM
- Closer Control of Air Content
- Change Mixture Proportions
- Reduce Delivery Time
- Improve Quality of Testing

Apply Judgment


- 1 in 100 Tests Fail Even Though Concrete Strength and Uniformity May Be Satisfactory
- Allowance for Statistically Expected Variations
- Investigation of Low Strengths
 - Nondestructive Testing
 - Compressive Strengths of Cores

Apply Judgment

Summary

- Control testing provides assurance and feedback
- ASTM standards for test methods
- Apply judgment

