Aggregate Specifications and Performance in Concrete

Aggregates

Aggregate Characteristics

- Properties
 - Surface texture
 - Particle shape
 - Gradation
 - Absorption
 - Bulk unit weight
 - Specific gravity
 - Moisture content

- Performance
 - Abrasion resistance
 - Freeze-thaw resistance
 - Sulfate resistance
 - Alkali Resistance
 - Strength
 - Shrinkage

Aggregate Properties

Characteristic	Test
Definition of constituents	ASTM C 125, ASTM C 294
Aggregate constituents	ASTM C 40, ASTM C 87, ASTM C 117, ASTM C 123, ASTM C 142, ASTM C 295
Particle shape and surface texture	ASTM C 295, ASTM D 3398
Relative density	ASTM C 127 (fine), ASTM C 128 (coarse)
Absorption and surface moisture	ASTM C 70, ASTM C 127, ASTM C 128, ASTM C 566
Grading	ASTM C 117, ASTM C 136
Void content	ASTM C 1252
Bulk density	ASTM C 29

Aggregates – ASTM C33

- Physical properties
 - Gradation
 - Deleterious substances
- Chemical properties
 - Reactivity

Aggregate Terms...defined

- Gradation (sieve analysis)
- Fineness modulus
- SSD (Moisture conditions)
- Absorption
- Unit Weight
- Specific gravity
- Porosity

Porosity

- Pore structure
 - Mix proportions pore space affects bulk volume of aggregate
 - Permits increase and retention of water or aggressive solutions
- Greater porosity:
 - Aggregate strength decreases
 - Less abrasion resistance
 - Modulus less
 - Freeze-thaw (large pores)
 - Possibly greater shrinkage

Fine Aggregate

Standard sieve sizes for fine aggregate

ASTM & AASHTO			
Sieve #	Size (in.)	Size (metric)	
3/8-in	0.375	9.5 mm	
No. 4	0.187	4.75 mm	
No. 8	0.0937	2.36 mm	
No. 16	0.0469	1.18 mm	
No. 30	0.0234	600 μm	
No. 50	0.0117	300 µm	
No. 100	0.0059	150 μm	

Sieve Analysis and FM

Sie	ve size	Percentage of individual fraction	Percentage passing, by mass	Cumulative percentage re- tained by mass
9.5 mm	$(3/8 \text{ in}_{-})$		100	
4.75 mm	(No. 4)	2	98	2
2.36 mm	(No. 8)	13	85	15
1.18 mm	(No. 16)	20	65	35
600 µm	(No. 30)	20	45	55
300 µm	(No. 50)	24	21	79
150 µm	(No. 100)	18	3	97
	Pan	3	0	_
Total		100	I	283
	Fineness modulus = $283 \div 100 = 2.83$			100 = 2.83

% Material <#200 (75 μm)

Fine Aggregate	ASTM C 33		
Source	Natural	Manufactured	
Subject to Abrasion	3.0	5.0*	
Not Subject to Abrasion	5.0	7.0*	

* Minus No. 200 Essentially Free of Clay or Shale

Coarse Aggregate

Standard sieve sizes for coarse aggregate

ASTM & AASHTO			
Sieve #	Size (in.)	Size (metric)	
2 in	2.0	50 mm	
1½ in	1.5	37.5 mm	
1 in	1.0	25.0 mm	
3/4 in	0.75	19.0 mm	
1/2 in	0.50	12.5 mm	
3/8 in	0.375	9.5 mm	
No. 4	0.187	4.75 mm	
No. 8	0.0937	2.36 mm	
No. 16	0.0469	1.18 mm	

Coarse Aggregate - #57 25-4.75 mm [28-5] (1 in.-No. 4) Sieve Size % Passing 37.5 mm $(1\frac{1}{2} \text{ in.})$ 100 25.0 mm (1 in.) 95 to 100 $(\frac{1}{2} \text{ in.})$ 12.5 mm 25 to 60 (No. 4)0 to 10 4.75 mm (No. 8)2.36 0 to 5

Maximum vs. Nominal Maximum

 Maximum Size — smallest sieve that all of a particular aggregate must pass

100% Required to Pass

 Nominal Maximum Size — standard sieve immediately smaller than maximum size

100% Permitted to Pass

May retain 5% to 15%

Other Coarse Aggregate Limits

- <#200 Max 1.0% or 1.5% if free of clay or shale
- LA Abrasion, Loss 50% Maximum
- Coal & Lignite Max 0.5% or 1.0% if not exposed to weather or traffic

Reducing the paste content of concrete leads to:

- Reduced cost
- Reduced temperature rise

- Reduced shrinkage
- Reduced permeability

- Amount of paste required > volume of voids between aggregates
- Aggregates need to be coated by and become dispersed in the paste to provide workability

Aggregate Optimization

Sieve Size (inches)

Minimum Cement Requirements for Flatwork

Maximum size of aggregate, in.	Cement, Ib/yd ³
1½	470
1	520
¾	540
½	590
3/8	610

*Cement quantities may need to be greater for severe exposure.

Reinforced Concrete

Coarse Aggregate Stockpiles – Segregation in Cone-Shaped Piles

Variation in Grading of a Coarse Aggregate

Std. Dev. %	Batch to Batch	Sampling	Inherent &Testing
Process Stream	3%	1%	1%
Belt to Bin	5%	1%	1%
Bin Discharge	<u>8%</u>	3%	1%
Barge	<u>10%</u>	<u>7.5%</u>	1%
Stockpile	<u>8%</u>	<u>4.5%</u>	1%
Truck	<u>8.5%</u>	3.5%	1%

Aggregate Grading – Summary

- Practically Any Sound Aggregate
 Distribution Can Be Combined to Produce
 a Given Concrete Strength
- But Poorly Graded Mixes Cause
 Construction and Performance Problems
- Find the Optimum Gradation that Best Meets Your Needs In the Field

Moisture Conditions

Total moisture

Concrete Production

Deleterious Substances

Item	Weight Percent of Total Sample, max
Clay lumps and friable particles	3.0
Material finer than No. 200 (75 μ m)	
sieve:	3.0
Concrete subject to abrasion All other Concrete	5.0
Coal and lignite: Where surface appearance	0.5
of concrete is of importance All other concrete	1.0

Organic Impurities

Deleterious Contributions

- Lack of Cleanliness
- Soft and/or friable
- Absorbed chemicals
- Fine coatings (hydration and bond)
- Porous
- Cherts and Shale
- AAR & D-cracking

SERVICE RECORD \longrightarrow

Summary of Aggregate Properties

Aggregate Performance

Characteristic	Test
Abrasion resistance	ASTM C 131, ASTM C 535, ASTM C 779
Freeze-thaw resistance	ASTM C 666, ASTM C 682
Sulfate resistance	ASTM C 88
Concrete Strength	ASTM C 39, ASTM C 78
Fine aggregate degradation	ASTM C 1137
Alkali Resistance	ASTM C 227, ASTM C 289, ASTM C 295, ASTM C 342, ASTM C 586, ASTM C 1260, ASTM C 1293

- STRENGTH
 - Aggregate shape
 - Aggregate size
 - Aggregate surface texture

• SHRINKAGE

Drying Shrinkage & Thermal Dilation

- After Curing --
- Concrete Dries
- Shrinks as it Dries
- Up to 1 in. / 100 ft.
- Goes on up to 1 Yr
- If it is Rewetted
- Some Expansion
- Not Back to Original

- Concrete --
- Expands Upon Heating
- Contracts Upon Cooling
- Up to 3/4 in. / 100 ft.
- For a 100F Temp Range
- Cycles with Temp.
- Day / Night
- Summer / Winter

Volume Change of Concrete

- Thermal Dilation
 - Aggregate Minerals Types & Quantity
 - ◆ AASHTO TP 60 Coefficient of Thermal Expansion
- Drying Shrinkage
 - Coarse Aggregate Stiffness, Maximum Size
 - Cement Paste Amount & Composition
 - Coarse Aggregate Volume Change for some aggregate (recycled concrete)
 - ◆ ASTM C 157 (AASHTO T 160) Length Change
 - ASTM C 1581 (AASHTO PP 34-99)
 Restrained Ring Shrinkage Cracking Tendency

Thermal Coefficient, Millionths/ F

	Aggregate	Concrete
 Quartzite 	6.5	7.5
 Quartz 	6.2	6.7
Sandstone	6.2	6.6
• Granite, Gnei	ss 4.2	5.5
 Basalt 	3.8	4.4
Limestone	3.0	4.2

Concrete Drying Shrinkage (6 mo)

	Millionths (in./in.)	% Length Change
 Quartz 	530	0.053
 Granite 	640	0.064
Limeston	e 640	0.064
Sandston	e 700	0.070
 Gneiss 	750	0.075
Sandston	e 740	0.074
 Greywack 	ke 900	0.090

Drying Shrinkage

Low (28 d) .03% = .0003 x 100 ft. x 12 = 0.36 in.

High (6 mo) .09%= .0009 x 100 ft. x 12 = 1.08 in.

	7 Day	28 Day	6 Month
Quartz	.018%	.031%	.053%
Granite	.022	.038	.064
Limestone	.023	.042	.064
Sandstone	.024	.042	.070
Gneiss	.024	.042	.075
Sandstone	.023	.044	.074
Greywacke	.030	.055	.090

• WATER DEMAND

- AIR CONTENT
 - Maximum size
 - Gradation
 - Coarse to fine ratio
 - Testing procedures

- **DURABILITY**
 - Weathering
 - Impurities
 - Hardness

Alternate Wetting and Drying

- Weathering
- Expansion and contraction temperature and moisture
- Strain develops
- Permanent volume increase in concrete
 - Clay lumps
 - Friable particles
 - Shale
 - Cracking
 - Popouts moisture swelling

Abrasion and Skid Resistance

- ASTM C131 or C535
- Test concrete for abrasion
- Skid resistance
- Want at least 25% siliceous content

Resistance to Acids

- Acids will not attack siliceous aggregates
- Acids will attack calcareous aggregates
- Calcareous aggregates can be sacrificial and even attack wear

Alkali-Aggregate Reactivity

- ASR Alkali Silica Reaction
- ACR Alkali Carbonate Reaction

Alkali-Aggregate Reaction

Alkali-Silica Reactive Rocks & Minerals

Rocks Shale Sandstone Limestone Chert Flint Quartzite Quartz-arenite Gneiss Argillite Granite Greywacke Siltstone Arenite Arkose Hornfels

Reactive Minerals Opal Tridymite Cristobalite Volcanic glass Cryptocrystalline (or microcrystalline) quartz Strained quartz

Alkali-Carbonate Reactive Rocks

Calcitic dolomites Dolomitic limestones Fine-grained dolomites

Petrographic Examination

In Summary

- Aggregate properties
- Aggregate performance

Questions?