Fundamentals of Nuclear Engineering

Module 7: Nuclear Chain Reaction Cycle

Dr. John H. Bickel

Objectives:

- 1. Define stages of nuclear chain reaction cycle
- 2. Define multiplication factors of reactor systems:
 - Subcritical
 - Critical
 - Supercritical
- 3. Define infinite medium system multiplication factor: k_{∞} (four factor formula)
- Define finite medium system multiplication factor: k_{eff} (six factor formula)
- 5. Describe differences in: One-Group, Two-Group, Multi-group core physics calculations

Chain Reacting Systems

Each Fission produces multiple neutrons:

- Fission yields on average: "v" total neutrons
- Fission yield increases slightly with neutron energy
- For U²³⁵: $v(E) \approx 2.44$
- For U²³³: $v(E) \approx 2.50$
- For Pu²³⁹: *v*(*E*) ≈ 2.90

Multiplication Factor

- Multiplication factor: "k" is ratio of current neutron population to previous population
- Nuclear system is:
- "Subcritical" if k < 1.0 neutron population decreases in successive generations
- "Critical" if k = 1.0 neutron population constant in successive generations
- *"Supercritical"* if *k* > 1.0 neutron population increases in successive generations

Differences Between: Thermal and Fast Reactors

- Thermal reactors *primarily* rely on *thermal neutrons* to initiate fission
- Thermal reactors include a population of *fast*, *epithermal*, and *thermal neutrons*
- Thermal reactors use some relatively *low A-value* moderator/coolant to slow neutrons down to thermal energy
- Fast reactors rely on *fast neutron fission* processes
- Fast reactors must use *high A-value* coolant (liquid metals)
- Criticality is a measure of *net neutron population*, not energy distribution

Infinite Medium Chain Reaction → No Leakage

Considering <u>Only</u> Fissile Material

• Ratio of total fission neutrons produced to neutrons absorbed in *infinite medium* is calculated:

 $\eta(E) = \mathbf{V}(E)\boldsymbol{\Sigma}_{f}(E) / \boldsymbol{\Sigma}_{a}(E) = \mathbf{V}(E)\boldsymbol{\Sigma}_{f}(E) / (\boldsymbol{\Sigma}_{c}(E) + \boldsymbol{\Sigma}_{f}(E))$

- For one fissile material: $\eta(E) = v(E)\sigma_f(E) / (\sigma_c(E) + \sigma_f(E))$
- Examples for pure U^{235} and Pu^{239}

Actual Reactor Physics Considerations

• Neutron yield per neutron absorbed "*simply*" defined:

 $\eta(E) = v(E) \Sigma_{f}(E) / \Sigma_{a}(E) = v(E) \Sigma_{f}(E) / (\Sigma_{c}(E) + \Sigma_{f}(E))$

- Actual core physics calculations must consider:
 - All isotopes which capture neutrons: *Xe*¹³⁵, *Sm*¹⁴⁹, *B*¹⁰, etc...
 - All isotopes present in fuel that fission: *U*²³⁵, *Pu*²³⁹, *Pu*²⁴¹, *etc...*
- Fuel supplier's design would need to consider:
 - Fresh fuel without fission products, Pu^{239} , Pu^{241}
 - Fuel with equilibrium *Xe*¹³⁵, *Sm*¹⁴⁹, various buildup of *Pu*²³⁹, *Pu*²⁴¹, *etc*...
- For introductory purposes of these lectures we focus on fresh enriched Uranium fuel

Considering Mixture Fissile Material

- Reactor fuel typically mixture of: 2 3% U^{235} , U^{238}
- Define enrichment: $e = N_{U235} / (N_{U235} + N_{U238})$

$$\eta(E) = \frac{[e \nu(E)_{U235}\sigma_f(E)_{U235} + (1 - e)\nu(E)_{U238}\sigma_f(E)_{U238}]}{[e(\sigma_f(E)_{U235}5 + \sigma_c(E)_{U235}) + (1 - e)(\sigma_f(E)_{U238} + \sigma_c(E)_{U238})]}$$

*Increasing U*²³⁵ *enrichment increases neutron population*

from: E. E. Lewis,

"Nuclear Reactor Physics", p. 101

Infinite Medium Multiplication Factor

To generate k_{∞} must consider:

- Materials other than fissile fuel
- Cladding
- Coolant/Moderator
- Control Rods
- Structural Materials
- All cause: scattering, thermalizing, capture
- These impact $\varphi(E)$ distribution by:
- Shifting neutron density towards thermal energies
- Depressing neutron density near resonances

Infinite Medium Multiplication Factor

 k_{∞}

- To generate k_{∞} must weight v(E) with $\varphi(E)$
- In thermal reactor, cross sections can be *approximated* with thermally averaged values
- This yields:
- k_∞ approximation requires corrections for:

Fast fission(adds neutrons)Resonances(remove neutrons)Fuel vs. Misc. Absorption
(remove neutrons)

$$= \frac{\int_{0}^{\infty} v(E) \Sigma_{f}(E) \varphi(E) dE}{\int_{0}^{\infty} (\Sigma_{c}(E) + \Sigma_{f}(E)) \varphi(E) dE}$$
$$k_{\infty} \approx \frac{\overline{v \Sigma_{f}}}{\overline{\Sigma_{c}} + \overline{\Sigma_{f}}} = \eta$$

Fast Neutron Fission Correction

- Given high η(E) for fast neutrons, correction factor: ε applied for U²³⁸
- ε accounts for additional fissions from fast neutrons
- ε : ratio of total fission neutrons to fission neutrons from thermal neutrons ($E \leq E_t$) only
- Range: $1.0 \le \varepsilon \le 1.227$
- ε ≈1.0 (if no U²³⁸ present)

Resonance Escape Correction

- Resonance capture in 1eV – 10⁴eV range "depresses" φ(E)
- Resonance escape probability: "p" corrects thermal approximation "v" for neutron losses during thermalization
- Recall *neutron slowing down model*:
- Resonance escape probability models start from this expression

$$\frac{q(E')}{q(E)} = \exp\left[-\int_{E'}^{E} \frac{\Sigma c(E) dE}{\xi(E)(\Sigma c(E) + \Sigma s(E))E}\right]$$

Resonance Escape Correction

- <u>Problem:</u> *Hundreds* of resonances necessitate numerical evaluation or approximation.
- Historical approaches:
- NR narrow resonance
- NRIM narrow resonance infinite mass
- Quasi-experimental p
- Range:

 $p \approx 0.63 - 0.87$ PWR/BWRs (current day designs)

Total cross section of uranium-238 as function of neutron energy

$$p = \exp\left[-\frac{2.73}{\overline{\xi}}\left(\frac{N_A}{N_A\sigma_p + N_m\sigma_m}\right)^{1-0.486}\right]$$

from: J. R. Lamarsh, "Nuclear Reactor Theory", p. 235

Thermal Utilization Correction

- Thermal neutrons not all absorbed in fuel
- Thermal utilization "f" corrects for fraction absorbed in non-fissile materials

$$f = \frac{E_t}{V_f \int_0^{0} (\Sigma_c(E) + \Sigma_f(E))\varphi(E)dE}$$

$$f = \frac{E_t}{V_f \int_0^{0} (\Sigma_c(E) + \Sigma_f(E))\varphi(E)dE + V_m \int_0^{\infty} \Sigma_c(E)\varphi(E)dE}$$

$$f = \frac{V_f(\overline{\Sigma}_c + \overline{\Sigma}_f)\overline{\varphi_f}}{V_f(\overline{\Sigma}_c + \overline{\Sigma}_f)\overline{\varphi_f} + V_m \overline{\Sigma}_c \overline{\varphi_m}}$$

• Typical value: $f \approx 0.94$ for PWR/BWR (current day designs)

Infinite Medium Chain Reaction → No Leakage

Optimization of Fuel Assembly Design

Effect of Parametrically Varying U-H₂O Ratio

- Assume ~2% Uranium fuel
- Vary Uranium/Water Ratio
- Calculate ε , p, f, k_{∞} as function of: N_U / N_{H2O} ratio
- Fast fission, \mathcal{E} , increases with more U^{238}
- Resonance escape factor, *p*, decreases with more *U*
- Thermal utilization, f, levels off after $N_U / N_{H2O} = 1.2$
- η is function of Uranium Σ_{c} , Σ_{f}
- Maximum k_{∞} is for:

 $N_U / N_{H2O} = 0.36$

J. Lamarsh, "Nuclear Reactor Theory", p. 305

Effect of Core Lattice Geometry on k_{∞}

- Reactors are not designed with homogeneous fuel and moderator mixtures
- Typical BWR 8x8 fuel bundle:
- Ratio of water to Uranium is frequently characterized by:
- Pellet Diameter
- Fuel Rod Pitch (center to center distance of fuel pellets)
- Studies have been performed to optimize water to Uranium mixture and geometry

Effect of Core Lattice Geometry on k_∞

- Assume 2-3% Uranium
- Vary fuel pin pitch/diameter ratio
- Calculate η , ε , p, f, k_{∞} as function of: pitch/diameter ratio
- Increased pitch increases water:
- Decreases fast fission of U^{238} : ε
- Decreases thermal utilization: *f*
- Increases resonance escape: *p*
- k_∞ reaches maximum value at pitch/diameter ≈ 1.65

From: J.J.Duderstadt, L.J. Hamilton,

"Nuclear Reactor Analysis, p.405

Homogenous vs. Heterogeneous

- Homogenous reactor system would be uniform mixture of fuel, moderator, absorbers, and poison
- As: p, f factors tend to completely homogenous mixture:
 - $p \rightarrow 1.0$ (due to faster moderation, less resonance capture)
 - But: f decreases (due to parasitic capture in light water)

• Recall:

$$f = \frac{V_f(\overline{\Sigma}_c + \overline{\Sigma}_f)\overline{\varphi_f}}{V_f(\overline{\Sigma}_c + \overline{\Sigma}_f)\overline{\varphi_f} + V_m\overline{\Sigma}_c\overline{\varphi_m}}$$

 Early experiments and calculations showed that separating fuel from moderator allowed minimum critical dimensions to be reduced for light water reactors

Comparisons to Actual Vendor Fuel Designs

Vendor:	GE	W	B&W	CE	2.0
Type:	BWR-6	RESAR		System 80	
Bundle Array:	8x8	17x17	17x17	16x16	1.5
U ²³⁵ %	2.2-2.7	2.1-3.1	2.91	1.9-2.9	
Pitch:	1.62cm	1.25cm.	1.27cm.	1.28cm.	
Pellet	1.25cm	0.94cm.	0.96cm.	0.97cm.	
Diameter:	•				0.5
<u>Pitch</u> :	1.30	1.32	1.32	1.33	W 17x17
Diameter					BWR-6

1.5 Pitch/diameter Effect of fuel lumping on k_{∞} .

Four Factor Formula for: k_∞

- Infinite medium multiplication factor
- Using Thermal Averaged Approximations:
- $k_{\infty} = \eta \epsilon p f$
- Typical ranges, fresh fuel (no poison/shims):

Parameter	PWR	BWR
η	1.65 -1.89	1.65 - 1.89
З	1.02 - 1.27	1.02 - 1.28
p	0.63 – 0.87	0.63 – 0.87
f	0.71 - 0.94	0.71 - 0.94
k_{∞}	1.04 - 1.41	1.04 - 1.40

from: E. E. Lewis, "Nuclear Reactor Physics", p. 101,

J.J. Duderstadt, L.J. Hamilton, "Nuclear Reactor Analysis", p. 83.

Reactors Not Infinite-Medium Systems

- In ideal infinite medium: no surface/volume effects
- Fast and Thermal leakage out of chain reacting region needs to be considered in finite systems
- Leakage effects result in: " k_{eff} "
- Effective multiplication factor $k_{e\!f\!f}$ is derived from k_{∞} via adjustments for leakage effects

• Thus:
$$k_{eff} = k_{\infty} P_f P_{th}$$

- Where:
- P_f corrects k_{∞} for fast neutron leakage
- P_{th} corrects k_{∞} for thermal neutron leakage

Finite Medium Chain Reaction → Leakage

One Group Diffusion Criticality Model

- Assume that all neutrons in bare (non-reflected) reactor are *thermal* – including fission neutrons
- $P_f \approx 1.0$ no fast neutron leakage
- $k_{eff} = k_{\infty} P_{th}$
- *P*_{th} can be determined from One-Group Neutron Diffusion Model and solving for Eigenvalues that yield an assumed Critical condition

- Assume steady-state "bare" critical reactor system (no reflected neutrons)
- Assume source is from thermal neutron fission:
- Rearrange by dividing out absorption cross section and flux:
- Recognize that Geometrical Buckling: *B* is eigenvalue of:
- Given assumption of critical system, following constraint exists defining relationship for criticality:

$$0 = \vec{S(r)} - \vec{\phi(r)} \Sigma_a(\vec{r}) + D\nabla^2 \vec{\phi(r)}$$

$$\vec{S(r)} = \Sigma_a(\vec{r})\phi(\vec{r})k_{\infty}$$

$$D = k_{\infty} - 1 + \frac{D\nabla^2 \phi(\vec{r})}{\sum_a (\vec{r}) \phi(\vec{r})} = k_{\infty} - 1 + L^2 \frac{\nabla^2 \phi(\vec{r})}{\phi(\vec{r})}$$
$$\frac{\nabla^2 \phi(\vec{r})}{\phi(\vec{r})} = -B^2$$
$$0 = k_{\infty} - 1 - L^2 B^2$$

30

 $\frac{k_{\infty}}{\mathbf{r}^2 \mathbf{R}^2} = 1$

• For finite medium, k_{eff} can be defined:

$$k_{eff} = \frac{k_{\infty}}{1 + L^2 B^2}$$

• The thermal nonleakage probability *P*_{th} is thus:

$$P_{th} = \frac{1}{1 + L^2 B^2}$$

Example: Yankee Rowe – Fresh Fuel

Based upon Yankee Rowe core with SS Clad, 2.7% enriched U²³⁵

$\Sigma aU235 := 0.132$	Average macroscopic neutron absorbtion cross section in U ²³⁵ in cm ⁻¹ .

- $\Sigma_{a}U238 := 0.0192$ Average macroscopic neutron absorbtion cross section in U²³⁸ in cm⁻¹.
- $\Sigma_{a}H2O := 0.0131$ Average macroscopic neutron absorbtion cross section in H₂O in cm⁻¹.
- Σ aClad := 0.0180 Average macroscopic neutron absorbtion cross section in Clad in cm⁻¹.
- $\Sigma fU_{235} := 0.1113$ Average macroscopic fission cross section in U²³⁵ in cm⁻¹.
- $\nu := 2.43$ Average number of neutrons generated per U²³⁵ fission
- Φ mu := 1.12 Ratio of: $\frac{\phi m}{\phi u}$
- Φ cu := 1.06 Ratio of: $\frac{\phi c}{dc}$
 - ¢
- Ho := 700 Height of Cylindrical Reactor in cm.
- Ro := 150 Radius of Cylindrical Reactor in cm.

from: S. Glasstone & A. Sesonske, "Nuclear Reactor Engineering" (1967), p.³203

Example: Yankee Rowe – Fresh Fuel

$\eta := \frac{\nu \cdot \Sigma f U235}{\Sigma a U235 + \Sigma a U238}$	η = 1.78	Neutrons produced per fission Neutrons absorbed in Uranium		
ε := 1.044		Fast fission factor		
p := 0.931		Resonance escape probability		
$\mathbf{f} \coloneqq \frac{\boldsymbol{\Sigma} \mathbf{a} \mathbf{U} 235 + \boldsymbol{\Sigma} \mathbf{a} \mathbf{U} 238}{\boldsymbol{\Sigma} \mathbf{a} \mathbf{U} 235 + \boldsymbol{\Sigma} \mathbf{a} \mathbf{U} 238 + \boldsymbol{\Sigma} \mathbf{a} \mathbf{H} 20 \cdot \boldsymbol{\Phi} \mathbf{mu} + \boldsymbol{\Sigma} \mathbf{a} \mathbf{C} 1 \mathbf{a} \mathbf{d} \cdot \boldsymbol{\Phi} \mathbf{cu}}$	f = 0.818	Thermal utilization factor		
$\eta \cdot \mathbf{f} = 1.462$		Severe Deet of Diffusion		
L:= 2.37		area: $\sqrt{\frac{D}{\Sigma_a}}$		
$B := \sqrt{\left(\frac{2.405}{Ro}\right)^2 + \left(\frac{\pi}{Ho}\right)^2} \qquad B = 0.017 \qquad B^2$	$= 2.772 \times 10^{-4}$	Geometrical Buckling Factor		
Pth := $\frac{1}{1 + L^2 \cdot B^2}$ Pth = 0.998				
Calculation of Infinite Medium Multiplication	n Factor			
$k_{\infty} \coloneqq \eta \cdot \epsilon \cdot p \cdot f$	$k_{\infty} = 1.421$	Infinite Medium Multiplication Factor		
Calculation of 1-Group k _{eff} Multiplication Factor				
kefflG := $\frac{k_{\infty}}{1 + L^2 \cdot B^2}$ k	eff1G = 1.419	1-Group k _{eff} Multiplication Factor		

from: S. Glasstone & A. Sesonske, "Nuclear Reactor Engineering" (1967), p. 2043208

- Assume that all neutrons in bare (non-reflected) reactor are either: *thermal* or *fast*
- P_f calculated instead of being ignored
- $k_{eff} = k_{\infty} P_f P_{th}$
- *P_f*, *P_{th}* can be determined from Two-Group Neutron Diffusion Model and solving for Eigenvalues that yield an assumed Critical condition.
- $k_{\infty} = \eta \epsilon p f$ needs to be split up into portions representing *thermal* (ηf) and *fast* (ϵp) neutron contributions.

- Assume steady-state "bare" critical reactor system (no reflected neutrons) is represented by system of equations:
- Assume fast neutron source is from thermal neutron fission:
- Assume thermal neutron source is thermalized fission neutrons enhanced by fast fission effect and which escape resonance capture:

$$0 = S_f - \phi_f \Sigma_{a-f} + D_f \nabla^2 \phi_f$$
$$0 = S_{th} - \phi_{th} \Sigma_{a-th} + D_{th} \nabla^2 \phi_{th}$$

$$S_{f} = \Sigma_{a-th} \phi_{th} \eta f = \frac{D_{th}}{L_{th}^{2}} \phi_{th} \eta f$$

$$S_{th} = \Sigma_{a-f} \phi_f \varepsilon p = \frac{D_f}{L_f^2} \phi_f \varepsilon p$$

 Making substitutions and rearranging yields:

$$0 = \left(\frac{D_{th}}{D_{f}}\right) \frac{1}{L_{th}^{2}} \phi_{th} \eta f - \frac{1}{L_{f}^{2}} \phi_{f} + \nabla^{2} \phi_{f}$$
$$0 = \left(\frac{D_{f}}{D_{th}}\right) \frac{1}{L_{f}^{2}} \phi_{f} \varepsilon p - \frac{1}{L_{th}^{2}} \phi_{th} + \nabla^{2} \phi_{th}$$

 Making substitution for geometric Buckling:

$$0 = \left(\frac{D_{th}}{D_f}\right) \frac{1}{L_{th}^{2}} \phi_{th} \eta f - \frac{1}{L_{f}^{2}} \phi_{f} - B_{f}^{2} \phi_{f}$$

$$0 = \left(\frac{D_{f}}{D_{th}}\right) \frac{1}{L_{f}^{2}} \phi_{f} \varepsilon p - \frac{1}{L_{th}^{2}} \phi_{th} - B_{th}^{2} \phi_{th}$$
37

This is system of linear equations:

• Solving Determinant

yields:

$$\begin{bmatrix} -B_{f}^{2} - \frac{1}{L_{f}^{2}} & \left(\frac{D_{th}}{D_{f}}\right) \frac{\eta f}{L_{th}^{2}} \\ \left(\frac{D_{f}}{D_{th}}\right) \frac{\varepsilon p}{L_{f}^{2}} & -B_{th}^{2} - \frac{1}{L_{th}^{2}} \end{bmatrix} \times \begin{bmatrix} \phi_{f} \\ \phi_{th} \end{bmatrix} = 0$$

$$\begin{vmatrix} -B_{f}^{2} - \frac{1}{L_{f}^{2}} & \left(\frac{D_{th}}{D_{f}}\right) \frac{\eta f}{L_{th}^{2}} \\ \left(\frac{D_{f}}{D_{th}}\right) \frac{\varepsilon p}{L_{f}^{2}} & -B_{th}^{2} - \frac{1}{L_{th}^{2}} \end{vmatrix} = (B_{f}^{2} + \frac{1}{L_{f}^{2}})(B_{th}^{2} + \frac{1}{L_{th}^{2}}) - \eta \varepsilon p f = 0$$

• Which simplifies to:

$$\frac{k_{\infty}}{(1+L_{f}^{2}B_{f}^{2})(1+L_{th}^{2}B_{th}^{2})} = 1_{38}$$

• For finite medium, k_{eff} can be defined:

$$k_{eff} = \frac{k_{\infty}}{(1 + L_f^2 B_f^2)(1 + L_{th}^2 B_{th}^2)}$$

• The fast non-leakage probability P_f is thus:

$$P_{f} = \frac{1}{1 + L_{f}^{2} B_{f}^{2}}$$

• The thermal non-leakage probability P_{th} is thus:

$$P_{th} = \frac{1}{1 + L_{th}^2 B_{th}^2}$$

Two-Group Criticality Model – Example

- Thermal multiplication factor:
- Fast fission factor: $\varepsilon = 1.02$
- Resonance escape factor: p = 0.87
- Thermal utilization factor:
- $k_{\infty} = \eta \epsilon p f = (1.65)(1.02)(0.87)(0.71) = 1.0396$
- Fast non-leakage factor: $P_f = 0.98$
- Thermal non-leakage factor:
- $P_{th}^{J} = 0.99$

 $\eta = 1.65$

f = 0.71

•
$$k_{eff} = k_{\infty} P_f P_{th} = (1.0396)(0.97)(0.99) = 1.008$$

Geometrical Buckling

- Geometrical Buckling factor: *B*² is an eigenvalue of Helmholtz type partial differential equation
- Geometrical Buckling factor captures surface to volume effects of different geometries
- Following Buckling factors are for bare, unreflected core designs:

Geometry:	Dimensions:	Buckling:	Flux Shape:
Rectangular Block	a imes b imes c	$B^{2} = \left(\frac{\pi}{a}\right)^{2} + \left(\frac{\pi}{b}\right)^{2} + \left(\frac{\pi}{c}\right)^{2}$	$\phi(x, y, z) = A_0 \cos\left(\frac{\pi x}{a}\right) \cos\left(\frac{\pi y}{b}\right) \cos\left(\frac{\pi z}{c}\right)$
Sphere	Radius : R	$B^2 = \left(\frac{\pi}{R}\right)^2$	$\phi(r) = \frac{A_0}{r} \sin\left(\frac{\pi r}{R}\right)$
Cylinder	Radius : R Height : H	$B^{2} = \left(\frac{2.405}{R}\right)^{2} + \left(\frac{\pi}{H}\right)^{2}$	$\phi(r,z) = A_0 J_0 \left(\frac{2.405r}{R}\right) \cos\left(\frac{\pi z}{H}\right)$

Taken from: J. Lamarsh, "Nuclear Reactor Analysis, p.298

Effect of Neutron Reflector on Criticality

- Previous discussion of Two-Group Diffusion model noted impact of water region outside of active core.
- Neutron reflection alters the Buckling coefficients derived for *bare*, *un-reflected* core geometry

Summary Thoughts on Criticality Evaluation:

- Subcriticality, Criticality, Supercriticality conditions are based upon overall " k_{eff} "
- Fuel enrichment, bundle geometry, Uranium to Water ratio directly influences: k_{∞}
- Fresh fuel bundles (neglecting impacts of poisons or control rods) generally have range of $k_{\infty} \sim 1.2$ or higher to provide fuel for multiyear power operation
- Overall geometry of core (height, radius), reflector region impact fast and thermal non-leakage probabilities and thus: $k_{e\!f\!f}$
- Classical methods described, reflect correct trends, BUT:
- Actual core design process is computer code intensive