Pacific Gas and Electric Company Humboldt Bay Power Plant Loren D. Sharp Director and Plant Manager Humboldt Bay Nuclear 1000 King Salmon Avenue Eureka, CA 95503 707-444-0819

April 19, 2012



PG&E Letter HBL-12-008

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

Docket No. 50-133 License No. DPR-7 Humboldt Bay Power Plant Unit 3 Annual Radiological Environmental Monitoring Report for 2011

Dear Commissioners and Staff:

Enclosed is the Humboldt Bay Power Plant Unit 3, "Annual Radiological Environmental Monitoring Report" for 2011. This report provides the information required by Section 4.1 of the SAFSTOR/Decommissioning Offsite Dose Calculation Manual (ODCM).

The report has three sections. Section A provides a summary description of the SAFSTOR Radiological Environmental Monitoring Program (REMP), including maps of sampling locations. Section A also provides the results of licensee laboratory participation in the Interlaboratory Comparison Program.

Section B provides summaries, interpretations, and analyses of trends of the results of the REMP for the reporting period. The material provided is consistent with the objectives outlined in the ODCM, and in 10 CFR 50, Appendix I, Sections IV.B.2, IV.B.3, and IV.C. Section B also includes a comparison with the baseline environmental conditions at the beginning of SAFSTOR.

Section C provides monitoring results for the reporting period, with summaries and tabulations. Radiological environmental samples and environmental radiation measurements were taken at the locations identified in ODCM Table 2-7 as quality-related locations. The summarized results are formatted for applicable reporting requirements of the NRC Radiological Assessment Branch's Branch Technical Position.

There are no regulatory commitments made in this letter.

FSME20 ESME

PG&E Letter HBL-12-008

Document Control Desk April 19, 2012 Page 2

If you wish to discuss the information in the enclosed report, please contact Karl Johnson at (707) 444-0842, or David Sokolsky at (415) 973-5024.

Sincerely,

Loren D. Sharp / Director and Plant Manager Humboldt Bay Nuclear

cc/enc: Elmo E. Collins, Jr., NRC Region IV John B. Hickman, NRC Project Manager HBPP Humboldt Distribution

Enclosure

Enclosure PG&E Letter HBL-12-008

### HUMBOLDT BAY POWER PLANT UNIT 3 ANNUAL RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT

### JANUARY 1 THROUGH DECEMBER 31, 2011

### TABLE OF CONTENTS

1. ;

| Α. | R/ | ADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM           |
|----|----|--------------------------------------------------------|
|    | 1. | Program Description1                                   |
|    | 2. | Monitoring Requirements2                               |
|    |    | a. Offsite Environmental Monitoring – Direct Radiation |
|    |    | b. Onsite Environmental Monitoring2                    |
|    |    | c. Other Monitoring                                    |
|    | 3. | Interlaboratory Comparison Program3                    |
|    | 4. | NEI Groundwater Protection Initiative4                 |
| В. | TF | RENDS, BASELINE COMPARISONS AND INTERPRETATIONS4       |
|    | 1. | General Comments4                                      |
|    | 2. | Direct Radiation Pathway5                              |
|    | 3. | Airborne Pathway                                       |
|    | 4. | Waterborne Pathway6                                    |
|    |    | a. Surface Water                                       |
|    |    | b. Groundwater                                         |
|    | 5. | Ingestion Pathway7                                     |
|    | 6. | Terrestrial Pathway7                                   |
| C. | M  | ONITORING RESULTS                                      |
|    | 1. | Annual Summary                                         |
|    | 2. | Direct Radiation Pathway8                              |
|    | 3. | Airborne Pathway                                       |
|    | 4. | Waterborne Pathway8                                    |
|    |    | a. Surface Water                                       |

### TABLE OF CONTENTS (Continued)

| b. Gro      | undwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | · · · · · · · · · · · · · · · · · · ·                                                                           |                           | 9               |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|
| 5. Ingestie | on Pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                                                                                                 |                           | 10              |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                                                                                                 |                           |                 |
| 7. NEI Gr   | oundwater Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tection Initiative | Voluntary Re                                                                                                    | eporting Result           | s10             |
| 8. Errata   | For Previous R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eport              |                                                                                                                 | ·····                     | 11              |
|             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                                                                                 |                           |                 |
|             | $\frac{Y_{\rm eff}}{Y_{\rm eff}} = \frac{Y_{\rm eff}}{Y_{\rm eff}} + \frac{Y_{\rm eff}}{Y_{$ |                    | n - S<br>Store Inte<br>S                                                                                        |                           |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | antina yang barang<br>Sanang Barata<br>Sanang                                                                   |                           |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | · · · · ·                                                                                                       |                           |                 |
| · .         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                                                                                 |                           |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                                                                                                 |                           |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | n an                                                                        |                           |                 |
| • •         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                |                                                                                                                 |                           | ·               |
|             | • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · . ·              | e de la companya de l |                           | <br>            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · ·          | • • • •                                                                                                         |                           | 2.84            |
| · .<br>· ·  | •<br>• • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - ii -             | · · · · · · · · · · · · · · · · · · ·                                                                           | unita <sup>m</sup> e unos |                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · ·              | · · · · ·                                                                                                       |                           | .: <u>т</u><br> |
| •<br>•<br>• |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - ii -             |                                                                                                                 |                           | · · · · ·       |

### LIST OF TABLES

| <u>Tabl</u>      | leF                                                                 | age  |
|------------------|---------------------------------------------------------------------|------|
| A-1              | HBPP Radiological Environmental Monitoring Program                  | 12   |
| A-2              | Distances And Directions to HBPP Offsite TLD Locations              | 13   |
| A-3              | GEL Participation - Interlaboratory Cross-Check Program Data        | 14   |
| C-1              | Radiological Environmental Monitoring Program Annual Report Summary | 17   |
| C-2              | Onsite Environmental TLD Stations                                   | 19   |
| C-3              | Offsite Environmental TLD Stations                                  | 20   |
| C-4              | Discharge Canal Sample Results                                      | 21   |
| C-5              | Groundwater Monitoring Well Results                                 | 23   |
| C-6              | Caisson Sump Monitoring Results                                     | 25   |
| C-7              | French Drain Monitoring Results                                     | 26   |
|                  |                                                                     |      |
|                  | LIST OF FIGURES                                                     |      |
| <u>Figur</u>     | reF                                                                 | Page |
| A-1              | HBPP Onsite TLD Locations                                           | 27   |
| <sup>-</sup> A-2 | HBPP Onsite Monitoring Well Locations                               | 28   |
|                  | HBPP Offsite TLD Locations                                          |      |
| B-1              | Offsite Environmental Radiation Level Trends                        | 32   |

| B-2 Onsite | Environme | ental Radiation | Level Trends |    |         | 33 |
|------------|-----------|-----------------|--------------|----|---------|----|
|            | 1.15的X-1  | 28.201.1        |              | 12 | 1 ··· 1 |    |
|            |           |                 |              | 3  | •       |    |

o - Carlo Marco da Esco Ala Sando de La C<sup>1</sup>0-23 de A 

### PACIFIC GAS AND ELECTRIC COMPANY ANNUAL RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT FOR HUMBOLDT BAY POWER PLANT UNIT 3, COVERING THE PERIOD JANUARY 1 THROUGH DECEMBER 31, 2011

This annual report is required by Section 4.1 of the SAFSTOR Offsite Dose Calculation Manual (ODCM). This report provides information about the Radiological Environmental Monitoring Program (REMP) for the period of January 1 through December 31, 2011, in a manner consistent with the objectives outlined in the ODCM, and in 10CFR 50, Appendix I, Sections IV.B.2, IV.B.3, and IV.C.

The report has three sections. Section A provides a summary description of the REMP, including maps of sampling locations. Section A also provides the results of licensee laboratory participation in the Interlaboratory Comparison Program.

Section B provides summaries, interpretations, and analyses of trends of the results of the REMP for the reporting period. The material provided is consistent with the objectives outlined in the ODCM, and in 10CFR 50, Appendix I, Sections IV.B.2, IV.B.3, and IV.C. Section B also includes a comparison with the baseline environmental conditions at the beginning of SAFSTOR.

Section C provides the results of analyses of radiological environmental samples and of environmental radiation measurements taken during the period pursuant to the quality related locations specified in the table and figures in the ODCM, presented as both summarized and tabulated results of these analyses and measurements. The summarized results are formatted for applicable reporting requirements of the NRC Radiological Assessment Branch's Branch Technical Position.

### A. RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

1. Program Description

The NRC Radiological Assessment Branch issued a Branch Technical Position (BTP) on environmental monitoring in March 1978. Revision 1 of the BTP was issued as Generic Letter 79-65, "Radiological Environmental Monitoring Program Requirements – Enclosing Branch Technical Position," Revision 1, dated November 27, 1979, and sets forth an example of an acceptable minimum radiological monitoring program. The specified environmental monitoring program provides measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposures of individuals resulting from plant effluents.

As discussed below, many of the exposure pathway sample requirements specified in the BTP are not required for the HBPP REMP because of the baseline conditions established in the SAFSTOR Decommissioning Plan (now identified as the Post Shutdown Decommissioning Activities Report (PSDAR) and Defueled Safety Analysis Report (DSAR)) and the Environmental Report.

In addition, the nuclides specified for analysis by the BTP have been revised to reflect the available source term at a nuclear power plant that has been shut down since July 2, 1976.

The REMP consists of the collection and analysis of both onsite and offsite environmental samples. HBPP personnel perform sample collection and General Engineering Laboratories (GEL) personnel perform sample analysis. The Diablo Canyon Power Plant (DCPP) dosimetry group performs analysis of thermoluminescent dosimeters (TLDs) used for monitoring direct radiation. A summary of the REMP is provided as Table A-1, "HBPP Radiological Environmental Monitoring Program." and the set

Sample collection for the REMP is performed at the sampling stations defined by Table A-2, "Distances and Directions to HBPP Offsite TLD Locations;" Figure A-1, "HBPP Onsite TLD Locations;" Figure A-2, "HBPP Onsite Monitoring Well Locations;" and the discharge canal shown in Figure A-2. 

2. Monitoring Requirements

a. Offsite Environmental Monitoring - Direct Radiation

The SAFSTOR ODCM requires four (4) offsite environmental monitoring stations equipped with TLDs to monitor gamma exposure. The TLDs are required to be exchanged quarterly. The stations selected to satisfy this requirement are Stations 1, 2, 14, 25, and T17 as described in Table A-2. These stations are considered to be the five control locations for the direct radiation dose pathway.

b. Onsite Environmental Monitoring

(1) Direct Radiation

The SAFSTOR ODCM requires 16 onsite environmental monitoring stations, equipped with TLDs to monitor gamma exposure. The TLDs are required to be exchanged quarterly. The stations selected to satisfy this requirement are Stations T1 through T16, shown on Figure A-1. Four (4) additional TLDs were added around the ISFSI in 2010. These are Stations T18 through T21. Constant States

Each guarter the exposures from 20 stations are determined, which results in the 80 analyses for a full year. Each TLD station has three TLDs, each containing a number of phosphors (normally three). The phosphor exposures for each TLD are averaged and then the

Generation are averaged to provide the quarterly exposure for the station.

- an fan fan de ser an ser a 2、AC (11),约6(新)。。
- (2) Surface Water Manual at the strengthere and in Constant of Articles and the

The SAFSTOR ODCM requires that the discharge canal effluent be monitored by gamma isotopic analysis and by tritium analysis.

1998 (L.) 1998 - J. 19 Composite samples are normally collected weekly from a continuous sampler, with dip (grab) samples collected if the sampler is inoperable.

(3) Groundwater

The SAFSTOR ODCM requires that twelve groundwater wells be monitored by gamma isotopic analysis and by tritium analysis. Samples are to be collected quarterly. The monitoring wells selected to satisfy this requirement are identified as: MW-1, MW-2, MW-4, MW-6, MW-11, RCW-SFP-1, RCW-SFP-2, RCW-CS-1, RCW-CS-2, RCW-CS-3, RCW-CS-4, and RCW-CS-5 - shown on Figure A-2.

### c. Other Monitoring

Airborne, ingestion and terrestrial pathway monitoring is not required by the ODCM. The Environmental Report, submitted to the NRC as Attachment 6 to SAFSTOR License Amendment Request 84-01, dated July 31, 1984, established baseline conditions for these pathways. In accordance with the NRC-approved SAFSTOR Decommissioning Plan, (now identified as the PSDAR and DSAR), these baseline conditions will only need to be reestablished prior to final decommissioning if a significant release occurs during SAFSTOR. The Environmental Report also contains a description of the demography and human activities within the environs surrounding the site.

As a matter of plant policy, groundwater leakage into the reactor caisson is routinely sampled, approximately monthly, and analyzed for tritium and gamma emitters, in order to develop a historical record of these parameters. The results are included in this report, but are not considered part of the SAFSTOR REMP.

7,77533

1 k (

#### 3. Interlaboratory Comparison Program

Sec. Sec. Sec. 1

PG&E's contract laboratory, GEL, has analyzed evaluation samples provided by a commercial supplier to satisfy the requirement to participate in an Interlaboratory Cross-Check Program. This participation includes sufficient determinations (sample medium and radionuclide combination) to ensure independent checks on the precision and accuracy of the measurements of radioactive materials in the REMP samples. Table A-3 presents the participation in this Interlaboratory Cross-Check Program for samples analyzed in the report period that represent analyses performed for HBPP. The agreement criteria are consistent with the guidance for "Confirmatory Measurements" in NRC Inspection Procedure 83502.3, "Radiological Environment Monitoring Program and Radioactive Material Control Program."

GEL analyzed four (4) Eckert & Ziegler Analytics samples for 37 parameters that are representative of analyses performed for HBPP during 2011. All results met the acceptance criteria with the exception of the second Eckert & Ziegler Analytics sample for Cr-51. GEL believes that the half-life and resulting elevated uncertainty were the major contributing factors in the failure. The following steps were taken by GEL to prove that the failure was an isolated event:

- 1) The batch controls samples were reviewed and found to be compliant.
- 2) A duplicate of the sample was also prepared and counted along side the original; its result also fell outside the acceptable range.
- 3) The instrument calibrations were reviewed for any anomalies that could have been attributed to this failure and none were noted.

GEL also participated in various proficiency testing programs for federal and state agencies, including the DOE Mixed Analyte Performance Evaluation Program (MAPEP). Included in Table A-3 are the results of three (3) Gross Alpha and three (3) Gross Beta analyses. All results were acceptable.

No adverse trends in quality were noted in the crosscheck program results.

4. NEI Groundwater Protection Initiative

÷.,

Groundwater monitoring data is collected in accordance with the Nuclear Energy Institute (NEI) Groundwater Protection Initiative. The results show that there are detectable concentrations of radionuclides in the groundwater within the HBPP restricted area. These are believed to be the results of historical spills at the site.

: 1.<del>5</del>. .

The impact of these detectable concentrations is negligible, because the groundwater is saline and is not used now nor likely to be used in the future for either direct consumption or for agricultural purposes.

### **B. TRENDS, BASELINE COMPARISONS AND INTERPRETATIONS**

Section B provides interpretations of results, and analyses of trends of the results. The material provided is consistent with the objectives outlined in the ODCM, and in 10CFR 50, Appendix I, Sections IV.B.2, IV.B.3, and IV.C. Section B also includes a comparison with the baseline environmental conditions at the beginning of SAFSTOR.

1. General Comments

11 A. A.

しんがい たたい かほうちん ほ手った

The Environmental Report, submitted to the NRC as Attachment 6 to SAFSTOR License Amendment Request 84-01, established baseline conditions for soil, biota and sediments. The results to date indicate no significant change from the baseline environmental conditions established in the Environmental Report.

The results, interpretations, and analysis of trends of the results, indicate that SAFSTOR activities have had no measurable radiological effect on the environment. Facility surveys for radiation and radioactive surface contamination are performed on both a scheduled basis and on an as-required basis. These surveys indicate that the radioactivity control barriers established for SAFSTOR and decommissioning continue to be effective.

As discussed below, the ODCM calculation model conservatively assumes that exposure pathways begin at the unrestricted area boundary, also known as the owner controlled area (OCA) boundary. Since there have not been any changes in the location of the boundary, no survey for changes to the use of unrestricted areas was necessary.

2. Direct Radiation Pathway

A plot of the radiation level trends for the five control (offsite) locations is shown in Figure B-1, "Offsite Environmental Radiation Level Trends." A plot of the radiation level trends for onsite stations is shown in Figure B-2, "Onsite Environmental Radiation Level Trends." The plots show that the offsite annual doses continue to be within the ranges that have been observed over the last ten years.

Figure B-2 includes the average dose for two groups of onsite stations, selected by their potential to be affected by radioactive waste handling activities. Figure B-2 also shows that dose measurement variations can be attributed to in-plant sources and low-level waste packaging and shipping activities. However, allowing for the background change in the general environs, all measurements were comparable to the ranges observed at these locations since entering SAFSTOR, with the onsite station dose levels approximately within the range of dose levels shown by the offsite stations.

The ODCM calculation model for the direct radiation exposure pathway assumes an occupancy factor for the portion of the unrestricted area boundary that is closest to the radioactive waste handling area of the plant, (TLDs T5-T8), which is the location of the highest potential exposure. The occupancy factor is 67 hours per year, based on regulatory guidance for shoreline recreation, even though the actual shoreline is farther from the boundary. Since there have been no significant changes of the locations of the radioactive waste handling activities, boundary, or shoreline, no further survey for changes to the use of unrestricted areas is necessary. Using the maximum yearly dose, as seen on TLDs T5-T8 and corrected to the 67 hour occupancy, and subtracting the average of the five (5) offsite control TLDs, the dose to the maximum exposed individual from this source was indistinguishable from background.

e en esta se sita en a sita de son primitado sita

The Independent Spent Fuel Storage Installation (ISFSI) was constructed in 2008, and spent fuel transfer from the spent fuel pool (SFP) was completed in December 2008. As a result of this, the dose rates at the OCA fence line increased slightly. The ISFSI Final Safety Analysis Report (FSAR) assumes an occupancy factor of 2,080 hours per year at the OCA fence line. Using the maximum yearly dose, as seen on TLDs T18-T21 and corrected to the 2080 hour occupancy, and subtracting the average of the five (5) offsite control TLDs, the dose to the maximum exposed individual from this source would be 2.2 mrem per year.

### 3. Airborne Pathway

Airborne pathway monitoring is not required by the ODCM. The Environmental Report, submitted to the NRC as Attachment 6 to SAFSTOR License Amendment Request 84-01, established baseline conditions for the airborne pathway. In accordance with the NRC-approved SAFSTOR Decommissioning Plan, (now identified as the PSDAR and DSAR), these baseline conditions will only need to be reestablished prior to final decommissioning if a significant release occurs during SAFSTOR. The ODCM calculation model for the airborne pathway assumes that the airborne exposure pathway (inhalation exposure) is at the unrestricted area boundary, which is the location of the highest potential exposure.

### 4. Waterborne Pathway

a. Surface Water

. . .

None of the REMP samples indicated detectable levels of tritium or gamma radioactivity. These sample results were typical of those observed since entering SAFSTOR.

The ODCM calculation model for the surface water waterborne pathway assumes that the waterborne exposure pathway (vertebrate and invertebrate food consumption) begins at the unrestricted area boundary, which is the location of the highest potential exposure.

The ODCM calculation model is based on the average concentration of the radioactivity released and diluted by the tidal flow of water in the discharge canal. For the purposes of comparing the sampling results with effluents, consider a conservatively estimated liquid waste batch of 7,000 gallons containing tritium at 30,000 pico-Curies/liter, Cs-137 at 1,000 pico-Curies/liter, and Co-60 at 100 pico-Curies/liter. For a single batch release during a week-long canal composite sample, the tidal flow volume is approximately 7E6 gallons, so the diluted activity for tritium, Cs-137 and Co-60 would be 30, 1.0, and 0.1 pico-Curies/liter, respectively. These concentrations are unlikely to be detected.

### b. Groundwater

None of the samples of the twelve (12) SAFSTOR REMP required monitoring wells indicated detectable levels of tritium. For gamma radioactivity, these sample results were typical of those observed since entering SAFSTOR. Results for other parameters and samples were comparable to the ranges observed since entering SAFSTOR.

This report also contains information on gamma emitting radionuclides and tritium concentrations in the caisson sump and gamma emitting radionuclide concentrations for the SFP french drain. There is

. .

detectable radioactivity, due to plant operations, at these sample points. Both of these locations are believed to be contaminated as a result of groundwater intrusion into historically contaminated areas of concrete and fill material.

The ODCM does not provide a model for the groundwater waterborne pathway, because the groundwater is saline and is not used now nor likely to be used in the future for either direct consumption or for agricultural purposes.

### 5. Ingestion Pathway

Ingestion pathway monitoring is not required by the ODCM. The Environmental Report, submitted to the NRC as Attachment 6 to SAFSTOR License Amendment Request 84-01, established baseline conditions for the ingestion pathway. In accordance with the NRC-approved SAFSTOR Decommissioning Plan, (now identified as the PSDAR and DSAR), these baseline conditions will only need to be reestablished prior to final decommissioning if a significant release occurs during SAFSTOR.

The ODCM calculation model for the airborne pathway assumes that the ingestion pathways (milk, meat and vegetable consumption) begin at the unrestricted area boundary, which is the location of the highest potential exposure, whether any dairy, farm, etc. is actually present.

and the strength of the party of the

-14 C C C C

#### Terrestrial Pathway 6.

Terrestrial pathway monitoring is not required by the ODCM. The Environmental Report, submitted to the NRC as Attachment 6 to SAFSTOR License Amendment Request 84-01, established baseline conditions for the terrestrial pathway. In accordance with the NRC-approved SAFSTOR Decommissioning Plan, (now identified as the PSDAR and DSAR), these baseline conditions will only need to be reestablished prior to final decommissioning if a significant release occurs during SAFSTOR.

The ODCM calculation model for the terrestrial pathway conservatively assumes that the terrestrial exposure (direct radiation from airborne radioactivity deposition) is at the unrestricted area boundary, which is the location of the highest potential exposure.

#### MONITORING RESULTS С.

and the second second 1. Annual Summary to a standard of the table as a partition of

and the set of the set of a set of the set o

Results of the REMP sampling and analysis are summarized in Table C-1 in the format of the BTP Table 3. None of the REMP samples results exceeded the reporting levels for radioactivity concentration in environmental samples specified in HBPP ODCM Table 2-8.

- 7 -

All of the minimum detectable activities (MDAs) for analyses required by the SAFSTOR REMP were less than or equal to the lower limit of detection (LLD) criteria for radioactivity in environmental samples specified in Table C-1 of this report. Because alpha and beta radioactivity analyses of the saline ground water are less effective than tritium and gamma radioactivity analyses for monitoring potential SFP leakage, the ODCM does not currently require alpha and beta radioactivity analyses to be part of the SAFSTOR REMP.

#### Direct Radiation Pathway 2.

Monitoring of the direct radiation pathway is performed at 20 onsite locations near the OCA fence line, and at 5 offsite (control) locations in the vicinity of the facility. Monitoring is performed with TLDs with multiple crystal elements. Three TLDs are installed at each station, and the set is exchanged quarterly. The reported result and its standard error are calculated from the measurements of multiple elements in the TLD triplet. Results of the onsite and offsite monitoring are provided in Tables C-2 and C-3, respectively.

Airborne Pathway 3.

Airborne pathway monitoring is not required by the ODCM. see et al tradition de la companya d

4. Waterborne Pathway

· .

a. Surface Water

; ;

Surface water sampling of the waterborne pathway is performed by sampling the discharge canal effluent. Sampling is normally performed by collecting a weekly sample from a discharge canal continuous composite sampler. If the composite sampler is found to be inoperable, dip samples from the discharge canal are taken. All samples during the reporting period were obtained from the continuous

• •

composite sampler. 5

Detailed results of the discharge canal monitoring are provided in Table C-4. None of the REMP samples indicated detectable levels of tritium or gamma radioactivity at or above the MDA with the exception of samples taken on 6/1/11 and 11/23/11. These samples showed Cs-137 concentrations of 4.58 and 8.95 pCi/L, respectively. The MDA for these analyses was at or below the LLD stated in Table C-1 of this report. These sample results were typical of those observed since entering SAFSTOR and decommissioning. PG&E has determined that the positive Cs-137 results are most likely attributed to the batch releases done during the collection period.

### b. Groundwater

Groundwater sampling of the waterborne pathway is performed by sampling twelve (12) monitoring wells located to monitor for leakage from the SFP. Sampling of these monitoring wells is performed quarterly. Detailed results of groundwater monitoring are provided in Table C-5.

The tritium concentration for all of the wells listed in Table C-5 during 2011 was less than the MDA of approximately 300 pCi/liter. The addition of the several more groundwater monitoring wells in the last couple of years will help to further characterize groundwater issues. All of the monitoring wells are inside the OCA boundary, and the groundwater is saline and is not used now nor likely to be used in the future for either direct consumption or for agricultural purposes. Therefore, there is no groundwater waterborne pathway for a member of the public. None of the other ODCM required REMP samples indicated detectable levels of tritium or gamma radioactivity.

Because alpha and beta radioactivity analyses of the saline groundwater are less effective than tritium and gamma radioactivity analyses for monitoring potential SFP leakage, the ODCM does not currently require alpha and beta radioactivity analyses to be part of the SAFSTOR REMP. Nevertheless, alpha and beta radioactivity analyses are performed as a matter of plant policy, in order to maintain a historical record of this parameter for the remainder of SAFSTOR. These results are included in Table C-5, but are not considered part of the SAFSTOR REMP.

All required sampling and analysis for the twelve (12) monitoring wells of the waterborne pathway required during this reporting period were performed successfully.

Groundwater leakage into the reactor caisson is also routinely sampled, approximately monthly, and analyzed for gamma emitters and tritium as a matter of plant policy, in order to develop a historical record of these parameters for SAFSTOR and decommissioning. These results are included in Table C-6, but are not considered part of the SAFSTOR REMP.

The french drain beneath the SFP is also routinely sampled, approximately monthly, and analyzed for gamma emitters as a matter of plant policy, in order to develop a historical record of this parameter for SAFSTOR and decommissioning. These results are included in Table C-7, but are not considered part of the SAFSTOR REMP.

an the second second second particular to

### 5. Ingestion Pathway

Ingestion pathway monitoring is not required by the ODCM.

6. Terrestrial Pathway

Terrestrial pathway monitoring is not required by the ODCM.

7. NEI Groundwater Protection Initiative Voluntary Reporting Results

The NEI Groundwater Protection Initiative contains the following requirements:

### **OBJECTIVE 2.2 VOLUNTARY COMMUNICATION**

Make informal notification as soon as practicable to appropriate State/Local officials, with follow up notification to the NRC, as appropriate, regarding significant onsite leaks/spills into groundwater and onsite or offsite water sample results exceeding the criteria in the REMP as described in the ODCM/ODAM.

HBPP Response to 2.2:

There were no reports or notifications required to be generated in 2011 for groundwater results exceeding reporting/notification levels or significant onsite leaks/spills.

### **OBJECTIVE 2.3 THIRTY-DAY REPORTS**

Submit a 30-day report to the NRC for any water sample result for onsite groundwater that is or may be used as a source of drinking water that exceeds the criteria in the licensee's existing REMP for 30-day reporting of offsite water sample results. Copies of 30-day reports for both onsite and offsite water samples will also be provided to the appropriate State agency, and:

HBPP Response to 2.3:

There were no reports or notifications required to be generated in 2011 for groundwater results exceeding reporting/notification levels or significant onsite leaks/spills.

### **OBJECTIVE 2.4 ANNUAL REPORTING**

Document all on-site ground water sample results and a description of any significant on-site leaks/spills into groundwater for each calendar year in the AREOR for REMP or the ARERR for the RETS as contained in the appropriate reporting procedure, beginning with Calendar year 2006.

### HBPP Response to 2.4:

Onsite groundwater monitoring points are described and reported in this report as follows: MW-1, MW-2, MW-4, MW-6, MW-11, RCW-SFP-1, RCW-SFP-2, RCW-CS-1, RCW-CS-2, RCW-CS-3, RCW-CS-4, and RCW-CS-5, the caisson sump and the french drain. A summary of the sample results are provided in Section C.

There were no significant onsite leaks/spills into groundwater in 2011.

Note: the term "significant" is defined by the NEI Initiative as greater than 100 gallons.

and the second

المحمولة ويعتر والمحادث

an en la companya de la companya de

1.11

8. Errata for Previous Report

There are no errata for previous reports.

Second States and

and the second states of the

الآن مسلم بين المعالي المسلم على المسلم ا الإسلام المسلم بيني المسلم المسلم

### 建物 化水洗法 经书理公共公共管理管理管理管理

1.1

## TABLE A-1 HBPP RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

|                                   | • •                                |                                                                                                        |                                                                           |  |
|-----------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Exposure Pathway<br>And/Or Sample | Number of Samples<br>And Locations | Sampling and Collection<br>Frequency                                                                   | Type of Analysis                                                          |  |
| DIRECT RADIATION                  | 20 onsite stations with TLDs       | TLDs exchanged quarterly                                                                               | Gamma exposure                                                            |  |
|                                   | 5 offsite stations with TLDs       | TLDs exchanged quarterly                                                                               | Gamma exposure                                                            |  |
| WATERBORNE<br>Surface Water       | Discharge canal effluent           | Continuous sampler operation<br>with sample collection weekly.<br>Dip samples if sampler<br>inoperable | Gamma isotopic <sup>(a)</sup> and<br>tritium analysis of<br>weekly sample |  |
| Groundwater                       | 5 groundwater monitoring wells     | Quarterly                                                                                              | Tritium and gamma<br>isotopic <sup>(a)</sup> analysis                     |  |

<sup>(a)</sup> Gamma isotopic analysis means the identification and quantification of gamma emitting radionuclides that may be attributable to the effluents from the facility.

# TABLE A-2 DISTANCES AND DIRECTIONS TO HBPP OFFSITE TLD LOCATIONS

|                           |                                                                                  | Radial Di | rection       | Radial<br>Distance    |  |
|---------------------------|----------------------------------------------------------------------------------|-----------|---------------|-----------------------|--|
| Station<br>Numbe <u>r</u> | Station Name                                                                     | Sector    | By<br>Degrees | From Plant<br>(Miles) |  |
| 1                         | King Salmon Picnic Area                                                          | W         | 270           | 0.3                   |  |
| 2                         | City of Fortuna Water Pollution<br>Control Plant, 180 Dinsmore Drive,<br>Fortuna | SSE       | 158           | 9.4                   |  |
| 14                        | South Bay School Parking Lot                                                     | S         | 180           | 0.4                   |  |
| 25                        | Irving Drive, Humboldt Hill                                                      | SSE       | 175           | 1.3                   |  |
| T17                       | Mitchell Heights Drive                                                           | NNE       | 45            | 6                     |  |

- 13 -

## TABLE A-3 GEL PARTICIPATION – INTERLABORATORY CROSS-CHECK PROGRAM DATA

Table Notation: (a) All of the values shown are relative. Therefore, the units for total activity or concentration levels are not shown.

•

| Sample/Analysis          | Radionuclide | Sample Number | Quarter 2011 | GEL      | Ref Value | Evaluation     |
|--------------------------|--------------|---------------|--------------|----------|-----------|----------------|
| Water/Gamma              | I-131        | E7-468-278    | 1st          | 9.73E+01 | 9.40E+01  | Acceptable     |
| •<br>• • • • • • • • • • | Cr-51        | E7-468-278    | 1st          | 2.16E+02 | 1.96E+02  | Acceptable     |
|                          | Cs-134       | E7-468-278    | 1st -        | 8.52E+01 | 8.56E+01  | Acceptable     |
| 9                        | Cs-137       | E7-468-278    | 1st          | 1.47E+02 | 1.35E+02  | Acceptable     |
| :                        | C0-58        | E7-468-278    | 1st          | 7.71E+01 | 7.44E+01  | Acceptable     |
|                          | Mn-54        | E7-468-278    | 1st          | 1.88E+02 | 1.75E+02  | Acceptable     |
|                          | Fe-59        | E7-468-278    | 1st          | 1.26E+02 | 1.15E+02  | Acceptable     |
|                          | Zn-65        | E7-468-278    | 1st          | 1.90E+02 | 1.72E+02  | Acceptable     |
|                          | Co-60        | E7-468-278    | 1st          | 1.14E+02 | 1.13E+02  | Acceptable     |
|                          |              |               |              |          |           | -, · · ·       |
| Sample/Analysis          | Radionuclide | Sample Number | Quarter 2011 | GEL      | Ref Value | Evaluation     |
| Water/Gamma              | I-131        | E7-862-278    | 2nd          | 1.20E+02 | 1.01E+02  | Acceptable     |
|                          | Cr-51        | E7-862-278    | 2nd          | 3.36E+02 | 2.41E+02  | Not Acceptable |
| · · ·                    | Cs-134       | E7-862-278    | 2nd          | 2.02E+02 | 2.22E+02  | Acceptable     |
|                          | Cs-137       | E7-862-278    | 2nd          | 1.73E+02 | 1.61E+02  | Acceptable     |
|                          | Ce-141       | E7-862-278    | 2nd          | 9.30E+01 | 9.35E+01  | Acceptable     |
|                          | Mn-54        | E7-862-278    | 2nd          | 1.66E+02 | 1.61E+02  | Acceptable     |
|                          | Fe-59        | E7-862-278    | 2nd          | 1.57E+02 | 1.44E+02  | Acceptable     |
|                          | Zn-65        | E7-862-278    | 2nd          | 3.47E+02 | 3.05E+02  | Acceptable     |
|                          | Co-60        | E7-862-278    | 2nd          | 2.38E+02 | 2.28E+02  | Acceptable     |

- 14 -

# TABLE A-3 (Continued) GEL PARTICIPATION – INTERLABORATORY CROSS-CHECK PROGRAM DATA

| Sample/Analysis                    | Radionuclide                                | Sample Number                                                 | Quarter 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GEL                                                      | Ref Value                                                | Evaluation                                                         |
|------------------------------------|---------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|
| Water/Gamma                        | I-131                                       | E8098-278                                                     | 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.23E+01                                                 | 8.01E+01                                                 | Acceptable                                                         |
|                                    | Cr-51                                       | E8098-278                                                     | 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.19E+02                                                 | 3.10E+02                                                 | Acceptable                                                         |
|                                    | Cs-134                                      | E8098-278                                                     | 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.57E+02                                                 | 1.76E+02                                                 | Acceptable                                                         |
|                                    | Cs-137                                      | E8098-278                                                     | 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.60E+02                                                 | 1.56E+02                                                 | Acceptable                                                         |
|                                    | Ce-141                                      | E8098-278                                                     | 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.06E+01                                                 | 9.15E+01                                                 | Acceptable                                                         |
|                                    | Mn-54                                       | E8098-278                                                     | 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.19E+02                                                 | 2.07E+02                                                 | Acceptable                                                         |
| ·                                  | Fe-59                                       | E8098-278                                                     | 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.04E+01                                                 | 7.52E+01                                                 | Acceptable                                                         |
|                                    | Zn-65                                       | E8098-278                                                     | 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.74E+02                                                 | 2.47E+02                                                 | Acceptable                                                         |
|                                    | Co-58                                       | E8098-278                                                     | 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.34E+02                                                 | 1.34E+02                                                 | Acceptable                                                         |
|                                    | Co-60                                       | E8098-278                                                     | 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.25E+02                                                 | 2.15E+02                                                 | Acceptable                                                         |
| · · · ·                            | a a ta constant                             | · · · · · · · · · · · · · · · · · · ·                         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | ·                                                        | · · · · · · · · · · · · · · · · · · ·                              |
| Sample/Analysis                    | Radionuclide                                | Sample Number                                                 | Quarter 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GEL                                                      | <b>Ref Value</b>                                         | Evaluation                                                         |
| Water/Gamma                        | J-131                                       | E8200-278                                                     | 4th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.44E+01                                                 | 8.87E+01                                                 | Acceptable                                                         |
|                                    |                                             | L0200 210                                                     | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4401                                                   | 0.072-01                                                 | Acceptable                                                         |
| روی روه معروف می می افتاده می<br>د | Cr-51                                       | E8200-278                                                     | 4th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.32E+02                                                 | 5.66E+02                                                 | Acceptable                                                         |
| eersen versten worden en soog      |                                             |                                                               | 4th<br>4th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                                          | <u>.</u>                                                           |
| narian ya kuu kuwany ku ku         | Cr-51                                       | E8200-278                                                     | the set of | 5.32E+02                                                 | 5.66E+02                                                 | Acceptable                                                         |
|                                    | Cr-51<br>Cs-134                             | E8200-278<br>E8200-278<br>E8200-278                           | 4th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.32E+02<br>1.56E+02                                     | 5.66E+02<br>1.71E+02<br>2.10E+02                         | Acceptable<br>Acceptable                                           |
|                                    | Cr-51<br>Cs-134<br>Cs-137                   | E8200-278<br>E8200-278<br>E8200-278                           | 4th<br>4th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.32E+02<br>1.56E+02<br>2.06E+02                         | 5.66E+02                                                 | Acceptable<br>Acceptable<br>Acceptable                             |
|                                    | Cr-51<br>Cs-134<br>Cs-137<br>Co-58          | E8200-278<br>E8200-278<br>E8200-278<br>E8200-278              | 4th<br>4th<br>4th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.32E+02<br>1.56E+02<br>2.06E+02<br>2.02E+02<br>2.50E+02 | 5.66E+02<br>1.71E+02<br>2.10E+02<br>2.21E+02<br>2.41E+02 | Acceptable<br>Acceptable<br>Acceptable<br>Acceptable               |
|                                    | Cr-51<br>Cs-134<br>Cs-137<br>Co-58<br>Mn-54 | E8200-278<br>E8200-278<br>E8200-278<br>E8200-278<br>E8200-278 | 4th<br>4th<br>4th<br>4th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.32E+02<br>1.56E+02<br>2.06E+02<br>2.02E+02             | 5.66E+02<br>1.71E+02<br>2.10E+02<br>2.21E+02             | Acceptable<br>Acceptable<br>Acceptable<br>Acceptable<br>Acceptable |

- 15 -

## TABLE A-3 (Continued) GEL PARTICIPATION – INTERLABORATORY CROSS-CHECK PROGRAM DATA

| Sample/Analysis | Radionuclide | Sample Number  | Quarter 2011 | GEL    | Ref Value | Evaluation |
|-----------------|--------------|----------------|--------------|--------|-----------|------------|
| Gross Alpha     | NA.          | MAPEP-10-GrW23 | 1.1st        | · 1.67 | 1.92      | Acceptable |
| Gross Beta      | NA           | MAPEP-10-GrW23 | 1st          | 4.407  | 4.39      | Acceptable |
| Gross Alpha     | NA           | MAPEP-11-GrW24 | 3rd          | 1.019  | 1.136     | Acceptable |
| Gross Beta      | NA           | MAPEP-11-GrW24 | 3rd          | 3.14   | 2.96      | Acceptable |
| Gross Alpha     | NA -         | MAPEP-11-GrW25 | 4th          | 0.876  | 0.866     | Acceptable |
| Gross Beta      | NA           | MAPEP-11-GrW25 | 4th          | 5.003  | 4.81      | Acceptable |

이 사람은 가장 같다. 이 같은 것 같은 사람은 전문 관람은 것이 가장 같은 것이 같이 있는 것 같은 것이 같이 있다.

a Pas Alta

了,一些感到我的话。 制人 他说道:"曾知道我们不知

n 1997 - Standard Maria 1997 - Standard Maria

. .

- 16 -

### TABLE C-1

### RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL REPORT SUMMARY

| Name of Facility     | Humboldt Bay Power Plant Unit 3 | Docket No.       | 50-133; License No. DPR-7             |
|----------------------|---------------------------------|------------------|---------------------------------------|
| Location of Facility | Humboldt County, California     | Reporting Period | January 1 – December 31, 2011         |
|                      | (County, State)                 |                  | · · · · · · · · · · · · · · · · · · · |

|                                                                         | Type and<br>Total                  | Lower                                                                               | All Indicator<br>Locations                                                                 | Location with High                 | ghest Annual Mean                  | Control<br>Locations                 | Number of                              |  |
|-------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|--------------------------------------|----------------------------------------|--|
| Medium or<br>Pathway Sampled<br>[Unit of Measurement]                   | Number of<br>Analyses<br>Performed | Limit of Mean,<br>Detection <sup>a</sup> (Fraction)<br>(LLD) & [Range] <sup>b</sup> |                                                                                            | Name,<br>Distance and<br>Direction | stance and (Fraction)              |                                      | Nonroutine<br>Reported<br>Measurements |  |
| AIRBORNE<br>Radioiodine and<br>Particulates                             | Not<br>Required                    | N/A                                                                                 | N/A                                                                                        | N/A                                | N/A                                | Not Required                         | N/A                                    |  |
| DIRECT RADIATION<br>[mR/quarter]                                        | Direct<br>radiation<br>(80)        | 3                                                                                   | 13.3 ± 0.1<br>(80/80)<br>[11.2– 15.9]                                                      | Station T1<br>Figure B-1           | 14.7 ± 0.9<br>(4/4)<br>[13.6-15.8] | 12.7 ± 0.2<br>(20/20)<br>[11.5-15.6] | 0 .                                    |  |
| WATERBORNE<br>Surface Water<br>(Discharge canal<br>effluent)<br>[pCi/l] | Gamma<br>isotopic<br>(52)          | Co-60: 15<br>Cs-137: 18                                                             | Co-60 <mda<br>[NA]<br/>(0/52)<br/>Cs-137 6.87 ± 5.22<br/>[4.58 – 8.95]<br/>(2/52)</mda<br> | N/A                                | N/A                                | Not Required                         | 0                                      |  |
|                                                                         | Tritium (52)                       | ODCM: 3000<br>Plant Policy:<br>400                                                  | <mda<br>(0/52)<br/>[N/A]</mda<br>                                                          | , <b>N/A</b>                       | N/A                                | Not Required                         | 0                                      |  |

### TABLE C-1 (Continued) RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL REPORT SUMMARY

| Medium or                                    | Type<br>and Total                  | Lower                                                                               | All Indicator<br>Locations                          | Location with Highest Annual<br>Mean                 |                                                   | Control<br>Locations                          | Number of                              |  |
|----------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|----------------------------------------|--|
| Pathway Sampled<br>[Unit of<br>Measurement]  | Number of<br>Analyses<br>Performed | Limit of Mean,<br>Detection <sup>a</sup> (Fraction)<br>(LLD) & [Range] <sup>b</sup> |                                                     | Name,Mean,Distance and(Fraction)Direction& [Range] b |                                                   | Mean,<br>(Fraction)<br>& [Range] <sup>b</sup> | Nonroutine<br>Reported<br>Measurements |  |
| WATERBORNE<br>(continued)                    |                                    |                                                                                     | <u>Co-60</u> <u>Cs-137</u>                          | <u>Co-60</u> <u>Cs-137</u>                           | <u>Co-60</u> <u>Cs-137</u>                        | <u>Co-60</u> <u>Cs-137</u>                    |                                        |  |
| Groundwater<br>(Monitoring wells)<br>[pCi/l] | Gamma<br>isotopic<br>(48)          | Co-60: 15<br>Cs-137: 18                                                             | <mda <mda<br="">(0/48) (0/48)<br/>[N/A] [N/A]</mda> | N/A N/A                                              | <mda <mda<br="">(0/4) (0/4)<br/>[N/A] [N/A]</mda> | N/A N/A                                       | 0                                      |  |
|                                              | Tritium<br>(48)                    | ODCM:2000<br>Plant Policy:<br>400                                                   | <mda<br>(0/48)<br/>[N/A]</mda<br>                   | N/A                                                  | <mda<br>(0/4)<br/>[N/A]</mda<br>                  | N/A.                                          | 0                                      |  |
| Drinking Water                               | Not Required                       | N/A                                                                                 | N/A                                                 | N/A                                                  | N/Ă                                               | Not Required                                  | N/A                                    |  |
| Sediment                                     | Not Required                       | N/A                                                                                 | N/A                                                 | N/A                                                  | N/A                                               | Not Required                                  | N/A                                    |  |
| Algae                                        | Not Required                       | N/A                                                                                 | N/A                                                 | N/A                                                  | N/A                                               | Not Required                                  | N/A                                    |  |
| INGESTION<br>Milk                            | Not Required                       | N/A                                                                                 | N/A                                                 | N/A                                                  | N/A                                               | Not Required                                  | N/A                                    |  |
| Fish and invertebrates                       | Not Required                       | N/A                                                                                 | N/A                                                 | N/A                                                  | N/A                                               | Not Required                                  | N/A                                    |  |
| TERRESTRIAL<br>Soil                          | Not Required                       | N/A                                                                                 | N/A                                                 | N/A                                                  | N/A                                               | Not Required                                  | N/A                                    |  |

<sup>a</sup> The LLD is defined as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95 percent probability with only 5 percent probability of falsely concluding that a blank observation represents a "real" signal.

LLD is defined as the <u>a priori</u> (before the fact) lower limit of detection (as pCi per unit mass or volume) representing the capability of a measurement system and not as the <u>a posteriori</u> (after the fact) limit for a particular measurement. (Current literature defines the LLD as the detection capability for the instrumentation only, and the MDA, minimum detectable concentration, as the detection capability for a given instrument, procedure and type of sample.) The actual MDA for these analyses was at or below the LLD.

<sup>b</sup> The mean and the range are based on detectable measurements only. The fraction of detectable measurements at specified locations is indicated in parentheses; e.g., (10/12) means that 10 out of 12 samples contained detectable activity. The range of detected results is indicated in brackets; e.g., [23-34].

Not Required: Not required by the HBPP Unit 3 Technical Specifications or the SAFSTOR Offsite Dose Calculation Manual. Baseline environmental conditions for this parameter were established in the Environmental Report as referenced by the SAFSTOR Decommissioning Plan (now identified as the Post Shutdown Decommissioning Activities Report and Defueled Safety Analysis Report). N/A – Not applicable

| Station   | · .            | <b>TLD Exposure M</b> | easurements (mF | R)             |
|-----------|----------------|-----------------------|-----------------|----------------|
| Number    | First Quarter  | Second Quarter        | Third Quarter   | Fourth Quarter |
| T1        | 15.8 ± 0.5     | 13.6 ± 0.5            | 14.9 ± 0.9      | 14.3 ± 0.7     |
| T2        | 14,0 ± 0.6     | 12.3 ± 0.8            | 13.4 ± 0.7      | 12.9 ± 0.7     |
| Т3        | 13.3 ± 0.7     | 13.0 ± 0.7            | 12.3 ± 0.7      | 13.9 ± 0.6     |
| T4        | 15.0 ± 0.6     | 13.5 ± 0.6            | 13.1 ± 1.0      | 14.2 ± 0.5     |
| T5        | 12.5 ± 0.4     | 12.6 ± 0.5            | 12.1 ± 0.6      | 12.9 ± 0.7     |
| T6        | 12.2 ± 0.7     | 11.7 ± 0.8            | 11.6 ± 0.7      | 11.8 ± 0.7     |
| <b>T7</b> | $13.3 \pm 0.8$ | 12.0 ± 0.4            | 12.1 ± 0.8      | 13.0 ± 0.4     |
| <b>T8</b> | 12.4 ± 0.9     | 11.2 ± 0.8            | 11.2 ± 0.5      | 11.7 ± 0.4     |
| Т9        | 13.4 ± 1.1     | 12.3 ± 0.7            | 13.1 ± 0.7      | 13.1 ± 0.6     |
| T10       | 13.1 ± 0.6     | 11.8 ± 0.4            | 12.0 ± 1.9      | 12.1 ± 0.5     |
| T11       | 13.5 ± 0.8     | 12.1 ± 0.7            | 13.1 ± 0.7      | 13.4 ± 0.8     |
| T12       | 13.9 ± 0.6     | 13.0 ± 0.5            | 13.7 ± 0.6      | 13.8 ± 0.9     |
| T13       | 14.4 ± 0.9     | 12.9 ± 0.5            | 12.9 ± 0.6      | 13.7 ± 0.6     |
| T14       | 14.6 ± 0.8     | 13.4 ± 0.5            | 13.3 ± 0.7      | 14.4 ± 0.5     |
| T15       | 13.5 ± 0.8     | 13.1 ± 0.4            | 12.8 ± 0.8      | 14.2 ± 0.4     |
| T16       | 13.8 ± 0.7     | 12.6 ± 0.6            | 12.7 ± 0.7      | 13.4 ± 0.7     |
| T18       | 15.5 ± 0.9     | 13.7 ± 0.2            | 13.4 ± 1.0      | 13,9 ± 0.9     |
| T19       | 14.8 ± 0.7     | 14.4 ± 0.7            | -14.5 ± 0.2     | 14.9 ± 0.2     |
| T20       | 15.9 ± 0.5     | 13.3 ± 0.6            | 14.2 ± 0.8      | 14.1 ± 0.5     |
| T21       | 14.9 ± 0.5     | 13.2 ± 0.1            | 13.1 ± 0.9      | 13.4 ± 0.5     |

# TABLE C-2 ONSITE ENVIRONMENTAL TLD STATIONS

|           |               | Calculated Pa  |               |                |
|-----------|---------------|----------------|---------------|----------------|
| Parameter | First Quarter | Second Quarter | Third Quarter | Fourth Quarter |
| Average   | 14.0 ± 0.1    | 12.8 ± 0.1     | 13.0 ± 0.1    | 13.5 ± 0.1     |
| Maximum   | 15.9 ± 0.5    | 14.4 ± 0.7     | 14.9 ± 0.9    | 14.9 ± 0.2     |

### Notes:

1. These exposures are reported for a standardized period of 90 days.

| Station |               | TLD Exposure Measurements (mR) |                 |                |  |  |  |
|---------|---------------|--------------------------------|-----------------|----------------|--|--|--|
| Number  | First Quarter | Second Quarter                 | Third Quarter 👘 | Fourth Quarter |  |  |  |
| 1       | 12.7 ± 0.8    | 12.6 ± 1.4                     | 12.0 ± 0.8      | 12.9 ± 0.6     |  |  |  |
| 2       | 15.0 ± 0.6    | 13.6 ± 0.9                     | 13.7 ± 0.9      | 15.6 ± 0.9     |  |  |  |
| 14      | 11.9 ± 0.6    | 11.5 ± 0.5                     | 11.6 ± 0.7      | 12.1 ± 0.5     |  |  |  |
| 25      | 12.6 ± 0.6    | 11.6 ± 0.6                     | 12.3 ± 0.5      | 12.4 ± 0.6     |  |  |  |
| T17     | 13.5 ± 0.9    | 11.7 ± 0.5                     | 12.0 ± 0.7      | 12.2 ± 0.6     |  |  |  |
| Average | 13.1 ± 0.5    | 12.2 ± 0.4                     | 12.3 ± 0.4      | 12.7 ± 0.7     |  |  |  |
| Maximum | 15.0 ± 0.6    | 13.6 ± 0.9                     | 13.7 ± 0.9      | 15.6 ± 0.9     |  |  |  |

## TABLE C-3 OFFSITE (Control) ENVIRONMENTAL TLD STATIONS

Note:

1. These exposures are reported for a standardized period of 90 days.

|             | Gamma Ac                                                                                 | tivity (pCi/l)                                               | Tritium Activity    |
|-------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------|
| Sample Date | Cs-137                                                                                   | Co-60                                                        | (pĊi/l)             |
| 1/05/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 1/12/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 1/19/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 1/26/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 2/02/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 2/09/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 2/16/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 2/23/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 3/02/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 3/09/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 3/16/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 3/23/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 3/30/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 4/06/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 4/13/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 4/20/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 4/27/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 5/04/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 5/11/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 5/18/2011   | <mda< td=""><td><sup>°</sup> <mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <sup>°</sup> <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 5/25/2011   | <mda< td=""><td><md>A</md></td><td><mda< td=""></mda<></td></mda<>                       | <md>A</md>                                                   | <mda< td=""></mda<> |
| 6/01/2011   | 4.58 ± 3.56                                                                              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 6/08/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 6/15/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 6/22/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 6/29/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 7/06/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 7/13/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 7/20/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 7/27/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 8/03/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 8/10/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 8/17/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 8/24/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 8/31/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 9/07/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 9/14/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 9/21/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |
| 9/28/2011   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""></mda<></td></mda<>              | <mda< td=""></mda<> |

 $\frown$ 

### TABLE C-4 DISCHARGE CANAL SAMPLE RESULTS

- 21 -

**.**.

### TABLE C-4 (Continued) DISCHARGE CANAL SAMPLE RESULTS

|             | Gamma Ac                                                                    | tivity (pCi/l)                                  | Tritium Activity    |
|-------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| Sample Date | Cs-137                                                                      | Co-60                                           | (pCi/l)             |
| 10/05/2011  | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 10/12/2011  | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 10/19/2011  | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 10/26/2011  | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 11/02/2011  | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 11/09/2011  | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 11/16/2011  | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 11/23/2011  | 8.95 ± 6.87                                                                 | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 11/30/2011  | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 12/07/2011  | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 12/14/2011  | <mda< th=""><th><mda< th=""><th><mda< th=""></mda<></th></mda<></th></mda<> | <mda< th=""><th><mda< th=""></mda<></th></mda<> | <mda< th=""></mda<> |
| 12/24/2011  | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 12/28/2011  | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |

|            |             | · •          |                  |
|------------|-------------|--------------|------------------|
| Calculated | Gamma Acti  | vity (pCi/l) | Tritium Activity |
| Parameters | Cs-137      | Co-60        | (pCi/l)          |
| Average    | 6.87 ± 5.22 | Note 4       | Note 4           |
| Maximum    | 8.95 ± 6.87 | Note 4       | Note 4           |

Notes:

- Gamma measurements are performed on the original sample, with results corrected to the time of sampling. Naturally occurring isotopes are not reported. The maximum lower limits of detection (LLDs) for Co-60 and Cs-137 are 15 and 18 pCi/l, respectively. The MDA for these analyses was at or below the LLD and are reported as "<MDA".</li>
- For purposes of this report, LLD is defined as the <u>a priori</u> (before the fact) lower limit of detection, which represents the capability of the measurement system. MDA is defined as the <u>a posteriori</u> (after the fact) limit of detection capability considering a given instrument, procedure and type of sample.
- 3. Tritium analysis is performed on a measured aliquot of distilled sample. The reported values are net measurements above instrument background. The normal MDA for the analyses for tritium was less than 400 pCi/l. Results that are at or below the normal MDA are reported as "<MDA".
- 4. Results identified as "<MDA" are not included in the calculation of average and maximum values.

| Monitor                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                    | Beta                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nma                                                                                                                                                                                                                                                                                                                                                        | Tritium                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well                                                                                                                                                                                                                  | Sample                                                                                                                                                          | Activity                                                                                                                                                                                                                                                                                                                           | Activity                                                                                                                                                                                                                                                                                | Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ivity                                                                                                                                                                                                                                                                                                                                                      | Activity                                                                                                                                                                                              |
| Number                                                                                                                                                                                                                | Date                                                                                                                                                            | (pCi/l)                                                                                                                                                                                                                                                                                                                            | (pCi/l)                                                                                                                                                                                                                                                                                 | (p(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ci/I)                                                                                                                                                                                                                                                                                                                                                      | (pCi/l)                                                                                                                                                                                               |
|                                                                                                                                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                    | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                 | Cs-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co-60                                                                                                                                                                                                                                                                                                                                                      | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                               |
| MW-1                                                                                                                                                                                                                  | 2/21/11                                                                                                                                                         | <6.67 (MDA)                                                                                                                                                                                                                                                                                                                        | <9.87 (MDA)                                                                                                                                                                                                                                                                             | <4.77 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <3.72 (MDA)                                                                                                                                                                                                                                                                                                                                                | <312 (MDA)                                                                                                                                                                                            |
| MW-2                                                                                                                                                                                                                  | 2/21/11                                                                                                                                                         | < <u>2.44 (MDA)</u>                                                                                                                                                                                                                                                                                                                | <9.87 (WDA) <2.54 (MDA)                                                                                                                                                                                                                                                                 | <5.02 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |
| MW-4                                                                                                                                                                                                                  | 2/21/11                                                                                                                                                         | <2.12 (MDA)                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <4.02 (MDA)                                                                                                                                                                                                                                                                                                                                                | <310 (MDA)                                                                                                                                                                                            |
| MW-6                                                                                                                                                                                                                  |                                                                                                                                                                 | <2.12 (MDA) < < >                                                                                                                                                                                                                                                                                                                  | $6.15 \pm 2.77$                                                                                                                                                                                                                                                                         | <5.35 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <6.85 (MDA)                                                                                                                                                                                                                                                                                                                                                | <314 (MDA)                                                                                                                                                                                            |
| MW-11                                                                                                                                                                                                                 | 2/21/11                                                                                                                                                         | <u>`</u>                                                                                                                                                                                                                                                                                                                           | $2.24 \pm 1.35$                                                                                                                                                                                                                                                                         | <5.16 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.04 (MDA)<br><4.71 (MDA)                                                                                                                                                                                                                                                                                                                                 | <312 (MDA)                                                                                                                                                                                            |
| RCW-SFP-1                                                                                                                                                                                                             | 2/21/11                                                                                                                                                         | <pre>&lt;5.71 (MDA) &lt;1.40 (MDA)</pre>                                                                                                                                                                                                                                                                                           | <11.7 (MDA)                                                                                                                                                                                                                                                                             | <4.54 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.00 (MDA)                                                                                                                                                                                                                                                                                                                                                | <314 (MDA)                                                                                                                                                                                            |
| RCW-SFP-1                                                                                                                                                                                                             | 2/21/11                                                                                                                                                         | <7.22 (MDA)                                                                                                                                                                                                                                                                                                                        | 2.44 ± 1.29<br>7.89 ± 4.37                                                                                                                                                                                                                                                              | <3.46 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                            | <311 (MDA)                                                                                                                                                                                            |
| RCW-CS-1                                                                                                                                                                                                              | 2/21/11                                                                                                                                                         | <36.0 (MDA)                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         | <4.18 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <3.22 (MDA)                                                                                                                                                                                                                                                                                                                                                | <308 (MDA)<br><306 (MDA)                                                                                                                                                                              |
| RCW-CS-1                                                                                                                                                                                                              | 2/21/11                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                    | <pre>&lt;83.9 (MDA) &lt;32.1 (MDA)</pre>                                                                                                                                                                                                                                                | <7.95 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <5.51 (MDA)                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                       |
| RCW-CS-2                                                                                                                                                                                                              | 2/21/11                                                                                                                                                         | <29.1 (MDA)                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         | <3.90 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.13 (MDA)                                                                                                                                                                                                                                                                                                                                                | <310 (MDA)                                                                                                                                                                                            |
| RCW-CS-3                                                                                                                                                                                                              |                                                                                                                                                                 | 1.07 ± .638                                                                                                                                                                                                                                                                                                                        | <2.18 (MDA)                                                                                                                                                                                                                                                                             | <5.32 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <5.53 (MDA)                                                                                                                                                                                                                                                                                                                                                | <310 (MDA)                                                                                                                                                                                            |
|                                                                                                                                                                                                                       | 2/21/11                                                                                                                                                         | <2.64 (MDA)                                                                                                                                                                                                                                                                                                                        | <5.45 (MDA)                                                                                                                                                                                                                                                                             | <4.96 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <5.91 (MDA)                                                                                                                                                                                                                                                                                                                                                | < <u>313 (MDA)</u>                                                                                                                                                                                    |
| RCW-CS-5                                                                                                                                                                                                              | 2/21/11                                                                                                                                                         | <1.04 (MDA)                                                                                                                                                                                                                                                                                                                        | 3.16 ± 1.62                                                                                                                                                                                                                                                                             | <5.47 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <6.45 (MDA)                                                                                                                                                                                                                                                                                                                                                | <311 (MDA)                                                                                                                                                                                            |
| MW-1                                                                                                                                                                                                                  | 5/13/11                                                                                                                                                         | <6.31 (MDA)                                                                                                                                                                                                                                                                                                                        | <7.50 (MDA)                                                                                                                                                                                                                                                                             | <6.11 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.85 (MDA)                                                                                                                                                                                                                                                                                                                                                | <303 (MDA)                                                                                                                                                                                            |
| MW-2                                                                                                                                                                                                                  | 5/13/11                                                                                                                                                         | <2.66 (MDA)                                                                                                                                                                                                                                                                                                                        | <2.75 (MDA)                                                                                                                                                                                                                                                                             | <4.28 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.68 (MDA)                                                                                                                                                                                                                                                                                                                                                | <301 (MDA)                                                                                                                                                                                            |
| MW-4                                                                                                                                                                                                                  | 5/13/11                                                                                                                                                         | <3.06 (MDA)                                                                                                                                                                                                                                                                                                                        | 9.42 ± 2.70                                                                                                                                                                                                                                                                             | <4.02 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.16 (MDA)                                                                                                                                                                                                                                                                                                                                                | <307 (MDA)                                                                                                                                                                                            |
| MW-6                                                                                                                                                                                                                  | 5/13/11                                                                                                                                                         | <3.42 (MDA)                                                                                                                                                                                                                                                                                                                        | <2.67 (MDA)                                                                                                                                                                                                                                                                             | <3.18 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <3.11 (MDA)                                                                                                                                                                                                                                                                                                                                                | <304 (MDA)                                                                                                                                                                                            |
| MW-11                                                                                                                                                                                                                 | 5/13/11                                                                                                                                                         | <4.94 (MDA)                                                                                                                                                                                                                                                                                                                        | 9.85 ± 3.63                                                                                                                                                                                                                                                                             | <4.65 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <5.10 (MDA)                                                                                                                                                                                                                                                                                                                                                | <303 (MDA)                                                                                                                                                                                            |
| RCW-SFP-1                                                                                                                                                                                                             | 5/13/11                                                                                                                                                         | <2.87 (MDA)                                                                                                                                                                                                                                                                                                                        | 4.21 ± 2.33                                                                                                                                                                                                                                                                             | <3.41 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.45 (MDA)                                                                                                                                                                                                                                                                                                                                                | <303 (MDA)                                                                                                                                                                                            |
| RCW-SFP-2                                                                                                                                                                                                             | 5/13/11                                                                                                                                                         | <4.11 (MDA)                                                                                                                                                                                                                                                                                                                        | 4.71 ± 2.69                                                                                                                                                                                                                                                                             | <3.94 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.24 (MDA)                                                                                                                                                                                                                                                                                                                                                | <301 (MDA)                                                                                                                                                                                            |
| RCW-CS-1                                                                                                                                                                                                              | 5/13/11                                                                                                                                                         | <20.7 (MDA)                                                                                                                                                                                                                                                                                                                        | <37.9 (MDA)                                                                                                                                                                                                                                                                             | <4.64 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.81 (MDA)                                                                                                                                                                                                                                                                                                                                                | <300 (MDA)                                                                                                                                                                                            |
| RCW-CS-2                                                                                                                                                                                                              | 5/13/11                                                                                                                                                         | <12.9 (MDA)                                                                                                                                                                                                                                                                                                                        | <20.0 (MDA)                                                                                                                                                                                                                                                                             | <4.48 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.06 (MDA)                                                                                                                                                                                                                                                                                                                                                | <304 (MDA)                                                                                                                                                                                            |
| RCW-CS-3                                                                                                                                                                                                              | 5/13/11                                                                                                                                                         | <2.5 (MDA)                                                                                                                                                                                                                                                                                                                         | <3.29 (MDA)                                                                                                                                                                                                                                                                             | <7.81 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.31 (MDA)                                                                                                                                                                                                                                                                                                                                                | <307 (MDA)                                                                                                                                                                                            |
| RCW-CS-4                                                                                                                                                                                                              | 5/13/11                                                                                                                                                         | <3.68 (MDA)                                                                                                                                                                                                                                                                                                                        | 10.5 ± 3.95                                                                                                                                                                                                                                                                             | <6.95 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <6.23 (MDA)                                                                                                                                                                                                                                                                                                                                                | <303 (MDA)                                                                                                                                                                                            |
| RCW-CS-5                                                                                                                                                                                                              | 5/13/11                                                                                                                                                         | <2.63 (MDA)                                                                                                                                                                                                                                                                                                                        | <3.08 (MDA)                                                                                                                                                                                                                                                                             | <5.18 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.43 (MDA)                                                                                                                                                                                                                                                                                                                                                | <306 (MDA)                                                                                                                                                                                            |
| MW-1                                                                                                                                                                                                                  | 8/17/11                                                                                                                                                         | <11.4 (MDA)                                                                                                                                                                                                                                                                                                                        | <11.3 (MDA)                                                                                                                                                                                                                                                                             | <4.69 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <6.16 (MDA)                                                                                                                                                                                                                                                                                                                                                | <288 (MDA)                                                                                                                                                                                            |
| MW-2                                                                                                                                                                                                                  | 8/17/11                                                                                                                                                         | <2.88 (MDA)                                                                                                                                                                                                                                                                                                                        | <3.19 (MDA)                                                                                                                                                                                                                                                                             | <4.87 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <5.39 (MDA)                                                                                                                                                                                                                                                                                                                                                | <284 (MDA)                                                                                                                                                                                            |
| MW-4                                                                                                                                                                                                                  | 8/17/11                                                                                                                                                         | <3.17 (MDA)                                                                                                                                                                                                                                                                                                                        | 6.23 ± 2.53                                                                                                                                                                                                                                                                             | <4.00 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <3.04 (MDA)                                                                                                                                                                                                                                                                                                                                                | <282 (MDA)                                                                                                                                                                                            |
| MW-6                                                                                                                                                                                                                  | 8/17/11                                                                                                                                                         | <2.71 (MDA)                                                                                                                                                                                                                                                                                                                        | 3.08 ± 2.07                                                                                                                                                                                                                                                                             | <5.95 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <5.81 (MDA)                                                                                                                                                                                                                                                                                                                                                | <286 (MDA)                                                                                                                                                                                            |
| MW-11                                                                                                                                                                                                                 | 8/17/11                                                                                                                                                         | <11.2 (MDA)                                                                                                                                                                                                                                                                                                                        | <10.9 (MDA)                                                                                                                                                                                                                                                                             | <4.84 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.34 (MDA)                                                                                                                                                                                                                                                                                                                                                | <287 (MDA)                                                                                                                                                                                            |
| RCW-SFP-1                                                                                                                                                                                                             | 8/17/11                                                                                                                                                         | <2.76 (MDA)                                                                                                                                                                                                                                                                                                                        | <3.03 (MDA)                                                                                                                                                                                                                                                                             | <5.44 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <5.40 (MDA)                                                                                                                                                                                                                                                                                                                                                | <284 (MDA)                                                                                                                                                                                            |
| RCW-SFP-2                                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |
|                                                                                                                                                                                                                       | 18/1//11                                                                                                                                                        | <5.49 (MDA)                                                                                                                                                                                                                                                                                                                        | 1891+434                                                                                                                                                                                                                                                                                | I <5.13 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I <5.42 (MDA)                                                                                                                                                                                                                                                                                                                                              | <286 (MDA)                                                                                                                                                                                            |
|                                                                                                                                                                                                                       | 8/17/11<br>8/17/11                                                                                                                                              | <5.49 (MDA)<br><42.8 (MDA)                                                                                                                                                                                                                                                                                                         | 8.91 ± 4.34                                                                                                                                                                                                                                                                             | <pre>&lt;5.13 (MDA) <pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre></pre> | <5.42 (MDA)                                                                                                                                                                                                                                                                                                                                                | <286 (MDA)                                                                                                                                                                                            |
| RCW-CS-1                                                                                                                                                                                                              | 8/17/11                                                                                                                                                         | <42.8 (MDA)                                                                                                                                                                                                                                                                                                                        | <52.9 (MDA)                                                                                                                                                                                                                                                                             | <4.04 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <4.85 (MDA)                                                                                                                                                                                                                                                                                                                                                | <286 (MDA)                                                                                                                                                                                            |
| RCW-CS-1<br>RCW-CS-2                                                                                                                                                                                                  | 8/17/11<br>8/17/11                                                                                                                                              | <42.8 (MDA)<br><32.1 (MDA)                                                                                                                                                                                                                                                                                                         | <52.9 (MDA)<br><40.0 (MDA)                                                                                                                                                                                                                                                              | <4.04 (MDA)<br><3.64 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <4.85 (MDA)<br><3.79 (MDA)                                                                                                                                                                                                                                                                                                                                 | <286 (MDA)<br><286 (MDA)                                                                                                                                                                              |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3                                                                                                                                                                                      | 8/17/11<br>8/17/11<br>8/17/11                                                                                                                                   | <42.8 (MDA)<br><32.1 (MDA)<br><3.23 (MDA)                                                                                                                                                                                                                                                                                          | <52.9 (MDA)<br><40.0 (MDA)<br><2.85 (MDA)                                                                                                                                                                                                                                               | <4.04 (MDA)<br><3.64 (MDA)<br><4.51 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <4.85 (MDA)<br><3.79 (MDA)<br><4.38 (MDA)                                                                                                                                                                                                                                                                                                                  | <286 (MDA)<br><286 (MDA)<br><287 (MDA)                                                                                                                                                                |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3<br>RCW-CS-4                                                                                                                                                                          | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11                                                                                                                        | <ul> <li>&lt;42.8 (MDA)</li> <li>&lt;32.1 (MDA)</li> <li>&lt;3.23 (MDA)</li> <li>&lt;2.68 (MDA)</li> </ul>                                                                                                                                                                                                                         | <52.9 (MDA)<br><40.0 (MDA)<br><2.85 (MDA)<br>5.47 ± 2.06                                                                                                                                                                                                                                | <4.04 (MDA)<br><3.64 (MDA)<br><4.51 (MDA)<br><5.52 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <4.85 (MDA)<br><3.79 (MDA)<br><4.38 (MDA)<br><4.40 (MDA)                                                                                                                                                                                                                                                                                                   | <286 (MDA)<br><286 (MDA)<br><287 (MDA)<br><285 (MDA)                                                                                                                                                  |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3<br>RCW-CS-4<br>RCW-CS-5                                                                                                                                                              | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>8/17/11                                                                                                             | <42.8 (MDA)                                                                                                                                                                                                                                                                                                                        | <52.9 (MDA)<br><40.0 (MDA)<br><2.85 (MDA)<br>5.47 ± 2.06<br><3.00 (MDA)                                                                                                                                                                                                                 | <4.04 (MDA)<br><3.64 (MDA)<br><4.51 (MDA)<br><5.52 (MDA)<br>4.97 ± 4.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4.85 (MDA)<br><3.79 (MDA)<br><4.38 (MDA)<br><4.40 (MDA)<br><5.68 (MDA)                                                                                                                                                                                                                                                                                    | <286 (MDA)<br><286 (MDA)<br><287 (MDA)<br><285 (MDA)<br><284 (MDA)                                                                                                                                    |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3<br>RCW-CS-4<br>RCW-CS-5<br>MW-1                                                                                                                                                      | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>11/15/11                                                                                      | <ul> <li>&lt;42.8 (MDA)</li> <li>&lt;32.1 (MDA)</li> <li>&lt;3.23 (MDA)</li> <li>&lt;2.68 (MDA)</li> <li>&lt;2.95 (MDA)</li> <li>&lt;8.82 (MDA)</li> </ul>                                                                                                                                                                         | <52.9 (MDA)<br><40.0 (MDA)<br><2.85 (MDA)<br>5.47 ± 2.06<br><3.00 (MDA)<br>7.25 ± 3.59                                                                                                                                                                                                  | <4.04 (MDA)<br><3.64 (MDA)<br><4.51 (MDA)<br><5.52 (MDA)<br>4.97 ± 4.21<br><2.79 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <4.85 (MDA)<br><3.79 (MDA)<br><4.38 (MDA)<br><4.40 (MDA)<br><5.68 (MDA)<br><3.04 (MDA)                                                                                                                                                                                                                                                                     | <pre>&lt;286 (MDA) &lt;286 (MDA) &lt;286 (MDA) &lt;287 (MDA) &lt;285 (MDA) &lt;284 (MDA) &lt;283 (MDA)</pre>                                                                                          |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3<br>RCW-CS-4<br>RCW-CS-5<br>MW-1<br>MW-1                                                                                                                                              | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>11/15/11<br>11/15/11                                                                                     | <ul> <li>&lt;42.8 (MDA)</li> <li>&lt;32.1 (MDA)</li> <li>&lt;3.23 (MDA)</li> <li>&lt;2.68 (MDA)</li> <li>&lt;2.95 (MDA)</li> <li>&lt;8.82 (MDA)</li> <li>&lt;1.07 (MDA)</li> </ul>                                                                                                                                                 | <52.9 (MDA)<br><40.0 (MDA)<br><2.85 (MDA)<br>5.47 ± 2.06<br><3.00 (MDA)<br>7.25 ± 3.59<br>1.63 ± 1.02                                                                                                                                                                                   | <4.04 (MDA)<br><3.64 (MDA)<br><4.51 (MDA)<br><5.52 (MDA)<br>4.97 ± 4.21<br><2.79 (MDA)<br><2.48 (MDA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <4.85 (MDA)<br><3.79 (MDA)<br><4.38 (MDA)<br><4.40 (MDA)<br><5.68 (MDA)<br><3.04 (MDA)<br><2.57 (MDA)                                                                                                                                                                                                                                                      | <pre>&lt;286 (MDA) &lt;286 (MDA) &lt;286 (MDA) &lt;287 (MDA) &lt;285 (MDA) &lt;284 (MDA) &lt;284 (MDA) &lt;283 (MDA) &lt;280 (MDA)</pre>                                                              |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3<br>RCW-CS-4<br>RCW-CS-5<br>MW-1<br>MW-2<br>MW-4                                                                                                                                      | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>11/15/11<br>11/15/11<br>11/15/11                                                                         | <ul> <li>&lt;42.8 (MDA)</li> <li>&lt;32.1 (MDA)</li> <li>&lt;3.23 (MDA)</li> <li>&lt;2.68 (MDA)</li> <li>&lt;2.95 (MDA)</li> <li>&lt;8.82 (MDA)</li> <li>&lt;1.07 (MDA)</li> <li>&lt;2.41 (MDA)</li> </ul>                                                                                                                         | <52.9 (MDA)<br><40.0 (MDA)<br><2.85 (MDA)<br>5.47 ± 2.06<br><3.00 (MDA)<br>7.25 ± 3.59<br>1.63 ± 1.02<br><3.61 (MDA)                                                                                                                                                                    | <ul> <li>&lt;4.04 (MDA)</li> <li>&lt;3.64 (MDA)</li> <li>&lt;4.51 (MDA)</li> <li>&lt;5.52 (MDA)</li> <li>4.97 ± 4.21</li> <li>&lt;2.79 (MDA)</li> <li>&lt;2.48 (MDA)</li> <li>&lt;2.07 (MDA)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>&lt;4.85 (MDA)</li> <li>&lt;3.79 (MDA)</li> <li>&lt;4.38 (MDA)</li> <li>&lt;4.40 (MDA)</li> <li>&lt;5.68 (MDA)</li> <li>&lt;3.04 (MDA)</li> <li>&lt;2.57 (MDA)</li> <li>&lt;1.93 (MDA)</li> </ul>                                                                                                                                                 | <286 (MDA) <286 (MDA) <286 (MDA) <287 (MDA) <285 (MDA) <284 (MDA) <284 (MDA) <283 (MDA) <280 (MDA) <279 (MDA)                                                                                         |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3<br>RCW-CS-4<br>RCW-CS-5<br>MW-1<br>MW-2<br>MW-4<br>MW-6                                                                                                                              | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11                                                             | <ul> <li>&lt;42.8 (MDA)</li> <li>&lt;32.1 (MDA)</li> <li>&lt;3.23 (MDA)</li> <li>&lt;2.68 (MDA)</li> <li>&lt;2.95 (MDA)</li> <li>&lt;8.82 (MDA)</li> <li>&lt;1.07 (MDA)</li> <li>&lt;2.41 (MDA)</li> <li>&lt;1.52 (MDA)</li> </ul>                                                                                                 | <52.9 (MDA)<br><40.0 (MDA)<br><2.85 (MDA)<br>5.47 ± 2.06<br><3.00 (MDA)<br>7.25 ± 3.59<br>1.63 ± 1.02<br><3.61 (MDA)<br><1.30 (MDA)                                                                                                                                                     | <ul> <li>&lt;4.04 (MDA)</li> <li>&lt;3.64 (MDA)</li> <li>&lt;4.51 (MDA)</li> <li>&lt;5.52 (MDA)</li> <li>4.97 ± 4.21</li> <li>&lt;2.79 (MDA)</li> <li>&lt;2.48 (MDA)</li> <li>&lt;2.07 (MDA)</li> <li>&lt;2.23 (MDA)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <4.85 (MDA)<br><3.79 (MDA)<br><4.38 (MDA)<br><4.40 (MDA)<br><5.68 (MDA)<br><3.04 (MDA)<br><2.57 (MDA)<br><1.93 (MDA)<br><2.15 (MDA)                                                                                                                                                                                                                        | <286 (MDA) <286 (MDA) <286 (MDA) <287 (MDA) <285 (MDA) <284 (MDA) <283 (MDA) <280 (MDA) <279 (MDA) <279 (MDA)                                                                                         |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3<br>RCW-CS-4<br>RCW-CS-5<br>MW-1<br>MW-2<br>MW-2<br>MW-4<br>MW-6<br>MW-11                                                                                                             | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11                                                 | <ul> <li>&lt;42.8 (MDA)</li> <li>&lt;32.1 (MDA)</li> <li>&lt;3.23 (MDA)</li> <li>&lt;2.68 (MDA)</li> <li>&lt;2.95 (MDA)</li> <li>&lt;8.82 (MDA)</li> <li>&lt;1.07 (MDA)</li> <li>&lt;2.41 (MDA)</li> <li>&lt;1.52 (MDA)</li> <li>&lt;11.1 (MDA)</li> </ul>                                                                         | <52.9 (MDA)<br><40.0 (MDA)<br><2.85 (MDA)<br>5.47 ± 2.06<br><3.00 (MDA)<br>7.25 ± 3.59<br>1.63 ± 1.02<br><3.61 (MDA)<br><1.30 (MDA)<br><8.00 (MDA)                                                                                                                                      | <ul> <li>&lt;4.04 (MDA)</li> <li>&lt;3.64 (MDA)</li> <li>&lt;4.51 (MDA)</li> <li>&lt;5.52 (MDA)</li> <li>4.97 ± 4.21</li> <li>&lt;2.79 (MDA)</li> <li>&lt;2.48 (MDA)</li> <li>&lt;2.07 (MDA)</li> <li>&lt;2.23 (MDA)</li> <li>&lt;4.14 (MDA)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4.85 (MDA)<br><3.79 (MDA)<br><4.38 (MDA)<br><4.40 (MDA)<br><5.68 (MDA)<br><3.04 (MDA)<br><2.57 (MDA)<br><1.93 (MDA)<br><2.15 (MDA)<br><2.74 (MDA)                                                                                                                                                                                                         | <286 (MDA) <286 (MDA) <287 (MDA) <287 (MDA) <285 (MDA) <283 (MDA) <283 (MDA) <280 (MDA) <279 (MDA) <279 (MDA) <286 (MDA)                                                                              |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3<br>RCW-CS-4<br>RCW-CS-5<br>MW-1<br>MW-2<br>MW-2<br>MW-4<br>MW-6<br>MW-6<br>MW-11<br>RCW-SFP-1                                                                                        | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11                                                | <ul> <li>&lt;42.8 (MDA)</li> <li>&lt;32.1 (MDA)</li> <li>&lt;3.23 (MDA)</li> <li>&lt;2.68 (MDA)</li> <li>&lt;2.95 (MDA)</li> <li>&lt;8.82 (MDA)</li> <li>&lt;1.07 (MDA)</li> <li>&lt;2.41 (MDA)</li> <li>&lt;1.52 (MDA)</li> <li>&lt;11.1 (MDA)</li> <li>&lt;1.29 (MDA)</li> </ul>                                                 | <pre>&lt;52.9 (MDA) &lt;40.0 (MDA) &lt;2.85 (MDA) 5.47 ± 2.06 &lt;3.00 (MDA) 7.25 ± 3.59 1.63 ± 1.02 &lt;3.61 (MDA) &lt;1.30 (MDA) &lt;8.00 (MDA) &lt;1.50 (MDA)</pre>                                                                                                                  | <ul> <li>&lt;4.04 (MDA)</li> <li>&lt;3.64 (MDA)</li> <li>&lt;4.51 (MDA)</li> <li>&lt;5.52 (MDA)</li> <li>4.97 ± 4.21</li> <li>&lt;2.79 (MDA)</li> <li>&lt;2.48 (MDA)</li> <li>&lt;2.07 (MDA)</li> <li>&lt;2.23 (MDA)</li> <li>&lt;4.14 (MDA)</li> <li>&lt;4.58 (MDA)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <4.85 (MDA)<br><3.79 (MDA)<br><4.38 (MDA)<br><4.40 (MDA)<br><5.68 (MDA)<br><3.04 (MDA)<br><2.57 (MDA)<br><1.93 (MDA)<br><2.15 (MDA)<br><2.74 (MDA)<br><5.12 (MDA)                                                                                                                                                                                          | <286 (MDA) <286 (MDA) <286 (MDA) <287 (MDA) <285 (MDA) <283 (MDA) <283 (MDA) <280 (MDA) <279 (MDA) <279 (MDA) <286 (MDA) <282 (MDA)                                                                   |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3<br>RCW-CS-4<br>RCW-CS-5<br>MW-1<br>MW-2<br>MW-4<br>MW-4<br>MW-6<br>MW-11<br>RCW-SFP-1<br>RCW-SFP-2                                                                                   | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11                                    | <ul> <li>&lt;42.8 (MDA)</li> <li>&lt;32.1 (MDA)</li> <li>&lt;3.23 (MDA)</li> <li>&lt;2.68 (MDA)</li> <li>&lt;2.95 (MDA)</li> <li>&lt;8.82 (MDA)</li> <li>&lt;1.07 (MDA)</li> <li>&lt;2.41 (MDA)</li> <li>&lt;1.52 (MDA)</li> <li>&lt;1.1.1 (MDA)</li> <li>&lt;1.29 (MDA)</li> <li>&lt;4.65 (MDA)</li> </ul>                        | <pre>&lt;52.9 (MDA)<br/>&lt;40.0 (MDA)<br/>&lt;2.85 (MDA)<br/>5.47 ± 2.06<br/>&lt;3.00 (MDA)<br/>7.25 ± 3.59<br/>1.63 ± 1.02<br/>&lt;3.61 (MDA)<br/>&lt;1.30 (MDA)<br/>&lt;8.00 (MDA)<br/>&lt;1.50 (MDA)<br/>8.39 ± 4.00</pre>                                                          | <ul> <li>&lt;4.04 (MDA)</li> <li>&lt;3.64 (MDA)</li> <li>&lt;4.51 (MDA)</li> <li>&lt;5.52 (MDA)</li> <li>4.97 ± 4.21</li> <li>&lt;2.79 (MDA)</li> <li>&lt;2.48 (MDA)</li> <li>&lt;2.07 (MDA)</li> <li>&lt;2.23 (MDA)</li> <li>&lt;4.14 (MDA)</li> <li>&lt;4.58 (MDA)</li> <li>&lt;5.54 (MDA)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4.85 (MDA)<br><3.79 (MDA)<br><4.38 (MDA)<br><4.40 (MDA)<br><5.68 (MDA)<br><5.68 (MDA)<br><2.57 (MDA)<br><1.93 (MDA)<br><2.15 (MDA)<br><2.74 (MDA)<br><5.12 (MDA)<br><5.92 (MDA)                                                                                                                                                                           | <286 (MDA) <286 (MDA) <287 (MDA) <287 (MDA) <285 (MDA) <284 (MDA) <283 (MDA) <280 (MDA) <279 (MDA) <279 (MDA) <286 (MDA) <286 (MDA) <283 (MDA)                                                        |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3<br>RCW-CS-4<br>RCW-CS-5<br>MW-1<br>MW-2<br>MW-4<br>MW-6<br>MW-11<br>RCW-SFP-1<br>RCW-SFP-2<br>RCW-CS-1                                                                               | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11             | <ul> <li>&lt;42.8 (MDA)</li> <li>&lt;32.1 (MDA)</li> <li>&lt;3.23 (MDA)</li> <li>&lt;2.68 (MDA)</li> <li>&lt;2.95 (MDA)</li> <li>&lt;8.82 (MDA)</li> <li>&lt;1.07 (MDA)</li> <li>&lt;2.41 (MDA)</li> <li>&lt;1.52 (MDA)</li> <li>&lt;1.52 (MDA)</li> <li>&lt;1.29 (MDA)</li> <li>&lt;4.65 (MDA)</li> <li>&lt;51.6 (MDA)</li> </ul> | <pre>&lt;52.9 (MDA)<br/>&lt;40.0 (MDA)<br/>&lt;2.85 (MDA)<br/>5.47 ± 2.06<br/>&lt;3.00 (MDA)<br/>7.25 ± 3.59<br/>1.63 ± 1.02<br/>&lt;3.61 (MDA)<br/>&lt;1.30 (MDA)<br/>&lt;8.00 (MDA)<br/>&lt;1.50 (MDA)<br/>8.39 ± 4.00<br/>&lt;43.3 (MDA)</pre>                                       | <ul> <li>&lt;4.04 (MDA)</li> <li>&lt;3.64 (MDA)</li> <li>&lt;4.51 (MDA)</li> <li>&lt;5.52 (MDA)</li> <li>4.97 ± 4.21</li> <li>&lt;2.79 (MDA)</li> <li>&lt;2.48 (MDA)</li> <li>&lt;2.07 (MDA)</li> <li>&lt;2.23 (MDA)</li> <li>&lt;4.14 (MDA)</li> <li>&lt;4.58 (MDA)</li> <li>&lt;5.54 (MDA)</li> <li>&lt;3.45 (MDA)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <4.85 (MDA)<br><3.79 (MDA)<br><4.38 (MDA)<br><4.40 (MDA)<br><5.68 (MDA)<br><3.04 (MDA)<br><2.57 (MDA)<br><1.93 (MDA)<br><2.15 (MDA)<br><2.74 (MDA)<br><5.12 (MDA)<br><5.92 (MDA)<br><4.55 (MDA)                                                                                                                                                            | <286 (MDA) <286 (MDA) <286 (MDA) <287 (MDA) <287 (MDA) <285 (MDA) <284 (MDA) <280 (MDA) <280 (MDA) <279 (MDA) <279 (MDA) <286 (MDA) <282 (MDA) <283 (MDA) <286 (MDA) <283 (MDA) <286 (MDA) <286 (MDA) |
| RCW-CS-1         RCW-CS-2         RCW-CS-3         RCW-CS-4         RCW-CS-5         MW-1         MW-2         MW-4         MW-6         MW-11         RCW-SFP-1         RCW-SFP-2         RCW-SFP-2         RCW-CS-2 | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11 | <ul> <li>&lt;42.8 (MDA)</li> <li>&lt;32.1 (MDA)</li> <li>&lt;3.23 (MDA)</li> <li>&lt;2.68 (MDA)</li> <li>&lt;2.95 (MDA)</li> <li>&lt;1.07 (MDA)</li> <li>&lt;2.41 (MDA)</li> <li>&lt;1.52 (MDA)</li> <li>&lt;1.52 (MDA)</li> <li>&lt;1.29 (MDA)</li> <li>&lt;4.65 (MDA)</li> <li>&lt;51.6 (MDA)</li> <li>&lt;23.0 (MDA)</li> </ul> | <pre>&lt;52.9 (MDA)<br/>&lt;40.0 (MDA)<br/>&lt;2.85 (MDA)<br/>5.47 ± 2.06<br/>&lt;3.00 (MDA)<br/>7.25 ± 3.59<br/>1.63 ± 1.02<br/>&lt;3.61 (MDA)<br/>&lt;1.30 (MDA)<br/>&lt;1.30 (MDA)<br/>&lt;8.00 (MDA)<br/>&lt;1.50 (MDA)<br/>8.39 ± 4.00<br/>&lt;43.3 (MDA)<br/>&lt;17.1 (MDA)</pre> | <ul> <li>&lt;4.04 (MDA)</li> <li>&lt;3.64 (MDA)</li> <li>&lt;4.51 (MDA)</li> <li>&lt;5.52 (MDA)</li> <li>4.97 ± 4.21</li> <li>&lt;2.79 (MDA)</li> <li>&lt;2.48 (MDA)</li> <li>&lt;2.07 (MDA)</li> <li>&lt;2.07 (MDA)</li> <li>&lt;4.14 (MDA)</li> <li>&lt;4.58 (MDA)</li> <li>&lt;5.54 (MDA)</li> <li>&lt;3.45 (MDA)</li> <li>&lt;6.30 (MDA)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>&lt;4.85 (MDA)</li> <li>&lt;3.79 (MDA)</li> <li>&lt;4.38 (MDA)</li> <li>&lt;4.40 (MDA)</li> <li>&lt;5.68 (MDA)</li> <li>&lt;3.04 (MDA)</li> <li>&lt;2.57 (MDA)</li> <li>&lt;1.93 (MDA)</li> <li>&lt;2.15 (MDA)</li> <li>&lt;2.74 (MDA)</li> <li>&lt;5.12 (MDA)</li> <li>&lt;5.92 (MDA)</li> <li>&lt;4.55 (MDA)</li> <li>&lt;6.79 (MDA)</li> </ul> | <286 (MDA) <286 (MDA) <286 (MDA) <287 (MDA) <285 (MDA) <284 (MDA) <283 (MDA) <280 (MDA) <279 (MDA) <279 (MDA) <286 (MDA) <283 (MDA) <283 (MDA) <280 (MDA) <280 (MDA) <280 (MDA) <280 (MDA) <280 (MDA) |
| RCW-CS-1<br>RCW-CS-2<br>RCW-CS-3<br>RCW-CS-4<br>RCW-CS-5<br>MW-1                                                                                                                                                      | 8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>8/17/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11<br>11/15/11             | <ul> <li>&lt;42.8 (MDA)</li> <li>&lt;32.1 (MDA)</li> <li>&lt;3.23 (MDA)</li> <li>&lt;2.68 (MDA)</li> <li>&lt;2.95 (MDA)</li> <li>&lt;8.82 (MDA)</li> <li>&lt;1.07 (MDA)</li> <li>&lt;2.41 (MDA)</li> <li>&lt;1.52 (MDA)</li> <li>&lt;1.52 (MDA)</li> <li>&lt;1.29 (MDA)</li> <li>&lt;4.65 (MDA)</li> <li>&lt;51.6 (MDA)</li> </ul> | <pre>&lt;52.9 (MDA)<br/>&lt;40.0 (MDA)<br/>&lt;2.85 (MDA)<br/>5.47 ± 2.06<br/>&lt;3.00 (MDA)<br/>7.25 ± 3.59<br/>1.63 ± 1.02<br/>&lt;3.61 (MDA)<br/>&lt;1.30 (MDA)<br/>&lt;8.00 (MDA)<br/>&lt;1.50 (MDA)<br/>8.39 ± 4.00<br/>&lt;43.3 (MDA)</pre>                                       | <ul> <li>&lt;4.04 (MDA)</li> <li>&lt;3.64 (MDA)</li> <li>&lt;4.51 (MDA)</li> <li>&lt;5.52 (MDA)</li> <li>4.97 ± 4.21</li> <li>&lt;2.79 (MDA)</li> <li>&lt;2.48 (MDA)</li> <li>&lt;2.07 (MDA)</li> <li>&lt;2.23 (MDA)</li> <li>&lt;4.14 (MDA)</li> <li>&lt;4.58 (MDA)</li> <li>&lt;5.54 (MDA)</li> <li>&lt;3.45 (MDA)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <4.85 (MDA)<br><3.79 (MDA)<br><4.38 (MDA)<br><4.40 (MDA)<br><5.68 (MDA)<br><3.04 (MDA)<br><2.57 (MDA)<br><1.93 (MDA)<br><2.15 (MDA)<br><2.74 (MDA)<br><5.12 (MDA)<br><5.92 (MDA)<br><4.55 (MDA)                                                                                                                                                            | <286 (MDA) <286 (MDA) <286 (MDA) <287 (MDA) <287 (MDA) <285 (MDA) <284 (MDA) <280 (MDA) <280 (MDA) <279 (MDA) <279 (MDA) <286 (MDA) <282 (MDA) <283 (MDA) <286 (MDA) <283 (MDA) <286 (MDA) <286 (MDA) |

# TABLE C-5GROUNDWATER MONITORING WELL RESULTS

- 23 -

### TABLE C-5 (CONTINUED) GROUNDWATER MONITORING WELL RESULTS

| Calculated<br>Parameters<br>(By Monitor Well | Alpha<br>Activity<br>(pCi/l) | Beta<br>Activity<br>(pCi/l) | Gamma<br>Activity<br>(pCi/l) |        | Tritium<br>Activity<br>(pCi/l) |  |
|----------------------------------------------|------------------------------|-----------------------------|------------------------------|--------|--------------------------------|--|
| Number)                                      |                              | · · ·                       | Cs-137                       | Co-60  |                                |  |
| Average: MW-1                                | Note 4                       | 7.25 ± 3.59                 | Note 4                       | Note 4 | Note 4                         |  |
| Average: MW-2                                | Note 4                       | 1.63 ± 1.02                 | Note 4                       | Note 4 | Note 4                         |  |
| Average: MW-4                                | Note 4                       | 7.39 ± 2.67                 | Note 4                       | Note 4 | Note 4                         |  |
| Average: MW-6                                | Note 4                       | 2.66 ± 1.71                 | Note 4                       | Note 4 | Note 4                         |  |
| Average: MW-11                               | Note 4                       | 9.85 ± 3.63                 | Note 4                       | Note 4 | Note 4                         |  |
| Average: RCW-SFP-1                           | Note 4                       | 3.33 ± 1.81                 | Note 4                       | Note 4 | Note 4                         |  |
| Average: RCW-SFP-2                           | Note 4                       | 7.48 ± 3.85                 | <ul> <li>Note 4</li> </ul>   | Note 4 | Note 4                         |  |
| Average: RCW-CS-1                            | Note 4                       | Note 4                      | Note 4                       | Note 4 | Note 4                         |  |
| Average: RCW-CS-2                            | Note 4                       | Note 4                      | Note 4                       | Note 4 | Note 4                         |  |
| Average: RCW-CS-3                            | 1.07 ± .638                  | 3.62 ±1.21                  | Note 4                       | Note 4 | Note 4                         |  |
| Average: RCW-CS-4                            | Note 4                       | 7.94 ± 3.14                 | Note 4                       | Note 4 | Note 4                         |  |
| Average: RCW-CS-5                            | Note 4                       | 3.57 ± 1.37                 | Note 4                       | Note 4 | Note 4                         |  |
| Maximum: MW-1                                | Note 4,                      | 7.25 ± 3.59                 | Note 4                       | Note 4 | Note 4                         |  |
| Maximum: MW-2                                | Note 4                       | 1.63 ± 1.02                 | Note 4                       | Noté 4 | Note 4                         |  |
| Maximum: MW-4                                | Note 4                       | 9.42 ± 2.70                 | Note 4                       | Note 4 | Note 4                         |  |
| Maximum: MW-6                                | Note 4                       | 3.08 ± 2.07                 | Note 4                       | Note 4 | Note 4                         |  |
| Maximum: MW-11                               | Note 4                       | 9.85 ± 3.63                 | Note 4                       | Note 4 | Note 4                         |  |
| Maximum: RCW-SFP-1                           | Note 4                       | 4.21 ± 2.33                 | Note 4                       | Note 4 | Note 4                         |  |
| Maximum: RCW-SFP-2                           | Note 4                       | 8.91 ± 4.34                 | Note 4                       | Note 4 | Note 4                         |  |
| Maximum: RCW-CS-1                            | Note 4                       | Note 4                      | Note 4                       | Note 4 | Note 4                         |  |
| Maximum: RCW-CS-2                            | Note 4                       | Note 4                      | Note 4                       | Note 4 | Note 4                         |  |
| Maximum: RCW-CS-3                            | 1.07 ± .638                  | 3.62 ± 1.21                 | Note 4                       | Note 4 | Note 4                         |  |
| Maximum: RCW-CS-4                            | Note 4                       | 10.5 ± 3.95                 | Note 4                       | Note 4 | Note 4                         |  |
| Maximum: RCW-CS-5                            | Note 4                       | 3.97 ± 1.11                 | Note 4                       | Note 4 | Note 4                         |  |

### Notes:

- 1. Reported values are net measurements (above instrument background). The normal minimum detectable activities (MDAs) for the analyses for gross alpha, gross beta and tritium are approximately 4, 4 and 400 pCi/l, respectively. Results that are at or below the normal MDA are reported as "<MDA".
- Gamma activity measurements are performed on the original sample, with results corrected to the time of sampling. Naturally occurring isotopes are not reported. The maximum lower limits of detection (LLDs) for Co-60 and Cs-137 are 15 and 18 pCi/l, respectively. The actual MDAs for these analyses were at or below the LLD.
- For purposes of this report, LLD is defined as the <u>a priori</u> (before the fact) lower limit of detection, which represents the capability of the measurement system. MDA is defined as the <u>a posteriori</u> (after the fact) limit of detection capability considering a given instrument, procedure and type of sample.

4. Results identified as "<" are not included in the calculation of average and maximum values.

| Sample<br>Date | Cs-137 Activity<br>(pCi/L)                                        | Co-60 Activity<br>(pCi/L)              | Tritium<br>Activity<br>(pCi/l) |
|----------------|-------------------------------------------------------------------|----------------------------------------|--------------------------------|
| 1/13/2011      | <mda< td=""><td><mda< td=""><td>779 ± 214</td></mda<></td></mda<> | <mda< td=""><td>779 ± 214</td></mda<>  | 779 ± 214                      |
| 2/10/2011      | 14.3                                                              | <mda< td=""><td>1250 ± 214</td></mda<> | 1250 ± 214                     |
| 3/10/2011      | 17.7                                                              | <mda< td=""><td>929 ± 324</td></mda<>  | 929 ± 324                      |
| 4/12/2011      | 17.5                                                              | <mda< td=""><td>1040 ± 287</td></mda<> | 1040 ± 287                     |
| 5/10/2011      | 11.2                                                              | <mda< td=""><td>746 ± 231</td></mda<>  | 746 ± 231                      |
| 6/07/2011      | <mda< td=""><td><mda< td=""><td>734 ± 210</td></mda<></td></mda<> | <mda< td=""><td>734 ± 210</td></mda<>  | 734 ± 210                      |
| 7/12/2011      | <mda< td=""><td><mda< td=""><td>599 ± 220</td></mda<></td></mda<> | <mda< td=""><td>599 ± 220</td></mda<>  | 599 ± 220                      |
| 8/08/2011      | <mda< td=""><td><mda< td=""><td>749 ± 221</td></mda<></td></mda<> | <mda< td=""><td>749 ± 221</td></mda<>  | 749 ± 221                      |
| 9/06/2011      | <mda< td=""><td><mda< td=""><td>634 ± 198</td></mda<></td></mda<> | <mda< td=""><td>634 ± 198</td></mda<>  | 634 ± 198                      |
| 10/06/2011     | 14.1                                                              | <mda< td=""><td>859 ± 299</td></mda<>  | 859 ± 299                      |
| 11/08/2011     | <mda< td=""><td><mda< td=""><td>839 ± 359</td></mda<></td></mda<> | <mda< td=""><td>839 ± 359</td></mda<>  | 839 ± 359                      |
| 12/06/2011     | <mda< td=""><td><mda< td=""><td>646 ± 265</td></mda<></td></mda<> | <mda< td=""><td>646 ± 265</td></mda<>  | 646 ± 265                      |

### TABLE C-6 CAISSON SUMP MONITORING RESULTS

### Notes:

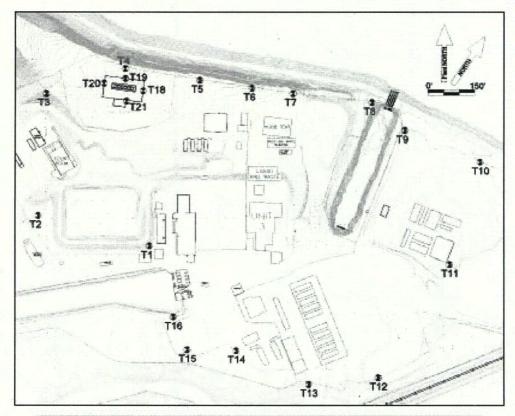
- Gamma measurements are performed on the original sample, with results corrected to the time of sampling. Naturally occurring isotopes are not reported. The maximum lower limits of detection (LLDs) for Co-60 and Cs-137 are 15 and 18 pCi/l, respectively. The MDA for these analyses was at or below the LLD and are reported as "<MDA".</li>
- For purposes of this report, LLD is defined as the <u>a priori</u> (before the fact) lower limit of detection, which represents the capability of the measurement system. MDA is defined as the <u>a posteriori</u> (after the fact) limit of detection capability considering a given instrument, procedure and type of sample.
- 3. Tritium analysis is performed on a measured aliquot of distilled sample. The reported values are net measurements above instrument background. The normal MDA for the analyses for tritium was less than 400 pCi/l. Results that are at or below the normal MDA are reported as "<MDA".

n de la servición de la servic

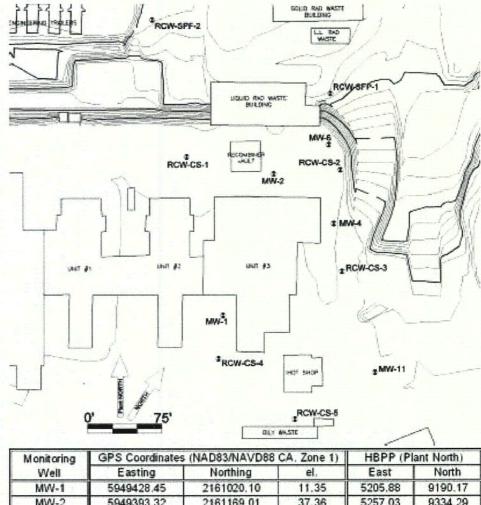
 $10^{-11}$ 

11 6 11

್ರದ ಲಕ್ಷಣ್ಯ ಪ


|              | ABLE C-7   |       |     |
|--------------|------------|-------|-----|
| FRENCH DRAIN | MONITORING | RESUL | .TS |

| <u> </u>   | Cs-137 Activity | Co-60 Activity |
|------------|-----------------|----------------|
| Sample     | (pCi/L)         | (pCi/L)        |
| Date       |                 |                |
| 1/13/2011  | 227             | 15.3           |
| 2/10/2011  | 238             | 13.0           |
| 3/10/2011  | 213             | 14.7           |
| 4/12/2011  | 244             | 9.8            |
| 5/10/2011  | 229             | 10.0           |
| 6/07/2011  | 255             | 6.0            |
| 7/12/2011  | 294             | 7.2            |
| 8/08/2011  | 298             | 11.8           |
| 9/06/2011  | 266             | 8.8            |
| 10/06/2011 | 258             | 10.6           |
| 11/08/2011 | 268             | 9.8            |
| 12/06/2011 | 228             | 14.9           |


Notes:

- Gamma measurements are performed on the original sample, with results corrected to the time of sampling. Naturally occurring isotopes are not reported. The maximum lower limits of detection (LLDs) for Co-60 and Cs-137 are 15 and 18 pCi/l, respectively. The MDA for these analyses was at or below the LLD and reported as "<MDA".</li>
- For purposes of this report, LLD is defined as the <u>a priori</u> (before the fact) lower limit of detection, which represents the capability of the measurement system. MDA is defined as the <u>a posteriori</u> (after the fact) limit of detection capability considering a given instrument, procedure and type of sample.

### FIGURE A-1 HBPP ONSITE TLD LOCATIONS

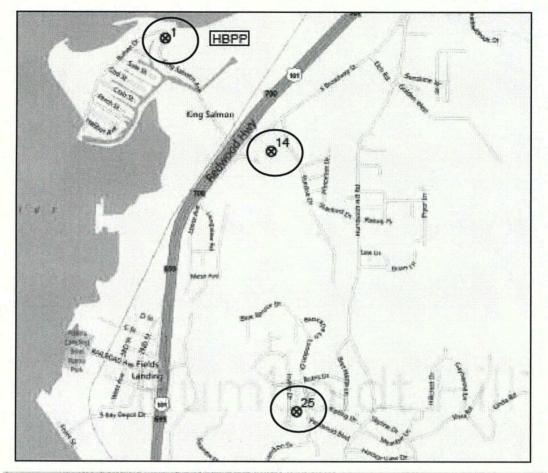
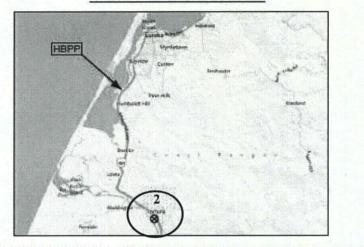


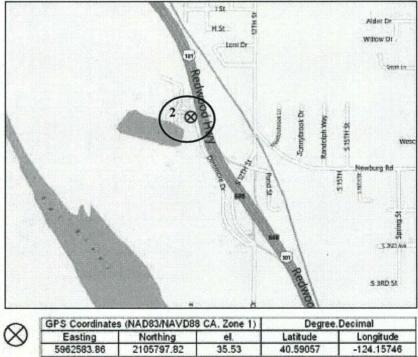
| Location   | <b>GPS</b> Coordinates | (NAD83/NAVD88 | CA. Zone 1) | HBPP (ca | led north) |
|------------|------------------------|---------------|-------------|----------|------------|
| Number     | Easting                | Northing      | el.         | East     | North      |
| T1         | 5949161.06             | 2160822.11    | 10,78       | 4873.87  | 9168.63    |
| T2         | 5948804.52             | 2160710.72    | 11.56       | 4513.84  | 9268.18    |
| T3         | 5948609.45             | 2161061.84    | 41.77       | 4540.12  | 9668.91    |
| T4         | 5948778.72             | 2161269.91    | 43.66       | 4795.13  | 9752.07    |
| T5         | 5949002.39             | 2161368.44    | 38.19       | 5036.50  | 9713.72    |
| <b>T</b> 6 | 5949159.22             | 2161437.55    | 36.30       | 5205.77  | 9686.84    |
| 77         | 5949280.02             | 2161494.61    | 32.04       | 5338.22  | 9669.36    |
| T8         | 5949511.99             | 2161608.36    | 12.96       | 5594.82  | 9639.33    |
| T9         | 5949651,46             | 2161588.47    | 11.79       | 5701.27  | 9547.04    |
| T10        | 5949912.89             | 2161633.96    | 11.17       | 5945.65  | 9443.64    |
| T11        | 5950011.77             | 2161297,55    | 14.18       | 5846.48  | 9107.30    |
| T12        | 5950019.25             | 2160858,44    | 11.25       | 5614.86  | 8734.19    |
| T13        | 5949841.53             | 2160718.03    | 9.79        | 5389.40  | 8712.46    |
| T14        | 5949583,98             | 2160684.24    | 10,46       | 5154,63  | 8823.60    |
| T15        | 5949448.88             | 2160600,96    | 10,34       | 4995,96  | 8826.81    |
| T16        | 5949352.82             | 2160667.18    | 10.80       | 4951.10  | 8934.52    |
| T18        | 5948867.24             | 2161239,36    | 43.47       | 4852.98  | 9678.44    |
| T19        | 5948796.71             | 2161242.74    | 42.84       | 4795.52  | 9719.50    |
| T20        | 5948747.14             | 2161191.68    | 44.14       | 4726.20  | 9703.44    |
| T21        | 5948834.52             | 2161182.89    | 45.71       | 4799.39  | 9644.52    |



### FIGURE A-2 HBPP ONSITE MONITORING WELL LOCATIONS

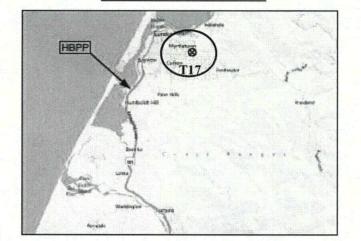
| Monitoring | GPS Coordinates (NAD83/NAVD88 CA. Zone 1) |            |       | HBPP (Plant North) |         |
|------------|-------------------------------------------|------------|-------|--------------------|---------|
| Well       | Easting                                   | Northing   | el,   | East               | North   |
| MW-1       | 5949428.45                                | 2161020.10 | 11.35 | 5205.88            | 9190.17 |
| MW-2       | 5949393.32                                | 2161169.01 | 37,36 | 5257.03            | 9334.29 |
| MW-4       | 5949470.92                                | 2161159.02 | 11.41 | 5316.85            | 9283.91 |
| MW-6       | 5949423.12                                | 2161223.94 | 10.99 | 5311.84            | 9364.38 |
| MW-11      | 5949588.32                                | 2161053.64 | 12.04 | 5358.42            | 9131.73 |
| RCW-CS-1   | 5949309.92                                | 2161136.20 | 10.82 | 5169,16            | 9351.96 |
| RCW-CS-2   | 5949446.86                                | 2161208.52 | 10.87 | 5323.44            | 9338.56 |
| RCW-CS-3   | 5949504.15                                | 2161122.50 | 11.22 | 5324,99            | 9235.21 |
| RCW-CS-4   | 5949448.47                                | 2160980.19 | 11.17 | 5201.08            | 9145.77 |
| RCW-CS-5   | 5949545.79                                | 2160969.31 | 11.19 | 5276.99            | 9083.90 |
| RCW-SFP-1  | 5949395.97                                | 2161268.83 | 26.41 | 5313.34            | 9416.78 |
| RCW-SPF-2  | 5949204.48                                | 2161235.37 | 32.63 | 5134.27            | 9492.39 |

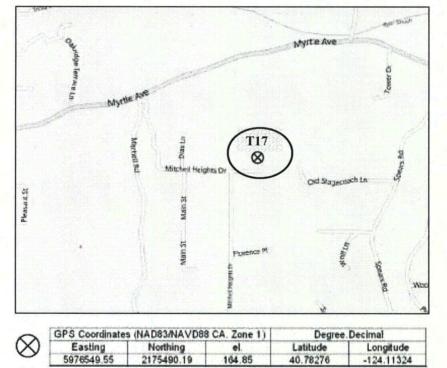





FIGURE A-3 HBPP OFFSITE TLD LOCATIONS Stations 1,14, & 25

| 8  | GPS Coordinates (NAD83/NAVD88 CA. Zone 1) |            |        | Degree Decimal |            |
|----|-------------------------------------------|------------|--------|----------------|------------|
|    | Easting                                   | Northing   | el.    | Latitude       | Longitude  |
| 1  | 5948026.52                                | 2161183.79 | 11.38  | 40.74156       | -124.21903 |
| 14 | 5949876.83                                | 2158864.39 | 18.65  | 40.73533       | -124.20802 |
| 25 | 5950247.30                                | 2154214.18 | 229.22 | 40.72260       | -124.20626 |

### FIGURE A-3 HBPP OFFSITE TLD LOCATIONS (Continued) Station 2


Fortuna TLD Location






### FIGURE A-3 HBPP CONTROL TLD LOCATION (Continued) Station T17

Eureka TLD Location





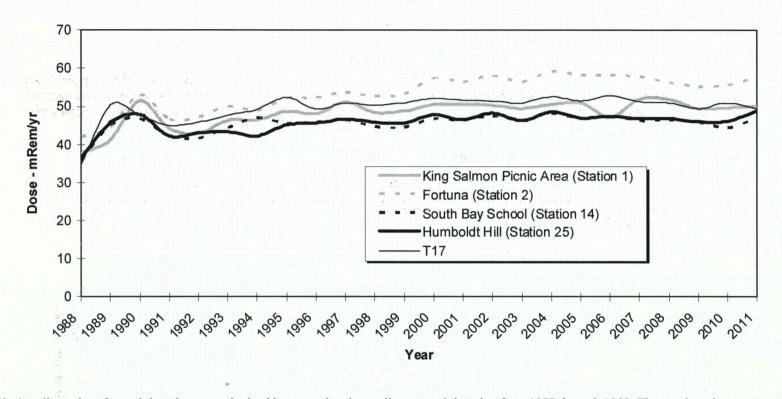



Figure B-1 Offsite Environmental Radiation Level Trends

The baseline values for each location were obtained by averaging the readings at each location from 1977 through 1983. These values, however, were obtained using ion chambers instead of TLDs. The average annual values from 1977 through 1983 were Station 1 - 83.0 mrem, Station 2 - 79.8 mrem, Station 14 - 80.2 mrem, and Station 25 - 73.7 mrem

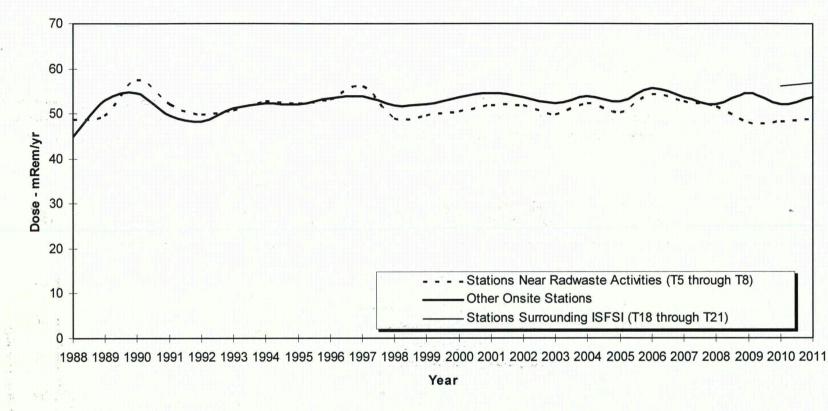



Figure B-2 Onsite Environmental Radiation Level Trends

The baseline values for the two areas were obtained by averaging the readings for each area from 1977 through 1983. These values, however, were obtained using ion chambers instead of TLDs. The average annual value from 1977 through 1983 for the stations near the radwaste activities was 78.6 mrem and the average annual value for other onsite stations was 79.4 mrem.