

Tennessee Valley Authority, 1101 Market Street, Chattanooga, Tennessee 37402

April 9, 2012

10 CFR 50.4

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001

> Browns Ferry Nuclear Plant, Unit 3 Facility Operating License No. DPR-68 NRC Docket No. 50-296

Subject: Browns Ferry Nuclear Plant, Unit 3 Core Operating Limits Report to Support Fuel Loading for Cycle 16 Operation

In accordance with the requirements of Technical Specification 5.6.5.d, the Tennessee Valley Authority is submitting the Browns Ferry Nuclear Plant, Unit 3 Cycle 16, Core Operating Limits Report (COLR), Revision 0. This Unit 3 COLR was issued as an interim measure to include Shutdown Margin Limit in support of fuel loading for Cycle 16 (Mode 5 operation). A revision to the COLR will be issued prior to Cycle 16 startup covering all licensed power levels of operation (Modes 1 through 5).

There are no new commitments contained in this letter. If you have any questions please contact Tom Hess at (423) 751-3487.

Respectfully. hea Manager, Corporate Nuclear Licensing

Enclosure: Core Operating Limits Report, (105% OLTP), for Cycle 16 Operation TVA-COLR-BF3C16, Revision 0

cc: See Page 2

U.S. Nuclear Regulatory Commission Page 2 April 9, 2012

cc: (w/ Enclosure)

NRC Regional Administrator - Region II NRC Senior Resident Inspector - Browns Ferry Nuclear Plant

Enclosure Tennessee Valley Authority Browns Ferry Nuclear Plant Unit 3

Core Operating Limits Report, (105% OLTP), for Cycle 16 Operation TVA-COLR-BF3C16, Revision 0

(See Attached)

ТИА	ND	2	EDMS L32 120321 804 QA Document Pages Affected: All BFE-3238, Revision 0
Nuclear I 1101 Market Stre	Fuel Eng	Jineering - BWRFE Ja, TN 37402	
Brow Core Op	v ns F o	erry Unit 3 Cyc J Limits Report, (105%	le 16 OLTP)
TVA-CO	LR-BF3(C16 Revision 0 (Final) (Revision Log, Page v)	
March 201	2		
	Prepared:	T. W. Eichenberg, Sr. Specialist	Date: March 22, 201
	Verified: _	B. C. Mitchell, Engineer	Date: 3 /22/12
•	Approved:	G. C. Storey, Manager, BWR Fuel En	Date: 3/23/12.
	Reviewed:	W. R. Hayes, Manager, Reactor Engin	_H4%5 Date:3 / 2 8 / 1 3 neering
	Approved:	Chairman, PORC	Date: 32812
	Approved:	Plant Manager	Date: 3128112
		i lan Manager	

Date: March 21, 2012

Table of Contents

Total Number of Pages = 12 (including review cover sheet)

ist of Tablesi	ii
ist of Figuresi	v
evision Log	v
lomenclature	/i
eferences	ii
Introduction	1
1.1 Purpose	1
1.2 Scope	1
1.3 Fuel Loading.	1
1.4 Acceptability	1
Shutdown Margin Limit	3

EDMS: L32 120321 804

Nuclear Fuel Engineering - BWRFE 1101 Market Street, Chattanooga TN 37402

Date: March 21, 2012

List of Tables

Nuclear Fuel Types......2

Date: March 21, 2012

List of Figures

None

Browns Ferry Unit 3 Cycle 16 Core Operating Limits Report, (105% OLTP)

Date: March 21, 2012

Revision Log

Number P	age	Description
	All	New document
-		

Date: March 21, 2012

Nomenclature

APLHGR	Average Planar LHGR	
APRM	Average Power Range Monitor	
AREVA NP	Vendor (Framatome, Siemens)	
BOC	Beginning of Cycle	
BSP	Backup Stability Protection	
BWR	Boiling Water Reactor	
CAVEX	Core Average Exposure	
CD	Coast Down	
CMSS	Core Monitoring System Software	
COLR	Core Operating Limits Report	
CPR	Critical Power Ratio	
CRWE	Control Rod Withdrawal Error	
CSDM	Cold SDM	
DIVOM	Delta CPR over Initial CPR vs. Oscillation Magnitude	
EOC	End of Cycle	
EOOS	Equipment OOS	
FFTR	Final Feedwater Temperature Reduction	
FFWTR	Final Feedwater Temperature Reduction	
FHOOS	Feedwater Heaters OOS	
ft	Foot: english unit of measure for length	
GWd	Giga Watt Day	
HTSP	High TSP	
ICA	Interim Corrective Action	
ICF	Increased Core Flow (beyond rated)	
IS	In-Service	
κW	kilo watt: SI unit of measure for power.	
LCO	License Condition of Operation	
LFWH	Loss of Feedwater Heating	
LHGRFAC	C LHGR Multiplier (Power or Flow dependent)	
LPRM	Low Power Range Monitor	
LRNB	Generator Load Reject, No Bypass	
MAPFAC	MAPLHGR multiplier (Power or Flow dependent)	
MCPR	Minimum CPR	
MSRV	Moisture Separator Reheater Valve	

TVA	NPG	Nuclear Fuel Engineering - BWRFE 1101 Market Street, Chattanooga TN 37402	Date: March 21, 2012
MSRVOOS MTU MWd/MTU	MSRV OOS Metric Ton Uraniu Mega Watt Day pe	ım er Metric Ton Uranium	
NEOC NRC NSS NTSP	Near EOC United States Nuc Nominal Scram Sp Nominal TSP	clear Regulatory Commission	
OLMCPR OOS OPRM OSS	MCPR Operating Out-Of-Service Oscillation Power Optimum Scram S	Limit Range Monitor Speed	
PBDA Pbypass PLU PLUOOS PRNM	Period Based Dete Power, below white Power Load Unba PLU OOS Power Range Neu	ection Algorithm ch TSV Position and TCV Fast Closure Sc alance utron Monitor	crams are Bypassed
RBM RPS RPT RPTOOS	Rod Block Monito Reactor Protection Recirculation Purr RPT OOS	r n System np Trip	
SDM SLMCPR SLO	Shutdown Margin MCPR Safety Lim Single Loop Opera	it ation	
TBV TBVIS TBVOOS TIP TIPOOS TLO TSP TSSS	Turbine Bypass V TBV IS Turbine Bypass V Transversing In-co TIP OOS Two Loop Operati Trip Setpoint Technical Specific	alve alves OOS ore Probe ion cation Scram Speed	

TVA Tennessee Valley Authority

Date: March 21, 2012

References

1. BFE-3253, Revision 0, **Browns Ferry Unit 3 Reload 15 Cycle 16 InCore Shuffle**, Calculation File, Tennessee Valley Authority, February 2012.

Methodology References

- XN-NF-81-58(P)(A) Revision 2 and Supplements 1 and 2, RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model, Exxon Nuclear Company, March 1984.
- 3. XN-NF-85-67(P)(A) Revision 1, Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel, Exxon Nuclear Company, September 1986.
- EMF-85-74(P) Revision 0 Supplement 1(P)(A) and Supplement 2(P)(A), RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model, Siemens Power Corporation, February 1998.
- 5. ANF-89-98(P)(A) Revision 1 and Supplement 1, **Generic Mechanical Design Criteria for BWR Fuel Designs**, Advanced Nuclear Fuels Corporation, May 1995.
- XN-NF-80-19(P)(A) Volume 1 and Supplements 1 and 2, Exxon Nuclear
 Methodology for Boiling Water Reactors Neutronic Methods for Design and Analysis, Exxon Nuclear Company, March 1983.
- XN-NF-80-19(P)(A) Volume 4 Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads, Exxon Nuclear Company, June 1986.
- EMF-2158(P)(A) Revision 0, Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2, Siemens Power Corporation, October 1999.
- 9. XN-NF-80-19(P)(A) Volume 3 Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description, Exxon Nuclear Company, January 1987.
- 10. XN-NF-84-105(P)(A) Volume 1 and Volume 1 Supplements 1 and 2, **XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis**, Exxon Nuclear Company, February 1987.
- ANF-524(P)(A) Revision 2 and Supplements 1 and 2, ANF Critical Power Methodology for Boiling Water Reactors, Advanced Nuclear Fuels Corporation, November 1990.
- 12. ANF-913(P)(A) Volume 1 Revision 1 and Volume 1 Supplements 2, 3 and 4, COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, Advanced Nuclear Fuels Corporation, August 1990.
- 13. ANF-1358(P)(A) Revision 1, **The Loss of Feedwater Heating Transient in Boiling Water Reactors**, Advanced Nuclear Fuels Corporation, September 1992.

- 14. EMF-2209(P)(A) Revision 3, SPCB Critical Power Correlation, Siemens Power Corporation, September 2009.
- 15. EMF-2361(P)(A) Revision 0, **EXEM BWR-2000 ECCS Evaluation Model**, Framatome ANP Inc., May 2001.
- 16. EMF-2292(P)(A) Revision 0, ATRIUM[™]-10: Appendix K Spray Heat Transfer Coefficients, Siemens Power Corporation, September 2000.
- 17. EMF-CC-074(P)(A), Volume 4, Revision 0, BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2, Siemens Power Corporation, August 2000.
- 18. BAW-10255(P)(A), Revision 2, Cycle-Specific DIVOM Methodology Using the RAMONA5-FA Code, Framatome ANP, Inc., May, 2008.

1 Introduction

In anticipation of cycle startup, it is necessary to describe the expected limits of operation.

1.1 Purpose

The primary purpose of this document is to satisfy requirements identified by unit technical specification section 5.6.5. This document may be provided, upon final approval, to the NRC.

1.2 Scope

This version of the COLR is specifically intended to support the refueling outage. Consequently, this document only covers MODE 5 operation of the unit. Operation outside MODE 5 will be addressed in a future COLR revision. This document will discuss the following areas:

 Shutdown Margin (SDM) Limit (Technical Specification 3.1.1)

1.3 Fuel Loading

The core will contain all AREVA NP, Inc., ATRIUM-10 fuel. Nuclear fuel types used in the core loading are shown in Table 1.1. The core shuffle and final loading were explicitly evaluated for BOC cold shutdown margin performance as documented in Reference 1.

1.4 Acceptability

Limits discussed in this document were generated based on NRC approved methodologies per References 2 through 18.

Date: March 21, 2012

Fuel Description	Original Cycle	Number of Assemblies	Nuclear Fuel Type (NFT)	Fuel Names (Range)
ATRIUM-10 A10-4218B-15GV80-FCC	14	108	4	FCC001-FCC216
ATRIUM-10 A10-4218B-13GV80-FCC	14	72	5	FCC219-FCC290
ATRIUM-10 A10-3831B-15GV80-FCD	15	200	6	FCD001-FCD200
ATRIUM-10 A10-3403B-9GV80-FCD	15	20	7	FCD257-FCB276
ATRIUM-10 A10-3392B-10GV80-FCD	15	34	8	FCD221-FCB256
ATRIUM-10 A10-4218B-15GV80-FCC	15	2	9	FCC217-FCC218
ATRIUM-10 A10-4218B-13GV80-FCC	15	4	10	FCC307-FCC310
ATRIUM-10 A10-3757B-10GV80-FCC	15	40	11	FCC335-FCC374
ATRIUM-10 A10-3440B-11GV80-FCE	16	144	12	FCE001-FCE144
ATRIUM-10 A10-3826B-13GV80-FCE	16	44	13	FCE145-FCE188
ATRIUM-10 A10-4075B-13GV80-FCE	16	48	14	FCE189-FCE236
ATRIUM-10 A10-4081B-12GV80-FCE	16	48	15	FCE237-FCE284

Table 1.1 Nuclear Fuel Types*

• The table identifies the expected fuel type breakdown in anticipation of final core loading. The final composition of the core depends upon uncertainties during the outage such as discovering a failed fuel bundle, or other bundle damage. Minor core loading changes, due to unforeseen events, will conform to the safety and monitoring requirements identified in this document.

Browns Ferry Unit 3 Cycle 16 Core Operating Limits Report, (105% OLTP)

Date: March 21, 2012

2 Shutdown Margin Limit

(Technical Specification 3.1.1)

Assuming the strongest OPERABLE control blade is fully withdrawn, and all other OPERABLE control blades are fully inserted, the core shall be sub-critical and meet the following minimum shutdown margin:

SDM > 0.38% dk/k