
Digital Instrumentation & Control Training

Module 5.0

Software/Firmware
Lifecycle Concepts

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-i Rev. 20070905

TABLE OF CONTENTS

5.0 SOFTWARE/FIRMWARE LIFECYCLE CONCEPTS .. 1

5.1 Software Lifecycle .. 1
5.2 Concept Process .. 2

5.2.1 Project Definition.. 2
5.2.2 Software Safety and Risk Concepts.. 5
5.2.3 Software Safety Plan... 7
5.2.4 Diversity and Defense in Depth.. 8
5.2.5 Software Risk.. 10
5.2.6 Software Fault Prevention .. 11
5.2.7 Quality Assurance (QA) Plan Development... 11
5.2.8 Software Verification & Validation (V&V) ... 13

5.3 Requirements Process ... 14
5.3.1 Requirements Characteristics ... 14
5.3.2 Identifying Safety Requirements .. 18
5.3.3 Preliminary Hazards Analysis .. 19
5.3.4 Development of the Software Requirements Specification (SRS) 20

5.4 Design Process .. 23
5.4.1 Risk Assessment Methods and Techniques .. 23
5.4.2 Critical Digital Review (CDR) ... 24
5.4.3 Development of the Software Design Description (SDD).. 27

5.5 Implementation Process/Performance Issues.. 29
5.5.1 Implementation Process .. 29
5.5.2 System Performance Issues... 30

5.6 Testing Activities .. 33
5.6.1 Requirements Process Testing Activities ... 33
5.6.2 Design and Implementation Process Testing Activities ... 33
5.6.3 Installation and Commissioning Testing Activities.. 34

5.7 Software Training Plan and Implementation .. 35
5.7.1 Management Characteristics... 35
5.7.2 Implementation Characteristics .. 35
5.7.3 Resource Characteristics... 36

5.8 Operations and Maintenance .. 36
5.8.1 Operations Support ... 36
5.8.2 Maintenance Support .. 36

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-ii Rev. 20070905

LIST OF FIGURES
Figure 5-1 (Slide 5.2.1-5) ... 39
Figure 5-2 (Slide 5.2.1-6) ... 40
Figure 5-3 (Slide 5.2.1-13) ... 41
Figure 5-4 (Slide 5.2.2-13) ... 42
Figure 5-5 (Slide 5.2.2-21) ... 43
Figure 5-6 (Slide 5.2.2-22) ... 44
Figure 5-7 (Slide 5.2.2-23) ... 45
Figure 5-8 Defense-in-Depth and Diversity Strategies... 45
Figure 5-9 diversity Attributes and Criteria.. 46
Figure 5-10 (Slide 5.2.6-6 (Table 1)).. 47
Figure 5-11 (Slide 5.2.6-8 (Table 2)).. 48
Figure 5-12 (Slide 5.2.8-3) ... 49
Figure 5-13 Typical Software Development Plan .. 50
Figure 5-14: Life Cycle Overview of a Digital Upgrade Project ... 51
Figure 5-15 Digital Upgrade Life Cycle (Adapted from EPRI TR-102348)...................................... 52
Figure 5-16 IEEE Std 1012 Requirements Phase Activity Inputs and Outputs.................................. 53
Figure 5-17 Requirements Specification Activities.. 54
Figure 5-18 Defining Safety Requirements .. 55
Figure 5-19 IEEE Std 1012 Design Phase Activity Inputs and Outputs .. 56
Figure 5-20 Fault Tree Example ... 57
Figure 5-21 Event Tree/FMEA Example.. 57
Figure 5-22 MIL-STD 882B Hazard Matrix .. 58
Figure 5-23 IEEE Std 1012 Safety Integrity Level... 58
Figure 5-24 CDR Penetrates to Core Architecture ... 59
Figure 5-25 Platform vs. Application ... 59
Figure 5-26 IEEE Std 1012 Implementation Phase Activity Inputs and Outputs 60
Figure 5-27 Aliasing Example .. 61
Figure 5-28 Aliasing Example, Continued ... 61
Figure 5-29 Wordlength Example .. 62
Figure 5-30 Rise Time Sampling Rate Selection Example .. 62
Figure 5-31 Phase/Gain Margin Example .. 63
Figure 5-32 IEEE Std 1012 Test Phase Activity Inputs and Outputs... 64

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-1 Rev. 0804

5.0 SOFTWARE/FIRMWARE
LIFECYCLE CONCEPTS

Module Introduction:

Welcome to Module 5.0 of the Digital and Micro-
processor Control Systems Course! This is the fifth of
five modules available in the Digital Instrumentation
& Control Training Course. The purpose of this
module is to assist the trainee in recognizing basic
software and firmware lifecycle information and
terminology. This module is designed to assist you in
accomplishing the learning objectives listed at the
beginning of the module.

Learning Objectives

After studying this chapter, you should be able to:

1. Explain in very general terms what “Software
Lifecycle” means

2. Explain in general terms what takes place in
each of the six lifecycle phases defined in IEEE
Std 1012-1998, “Standard for Software Verifica-
tion and Validation Plans”:

a. Management
b. Acquisition
c. Supply
d. Development
e. Operation
f. Maintenance

3. Explain in general terms the processes that
comprise the Development Phase:

a. Concept
b. Requirements
c. Design
d. Implementation
e. Testing

4. Explain the “Waterfall” software development
concept.

5. Describe the most common reason software

developments run into trouble

6. Explain the relationship between the following
requirements specifications:

a. Functional
b. Software
c. Hardware

7. In general terms, describe testing activities
during these phases:

a. Development
b. Implementation
c. Acceptance
d. Operation and Maintenance

5.1 Software Lifecycle

Each individual digital I&C project is completed
through multiple processes. These processes take the
project from conceptual design through initiation of
system operation. The processes are associated with
the six Life Cycle Phases identified in IEEE Std 1012-
1998:

• Management Phase
• Acquisition Phase
• Supply Phase
• Development Phase
• Operation Phase
• Maintenance Phase

For the purpose of this course, it is assumed that
the Acquisition and Supply phases have been success-
fully completed with the selection of a digital system
supplier whose system has received a Safety Evalua-
tion Report (SER) for nuclear power plant safety
related applications. This course will focus on digital
I&C project development, including design, imple-
mentation and testing. It will also discuss testing as
related to the operation and maintenance phases.

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-2 Rev. 0804

A simplified overview of a typical digital I&C
project lifecycle is provided in Figure 5-15. This
figure was adapted from EPRI TR-102348, Rev 1,
“Guideline on Licensing Digital Upgrades,” and
illustrates the life cycle of a typical digital I&C system
upgrade. The utility design and Verification &
Validation (V&V) engineers should read and under-
stand EPRI TR-102348 before proceeding with any
significant design, procurement, or implementation
activities involving a digital I&C project

5.2 Concept Process

The Concept Process involves the identification of
the Project objectives and performance goals. During
this phase, the Functional Requirements Specification
(FRS) will be created. This document becomes the
basis for all downstream hardware and software
requirements specifications and application develop-
ment. The steps in this process are discussed below:

5.2.1 Project Definition

Overview

A more detailed overview of the digital I&C up-
grade project is provided in Figure 5-1 (Slide 5.2.1-5).
The main flowpath down the left side of the figure
shows the key steps in the modification process,
starting with a change proposal and proceeding thru
installation, operation and maintenance. The process
has been simplified for this figure. For example, the
administrative and contractual steps involved in an
upgrade process (e.g. forming the project team,
selecting vendors, etc) are not shown.

The upper right portion of the diagram shows ac-
tivities associated with evaluation of potential system
failures. In order to assess the impact of changes on
plant design functions and safety, as well as on plant
availability and investment protection, it is necessary

to understand the potential failures (and other undesir-
able behaviors) of the system being modified and the
effect that the modification will have on the likelihood
and consequences of such failures. These activities
will be referred to collectively as failure analysis in
this module. Consideration of potential system failures
should be an integral part of the design and implemen-
tation process for digital upgrades, interacting with all
of the key design, specification and implementation
activities, as shown in Figure 5-1. Although it is
singled out on the diagram for emphasis, failure
analysis is not a stand-alone activity or one that
operates outside the design process.

Engineering evaluations are shown in the middle
of the right side of Figure 5-1. Like failure analysis,
engineering evaluations are activities that are per-
formed as part of the design process, but are high-
lighted on Figure 5-1 for emphasis. Engineering
evaluations include the collection of activities that are
performed to demonstrate reasonable assurance that
the system is safe and satisfies the specified require-
ments (e.g., for quality, dependability and perform-
ance). This may include evaluating and interpreting
the results of the failure analysis, design verifications,
software V&V, and review of vendor software design
and development processes. Where appropriate and
required by NUREG 0800, “Standard Review Plan,”
Chapter 7, analysis of overall defense-in-depth and
diversity of the plant may be warranted to demonstrate
the ability of the modified system to cope with
common cause failures.

Licensing activities are shown in the lower right of
Figure 5-1, illustrating their interaction with the design
and implementation activities. It is important to note
that many of the questions raised in licensing can be
resolved using information that comes out of the
failure analysis and engineering evaluations.

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-3 Rev. 0804

Some of the key design issues for digital systems
are addressed at a number of points in the process of
specifying, designing and implementing a digital
upgrade. For example, quality assurance processes,
require verification and validation activities be carried
out throughout the design and implementation of the
new system or subsystem. Similarly, human-system
interface (HSI) design requirements need to be
specified, appropriate verification and validations
performed, and necessary training and procedures
changes made as part of the implementation of the
modification.

Pre-Conceptual Design

The first step of the project definition phase (as
shown in Figure 5-2) (Slide 5.2.1-6) is to clearly
define the objective(s) of the modification or replace-
ment and establish early design concept(s). This is
referred to as “pre-conceptual” because in some
organizations, conceptual design is a formally defined
phase of the design effort. Here, we are talking about
the early concepts that are formed as the objectives of
the change are defined. EPRI TR-102348, points out
that plant systems and associated components that will
be involved in the upgrade should be clearly defined
early in the process. Key activities at this stage of the
design process involve defining:

• Objectives of the modification
• Systems to be modified
• Other systems effected
• Early design concept alternatives
• High risk areas in the change process

Design Bases and Licensing

Understanding the design basis and licensing basis
requirements of the system and the equipment being
modified or replaced is necessary in order to assess the
safety significance and selected a design approach for

the upgrade. This will help to grade the efforts applied
in downstream activities.

Source documents include:

• Regulatory requirements
• Final Safety Analysis Report (FSAR)
• Technical Specifications
• Industry codes and standards, system descrip-

tions
• Equipment design documents
• Calculations
• Specifications
• Design basis document packages
• Other documents as required

It is very important to understand the current con-
figuration, operating modes, and operations usage
before defining the specification for the new system. It
is also critical to determine the impact on plant
documentation from the operations and maintenance
procedures all the way through the plant software and
hardware control processes.

Safety Significance

The next step is to determine the safety signifi-
cance of the plant system or component being re-
placed. For example, if an individual controller is
being replaced in a plant control system, the safety
significance of the control system needs to be deter-
mined. The plant’s Quality Assurance (QA) program
(including a graded QA program if one exists) is a
primary input to the determination. The plant probabil-
istic risk assessment (PRA), NRC Standard Review
Plan (SRP) guidance, Technical Specifications and
Licensing commitments also provide input to this
process.

The complexity of the equipment and application
also needs to be assessed, so that the appropriate rigor

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-4 Rev. 0804

for activities likely to be needed for evaluation and
acceptance (to obtain reasonable assurance) is deter-
mined. Guidance covered here is documented in EPRI
TR-102348 and EPRI TR-107339, “Evaluating
Commercial Digital Equipment for High Integrity
Application.” This will provide input to the definition
of critical characteristics and specific verification
methods to be applied.

As documented in NRC Inspection Procedure
38703, the following factors should be considered in
determining the extent of QA to be applied:

• The importance of malfunction or failure
• The complexity or uniqueness of the item
• The need for special controls and surveillance

over process and equipment
• The degree to which functional compliance can

be demonstrated by inspection and test
• The quality history and degree of standardiza-

tion of the item.

Screening of Products and Suppliers

Identifying available products that will meet the
project needs is a normal part of project definition.
This activity is especially important when commercial
grade components are to be used. One advantage of
using commercial grade components is that there are a
large number of candidates available. However, the
larger variety also creates the need for additional
screening effort.

Examples of questions to be used during the
screening of potential vendors include:

• Does the vendor have a written quality assurance
program?

• What industry standards does the vendor
conform to?

• What software V&V methods are used?

• What software development documentation is
available for review?
It may benefit the plant implementation process to

standardize the platform and integrate the modification
in a process that emphasizes use of a single platform –
this will help in maintenance and operational phases.
But at the same time, be careful in committing too
early to a single platform.

Complexity and Failure Analysis

At this stage in the process, as shown in Figure 5-2
(Slide 5.2.1-6), with some specific equipment/product
options identified, the failure analysis can look at
external failure modes of the equipment and related
these to the system-level evaluations already per-
formed. Please note that internal failure modes of the
equipment are probably not likely to be known at this
time – this will be revisited later when the chosen
product is evaluated. Also, early failure analysis can
identify important design criteria and possible mitiga-
tion strategies, which can effect the definition of
critical characteristics and verification methods to be
used and may affect the design.

Another appropriate activity at this stage is to take
a first look at complexity of each design option. The
focus should be to keep it simple and to review the
impact on the whole plant for the single design change
– including impact on:

• Design
• Licensing
• Simulator
• Operations training
• Testing
• Maintenance

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-5 Rev. 0804

Project Activities

As shown in Figure 5-3 (Slide 5.2.1-13), the spe-
cific types of activities that are expected to be required
to support evaluation and acceptance of the product(s)
should be defined at this time. The early determination
of project-specific methods and activities will allow
tailoring the project to effectively address project
needs, including specific requirements and dedication
activities. Examples of the activities that project team
members will be required to perform include:

• Engineering
o Vendor and product evaluation
o Equipment qualification
o Application software development

• Licensing impact
• Procurement issues related to vendor acceptance

(are they on the approved vendor list?)
• Procedures, training and simulator impacts

Cost/Benefit Evaluation

Cost/benefit assessment is a key consideration in
determining whether and how to use commercial grade
equipment. The traditional engineering economics
approach to cost/benefit assessment does not apply
well to nuclear plant I&C upgrades evaluations. The
benefits of I&C upgrades are known qualitatively, but
quantifying these generally is difficult to do. These
benefits may include (for example):

• Reduced maintenance
• Less testing required
• Improved reliability
• Enhanced human machine interface (HMI)
• East of modification
• Savings on training and spare parts

The costs are clearly understood to be related to
the direct costs of implementing the modification
including:

• Plant change requirements
• Contractor activities
• Procurement of the new equipment

Iteration

Based on all of the above considerations, the pro-
ject team is now responsible to iterate and identify the
best option based on all of the considerations. The
underlying basis for selection should be to solve the
initial problem or need statement which initiated this
project definition phase.

5.2.2 Software Safety and Risk Concepts

The purpose of this section is to provide an over-
view of how a utility approaches the concept of
assessing and controlling digital risk. The main points
to be covered are:

• Review some basic “safety definitions” and
concepts

• Discuss the role and context of the Software
Safety Plan

The objectives are clearly set up to define the fol-
lowing:

• The relationship between safety and risk
• The relationship of the Software Safety Plan to

overall System Safety
• Sources of “digital risk.”

EPRI TR-102348 and TR-107339 provide exam-
ples of the definitions related to safety and risk.
Because many components purchased by utilities now
are from international companies, IEC 61508-4, 1998,
“Safety Standard for Safety Instrumented Systems

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-6 Rev. 0804

(SIS)”, is quoted in many vendor standards. This
standard has the following definition of safety:

“Safety – freedom from unacceptable risk”

It is important to recognize that use of general in-
dustry standards does not always apply directly or well
to nuclear applications, so the following cautions are
provided:

• Nuclear power has formal “definitions” of safety
systems which differs from most other industries

• The use of “risk” terminology varies across
standards, industries, and disciplines.

It is best to avoid casual use of these terms in dis-
cussions with all affected parties – unless the common
understanding of the meaning is clearly understood by
all; suppliers, regulators and the like.

Basic “System” Definitions and Concepts

IEC 61508 provides the following definitions,
which are important to our discussion here:

• Failure – termination of the ability of a func-
tional unit to perform a required function

• Fault – abnormal condition that may cause a
reduction in, or loss of, the capability of a func-
tional unit to perform a required function

• Harm – physical injury or damage to the health
of people either directly or indirectly as a result
of damage to property or the environment.

It is critical to recognize that “failures” and
“faults” do not necessarily lead to “harm.”

Additional definitions from IEC 61508 include:

• Hazard – potential source of harm

• Risk – the combination of 1) the probability of
occurrence of harm, and 2) the severity of that
harm.

• Safety – freedom from unacceptable risk

Hazards clearly have the ability or potential to
cause harm. Risk assessment attempts to determine the
probability of harm. Examples are provided for each of
these cases.

Digital System Definitions and Concepts

Figure 5-4 (Slide 5.2.2-13) provides and overview
of the software safety concept – and how the software
safety plan fits into the whole process.

The following definition is used for “safety char-
acteristic” from NRC Branch Technical Position
(BTP) HICB-14, “Guidance on Software Reviews for
Digital Computer-Based I&C Systems”:

“Those properties and characteristics of the soft-
ware system that directly affect or interact with system
safety considerations.”

Additionally;

“The safety characteristic, however, is primarily
concerned with the effect of the software on system
hazards and the measures taken to control those
hazards.”

Nancy Leveson, in her book Safeware, identifies
the concept of software as:

“Software itself does not fail; it is a design for a
machine. Software-related computer failures are
always systematic.”

IEEE Std 982.1-1988, “Standard Dictionary of
Measures to Produce Reliable Software,” provides
important input into the definitions of a fault, and
associated other definitions as follows:

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-7 Rev. 0804

• Fault – (1) an accidental condition that causes a
functional unit to fail to perform its required
function and (2) A manifestation of an error in
software.

• Bug – see error and fault.
• Error (2) An incorrect step, process or data

definition.

It should be recognized that software
“bugs/errors/faults” are neither “abnormal events” as
defined in IEC 61508 nor “accidental” as defined in
IEEE Std 982.1.

Sources and Levels of Digital Risk

Figure 5-5, Figure 5-6 and Figure 5-7, (Slides
5.2.2-21, 22 and 23) provide overview of the sources
and levels of digital risk.

Figure 5-5 (Slide 5.2.2-21) provides an overview
of how a sub-system fault may affect plant safety –
and the various facets of the design that can cause
faults.

Figure 5-6 (Slide 5.2.2-22), from the University of
Virginia, provides an overview of the different critical
applications that occur in each of the three phases of a
digital modification:

• Development Phase
• Operations Phase
• Maintenance Phase

Figure 5-7 (Slide 5.2.2-23) addresses the project
risks and importance levels of early software system
lifecycle impacts – with four levels of importance
assigned to the level or risk.

5.2.3 Software Safety Plan

The objectives of this discussion are:

• Describe how a Software Safety Plan relates to
nuclear safety associated with an I&C modifica-
tion

• Identify the main elements of a Software Safety
Plan and

• Discuss whether and how a Software Safety Plan
might be developed for an example controls up-
grade scenario.

Using development of a control room heating,
ventilation and air conditioning (HVAC) modification
as an example, a number of key items need to be
planned:

• Preparations for NRC review
• Setup to be consistent with BTP HICB-14
• Formalization of the “Software Safety Plan”

The concept ”Software Safety Plan” is misleading
for nuclear applications, because the term is better
suited to other industries, based on functional require-
ments and safety implications. The nuclear plant
“safety model” separates safety from non-safety
clearly and distinctly in the design and licensing
process. This is not done in most other industries.

In development of the “Software Safety Plan” the
utility should consider the following:

• Safety systems have safety functions
• Safety functions are critical to the analysis in

Chapter 15 of the FSAR

The priority must be to establish reasonable assur-
ance that the safety functions will be met. However, in
the final analysis, we really want coverage beyond
simply meeting the safety function of the system. We
want to meet reliability and performance objectives as
part of the modification as well.

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-8 Rev. 0804

The main elements of the Safety Plan are:

• Purpose
• Organization
• Responsibilities
• Risks
• Measurement
• Procedures
• Methods
• Standards
• Documentation

The development of the Safety Plan should start
early in the process and be endorsed at the highest
level possible in the company. Periodic updates are
necessary to ensure the Safety Plan represents the
modification as it evolves thru the different phases of
the project.

5.2.4 Diversity and Defense in Depth

The objectives of this section are to:

• Identify the relevant regulatory documents
• Understand the importance of development of a

process to minimize common mode failure.
• Understand the scope of defense-in-depth and

diversity analysis and when it is required.
• Understand how to use alternate plant capability

to provide diversity.

The regulatory requirements for defense-in-depth
and diversity (called D-cubed) analyses are from:

SECY-93-087, “Policy, Technical, and Licensing
Issues Pertaining to Evolutionary and Advanced Light-
Water Reactor (ALWR) Designs,” which led to
Branch Technical Position (BTP) HICB-19, “Guidance
for Evaluation of Defense-in-Depth and Diversity in
Digital-Based I&C Systems”

• Applies to digital Reactor Trip and Engineered
Safety Features Actuation System (ESFAS)
functions only – as described in BTP HICB-19
and the SRP.

• Maintains four separate and independent levels
echelons for defense-in-depth:
o Control systems
o Reactor trip
o ESFAS
o Monitoring, indication, manual controls and

Emergency Operations Procedures

The above is all based on the guidance in NSAC-
125, “Guidelines for 10 CFR 50.59 Safety Evalua-
tions.”

The NRC position on Common cause Failure is as
follows:

• Software cannot be proven to be error free
• High quality design reduces the likelihood of

common mode failures
• For RPS and ESFAS, the defense against

common mode failure must be demonstrated.

The guidance in BTP HICB-19 and the SRP de-
pend on the concept of “A Graded Approach.” The
need for level of analysis is based on whether the
modification applies to the RPS and ESFAS and
depends on the multiple-echelon levels of defense-in-
depth.

The process to be followed by the utility for modi-
fication involving RPS/ESFAS includes the following
major points:

• Perform D-cubed analysis to show the software
common mode failure is addressed – following
NUREG/CR-6303,” Method for Performing Di-
versity and Defense-in-Depth Analyses of Reac-

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-9 Rev. 0804

tor Protection Systems,” and EPRI TR-1007997,
“Guideline for Performing Defense-in-Depth
and Diversity Assessments for Digital I&C Up-
grades: Applying Risk-Informed and Determi-
nistic Methods,” guidance.

• Analyze the effects of failures on mitigation of
Chapter 15 accidents using “best-estimate”
methods.

The four main points in requirements for operating
reactors and ALWRs include:

• Licensee should assess defense-in-depth and
diversity of the proposed system to demonstrate
that vulnerabilities have been addressed

• Demonstrate that each postulated common-mode
failure analyzed for each event in the FSAR

• If a postulated common-mode could disable the
safety function, then a diverse means to accom-
plish the same function or a different function
may be required

• Provide set of displays and controls in the main
control room for manual system-level actuation
and monitoring.

NOTE: For digital system modifications to operat-

ing plants, retention of existing displays and controls
in the main control room may satisfy point 4.

Figure 5-8 provides an overview of the echelons

of defense and the protection provided. Figure 5-9
provides the overview of the listing of dversity
attributes and criteria that can be used for a D3
analysis.

Next, we review the status of the D3 Technical
Working Group on cyber security and the results of
meetings including both NRC and industry representa-
tives.

The modification needs to provide diverse means
of performing safety functions affected by common
mode failures. It needs to provide diverse displays,
following BTP HICB-19 for manual controls. Addi-
tional acceptance criteria are defined in BTP HICB-19.

The D-cubed analysis must do the following:

• Demonstrate minimal risk of software common
mode failure

• Evaluate safety functions, system design and
failure consequences – per BTP HICB-19 and
NUREG/CR-6303.

• Evaluate accident scenarios using “best esti-
mate” accident analysis assumptions (not
10CFR50 Appendix K)

The practical goals of this analysis include:

• Limiting the scope of new safety analyses
required based on engineering evaluations

• Identify the most limiting best-estimate accident
in conjunction with common-mode failure.

• Use analysis results to determine required
operator reactor time to maintain the safety func-
tion(s).

In typical plant design, non-safety plant control
systems usually utilize diverse hardware and software
controls and are part of the analysis or engineering
evaluation. The extent of the diverse indication and
control is important and must be determined as part of
the D-cubed analysis.

The need for additional common mode failure
(CMF) protection must be defined as part of the D-
cubed analysis. BTP HICB-19 states:

“Vulnerability to CMF affecting response to Loss
of Coolant Accident (LOCA) has been accepted…
based on provisions of leak detection and pre-defined

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-10 Rev. 0804

operating procedures that together enable operators to
detect small leaks and take corrective action before a
large break occurs.”

5.2.5 Software Risk

The purpose of this section is to perform the fol-
lowing:

• Define “software defect”
• Discuss the effectiveness of software testing
• Define “software safety.”

Nancy Leveson in her book, Safeware, provides
the following definition:

“Software does not exhibit random wearout fail-
ures as does hardware; it is an abstraction, and its
“failures” are therefore due to logic or design errors.”

In the reference, Introduction to the Team Soft-
ware Process, Software Engineering Institute (SEI)
series in Software Engineering, page 103-104 provides
the following:

“Injection rates of two defects/hour are common
during detailed design and six defects/hour are normal
during coding. …Defect injection rates vary consid-
erably among engineers and even among programs
written by the same engineer.”

In an example case, documented in Applied Soft-
ware Measurement, the following is noted:

“The average 1,000 function point system – not a
large system – will be delivered with 556 defects of
which 6 are critical and 78 are significant.”

The roles and responsibilities of testing are docu-
mented in detail in IEEE Std 1012 and covered in the
testing phase of this module. This section is intended
to provide an overview of testing and recognize that
testing cannot catch all errors or even most of the

errors. Many examples are available in computer
engineering literature to document the process and
experience of testing in finding software faults. An
example is documented in the Introduction to the
Team Software Process, SEI series as follows:

“The Magellan system had only 22 lines of code
of software. It has a total of 186 defects in system test,
42 of them critical and only one critical defect was
found in the first year of system testing.”

NOTE: Some digital indicators have 20,000 or
more lines of code.

Risk is also related to a series of software severity
levels for defects as noted in Applied Software
Measurement:

• Severity 1: System or program inoperable
• Severity 2: Major functions disabled or incorrect
• Severity 3: Minor functions disabled or incorrect
• Severity 4: Superficial errors

Nancy Leveson, in Safeware, documents the fol-
lowing:

“Software system safety implies that the software
will execute within a system context without contribut-
ing to hazards.” Also, in this text, software is noted to
affect system safety in two ways:

• It can exhibit behavior in terms of output values
and timing that contribute to the system reaching
a hazardous state, or

• It can fail to recognize or handle hardware
failures that it is required to control or to re-
spond to in some way.

In conclusion:

• Software “bugs” are design defects
• Software testing is not enough.

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-11 Rev. 0804

5.2.6 Software Fault Prevention

Software fault prevention is addressed formally in
the regulations in BTP HICB-14, IEEE Std 1012 and
Regulatory Guide 1.168, “Verification, Validation,
Reviews, and Audits for Digital Computer Software
Used in Safety Systems of Nuclear Power Plants.”
This is addressed in an upcoming section, but the
concept of fault prevention can best be described in an
example covered in this section, from the Bell Labs
Technical Journal, dated April-June 1998.

Overall the goal of fault prevention is to help pro-
grammers avoid injecting the most frequent faults into
a product. The referenced article introduces the coding
fault prevention process and the technical guidelines
used to prevent coding faults. It also explains the
results achieved and the metrics used to measure them.

The team at Bell Labs completed a study of the
switch fault removal effectiveness and fault flow by
interviewing developers on the nature of the more than
600 faults noted. Performing an extensive root cause
analysis of the faults found and fixed enabled the team
to establish a baseline of the software faults life cycle.

As shown in Figure 5-10 (Slide 5.2.6-6 (Table 1)),
a crucial finding determined from the analysis was that
nearly half of the faults were coding faults, and the
majority of them could have been prevented. The team
closely examined the faults to understand the types of
coding problems that existed. Figure 5-11 (Slide 5.2.6-
8 (Table 2)) shows a list of the major coding faults
found. The results of the analysis also showed that
three types of faults – logic, interface and maintain-
ability – account for more than 50% of the total coding
faults.

The faults discussed in the Bell Labs article were
actual faults found in a very large software project

environment. The average programming ability and
experience of developers connected with the project
were high compared to the norm in the industry. The
team extensively interviewed developers who pro-
duced the code and the faults found in it to validate the
faults found and their causes.

Using a structure developed from software quality
perspectives to describe various categories of coding
faults, the team developed the faults in each category
based on actual error information and considerations
of how program components were used.

The team used a fishbone analysis to identify the
root causes of the coding faults. The top three root
causes of the faults were executions/oversights (38%),
resource/planning (19%) and education and training
(11%).

Based on these root causes, the team identified
several solutions or countermeasures and then rated
each countermeasure numerically using two process
characteristics: effectiveness and feasibility. The paper
and our associated slides provide an overview of the
faults documented and the solutions and countermea-
sures recommended for each.

5.2.7 Quality Assurance (QA) Plan Develop-
ment

The purpose of this section is to provide an over-
view of the major aspects of utility software Quality
Assurance requirements that apply to all software
usage onsite with the primary focus on quality affect-
ing software and related usage.

In meeting 10 CFR 50 Appendix B, the utility has
the responsibility to provide a set of controls over the
entire software life cycle at a nuclear plant. The utility
personnel are trained to be cognizant of the following
three elements:

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-12 Rev. 0804

• Recognize the procedure that establishes the
basis for the SQA (Software Quality Assurance)
program

• Recognize the administrative procedure and
requirements for implementing each element of
the program

• Understand the major reasons why software
controls are necessary at nuclear power stations.

Software plays a key role in all aspects of work at
nuclear facilities. It enables personnel and processes to
perform effectively and efficiently to ensure the safe,
reliable and economic operation of the plant. The
software must be trusted to work correctly every time
it is used.

Within the scope of the utility specific programs,
the term “software” includes the following:

• Software code
• Firmware
• Other programmable digital devices
• Configuration information
• Quality data

The Software Quality Assurance Program must
apply to all software, quality data, and digital systems
utilized with the nuclear program. The degree to which
controls are applied to software, quality data and
digital systems should be commensurate with the
importance of the results or the consequences of an
error.

The objective of the utility program is to apply
sufficient controls to ensure the proper acquisition,
development, testing, use and maintenance of soft-
ware, quality data, and digital systems while not
inhibiting the effective utilization of the technology.

The most basic need for SQA originates from the
potential for latent defects or errors in software. One of
the main objectives of the utility SQA program is to
minimize the likelihood of defects being introduced
into executable software code or programmable
devices by applying appropriate systematic control
techniques throughout the software life cycle.

Although the analysis and removal of defects is an
important function of SQA, it is the prevention of
defects that is the primary focus of SQA and related
activities.

The basis for each utility SQA program is required
to be established in the corporate nuclear Quality
Assurance Program – usually documented in the
Topical Quality Assurance Manual (TQAM). A
specific section addresses the requirements for SQA
and where the controls of SQA are provided. This is
the top tier procedure applicable to the individual
nuclear program or a group of nuclear sites, if con-
trolled by the same design authority. A specific
Software Quality Assurance Procedure usually
provides more detail on the specifics of the program in
meeting the requirements of the TQAM. In program
implementation, the following major areas are usually
addressed in specific guidance:

• Control of software design
• Software configuration management
• Software testing guidelines
• Control of software maintenance
• Electronic data/document quality

There are five specific reasons for imposing con-
trols on software design, development, use and
maintenance at a nuclear plant:

• Protection against conditions adverse to quality
• Ensure regulatory compliance
• Protect company investment

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-13 Rev. 0804

• Prevent violation of software laws
• Maintain Y2K clean management

The program implementation usually involves the
explicit definition of responsibilities to individuals and
organizations and the specific levels of classification
or importance to software and applications.

5.2.8 Software Verification & Validation
(V&V)

The purpose of this section is the following:

• Discuss software verification and validation
• Discuss IEEE Std 1012-1984, endorsed by

Regulatory Guide 1.168 compared to IEEE Std
1012-1998

• Address the requirements for the Software V&V
Plan by review of an example outline

The objective of this lecture is to address the
phases of a V&V program that is based on IEEE Std
1012 and BTP HICB-14. Figure 5-12 (Slide 5.2.8-3)
provides an overview of the software life cycle process
and shows each of the following major phases:

• Management Phase
• Concept Phase
• Requirements Phase
• Design Phase
• Implementation Phase
• Test Phase

Each of these major sections has key component
and focus areas that address the V&V requirements.

The management phase is not really a phase – but
an ongoing process. Management phase refers to initial
management plan production, organizational structure

definition and management processes. These include
management reviews, as well as issue reporting,
tracking and trending.

The concept phase is the real initial phase of the
software development process, in which user needs are
described and evaluated.

In the requirements phase, the functional and per-
formance capabilities for a software product are
defined and documented.

The design phase is the period of time during
which the design for the architecture, software compo-
nents, interfaces and data are created, documented and
verified to satisfy the requirements. The object of
V&V during the design phase is to demonstrate that
the design is correct, accurate, and complete in the
transformation of the software requirements and that
no unintended features are introduced.

The implementation phase is the period of time in
the software life cycle during which a software product
is created from design documentation and debugged.
The implementation V&V activity addresses software
coding and testing. The objectives of V&V are to
verify and validate that these transformations are
correct, accurate and complete.

The testing phase is the period of time in the soft-
ware life cycle in which the components of a software
product are evaluated and integrated, and the software
product is evaluated to determine whether or not
requirements have been satisfied. The objective of
V&V in the test phase is to ensure that the software
requirements and system requirements allocated to
software are satisfied by the execution of integration,
system and acceptance testing.

IEEE Std 1012 provides guidance on software in-
tegrity levels and guidance on the associated level of
rigor required to complete the test phase V&V.

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-14 Rev. 0804

Table 2 provides an outline for an example Soft-
ware V&V Plan that meets IEEE Std 1012 guidance.

5.3 Requirements Process

The objective of this lesson is to understand the
process by which the functional requirements devel-
oped in the Concept Process (Section 5.2) are trans-
formed into detailed software requirements that
become the basis for the software design.

Figure 5-13 illustrates a software development
plan for the typical digital I&C upgrade project shown
in Figure 5-14, (with more detail shown in Figure
5-15) and the relationship among the design processes.

• The functional requirements specify what the
software is to do. (Concept Process output)

• The software requirements specify how the
software accomplishes required functions. (Re-
quirements Process output)

• The software design description (discussed in
Section 5.4) lists what was done to accomplish
the software requirements (Implementation
Process output)

The remainder of this lesson is devoted to discuss-
ing how components in the plan are developed.

The requirements process transforms the func-
tional system requirements into individual require-
ments documents for both hardware and software.
This process also initiates verification and validation
activities for the project. The inputs and outputs for
the Requirements Process are shown in Figure 5-16.

Any upgrade to an existing system must meet the
functional, safety and reliability requirements of the
existing system without introducing new, unintended
functions that could have an adverse impact on plant
reliability and operation. The major benefit of an

organized development of functional requirements is
the reduction of risk associated with unintended
functions in the upgrade.

5.3.1 Requirements Characteristics

The Functional Requirements Specification (FRS)
should not only specify what the upgrade system
should do, but also specify what the upgrade system
should NOT do under specified circumstances. In
industry history, a significant number of problems that
have been identified as “software error” or “software
failure” are actually due to inadequate or incomplete
specification of functional requirements.

Problems that are determined early in the upgrade
life cycle may be corrected more easily (and economi-
cally) the earlier they are detected. If problems are left
undetected and uncorrected until testing or later, the
cost to correct the problem may be orders of magni-
tude greater than if corrected during requirements
development.

EPRI TR-108831, “Requirements Engineering for
Digital Upgrades; Specification, Analysis, and
Tracking,” combined the results from several earlier
EPRI projects to develop an approach for functional
requirements specifications that combines the use of
early conceptual designs and consideration of risk. The
approach facilitates the use of vendor specifications
when commercial grade equipment will be used in the
upgrade. This section summarizes the design philoso-
phy described in EPRI TR-108831.

Figure 5-17 illustrates a model for requirements
specification development that is consistent with
engineering practices in the nuclear industry. The
model readily lends itself to adaptation to the scope,
complexity, cost, and risk associated with digital
upgrades, whether devices or systems, safety-related or
non-safety related.

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-15 Rev. 0804

The lead engineer should determine if the com-
plexity or potential risk of the proposed upgrade
justifies the formal approach and format recommended
by EPRI TR-108331. As guidance for this determina-
tion, the engineer may consider the following items to
determine the level of effort appropriate for functional
requirements specification activities:

• Project risk associated with the upgrade,
• Type of the upgrade (Device, System, Safety-

related),
• Quality assurance activities to ensure that

correct requirements are stated and that the in-
stalled system meets the stated requirements.

5.3.1.1 Project Definition (Problem Analysis)

In the problem analysis phase of the requirements
specification model, the engineer should:

• Identify what the upgrade must (shall) do;
• Identify what the upgrade must not (shall not)

do;
• Identify constraints and interfaces;
• Assess financial and regulatory risk.

5.3.1.2 Composition of Requirements

Composition of requirements is the process by
which the written Functional Requirements Specifica-
tion (FRS) is created. The FRS is the top-most
document in the life cycle of a project, as it defines
what the project is to do; that is, the functions that will
be performed. All other documentation is based upon
the Functional Requirements Specification. Currently,
there is no accepted industry standard for preparation
of an overall project Functional Requirements Specifi-
cation. IEEE Std 830, “Recommended Practice for
Software Requirements Specifications,” provides a
format for a typical software requirements specifica-
tion. EPRI TR-108831 builds on and extends the

outline provided in IEEE Std 830, and presents a
suggested format that can be adapted for a particular
use. Systematically addressing the outline will assist
the project engineer in developing a requirements
specification that is reasonably complete.

The project engineer should discuss most of the
requirements in natural language; that is, a verbal
description of what is desired. For more critical
requirements, the engineer may use other descriptive
methods to ensure clarity, such as described in EPRI
TR-108831, page 3-8, “Requirements Statements.” If
a requirement may be specified more precisely (and
confidently) with one of the other methods, the other
method should be used.

The engineer should be careful not to over-specify.
 Digital I&C upgrades should use commercially
available equipment as much as possible to control
costs. Specification of requirements that commercial
equipment cannot meet will limit the choice of
suppliers.

5.3.1.3 Requirements Analysis

Requirements Analysis is a process by which the
engineer reviews the developing Functional Require-
ments Specification and ensures that the requirements
are organized and coherent. The engineer should
ensure that:

• The requirements define what needs to be done
NOT how to do it.

• The requirements define what shall NOT be
done; that is, unacceptable system behaviors.

• The requirements are abstract (independent of
the implementation), unambiguous (can be in-
terpreted in only one way), necessary (verifiable,
or related to a specific statement of need), and
validatable (testable).

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-16 Rev. 0804

The requirements analysis process recommended
in EPRI TR-108831 consists of the following steps:

Concept Evaluation

The conceptual design is a tool that enables the
engineer to understand the requirements of the
upgrade, and to determine if the requirements can be
met with existing hardware and software. The
conceptual design should include, at the system level,
all necessary interfaces and functional (operating)
requirements. Any significant difference in function,
operation, and interface or failure mode between the
conceptual design and the functional requirements
should be identified and evaluated for its impact on
overall plant operation and safety at this early stage.

The complexity of the project determines the level
of detail required in the conceptual design. EPRI TR-
108831 describes a graphical conceptual design
method by which the engineer may ensure that
specified functional requirements are properly con-
nected and may also identify missing functions and
unnecessary complexity.

System Failure Evaluation

In performing a System Failure Analysis, the en-
gineer identifies potential problems that may occur
with the new system. It is not necessary to determine
or evaluate detailed failures below the system level.
However, the engineer should be aware of, and
evaluate, new failure modes and effects that may be
created as a result of the nature of the upgrade. Early
in the requirements process, the informal hazard
analysis identified in Section 5.3.2 is adequate.

EPRI TR-104595, “Abnormal Conditions and
Events Analysis for Instrumentation and Control
Systems,” describes several methods that may be used
to perform a failure analysis. If the upgrade is safety-
related, the engineer should perform a single failure
criterion analysis to ensure compliance with applicable

sections of 10 CFR 50 Appendix A as interpreted by
IEEE Std 279, “Criteria for Protection Systems for
Nuclear Power Generating Stations,” and IEEE Std
603, “Standard for Safety Systems for Nuclear Power
Generating Stations.” EPRI TR-102348 provides
guidance for this analysis.

Completeness Evaluation

The evaluation of "completeness" is the process by
which the engineer determines that the Functional
Requirements Specification describes the black-box
behavior of the upgrade system in sufficient detail to
distinguish it from any undesired system that could be
designed.

The specification is incomplete if the system or
software behavior for some events or conditions is
omitted or is subject to more than one interpretation.

The following list of 18 questions, adapted from
EPRI TR-108831, Figure 3-9, may be used by the
engineer to find omissions and inconsistencies in the
Functional Requirements Specification, and thus
determine if the specification is "sufficiently" com-
plete. For more complex systems, the engineer should
refer to EPRI TR-108831 for more rigorous methods.

1. Is the software's response to out-of-range values
specified for every input?

2. Is the software's response to NOT receiving an
expected input specified? Are timeouts pro-
vided? Does the software specify the length of
the timeout, when to start counting the timeout,
and the latency of the timeout (the point past
which the receipt of new inputs cannot change
the output result, even if they arrive before the
actual output)?

3. If input arrives when it should not, is a response
specified?

4. On a given input, will the software always
follow the same path through the code? Is the

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-17 Rev. 0804

software's behavior deterministic?
5. Is each input bounded in time? Does the

specification include the earliest time at which
the input will be accepted and the latest time at
which the input will be considered valid?

6. Is a minimum and maximum arrival rate speci-
fied for each input (for example, a capacity limit
on interrupts signaling an input)? For each com-
munication path? Are checks performed in the
software to avoid signal saturation?

7. Is there a requirement for interrupts to be
masked or disabled; can events be lost?

8. Can any output be produced faster than it can be
used (absorbed) by the interfacing module? Is
overload behavior specified?

9. Is all data output from the sensors to the buses
used by the software? If not, it is likely that
some required function has been omitted from
the specification.

10. Can input that is received before start-up, while
off-line, or after shutdown influence the soft-
ware's start up behavior? For example, are the
values of any counter, timers, or signals retained
in software or hardware during shutdown? If so,
is the earliest or most recent value retained?

11. In cases where performance degradation is the
chosen error response, is the degradation pre-
dictable (for example, lower accuracy, longer
response time)?

12. Are there sufficient delays incorporated into the
error-recovery responses; e.g., to avoid returning
to the normal state too quickly?

13. Are feedback loops (including echoes to the
screen) specified, where appropriate, to compare
the actual effects of outputs on the system with
the predicted effects?

14. Are all modes and modules of the specified
software reachable (used in some path through
the code)? If not, the specification may include
superfluous items.

15. If undesired system states have been identified,
does every path from an undesired state lead to a
low-risk state?

16. Are the inputs identified which, if not received
(for example, due to sensor failure), can lead to
an undesired state or can prevent recovery (sin-
gle point failure)?

17. Do the hardware tolerances specified in the
software (possible as boundary conditions for
signaling a reactor trip) correspond to the actual
hardware tolerances?

18. Is feedback provided to the user or on the
operator's console that indicates the status of all
critical hardware items in the system?

Testability Evaluation

Good requirements statements are verifiable, that
is, related to a specific statement of need. However,
not all requirements are readily validatable, or demon-
strated to be implemented successfully in the design.
The preferred means of validation is testing. For non-
testable requirements, other means of validation such
as analysis are acceptable.

The following set of test types, adapted from EPRI
TR-108831, Table 3-10, may be used to evaluate
testability. The test types are listed in order of increas-
ing implementing expense:

• Independent Analysis or Review
• Static/Bench Test
• Special Test System or Simulator
• Factory Acceptance Test (FAT)
• Site Acceptance Test (SAT)
• Return to Service Surveillance Test (RTS Test)

The FAT, SAT, and RTS Test are described in
more detail later.

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-18 Rev. 0804

The engineer should prepare a spreadsheet con-
taining a matrix that lists each requirement in the
specification. This spreadsheet becomes the Require-
ments Traceability Matrix (RTM) as used throughout
the DCS Conversion Procedure, the SVVP and other
documentation.

For each requirement, the engineer should note the
test that most readily validates the requirement. If a
requirement exists for which no test type is apparent,
that requirement should be clarified such that it
becomes testable, or it should be deleted.

The RTM should provide a clear tie between
specifications and the implemented design. Once
developed in the design phase, the RTM is used as
input to the final hardware and software test plans and
reports.

Plant Simulator Impact

Because digital systems will potentially be used by
control room personnel or feed systems used by
control room personnel, an evaluation must be made to
assess the impact on the plant simulator and the overall
ability of the proposed design to be implemented in the
plant simulator. Complex digital systems can pose a
simulation problem due to the need for the plant
simulator to replicate functionality or drive intermedi-
ate hardware and software to achieve adequate fidelity.

5.3.1.4 Risk Assessment

In the project risk assessment process, the engineer
should identify areas where the Functional Require-
ments Specification is “soft” or incomplete. These
areas represent project risk. The engineer should then
evaluate the risks and identify whether they are

acceptable, or if the design should be modified to
reduce project vulnerability.

For example (per EPRI TR-108831), if the re-
quirements analysis activities determine that the
upgrade involves a License Amendment, it may be
advisable to modify the design and eliminate the need
for a License Amendment. Modifying the design may
increase project cost, but it may be more economical,
with less risk to the overall project schedule and the
ultimate cost, than pursuing a License Amendment.

The figure below illustrates the relationship be-
tween project risk and the effort required to reduce risk
using the iterative method described in TR-108831:

Project risk decreases as effort increases, but risk
can never be reduced to zero. At the point where
project risk becomes acceptable, the requirements
specification effort should be stopped and the project
should move on to the implementation phase.

5.3.2 Identifying Safety Requirements

For a safety-related system, identification of safety
requirements should be done very early in the re-
quirements development process. This lesson will
examine the major steps in identifying hazards and
safety requirements with additional details provided in
Section 5.3.3. Emphasis will be placed on clearly
defining that the system must do as well as what the

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-19 Rev. 0804

system must not do. See Figure 5-18. The reason for
early consideration of safety requirements is that
attention is frequently paid to process requirements,
without consideration of the impact of unforeseen
events on safety.

The first step is to prepare a table with the follow-
ing columns:

• Hazard Description
• Hazard Cause
• Hazard Level (High/Medium/Low)

With the table constructed, the analyst will list
hazards that can befall the system. It is helpful to
perform this task together with system “experts” who
are familiar with the application. For each hazard, the
cause and level are identified. Severity of conse-
quences determines the level.

Hazards are frequently dismissed as “not credible”
without going through the process outlined above.
Documenting the evaluation will help ensure that each
hazard is evaluated as to its “credibility” and can be
addressed accordingly.

Once hazards are identified, they can be managed.
 This can be done through:

• Elimination. The design is simplified; unneces-
sary “requirements” are removed, more appro-
priate requirements are substituted, or specific
human errors are corrected.

• Reduction. Safety margins are increased,
controllability is increased through improved
design, and barriers to hazards are inserted.

• Control. Exposure to hazards is reduced, the
hazards are contained or isolated to minimize
adverse impact, and protection systems can be
implemented to mitigate impact of hazards.

5.3.3 Preliminary Hazards Analysis

Prior to developing a conceptual design, the engi-
neer should perform a Preliminary Hazards Analysis
(PHA) that identifies the fundamental design and
licensing issues posed by the upgrade. It is not
necessary to formally document the PHA at this time,
as it is primarily a vehicle to assist preparation of the
Functional Requirements Specification. The engineer
may attach the PHA to the FRS to document the PHA.
 As a minimum, the engineer should consider keeping
the PHA as a set of desk notes to use later; e.g., when
preparing the 10 CFR 50.59 evaluation.

The following information, adapted from EPRI
TR-108831 may be used to perform the PHA:

1. Can the upgrade malfunction in such a way
that a safety function is defeated?

2. Can the upgrade malfunction in such a way
that could create the possibility of a new ac-
cident or unanalyzed plant condition, tran-
sient or equipment malfunction?

3. Can the upgrade malfunction in such a way
that the probability (risk) of occurrence, or
the consequences of a currently analyzed ac-
cident, plant condition, transient or equip-
ment malfunction are increased as compared
to the existing system?

4. What is the worst consequence if the up-
grade fails?
o How is the failure detected?
o How is the failure mitigated? (How is re-

covery accomplished)?
o Is a diverse backup means of control, pro-

tection or information display available?
o Is operator action relied upon as the di-

verse backup? If so, is adequate time
available for the operator to perform the
required function within the existing li-
censing basis?

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-20 Rev. 0804

5. Does the end user interact with the upgrade
in a manner that is significantly different
from the existing system or device? What
are the consequences if operations or main-
tenance personnel use existing (pre-upgrade)
procedures for the upgrade?

6. Are the upgrade plant interfaces (electrical,
mechanical, structural) compatible with
similar interfaces of the existing system or
device?

7. Does the upgrade alter any fundamental ba-
sis for the operating license as discussed in
the plant Safety Evaluation Report (SER) or
any supplement to the Safety Evaluation
Report (SSER) for the plant or any other
upgrades or modifications that have been
performed since the operating license was
approved?

8. What are the performance requirements for
the upgrade? NRC Branch Technical Posi-
tion (BTP) HICB-21, “Guidance on Digital
Computer Real-Time Performance,” pro-
vides assistance.

5.3.4 Development of the Software Require-
ments Specification (SRS)

The purpose of the SRS is to ensure that:

• The customer describes what he wishes to
obtain;

• The supplier understands what the customer
wants;

• The developer designs the software according to
documented and accepted requirements.

Regulatory Perspective

Regulatory Guide 1.172, “Software Requirements
Specifications for Digital Computer Software Used in
Safety Systems of Nuclear Power Plants,” discusses
the SRS in terms of meeting quality criteria of IEEE
Std 279-1971. In addition, several of the General
Design Criteria of 10 CFR 50 Appendix A describe
functions that are part of the design bases and that
would be included in the SRS of any software that is
used to perform design basis functions. Appendix B,
Criterion III, “Design Control,” requires measures for
design control and measures to verify design ade-
quacy. Appendix B also contains general criteria for
quality assurance practices.

Regulatory Guide 1.172 endorses IEEE Std 830,
with a few exceptions, as a method for achieving high
functional reliability and design quality for safety
system software. Although the standard does not
specifically address safety systems, it provides
guidance on the development of software requirements
specifications that will exhibit characteristics impor-
tant for developing safety system software.

The Software Requirements Specification (SRS)
addresses the software functional and performance
requirements, including any resident or embedded
operating system. From a regulatory standpoint, the
SRS is the critical link between what the utility asks
(FRS) for and what it gets (SDD). As discussed
above, if the engineer does not specify what he wants,
he is unlikely to get it. Likewise, if he does not
specify what he does not want, he may be surprised by
what he gets.

According to IEEE Std 830, the SRS is a specifi-
cation for a particular software product or program that
performs certain functions in a specified environment.
 The SRS addresses the following basic issues:

• Functionality (What is the software supposed to
do?

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-21 Rev. 0804

• External Interfaces (How does the software
interact with people, the hardware platform and
other hardware and software?)

• Performance (Speed, availability, response time,
recovery from errors)

• Attributes (Portability, correctness, maintainabil-
ity

The SRS does not contain design requirements;
those are contained in the SDD.

Characteristics

Characteristics of a good SRS are described in
IEEE Std 830.

1. Accuracy

Software should accurately reflect every require-
ment derived from system requirements and safety
analyses. To accomplish this, the SRS should be
unambiguous; every requirement should have only one
interpretation. The use of natural language is inher-
ently ambiguous, and should be reviewed by an
independent party. Specification languages or other
representations can be used to reduce ambiguity.

2. Completeness

The SRS should specify how functions are initi-
ated and terminated, as well as the status at termina-
tion. Accuracy requirements (units, error bounds, data
type, data size) should be provided for each input and
output variable. Physical variables that are controlled
or monitored should be fully described. Prohibited
functions should be described.

Timing requirements are especially important.
Timing constraints and acceptance criteria should be
identified for each mode. Timing requirements should
be deterministic; that is, they should not vary with the

process. Timing requirements for normal and abnor-
mal operation should be specified.

A document containing “LATER” or “TBD” is not
complete.

3. Consistency

As used in RG 1.172, the consistency should be
internal and external. External consistency means the
SRS is consistent with associated software and system
products. Internal consistency means that no require-
ment in the specification conflicts with any other
requirement in the specification. IEED Std 830 does
not require external consistency, because it treats an
external inconsistency as an error in requirements
composition.

4. Ranking

The SRS should be ranked for importance; that is,
critical and non-critical (necessary vs. desirable)
requirements should be identified. Software require-
ments important to safety must be identified as such in
the SRS. IEEE Std 830 suggests three degrees of
necessity: essential, conditional and optional. Re-
quirements that are conditional or optional are not
necessary for the system to be considered acceptable.

For safety system software, unnecessary require-
ments should not be imposed.

5. Verifiable

The SRS should be verifiable; a requirement is
verifiable only if some finite cost-effective process can
be used to check that the requirement is met. Unverifi-
able requirements should be modified or restated so it
is possible to verify them. If unverifiable requirements
cannot be so modified or restated, they could be
removed.

6. Modifiable

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-22 Rev. 0804

The SRS should be modifiable; changes in re-
quirements can be made easily and consistently while
retaining the structure and style of the document. This
term is closely related to the style (form, structure and
modularity), readability and understandability of the
document.

7. Traceable

The SRS should be traceable. Forward Traceabil-
ity means that each of its requirements can be refer-
enced in subsequent documentation. Backwards
Traceability means that each requirement can be traced
back to its source in earlier documents; i.e., the FRS.
The Requirements Traceability Matrix (RTM) is the
tool used to trace requirements.

A forward trace should exist from each require-
ment in the SRS to the specific inspections, analyses or
tests used to confirm that the requirement has been
met.

Evolution

The SRS will usually evolve during the software
development process. Details may not be available
when the project is initiated, or changes may be
required as deficiencies or shortcomings are discov-
ered in the SRS. However, new requirements should
not be introduced as part of the evolution process. All
requirements in the SRS must be traceable to the FRS.

Prototyping

Prototyping may be used during the requirements
portion of a project. Tools are available to allow a
prototype to be developed that exhibits some of the
characteristics of a system. A prototype is useful
because it allows the customer to view the prototype
and react to it more realistically than if he were to just
read the SRS. The prototype may also display
unexpected system behavior, so that the SRS and FRS,

if necessary can be adjusted. Also, a SRS based on a
prototype will undergo less change during develop-
ment.

Embedded Design

The SRS should not be written to produce a spe-
cific design. Every requirement in the SRS will limit
design alternatives to some extent. However, in some
cases, it is necessary to limit the design. Examples
include the need to keep certain functions in separate
modules, to limit communications or to check data
integrity for critical variables. Generally, the require-
ments should be stated from an external viewpoint. If
models are used, it should be clarified that the model
indicates the desired external behavior and does not
specify a design.

Additional SRS preparation guidelines, including
suggested format, are provided in IEEE Std 830.

Additional project documents developed during
this phase will include:

• The System Interface Specification (SIS) defines
the requirements of all interconnected systems,
subsystems, and components interfacing with
the project.

• The Requirements Traceability Matrix (RTM)
provides a method of verifying and validating
that all system requirements have been satisfied
by the project. All system requirements should
be depicted through all the development steps,
then conclude with a verification or validation
task.

• The Configuration Management Plan (CMP) is
initiated in this process. The CMP identifies
functional and physical characteristics to be con-
trolled, specifies how changes to those charac-
teristics are controlled, reports status of changes,
and specifies means used to verify compliance
with requirements

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-23 Rev. 0804

• The Software V&V Plan (SVVP) is initiated in
this process. The SVVP describes conduct of
software V&V during each lifecycle phase, de-
fines reports to be generated, describes neces-
sary administrative tasks such as error reporting,
task iteration, etc., and defines documents to be
produced in the V&V process. Format of the
SVVP is prescribed by IEEE Std 1012.

5.4 Design Process

The objective of this session is to understand the
design process, in which software requirements are
transformed into an architecture and detailed design
for each software component. The design includes
databases and interfaces (external to the software,
between the software components, and between
software units). The design process, including inputs
and outputs, is shown in Figure 5-19.

In the design process, the previously developed
requirements specifications are interpreted into the
software and hardware design of the upgrade project.
Major decisions are made that determine the structure
of the system.

The objective of the design process is to develop a
coherent, well-organized representation of the system
that meets the requirements specifications. This is
accomplished primarily through the generation of the
Software Design Description (SDD) and the Hardware
Design Description (HDD). In order to meet the
specified requirements, the design process must
identify, evaluate and mitigate potential project risks.

5.4.1 Risk Assessment Methods and Tech-
niques

During the design process, the risk presented by
the design should be assessed periodically. This is

done to ensure that the specified safety requirements
have been met and that new risks have not been
introduced. The goal is to identify the hazards of a
system and to impose design requirements and
management controls to prevent mishaps by eliminat-
ing hazards or reducing the associated risk to an
acceptable level.

The risk management process is comprised of four
activities:

• Assessment
• Elimination
• Mitigation
• Control

The assessment activity has three components:

• Identification
• Consequence
• Probability

Identifying hazards can be done in several ways.
The most common are:

• Deductive (Probabilistic Risk Assessment)
The deductive method starts at the hazard and at-

tempts to identify initiating events that can result in the
hazard occurring. This path, from the general to the
specific, is a Top-Down or Backward Search Ap-
proach. The Fault Tree Analysis or PRA is a typical
example of this method.

The Fault Tree Analysis is a deductive method that
searches from the front (Undesired effect) to the back
(Initiating event). The method defines undesired states
then determines what must occur for the undesired
state to exist. The FTA examines the causes of events.
 The hazards must be identified prior to starting the
FTA.

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-24 Rev. 0804

A simple Fault Tree Analysis, with the undesirable
result (mission failure) at the top and potential causes
of the event extending down, is shown in Figure 5-20.

• Inductive (Failure Modes and Effects Analysis)
The inductive method starts at initiating events and

attempts to identify the hazards that can result. This
path, from the specific to the general, is a Bottom-
Up/Forward Search Approach. The Failure Modes and
Effects Analysis (FMEA) and Preliminary Hazards
Analysis are typical examples of this method.

The FMEA is an inductive method that searches
from the back (initiating event) to the front (hazard).
The FMEA is used primarily to assess reliability. The
analysis looks at failure modes, then their effects.
Component failure rates are gathered from databases
then used to make predictions. Reliability is calcu-
lated by determining the combinations of
events/failures that can render the system inoperative.
Since software does not “fail,” inclusion of predicted
failure rates for software is questionable.

A simple Event Tree analysis, based on the Fault
Tree analysis above, is shown in Figure 5-21. The
Event Tree illustrates the inductive process used in a
FMEA. In this example, the potential causes at the top
of the diagram extend down to the undesirable event at
the bottom.

Quantitative (Deductive) methods used by them-
selves to identify and classify hazards do not always
yield a complete picture. For example, Nancy Leve-
son states in Safeware, that “35 percent of the actual
in-flight malfunctions were not identified by the
method [PRA] as ‘credible’.” Leveson further states,
“Software itself does not fail, it is a design for a
machine.” Thus, methods used to quantify hazards
resulting from software errors are questionable.

The priority for system safety is eliminating haz-
ards by design. Therefore a qualitative (inductive) risk

assessment procedure performed early in the design
process that considers only hazard severity is generally
sufficient to minimize risk. If reliable data are
available, a combination of Deductive (top-down) and
Inductive (bottom-up) will likely be the most success-
ful in identifying hazards.

When hazards are not eliminated during the early
design phase, a risk assessment procedure based upon
the hazard probability, as well as hazard severity, is
necessary to establish priorities for corrective action
and resolution of identified hazards.

One method of classifying hazard severity and
probability uses a matrix derived from MIL-STD
882B. The matrix provides a systematic method for
assigning a hazard level to an identified failure event
based on the severity and frequency of the event.

As shown in Figure 5-22, the hazard level consists
of one number and one letter. The number represents
the Severity of the Event. The letter of the hazard
level represents the Frequency of Occurrence. As can
be seen from the table, each hazard level is associated
with a risk category. Risk categories assist risk-
management team members in differentiating credible
high-hazard threats that may result in loss of life and
property from less probable risks, therefore aiding
management in risk vs. cost decisions.

IEEE Std 1012-1998 describes a similar method to
identify Software Integrity Level (SIL). This classifi-
cation is shown in Figure 5-23.

5.4.2 Critical Digital Review (CDR)

As described in EPRI TR-107339, Appendix A,
the critical digital review is a process to provide
assurance of the integrity of the overall digital system
(including hardware and software). The following
discussion is intended to provide an introduction to the
CDR concept rather than provide sufficient informa-

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-25 Rev. 0804

tion to conduct a CDR. For a Regulator conducting an
inspection, the findings of a previously performed
CDR can provide valuable assistance in assessing the
consequences of an unforeseen event. If a CDR was
not previously performed, the methodology may be
used to facilitate the inspection. In these situations,
the Regulator should consult EPRI TR-107339,
Appendix A. Depending on the severity of the
consequences, it may be advisable to engage a con-
sultant specializing in the CDR.

5.4.2.1 Basics

The CDR supplements the software V&V and
hardware quality control normally implemented by a
manufacturer. Software V&V can demonstrate that
the software was developed in a defined, systematic
fashion. However, all software is assumed to have
design defects (“bugs”) and all hardware will eventu-
ally fail. The CDR evaluates the potential conse-
quences of digital device or system malfunction and
relates the consequences to probable ways the mal-
function can occur. A quality design will incorporate
means to identify, prevent or mitigate undesirable
consequences of unforeseen events.

Unforeseen events are not limited to the physical
system. A common software failure in a redundant
system or lack of proper documentation to configure a
component required for continued plant operation
when the vendor does not have support available are
examples of unforeseen events.

The CDR itself is not an audit or survey. The
CDR is a technical evaluation. The audit or survey is
a Quality Assurance Activity. There is some overlap
in the activities performed in the CDR, audit or survey.
 CDR findings may be used as input to an audit or
survey.

If performed, the CDR is conducted normally dur-
ing the design phase of the digital project, although
planning for the CDR will take place during the
concept phase. The Regulator will likely not be
involved at this time. More likely, the Regulator will
be conducting an inspection to determine the cause or
consequences of an unforeseen event that has already
happened. EPRI TR-107339, page A-7 provides a list
of questions that may be used by the Regulator as a
starting point to assess root causes for unforeseen
events that may have occurred.

Deliverables of the CDR include:

• List of recommended action items outlining
potential problems and mitigation options;

• Descriptions of the digital system architecture
and functional characteristics, including devel-
opment processes;

• Discussions of important technical details.

The primary objective of the CDR is to penetrate
the “technical shell” of the digital portion of the
system, as shown in Figure 5-24, adapted from EPRI
TR-107339. The goal of this penetration is to gain a
detailed knowledge of the core technical architecture.
The knowledge of the core technical architecture
forms the basis for questioning relevant requirements,
expectations and potential for unforeseen events.
Penetrating the technical shell requires technical
expertise as well as judgment of what is relevant to the
digital system.

The CDR can assist the engineer in identifying the
potential for obscure behavior and unique failure
modes in a digital upgrade, even if it is designed to
provide exactly the same functionality as its analog
predecessor. If an undetected or unrecognized failure
in the same system can cause or enable significant
consequences, the CDR can help identify potential

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-26 Rev. 0804

unforeseen events and mitigation strategies. If the
potential consequences are not significant, an audit or
survey of vendor practices may be more appropriate
than a CDR.

5.4.2.2 Assumptions

There are five underlying assumptions of the CDR
process as described in EPRI TR-107339:

1. A CDR is not self-contained. Followup is
required to ensure action items are resolved
and mitigative measures are implemented.

2. Almost all software has bugs; almost all
hardware will fail. In spite of best efforts,
failures will occur. Some will be due to
software errors. Others may be manifest by
hardware failure, but the consequences are
made worse by software errors. If there are
no serious consequences, a CDR is probably
not necessary. If serious consequences can
occur, the CDR offers a way to examine the
potential for bugs and failures and their miti-
gation.

3. A digital system is comprised of a plat-
form and an application. The platform is
the generic base used for application devel-
opment. The application is the means by
which the platform is adjusted or configured
to meet specific project requirements. See
Figure 5-25. The platform can be very sim-
ple, such as a single circuit board based mi-
croprocessor, or massive, such as a plant
wide distributed control system. If the plat-
form has received a SER, the CDR can fo-
cus primarily on the application. It is impor-
tant to evaluate the differences in behavior
between the existing analog or non-
sequential discrete hardware application and
the new digital platform/application. A non-

sequential discrete hardware logic applica-
tion will move smoothly between states
unless there is a malfunction. A digital sys-
tem using a PLC may require several scans
to complete the transition, and may pass
through invalid states. These invalid states
may not affect the output device, but im-
proper means of detecting the invalid states
can lead to common-cause failures.

4. The “System” consists of the digital sys-
tem, vendor processes and the project
perspective. Vendor perspective is the
scope, formal requirements and informal ex-
pectations of the project. Informal expecta-
tions are often unstated and simply assumed
by project team members. The assumptions
may be valid for those familiar with the
plant systems where the system will be ap-
plied, but the software developer may not
understand the subtleties of a particular ap-
plication. The unstated project perspective
can limit the effectiveness of a CDR. If:

o There are high-consequence events that
may be caused by an unusual failure

o The review team does not have sufficient
technical access

o The platform will not be widely used in
future projects

then it is not likely that a CDR will rule out
the possibility of a future event caused by an
unusual failure in the system. If it is recog-
nized early that the focus for mitigation is
the project perspective (and not the system
itself), the system may be more complex
than necessary. A simple manual bypass
may be the most cost-effective means of
mitigation.

5. Software development processes rarely

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-27 Rev. 0804

function as described on paper. The sys-
tem developer may have impressive written
procedures, but the procedures may not be
followed in practice. It is necessary to work
with the people doing the actual develop-
ment and V&V tasks to see how the plans
are being used.

A good application resting on a bad platform will
yield a poor system, as will a bad application imple-
mented on a good platform.

It is necessary, particularly for a Regulator con-
ducting an inspection where unforeseen circumstances
have occurred, to look at the “real system,” which
consists of the platform, the application and the plant
perspective.

The plant perspective includes scope, formal (writ-
ten) requirements, informal expectations and unstated
assumptions. Expectations and assumptions are
sometimes considered “too obvious” to require formal
documentation. Unfortunately, the expectations and
assumptions may not be so obvious to the system
developer, and the result can be vulnerability to
unforeseen events.

5.4.2.3 Components

The critical digital review follows a four-step
process:

1. System Orientation. The purpose is to gain
an overview of the supplier’s system archi-
tecture.

2. Process Orientation. This step examines
the supplier’s policies, procedures and stan-
dards for development, documentation test-
ing and maintenance of the product. This
includes record keeping, failure investiga-

tion and customer complaint handling.

3. Thread Analysis. Follows specific func-
tions through documentation, testing and
implementation. Thread analysis in I&C
systems frequently includes tracing signals
through data acquisition hardware, software
and display. It is necessary to dig deep
enough into the technical core of the system
to get a clear understanding of potential fail-
ure modes. Typical questions include:

o Are vendor procedures followed by the
staff?

o Are technical reviews performed regu-
larly?

o Is there a well maintained design basis?
o Are customers notified of errors?
o Does the digital system/software architec-

ture support digital system integrity?
o Does the digital system/hardware archi-

tecture support digital system integrity?
o How does the digital system fail?

4. Risk Analysis. This is the final CDR phase.
 The analysis is done qualitatively, and will
include a fault tree and failure modes and ef-
fects analysis. The qualitative failure modes
analysis postulates failures of hardware
modules, unintended software behavior,
human errors and field device failures.

5.4.3 Development of the Software Design
Description (SDD)

The objective of this lesson is to assist the Regula-
tor in understanding how the SDD document identifies
and details the methods of accomplishing the intended
functions, and what to look for in performing an
inspection. The SDD is an output of the design activity

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-28 Rev. 0804

shown in Figure 5-19. As described in IEEE Std
1016, “Recommended Practice for Software Design
Descriptions,” the SDD enumerates how the software
system will be structured to satisfy the requirements
specified in the software specification in accordance
with IEEE Std 830. It is a translation of requirements
into a description of the software structure, software
components, interfaces and data necessary for the
implementation phase.

The SDD represents a partitioning of the system
into design entities and describes the properties and
relationships of the entities as a standard set of
attributes. Design requirements are satisfied by
identification of the entities and their attributes.

The formal SDD outline in IEEE 1016 is well
suited to traditional programming methods and
languages (such as FORTRAN, C++, etc.). It is less
well suited to the graphical (object-oriented) methods
described in IEC 61131, such as ladder diagram,
function block diagram and sequential function chart.
The SDD for an object-oriented application program
should contain all the information prescribed in IEEE-
1016, but need not conform to the format.

5.4.3.1 Design Entities

A design entity is an element or component of a
design that is structurally and functionally different
from other elements and is separately named and
referenced.

Design entities result from decomposition of the
system software requirements. The objective is to
divide the system into separate components that can be
considered, implemented, changed and tested with
minimal effects on other entities.

Entities can exist as a system, data stores, pro-
gram, module, or process that possess common
characteristics such as interfaces or shared data. The

common characteristics are described by design entity
attributes.

5.4.3.2 Design Entity Attributes

The design entity attribute is a named characteris-
tic or property of a design entity. Attributes are
questions about design entities. Answers to the
questions are the values of the attributes. The collec-
tion of answers provides a complete description of the
entity.

Attributes are selected according to the following
criteria:

• The attribute is necessary for all software design
projects

• An incorrect specification of the attribute could
result in a fault in the software system to be de-
veloped

• The attribute describes intrinsic design informa-
tion and not information related to the design
process such as designer name, design status or
revision history.

IEEE Std 1016 requires the following ten attrib-
utes to be specified for each entity. The attribute
description should include assumptions and tradeoffs.
If an attribute is not applicable, its description may
state “none.”

1. Identification

This is the unique name for the entity. The name
may be chosen to characterize the function of the
entity.

2. Type

This is the nature of the entity, such as subpro-
gram, module, and process or data store. It may also
designate a major class of entities to assist in locating

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-29 Rev. 0804

an entity that deals with a particular type of informa-
tion.

3. Purpose

This attribute describes the specific purpose for
creating the entity. It describes the functional and
performance characteristics, which are satisfied by the
entity. If there are special requirements for the entity
that are not listed in the SRS, they are stated in this
attribute.

4. Function

This attribute describes what the entity does. That
is, it states the transformation that is made on the
inputs to produce the desired outputs.

5. Subordinates

If there are other entities that compose this entity,
they are listed in this attribute. This information is
used to trace requirements to design entities and to
identify parent/child relationships. The subordinates
attribute identifies the “composed of” relationship with
another entity.

6. Dependencies

This attribute describes the relationships of this
entity with other entities by identifying the “uses” or
“requires the presence of” relationship with other
entities. This attribute describes the nature of each
interaction including timing and conditions required
for interaction such as initiation, order of execution,
data sharing, etc.

7. Interface

This attribute describes how other entities interact
with this entity, including methods and rules for the
interaction. Methods of interaction include how the
entity is invoked or interrupted and means by which it
communicates with other entities such as common data
areas. The attribute describes input ranges, definitions
of inputs and outputs and output error codes. For

information systems, the attribute includes inputs,
screen formats, and a description of the interactive
language used to develop the interface.

8. Resources

These are the physical resources, external to the
software design, that are used by the entity. This
includes devices such as printers, disk drives, math
libraries, and processing resources such as CPU cycles
and memory allocation.

9. Processing

Processing is a description of the rules used by the
entity to perform its function. This attribute describes
the algorithm used by the entity and includes contin-
gencies in the event of overflow conditions or valida-
tion check failure. It should include timing, sequencing
of events or processes, process steps, etc. It is the
most detailed attribute for this entity.

10. Data

This attribute describes the data elements internal
to the entity. It lists method of representation, use,
initial values, format and acceptable values. The
description should include whether the data elements
are static or dynamic, whether it is shared by other
transactions, if it is a control parameter or used as a
value, loop iteration counter or pointer.

The description may be in the form of a data dic-
tionary that describes the content, structure and use of
all data elements used by the entity.

5.5 Implementation Process/Performance
Issues

5.5.1 Implementation Process

The objective of this session is to understand how
the Implementation Process transforms the project
design into actual hardware and software code, and

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-30 Rev. 0804

develops site-specific detailed design documentation.
In this process, the project hardware is assembled and
integrated with the software for acceptance testing.
Project design drawings are finalized.

The following representative documents and ac-
tivities, illustrated in Figure 5-26, are developed
during this phase to support system hardware/software
integration and testing:

• Software source code listings are created and
base lined for all application software developed
for the Project.

• Hardware related drawings
• Any required Operation and Maintenance

manuals for the final functioning system will be
generated during this process.

• System surveillance requirements and methods
will be identified and documented during this
process.

• All training requirements for the installation,
operation, calibration, or maintenance of the fi-
nal functioning system will be identified and
documented during this process.

The following are representative documents and
activities developed during this phase to support the
preparation of the modification package utilized for
the system installation:

• Design Input Report (DIR)
• Engineering Change Notices (ECNS)
• Calculation updates for Electrical, HVAC and

Combustible Loadings,
• Updated equipment database, circuit schedule

and other applicable databases and lists as re-
quired

• 10 CFR 50.59 Screening

5.5.2 System Performance Issues

Digital sampling of analog signals introduces two
types of error, aliasing and finite wordlength, to the
sampled version of the signal. NUREG-
1709,”Selection of Sample Rate and Computer
Wordlength in Digital Instrumentation and Control
Systems,” provides regulatory background, theoretical
and practical information and best engineering
practices associates with sample rate and wordlength
selection. This lesson section summarizes NUREG
1709.

Digital I&C systems manipulate binary numbers.
Therefore, they must convert analog signals to binary
numbers, and in some cases, convert binary results
back to analog signals. There are two key factors that
are important to the performance, reliability, and
safety of digital I&C systems, and that are not issues in
analog systems:

1. Sample rate: The rate at which an analog signal
is measured (sampled) its instantaneous value is
converted to the binary equivalent; and

2. Computer wordlength: The number of discrete
binary bits used to represent a numerical value
of the sampled signal or internal variable

When a digital I&C system samples an analog sig-
nal, it gets a snapshot of the signal at discrete time
intervals. If the analog signal changes rapidly and the
sample time intervals are not small enough, the
sampled version of the signal will misrepresent high
frequency components of the original signal as low
frequency components. This type of signal corruption
is called aliasing. Refer to Figure 5-27 and Figure
5-28

Due to finite wordlengths, mathematical opera-
tions such as addition and multiplication introduce

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-31 Rev. 0804

round off and/or truncation errors. If finite wordlength
errors are not properly addressed in digital I&C
systems, they may cause unexpected behavior. Refer
to Figure 5-29.

In control systems, aliasing or severe finite
wordlength errors may cause instability. In monitor-
ing, alarm, and protection systems, such conditions
may degrade performance. In protection systems,
aliasing and finite wordlength errors may adversely
affect setpoint accuracy and response time require-
ments. However, through proper sample rate and
computer wordlength selection, these error sources can
be minimized to a point where they have an insignifi-
cant effect on the system.

The rate selected for a particular signal depends
upon its rate of change (frequency content of the
signal). Shannon's Sampling Theorem states that a
signal must be sampled two times faster than the
signal's highest frequency component to reconstruct
the signal in the time domain. This theorem defines a
theoretical minimum sample rate to prevent aliasing.

oa

ooosa

osa

os

o

ff
fffff

Then
fffrequencyaliasf

ffrequencysamplef
frequencysignaloriginalf

If

=
−=−=

−==
==

=

2
:

_
2_

__
:

When practical issues, such as signal noise, are
considered, the sample frequency is greater than two
times the highest frequency of the analog signal.
Calculation of the minimum sample rate depends upon
the following:

1. Application: control, monitoring, protection, or
indication

2. Environment: signal noise

3. I&C equipment: input signal filters, A/D
converters, and other interfacing computer
equipment

4. Interfacing systems: actuators and dynamics of
the plant process

Sample rate selection methods vary, depending
upon the type of digital I&C system. Types of systems
include discrete, open loop, and closed loop I&C
systems.

Discrete I&C systems deal with input signals tak-
ing on one of two values, and the input signals often
come from discrete devices such as relays, bistables,
etc. Discrete I&C systems do not have aliasing
problems, but the system response time depends on the
sample rate.

Open loop I&C systems do not have feedback sig-
nals and include protection, monitoring, alarm, and
some control systems. Three sample rate selection
methods are commonly used with open loop I&C
applications. Two of the methods, the sampling ratio
method and the oversampling method, are concerned
with meeting a maximum allowable aliasing level, and
they are best suited for those systems requiring signal
accuracy. A third method, the rise time method, is
suitable for open loop I&C systems that do not have
stringent signal accuracy requirements.

The sampling ratio method uses an analog low-
pass filter placed in front of the A/D converter. The
filter prevents high frequency signal components or
noise from reaching the A/D converter. The sampling
rate is selected using a relationship between the analog
signal bandwidth and the frequency of required
attenuation. For additional information, refer to
NUREG-1709.

The oversampling method samples the analog in-
put signal at a rate much higher than the Shannon

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-32 Rev. 0804

theorem would suggest. Antialiasing filters are used
frequently with this method to prevent high frequency
signal components or noise from affecting the required
accuracy.

The rise time method samples the analog input
signal at a rate sufficient to evaluate the signal a fixed
number of times during the rise time of the signal. The
rise time is defined as the time required for a step
change in a signal to transition from 10% to 90% of its
final value. In Figure 5-30 the rise time from signal
value = 0.1 to 0.9 is 2 seconds. If it is desired to
sample 5 times in this interval, the sample rate is 2/5 =
0.4 sec = 2.5 Hz.

Closed loop I&C systems have at least one feed-
back signal. There are three sample rate selection
methods available to closed loop I&C systems: the
phase/gain margin method, the closed loop bandwidth
method, and the rise time method. These methods are
mainly concerned with system stability.

The phase/gain margin method may be used to
evaluate a selected sample time for control system
stability where there is a mathematical model for the
closed-loop control system. Using the control loop’s
open-loop frequency response, the gain margin is the
amount of gain added from a value of 1.0 before
instability occurs at a phase shift of -180°. Phase
margin is the amount of phase shift added between its
value at a gain =1 before instability occurs at phase
shift =-180°. See Figure 5-31. If the phase/gain
margin meets control system requirements, then the
sample rate is sufficient for stability.

The closed loop bandwidth method may be used
where the system does not have phase/gain margin
requirements. Although Shannon’s theorem would
suggest a sampling rate greater than twice the signal
bandwidth, good engineering practice is to use at least
six times the bandwidth. This practice will enable the
digital control system response to approach that of an

analog control system. As before, it is good practice
to precede the A/D converter with a low pass filter to
prevent high frequency process signal components or
noise from being introduced to the control loop.

Finite wordlength errors occur when real number
data are represented by a finite number of bits in a
computer system. These errors occur at input signal
acquisition, intermediate calculations, the output
signal, and algorithm coefficients. For example, finite
wordlength errors are introduced at A/D conversion.
The accuracy of the conversion is impacted by the A/D
converter's dynamic range. As the converter covers a
wider range of input values and resolves to smaller
voltage levels, the dynamic range increases. The
dynamic range is affected by the wordlength of the
A/D converter and its associated error specification.

Intermediate calculations are affected by finite
wordlengths of computer memory. Errors associated
with intermediate calculations include round off/
truncation error, overflow, and incorrect type conver-
sion. Overflow occurs during addition when the result
occupies one more bit than the available storage space.
Incorrect type conversions may occur when numbers
are converted between two different numbering
conventions (i.e., fixed- and floating- point notation).

In many applications, digital I&C systems convert
digital results into analog signals. The conversion is
carried out using a digital to analog (D/A) converter.
Because the value of the digital signal is not known
between updates, the D/A converter accepts a digital
value and holds it at a representative DC voltage until
the next update arrives. This creates a step-like analog
signal that may not be acceptable to some plant
systems.

Often, when algorithms are developed for digital
I&C systems, real number coefficients are used in the
design. When the coefficients are placed into the
digital I&C system, truncation or round off of the

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-33 Rev. 0804

coefficients may occur, potentially degrading system
performance.

Computer sample rate and wordlength selection is
based upon design considerations that take their bases
from fundamental engineering principles.

NUREG-1709 contains a list of design considera-
tions that summarize the above discussions regarding
sample rate and wordlength. The list is convenient for
a Regulator to use in reviewing a design.

5.6 Testing Activities

The objective of this session is to understand the
testing that is performed throughout the upgrade
process to ensure the adequacy of the design and its
implementation. The Software Verification and
Validation Plan (SVVP), developed during the
Concept process, identifies the testing activities that
will be performed during the development phase.
Thus, the SVVP serves as a roadmap through the
testing activities.

5.6.1 Requirements Process Testing Activities

During the Requirements Process, the System
V&V Test Plan is generated to include tracing system
requirements to test designs, cases, procedures and
results. The V&V Test Plan addresses compliance
with all system requirements, adequacy of user
documentation and performance at boundaries under
normal and stressed conditions. The System V&V
Test Plan provides test coverage of all system re-
quirements, appropriateness of test methods and
standards, conformance to expected results, feasibility
of system qualification testing and feasibility and
testability of operation and maintenance requirements.

The Acceptance Test Plan (ATP) is generated dur-
ing the Requirements Process, as shown in Figure

5-16. The ATP is intended to ensure that developed
software correctly implements system and software
requirements in the operational environment, in
contrast to the development environment of the
System V&V Test Plan. The Acceptance Test Plan
covers system requirements, documents conformance
to expected results and demonstrates feasibility of
operation and maintenance to meet user needs.

5.6.2 Design and Implementation Process
Testing Activities

Testing activities in the design and implementation
processes also involve subjecting the completed
project software and hardware to testing both prior to
and after shipment to the utility plant. Testing is
necessary to verify that the hardware and software
components developed for the project satisfy system
requirements, and to verify that the requirements have
been properly integrated. As shown in Figure 5-19,
the outputs for Design Process test activities consist of
plans to be executed in the Implementation Process.

Software Component (Unit) Test Plans

Software Unit Test (SUT) Plans describe the test-
ing of individual project software units prior to full
system integration.

Component (Unit) testing is conducted to verify
the correct implementation of the design and compli-
ance with program requirements for one software
element (e.g. unit, module) or a collection of software
elements.

System Integration Test Plan

The System Integration Plan (SIP) formalizes the
order and requirements for the correct integration of all

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-34 Rev. 0804

project hardware and software components into the
final functioning system.

Integration testing is an orderly progression of
testing of incremental pieces of the software program
in which software elements, hardware elements, or
both are combined and tested until the entire system
has been integrated to show compliance with the
program design, and capabilities and requirements of
the system. System Integration Test(s) may be per-
formed by the supplier to verify that individual
software units satisfy their intended functions as an
integrated software system. This test may or may not
be performed with the software loaded on the actual
plant equipment.

Acceptance Test Plans

Hardware and Software Acceptance Test Plans
outline the acceptance criteria for project hardware and
software. These plans are generated after base lining
the HDD and SDD against their requirements specifi-
cations.

Acceptance phase testing is conducted in an opera-
tional environment according to the Acceptance Test
Plan to determine whether a system satisfies its
acceptance criteria (i.e., initial requirements and
current needs of its user) and to enable the customer to
determine whether to accept the system. Factory
Acceptance Testing (FAT) will usually be performed
at the supplier’s facility and will be conducted in
accordance with an approved FAT Procedure gener-
ated by the supplier. The FAT is designed to demon-
strate system conformance to the requirements as
established by the Hardware and Software Acceptance
Test Plans. The FAT should be performed in a con-
figuration that emulates (as closely as possible) the
actual plant configuration.

During the Implementation Activity, test cases and
procedures are developed for the previously generated

plans, as shown in Figure 5-26. Component testing as
also conducted at this time.

Finally, the integration and acceptance tests are
conducted during the test phase activity as shown in
Figure 5-32.

Following completion of FAT, a FAT Report is
generated by the supplier to document the results of all
testing activities performed. Any testing failures or
anomalies observed during testing are described in the
report along with the resolution to the identified failure
or anomaly. If the FAT is performed at the supplier’s
test facility, the FAT Report must be approved by the
utility representative prior to shipment of the up-
grade/conversion system to the plant site. If the FAT
is performed at the plant site, the project representative
must approve the FAT Report prior to additional
testing or installation work. The FAT Report is
included (attached to) the final Software V&V Report
(SVVR).

5.6.3 Installation and Commissioning Testing
Activities

These activities involve the installation of the pro-
ject equipment at the plant site and performance of
subsequent post-installation testing activities necessary
to declare the system operational.

Prior to installation, Site Acceptance Testing
(SAT) is performed by plant personnel using an
approved SAT Procedure that demonstrates system
conformance to all requirements as specified in the
various specification documents (FRS/SRD, HRS,
SRS). The SAT should be performed in a test bed
configuration, rather than connected to actual plant
equipment.

Following completion of SAT, a SAT Report is
generated by the project Verification and Validation
Engineer (VVE) to document the results of all testing

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-35 Rev. 0804

activities performed. Any testing failures or anomalies
observed during testing are described in the report
along with the resolution to the identified failure or
anomaly. The SAT Report is included (attached to) the
SVVR.

Following satisfactory completion of the SAT and
after physical installation in the plant, a Post Installa-
tion/Modification Test (PIT/PMT) is conducted and
documented according to approved procedures. The
purpose of the PMT is to demonstrate that the system
will perform its intended function in the real physical
environment using real plant sensors and actuation
devices. If the system is non-safety related, develop-
ment is now complete, and the Operating and Mainte-
nance lifecycle phases begin.

If the system is safety-related, the final step in the
development phase is Return to Service (RTS) testing
that verifies that the system meets its licensed re-
quirements as described in the plant Technical Specifi-
cations. Following completion of RTS testing, the
system is accepted for use by the plant Operations
department and the Operating and Maintenance
lifecycle phases begin with regularly scheduled
Surveillance Testing.

5.7 Software Training Plan and Implementa-
tion

The objective of this session is to provide the
Regulator with an understanding of the training plan
characteristics discussed in NUREG 0800, to be used
in evaluating plans developed by the utility for the
software project.

The software training plan should exhibit the man-
agement, implementation, and resource characteristics
listed below, as discussed in NUREG 0800, Section 7,
Appendix 7-A (BTP HICB-14).

5.7.1 Management Characteristics

The management characteristics that the software
training plan should exhibit include purpose, organiza-
tion, and responsibilities.

Purpose requires a description of the means nec-
essary to ensure that training needs of appropriate
plant staff, including operators and I&C engineers and
technicians, are fully achieved. The plan should
include a general description of the training facilities.

Organization requires a description of the soft-
ware training organization. The interfaces between the
training organization and the project management
organization should be described. Reporting channels
should be described. Trainers should have the neces-
sary knowledge of the software operation to ensure
that trainees understand its operating and maintenance
requirements.

Responsibilities requires a definition of the re-
sponsibilities and authority of the training organization
and training by customers.

5.7.2 Implementation Characteristics

The implementation characteristics that the soft-
ware training plan should exhibit include measurement
and procedures.

Measurement requires a set of indicators used to
determine the success or failure of the training effort.
The plan should require that training data be collected
and analyzed to determine the effectiveness of the
training effort. The trainee error rate found at the end
of training activities should be measured, recorded,
analyzed and reported.

Procedures requires a description of the training
procedures. The plan should list any documentation
required to support the training effort. The training

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-36 Rev. 0804

program should be described. The plan should require
that training be specific to different job functions.
Training products and reports should be described.
Reporting requirements should be specified.

5.7.3 Resource Characteristics

The resource characteristics that the software train-
ing plan should exhibit include methods/tools.

Methods/tools requires a description of the meth-
ods, techniques and tools that will be used to accom-
plish the training function. Training should be carried
out on a training system that is equivalent to the actual
hardware/software system.

5.8 Operations and Maintenance

The objective of this session is to understand how
the software project is handled after it has been
accepted for use and placed in operation in the utility’s
plant.

IEEE Std 610.12, “Standard Glossary of Software
Engineering Terminology,” defines the Operation and
Maintenance Phase as “The period of time in the
software lifecycle during which a software product is
employed in its operational environment, monitored
for satisfactory performance, and modified as neces-
sary to correct problems or to respond to changing
requirements.”

5.8.1 Operations Support

The Operation Support activity, as described in
IEEE Std 1074, “Standard for Developing Software
Life Cycle Processes,” covers the operation of the
software product and operational support to users.
This process also includes the performance of site

surveillances as required. Support includes consulting
with the user and maintaining a Support Request Log.
If problems are determined or operating requirements
change, the software maintenance organization
initiates the required activity and the product re-enters
the software lifecycle process.

The Operation V&V activity evaluates the impact
of any changes in the intended operating environment,
assesses the impact on the system of any proposed
changes, evaluates operating procedures for compli-
ance with the intended use, and analyzes risks affect-
ing the user of the system.

5.8.2 Maintenance Support

Maintenance support covers modifications, migra-
tion and retirement of software. Migration is the
movement of software to a new operational environ-
ment. Retirement of software is the withdrawal of
active support by the operation and maintenance
organization, partial or total replacement by a new
system, or installation of an upgraded system. The
Maintenance activity is activated when the software
code and associated documentation are revised to
correct a problem or address a need for improvement
or adaptation. As discussed in IEEE Std 1074.1,
“Guide for Developing Software Life Cycle Proc-
esses,” software maintenance refers to all the technical
and management activities related to modifying a
software system after it has been placed in operation.
Maintenance may involve any or all of the following:

• Corrective maintenance: Identification and
correction of software errors, performance fail-
ures, and implementation problems.

• Adaptive maintenance: Modifications to permit
the software system to run in a different operat-
ing environment, or with different types of data.

• Perfective maintenance: Maintenance to incor-
porate new requirements, enhance performance,

Digital Instrumentation & Control Training Module 5.0

USNRC Technical Training Center 5.0-37 Rev. 0804

improve cost-effectiveness or otherwise improve
the software system.

Any software maintenance effort involves, at a
minimum, the following steps:

1. Understand the existing system
2. Understand the problem or the desired im-

provement
3. Modify the system in a specified manner
4. Revalidate the updated system
5. Update documentation.

Steps 2 through 4 are analogous to the requirement
and design, implementation and validation processes
of software development. Thus, software modifica-
tions are treated as development processes and are
verified and validated as described in Sections 5.2
through 5.6.

This process includes the maintenance of a Soft-
ware Support Log, which should be created for each
digital development project that produces modifiable
software and should be included in the Software
Configuration Package.

The Software Support Log documents support ac-
tivities that lead to the need to perform software
maintenance:

• Identify software improvement needs. This
activity identifies lessons learned and needs to
improve the software. The output of this activ-
ity consists of recommendations. The recom-
mendations include their impact on the quality
of the software, as well as any tools or methods
required to implement the recommendations.

• Implement a problem reporting method. This
activity accepts anomalies and prepares a prob-
lem report, and may include possible solutions.
Problems can be resolved through corrections or

enhancements as discussed above. Corrections
and enhancements are documented. Enhance-
ments can be considered for future projects.
This activity analyzes the problem and makes
the following determination:

1. Nature of the anomaly
2. Source and cause of the problem
3. Product that contains the error
4. Severity
5. Corrective action
6. Impact on cost, schedule and risk

• Reapply the software life cycle as appropriate.
Information developed above is used to generate
recommendations for maintenance that reenter
the software lifecycle, usually at the
requirements phase, where existing requirements
are modified. This activity then monitors cor-
rection of the problem through the software life-
cycle and documents completion in the Software
Support Log. If the impact is major, such as
affecting the fundamental system concept or
adding or deleting major requirements, a new
project should be considered.

Figure 5-1 (Slide 5.2.1-5)

Figure 5-2 (Slide 5.2.1-6)

Figure 5-3 (Slide 5.2.1-13)

Figure 5-4 (Slide 5.2.2-13)

Figure 5-5 (Slide 5.2.2-21)

Figure 5-6 (Slide 5.2.2-22)

Figure 5-7 (Slide 5.2.2-23)

Figure 5-8 Defense-in-Depth and Diversity Strategies

Figure 5-9 diversity Attributes and Criteria

Figure 5-10 (Slide 5.2.6-6 (Table 1))

Figure 5-11 (Slide 5.2.6-8 (Table 2))

Figure 5-12 (Slide 5.2.8-3)

Figure 5-13 Typical Software Development Plan

Conceptual

Phase

FRS/SRD
Conceptual
Design

Requirements
Phase

HRS/SRS
SIS
CMP/V&V

Design
Phase

System Design
SDD/HDD
CMP/V&V
Mod Package

Installation/Test
Phase

System
Installation
FAT/SAT/PIT/
PMT
CMP/V&V
Operations
Acceptance

Figure 5-14: Life Cycle Overview of a Digital Upgrade Project

Project Definition

Design Basis
Definitions/Conceptual Design

Project Specific Methods & Activities

Requirements
Functional Requirements

Reliability and Failure Management
Requirements

Hardware Requirements
EMI/RFI Requirements
Software REquirements

HMI Requirements
Analysis, Qualification and Test

Requirements

Design and Implementation
Considerations

Design
Hardware
EMI/RFI
software

HMI
Integration

Procurement Considerations
Purchase Specification

Utility-Vendor Interaction
CGI Dedication

Licensing Considerations

Procedures and Training
Considerations

Testing, Installation and Verification

Operation and Maintenance
Configuration Management

Proposal for Change

Requirements Engineering
Activities

Specification, Analysis and
Tracking

Problem Analysis
Project Description

Requirements Analysis

Conformance Checks
Design Reviews

Final Design Failure Analysis
Requirements Traceability Matrix

(RTM)
Factory Acceptance TEsts

Other Tests

Figure 5-15 Digital Upgrade Life Cycle (Adapted from EPRI TR-102348)

Functional
Hardware

Requirements

Phase Inputs

Human Factors
Requirements

Functional
Software

Requirements

Hazard & Risk
Assessment

Report (*)

Software Lifecycle:
Requirements Phase

Inputs & Outputs

Requirements

Software
Requirements

Specification (**)

Interface
Requirements

Specification (**)

Verification &
Discrepancy

Reports

Hazard & Risk
Assessment

Report

User
Documentation

(**)

System/
Acceptance

Test PlanDevelopment Output

V&V Process Output

Phase Activity Phase Outputs

** Hazard and Risk Report is input
for Development & V&V

** Phase Inputs to V&V Process

Figure 5-16 IEEE Std 1012 Requirements Phase Activity Inputs and Outputs

Design Bases
Constraints
Project Estimates

Too much risk

Acceptable Risk

Requirements Analysis

Conceptual Analysis
System Failure Analysis
Completeness Analysis

Testability Analysis

Project Definition
Problem Analysis

Composition

System Requirements
Standard Format

Project Risk
Assessment

Requirements Specification

Figure 5-17 Requirements Specification Activities

(Adapted from EPRI TR-108831, Figure 3-1)

Figure 5-18 Defining Safety Requirements

Software
Requirements
Specification

Phase Inputs

Interface
Requirements
Specification

Hazard & Risk
Assessment

Report (*)

Software Lifecycle:
Design Phase

Inputs & Outputs

Design

Software
Design

Document (**)

Interface
Design

Document (**)

Verification &
Discrepancy

Reports

Hazard & Risk
Assessment

Report

Integration Test
Plan

System/
Acceptance
Test Design

Development Output

V&V Process Output

Phase Activity Phase Outputs

** Hazard and Risk Report is input
for Development and V&V

** Phase Inputs to V&V Process

System/
Acceptance

Test Plan

Integration Test
Plan

Component Test
Plan (**)

Component Test
Design (**)

Figure 5-19 IEEE Std 1012 Design Phase Activity Inputs and Outputs

Engine 1

Loss of Engine 1

Engine 2

Loss of Engine 2

Loss of Engine

Fuel Tank

Fuel Leak

Spark

Spark

Explosion

Pilot Error

Pilot Error

Weather

Bad Weather

Engines Explosion

Top Gate

Figure 5-20 Fault Tree Example

Engine 1

Loss of Engine 1

Engine 2

Loss of Engine 2

Loss of Engine

Fuel Tank

Fuel Leak

Spark

Spark

Explosion

Pilot Error

Pilot Error

Weather

Bad Weather

Engines Explosion

Top Gate

Figure 5-21 Event Tree/FMEA Example

Severity Frequency of
Occurrence (1)

Catastrophic
(2)

Critical
(3)

Marginal
(4)

Negligible
(A) Frequent 1A 2A 3A 4A
(B) Probable 1B 2B 3B 4B
(C) Occasional 1C 2C 3C 4C
(D) Remote 1D 2D 3D 4D
(E) Improbable 1E 2E 3E 4E

Risk Categories:

High Seri-

ous
Medium Low

Figure 5-22 MIL-STD 882B Hazard Matrix

 Catastrophic Critical Marginal Negligible
Reasonable
Likelihood

4 4 3 2

Probable
Likelihood

4 3 to 4 2 to 3 1 to 2

Occasional
Likelihood

3 to 4 3 1 to 2 1

Infrequent
Likelihood

3 1 to 2 1 1

Figure 5-23 IEEE Std 1012 Safety Integrity Level

Digital Technical
Core

"Astute Technical
Perspective"

Technical Shell

Technical
Excellence

Process Deficiencies
Conceptual Problems
Design Problems
Silent/Obscure Failure Modes
Customer-Vendor Confusion

Figure 5-24 CDR Penetrates to Core Architecture

Product
Development

Processes

Application
Group

Processes

Commercial
Product

Specification

Customer
Specification

Product Development
Organization

Commercial Platform

Application Group
Organization

Application configured
Commercial Platform

Figure 5-25 Platform vs. Application

Software
Design

Document

Phase Inputs

Interface
Design

Document

Hazard & Risk
Assessment

Report (*)

Software Lifecycle:
Design Phase

Inputs & Outputs

Implementation

Source Code &
Executable Code

(**)

Component Test
Case (**)

Verification &
Discrepancy

Reports

Hazard & Risk
Assessment

Report

Integration Test
Case

System/
Acceptance
Test Design

Development Output

V&V Process Output

Phase Activity Phase Outputs

** Hazard and Risk Report is input
for Development and V&V

** Phase Inputs to V&V Process

System/
Acceptance

Test Plan

Integration Test
Procedures

Component Test
Procedures (**)

Component Test
Results (**)

Component Test
Design

Software Coding
Standards

Integration Test
Design

System/
Acceptance Test

Design System/
Acceptance
Test Design

Management Output

Figure 5-26 IEEE Std 1012 Implementation Phase Activity Inputs and Outputs

Figure 5-27 Aliasing Example

Figure 5-28 Aliasing Example, Continued

Frequency

Voltage

5k 10k 15k 20k 25k

Frequency Spectrum

fa = alias signal
 = fs - fo

fo = original signal

fs = sampling rate

Wordlength Steps Resolution

4 bits 24 = 16 6.25% of range

8 bits 28 = 16 0.39%

12 bits 212 = 4,096 0.024%

16 bits 216 = 65,536 0.0015%

Figure 5-29 Wordlength Example

Figure 5-30 Rise Time Sampling Rate Selection Example

Figure 5-31 Phase/Gain Margin Example

Software
Design

Document

Phase Inputs

Interface
Design

Document

Hazard & Risk
Assessment

Report (*)

Software Lifecycle:
Test Phase

Inputs & Outputs

Test

Integration Test
Results (**)

Verification &
Discrepancy

Reports

Hazard & Risk
Assessment

Report

Final Software
V&V Report (***)

Development Output

V&V Process Output

Phase Activity Phase Outputs

** Hazard and Risk Report is input
for Development and V&V

** Phase Inputs to V&V Process

*** 1) Acceptance Test and Final V&V
 Report may occur in the
 Installation & Checkout Phase
 2) Plant modification testing may
 replace acceptance testing.

System/
Acceptance Test

Results (**)

Source Code &
Executable Code

User
Documentation

Integration Test
Procedures

System/
Acceptance Test

Procedures

Figure 5-32 IEEE Std 1012 Test Phase Activity Inputs and Outputs

	5.0 SOFTWARE/FIRMWARE LIFECYCLE CONCEPTS
	5.1 Software Lifecycle
	5.2 Concept Process
	5.2.1 Project Definition
	5.2.2 Software Safety and Risk Concepts
	5.2.3 Software Safety Plan
	5.2.4 Diversity and Defense in Depth
	5.2.5 Software Risk
	5.2.6 Software Fault Prevention
	5.2.7 Quality Assurance (QA) Plan Development
	5.2.8 Software Verification & Validation (V&V)

	5.3 Requirements Process
	5.3.1 Requirements Characteristics
	5.3.1.1 Project Definition (Problem Analysis)
	5.3.1.2 Composition of Requirements
	5.3.1.3 Requirements Analysis
	5.3.1.4 Risk Assessment

	5.3.2 Identifying Safety Requirements
	5.3.3 Preliminary Hazards Analysis
	5.3.4 Development of the Software Requirements Specification (SRS)

	5.4 Design Process
	5.4.1 Risk Assessment Methods and Techniques
	5.4.2 Critical Digital Review (CDR)
	5.4.2.1 Basics
	5.4.2.2 Assumptions
	5.4.2.3 Components

	5.4.3 Development of the Software Design Description (SDD)
	5.4.3.1 Design Entities
	5.4.3.2 Design Entity Attributes

	5.5 Implementation Process/Performance Issues
	5.5.1 Implementation Process
	5.5.2 System Performance Issues

	5.6 Testing Activities
	5.6.1 Requirements Process Testing Activities
	5.6.2 Design and Implementation Process Testing Activities
	5.6.3 Installation and Commissioning Testing Activities

	5.7 Software Training Plan and Implementation
	5.7.1 Management Characteristics
	5.7.2 Implementation Characteristics
	5.7.3 Resource Characteristics

	5.8 Operations and Maintenance
	5.8.1 Operations Support
	5.8.2 Maintenance Support

