Appendix C	Job Performance Measure Worksheet	Form ES-C-1	
Facility: <u>Indian Point Unit 2</u>	Task No: _2000020202		
Task Title: Review a Manual ECP Calculation			
194001213 K/A Reference: <u>RO-4.6</u>	37 - Job Performance Measure No:	SRO Admin-1	
Examinee:	NRC Examiner:		
Facility Evaluator:	Date:		
Method of testing:			
Simulated Performance Classroom X	X Actual Performance Simulator Plan	nt	

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- The unit had been operating for 300 Days at 100% power.
- A Unit trip occurred due to a Main Transformer Fire
- The unit has been shutdown for 15 days to effect repairs
- Prior to the trip:
 - Control Bank D at 223
 - Boron Concentrations 975 ppm
- Current Plant Conditions:
 - Tavg 547°F
 - Boron Concentrations 1472
- The Plant Computer is Out of Service
- Estimated time of Criticality 20:00 tonight
- The spare RO prepared a manual ECP

Task Standard: ECP Calculation reviewed and errors found.

Required Materials: Calculator

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
General References:	2-SOP-15.4, Estimated Critical Rod Position and I Concentration Calculation 2-Graph-RV-1 2-Graph-RV-2 2-Graph-RV-3 2-Graph-RV-4 2-Graph-RV-5 2-Graph-RV-5 2-Graph-RV-6 2-Graph-RV-7	Boron

Initiating Cue: You are the CRS and the SM has directed you to review the ECP.

Time Critical Task: No

Validation Time: 45 minutes

Page 3	Form ES-C-
Performance Information	
a check mark √)	
Obtain Correct Procedure and Graph	
Obtains 2-SOP-15.4 and Graphs RV-	-1 through 7
Review data for equilibrium opera to shutdown in Section 1.0 of data	•
Data given in initial conditions. Determines data entered correctly	
Review estimated date, time , RCS T concentration and length of shutdown criticality recorded in Section 2.0 of d	nfor forthcoming
Data given in initial conditions Determine data entered correctly	
	Performance Information a check mark √) Obtain Correct Procedure and Graph Obtains 2-SOP-15.4 and Graphs RV Dotains 2-SOP-15.4 and Graphs RV Review data for equilibrium opera to shutdown in Section 1.0 of data Data given in initial conditions. Determines data entered correctly Review estimated date, time , RCS T concentration and length of shutdown criticality recorded in Section 2.0 of c Data given in initial conditions

	Form ES-C-1
Performance Information	
a check mark √)	
Perform required data entries AND Calculations using referenced graphs.	
Actions listed in Steps below 5 -	
Determine Remaining Rod Worth from	n Graph RV-1
Determines Remaining Rod Worth is Determines data entered correctly at	
Determines Power Defect at Boron	
Interpolate between 950 and 1000 p 1633.9 ± 0.5 and enter at step 4.1 Determine data NOT entered correc	
pcm is incorrect.	
Determine Boron Concentration Diffe	rential
Calculate 9751472 = -497 Determines data entered correctly at	step 5.1
	A check mark √) Perform required data entries AND Creferenced graphs. Actions listed in Steps below 5 - Determine Remaining Rod Worth from Determines Remaining Rod Worth is Determines data entered correctly at Determines data entered correctly at Determine data NOT entered correct pcm is incorrect. Determine Boron Concentration Diffe Calculate 9751472 = -497

Appendix C	Page 5	Form ES-C-1
	Performance Information	
(Denote critical steps with a	a check mark √)	
8. Performance Step:	Determine Boron Worth at Average	Boron Concentration
Standard:	Calculate (975 + 1472)/2 = 1223.5	
Standard.	Determines data entered correctly a	at Step 5.2
Comment:		
9. Performance Step:	Determine boron worth for 1223.5 p	ppm
Standard:	Determines boron worth 7.14 ± 0.01 Determines data entered correctly a	
Comment:		
√10. Performance Step:	Determine Reactivity from boron	change
Standard:	Calculate Reactivity from Boron (3548.6 pcm Determines data NOT entered co	
Comment: NOTE: 3584.6	is NOT correct.	
11. Performance Step:	Determine reactivity due to Tavg at at 547°F	Boron 975 and Tavg
Standard:	Determines Reactivity is 0 pcm from Determines data entered correctly a	•
Comment:		
Comment:		

Appendix C	Page 6	Form ES-C-1
	Performance Information	
(Denote critical steps with a	a check mark √)	
12. Performance Step:	Determine Xe Defect at 100% power	
Standard:	Identifies 2833 pcm from Graph RV-5 Determines data entered correctly at step 7	.1
Comment:		
13. Performance Step:	Determine Sm Defect at 100% power	
Standard:	Identifies 1009 pcm from Graph RV-6	•
	Determines data entered correctly at step 7	.2
Comment:		
14. Performance Step:	Sum of step 7.1 and 7.2	
Standard:	Determines 3842 pcm	2
	Determines data entered correctly at step 7	.3
Comment:		
15. Performance Step:	Determine Xe/Sm Correction Factor	
Standard:	Determines 0.905 from Graph RV-7 Determines data entered correctly at step 7	.4
Comment:		

Appendix C	Page 7	Form ES-C-1
	Performance Information	
(Denote critical steps with	a check mark √)	
16. Performance Step:	Determine Corrected Xe/Sm prior to	shutdown
Standard:	Calculate 3842 X 0.905 = 3477 Determines data entered correctly at	t step 7.5
Comment:		
17. Performance Step:	Determine Xe Power for Startup	
Standard:	Determines Xe power is 100% (esse 36 hours) Determines data entered correctly at	-
Comment:		
18. Performance Step:	Determine Sm Power for Startup	
Standard:	Determine Sm power is 100% (esse 10 days) Determines data entered correctly a	-
Comment:		
19. Performance Step:	Determine Xe defect at startup	
Standard:	Determines -11 pcm from graph RV- Determines data entered correctly a	
Comment:		

Appendix C	Page 8	Form ES-C-1
	Performance Information	
(Denote critical steps with	a check mark √)	
20. Performance Step:	Determine Sm Defect at startup	
Standard:	Determines -1202 pcm from graph RV Determined data entered correctly at s	
Comment:		
21. Performance Step:	Sum 10.1 and 10.2	
Standard:	Calculate -11 + -1202 = -1213 pcm Determines data entered correctly at s	tep 10.3
Comment:		
22. Performance Step:	Determine Xe/Sm Correction Factor at concentration	t startup boron
Standard:	Interpolate to determine Correction Fa Determines data entered correctly at s	
Comment:		
23. Performance Step:	Determine Corrected Xe/Sm at startur)
Standard:	Calculate 1213 X 0.861 = 1044.39 (±1 Determines data entered correctly at s	•
Comment:		

Performance Information	
check mark √)	
Determine Corrected Xenon/Samarium Differential	
Calculate 1044.39 -(-) 3477 = 2432.6 (± 2.0) Determines data entered correctly at step 11.1	
Calculate Total Reactivity Effect	
Sum 0 + 1633.9 +(-) 3548.6+0+243 (CORRECT VALUE) Sum 0 + 1623.9 + (-) 3584.6 + 0 + 2 (INCORRECT VALUE) Determines data NOT entered cor	2432.6 = (+)472
Iculation is correct; however the inp ect causing this number to wrong.	out numbers are
Estimate Critical Rod Position	
Determine Control Bank D at 99 s	teps (± 5) (CORRECT
Determine Control Bank D at 110	Steps (INCORRECT
Determines data NOT entered cor	rectly at step 13.1
	check mark √) Determine Corrected Xenon/Samari Calculate 1044.39 -(-) 3477 = 2432. Determines data entered correctly a Calculate Total Reactivity Effect Sum 0 + 1633.9 +(-) 3548.6+0+243 (CORRECT VALUE) Sum 0 + 1623.9 + (-) 3584.6 + 0 + 2 (INCORRECT VALUE) Determines data NOT entered cor Iculation is correct; however the impect causing this number to wrong. Estimate Critical Rod Position Determine Control Bank D at 99 s VALUE) Determine Control Bank D at 110 VALUE)

Appendix C	Page 10	Form ES-C
	Performance Information	
(Denote critical steps with a	check mark √)	
√ 27. Performance Step:	Sign and Date the Calculations	
Standard:	Determines RO did NOT sign and	date the calculation
Comment:		

Page 11

Form ES-C-1

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION (Page 1 of 8)


HO. LEQUILIBRIUM CONDITIONS PRIOR TO SHULL DOWN		
1.1 DATE	24 January 2012	
TIME	10:00	
1.2 CONTROL BANK	G	
STEPS	223	
1.3 BORON CONCENTRATION (PPM)	975	
1.4 POWER LEVEL (%)	10070	

20 ISTIMATEDICRITICAL CONDITION FOR STAT		
2.1 DATE	TODAY	
TIME	20:00	
2.2 TAVG	547	
2.3 BORON CONCENTRATION (PPM)	1472	
2.4 LENGTH OF SHUTDOWN (HRS)	7625	
FROM DATE/TIME	24 January 2012	

Sev RODIDIFEERENTIA			
3.1 REMAINING ROD WORTH AT POSITION (1.2) GRAPH RV-1	9 9 9	U	(#463) ²

4.1 POWER DEFECT AT BORON (1.3) AND POWER (1.4) GRAPH RV-2	(1623.9) - 203.

ANSWER KEY

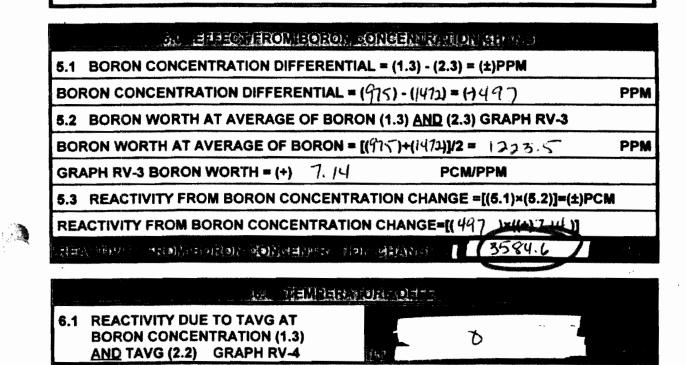
Page 7 of 14

Page 12

Form ES-C-1

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10


À

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

(Page 2 of 8)

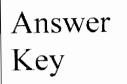
NOTE

The sign of reactivity in section 5.0 will be negative (-) <u>IF</u> boron at estimated critical condition is greater than boron at prior to shutdown condition (and vice versa).

Answer Key

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10


••

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION (Page 3 of 8)

AC XENON/SAMARIUMPRIORIE SUBADON		
7.1 Xe DEFECT AT POWER (1.4) AND TIME ZERO GRAPH RV-5	() 2833	PCM
7.2 Sm DEFECT AT POWER (1.4) AND TIME ZERO GRAPH RV-6	() 1009	PCM
7.3 SUM OF ITEMS (7.1) AND (7.2)	(·) 3842	PCM
7.4 Xe/Sm CORRECTION FACTOR AT BORON(1.3) GRAPH RV-7	0.905	
7.5 CORRECTED Xe/Sm PRIOR TO SHUTDOWN = [(7.3)×(7.4)]= (-) PCM		
CORRECTED Xe/Sm PRIOR TO	SHUTDOWN = [((-)3842)*(.705)]	
CORRECTED Xe/Sm PRIOR TO	SHUTDOWN = (-) 3477	PCM

ALL MARCHINES FOR STRATES			
8.1-HRS PRIOR TO SHUTDOWN	AVERAGE PERCENT POWER	MULTIPLIER	PRODUCT
0-1		0.07	
1-4		0.23	
4-9		0.22	
9-16		0.20	
16-25		0.22	
25-36		0.06	
		an a	SUM TOTAL %

8.2 XENON POWER = SUM TOTAL (8.1) <u>OR</u> = PERCENT POWER <u>IF</u> POWER ESSENTIALLY CONSTANT FOR LAST 36 HOURS. XENON % =

•

2

Page 14

Form ES-C-1

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

(Page 4 of 8)

HAU SAMARIUMEPOWERREDIR SPARAU		
9.1-DAYS PRIOR TO SHUTDOWN	AVERAGE POWER	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
SUM TOTAL		
9.2 SAMARIUM POWER = SUM TOTAL/10 SAMARIUM POWER/10 = PERCENT <u>OR</u> = PERCENT <u>IF</u> POWER ESSENTIALI SAMARIUM % =	LY CONSTANT FOR LAST 10 DAYS	

Answer Key

Page 10 of 14

Page 15

Form ES-C-1

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

-

1

1

•

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

(Page 5 of 8)

TURO XÉNON/SYAMA	RUNASS	ARTE	
10.1 Xe DEFECT AT POWER (8.2) AND TIME (2.4) GRAPH RV-5	(-)	11	PCM
10.2 Sm DEFECT AT POWER (9.2) AND TIME (2.4) GRAPH RV-8	(-)	1202	PCM
10.3 SUM OF (10.1) + (10.2)	(-)	1213	PCM
10.4 Xe/Sm CORRECTION FACTOR AT BORON (2.3) GRAPH RV-7		0.861	
10.5 CORRECTED Xe/Sm AT STARTUP = (10).3) × (10.4) :	= (-) PCM	
CORRECTED Xe/Sm AT STARTUP =	(1)×(,8/1)		PCM

EFIG. ANDREAGENEER STREET FIGURES		
11.1 CORRECTED XENON/SAMARIUM DIFFERENTIAL = (10.5) - (7.5)		(±)PĊM
CORRECTED XENON/SAMARIUM DIFFERENTIAL =		
[(-) 1044.50 - [(-)3477] =	7 2432.4	- 19 A.

Answer Key

Page 11 of 14

Page 12 of 14

Appendix C

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

Form ES-C-1

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

Page 16

(Page 6 of 8)

NOTE

IE Total Reactivity Effect in step 12.1 is negative <u>OR IF</u> estimated Critical Rod Position step 13.1 differs from desired startup position, <u>THEN</u> a Boron Concentration Adjustment is required per Section 14.0

TERO MODELLE FACILITERA	न्त्र द ेश
12.1 TOTAL REACTIVITY EFFECT = (3.1) + (4.1) + (5.3) + (6.1) + (11.1)	(±)PCM
TOTAL REACTIVITY EFFECT = ()+()+()+()+()	(172)
0+10239+(-)(3534.6)+0+2432.4	(+) 412 PCM

ISHO JESHIMATED GRADINAL ROLD 205		
13.1 POSITION AT REACTIVITY (12.1) GRAPH RV-1	BANK	STEPS
	Ū.	110

ISTIMATER EREMAN	RO/ORS/IRLAGHOR ANGINEER	DWE

1521MANT HREVIEWED BY (SM/REAST OR ENGINEER)	ĐAT:
·	

Answer Key

Appendix C

 $\sim \delta_{\lambda}$

Page 17

Form ES-C-1

Carlos and the second

έ.

INDIAN POINT ENERGY CENTER UNIT NO. 2 - CYCLE 20

Bank Overlap Remaining Rod Worth

D - Bank Steps	Worth PCM
223	0(3.1)
213	12
203	40
193	83
183	134
173	18 6
163	236
153	284
143	330
133	374
123	417
113	459
100	515
9 3	547
83	5 99
73	6 59
63	727
53	801
43	878
33	955
23	1028
13	1094
3	1149
0	116 4
C - Bank Steps	
113	1203
100	1253
MOL 10000 M	

Ref. Cycle 20 NuPOP HZP (MOL - 12000 MWD/MTU) Rev. 60 Answer Key

RE PROVED 24/11 5 EFFECTIVE DATE

Z-GRAPH-RV-1

17 of 32

Appendix C Pa	age 18	Form ES-C-1
---------------	--------	-------------

المستحد المستعل المناه المحافظ المحافظ المحال المرياد المرياد

Indian Point Unit 2 Cycle 20 TOTAL POWER DEFECT (pcm) AS A FUNCTION OF POWER AND BORON CONCENTRATION AT MOL (12000 MWD/MTU)

Boron										POW	ER LEVE	_ (%)									
Conc.	Û	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
(ppm)																					4763.6
600	0.0	102.8	202.6	299.6	394.4	487.0	577.9	667.2	755.2	842.0	927.9	1013.0	1097.4	1181.2	1264.4	1347.2	1429.5	1511.3	1592.6		1753.5
650	0.0	102.0	201.1	297.4	391.5	483.4	573.6	662 2	749.5	835.6	920.7	1004.9	1088.5	1171.4	1253.7	1335.5	1416.8	1497.6	1577.9	1657.6	1736.6
700	0.0	101.3	199.6	295.3	388.6	479.9	569.4	657.3	743.9	829.2	913.6	997.0	1079.7	1161.7	1243.1	1324.0	1404.3	1484.1	1563.4	1642 0	1720.0
750	0.0	100.5	198.2	293.2	385.9	476.5	565.3	652.5	738.4	823.0	906.6	989.2	1071.1	1152.2	1232.8	1312.7	1392.1	1470.9	1549.1	1626.7	1703.7
800	0.0	99.8	196.8	291.1	383.1	473.1	561.3	647.8	733.0	816.9	899.7	981.6	1062.6	1142.9	1222 6	1301.6	1380.0	1457.9	1535.1	1611.8	1687.7
B50	0.0	99.1	195.4	289.1	380.4	469.8	557.3	643.2	727.7	810.9	893.0	974.1	1054.3	1133.8	1212.6	1290.7	1368.2	1445.1	1521.4	1597.0	1672.0
900	0.0	98.4	194.0	287.1	377.8	466.5	553.4	638.6	722.4	805.0	886.3	966.7	1046.2	1124.9	1202.8	1280.0	1356.6	1432.6	1507.9	1582.6	1650.5
950	0.0	97.7	192.7	285.1	375.2	463.3	549.6	634.2	717.3	799.2	879.8	959.5	1038.2	1116.1	1193.2	1269.5	1345.2	1420.3	1494.7	1568.4	1641.4
1000	0.0	97.1	191.4	283.2	372.7	460.2	545.8	629.8	712.3	793.5	873.5	952.4	1030.3	1107.4	1183.7	1259.2	1334.1	1408.2	1481.7	1554.4	1626.5
1050	0.0	96.4	190.1	281.3	370.2	457.1	542.1	625.5	707.4	787.9	867.2	945.4	1022.6	1098.9	1174.4	1249.1	1323.1	1396.3	1468.9	1540.7	1611.8
1100	0.0	95.8	188.9	279.5	367.8	454.1	538.5	621.3	702.5	782.4	861.0	938.5	1015.0	1090.6	1165.3	1239.2	1312.3	1384.7	1456.3	1527.3	1597.4
1150	0.0	95.2	187.6	277.7	365.4	451.1	535.0	617.1	697.7	777.0	855.0	931.8	1007.6	1082.4	1156.3	1229.4	1301.7	1373.2	1444.0	1514.0	1583.3
1200	0.0	94.6	186.4	275.9	363.1	448.2	531.5	613.0	693.1	771.7	849.0	925.2	1000.2	1074.3	1147.5	1219.8	1291.3	1362.0	1431.9	1501.0	1569.4
1250	0.0	94.0	185.3	274.1	360.8	445.3	528.0	609.0	688.5	766.5	843.1	918.6	993.0	1066.4	1138.8	1210.4	1281.1	1350.9	1420.0	1488.3	1555.8
1300	0.0	93.4	184.1	272.4	358.5	442.5	524.7	605.1	683.9	761.3	837.4	912.2	986.0	1058.6	1130.3	1201.1	1271.0	1340.1	1408.3	1475.7	1542.3
1350	0.0	92.8	183.0	270.7	356.3	439.8	521.4	601.2	679.5	756.3	831.7	905.9	979.0	1051.0	1122.0	1192.0	1261.1	1329.4	1396.8	1463.4	1529.2
1400	0.0	92.2	181.8	269.1	354.1	437.0	518.1	597.4	675.1	751.3	826.2	899.8	972.2	1043.5	1113.7	1183.0	1251.4	1318.9	1365.5	1451.3	1516.2
1475	0.0	91.4	180.2	266.6	350.9	433.0	513.3	591.8	668.7	744.0	818.0	890.7	962.1	1032.4	1101.6	1169.9	1237.1	1303.5	1368.9	1433.5	1497.2
1550	0.0	90.6	178.6	264.3	347.7	429.1	508.6	586.4	662.4	736.9	810.0	881.8	952.3	1021.6	1089.6	1157.0	1223.2	1288.4	1352.7	1416.1	1478.6
1625	0.0	89.8	177.1	262.0	344.7	425.3	504.1	581.0	656.3	730.0	802.2	873.1	942.7	1011.1	1078.3	1144.5	1209.6	1273.7	1336.9	1399.2	1460.5
1700	0.0	89.0	175.5	259.7	341.7	421.6	499.6	575.8	650.3	723.2	794.6	864.6	933.3	1000.8	1067.0	1132.2	1196.3	1259.4	1321.5	1382.6	1442.9

Answer Key

1633.9 RE-Approved 5/24/11 (4.1) Effective Date

2-GRAPH-RV-2

Ref. Cycle 20 NuPOP (MOL - 12000 MWD/MTU) Rev. 50 , sinda (

Page 19

Form ES-C-1

INDIAN POINT STATION UNIT NO. 2 - CYCLE 20

Differential Boron Worth (MOL)

Boron Concentration (PPM)	Differential Boron Worth (PCM/PPM)
0	8.10
75	8.08
150	8.00
225	7.93
300	7.86
375	7,80
450	7.74
5 25	7.68
600	7.62
67 5	7.56
750	7.50
825	7.44
900	7.38
975	7.33
1050	7.27
1125	7.22
1200 1 203 5 1275	7.16 7.14 (5.3) 7.11
1350	7.06
1425 Ans	wer 7.01
1500 Key	6.96
1575	6.91
1650	6.86
1725	6.81
1800	6.76 5 7
	Effe

Ref. Cycle 20 NuPOP - MOL (12000 MWD/MTU) Rev. 49

2-GRAPH-RV-3

RE- Approved

5/24/11 Effective Date

Appendix C	Page 20	Form ES-C-1

Indian Point Unit 2 Cycle 20

Total Temperature Defect (PCM) as a Function of Temperature and Boron Concentration MOL/EOL (18000 MWD/MTU)

					Core A	verage Ten	nperature ((F)				
Boron	350	360	380	400	420	440	460	480	500	520	540	547
Conc. (ppm)												
600	2242	2201	2096	1960	1793	1594	1364	1103	810	487	132	0
650	2152	2114	2017	1888	1729	1539	1319	1067	785	472	128	0
700	2062	2028	1938	1818	1667	1485	1274	1032	759	457	124	0
750	1974	1944	1860	1747	1605	1432	1229	997	734	442	120	0
800	1887	1860	1784	1678	1543	1379	1185	962	709	427	11 6	0
850	1800	1777	1708	1610	1483	1327	1142	928	685	413	112	0
900	1715	1694	1632	1542	1422	1275	1099	894	661	399	108	<u>o</u>
950	1630	1613	1558	1474	1363	1223	1056	860	636	385	105	() (. i)
1000	1546	1532	1484	1408	1304	1173	1014	827	612	371	101	Qen
1050	1463	1453	1411	1342	1246	1122	972	794	589	357	97	0
1100	1381	1374	1338	1276	1188	1072	930	761	565	343	94	Ð
1150	1300	1295	1267	1212	1130	1023	889	728	542	329	90	0
1200	1219	1218	1195	1147	1073	973	848	696	519	315	86	0
1250	1139	1141	1125	1084	1017	925	807	664	496	302	83	0
1300	1060	1064	1055	1020	961	876	767	632	473	288	79	0
1350	981	989	985	957	905	828	726	600	450	275	76	0
1400	903	914	916	895	849	780	686	569	427	262	72	0
1450	826	839	848	833	794	732	647	538	405	248	69	0
1500	749	765	780	771	740	685	607	506	382	235	65	0
1550	673	692	712	710	685	638	568	475	360	222	62	0
1600	597	619	645	650	632	592	529	445	338	209	58	0
1650	522	547	579	589	578	545	491	414	316	196	55	0
1700	448	475	513	530	525	499	452	384	294	183	51	0
1750	375	404	448	471	473	454	414	354	273	171	48	0
1800	302	334	383	412	421	409	377	324	251	158	45	0
1850	230	265	320	354	369	364	340	295	230	146	41	0
1900	159	197	257	298	319	321	303	266	209	133	38	0
1950	89	129	195	241	269	278	267	238	189	121	35	0

Answer Key

C Typi RE APPROVED

10/25/200

Ref. Cycle 20 NuPOP MOL/EOL (18000 MWD/MTU) Rev. 54

2-GRAPH-RV-4

|--|

Indian Point Unit 2 Cycle 20 Xenon Worth (PCM) versus Time Following Plant Trip After Steady State Operation at MOL (12000 MWD/MTU) (Page 1 of 2)

Time After Trip (Hours)

								r (
Power													~~	56
(%)	0	2	4	6	8	10	12	14	16	18	20	25	30	35
100	(-2833)()-3471	-3822	-3963	-3955	-3843	-3662	-3438	-3190	-2931	-2673	-2067	-1554	-1146
95	-2791	-3395	-3725	-3854	-3840	-3727	-3549	-3330	-3087	-2836	-2585	-1998	-1501	-1106
90	-2749	-3319	-3627	-3744	-3725	-3612	-3436	-3221	-2985	-2741	-2498	-1929	-1449	-1067
85	-2706	-3244	-3530	-3635	-3610	-3496	-3322	-3113	-2883	-2646	-2410	-1860	-1396	-1028
80	-2664	-3168	-3433	-3525	-3495	-3380	-3209	-3004	-2781	-2551	-2323	-1791	-1344	-989
75	-2602	-3066	-3307	-3385	-3349	-3234	-3067	-2869	-2653	-2433	-2214	-1705	-1279	-941
70	-2539	-2964	-3180	-3245	-3203	-3088	-2925	-2733	-2526	-2314	-2105	-1620	-1214	-882
65	-2477	-2862	-3054	-3105	-3057	-2942	-2782	-2597	-2398	-2196	-1996	-1534	-1149	-844
60	-2414	-2760	-2927	-2965	-2911	-2796	-2640	-2461	-2271	-2077	-1887	-1448	-1084	-796
55	-2319	-2625	-2768	-2793	-2735	-2621	-2472	-2302	-2122	-1939	-1760	-1350	-1009	-740
50	-2223	-2490	-2608	-2621	-2559	-2447	-2304	-2142	-1972	-1801	-1634	-1251	-934	-685
45	-2128	-2354	-2449	-2449	-2383	-2273	-2136	-1983	-1823	-1663	-1507	-1152	-859	-630
40	-2032	-2219	-2289	-2277	-2207	-2099	-1968	-1824	-1674	-1526	-1381	-1053	-784	-574
35	-1870	-2023	-2076	-2056	-1987	-1886	-1765	-1634	-1498	-1364	-1234	-840	-699	-511
30	-1708	-1828	-1862	-1836	-1768	-1674	-1563	-1444	-1322	-1202	-1087	-826	-614	-448
25	-1546	-1632	-1648	-1615	-1548	-1461	-1360	-1254	-1147	-1041	-940	-712	-528	-386
20	-1384	-1436	-1434	-1394	-1329	-1248	-1158	-1064	-971	-879	-792	-599	-443	-323
15	-1121	-1151	-1142	-1104	-1049	-982	-909	-834	-759	-687	-618	-466	-344	-250
10	-858	-866	-849	-814	-768	-715	-659	-603	-547	-494	-444	-333	-245	-178
5	-429	-433	-425	-407	-384	-358	-330	-301	-274	-247	-222	-167	-123	-89
0	0	0	0	0	0	0	0	0	0	0	0	00	0	0

Answer Key

Ref. Cycle 20 NuPOP MOL (12000 MWD/MTU) Rev. 46

RE APPROVED

5/241 11 EFFECTIVE DATE

2-GRAPH-RV-5

•			-		-1	. .	\sim
A	n	n	ρ	n	а	IY	С
	~	~	U		ч	17	\sim

Page 22

Form ES-C-1

Indian Point Unit 2 Cycle 20 Xenon Worth (PCM) versus Time Following Plant Trip After Steady State Operation at MOL (12000 MWD/MTU) (Page 2 of 2)

Time After Trip (Hours) -

Power													400
(%)	40	45	50	55	60	65	70	75	80	85	90	95	$(-11)^{(10,1)}$
100	-832	-598	-426	-301	-212	-148	-103	-72	-50	-34	-24	-16	Second and the second sec
95	-804	-577	-411	-290	-204	-143	-100	-69	-48	-33	-23	-16	-11
90	-775	-556	-396	-280	-197	-138	-96	-67	-46	-32	-22	-15	-10
85	-746	-536	-381	-269	-189	-133	-92	-64	-45	-31	-21	-15	-10
80	-718	-515	-367	-259	-182	-127	-89	-62	-43	-30	-20	-14	-10
75	-682	-490	-348	-246	-173	-121	-84	-59	-41	-28	-19	-13	-9
70	-647	-464	-330	-233	-164	-115	-80	-55	-38	-27	-18	-13	-9
65	-612	-439	-312	-220	-155	-108	-75	-52	-36	-25	-17	-12	-8
60	-576	-413	-294	-207	-146	-102	-71	-49	-34	-24	-16	-11	-8
55	-536	-384	-273	-193	-135	-95	-66	-46	-32	-22	-15	-10	-7
50	-496	-355	-252	-178	-125	-87	-61	-42	-29	-20	-14	-10	-7
45	-455	-326	-231	-163	-115	-80	-56	-39	-27	-19	-13	-9	-Ô
40	-415	-297	-211	-149	-104	-73	-51	-35	-24	-17	-12	-8	-6
35	-369	-264	-187	-132	-93	-65	-45	-31	-22	-15	-10	-7	-5
30	-324	-231	-164	-116	-81	-57	-39	-27	-19	-13	-9	-6	-4
25	-278	-198	-141	-99	-69	-48	-34	-23	-16	-11	-8	-5	-4
20	-232	-166	-117	-83	-58	-40	-28	-19	-13	-9	-6	-4	-3
15	-180	-128	-91	-64	-45	-31	-22	-15	-10	-7	-5	-3	-2
10	-128	-91	-64	-45	-32	-22	-15	-11	-7	-5	-3	-2	-2
5	-64	-45	-32	-23	-16	-11	-8	-5	-4	-3	-2	-1	-1
0	0	0	0	0	0	0	0	0	0	0	0	0	0

Answer Key

RE APPROVED 5/24/11 EFFECTIVE DATE

2-GRAPH-RV-5

Ref. Cycle 20 NuPOP MOL (12000 MWD/MTU) Rev. 46

Answer Key

19.25 -1043 -1054 -1063 -1072 -1080 -1088 -1102 -1114 -1125 -1135 -1143 -1150 -1162 -1172 -1179 -1184 -1189 -1192 -1195 -1196 -1198 -1169 -1201 (1202) (10-2) 100 -1009 -1021 -1033 95 - 1016 - 1028 - 1039 - 1049 - 1059 - 1068 - 1077 - 1085 - 1092 - 1106 - 1118 - 1129 - 1136 - 1146 - 1153 - 1165 - 1174 - 1181 - 1186 - 1190 - 1196 - 1196 - 1196 - 1199 - 1200 - 1202 - 1203 90 -1023 -1035 -1045 -1056 -1065 -1074 -1082 -1050 -1057 -1111 -1122 -1133 -1142 -1149 -1156 -1168 -1177 -1183 -1189 -1193 -1196 -1198 -1200 -1201 -1202 -1204 -1205 -1040 -1051 -1060 -1070 -1078 -1086 -1094 -110) -1114 -1125 -1135 -1144 -1151 -1158 -1169 -1178 -1184 -1189 -1193 -1196 -1198 -1200 -1201 -1202 -1204 -1205 85 -1029 80 -1036 -1047 -1057 -1066 -1075 -1084 -1091 -1099 -1106 -1118 -1129 -1138 -1147 -1154 -1161 -1171 -1180 -1196 -1191 -1194 -1197 -1200 -1201 -1203 -1204 -1205 -1206 75 -1048 -1058 -1068 -1077 -1085 -1083 -1101 -1108 -1114 -1126 -1137 -1146 -1154 -1161 -1167 -1177 -1185 -1191 -1195 -1199 -1202 -1204 -1206 -1207 -1208 -1209 -1210 70 -1060 -1070 -1079 -1088 -1096 -1103 -1111 -1117 -1123 -1135 -1145 -1153 -1161 -1168 -1174 -1183 -1197 -1201 -1205 -1207 -1209 -1211 -1212 -1213 -1214 -1215 65 - 1072 - 1081 - 1090 - 1096 - 1106 - 1113 - 1120 - 1126 - 1132 - 1143 - 1152 - 1161 - 1168 - 1174 - 1180 - 1189 - 1196 - 1202 - 1206 - 1209 - 1212 - 1214 - 1215 - 1216 - 1217 - 1218 - 1219 60 -1064 -1083 -1101 -1109 -1116 -1123 -1129 -1135 -1141 -1151 -1160 -1168 -1175 -1181 -1188 -1195 -1201 -1207 -1211 -1214 -1216 -1218 -1219 -1220 -1221 -1223 -1223 55 -1103 -1111 -1119 -1126 -1133 -1140 -1146 -1151 -1157 -1166 -1175 -1182 -1189 -1194 -1199 -1207 -1214 -1219 -1222 -1226 -1228 -1228 -1228 -1231 -1232 -1234 -1234 50 -1123 -1131 -1136 -1145 -1151 -1157 -1153 -1168 -1173 -1182 -1190 -1197 -1203 -1208 -1213 -1220 -1228 -1231 -1234 -1237 -1239 -1241 -1242 -1243 -1244 -1245 -1245 -1245 45 -1142 -1149 -1156 1162 -1166 1174 -1179 -1184 -1188 -1197 -1204 -1210 -1216 -1221 -1225 -1238 -1242 -1245 -1245 -1248 -1250 -1251 -1252 -1253 -1254 -1255 -1255 -1255 40 -1161 -1168 -1174 -1180 -1165 -1190 -1165 -1200 -1204 -1211 -1218 -1224 -1229 -1234 -1234 -1248 -1249 -1253 -1258 -1258 -1268 -1261 -1262 -1263 -1264 -1265 -1265 35 - 1191 - 1197 - 1203 - 1208 - 1218 - 1222 - 1226 - 1230 - 1237 - 1243 - 1249 - 1253 - 1257 - 1261 - 1267 - 1275 - 1275 - 1276 - 1280 - 1280 - 1283 - 1284 - 1285 - 1285 - 1286 39 -1221 -1226 -1232 -1236 -1241 -1245 -1249 -1253 -1256 -1263 -1268 -1273 -1277 -1281 -1284 -1290 -1294 -1297 -1300 -1302 -1303 -1304 -1305 -1306 -1306 -1306 -1307 -1308 25 -1250 -1255 -1260 -1264 -1268 -1272 -1275 -1279 -1282 -1287 -1292 -1297 -1301 -1304 -1307 -1312 -1315 -1318 -1321 -1322 -1324 -1325 -1326 -1326 -1326 -1326 -1326 -1326 -1326 -1348 -1348 -1349 20 -1280 -1284 -1288 -1292 -1296 -1299 -1302 -1305 -1308 -1313 -1317 -1321 -1325 -1328 -1330 -1335 -1338 -1340 -1342 -1344 -1345 -1346 -1347

Indian Point Unit 2 Cycle 20 Effective Samarium Worth (PCM) vs Time Following Plant Trip After Steady State Operation at MOL (12000 MWD/MTU)

70

Page 23

Time After Trip (Hours)

Form ES-C-1

50 50 100 120 140 160 180 200 220 240 260 280 300 350 400

-1347 - 4 RE APPROVED

5/24

2-GRAPH-RV-6

Ref. Cycle 20 NuPOP Rev. 47

Power

(%)

0

10 15 20 25

Appendix C

Page 24

and a second	Xs		IAN POINT S T NO. 2 - CY Sm) Correction	CLE 20	· · ·	× • 1
	Boron Concentr	ation (PPM)	Xe/Sm	Correction Factor	۲	
	0			1.000		
	75			0.9 92		
	150			0.985		
	225			0.977		
	300			0.970		
	375			0.962		
	450			0.955		
	525			0.948		
	600			0.941		
	675			0.934		
	750			0.926		
	825			0.919		
and the second s	900			0.912	-1)	
	975				7.4)	
	105 0			0.899		
	1125	Angur	~**	0.892		
	1200	Answe Key	er	0.885		
	1275	Kev		0.878		
	1350	itey		0.872		
	1425 (473- 1500			0.865 0.861 (10 0.858	().()	
	1575			0.852		
	1650			0.845		0.1
	1725			0.839	All	11-
	1800			0.832	RE - Appr	oved
					5/24	11
	Ref. Cycle 20 NuPOP - MC	DL (12000 MWD/M	TU)			

Ref. Cycle 20 NuPOP - MOL (12000 MWD/MTU) Rev. 50

2-GRAPH-RV-7

Appendix C

Page 25

VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

A	ope	nd	ix	C

Initial Conditions:

- The unit had been operating for 300 Days at 100% power.
- A Unit trip occurred due to a Main Transformer Fire
- The unit has been shutdown for 15 days to effect repairs
- Prior to the trip:
 - Control Bank D at 223
 - Boron Concentrations 975 ppm
- Current Plant Conditions:
 - o Tavg 547°F
 - Boron Concentrations 1469
- The Plant Computer is Out of Service
- Estimated time of Criticality 20:00 tonight
- •
- •

Initiating Cue:

You are the Spare RO and the CRS has directed you to perform an ECP by hand.

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION (Page 1 of 8)

10 LEQUILIBRIUM CONDITIONS PRIOR TO SHUTDOWN						
1.1 DATE	24 January 2012					
TIME	10:00					
1.2 CONTROL BANK	G					
STEPS	203					
1.3 BORON CONCENTRATION (PPM)	975					
1.4 POWER LEVEL (%)	100%					

23.0 (ESTIMATED)CRITICAL	CONDITION FOR STARTED
2.1 DATE	TODAV
TIME	20100
2.2 TAVG	547
2.3 BORON CONCENTRATION (PPM)	1472
2.4 LENGTH OF SHUTDOWN (HRS)	7425
FROM DATE/TIME	24 January 2012

8:0 RODIDIFFERENTIAL	n fer sen en fer fer fer en en en en fer føret i som en	han an a
3.1 REMAINING ROD WORTH AT POSITION (1.2) GRAPH RV-1	de D	- (BG)

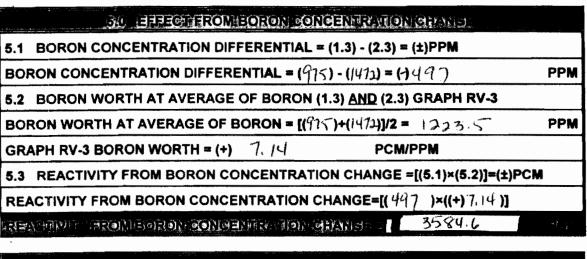
250 POWER/DEFEG	
4.1 POWER DEFECT AT BORON (1.3) AND POWER (1.4) GRAPH RV-2	1623.9 - Par

2

A

Form ES-C-1

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION


2-SOP-15.4 Rev. 10

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

(Page 2 of 8)

NOTE

The sign of reactivity in section 5.0 will be negative (-) <u>IF</u> boron at estimated critical condition is greater than boron at prior to shutdown condition (and vice versa).

1980 TREMINER	CARDADADA
6.1 REACTIVITY DUE TO TAVG AT BORON CONCENTRATION (1.3) AND TAVG (2.2) GRAPH RV-4	

· ·

્રિ

1.00

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

(Page 3 of 8)

	740 XENON/SAMARIU	UMPRIOR	DE SHUTDOWN	
7.1	Xe DEFECT AT POWER (1.4) AND TIME ZERO GRAPH RV-5	(-)	2833	PCM
7.2	Sm DEFECT AT POWER (1.4) AND TIME ZERO GRAPH RV-6	(-)	1009	PCM
7.3	SUM OF ITEMS (7.1) AND (7.2)	(-)	3842	PCM
	Xe/Sm CORRECTION FACTOR AT BORON(1.3) GRAPH RV-7		0.905	
7.5	CORRECTED Xe/Sm PRIOR TO SHU		[(7.3)×(7.4)]= (-) PCM	
	CORRECTED Xe/Sm PRIOR TO SHU	TDOWN =	[((-)3842)*(.905)]	
	CORRECTED Xe/Sm PRIOR TO SHU	TDOWN =	() 3477	PCM

8.1-HRS PRIOR TO SHUTDOWN	AVERAGE PERCENT POWER	MULTIPLIER	PRODUCT
0-1		0.07	
1-4		0.23	
4-9		0.22	
9-16		0.20	
16-25		0.22	
25-36		0.06	
			SUM TOTAL
	= SUM TOTAL (8.1) <u>OR</u> ONSTANT FOR LAST 36		

ŗ

A

Form ES-C-1

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

(Page 4 of 8)

940 SAMARIUMPOWERNEORSTARTU		
9.1-DAYS PRIOR TO SHUTDOWN	AVERAGE POWER	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
SUM TOTAL		
9.2 SAMARIUM POWER = SUM TOTAL/10 SAMARIUM POWER/10 = PERCENT <u>OR</u> = PERCENT <u>IF</u> POWER ESSENTIAL SAMARIUM % =	LY CONSTANT FOR LAST 10 DAYS	

••

)

Initial Conditions

Form ES-C-1

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

(Page 5 of 8)

RIUMATIST	ARARD):	
(-)	11	PCM
(-)	1202	PCM
(-)	1213	PCM
	0.861	
		РСМ
	(-) (-) (-)	(-) 1202 (-) 1213

۰.	5.00000000
	C
	N

BUL SOLRES GENERAL SOLES OF THE STREET	NEMAN
11.1 CORRECTED XENON/SAMARIUM DIFFERENTIAL = (10.5) - (7.5)	(±)PĊM
CORRECTED XENON/SAMARIUM DIFFERENTIAL =	
[(-)1044.31]-[(-)3477]=	+ 2432.6

A

: **A**

j.

Initial Conditions

Form ES-C-1

ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

(Page 6 of 8)

NOTE

<u>IF</u> Total Reactivity Effect in step 12.1 is negative <u>OR IF</u> estimated Critical Rod Position step 13.1 differs from desired startup position, <u>THEN</u> a Boron Concentration Adjustment is required per Section 14.0

120 ROMAGREACHWIR GEAL	2	······································
12.1 TOTAL REACTIVITY EFFECT = (3.1) + (4.1) + (5.3) + (6.1) + (11.1)		(±)PCM
TOTAL REACTIVITY EFFECT = ()+()+()+()+() 6 + 1039+(3539,1)+6 + 2432.4	(+) 472	PCM

ISHO IESTIMATE MARILITAL AROLD POSINED.			
13.1 POSITION AT REACTIVITY (12.1) GRAPH RV-1	BANK	STEPS	
	Ð	110	

ISTIMATERERIORMEDIBY (RO/ORS/REACTORIENG)NEER	

ISTIMATEREVIEWEDBM(SM/REACTORENGINEER)	27.25

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
Facility: Indian Point Unit 2	Task No:0080030402	2
Task Title: Determine Isc	olation Boundaries for CCW Leak U	sing Plant Print
194001212 K/A Reference: SRO 4.2	25 Job Performance Measure No:	e SRO Admin-2
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Method of testing: Simulated Performance	X Actual Performance	
Classroom X	_ Simulator F	Plant

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- The plant is in cold shutdown on RHR
- CCW Surge Tank level is lowering at approximately 0.5% per minute
- The NPO in Containment reports a significant leak downstream of Check Valve 770.

Task Standard: Isolation boundary valves identified and NPOs notified to close valves.

Required Materials:

General References: 227781 Auxiliary Coolant System sheet 1 9321-2720 Auxiliary Coolant System sheet 2 9321-2746 Isolation Valve Seal Water System

Initiating Cue: You are the FSS and the CRS has directed you to identify all valves that must be shut to isolate the leak on Check Valve 770. Time Critical Task: No

Validation Time: 25 minutes

Appendix C	Page 2	Form ES-C-1
	Performance Information	
(Denote critical steps with	a check mark √)	
1. Performance Step:	Obtain Prints	
9321-	Obtains Prints: 31 Auxiliary Coolant System sheet 1 2720 Auxiliary Coolant System sheet 2 2746 Isolation Valve Seal Water System	
Comment:		
$\sqrt{2}$. Performance Step:	Determine MOV-769/797 must be shu	ıt
Standard:	Identifies MOV-769/797 must be shut	:
Comment: Both valves room.	s are operated from the same switch ir	n the control
√3. Performance Step:	Determine 734C must be shut	
Standard:	Identifies 734C, Supply Stop must be	e shut
Comment: Print 9321-	2720	

Appendix C	Page 3	Form ES-C-1
	Performance Information	
(Denote critical steps with	a check mark √)	
$\sqrt{4}$. Performance Step:	Determine 771A – D must be shu	t
Standard:	ldentifies 771A – D	
√5. Performance Step:	Determine Isolation Valve Seal W valve 1421, RCPs Cooling Water be closed	-
Standard:	Identify 1421 must be closed	
Standard: Comment: Print 9321-2		

Terminating Cue: JPM Complete

Appendix C

Simulator Setup

Form ES-C-1

VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

Appendix C	С	ix	nd	pe	p	Α	
------------	---	----	----	----	---	---	--

Initial Conditions:

- The plant is in cold shutdown on RHR
- CCW Surge Tank level is lowering at approximately 0.5% per minute
- The NPO in Containment reports a significant leak downstream of Check Valve 770.

Initiating Cue:

You are the FSS and the CRS has directed you to identify all valves that must be shut to isolate the leak on Check Valve 770.

Worksheet	
Task No:2000700102	
oleted Surveillance Test	
2 Job Performance Measure No:	SRO Admin - 3
NRC Examiner:	
Date:	
X Actual Performance Simulator Pla	ant
	Deted Surveillance Test 2 Job Performance Measure 2 No: NRC Examiner: Date: X Actual Performance

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- 2-PT-M110 was completed 5 hours ago
- A Peer Review was completed

Task Standard: Surveillance Test Reviewed and errors found.

Required Materials: Completed 2-PT-M110

General References: IP-SMM-DC-904

Initiating Cue: You are the FSS and the SM has directed you to review the completed 2-PT-M110 in accordance with IP-SMM-DC-904

Time Critical Task: No

Validation Time: 30 Minutes

Appendix C	Page 2	Form ES-C-1	
	Performance Information		
(Denote critical steps with a	a check mark √)		
1. Performance Step:	Obtain copy of IP-SMM-DC-904		
Standard:	Obtains copy of procedure, Reviews P&Ls and goes to Step 6.5.3		
Comment: CUE: Hand or procedure	ut copy of IP-SMM-DC-904 with comple	eted surveillance test	
2. Performance Step:	Spot Check Review completed S	urveillance Test	
Standard:	Identify missing initials at step 4.2.1		
Step 6.5.3.1 "The primary and test criter	tical for SROs. focus of this review is to ensure that all ria are satisfied – other sections of the S e reviewer's discretion."		
√ 3. Performance Step:	Determine Jacket Water Tempera minimum	ture is less than	
Standard:	Identify 163° is below the limit of 165°		
Comment:			

Appendix C	Page 3	Form ES-C-
	Performance Information	
(Denote critical steps with a	a check mark $$)	
√4. Performance Step:	Identify that Jacket Water Temp is	NOT Acceptable
Standard:	Identify that YES is incorrectly circ	led
Comment:		
√ 5. Performance Step:	Identify that TRM Acceptance Crite	eria is NOT correct
Standard:	Identify that YES is incorrectly o	circled
Comment:		
√6. Performance Step:	Determines PT is NOT Satisfactory	and does not sign
Standard:	Does Not Sign for Review	
Comment:		
7. Performance Step:	Candidate may determine that Tim Je qualified to perform Procedural Steps	
Standard:	Not Critical	
Commerit:		

Terminating Cue: JPM Complete

Appendix C

Page 4

Form ES-C-1

VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

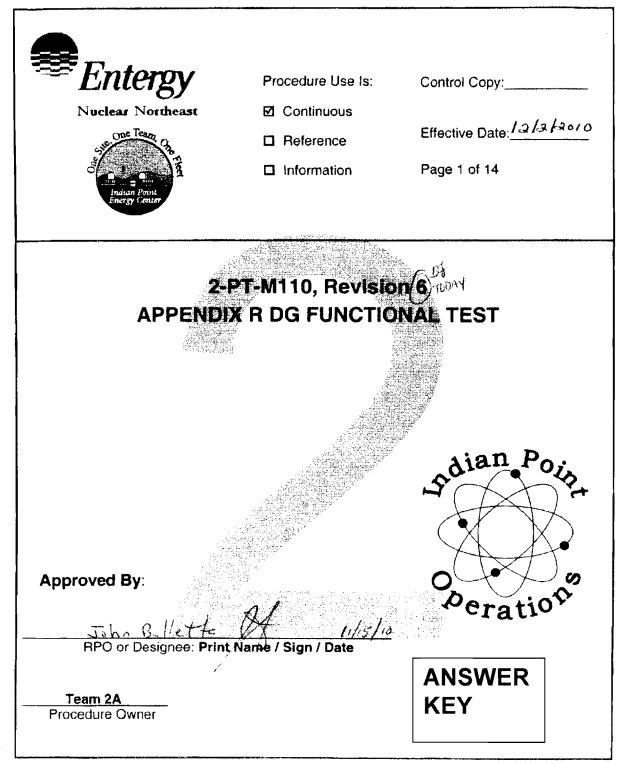
Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:


Result: SAT or UNSAT

Examiner's signature and date: _____

Appendix C

Answer Key

Form ES-C-1

EDITORIAL REVISION

Арр	endix C	Answer Key	Form ES-C-1	
		No: 2-PT-M110	Rev: 6	
	APPEN	ENDIX R DG FUNCTIONAL TEST	Page 2 of 14	

REVISION SUMMARY

(Page 1 of 1)

1.0 **REASON FOR REVISION**

1.1 Incorporate feedback IP2-10135.

2.0 SUMMARY OF CHANGES

- Editorial change [per step 4.6.13 of IP-SMM-AD-102] revised wording in 2.1 Prerequisite 3.3: from "NOTIFY Watch Chemist prior to start of the diesel in order to obtain a glycol sample approximately 1 hour after diesel operations are secured" to "NOTIFY Watch Chemist prior to start of the diesel in order to obtain a coolant sample within 1 hour after diesel operations are secured".
- 2.2 Editorial change [per step 4.6.13 of IP-SMM-AD-102] added CR-IP2-2010-00036, CA#9 to Development Docs step 9.2.7.

ANSWER KEY

Answer Key Form ES-C-1

	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 3 of 14	

TABLE OF CONTENTS

<u>Sect</u>	ion	<u>Title</u>		Page			
1.0	PURP	POSE		4			
2.0	PREC	AUTIONS AND LIMITATIONS		4			
3.0	PREREQUISITES						
4.0	PROCEDURE						
	4.1	Initial Conditions		7			
	4.2	Test of Appendix R Diesel Generator	••••••••••••••••••••••••••••••••••••••				
	4.3	Restoration					
5.0	COM	MENTS					
6.0	ACCE	EPTANCE CRITERIA					
7.0	0 TEST ACCEPTANCE						
8.0	8.0 EVALUATION						
9.0	9.0 REFERENCES						
10.0	RECO	ORDS AND DOCUMENTATION					
	ACHM	<u>nts</u> IENT 1, APPENDIX R DG DATA SHEET	ANSWER KEY				

	Α	ppendix	С
--	---	---------	---

				No: 2-PT-M110	Rev: 6
			R DG FUNCTIONAL TEST	Page 4 of 14	
1.0	PURF	POSE			
	Ŧ	This pro	ocedure establishes requirements f	or the following:	
		t	Starting and running the SBO / App ime sufficient to reach stable opera TRS 3.8.B.5.	endix R diesel generator f iting temperatures in acco	or a period dance with
			Demonstrating proper operation of SBO/ASS in accordance with TRS		aker
			Demonstrating proper city water line exchangers in accordance with TR		6 heat
			Verifying exhaust area fan runs in a Recommendations.	accordance with Vendor	
	(A)	This pro	ocedure applies to the following:		
	-	•	Appendix R DG	ANSWER	
		• 1	Breaker SBO/ASS		
20	PRE	CAUTIO	NS AND LIMITATIONS	KEY	
	er	Precau	utions And Limitations		
		ETT	This test may be performed in an	y plant mode.	
		2.3/2	It is preferable to perform this tes observation of Appendix R DG ex		acilitate the
		27.3	Momentary excursions outside th do <u>NOT</u> invalidate the test results		to 2045 KV
	22	Gener	al Information		
		22.1	Test personnel SHALL complete applicable.	Sections 3.0, 4.0, 5.0, 6.0	, and 7.0, a
		2.2.2	Personnel directing this test SHA performance. Personnel otherwis sections.		
		2.2.3	Any discrepancies found SHALL	be identified in Section 5.), Commer
		2.2.4	Attachment 1, Appendix R DG D required by Attachment 1, in SO Operation. Therefore completion Appendix R Diesel Generator Op performance of this test.	P-27.6, Appendix R Diesel n of Attachment 1 in2-SOP	Generator -27.6,

			\sim
Δ1	nno	ndix	()
	DDC		\mathbf{C}

Form ES-C-1

	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 5 of 14	

Appendix R DG will be operated for a minimum of 1 hour at 2005 to 2045 KW to establish operability criteria. The test period may be extended as necessary to obtain data after temperature stability is reached.

ANSWER **KEY**

A	р	pe	nd	ix	С
---	---	----	----	----	---

Form ES-C-1

APPENDIX R DG FUNCTIONAL TEST	No: 2-PT-M110	Rev: 6
	Page 6 of 14	

PREREQUISITES

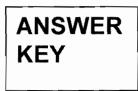
(3.X

Equipment required for test:

EQUIPMENT	M&TE No.	CAL DUE DATE	
Sample Bottle (minimum capacity 4 ounces)	N/A	N/A	-

OBTAIN a current copy of 2-SOP-27.6, Appendix R Diesel Generator Operation, <u>AND</u> REVIEW Precautions and Limitations.

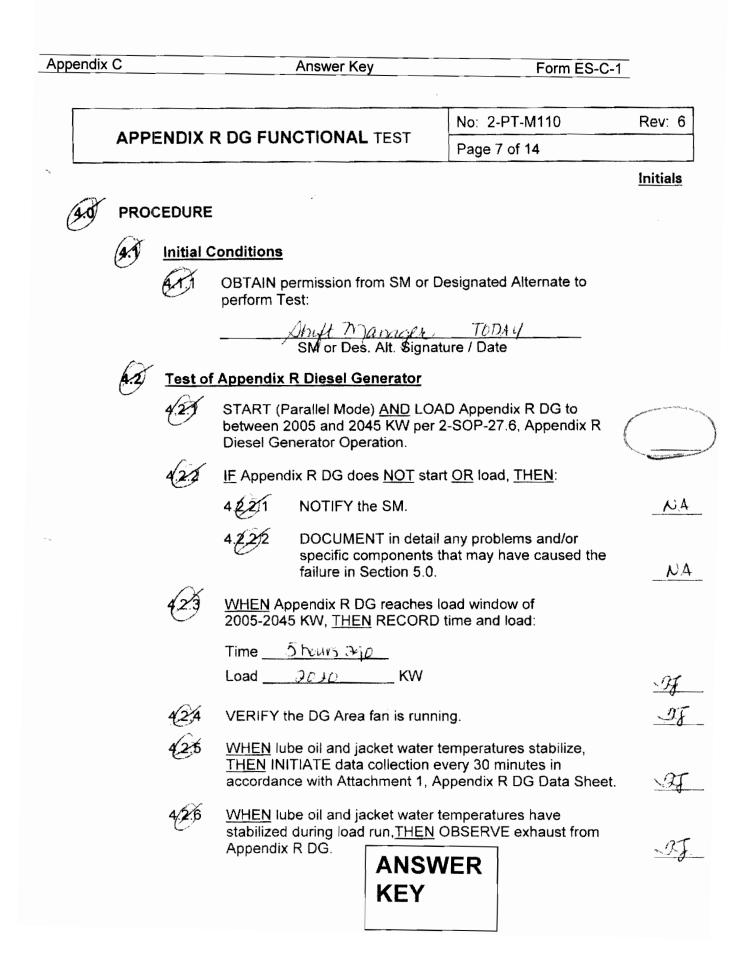
NOTIFY Watch Chemist prior to start of the diesel in order to obtain a coolant sample within 1 hour after diesel operations are secured (Reference 9.2.7).


Reason for Test – CHECK applicable listing:

Y	Normal Surveillance	WO # 52297257-01	
	Post Maintenance Test	WO #	

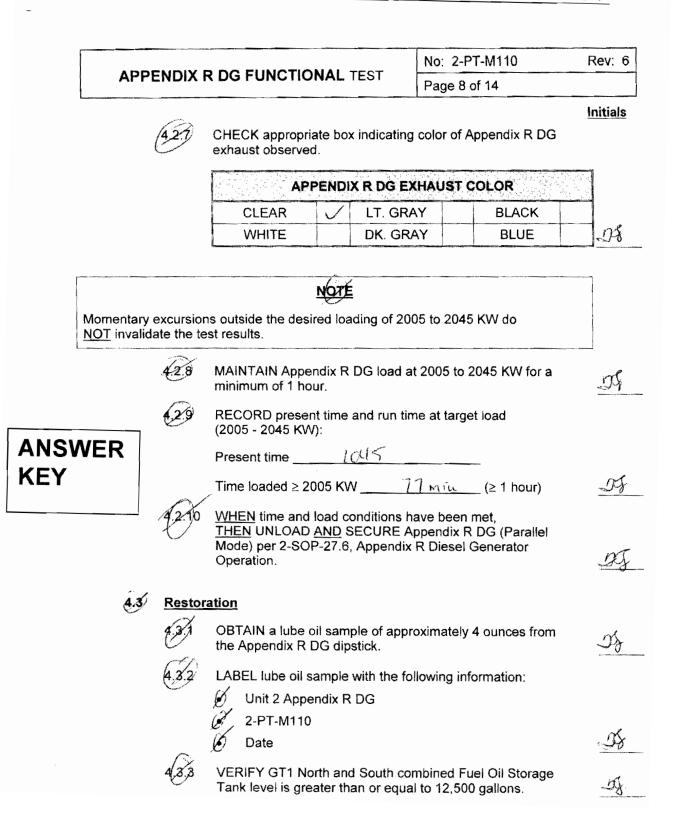
WO #_____

WO #_____


- Increased Test Frequency WO #_____
- Y Other 0115ample 72297420-01

<u>Initials</u>

JT I


-Im-f

Appendix C

Answer Key

Form ES-C-1

Form ES-C-1

ADDENDIN		No: 2-PT-M110	Rev: 6
APPENDIX	R DG FUNCTIONAL TEST	Page 9 of 14	
43A	VERIFY Fuel Oil Day Tank level is	s between 7/8 - FULL.	Initials T
4/3.5	VERIFY UW-831,City Water Supp Diesel Gen. Heat Exchangers, is c		-97
43.6	VERIFY UW-833, City Water Supp Appendix 'R' Diesel Gen. J/W Hea	•	M
4(3)7	VERIFY UW-837, City Water Supp Appendix 'R' Diesel Gen. A/C Hea	•	-ST
43.8	NOTIFY CRS or SM the Appendix to standby service.	R DG has been returned	A
439	DELIVER lube oil sample to Maint	tenance.	-DF

ANSWER KEY

endix C	Answer Key	Form	Form ES-C-1	
		No: 2-PT-M110	Rev:	
APPENDIX R	DG FUNCTIONAL TEST	Page 10 of 14		
5.0 COMMENTS				
(D There is no TE to	o vead		
		en e		
	a ta daga a Nagaya ay waa akishii sa ay ay aha Nagaya ya ay			
and a second	ANSWER KEY	11 17	an a subarray	
Test Performers Print Name:	s: Initials:	Signature/	Data	
	A.	Stankan J	1/24/12	
Tim Jenkins			The second second	
Tim Jenkins Tom Feenan	TE	mikenon	1/24/2	

_

Form ES-C-1

APPENDIX R DG FUNCTIONAL TEST Page 11 of 14

6.0 ACCEPTANCE CRITERIA

TRM Requirements

Equipment/ Parameter/ Instrument	Step/Att.	Surveillance Requirement	Acceptance Criteria	Actual	Acceptable	Initials
Generator Output Breaker / SBO/ASS	4.2.1		Breaker Closes	N/A	(YES) NO	c
AC Wattmeter Generator / WM	4.2.9	TRS 3.8.B.5	Load >2005 KW Maintained For ≥ 1 Hour	YES NO	YES/ NO	C
Jacket Water Temp	Att. 1		165-198 °F (60 Min Data)	[L.3] °F((YES) NO	<u>c</u>
Lube Oil Temp	Att. 1		≤ 250°F (60 Min Data)	212 °F	YES NO	c.
UW-831	4.3.5		OPEN	OPEN	YES / NO	L.
UW-833	4.3.6	TRS 3.7.E.2	OPEN	OPEN	YES / NO	c-
UW-837	4.3.7		OPEN	OPEN	YES / NO	Ċn

6.2 Other Program Requirements

Equipment	Step	Surveillance Requirement	Acceptance Criteria	Actual	Acceptable	Initials
DG Area Fan	4.2.4	Vendor Recommendation	Fans Starts	(YES) NO	YES / NO	с <u> </u>

TEST ACCEPTANCE

7.1.2

NA

TRM Acceptance Criteria

YES

Based on recorded data, are all Acceptance Criteria of Section 6.1 satisfied?

ANSWER KEY

7.0

IF all Acceptance Criteria of Section 6.1 are NOT satisfied, THEN:

N/A

- NOTIFY CRS/SM to declare Appendix R Diesel Generator inoperable.
- INITIATE a WR and a CR.

NO

• TAKE applicable action in accordance with TRO 3.8.B.

Ap	pendi	ix C
----	-------	------

Form ES-C-1

	ENDY D DO EUNOTIONAL FEAT	No: 2-PT-M110	Rev: 6
APP	ENDIX R DG FUNCTIONAL TEST	Page 12 of 14	
(7.2	Other Programs Acceptance Criteria		
0	7(2.1) Based on the recorded data, are a satisfied?	I Acceptance Criteria of	Section 6.2
	YES NO N/A		
	(72.2) IF component(s) failed to meet the <u>THEN</u> :	Acceptance Criteria of	Section 6.2,
	N NOTIFY CRS/SM.		
	 INITIATE a WR and a CR. 		
(18)	IF NO is circled in Step 7.1.1 OR Step 7.2. taken, with any comments:	1, <u>THEN</u> LIST corrective	e action(s)
	Comments: None		
		an an an de Manuau an an dah su an an baran dah su an	
	Reviewed By: SM or Des_Alt	: Print Name / Sign / D	ate
	ON OF DES. AI		ato
	LUATION		VER
EV#	ALUATION SURVEILLANCE COORDINATOR REVIE	KEV	VER
		w KEY	VER
	SURVEILLANCE COORDINATOR REVIE	w KEY	VER
	SURVEILLANCE COORDINATOR REVIE	w KEY	NER
	SURVEILLANCE COORDINATOR REVIE	w KEY	NER
	SURVEILLANCE COORDINATOR REVIE	w KEY	NER

Form ES-C-1

	No: 2-PT-M110 Re	v : 6
APPENDIX R DG FUNCTIONAL TEST	Page 13 of 14	

9.0 REFERENCES

9.1 Commitment Documents

None

9.2 Development Documents

- 9.2.1 250907, Electrical Distribution and Transmission System
- 9.2.2 400882, Station Blackout and Appendix R Diesel Generator Set P&ID Diesel Cooling Water System Mechanical
- 9.2.3 EC-5000033794, IP2 Station Blackout and Appendix R Diesel Generator Set
- 9.2.4 NUMARC 87-00, Guidelines and Technical Bases for NUMARC Initiatives Addressing Station Blackout at Light Water Reactors
- 9.2.5 NSAC-108, Reliability of Diesel Generators at U.S. Power Plants
- 9.2.6 Cummins Operation and Maintenance Manual QSK78 Series Engines
- 9.2.7 CR-IP2-2010-00036 CA#9

9.3 Interface Documents

- 9.3.1 2-SOP-27.6, Appendix R Diesel Generator Operation
- 9.3.2 TRO 3.8.B
- 9.3.3 TRS 3.7.E.2

10.0 RECORDS AND DOCUMENTATION

10.1 Records

ANSWER KEY

The following required records resulting from this procedure are controlled and maintained in accordance with the IPEC Records Retention Schedule.

10.1.1 This Performance Procedure becomes a Quality Record when completed.

10.2 Documentation

None

Form ES-C-1

Entergy	IPEC SITE MANAGEMENT MANUAL	QUALITY RELATED Administrative Procedure	IP-SMM DC-904	Revis	ion 3
		INFORMATIONAL USE	Page	20 o	20

ATTACHMENT 10.2

PEER REVIEW SHEET

PEER REVIEW SHEET

PROCEDURE NUMBER: 2. PT-MIID

DATE PERFORMED: TODAY

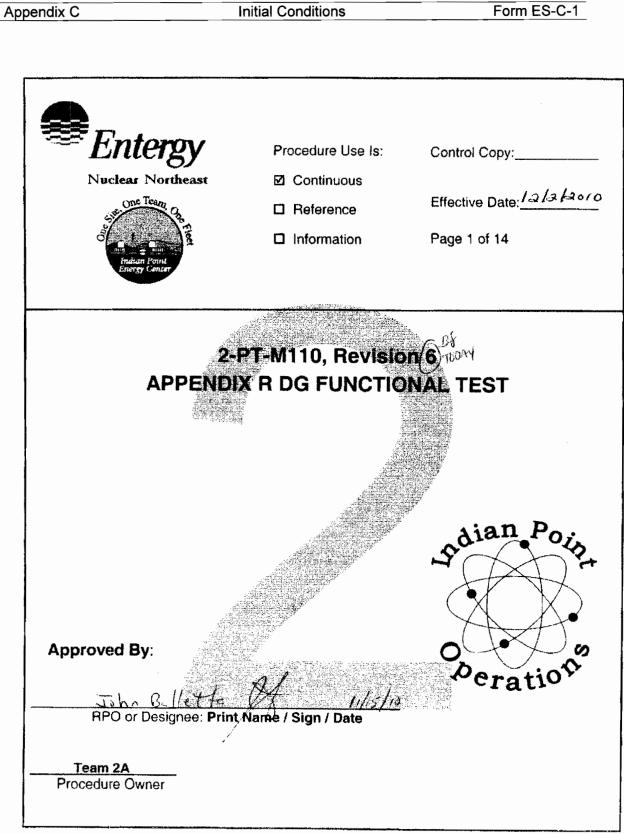
	YES	NO*	N/A
1. Calibration due dates recorded?			
2. Instrument(s) within calibration?			1
3. Changes documented by TPC?			1
4. All required procedural steps completed?	\checkmark		
5. All steps NOT completed noted & explained in Comments Sec	tion?		
6. All corrections lined out, dated and initialed?			
7. All calculations correct?	V		
8. All data properly transcribed?			
9. Required CRs, WOs, PFs or CTSs, etc. initiated?			
10. Operability conclusions correct?	~		
11. Overall acceptance conclusions correct?			
	* Ex	plain all	NOs

COMMENTS:

ANSWER KEY

PEER REVIEWER:

TODAY


Signature/Date

Appendix	С
----------	---

- 2-PT-M110 was completed 5 hours ago
- A Peer Review was completed

Initiating Cue:

You are the FSS and the SM has directed you to review the completed 2-PT-M110 in accordance with IP-SMM-DC-904.

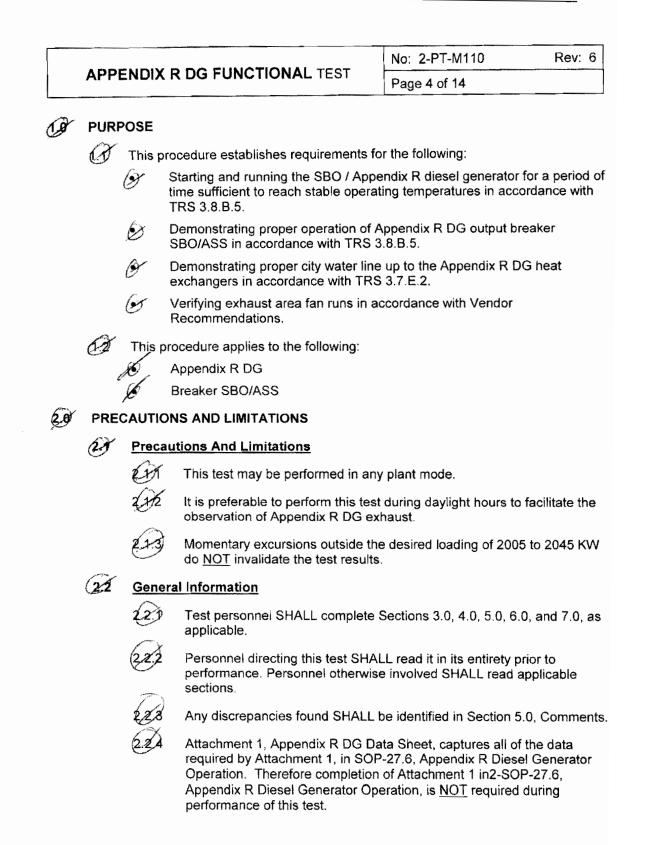
EDITORIAL REVISION

Appendix C	Initial Conditions	Form ES-0	mES-C-1	
		No: 2-PT-M110	Rev: 6	
APPEN	IDIX R DG FUNCTIONAL TEST	Page 2 of 14		

REVISION SUMMARY (Page 1 of 1)

1.0 REASON FOR REVISION

1.1 Incorporate feedback IP2-10135.


2.0 SUMMARY OF CHANGES

- 2.1 Editorial change [per step 4.6.13 of IP-SMM-AD-102] revised wording in Prerequisite 3.3: from "NOTIFY Watch Chemist prior to start of the diesel in order to obtain a glycol sample approximately 1 hour after diesel operations are secured" to "NOTIFY Watch Chemist prior to start of the diesel in order to obtain a coolant sample within 1 hour after diesel operations are secured".
- 2.2 Editorial change [per step 4.6.13 of IP-SMM-AD-102] added CR-IP2-2010-00036, CA#9 to Development Docs step 9.2.7.

Appendi	x C Initial Conditions	Form ES-C-1	
		No: 2-PT-M110	Rev: 6
	APPENDIX R DG FUNCTIONAL TEST	Page 3 of 14	

TABLE OF CONTENTS

Sect	tion	<u>Title</u> Page
1.0	PURP	OSE
2.0	PREC	AUTIONS AND LIMITATIONS
3.0	PRER	REQUISITES6
4.0	PROC	ZEDURE
	4 .1	Initial Conditions7
	4.2	Test of Appendix R Diesel Generator7
	4.3	Restoration8
5.0	COM	MENTS
6.0	ACCE	EPTANCE CRITERIA 11
7.0	TEST	ACCEPTANCE
8.0	EVAL	-UATION
9.0	REFE	ERENCES
10.(REC	ORDS AND DOCUMENTATION
<u>Atta</u>	achme	nts
АΠ	TACHN	IENT 1, APPENDIX R DG DATA SHEET 14

Form ES-C-1

	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 5 of 14	

Appendix R DG will be operated for a minimum of 1 hour at 2005 to 2045 KW to establish operability criteria. The test period may be extended as necessary to obtain data after temperature stability is reached.

A	p	pe	en	d	ix	С

Form ES-C-1

ADDENDIN D DO EUNOTIONAL TEOT	No: 2-PT-M110 Rev: 6	
APPENDIX R DG FUNCTIONAL TEST	Page 6 of 14	

Initials

JEF

PREREQUISITES

Equipment required for test:

EQUIPMENT	M&TE No.	CAL DUE DATE	
Sample Bottle (minimum capacity 4 ounces)	N/A	N/A	J.

31

OBTAIN a current copy of 2-SOP-27.6, Appendix R Diesel Generator Operation, <u>AND</u> REVIEW Precautions and Limitations.

NOTIFY Watch Chemist prior to start of the diesel in order to obtain a coolant sample within 1 hour after diesel operations are secured (Reference 9.2.7).

,	r	4	2	
1	3		Å	
<	~	/		

Reason for Test - CHECK applicable listing:

I	Normal Surveillance	wo#_ <u>52297257-01</u> _	
	Post Maintenance Test	WO #	
		WO #	
		WO #	
	Increased Test Frequence	y WO #	
	Other <u>0.15ample</u>	72297420-01	Drif

endix C		Initial Conditions	Form ES-C-1	_
			No: 2-PT-M110	Rev:
	APPENDIX	R DG FUNCTIONAL TEST	Page 7 of 14	
				Initials
3.0	PROCEDURE			
e	A Initial (Conditions		
k	$\frac{4}{\sqrt{2}}$			
	44.1	OBTAIN permission from SM c perform Test:	or Designated Alternate to	
		Shuft Manade	TODAY	
		SM or Des. Alt. Sig	hature / Date	
(A.2 Test of	Appendix R Diesel Generator	:	
	42.9	START (Parallel Mode) AND L		
	Ċ	between 2005 and 2045 KW p Diesel Generator Operation.	er 2-SOP-27.6, Appendix R	
	4.22	IF Appendix R DG does <u>NOT</u> :	start <u>OR</u> load, <u>THEN</u> :	
	K.	4221 NOTIFY the SM.		N
			tail any problems and/or	
		specific componen	ts that may have caused the	
	D	failure in Section 5		N
	423	WHEN Appendix R DG reache 2005-2045 KW, THEN RECO		
		Time <u>Shours 200</u>		
		LoadKW	1	m
	42,4	VERIFY the DG Area fan is ru	inning.	2
	425	WHEN lube oil and jacket wat THEN INITIATE data collectio		
			I, Appendix R DG Data Sheet.	I.
	4/2.6	WHEN lube oil and jacket wat		
		stabilized during load run, <u>THE</u> Appendix R DG.	N OBSERVE exhaust from	R

Form ES-C-1

		No: 2-	-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST Page 8 of 14			8 of 14	
427	CHECK appropriate box indication exhaust observed.	ng color of	Appendix R DG	Initials
	APPENDIX R DG I	EXHAUST	COLOR	
	CLEAR 🗸 LT. GI	RAY	BLACK	
	WHITE DK. G	RAY	BLUE	.98
	NOTE			
omentary excurs	sions outside the desired loading of 2 e test results.	005 to 20	45 KW do	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×			
42	MAINTAIN Appendix R DG load minimum of 1 hour.	at 2005 to	o 2045 KW for a	R
2	RECORD present time and run (2005 - 2045 KW):	time at tar	get load	
	Present time			
	Time loaded ≥ 2005 KW	77 min	(≥ 1 hour)	A
4.2	10 <u>WHEN</u> time and load conditions <u>THEN</u> UNLOAD <u>AND</u> SECURE			
Ú	Mode) per 2-SOP-27.6, Append			m
	Operation.			23
4.3 Res	toration			
8.3	<ul> <li>OBTAIN a lube oil sample of ap the Appendix R DG dipstick.</li> </ul>	proximate	ly 4 ounces from	- St
4.3	2 LABEL lube oil sample with the	followina i	nformation:	
	💋 Unit 2 Appendix R DG			
	2-PT-M110			و
~	Ø Date			-IS
43	<ul> <li>VERIFY GT1 North and South of Tank level is greater than or equ</li> </ul>			-57

Appendix C		Initial Conditions	Form ES-C-1	
<b></b>			T	
APPENDIX R DG FUNCTIONAL TEST		No: 2-PT-M110	Rev: 6	
		R DG FUNCTIONAL TEST	Page 9 of 14	
				Initials
	4.3A	VERIFY Fuel Oil Day Tank level is	between 7/8 - FULL.	A_
	4/3.5	VERIFY UW-831,City Water Supp Diesel Gen. Heat Exchangers, is c	• •	-07
	43.8	VERIFY UW-833, City Water Supply Line Valve For Appendix 'R' Diesel Gen. J/W Heat Exchanger, is open.		
	437	VERIFY UW-837, City Water Supp Appendix 'R' Diesel Gen. A/C Hea		-24
	43.8	NOTIFY CRS or SM the Appendix to standby service.	R DG has been returned	A
	4.3.9	DELIVER lube oil sample to Maint	enance.	275

A	p	pe	nd	ix	С
• •	~		1.4	~	-

Form ES-C-1

ADDENDIX D DO FUNCTIONAL TEST	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 10 of 14	

#### 5.0 COMMENTS

(D There is no TE to read

Print Name:	Initials:	Signature/Date:
Tim Jenkins	jej	Stri Genkun 124/12
Tom Feenan	TE	Interen 1/2/1/2
Cidig Wowall	CW	and 1/24/12

.....

_ _

Form ES-C-1

	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 11 of 14	

## 6.0 ACCEPTANCE CRITERIA

### TRM Requirements

Equipment/ Parameter/ Instrument	Step/Att.	Surveillance Requirement	Acceptance Criteria	Actual	Acceptable	Initials
Generator Output Breaker / SBO/ASS	4.2.1		Breaker Closes	N/A	YES NO	c
AC Wattmeter – Generator / WM	4.2.9	TRS 3.8.B.5	Load >2005 KW Maintained For ≥ 1 Hour	YES NO	(YES/ NO	c
Jacket Water Temp	Att. 1		165-198 °F (60 Min Data)	163 °F	(YES/NO	c
Lube Oil Temp	Att. 1		≤ 250°F (60 Min Data)	212 °F	YES / NO	Cham
UW-831	4.3.5		OPEN	OPEN	(YES) NO	Lu
UW-833	4.3.6	TRS 3.7.E.2	OPEN	OPEN	(YES/NO	Car
UW-837	4.3.7		OPEN	OPEN	YES / NO	Cu

#### 6.2 Other Program Requirements

Equipment	Step	Surveillance Requirement	Acceptance Criteria	Actual	Acceptable	Initials
DG Area Fan	4.2.4	Vendor Recommendation	Fans Starts	(YES) NO	YES/NO	c

### Test Acceptance

### TRM Acceptance Criteria



NA

Based on recorded data, are all Acceptance Criteria of Section 6.1 satisfied?

YES

N/A

IF all Acceptance Criteria of Section 6.1 are NOT satisfied, THEN:

- NOTIFY CRS/SM to declare Appendix R Diesel Generator inoperable.
- INITIATE a WR and a CR.

NO

• TAKE applicable action in accordance with TRO 3.8.B.

A	pp	en	di	Х	С	

10%

ndix C	Initial Conditions	Form ES-C-1	
		No: 2-PT-M110	Rev: 6
APP	PENDIX R DG FUNCTIONAL TEST	Page 12 of 14	-
7.2	Other Programs Acceptance Criteria         7(2.1)       Based on the recorded data, are satisfied?         YES       NO       N/A         7(2.2)       IF component(s) failed to meet th THEN:         NX       NOTIFY CRS/SM.         INITIATE a WR and a CR.		
(T)	IF NO is circled in Step 7.1.1 <u>OR</u> Step 7.2 taken, with any comments:	.1, <u>THEN</u> LIST corrective	
		and the second	nna Anna an An
	Reviewed By: SM or Des. A	It: Print Name / Sign / D	ate
8.0 EVA	ALUATION		
8.1	SURVEILLANCE COORDINATOR REVI	EW	
	Comments:		
			an an Anna an Anna a sa an Anna

Reviewed By:

Surveillance Coordinator Review: Print Name / Sign / Date

#### Form ES-C-1

	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 13 of 14	

#### 9.0 REFERENCES

#### 9.1 Commitment Documents

None

#### 9.2 Development Documents

- 9.2.1 250907, Electrical Distribution and Transmission System
- 9.2.2 400882, Station Blackout and Appendix R Diesel Generator Set P&ID Diesel Cooling Water System Mechanical
- 9.2.3 EC-5000033794, IP2 Station Blackout and Appendix R Diesel Generator Set
- 9.2.4 NUMARC 87-00, Guidelines and Technical Bases for NUMARC Initiatives Addressing Station Blackout at Light Water Reactors
- 9.2.5 NSAC-108, Reliability of Diesel Generators at U.S. Power Plants
- 9.2.6 Cummins Operation and Maintenance Manual QSK78 Series Engines
- 9.2.7 CR-IP2-2010-00036, CA#9

#### 9.3 Interface Documents

- 9.3.1 2-SOP-27.6, Appendix R Diesel Generator Operation
- 9.3.2 TRO 3.8.B
- 9.3.3 TRS 3.7.E.2

#### 10.0 RECORDS AND DOCUMENTATION

#### 10.1 Records

The following required records resulting from this procedure are controlled and maintained in accordance with the IPEC Records Retention Schedule.

10.1.1 This Performance Procedure becomes a Quality Record when completed.

#### 10.2 Documentation

None

: نتینیہ:

· · · · · · · · · · · · · · · ·

....

Initial Conditions

Form ES-C-1

	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 14 of 14	

#### ATTACHMENT 1, APPENDIX R DG DATA SHEET (Page 1 of 1)

Date: TODAY		TIME/ READINGS			38
PARAMETER	FULL LOAD	0	30	60	90
Appendix R DG Engine	Data				
Coolant Temperature	≥ 40 - <u>&lt;</u> 215 °F	178	179	(Fi	
Lube Oil Pressure	≥ 45 psig	$\mathcal{F}_1$	76	77	
Engine Speed	1800 RPM	1801	Ka	1501	
Fuel Pump Pressure	200 - 400 psig @ 1800 RPM	375	311	382	
Fuel Inlet Temperature	<u>≤</u> 150 °F	73	77	84	
Coolant Pressure	<u>≥</u> 11 psig	25	25	24	
Lube Oil Temperature	<u>≤</u> 250 °F	151	210	317	
Lube Oil Level (Between Run High / Run Low)	Midpoint	1/2	1/2	1/2	
Air Intake Temperature	<u>≤</u> 180 °F	135	136	136	
After Cooler Temperature	<u>≤</u> 160 °F	101	107	107	
Appendix R D/G Generato	or Data				
L1 Amps	≤ 141.0 Amps	94	194	94	
L2 Amps	≤ 141.0 Amps	88	87	88	
L3 Amps	≤ 141.0 Amps	\$7	81	88	
Frequency	59.7 - 60.3 Hz	40.0	60,0	600	
Total kW	≤ 2700 kW	2013	2011	2007	
Total kVA	≤ 3375 kVA	2.724	1	2201	
Total PF (nominal 0.9)	(≥ 0.8 - ≤ 0.95)	٩.	2	.9	
Appendix R DG Other	Data				
Day Tank Level	7/8 - Full	7/8	718	7/8	
PI-8030, Day Tank Fill Pump Pressure	psig	55	55	55	
TE-8027, Day Tank Oil Cooler Temperature	۰F	a	$\omega$	0>	
Lube Oil Reservoir Sight Glass Level	3/4 - Full	314	Hy	3/4	
LG-8032, Jacket Water Surge Tank Sight Glass Level	2/3 - 3/4	3/4	314	314	
LG-8031, After Cooler Surge Tank Sight Glass Level	2/3 - 3/4	3/4	2/3	2/3	
TI-903, Jacket Water Heat Exchanger Outlet Temperature	°F	115	121	121	
TI-909 After Cooler Heat Exchanger Outlet Temperature	۰F	15	72	72	
FI-7979, Appendix R DG Jacket Water Flow (City Water) FI-7979. Appendix R DG Jacket Water Flow (Service Water)	≤ 118 gpm ≤ 160 gpm	160	140	140	
FI-7980, Appendix R DG Aftercooler Water Flow (City Water) FI-7980, Appendix R DG Aftercooler Water Flow (Service Water)	≤ 87 gpm ≤ 137 gpm	135	135	135	
Battery Voltage	≥ 24 VDC	24.4	263	367	

Form ES-C-1

Entergy	IPEC SITE MANAGEMENT MANUAL	QUALITY RELATED Administrative Procedure	IP-SMM DC-904	Revision 3		
		INFORMATIONAL USE	Page	20 🤇	of	20

ATTACHMENT 10.2

PEER REVIEW SHEET

#### PEER REVIEW SHEET

PROCEDURE NUMBER: 2-PT-MIID

DATE PERFORMED: TODAY

	YES	NO*	N/A
1. Calibration due dates recorded?			
2. Instrument(s) within calibration?			-
3. Changes documented by TPC?		-	
4. All required procedural steps completed?	~	1	
5. All steps NOT completed noted & explained in Comments Section?			1
6. All corrections lined out, dated and initialed?		1	
7. All calculations correct?		1	
8. All data properly transcribed?		-	1
9. Required CRs, WOs, PFs or CTSs, etc. Initiated?		1	
10. Operability conclusions correct?	~	1	
11. Overall acceptance conclusions correct?	/	1	
0.01.01/20.020	• Ex	plain all	NOs

COMMENTS:

PEER REVIEWER: <u>Ateve Lawis</u> TODAY Signature/Date

Appendix C Job Performance Measure Worksheet			9	Form ES-C-1					
Facility: <u>Indian Po</u>	pint Unit 2	Task No:	2000180102						
Task Title: Review a Manual VC Pressure Relief Release Permit									
19 K/A Reference: SI	940012306 RO-3.8	Job Performa No:	ance Measure	SRO Admin 4					
Examinee:		NRC Examir	e <b>r</b> :						
Facility Evaluator:		Date:							
Method of testing:									
Simulated Performa Classroom	ance X X Simula		erformance Pla	nt					

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- VC pressure has increased to approximately 0.4 psig.
- The Computer Release Permit Program has been corrupted.
- The Spare RO prepared a manual Release Permit
- Given:
  - Condenser Air In leakage is 5.25 scfm
  - Plant vent flow is 7.06  $\times$  10⁴ scfm
  - $\circ$  Current reading R-45 is 7.15 X 10⁻⁷ µCi/cc
  - Current reading R-42 is 1.82 X10⁻⁷ µCi/cc
  - $\circ$  Current reading R-44 is 1.14 X 10⁻⁶ µCi/cc
  - Current High Alarm R-42 is 8.54 X  $10^{-7} \mu$ Ci/cc
  - Current High Alarm R-44 is  $1.5 \times 10^{-4} \mu$ Ci/cc
  - Current Warn R-44 is 1.0 X 10⁻⁴ µCi/cc
  - o Instantaneous Release Rate 70,000 μCi/sec

Task Standard: Release Permit Reviewed and errors identified.

Required Materials: Calculator

General References: 2-SOP-5.4.1, VC Pressure Relief

Initiating Cue: You are the CRS and the SM has directed you to review the Manual VC Pressure Relief Gaseous Release Permit and authorize discharge if acceptable.

Time Critical Task: No

Validation Time: 30 minutes

Appendix C	Page 3	Form ES-C-1
	Performance Information	
(Denote critical steps with	a check mark √)	
1. Performance Step:	Obtain a current copy of 2-SOP-5	.4.1 and review P&Ls
Standard:	Obtains procedure and reviews P	&Ls
Comment:		
2. Performance Step:	Review given data entered on	Attachment 1
Standard:	Reviews given data on attachmer correct.	nt 1 and determines all is
Comment:		
3. Performance Step:	Review Pressure Release Rate C	Calculation
Standard:	Determines calculation is correct 0.8 X 1.82 X10 ⁻⁷ µCi/cc = 1.46 X	X10 ⁻⁷ μCi/cc
Comment: Step 4.2.4.1		

Appendix C	Page 4	Form ES-C-
	Performance Information	
(Denote critical steps with	a check mark √)	
√4. Performance Step:	Review Plant Vent Release Rate	Calculation
Standard:	Determines C _{pv} was incorrectly incorrect calculation 4.72 X 10 ⁻⁴ X 1.14 X 10 ⁻⁵ μCi/cc 3.80 X 10 ⁻⁴ Ci/sec Should be 3.80 X 10 ⁻⁵ Ci/sec	_
Comment: Step 4.2.4.2		
√ 5. Performance Step:	Review Plant Vent Release Rate E Release Rate Calculation	Equivalent of CAE
Standard:	Determines result is incorrectly 4.72 X 10 ⁻⁴ X 7.15 X 10 ⁻⁷ μCi/co 7.11 X 10 ⁻⁹ Ci/sec Should be 1.77 X 10 ⁻⁹ Ci/sec	entered x 5.25 =
•	es not impact the final calculation a ver, it is an error on the form	as the result is still so
√ 6. Performance Step:	Review Total Calculated Releas	e Rate Calculation
Standard:	Determines Total Calculated Re This is due to the incorrect calc RR _{pv.}	

Comment: Step 4.2.4.4. This is the result of a previous error.

Ap	ope	ndi	хС

Page 5

# Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

√ 7. Performance Step:	<b>Review R-44 Alarm Setpoint Calculation</b>
Standard:	Determine R-44 Alarm Setpoint calculation is incorrect. This is due to the incorrect calculation in calculating $RR_{pv}$ [(.0072 µCi/sec - 3.80 X 10 ⁻⁴ Ci/sec) X 2119] / (7.06 X 10 ⁴ scfm + 1700) 1.99 X 10 ⁻⁴ µCi/cc Should be 2.09 X 10 ⁻⁴ µCi/cc
Comment: Step 4.2.6.1. T	his is the result of a previous error.
8. Performance Step:	Review R42 Alarm Setpoint Calculations

Standard:	Determines Calculations are correct. 70,000 X 1.25 10 ⁻⁶ sec/cc =
	$8.75 \times 10^{-2} \mu\text{Ci/cc}$

Comment: Step 4.2.7

$\sqrt{9}$ . Performance Step:	Review R-44 Warn Calculation
Standard:	Determines wrong value used (1.99 X 10 ⁻⁴ µCi/cc) thus the calculation is wrong.

# Comment:

Appendix C	Page 6	Form ES-C-1
	Performance Information	
(Denote critical steps with a	check mark √)	
$\sqrt{10.}$ Performance Step:	Determines calculation not correct. Discharge Authorization	Does not sign for
Standard:	Does not sign for Discharge Authoria	zation
Comment:		
Terminating Cue: JPM Cor	nplete	

Page 7

Form ES-C-1

VC PRE	SSURE RELIEFS	No: 2-S	OP-5.4.1 Rev: 17
VU FRE		Page 2	5 of 25
	ATTACHME	NT 1	
VC PRESS	SURE RELIEF GASE		PERMIT
Date: <u>TUDAy</u> Time:	(Page 1 of 1	)	Permit No. 120005
VC Sample # 1 ¹	Date:	Time: Ad	ctivity (A)µCi/cc
/C Sample # 2	Date:	Time:	ActivityUCi/co
Plant Vent Sample #	Date:	Time:	ActivityµCi/co
CAE Concentration ²	Date:	Time: Ad	tivity (E) 7.15K10-7 µCi/co
CAE In Leakage (Fc)			
Plant Vent Flow (F) 1.06%	<u>104</u> scim	R-44 Curr	ter in porte
		R-44 Current Hi R-44 Current Read	
			ading (A) <u>1.80x10⁻⁷µCi/co</u>
	sed to obtain containment Noble gas o		
2 R-45 <u>OR</u> noble gas activity gr	ab sample.		
Pressure Relief Release Rate:			
$RR_{pr} = 0.8 \cdot (1.8 \times 10^{-7})$	$= 1.46 \times 10^{-1}$ (RPm)	Ci/sec	
Plant Vent Release Rate: 15te	· •	$\sim$	
BB 472 F.4. (1.14x	10-5) Nr 7.06×104	1.3.80×10	(4) Cilcon
RApy = 4.72 E-4 · (	$(0^{-5})^{*}(7.06\times10^{4})^{(F)}$	3.80×10	Ci/sec
Plant Vent Release Rate Equiv	(C _{pv} ) (F) valent of CAE Release Rate:	[Step 4.2/.3]	Ci/sec
Plant Vent Release Rate Equin	(C _{pv} ) (F) valent of CAE Release Rate: (10 ^{:7} )* ( <u>5.35</u>	(Step 4.2	- 9 Ci/sec
Plant Vent Release Rate Equit	$(C_{pv}) (F)$ valent of CAE Release Rate: $(C_{pv})^{*} (5.25)$ $(E_{p}) (F_{c})$	[Step 4.2 (.3] ) =(?) ) =(?) (1 × (0) )	
Plant Vent Release Rate Equin RR _{cee} = 4.72 E-4 * (7.15) Total Calculated Release Bate	$(C_{pv}) (F)$ valent of CAE Release Rate: $(C_{pv})^{*} (5.25)$ $(E_{p}) (F_{c})$	(Step 4.2	
Plant Vent Release Rate Equition RR _{core} = 4.72 E-4 $\cdot$ (7.15) Total Calculated Release Ball RR = 1.46 x10 ⁻⁷ +	(C _{pv} ) (F) valent of CAE Release Rate: (E ₁ ) ( 5.35 (E ₁ ) (F _c ) (F _c ) (Step 4.2.4.4] 3.80 × 10 ⁻⁴ + 0	)= (7. 11 × 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Plant Vent Release Rate Equit RR _{car} = 4.72 E-4 * ( $-7.15$ ) Total Calculated Release Rate RR = $1.46 \times 10^{-7}$ + (RR _{pr} )	$(C_{pv}) (F)$ $(C_{pv}) (F)$ $(C_{pv}) (C_{pv}) (C_{pv}) (C_{pv}) (C_{pv}) (C_{pv}) (F_{e})$ $(E_{pv}) (F_{e}) (F_{e})$ $(F_{e}) (F_{e}) (F_{e}) (F_{e})$ $(F_{e}) (F_{e}) (F_{e}) (F_{e}) (F_{e})$ $(F_{e}) (F_{e}) (F_{e}) (F_{e}) (F_{e})$	) = (7. 11 × 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-9 Ci/sec ³
Plant Vent Release Rate Equit RR _{cae} = 4.72 E-4 $\cdot$ (7.15) Total Calculated Release Rate RR = 1.46 ×10 ⁻⁷ (RR _{pr} ) Note 3. If RR _{ca} is LESS THAN 2.0 E-4	$(C_{pv}) (F)$ (C) valent of CAE Release Rate: $(10^{.7}) ( 5.35)$ (E) (E) (F) (F) (F) (F) (F) (F) (F) (F	) = (7. 11 × 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-9 Ci/sec ³
Plant Vent Release Rate Equit RR _{cae} = 4.72 E-4 $\cdot$ (7.15) Total Calculated Release Rate RR = 1.46 x(0 ⁻⁷ (RR _{pr} ) Note 3. If RR _{ca} is LESS THAN 2.0 E-4 R-44 Alarm Setpoints: [Step 4	$(C_{pv}) (F)$ (C) (C) (F) (F) (F) (F) (F) (F) (F) (F	$= (7.11 \times 10)$ $(BE)$ $(3.50 \times 10)$ is required.	-9 Ci/sec ³
Plant Vent Release Rate Equit RR _{cae} = 4.72 E-4 $\cdot$ (7.15) Total Calculated Release Bate RR = 1.46 x(0 ⁻⁷ (RR _{pr} ) Note 3. If RR _{ca} is LESS THAN 2.0 E-4 <u>R-44 Alarm Setpointa</u> : [Step 4 R-44 reading in uCi/cc = [(_0)	$(C_{pv}) (F)$ (C) (C) (F) (F) (F) (F) (F) (F) (F) (F	) = (7. 11 × 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-9 Ci/sec ³
Plant Vent Release Rate Equiv         RR_cm =       4.72 E-4 * (7.15)         Total Calculated Release Rate         RR =       1.46 × 10 * 7         (RR _{pr} )         Note 3. If RR _{cm} is LESS THAN 2.0 E-4         R-44 Alarm Setpoints:         [Step 4]	$(C_{pv}) (F)$ $(C_{pv}) (F)$ $(C_{pv}) (F)$ $(C_{pv}) (F)$ $(F)$ $(E_{p}) (F_{c})$ $(F_{c})$	$= (7.11 \times 10)$ $(BE)$ $(3.50 \times 10)$ is required.	-9 Ci/sec ³
Plant Vent Release Rate Equition RR _{cer} = 4.72 E-4 $(-7.15)$ Total Calculated Release Rate RR = $-1.46 \times 10^{-7}$ + $(-7.15)$ (RR _{pr} ) Note 3. If RR _{cer} is LESS THAN 2.0 E-4 R-44 Alarm Setpoints: [Step 4 R-44 reading in uCl/cc = $[(-12)]$ R-42 Alarm Setpoint (Step 4.2)	$(C_{pv}) (F)$ $(C_{pv}) (F)$ $(C_{pv}) (F)$ $(C_{pv}) (F)$ $(F_{c})$ $(F_{$	$= \frac{7.11 \times 10}{(BE}$ $= \frac{3.50 \times 10}{(BE}$ is required. $= \frac{7.00 \times 10^{4}}{(F)} + 1700 = 2$	-9 Ci/sec ³ Ci/sec 1.99 Ci/sec
Plant Vent Release Rate Equition RR _{cer} = 4.72 E-4 $\cdot$ (7.15) Total Calculated Release Rate RR = 1.46 × (0 ⁻⁷ (RR _{pr} ) Note 3. If RR _{cer} is LESS THAN 2.0 E-4 <u>R-44 Alarm Setpoints</u> : [Step 4 R-44 reading in uCl/cc = [(10) R-42 Alarm Setpoint (Step 4.2) R-42 Maximum Setpoint (UCl/c	$(C_{pv}) \qquad (F)$ $(C_{pv}) \qquad (F)$ $(C_{pv}) \qquad (F)$ $(C_{pv}) \qquad (F)$ $(F_{pv}) \qquad (F)$ $(F_{pv}) \qquad (F_{pv})$ $(F_{pv}) \qquad (F_{pv})$ $(F_{pv}) \qquad (F_{pv}) \qquad (F_{pv})$ $(F_{pv}) \qquad (F_{pv}) \qquad (F_{pv})$ $(F_{pv}) \qquad (F_{pv}) \qquad (F_{pv}) \qquad (F_{pv})$ $(F_{pv}) \qquad (F_{pv}) \qquad (F_{pv}) \qquad (F_{pv}) \qquad (F_{pv})$ $(F_{pv}) \qquad (F_{pv}) \qquad ($	$= \frac{7.11 \times 10}{(BE}$ $= \frac{3.50 \times 10}{(BE}$ is required. $= \frac{7.00 \times 10^{4}}{(F)} + 1700 = 2$	-9 Ci/sec ³
Plant Vent Release Rate Equition RR _{core} = 4.72 E-4 $\cdot$ (7.15) Total Calculated Release Rate RR = 1.46 X(0.7 + 1.2) (RR _{pr} ) Note 3. If RR _{cor} is LESS THAN 2.0 E-4 R-44 Alarm Setpointa: [Step 4 R-44 reading in uCi/cc = [(1.0) R-42 Alarm Setpoint (Step 4.2) R-42 Maximum Setpoint (UCi/c Warn = 0.75 (1.471×10.4)	$(C_{pv}) (F)$ (C) (C) (C) (C) (C) (E) (E) (F) (F) (F) (F) (F) (F) (F) (F	$= \frac{7.11 \times 10}{(BE}$ $= \frac{3.50 \times 10}{(BE}$ is required. $= \frac{7.00 \times 10^{4}}{(F)} + 1700 = 2$	-9 Ci/sec ³ Ci/sec 1.99 Ci/sec
Plant Vent Release Rate Equition RR _{cov} = 4.72 E-4 $\cdot$ (7.15) Total Calculated Release Rate RR = 1.46 × 10 ⁻⁷ (RR _{pr} ) Note 3. If RR _{cv} is LESS THAN 2.0 E-4 R-44 Alarm Setpoints: [Step 4 R-44 reading in uCl/cc = [(0) R-42 Alarm Setpoint (Step 4.2) R-42 Maximum Setpoint (Step 4.2) R-42 Maximum Setpoint (UCl/c) Warn = 0.75 (1.47)×10 ⁻⁴ (S)	$(C_{pv}) (F)$ (C) (C) (C) (C) (E) (E) (E) (F) (F) (F) (F) (F) (F) (F) (F	$= \frac{7.11 \times 10}{(BE}$ $= \frac{3.50 \times 10^{4}}{(F)} + 1700) =$ $= \frac{7.00 \times 10^{4}}{(F)} + 1700) =$	-9 Ci/sec ³ Ci/sec 1.99 Ci/sec
Plant Vent Release Rate Equit RR _{cor} = 4.72 E-4 $\cdot$ (7.15) Total Calculated Release Rate RR = 1.46 x(0 ⁻⁷ + 1) (RR _{pr} ) Note 3. If RR _{cor} is LESS THAN 2.0 E-4 R-44 Alarm Setpointa: [Step 4 R-44 reading in uCi/cc = [(-0) R-42 Alarm Setpoint (Step 4.2) R-42 Maximum Setpoint (UCi/c Warn = 0.75 (1.47) x10 ⁻⁴	$(C_{pv}) (F)$ (C) (C) (C) (C) (E) (E) (E) (F) (F) (F) (F) (F) (F) (F) (F	$= \frac{7.11 \times 10}{(BE)}$ $= \frac{7.11 \times 10}{(BE)}$ $= \frac{3.50 \times 10}{(BE)}$ is required. $= \frac{7.00 \times 10^{4}}{(F)} + 1700$ $= \frac{1}{(F)}$ $= \frac{1}{(F)}$	-9 Ci/sec ³ Ci/sec 1.99 Ci/sec
Plant Vent Release Rate Equity RR _{car} = 4.72 E-4 $(-7.15)$ Total Calculated Release Rate RR = $1.46 \times 10^{-7}$ + (RR _{pr} ) Note 3. If RR _{car} is LESS THAN 2.0 E-4 R-44 Alarm Setpoints: [Step 4 R-44 reading in uCl/cc = [(-0) R-42 Alarm Setpoint (Step 4.2) R-42 Maximum Setpoint (UCl/c R-42 Maximum Setpoint (UCl/c Narn = 0.75 ( $1.47 \times 10^{-4}$ (S) Prepared By: <u>Reacted Dp</u> Discharge Authorization:	$(C_{pv}) (F)$ (C_{pv}) (F) (C_{pv}) (F) (E) (E) (F_{c}) (E) (F_{c}) (E) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c}) (F_{c	$= \frac{7.11 \times 10}{(RE)}$ is required. $\frac{7.00\times 10^{4}}{(F)} + 1700) =$ /cc) Actual R-42 $\mu C cc$ Verified By:	Setpoint $\frac{2.54\times10^{-7}}{10^{-4}}$ µCi/co
Plant Vent Release Rate Equity RR _{cer} = 4.72 E-4 $(-7.15)$ Total Calculated Release Rate RR = $1.46 \times 10^{-7}$ + (-7) (RR _{pr} ) Note 3. If RR _{cer} is LESS THAN 2.0 E-4 R-44 Alarm Setpoints: [Step 4 R-44 reading in uCl/cc = [(-10) R-42 Alarm Setpoint (Step 4.2) R-42 Maximum Setpoint (Step 4.2) R-42 Maximum Setpoint (UCl/c Warn = 0.75 (-1.47)×10.4 (S) Prepared By: <u>Reacted Dp</u> Discharge Authorization: Authorization Level must be greater tha	$(C_{pv}) (F)$ $(F)$ $(C_{pv}) (F)$ $(F)$	$= \frac{7.11 \times 10}{(RE)}$ is required. $\frac{7.00\times10^{4} + 1700}{(F)} = \frac{1}{(F)}$ /cc) Actual R-42 $\mu$ Crcc Verified By: Date:	-9 Ci/sec ³ (1.94) Ci/sec (1.94) x10 ⁻⁴ Setpoint <u>8.54 x10⁻⁷</u> μCi/cc
Plant Vent Release Rate Equity RR _{cer} = 4.72 E-4 $(-7.15)$ Total Calculated Release Rate RR = $1.46 \times 10^{-7}$ + (-7) (RR _{pr} ) Note 3. If RR _{cer} is LESS THAN 2.0 E-4 R-44 Alarm Setpoints: [Step 4 R-44 reading in uCl/cc = [(-10) R-42 Alarm Setpoint (Step 4.2) R-42 Maximum Setpoint (Step 4.2) R-42 Maximum Setpoint (UCl/c Warn = 0.75 (-1.47)×10.4 (S) Prepared By: <u>Reacted Dp</u> Discharge Authorization: Authorization Level must be greater tha	$(C_{pv}) (F)$ $(F)$ $(C_{pv}) (F)$ $(C_{pv}) (F)$ $(F)$	$= \frac{7.11 \times 10}{(RE)}$ is required. $\frac{7.00\times10^{4} + 1700}{(F)} = \frac{1}{(F)}$ /cc) Actual R-42 $\mu$ Crcc Verified By: Date:	-9 Ci/sec ³ (1.94) Ci/sec (1.94) X10 ⁻⁴ Setpoint <u>8:54×10⁻⁷</u> μCi/cc

Page 8

#### VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

	•
Appendix (	ر

Initial Conditions

Initial Conditions:

- VC pressure has increased to approximately 0.4 psig.
- The Computer Release Permit Program has been corrupted.
- The Spare RO prepared a manual Release Permit
- Given:
  - Condenser Air In leakage is 5.25 scfm
  - Plant vent flow is 7.06 X 10⁴ scfm
  - Current reading R-45 is 7.15 X  $10^{-7}\mu$ Ci/cc
  - Current reading R-42 is 1.82 X10⁻⁷ μCi/cc
  - Current reading R-44 is 1.14 X  $10^{-6} \mu$ Ci/cc
  - Current High Alarm R-42 is 8.54 X  $10^{-7}$  µCi/cc
  - Current High Alarm R-44 is  $1.5 \times 10^{-4} \mu$ Ci/cc
  - Current Warn R-44 is 1.0 X 10⁻⁴ μCi/cc
  - Instantaneous Release Rate 70,000 µCi/sec

Initiating Cue:

You are the CRS and the SM has directed you to review the Manual VC Pressure Relief Gaseous Release Permit and authorize discharge if acceptable.

Form ES-C-1

f				
	C PRESSURE RELIEFS		No: 2-SOP-5.4.1	Rev: 17
			Page 25 of 25	
	ATTACHN	AENT 1	an har an construction of the construction of the second second second second second second second second second	J
vc	PRESSURE RELIEF GAS	EOUS RI		r
	(Page 1	of 1)		100005
Date: TODAY	Time:		Permit No.	120005
VC Sample # 11	Date:	Time:	Activity (A)	μCi/cc
VC Sample # 2	Date:	Time:	Activity	μCi/cc
Plant Vent Sample #	Date:	_ Time:	Activity	μCi/cc
CAE Concentration ²	Date:	Time:	Activity (E)	7.1540 7 HCI/CC
CAE in Leakage (Fc)	<u>5.25</u> scfm			
Plant Vent Flow (F)	7.06×104 sctm		R-44 Current Warn	LOXID-4 HCVCC
		R-4	4 Current High Alarm	1.5K10-4 HCVCC
		R-44 0	Current Reading (Cpv)	1.14×10-6 µCi/cc
			R-42 Reading (A)	1.82407 µCi/cc
	R-42 may be used to obtain containment Noble g gas activity grab sample.	gas concentration	in lieu of sampling and analy	56.
	lease Rate: [Step 4.2.4.1]			
		Cilean		
HH _{pr} = 0.0  ( <u></u>	$\frac{\partial \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S} \mathcal{S}}{(\mathbf{A})} = \frac{1.4(\mathcal{L} \mathcal{S} \mathcal{S} \mathcal{S}^{-7})}{(\mathbf{A} \mathcal{S} \mathcal{S}^{-7})}$	U/sec		
Plant Vent Release	Rate: [Step 4.2.4.2]			
PB - 472 E-4	· 114405	4	3. Sovial on	
	$\frac{\text{rate: [Step 4.2.4.2]}}{(\underline{1.14} \times 10^{-5})} \cdot (\underline{7.06} \times 10^{-5})$	(F)	(RR _{pv} )	ec
Plant Vent Release	Rate Equivalent of CAE Release Ra	te: [Step 4.2	.4.3]	
8R = 4.72 E-4	·()·()·()	)=	7.11×10-9 cue	ac ³
	( <b>E</b> _j ) (	(F _c )	(RR _{cm} )	50
Total Calculated Re	elease Rate: [Step 4.2.4.4]			
BB = 14640	+ <u>3.80×10-4</u> +	Ô	- 3.80x10.4	
(RR _{pr} )	(RR _{pv} )	(RR _{cae} )	(RR)	211360
Note 3: If PR is LESS	THAN 2.0 E-4, then no further consideration of (	CAE is required		
R-44 Alarm Setpoir				
		and in The work		
m-44 reading in uc-	Vcc = [(.007a, -3,80×10-4) * 211(ARR) (RR)	(F)	-+1700) = 1.99	XID
R-42 Alarm Setpoir				
	point (µCi/cc) = <u>70,000</u> · (1.25E-6		0	al 7
n-42 Meannum Sei	$\mu C \mu C \nu C C = \frac{76,000}{(IR)}$ (1.25E-6	sec/cc}	Actual R-42 Setpoint _	.Sakie hCi/cc
Warn = 0.75*(	$(.49 \times 10^{-4}) = (.49 \times 10^{-14})$	- μCi/cc		
	(S) Warn	µ0%00		
Prepared By: Re	actor Operator		Verified By:	
Discharge Authoriza	1			
	t be greater than or equal to RR to permit release	e	Date:	
Start →	Dale: T	ime:	Initial VC Pr	essure:
Terminate →	Date:T	ime:	Final VC Pr	essure

Form ES-C-1

Appendix C	Job Performance Measur Worksheet	re Form ES-	-C-1
Facility: <u>Indian Point Unit 2</u>	Task No:	1500010503	
Task Title: Classify Emer Implementatio		quiring Emergency Plan	
1940012438 K/A Reference: SRO-4.4	Job Perform No:	nance Measure SRO Admin-5	5
Examinee:	NRC Exami	ner:	
Facility Evaluator:	Date:		
Method of testing: Simulated Performance Classroom X READ TO THE EXAMINEE I will explain the initial condition initiating cues. When you comperformance measure will be	Simulator ons, which steps to simulat		
<ul><li>The unit tripped</li><li>All safety equipment</li></ul>	ly decreased to approxim started as designed intes after the event the ature 265°F e 25 psig Pressure 5 psig and Radiation 19 R/hr 7 meters p n 270 degre	following conditions exist:	

Task Standard: Event properly classified and Part 1 form correctly completed.

Required Materials:

Appendix C	Job Performance Measure Worksheet	Form ES-C-7
General Refe	rences: IP-EP-120, Emergency Classification	
	IP-EP-210, Central control Room IP-EP-410, Protective Action Recommendation	n
	EAL Wall Chart	
	EAL Technical Basis Document	
	You have 15 minutes from the time you classify the ev Radiological Emergency Data Form (Part 1)	ent to complete the
	The Shift Manager has become ill. You are the CRS a the duties of the Emergency Director until a replacement site.	•
	You must Classify the event and Complete the NYS P	art 1 form.

Validation Time: 25 Minutes

Appendix C		Page 3	Form ES-C-
		Performance Information	
(Denote criti	cal steps witl	n a check mark √)	
Inform the o	perator to BE	GIN after completion of review of t	he Initial Conditions
1. Performa	ince Step:	Obtain Correct Procedure	
Standard:		Obtains IP-EP-120	
Comment:	CUE: Cand JPM is star	idate will be given all necessary protect.	ocedure before the
	Record the	time the JPM is started:	
√2. Perfor	mance Step:	Evaluate Plant Status to detern Alert, or NUE applies. Determi classification and make declar	ne the highest
Standard:		Determines Event is GE per E/ attached)	AL 4.1.5 (see
Comment:	Record the	e Time Declaration Made:	
	Actuation pressure s Pressure c	ent Pressure rapidly rises on a Li and Fan Cooler Units operating, should be approximately 15 psig of 5 psig is not consistent with Lo a breach in containment.	Containment after 5 minutes.

Appendix C	Page 4	Form ES-C-1
	Performance Information	
(Denote critical steps with	a check mark √)	
√3. Performance Step:	Complete and approve "New Y Radiological Emergency Data EP-1	
Standard:	Completes all necessary information on the and signs the form	
Comment: Record the	Time Form is complete:	
4. Performance Step:	Refer to procedure IP-EP-210, A	ttachment 9.1.
Standard:	Refers to Attachment 9.1	
Comment:		
5. Performance Step:	Initiate County, State and NRC N 115, Form EP-6.	Notification per IP-EP-
Standard:	Request a communicator	
Comment: CUE: Ackno notifications	wledge the communicator is prepa	ared to make

Terminating Cue: JPM Complete

Form ES-C-1

This is the Indian Point Energy Center with a Part 1 Notification on:		Indian Point Energy Center RADIOLOGICAL EMERGENCY DATA FORM - PART 1 Notification # <u>O1</u>
Peector Status:       EXERCISE       ACTUAL EMERGENCY       at:       UNIT 3       BOTH UNITS         Unit 2       Operational (Date)       (Date)       ToDAY       (Time)       CueRCENTINE       (24 hr clock)         Unit 3       Operational (Date)       (Date)       (Time)       (24 hr clock)         Shutdown       (Date)       (Time)       (24 hr clock)         Shutdown       (Date)       (Time)       (24 hr clock)         Shutdown       A       Unusual Event       B. Alert       C. Site Area Emergency         Classification is:       Operational (Date)       (Date)       (Date)       (Date)         3       EAL#:       4.1.5       Lb55 of primery Collant inside Contain meet with (Contain meet pressive of sump low 1 response net consistent with Lock ACDA then's Any Indecative Materials due to the Classified Event:         A       No Release       B. Release BELOW Foderal limits       To Atmosphere       To Water         C       Release ABOVE Federal limits       To Atmosphere       To Water       To Water         C       Release BELOW Foderal limits       To Atmosphere       To Water       To Water         C       Release BELOW Foderal limits       To Atmosphere       To Water         C       Release BELOW Foderal limits       To Atmospher	This	is the Indian Point Energy Center with a Part 1 Notification on: TODAY
Unit 2       Operational (Date)       ToDAY       (Time)       CUERCH TIME       (24 hr clock)         Shutdown       Unit 3       Operational (Date)       (Time)       (24 hr clock)         Shutdown       Time       (24 hr clock)       Shutdown       (24 hr clock)         2.       The Emergency:       A. Unusual Event       B. Alert       C. Site Area Emergency (Classification is:       C. Site Area Emergency (Classification declared on: TDDAY)       at Time 24 Declaration (Time 24 hr clock)         3.       EAL#:       4.1.5       Lp55 of primery Coolant inside contain meent with Contain meent with pressure or sump level response net consistent with Lock Acposition of Are (clad Jamage, Table 4)         4.       Belease of Badioactive Materials due to the Classified Event:         A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C. Release of Badioactive datatials due to the Classified Event:       A. No Release       B. Release BLOW Federal limits       To Atmosphere         5.       Wind Direction: (From)       27D       Degrees at elevation 10 meters         6.       Wind Direction: (From)       27D       Degrees at elevation 20 cors         A. NO NEED for PROTECTIVE ACTIONS outside the site boundary       * Stability Class:       A B © D E F G         8.       The following Sectors:       A. In maining	1.	Reactor Status:
Unit 3 Operational (Date)       (Time)       (24 hr clock)         Shutdown       (Time)       (24 hr clock)         2.       The Emergency Classification is: Defeneral Emergency Classification is: Defeneral Emergency Classification declared on: TDDAY This Emergency Classification declared on: TDDAY Contain new to prove an at the provide the classified Event: A No Release B. Release BELOW Foderal limits To Atmosphere Confection: (From) Meters/Sec at elevation 10 meters         5.       Wind Direction: (From) Meters/Sec at elevation 10 meters         6.       Wind Direction: (From) Degrees at elevation 10 meters         7.       Stability Class: A B C D E F G         8.       The following Protective Actions are recommended to be implemented as soon as practicable: A NO NEED for PROTECTIVE ACTIONS outside the site boundary * BEVACUATE and IMPLEMENT the KI PLAN for the following Sectors C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors A literaaling Areas MONITOR the EMERGENCY ALERT SYSTEM 2 miles around 3-miles downwind * 5 miles around 10-miles downwind Entire EPZ In the following Sectors: 1 2 3 C C B 7 8 9 10 11 12 13 14 15 16 NOTE: OFFSITE AUTHORITIES SHOULD CONSIDER SHELTER-IN-PLACE + TAK		
2.       The Emergency Classification is: D       A. Unusual Event       B. Alert       C. Site Area Emergency Classification is: D         7.       D       D       E       Emergency Classification declared on: TDDN4       at Time of Declaration (Time 24 broket)         3.       EAL#:       4.1.5       Lpss of primary Coolant inside contain meet with Contain meet pressure or sump level response not contain meet with Contain meet for a fuel (clad domage, Table 4.2)         4.       Release of Radioactive Materials due to the Classified Event: A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         5.       Wind Speed:       7       Meters/Sec at elevation 10 meters       To Bares         6.       Wind Direction: (From)       270       Degrees at elevation 10 meters         7.       Stability Class:       A B       C       D E       F         8.       The following Protective Actions are recommended to be implemented as soon as practicable: A. NO NEED for PROTECTIVE ACTIONS outside the site boundary       *       B EVACUATE and IMPLEMENT the KI PLAN for the following Sectors C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors       State EPZ In the following Sectors: 1       2       3       C C Conside the site boundary         *       8       Following Sectors: 1       2       C C Conside the site action in the ENT EPZ In the following Sectors: 1       1		Unit 3 Operational (Date) (Time) (24 hr clock)
Classification is:       O       General Emergency       E. Emergency Terminated         This Emergency Classification declared on:       TDDN/at       Time of Declaration         (Data)       (Data)       (Time 24 hr clock)         3.       EAL#:       4.1.5       Loss of primary coolant inside contain meet with cortain meet with cortain meet with cortain meet of pressure or sump level response net consistent with cortain meet with		
This Emergency Classification declared on:	2.	Classification is:
Applications       Any Inducation of Amelicated Jamage, Table 4.2.         4.       Release of Radioactive Materials due to the Classified Event:         A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C. Release ABOVE Federal limits       To Atmosphere       To Water       D. Unmonitored release requiring evaluation         5.       Wind Speed:       7       Meters/Sec at elevation 10 meters         6.       Wind Direction: (From)       270       Degrees at elevation 10 meters         7.       Stability Class:       A B C D E F G         8.       The following Protective Actions are recommended to be implemented as soon as practicable:       A. NO NEED for PROTECTIVE ACTIONS outside the site boundary         * @ EVACUATE and IMPLEMENT the KI PLAN for the following Sectors       C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors         8.       11 remaining Areas MONITOR the EMERGENCY ALERT SYSTEM       2 miles around 5-miles downwind       Entire EPZ         9.       Reported by - Communicator:		This Emergency Classification declared on: TODAY at Time of Declaration
<ul> <li>A. No Release of Radioactive Materials due to the Classified Event: <ul> <li>A. No Release</li> <li>B. Release BELOW Federal limits</li> <li>To Atmosphere</li> <li>To Water</li> <li>C. Release ABOVE Federal limits</li> <li>To Atmosphere</li> <li>To Water</li> <li>D. Unmonitored release requiring evaluation</li> </ul> </li> <li>5. Wind Speed:</li></ul>	3,	Aconditions.
Wind Speed.	÷	
7.       Stability Class:       A       B       C       D       E       F       G         8.       The following Protective Actions are recommended to be implemented as soon as practicable:       A. NO NEED for PROTECTIVE ACTIONS outside the site boundary       *       B EVACUATE and IMPLEMENT the KI PLAN for the following Sectors         C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors       C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors         All remaining Areas MONITOR the EMERGENCY ALERT SYSTEM       5 miles around 5-miles downwind       Entire EPZ         In the following Sectors:       1       2       3       C       C       7       8       9       10       11       12       13       14       15       16         NOTE: OFFSITE AUTHORITIES SHOULD CONSIDER SHELTER-IN-PLACE + TAKE KI IF EVACUATION IS NOT FEASIBLE         9.       Reported by - Communicator:		A. No Release B. Release BELOW Federal limits To Atmosphere To Water
Stability Class: A B C D E F G 8. The following Protective Actions are recommended to be implemented as soon as practicable: A. NO NEED for PROTECTIVE ACTIONS outside the site boundary BEVACUATE and IMPLEMENT the KI PLAN for the following Sectors C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors All remaining Areas MONITOR the EMERGENCY ALERT SYSTEM 2 miles around 5-miles downwind for the following Sectors: 10. Emergency Director Approval: Signature (Director's Name)	5.	A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C. Release ABOVE Federal limits       To Atmosphere       To Water       D. Unmonitored release requiring evaluation         Wind Speed:       7       Meters/Sec at elevation 10 meters
The following Protective Actions are recommended to be implemented as soon as practicable:         A. NO NEED for PROTECTIVE ACTIONS outside the site boundary         * B_EVACUATE and IMPLEMENT the KI PLAN for the following Sectors         C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors         All remaining Areas MONITOR the EMERGENCY ALERT SYSTEM         2 miles around 5-miles downwind       5 miles around 10-miles downwind         In the following Sectors:       1         2 miles around 5-miles downwind       5 miles around 10-miles downwind         Entire EPZ         9.       Reported by - Communicator:         (Communicator's Name)         10.         Emergency Director Approval:         Sign > two:         (Director's Name)	5.	A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C. Release ABOVE Federal limits       To Atmosphere       To Water       D. Unmonitored release requiring evaluation         Wind Speed:       7       Meters/Sec at elevation 10 meters
C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors All remaining Areas MONITOR the EMERGENCY ALERT SYSTEM 2 miles around 5-miles downwind	5. 6.	A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C. Release ABOVE Federal limits       To Atmosphere       To Water       D. Unmonitored release requiring evaluation         Wind Speed:       7       Meters/Sec at elevation 10 meters         Wind Direction: (From)       370       Degrees at elevation 10 meters
All remaining Areas MONITOR the EMERGENCY ALERT SYSTEM 2 miles around 5-miles downwind 5 miles around 10-miles downwind Entire EPZ In the following Sectors: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 NOTE: OFFSITE AUTHORITIES SHOULD CONSIDER SHELTER-IN-PLACE + TAKE KI IF EVACUATION IS NOT FEASIBLE 9. Reported by - Communicator:	5. 6. 7.	A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C. Release ABOVE Federal limits       To Atmosphere       To Water       D. Unmonitored release requiring evaluation         Wind Speed:        Meters/Sec at elevation 10 meters         Wind Direction: (From)        Degrees at elevation 10 meters         Stability Class:       A       B       C       D       E       F       G         The following Protective Actions are recommended to be implemented as soon as practicable:       Stability Class:       A       B       C       D       E       F       G
2 miles around 5-miles downwind 5 miles around 10-miles downwind Entire EPZ   In the following Sectors: 1 2 3 6 7 8 9 10 11 12 13 14 15 16   NOTE: OFFSITE AUTHORITIES SHOULD CONSIDER SHELTER-IN-PLACE + TAKE KI IF EVACUATION IS NOT FEASIBLE   9. Reported by - Communicator:	5. 6. 7.	A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C. Release ABOVE Federal limits       To Atmosphere       To Water       D. Unmonitored release requiring evaluation         Wind Speed:       7       Meters/Sec at elevation 10 meters         Wind Direction: (From)       270       Degrees at elevation 10 meters         Stability Class:       A       B       D       E       F       G         The following Protective Actions are recommended to be implemented as soon as practicable:       A. NO NEED for PROTECTIVE ACTIONS outside the site boundary       A. NO NEED for PROTECTIVE ACTIONS outside the site boundary
In the following Sectors: 1       2       3       6       6       7       8       9       10       11       12       13       14       15       16         NOTE: OFFSITE AUTHORITIES SHOULD CONSIDER SHELTER-IN-PLACE + TAKE KI IF EVACUATION IS NOT FEASIBLE         9.       Reported by - Communicator:	5. 6. 7.	A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C. Release ABOVE Federal limits       To Atmosphere       To Water       D. Unmonitored release requiring evaluation         Wind Speed:        Meters/Sec at elevation 10 meters         Wind Direction: (From)       D?D       Degrees at elevation 10 meters         Stability Class:       A       B       D       E       F       G         The following Protective Actions are recommended to be implemented as soon as practicable:       A. NO NEED for PROTECTIVE ACTIONS outside the site boundary       B. EVACUATE and IMPLEMENT the KI PLAN for the following Sectors         C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors       C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors
Image: Communicator's Name)     (Communicator's Name)       Image: Communicator's Name)     Date/Time:	5. 6. 7.	A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C. Release ABOVE Federal limits       To Atmosphere       To Water       D. Unmonitored release requiring evaluation         Wind Speed:
(Director's Name)	5. 6. 7.	A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C. Release ABOVE Federal limits       To Atmosphere       To Water       D. Unmonitored release requiring evaluation         Wind Speed:       7       Meters/Sec at elevation 10 meters         Wind Direction: (From)       37.0       Degrees at elevation 10 meters         Stability Class:       A       B       D       E       F       G         The following Protective Actions are recommended to be implemented as soon as practicable:       A. NO NEED for PROTECTIVE ACTIONS outside the site boundary       B. EVACUATE and IMPLEMENT the KI PLAN for the following Sectors       C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors         All remaining Areas MONITOR the EMERGENCY ALERT SYSTEM       5 miles around 10-miles downwind       Entire EPZ         In the following Sectors:       1       2       3       C S       C S       9       10       11       12       13       14       15       16
	5.	A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C. Release ABOVE Federal limits       To Atmosphere       To Water       D. Unmonitored release requiring evaluation         Wind Speed:       7       Meters/Sec at elevation 10 meters         Wind Direction: (From)       270       Degrees at elevation 10 meters         Stability Class:       A       B       D       E       F       G         The following Protective Actions are recommended to be implemented as soon as practicable:       A. NO NEED for PROTECTIVE ACTIONS outside the site boundary       Bevacuate and IMPLEMENT the KI PLAN for the following Sectors       C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors         All remaining Areas MONITOR the EMERGENCY ALERT SYSTEM       2 miles around 5-miles downwind       Entire EPZ         In the following Sectors:       1       2       3       C C       C       7       8       9       10       11       12       13       14       15       16         NOTE: OFFSITE AUTHORITIES SHOULD CONSIDER SHELTER-IN-PLACE + TAKE KI IF EVACUATION IS NOT FEASIBLE       Reported by - Communicator:       Telephone #
	5. 6. 7. 8.	A. No Release       B. Release BELOW Federal limits       To Atmosphere       To Water         C Release ABOVE Federal limits       To Atmosphere       To Water       D. Unmonitored release requiring evaluation         Wind Speed:

Appendix C Form ES-C-1 Simulator Setup VERIFICATION OF COMPLETION Job Performance Measure No. Examinee's Name: Date Performed: Facility Evaluator: Number of Attempts: Time to complete: Question Documentation: Question: Response: Result: SAT or UNSAT Examiner's signature and date: _____

	Ap	oendix	(C
--	----	--------	----

**Initial Conditions** 

Initial Conditions:

- The unit was operating at 100% power. •
- RCS Pressure rapidly decreased to approximately 40 psig
- The unit tripped
- All safety equipment started as designed
- Approximately 5 minutes after the event the following conditions exist:

19 R/hr

С

- RCS Temperature 265°F
  - RCS Pressure
  - 25 psig 5 psig and lowering • Containment Pressure
  - o Containment Radiation
  - Wind Speed
- 7 meters per second
- Wind Direction
- 270 degrees @ 10 meters
- Stability Class

Initiating Cue:

This is a Time Critical Job Performance Measure

You have 15 minutes from the time you are told to start to classify the event. You have 15 minutes from the time you classify the event to complete the Radiological Emergency Data Form (Part 1)

The Shift Manager has become ill. You are the CRS and you must perform the duties of the Emergency Director until a replacement SM can arrive on site.

You must Classify the event and Complete the NYS Part 1 form.

	New York State				
	Indian Point Energy Center				
	RADIOLOGICAL EMERGENCY DATA FORM - PART 1 Notification #				
This	is the Indian Point Energy Center with a Part 1 Notification on:				
1.					
	Reactor Status: This is an: EXERCISE ACTUAL EMERGENCY at: UNIT 2 UNIT 3 BOTH UNITS				
	Unit 2 Operational				
	(Date) (Time) (24 hr clock)				
	Unit 3 Operational				
	(Date) (Time) (24 hr clock) Shutdown				
2.	The Emergency A. Unusual Event B. Alert C. Site Area Emergency				
	Classification is: D. General Emergency E. Emergency Terminated				
	This Emergency Classification declared on:atat(Date) (Time 24 hr clock)				
3.	EAL#:				
4.	Release of Radioactive Materials due to the Classified Event:				
	A. No Release B. Release BELOW Federal limits To Atmosphere To Water				
	C. Release ABOVE Federal limits To Atmosphere To Water D. Unmonitored release requiring evaluation				
5.	Wind Speed: Meters/Sec at elevation 10 meters				
6.	Wind Direction: (From) Degrees at elevation 10 meters				
7.	Stability Class: A B C D E F G				
8.					
	The following Protective Actions are recommended to be implemented as soon as practicable:				
	A. NO NEED for PROTECTIVE ACTIONS outside the site boundary B. EVACUATE and IMPLEMENT the KI PLAN for the following Sectors				
	C. SHELTER-IN-PLACE and IMPLEMENT the KI PLAN for the following Sectors				
	All remaining Areas MONITOR the EMERGENCY ALERT SYSTEM				
	2 miles around 5-miles downwind 5 miles around 10-miles downwind Entire EPZ				
	In the following Sectors: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16				
	NOTE: OFFSITE AUTHORITIES SHOULD CONSIDER SHELTER-IN-PLACE + TAKE KI IF EVACUATION IS NOT FEASIBLE				
9.	Reported by - Communicator: Telephone # (Communicator's Name)				
10.					
	Emergency Director Approval: Date/Time: (Director's Name)				

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
Facility: <u>Indian Point Unit 2</u>	Task No: 2000010201	
Task Title: Perform a Man	nual ECP Calculation	
194001213 K/A Reference: <u>RO-4.3</u>	37 - Job Performance Measure No:	RO Admin-1
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Method of testing:	×	
Simulated Performance Classroom X	X Actual Performance Simulator P	lant

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- The unit had been operating for 300 Days at 100% power.
- A Unit trip occurred due to a Main Transformer Fire
- The unit has been shutdown for 20 days to effect repairs
- Prior to the trip:
  - Control Bank D at 223
  - Boron Concentrations 975 ppm
- Current Plant Conditions:
  - Tavg 547°F
  - Boron Concentrations 1472
- The Plant Computer is Out of Service
- Estimated time of Criticality 20:00 tonight

Task Standard: ECP Calculation complete and accurate.

Required Materials: Calculator

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
General References:	2-SOP-15.4, Estimated Critical Rod Position a Concentration Calculation 2-Graph-RV-1 2-Graph-RV-2 2-Graph-RV-3 2-Graph-RV-4 2-Graph-RV-5 2-Graph-RV-5 2-Graph-RV-6	and Boron
Initiating Cue: You an hand.	2-Graph-RV-7 re the Spare RO and the CRS has directed you t	o perform an ECP b

Time Critical Task: No

Validation Time: 45 minutes

Appendix C	Page 3	Form ES-C-1
	Performance Information	
(Denote critical steps with	a check mark √)	
1. Performance Step:	Obtain Correct Procedure and Graph	hs
Standard:	Obtains 2-SOP-15.4 and Graphs RV	/-1 through 7
Comment:		
2. Performance Step:	Obtain data for equilibrium operation to shutdown and record data in S sheet	
Standard:	Data given in initial conditions. Records data in Section 1.0	
Comment:		
3. Performance Step:	Estimate the date, time , RCS Temp concentration and length of shutdow criticality. Record data in Section 2.0	nfor forthcoming
Standard:	Data given in initial conditions Record data in Section 2.0	
Comment:		

Appendix C	Page 4	Form ES-C-
	Performance Information	
(Denote critical steps with a	a check mark √)	
4. Performance Step:	Perform required data entries AND Calc referenced graphs.	ulations using
Standard:	Actions listed in Steps below 5 -	
Comment:		
√ 5. Performance Step:	Determine Remaining Rod Worth from	n Graph RV-1
Standard:	Determines Remaining Rod Worth is step 3.1	0 and enters at
Comment:		
√6. Performance Step:	Determines Power Defect at Boron	
vo. Ferrormance Step.		
Standard:	Interpolate between 950 and 1000 pp 1633.9 $\pm$ 0.5 and enter at step 4.1	n to achieve
-		n to achieve
Standard:		
Standard: Comment:	1633.9 ± 0.5 and enter at step 4.1	rential
Standard: Comment: √7. Performance Step:	1633.9 ± 0.5 and enter at step 4.1 Determine Boron Concentration Diffe	rential

Appendix C	Page 5	Form ES-C-1
	Performance Information	
(Denote critical steps with	a check mark √)	
$\sqrt{8}$ . Performance Step:	Determine Boron Worth at Avera Concentration	ge Boron
Standard:	Calculate (975 + 1472)/2 = 1223.5	and enters at Step 5.2
Comment:		
√9. Performance Step:	Determine boron worth for 1223.	5 ppm
Standard:	Determines boron worth 7.14 ± 0. 5.2	.01 and enters at Step
Comment:		
$\sqrt{10.}$ Performance Step	Determine Reactivity from boron	change
Standard:	Calculate Reactivity from Boron 3548.6 pcm and enters at Step 5.	
Comment:		
√11. Performance Step	Determine reactivity due to Tavg Tavg at 547°F	at Boron 975 and
Standard:	Determines Reactivity is 0 pcm fr enters at step 6.1	rom Graph RV-4 and
Comment:		

Appendix C	Page 6	Form ES-C
	Performance Information	
(Denote critical steps with a	check mark √)	
	·	
$\sqrt{12}$ . Performance Step:	Determine Xe Defect at 100% pow	/er
Standard:	Identifies 2833 pcm from Graph R step 7.1	V-5 and enters at
Comment:		
√ 13. Performance Step:	Determine Sm Defect at 100% pov	wer
Standard:	Identifies 1009 pcm from Graph R step 7.2	V-6 and enters at
Comment:		
√14. Performance Step:	Sum of step 7.1 and 7.2	
Standard:	Determines 3842 pcm and enters	at step 7.3
Comment:		
√15. Performance Step:	Determine Xe/Sm Correction Fact	tor
Standard:	Determines 0.905 from Graph RV- 7.4	-7 and enters at step
Comment:		
Comment:		

Appendix C	Page 7	Form ES-C-1
	Performance Information	
(Denote critical steps with a	check mark √)	
$\sqrt{16}$ . Performance Step:	Determine Corrected Xe/Sm prior to	o shutdown
Standard:	Calculate 3842 X 0.905 = 3477 and 0	enters at step 7.5
Comment:		
√17. Performance Step:	Determine Xe Power for Startup	
Standard:	Determines Xe power is 100% (ess	ontially constant for
Standard.	last 36 hours) and enters at step 8.	
Comment:		
√ 18. Performance Step:	Determine Sm Power for Startup	
Standard:	Determine Sm power is 100% (esse	entially constant for
otanadra.	last 10 days) and enters at step 9.2	
Comment:		
√ 19. Performance Step:	Determine Xe defect at startup	
Standard:	Determines -11 pcm from graph R\	/-5 and enters at
	step 10.1	
Comment:		

Appendix C	Page 8 Form ES	-C-
	Performance Information	
(Denote critical steps with a	check mark √)	
√ 20. Performance Step:	Determine Sm Defect at startup	
Standard:	Determines -1202 pcm from graph RV-6 and enters step 10.2	at
Comment:		
√ 21. Performance Step:	Sum 10.1 and 10.2	
Standard:	Calculate -11 + -1202 = -1213 pcm and enters at ste 10.3	р
Comment:		
√22. Performance Step:	Determine Xe/Sm Correction Factor at startup boro concentration	n
Standard:	Interpolate to determine Correction Factor 0.861 (±0.002) and enters at step 10.4	
Comment:		
√23. Performance Step:	Determine Corrected Xe/Sm at startup	
Standard:	Calculate 1213 X 0.861 = 1044.39 (±1.5) and enters a step 10.5	at
Comment:		

Appendix C	Page 9	Form ES-C-1
	Performance Information	
(Denote critical steps with a	check mark √)	
√ 24. Performance Step:	Determine Corrected Xenon/Sama	arium Differential
Standard:	Calculate 1044.39 -(-) 3477 = 2432 at step 11.1	.6 (± 2.0) and enters
Comment:		
√ 25. Performance Step:	Calculate Total Reactivity Effect	
Standard:	Sum 0 + 1633.9 +(-) 3548.6+0+243 enter at step 12.1	2.6 = (+) 517 and
Comment:		
√ 26. Performance Step:	Estimate Critical Rod Position	
Standard:	Determine Control Bank D at 99 s step 13.1	teps (± 5) and enter a
Comment:		
√ 27. Performance Step:	Sign and Date the Calculations	
Standard:	Enters Signature and date	
Comment:		

Terminating Cue: JPM Complete

Ap	penc	lix	С
~~	pene	417	$\mathbf{C}$

`.`.

Page 10

Form ES-C-1

# ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

# ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION (Page 1 of 8)

1.0 EQUILIBRIUM CONDITIONS PRIOR TO SHUTDOWN			
1.1	DATE	24 January 2012	
	TIME	10.00	
1.2	CONTROL BANK	D	
	STEPS	903	
1.3	BORON CONCENTRATION (PPM)	975 ppm	
1.4	POWER LEVEL (%)	10070	

	20 IESTIMATED CRITICAL CONDITION FOR STAR			
2.1	DATE	TODAY		
	TIME	20:00		
2.2	TAVG	547°F		
2.3	BORON CONCENTRATION (PPM)	1472 ppm		
2.4	LENGTH OF SHUTDOWN (HRS)	>625 hrs		
	FROM DATE/TIME	24 January 2012		

3:0 ROD DIFFERENTIAL	
3.1 REMAINING ROD WORTH AT POSITION (1.2) GRAPH RV-1	P O ROL

4:01 POWER DEFECTIVE

4.1 POWER DEFECT AT BORON (1.3) AND POWER (1.4) GRAPH RV-2

(¢a) 120 1633.9

Answer Key

A	ppe	ndi	хС	

* "}

# Page 11

Form ES-C-1

#### ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

#### ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

(Page 2 of 8)

#### NOTE

The sign of reactivity in section 5.0 will be negative (-) <u>IF</u> boron at estimated critical condition is greater than boron at prior to shutdown condition (and vice versa).

510 EFFECT FROM BORON CONCENTRATION CHANGE	a an
5.1 BORON CONCENTRATION DIFFERENTIAL = (1.3) - (2.3) = (±)PPM	
BORON CONCENTRATION DIFFERENTIAL = (915) - (1472) = (-) 497	PPM
5.2 BORON WORTH AT AVERAGE OF BORON (1.3) AND (2.3) GRAPH RV-3	
BORON WORTH AT AVERAGE OF BORON = [(915)+(1472)]/2 = 1223:5	PPM
GRAPH RV-3 BORON WORTH = (+) 7.14 (=0.01) PCM/PPM	
5.3 REACTIVITY FROM BORON CONCENTRATION CHANGE =[(5.1)×(5.2)]=(±)F	PCM
REACTIVITY FROM BORON CONCENTRATION CHANGE=[(관위기 )×((+) 김대님 )]	
REACTIVITY/EROMBORONICONCENTRATION CHANGE : 3548 6	12G.

6:0 TEMPE	RATUREDEFEC
6.1 REACTIVITY DUE TO TAVG AT BORON CONCENTRATION (1.3) AND TAVG (2.2) GRAPH RV-4	

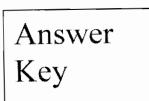
Answer Key

	MATED CRITICAL ROD POSITION BORON CONCENTRATION CALCUL	ATION		2-SOP-15.4 Rev. 10
		age 3 of 8)		ITION
And could be triangle	7.0 XENON/SAMAR	IUM PRIOF	TOSHUTDOWN	and an and a strength of the s
7.1	Xe DEFECT AT POWER (1.4) AND TIME ZERO GRAPH RV-5	(-)	2833	PCM
7.2	Sm DEFECT AT POWER (1.4) AND TIME ZERO GRAPH RV-6	(-)	1009	PCM
7.3	SUM OF ITEMS (7.1) AND (7.2)	(-)	384.2	PCM
7.4	Xe/Sm CORRECTION FACTOR AT BORON(1.3) GRAPH RV-7		0.905	
7.5	CORRECTED Xe/Sm PRIOR TO SHI	JTDOWN =	[(7.3)×(7.4)]= (-) PC	M
	CORRECTED Xe/Sm PRIOR TO SHI	JTDOWN =	[((-)3842 )×(.965 )]	
	CORRECTED Xe/Sm PRIOR TO SHI	JTDOWN =	(-) 3477	PCM

Page 12

Appendix C

· · · ·


1

Form ES-C-1

8.1-HRS PRIOR TO SHUTDOWN	AVERAGE PERCENT POWER	MULTIPLIER	PRODUCT
0-1		0.07	
1-4		0.23	
4-9		0.22	
9-16		0.20	
16-25		0.22	
25-36		0.06	
			SUM TOTAL

8.2 XENON POWER = SUM TOTAL (8.1) <u>OR</u> = PERCENT POWER <u>IF</u> POWER ESSENTIALLY CONSTANT FOR LAST 36 HOURS. XENON % =





Page 9 of 14

# Page 13 Form ES-C-1

#### ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

A

1

٠

## ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

(Page 4 of 8)

19:00 SAMARIUM POWER FOR STARTUP				
9.1-DAYS PRIOR TO SHUTDOWN	AVERAGE POWER			
1				
2				
3				
4				
5				
. 6				
7				
8				
9				
10				
SUM TOTAL				
9.2 SAMARIUM POWER = SUM TOTAL/10 SAMARIUM POWER/10 = PERCENT OR = PERCENT IF POWER ESSENTIALLY CONSTANT FOR LAST 10 DAYS SAMARIUM % = 100%				

Answer Key

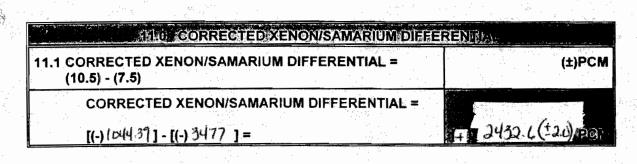
Page 10 of 14

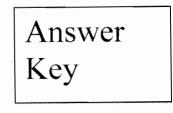
Page 14

Form ES-C-1

#### ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

#### 2-SOP-15.4 Rev. 10


# ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION


(Page 5 of 8)

10.1 Xe DEFECT AT POWER (8.2) AND TIME (2.4) GRAPH RV-5								
	(-)	PCN						
10.2 Sm DEFECT AT POWER (9.2) <u>AND</u> TIME (2.4) GRAPH RV-6	(.) 1202	PCN						
10.3 SUM OF (10.1) + (10.2)	() 1213	PCN						
10.4 Xe/Sm CORRECTION FACTOR AT BORON (2.3) GRAPH RV-7	D.861 ± (0.002)							

10.5 CORRECTED Xe/Sm AT STARTUP = (10.3) × (10.4) = (-) PCM

CORRECTED Xe/Sm AT STARTUP = (143)×(.541)=(-) 1044.39 (±1.5) PCM





.

Page 15

Form ES-C-1

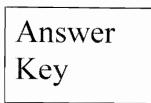
#### ESTIMATED CRITICAL ROD POSITION AND BORON CONCENTRATION CALCULATION

2-SOP-15.4 Rev. 10

#### ATTACHMENT 1 DATA SHEET ESTIMATED CRITICAL POSITION

(Page 6 of 8)

# NOTE


IE Total Reactivity Effect in step 12.1 is negative <u>OR IF</u> estimated Critical Rod Position step 13.1 differs from desired startup position, <u>THEN</u> a Boron Concentration Adjustment is required per Section 14.0

12.0 TOTAL REACTIVITY EF	FECI		an stall all the state of the
12.1 TOTAL REACTIVITY EFFECT = (3.1) + (4.1) + (5.3) + (6.1) + (11.1)			(±)PC <b>M</b>
TOTAL REACTIVITY EFFECT =			
()+()+()+()+() 0	( *	) 51	7 РСМ

13:0 ESTIMATED CRITICAL ROD PO	SITION	e e construction de la construction
13.1 POSITION AT REACTIVITY (12.1) GRAPH RV-1	BANK	STEPS
	D	99

ESTIMATE PERFORMED BY (RO/CRS/REACTOR ENGINEER)	DATE
	To COARDINATION OF A DAMAGE

ESTIMATE REVIEWED BY (SM/REACTOR ENGINEER)	DAILE



Page 12 of 14

1

e all'anne anna anna

2.1

÷.

INDIAN POINT ENERGY CENTER UNIT NO. 2 - CYCLE 20
Bank Overlap Remaining Rod Worth

D - Bank Step <b>s</b>	Worth PCM
223	<u>(3.1)</u>
213	12
203	40
193	83
183	134
173	186
163	236
153	284
143	330
133	374
123	417
113	459
100	515
93	547
83	59 <b>9</b>
73	65 <b>9</b>
63	727
53	801
43	878
3 <b>3</b>	955
23	1028
13	1094
3	1149
0	1164
C - Bank Steps	
113	1203
100	1253
1101 1000 10	

Answer Key

APPROVED RE 5 24/11

EFFECTIVE DATE

Z-GRAPH-RV-1

Ref. Cycle 20 NuPOP HZP (MOL - 12000 MWD/MTU) Rev. 60

16 of 25

Appendix C	Page 17	Form ES-C-1
------------	---------	-------------

المحادثا المستعلا أنفيتك بملاحظ كمنا بطر بطلا بقد أمريك الرزية

Indian Point Unit 2 Cycle 20 TOTAL POWER DEFECT (pcm) AS A FUNCTION OF POWER AND BORON CONCENTRATION AT MOL (12009 MWD/MTU)

Boron POWER LEVEL (%)																					
Conc.	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
(ppm)																					
600	0.0	102.8	202.6	299.6	394 4	487.0	577.9	667 2	755.2	842.0	927.9	1013.0	1097.4	1181.2	1264.4	1347.2	1429.5	1511.3	1592.6	1673.4	1753.5
850	0.0	102.0	201.1	297.4	391.5	483.4	573.6	662.2	749.5	835.6	920.7	1004.9	1088.5	1171.4	1253.7	1335.5	1416.8	1497.6	1577.9	1657 6	1736.6
700	0.0	101.3	199.6	295.3	388.6	479.9	569.4	657.3	743.9	829.2	913.6	997.0	1079.7	1161.7	1243.1	1324.0	1404.3	1484.1	1563.4	1642 0	1720.0
750	0.0	100.5	198.2	293.2	385.9	476.5	565.3	652.5	738.4	823.0	906.6	989.2	1071.1	1152.2	1232.8	1312.7	1392.1	1470.9	1549.1	1626 7	1703.7
800	0.0	99.8	196.8	291.1	383.1	473.1	561.3	647.8	733.0	816.9	899.7	981.6	1062.6	1142.9	1222 6	1301.6	1380.0	1457.9	1535.1	1611.8	1687.7
85Q	0.0	<b>99.1</b>	195.4	289.1	380.4	469.8	557.3	643.2	727.7	810.9	893.0	974.1	1054.3	1133.8	1212.6	1290.7	1368.2	1445.1	1521.4	1597.0	1672.0
900	0.0	98,4	194.0	287.1	377.8	466.5	553.4	638.5	722.4	805.0	886.3	966.7	1046.2		1202.8				1507.9	1582.6	1656.5
950	0.0	97.7	192.7	285.1	375.2	463.3	549.6	634.2	717.3					1124.9		1280.0	1356.6	1432.6			
1000	0.0	97.1	191.4	283.2						799.2	879.8	959.5	1038.2	1116.1	1193.2	1269.5	1345.2	1420.3	1494.7	1568.4	1641.4
1050	0.0				372.7	460.2	545.8	629.8	712.3	793.5	873.5	952.4	1030.3	1107.4	1183.7	1259.2	1334.1	1408.2	1481.7	1554.4	1626.5
		96.4	190.1	281.3	370.2	457.1	542.1	625.5	707.4	787.9	867.2	945.4	1022.6	1098.9	1174.4	1249.1	1323.1	1396.3	1468.9	1540.7	1611.8
1100	0.0	95.8	188.9	279.5	367.8	454.1	538.5	621.3	702.5	782.4	861.0	938.5	1015.0	1090.6	1165.3	1239.2	1312.3	1384.7	1456.3	1527.3	1597.4
1150	0.0	95.2	187.6	277.7	365.4	451.1	535.0	617.1	697.7	777.0	855.0	931.8	1007.6	1082.4	1156.3	1229.4	1301.7	1373.2	1444.D	1514.0	1583.3
1200	0.0	94.6	186.4	275.9	363.1	448.2	531.5	613.0	693.1	771.7	849.0	925.2	1000.2	1074.3	1147.5	1219.8	1291.3	1362.0	1431.9	1501.0	1569.4
1250	0.0	94.0	185.3	274.1	360.8	445.3	528.0	609.0	688.5	766.5	843.1	918.6	993.0	1066.4	1138.8	1210.4	1281.1	1350.9	1420.0	1488.3	1555.8
1300	0.0	93.4	184.1	272.4	358.5	442.5	524.7	605.1	683.9	761.3	837.4	912.2	986.0	1058.6	1130.3	1201.1	1271.0	1340.1	1408.3	1475.7	1542.3
1350	0.0	92.8	183.0	270.7	356.3	439.8	521.4	601.2	679.5	756.3	831.7	905.9	979.0	1051.0	1122.0	1192.0	1261.1	1329.4	1396.8	1463.4	1529.2
1400	0.0	92.2	181 8	269.1	354.1	437.0	518,1	597.4	675.1	751.3	826.2	899.8	972.2	1043.5	1113.7	1183.0	1251.4	1318.9	1365.5	1451.3	1515.2
1475	0.0	91.4	180.2	266.6	350.9	433.0	513.3	591.8	668.7	744.0	818.0	890.7	962.1	1032.4	1101.6	1169.9	1237.1	1303.5	1368.9	1433.5	1497.2
1550	0.0	90.6	178.6	264.3	347.7	429.1	508.6	586.4	662.4	736.9	810.0	881.8									
1625	0.0	89.8	177.1	262.0	344.7	425.3							952.3	1021.6	1089.8	1157.0	1223.2	1288.4	1352.7	1416.1	1478.6
1700	0.0	89.0	175.5				504.1	581.0	656.3	730.0	802.2	873.1	942.7	1011.1	1078.3	1144.5	1209.6	1273.7	1336.9	1399.2	1460.5
.,	V.V	00.0	113.5	259.7	341.7	421.6	499.6	575.8	650.3	723.2	794.6	864.6	933.3	1000.8	1067.0	1132.2	1196.3	1259.4	1321.5	1382.6	1442.9

Answer Key

Ah - ---RE-Approved 5/24/11 1633.9 (4,1)

Effective Date

2-GRAPH-RV-2

Ref. Cycle 20 NuPOP (MOL - 12000 MWD/MTU) Rev. 50 - mint

1

# Page 18

# Form ES-C-1

## INDIAN POINT STATION

UNIT NO. 2 - CYCLE 20 Differential Boron Worth (MOL)

				- 4
Boron Concentratio	on (PPM)	Differential Bor	on Worth (PC	
٥			8.10	
75			8.08	
150			8.00	
225			7.93	
300			7.8 <b>6</b>	
375			7.80	
450			7.74	
5 <b>25</b>			7.68	
600			7.62	
67 <b>5</b>			7.56	
750			7.50	
825			7.44	
900			7.38	
975			7.33	
1050			7.27	
1125			7.22	
1200 1.123.5 1275			7.16 7.14 7.11	(5.3)
1350			7.0 <b>6</b>	
1425	Answ	rer	7.01	
1500	Key		6.9 <b>6</b>	
1575	1109		6.91	1,11
1650			6.8 <b>6</b>	2LUU
1725			6.81	RE- Approved
1800			6.76	5/24/11
				Effective Date

Ref. Cycle 20 NuPCP - MOL (12000 MWD/MTU) Rev. 49

2-GRAPH-RV-3

Ċ

Appendix C Page 19 Form ES-
-----------------------------

Total Te	mperatur	e Defect (l	PCM) as a			t Unit 2 C rature and	-	oncentrat	ion MOL/E	EOL (1800	0 MWD/M	TU)
					Core A	verage Ten	nperature (	F)				
Boron	350	360	380	400	420	440	460	480	500	520	540	547
Conc. (ppm)												
600	2242	2201	2096	1960	1793	1594	1364	1103	810	487	132	0
650	2152	2114	2017	1888	1729	1539	1319	1067	785	472	128	0
700	2062	2028	1938	1818	1667	1485	1274	1032	759	457	124	0
750	1974	1944	1860	1747	1605	1432	1229	997	734	442	120	0
800	1887	1860	1784	1678	1543	1379	1185	962	709	427	116	0
850	1800	1777	1708	1610	1483	1327	1142	928	685	413	112	0
900	1715	1694	1632	1542	1422	1275	1099	894	661	399	108	à li
950	1630	1613	1558	1474	1363	1223	1056	860	636	385	105	0 11
1000	1546	1532	1484	1408	1304	1173	1014	827	612	371	101	$\mathbf{O}$
1050	1463	1453	1411	1342	1246	1122	972	794	589	357	97	Ō
1100	1381	1374	1338	1276	1188	1072	930	761	565	343	94	Ð
1150	1300	1295	1267	1212	1130	1023	889	728	542	329	90	0
1200	1219	1218	1195	1147	1073	973	848	696	519	315	86	0
1250	1139	1141	1125	1084	1017	925	807	664	496	302	83	0
1300	1060	1064	1055	1020	961	876	767	632	473	288	79	0
1350	981	989	985	957	905	828	726	600	450	275	76	0
1400	903	914	916	895	849	780	686	569	427	262	72	0
1450	826	839	848	833	794	732	647	538	405	248	69	0
1500	749	765	780	771	740	685	607	506	382	235	65	0
1550	673	692	712	710	685	638	568	475	360	222	62	0
1600	597	619	645	650	632	592	529	445	338	209	58	0
1650	522	547	579	589	578	545	491	414	316	196	55	0
1700	448	475	513	530	525	499	452	384	294	183	51	0
1750	375	404	448	471	473	454	414	354	273	171	48	0
1800	302	334	383	412	421	409	377	324	251	158	45	0
1850	230	265	320	354	369	364	340	295	230	146	41	0
1900	159	197	257	298	319	321	303	266	209	133	38	0
1950	89	129	195	241	269	278	267	238	189	121	35	0

CTUDER RE APPROVED

2-GRAPH-RV-4

Ref. Cycle 20 NuPOP MOL/EOL (18000 MWD/MTU) Rev. 54

Α				

Page 20

### Form ES-C-1

### Indian Point Unit 2 Cycle 20 Xenon Worth (PCM) versus Time Following Plant Trip After Steady State Operation at MOL (12000 MWD/MTU) (Page 1 of 2)

#### Time After Trip (Hours)

Power										40	20	25	30	35
(%)	0	2	4	6	8	10	12	14	16	18	20			-1146
100	(-2833)(1	(./)-3471	-3822	-3963	-3955	-3843	-3662	-3438	-3190	-2931	-2673	-2067	-1554	
95	-2791	-3395	-3725	-3854	-3840	-3727	-3549	-3330	-3087	-2836	-2585	-1998	-1501	-1106
90	-2749	-3319	-3627	-3744	-3725	-3612	-3436	-3221	-2985	-2741	-2498	-1929	-1449	-1067
85	-2706	-3244	-3530	-3635	-3610	-3496	-3322	-3113	-2883	-2646	-2410	-1860	-1396	-1028
80	-2664	-3168	-3433	-3525	-3495	-3380	-3209	-3004	-2781	-2551	-2323	-1791	-1344	-989
75	-2602	-3066	-3307	-3385	-3349	-3234	-3067	-2869	-2653	-2433	-2214	-1705	-1279	-941
70	-2539	-2964	-3180	-3245	-3203	-3088	-2925	-2733	-2526	-2314	-2105	-1620	-1214	-892
65	-2477	-2862	-3054	-3105	-3057	-2942	-2782	-2597	-2398	-2196	-1996	-1534	-1149	-844
60						-2796		-2461	-2271	-2077	-1887	-1448	-1084	-796
	-2414	-2760	-2927	-2965	-2911		-2640		-2122	-1939	-1760	-1350	-1009	-740
55	-2319	-2625	-2768	-2793	-2735	-2621	-2472	-2302			-1634	-1251	-934	-685
50	-2223	-2490	-2608	-2621	-2559	-2447	-2304	-2142	-1972	-1801		-1152	-859	-630
45	-2128	-2354	-2449	-2449	-2383	-2273	-2136	-1983	-1823	-1663	-1507		-784	-574
40	-2032	-2219	-2289	-2277	-2207	-2099	-1968	-1824	-1674	-1526	-1381	-1053		-511
35	-1870	-2023	-2076	-2056	-1987	-1886	-1765	-1634	-1498	-1364	-1234	-940	-699	
30	-1708	-1828	-1862	-1836	-1768	-1674	-1563	-1444	-1322	-1202	-1087	-826	-614	-448
25	-1546	-1632	-1648	-1615	-1548	-1461	-1360	-1254	-1147	-1041	-940	-712	-528	-386
20	-1384	-1436	-1434	-1394	-1329	-1248	-1158	-1064	-971	-879	-792	-599	-443	-323
15	-1121	-1151	-1142	-1104	-1049	-982	-909	-834	-759	-687	-618	-466	-344	-250
10	-858	-866	-849	-814	-768	-715	-659	-603	-547	-494	-444	-333	-245	-178
5	-429	-433	-425	-407	-384	-358	-330	-301	-274	-247	-222	-167	-123	-89
0	0	0	0	0	0	0	0	0	0	0	0	00	0	0

RE APPROVED

5 **EFFECTIVÉ DATE** 

2-GRAPH-RV-5

Ref. Cycle 20 NuPOP MOL (12000 MWD/MTU) Rev. 46 Answer

Key

Appendix C	Page 21
	Faue 21

# Indian Point Unit 2 Cycle 20 Xenon Worth (PCM) versus Time Following Plant Trip After Steady State Operation at MOL (12000 MWD/MTU) (Page 2 of 2)

#### Time After Trip (Hours)

Form ES-C-1

_													
Power													
(%)	40	45	50	55	60	65	70	75	80	85	90	95	(100) (10.1)
100	-832	-598	-426	-301	-212	-148	-103	-72	-50	-34	-24	-16	(-11) ** /
95	-804	-577	-411	-290	-204	-143	-100	-69	-48	-33	-23	-16	-11
90	-775	-556	-396	-280	-197	-138	-96	-67	-46	-32	-22	-15	-10
85	-746	-536	-381	-269	-189	-133	-92	-64	-45	-31	-21	-15	-10
80	-718	-515	-367	-259	-182	-127	-89	-62	-43	-30	-20	-14	-10
75	-682	-490	-348	-246	-173	-121	-84	-59	-41	-28	-19	-13	-9
70	-647	-464	-330	-233	-164	-115	-80	-55	-38	-27	-18	-13	-9
65	-612	-439	-312	-220	-155	-108	-75	-52	-36	-25	-17	-12	-8
60	-576	-413	-294	-207	-146	-102	-71	-49	-34	-24	-16	-11	-8
55	-536	-384	-273	-193	-135	-95	-66	-46	-32	-22	-15	-10	-7
50	-496	-355	-252	-178	-125	-87	-61	-42	-29	-20	-14	-10	-7
45	-455	-326	-231	-163	-115	-80	-56	-39	-27	-19	-13	-9	-ô
40	-415	-297	-211	-149	-104	-73	-51	-35	-24	-17	-12	-8	~6
35	-369	-264	-187	-132	-93	-65	-45	-31	-22	-15	-10	-7	-5
30	-324	-231	-164	-116	-81	-57	-39	-27	-19	-13	-9	-6	-4
25	-278	-198	-141	-99	-69	-48	-34	-23	-16	-11	-8	-5	-4
20	-232	-166	-117	-83	-58	-40	-28	-19	-13	-9	-6	-4	-3
15	-180	-128	-91	-64	-45	-31	-22	-15	-10	-7	-5	-3	-2
10	-128	-91	-64	-45	-32	-22	-15	-11	-7	-5	-3	-2	-2
5	-64	-45	-32	-23	-16	-11	-8	-5	-4	-3	-2	-1	-1
0	0	0	0	0	0	0	0	0	0	0	° ~	0	O

Answer Key

RE APPROVED 5/24/11

EFFECTIVE DATE

2-GRAPH-RV-5

Ref. Cycle 20 NuPOP MOL (12000 MWD/MTU) Rev. 46 Page 22

Form ES-C-1

#### Indian Point Unit 2 Cycle 20 Effective Samarium Worth (PCM) vs Time Following Plant Trip After Steady State Operation at MOL (12000 MWD/MTU)

#### Time After Trip (Hours)

Power														ai trib	(1 300 DI 4	1											
(%)		0 5	10	15	20	25	30	35	40	50	60	70	80	90	100	120	140	160	180	200	220	240	260	280	300	350	400
100	(-100	(%2) 9)-1021	- 1033	-1043	-1054	-1063	-1072	-1080	-1088	-1102	-1114	-1125	-1135	-1143	-1150	-1162	-1172	-1179	-1184	-1189	-1192	-1195	-1196	-1198	-1199	-1201	(i0.)
95	- 101	6 -1028	-1039	-1049	- 1059	-1068	-1077	- 1085	-1092	-1106	-1118	-1129	-1138	-1146	-1153	-1165	-1174	-1181	-1186	-1 190	-1193	-1196	-1196	-1199	-1200	-1202	-1203
90	-102	3 -1035	-1045					-1090																		-1204	
85	- 102	9 -1040	- 1051	-1060	-1070	- 1078	-1086	-1094	-1101	-1114	-1125	-1135	-1144	-1151	-1158	-1169	-1178	-1184	-1189	-1193	-1196	-1198	-1200	-1201	-1202	-1204	-1205
80	-103	6 -1047	-1657	-1066	-1075	-1084	-1091	-1099	-1106	-1118	-1129	-1138	-1147	-1154	-1161	-1171	-1180	-1186	-1191	-1194	-1197	-1200	-1201	-1203	-1204	-1205	-1206
75	-104	8 - 1058	-1068	-1077	- 1085	-1093	-1101	-1108	-1114	-1126	-1137	-1146	-1154	-1161	-1167	-1177	-1185	-1191	-1195	-1199	-1202	-1204	-1206	-1207	-1208	-1209	-1210
70	- 106	0 -1070	-1079	-1088	-1096	-1103	-1111	-1117	-1123	-1135	-1145	-1153	-1161	-1168	-1174	-1183	-1191	-1 197	-1201	-1205	-1207	-1209	-1211	-1212	-1213	-1214	-1215
65	- 107	2 -1081	-1090	- 1098	-1106	-1113	-1120	1126	1132	-1143	-1152	-1161	-1168	-1174	-1180	-1189	- 1196	-1202	-1206	-1209	-1212	-1214	-1215	-1216	-1217	-1218	-1219
60	- 108	4 -1093	-1101	-1109	-1116	-1123	-1129	-1135	-1141	-1151	-1160	-1168	-1175	-1181	-1188	-1195	-1201	-1207	-1211	-1214	-1216	-1218	-1219	-1220	-1221	-1223	-1223
55	- 110	3 -1111	-1119	-1126	-1133	-1140	-1140	-1151	-1157	-1166	-1175	-1182	-1189	-1194	-1199	-1207	-1214	-1210	-1222	-1225	-1228	-1229	-1231	-1232	-1232	-1234	-1234
50	-112	3 -1131	-1138	-1145	-1151	-1157	-1163	-1166	-1173	-1182	-1190	-1197	-1203	-1206	-1213	-1220	-1226	-1231	-1234	-1237	-1239	-1241	-1242	-1243	-1244	-1245	-1245
45	-114	2 -1149	-1156	1162	-1168	-1174	-1179	-1184	-1188	-1197	-1204	-1210	-1216	-1221	-1225	-1232	-1238	-1242	-1245	-1248	-1250	-1251	-1252	-1253	-1254	-1255	-1255
40	-118	1 -1168	-1174	-1180	-1165	-1190	-1195	-1200	-1204	-1211	-1218	-1224	-1229	-1234	-1238	-1244	-1249	-1253	-1256	-1258	-1260	-1261	-1262	-1263	-1264	-1265	-1265
35	-119	1 -1197	-1203	-1208	-1213	-1218	-1222	-1226	-1230	-1237	-1243	-1249	-1253	-1257	-1261	-1267	-1272	-1275	-1278	-1260	-1262	-1263	-1284	-1285	-1265	-1286	-1286
30	-122	1 -1226	-1232	-1236	-1241	-1245	-1249	-1253	-1256	-1263	-1268	-1273	-1277	-1281	-1284	-1290	-1294	-1297	-1300	-1302	-1303	-1304	-1306	-1306	-1306	-1307	-1308
25	-125	0 -1255	-1260	- 1264	-1268	-1272	-1275	-1279	-1282	-1287	-1292	-1297	-1301	-1304	-1307	-1312	-1315	-1318	-1321	-1322	-1324	-1325	-1325	-1326	-1326	-1327	-1328
28	- 128	0 -1284	- 1288	-1292	-1296	-1299	-1302	-1305	-1308	-1313	-1317	-1321	-1325	-1328	-1330	-1335	-1338	-1340	-1342	-1344	-1345	-1346	134	-1347	-1348	-1348	-1349
																					1	1		1	1.		
										Å												PPRO		4			- 1
										A	n	SW	/ej	ľ						/		-/z	•	111			
										$\nu$	-											CTIVI	<u> </u>	E E		-	
	Ref	Cycle	20 Nui	POP						K	le	V															
	Rev										•														2-GR	APH-	RV-6

Answer Key

# Appendix C

# Page 23

# Form ES-C-1

À	Xe	INDIAN I UNIT NO non/Samarium (Xe/Sm) C	). 2 - CY(	CLE 20	an a
ι.	Boron Concentra	ation (PPM)	Xe/Sm (	Correction Factor	
	0			1.000	
	75			0.9 <b>92</b>	
	150			0.985	
	225			0.977	
	300			0.970	
	375			0.962	
	450			0.955	
	525			0.948	
	600			0.941	
	675			0.934	
	750			0.926	
	825			0.919	
	900			0.912	
	975			0.905	(4)
	1050			0.899	
	1125	A		0.892	
	1200	Answer		0.885	
	1275	Key		0.878	
	1350	ixey		0.872	
	1425			0.865 0.861 (10) 0.858	()
	1500 1575			0.858	
	1650			0.845	
	1725			0.83 <b>9</b>	Allin
	1800			0.832	RE - Approved
	1000			0.032	5/24/11 Effective Date
	Ref. Cycle 20 NuPOP - MC Rev. 50	0L (12000 MWD/MTU)			2-GRAPH-RV-7

Appendix C

Page 24

### VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

**Question Documentation:** 

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

Appendix C
------------

Initial Conditions:

- The unit had been operating for 300 Days at 100% power.
- A Unit trip occurred due to a Main Transformer Fire
- The unit has been shutdown for 20 days to effect repairs
- Prior to the trip:
  - Control Bank D at 223
  - Boron Concentrations 975 ppm
- Current Plant Conditions:
  - Tavg 547°F
  - Boron Concentrations 1472
  - The Plant Computer is Out of Service
- Estimated time of Criticality 20:00 tonight

Initiating Cue:

٠

You are the Spare RO and the CRS has directed you to perform an ECP by hand.

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
Facility: Indian Point Unit 2	2 Task No:2000700102	
Task Title: Review a Cor	mpleted Surveillance Test	
194001221 K/A Reference: <u>RO – 3.7</u>	12 Job Performance Measure No:	RO Admin - 3
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Method of testing:		
Simulated Performance	X Actual Performance Simulator Pla	nt

### READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

• 2-PT-M110 was completed 5 hours ago

Task Standard: Surveillance Test Reviewed and errors found.

Required Materials: Completed 2-PT-M110

General References: IP-SMM-DC-904

Initiating Cue: You are the Spare RO and the CRS has directed you to perform a Peer Review of the completed Surveillance 2-PT-M110

Time Critical Task: No

Validation Time: 30 Minutes

Appendix C	Page 2	Form ES-C-
	Performance Information	
(Denote critical steps with	a check mark √)	
1. Performance Step:	Obtain copy of IP-SMM-DC-904	
Standard:	Obtains copy of procedure, Reviews P Step 6.5.2	&Ls and goes to
Comment: CUE: Hand c procedure	out copy of IP-SMM-DC-904 with complete	d surveillance test
2. Performance Step:	Check Calibration due dates recorded	
Standard:	Determine Calibration Due Dates is No Checks Box N/A	ot Applicable and
3. Performance Step:	Check Instruments within calibration	
3. Performance Step:		Not Applicable and
3. Performance Step: Standard:	Check Instruments within calibration Determines Instrument Calibration is N Checks Box N/A	Not Applicable and
Comment: From Peer Re 3. Performance Step: Standard: Comment: From Peer Re 4. Performance Step:	Check Instruments within calibration Determines Instrument Calibration is N Checks Box N/A	Not Applicable and
<ol> <li>Performance Step:</li> <li>Standard:</li> <li>Comment: From Peer Re</li> <li>Performance Step:</li> </ol>	Check Instruments within calibration Determines Instrument Calibration is N Checks Box N/A	Not Applicable and
3. Performance Step: Standard: Comment: From Peer Re	Check Instruments within calibration Determines Instrument Calibration is N Checks Box N/A eview Sheet Changes documented by TPC Determines no TPC are applicable Checks Box N/A	Not Applicable and
<ol> <li>Performance Step:</li> <li>Standard:</li> <li>Comment: From Peer Re</li> <li>Performance Step:</li> <li>Standard:</li> </ol>	Check Instruments within calibration Determines Instrument Calibration is N Checks Box N/A eview Sheet Changes documented by TPC Determines no TPC are applicable Checks Box N/A	Not Applicable and

Appendix C	Page 3	Form ES-C-1
	Performance Information	
(Denote critical steps with a	ı check mark √)	
$\sqrt{5}$ . Performance Step:	Check all procedural steps complete	ed
Standard:	Determine step 4.2.1 NOT initialed C	hecks Box YES
	completed; just the initials are missin ne comments section	ig. This should also
6. Performance Step:	Check all steps <u>NOT</u> completed noted Comments Section	and explained in
Standard:	Determine all steps completed (Step 4 off) Checks Box N/A	.2.1 just not signed
Comment:		
7. Performance Step:	Check all corrections lined out, dated a	and initialed
Standard:	Determines no corrections with lineout Checks Box N/A	S.
Comment:		
8. Performance Step:	Check all calculations correct	
Standard:	Determines calculations are correct. Checks Box YES	
Comment:		

· ^ .		200	ix C
	DDE	вю	IX C
	_		

Page 4

# Performance Information

(Denote critical steps with a check mark  ${\bf \sqrt}$ 

√9. Performance Step:	Check data properly transcribed
Standard:	Determines Jacket Water Temperature NOT properly Transcribed from Attachment 1 Checks Box NO Adds Comment in Comment Section for Jacket Water Temp
	ater Temperature on Attachment 1 DOES is satisfactory. ered in the Table at step 6.1 in not correct.
10. Performance Step:	Check Required CRs, WOs, PFs, or CTSs etc initiated
Standard:	Determines no CRs, WOs, PFs, or CTSs are required. Checks Box N/A
Comment:	
√11. Performance Step:	Check Operability conclusions correct
Standard:	Determine Operability Conclusion NOT correct for Jacket Water Temp based on data entered in the Table. Checks Box NO Enters comment in comment section for Jacket Water Temperature
Comment:	

Appendix C	Page 5	Form ES-C-1
	Performance Information	
(Denote critical steps with a	a check mark √)	
√12. Performance Step:	Check Overall Acceptance Criteria correct.	a conclusions
Standard:	Determine Overall Acceptance Cri Jacket Water Temp based on data Checks Box NO Enters comment in comment sect Temperature	entered in the Table.
Comment:		
13. Performance Step:	Contact on watch SM, CRS or FSS i NOT satisfied	f operability criteria
13. Performance Step: Standard:		

Terminating Cue: JPM Complete

### VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

# Appendix C

Answer Key

Form ES-C-1

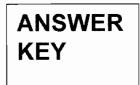
Entergy Nuclear Northeast	Procedure Use Is: Continuous Reference Information	Control Copy: Effective Date://2/3/3010 Page 1 of 14
		ž. d
	PT-M110, Revisio	
APPEND	X R DG FUNCTIO	NAL TEST
		Adian Point
Approved By:		Peration
John B. lette	A ulistio	CIALS
RPO or Designee: Print	, warne / Sign / Date	ANSWER
Team 2A Procedure Owner		KEY

# EDITORIAL REVISION

Form ES-C-1

	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 2 of 14	

# REVISION SUMMARY


(Page 1 of 1)

### 1.0 REASON FOR REVISION

1.1 Incorporate feedback IP2-10135.

### 2.0 SUMMARY OF CHANGES

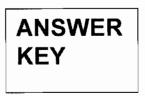
- 2.1 Editorial change [per step 4.6.13 of IP-SMM-AD-102] revised wording in Prerequisite 3.3: from "NOTIFY Watch Chemist prior to start of the diesel in order to obtain a glycol sample approximately 1 hour after diesel operations are secured" to "NOTIFY Watch Chemist prior to start of the diesel in order to obtain a coolant sample within 1 hour after diesel operations are secured".
- 2.2 Editorial change [per step 4.6.13 of IP-SMM-AD-102] added CR-IP2-2010-00036, CA#9 to Development Docs step 9.2.7.



Form ES-C-1

	No: 2-PT-M110 Rev: 6	
APPENDIX R DG FUNCTIONAL TEST	Page 3 of 14	

# TABLE OF CONTENTS


Sect	tion	Title		Page
1.0	PURF	POSE		4
2.0	PREC	AUTIONS AND LIMITATIONS		4
3.0	PREF	REQUISITES		6
4.0	PROC	CEDURE		7
	4.1	Initial Conditions		7
	4.2	Test of Appendix R Diesel Generator		7
	4.3	Restoration		
5.0	COM	MENTS		
6.0	ACC	EPTANCE CRITERIA		
7.0	TEST			
8.0	EVAL	UATION		
9.0	REFE	ERENCES	• • • • • • • • • • • • • • • • • • • •	
10.0	REC	ORDS AND DOCUMENTATION	• • • • • • • • • • • • • • • • • • • •	
	<mark>achme</mark> ⁻ ACH№	<u>nts</u> IENT 1, APPENDIX R DG DATA SHEET	ANSWER KEY	

No: 2-PT-M110 Rev: 6 APPENDIX R DG FUNCTIONAL TEST Page 4 of 14 1.0 PURPOSE (A) This procedure establishes requirements for the following: Starting and running the SBO / Appendix R diesel generator for a period of 6) time sufficient to reach stable operating temperatures in accordance with TRS 3.8.B.5. Demonstrating proper operation of Appendix R DG output breaker Ø SBO/ASS in accordance with TRS 3.8.B.5. Demonstrating proper city water line up to the Appendix R DG heat ð exchangers in accordance with TRS 3.7.E.2. Verifying exhaust area fan runs in accordance with Vendor (0) Recommendations. This procedure applies to the following: Appendix R DG ANSWER **Breaker SBO/ASS KEY** PRECAUTIONS AND LIMITATIONS 2.0 Precautions And Limitations This test may be performed in any plant mode. It is preferable to perform this test during daylight hours to facilitate the observation of Appendix R DG exhaust. Momentary excursions outside the desired loading of 2005 to 2045 KW do NOT invalidate the test results. (22 **General Information** Test personnel SHALL complete Sections 3.0, 4.0, 5.0, 6.0, and 7.0, as applicable. Personnel directing this test SHALL read it in its entirety prior to performance. Personnel otherwise involved SHALL read applicable sections. Any discrepancies found SHALL be identified in Section 5.0, Comments. Attachment 1, Appendix R DG Data Sheet, captures all of the data required by Attachment 1, in SOP-27.6, Appendix R Diesel Generator Operation. Therefore completion of Attachment 1 in2-SOP-27.6, Appendix R Diesel Generator Operation, is NOT required during performance of this test.

	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 5 of 14	



Appendix R DG will be operated for a minimum of 1 hour at 2005 to 2045 KW to establish operability criteria. The test period may be extended as necessary to obtain data after temperature stability is reached.



3.0

Answer Key

Form ES-C-1

	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 6 of 14	

Initials

T

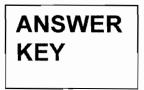
175

OF

# PREREQUISITES

Equipment required for test:

EQUIPMENT	M&TE No.	CAL DUE DATE
Sample Bottle (minimum capacity 4 ounces)	N/A	N/A




OBTAIN a current copy of 2-SOP-27.6, Appendix R Diesel Generator Operation, <u>AND</u> REVIEW Precautions and Limitations.

NOTIFY Watch Chemist prior to start of the diesel in order to obtain a coolant sample within 1 hour after diesel operations are secured (Reference 9.2.7).

Reason for Test – CHECK applicable listing:

Í	Normal Surveillance	WO # 52297257-01	
	Post Maintenance Test	WO #	
		WO #	
		WO #	
	Increased Test Frequency	/ WO #	
ľ	Other <u>CilSample</u>	72297420-01	-Inif



endix	<u> </u>	Answer Key	Form ES-C-1	_
<b></b>				
	APPENDIX	R DG FUNCTIONAL TEST	No: 2-PT-M110	Rev: 6
			Page 7 of 14	
				<u>Initials</u>
4.0	PROCEDUR	E		
	(4.) Initial	Conditions		
	ET.	OBTAIN permission from SM or perform Test:	Designated Alternate to	
		Shift Manages SM or Des. Alt. Sign	nature / Date	
	A.2 Test o	of Appendix R Diesel Generator		
	425	START (Parallel Mode) <u>AND</u> LC between 2005 and 2045 KW pe Diesel Generator Operation.		(
	422	IF Appendix R DG does <u>NOT</u> st	tart <u>OR</u> load, <u>THEN</u> :	
		4 221 NOTIFY the SM.		N.A
			ail any problems and/or s that may have caused the ).	NA
	423	<u>WHEN</u> Appendix R DG reaches 2005-2045 KW, <u>THEN</u> RECOR		
		Time <u>5 hours 290</u>		
		Load <u>2010</u> KW		.94
	42,4	VERIFY the DG Area fan is run	ining.	 
	425	<u>WHEN</u> lube oil and jacket wate <u>THEN</u> INITIATE data collection accordance with Attachment 1,	every 30 minutes in	ST
	4.2.6	WHEN lube oil and jacket wate stabilized during load run, <u>THEN</u> Appendix R DG. ANS KEY		-27

í

Answer Key

Form ES-C-1

No: 2-PT-M110 Rev: 6 APPENDIX R DG FUNCTIONAL TEST Page 8 of 14 Initials CHECK appropriate box indicating color of Appendix R DG exhaust observed. APPENDIX R DG EXHAUST COLOR LT. GRAY CLEAR BLACK WHITE 13 DK. GRAY BLUE NOTE Momentary excursions outside the desired loading of 2005 to 2045 KW do NOT invalidate the test results. 4.2.8 MAINTAIN Appendix R DG load at 2005 to 2045 KW for a nt. minimum of 1 hour. **4.2**.9 RECORD present time and run time at target load (2005 - 2045 KW): **ANSWER** Present time _____ 1045 **KEY** Time loaded ≥ 2005 KW ______ 77 mile (≥ 1 hour) WHEN time and load conditions have been met, THEN UNLOAD AND SECURE Appendix R DG (Parallel Mode) per 2-SOP-27.6, Appendix R Diesel Generator DX. Operation. Restoration 4.3 OBTAIN a lube oil sample of approximately 4 ounces from DJthe Appendix R DG dipstick. LABEL lube oil sample with the following information: Unit 2 Appendix R DG jes 2-PT-M110 Date VERIFY GT1 North and South combined Fuel Oil Storage 33 Tank level is greater than or equal to 12,500 gallons.

st ngs

u shi Î

_

Answer Key

Form ES-C-1

		No: 2-PT-M110	Rev: 6
APPENDIX	R DG FUNCTIONAL TEST	Page 9 of 14	
4.3A	VERIFY Fuel Oil Day Tank level i	Initials T	
4/3.5	VERIFY UW-831, City Water Supply Valve For Apprendix 'R' Diesel Gen. Heat Exchangers, is open.		-97
438	VERIFY UW-833, City Water Supply Line Valve For Appendix 'R' Diesel Gen. JW Heat Exchanger, is open.		
4(3.)	VERIFY UW-837, City Water Supply Line Valve For Appendix 'R' Diesel Gen. A/C Heat Exchanger, is open.		<u></u>
4(3.8	NOTIFY CRS or SM the Appendi to standby service.	x R DG has been returned	J.T.
4/3-9	DELIVER lube oil sample to Mair	ntenance.	-07

pendix C	Answer Key	Form	ES-C-1
		No: 2-PT-M110	Rev: 6
	PENDIX R DG FUNCTIONAL TEST	Page 10 of 14	
5.0 COI	MMENTS		
	1) There is no TE	to read	
	ANSWER KEY		
			none e constato de consta
۲۰۰			
			·····
Tes	st Performers:		

1/24/12
ilal ha
1/34/12

225

	No: 2-PT-M110 Rev: 6	
APPENDIX R DG FUNCTIONAL TEST	Page 11 of 14	

# 6.0 ACCEPTANCE CRITERIA

# TRM Requirements

Equipment/ Parameter/ Instrument	Step/Att.	Surveillance Requirement	Acceptance Criteria	Actual	Acceptable	Initials
Generator Output Breaker / SBO/ASS	4.2.1		Breaker Closes	N/A	(YES) NO	c
AC Wattmeter – Generator / WM	4.2.9	TRS 3.8.8.5	Load >2005 KW Maintained For ≥ 1 Hour	YES/ NO	(YES/NO	с
Jacket Water Temp	Att. 1		165-198 °F (60 Min Data)	163 .4	YESNO	c
Lube Oil Temp	Att. 1		≤ 250°F (60 Min Data)	212 °F	YES / NO	C
UW-831	4.3.5		OPEN	OPEN	(YES) NO	en
UW-833	4.3.6	TRS 3.7.E.2	OPEN	OPEN	(YES) NO	Con
UW-837	4.3.7		OPEN	OPEN	(YES) NO	Cu

### 6.2 Other Program Requirements

Equipment	Step	Surveillance Requirement	Acceptance Criteria	Actual	Acceptable	Initials
DG Area Fan	4.2.4	Vendor Recommendation	Fans Starts	(YES) NO	YES / NO	Ċ

# TEST ACCEPTANCE

121

# TRM Acceptance Criteria

YES

Based on recorded data, are all Acceptance Criteria of Section 6.1 satisfied?

(

NA

**ANSWER** 

**KEY** 

N/A

1.2 IF all Acceptance Criteria of Section 6.1 are NOT satisfied, THEN:

- NOTIFY CRS/SM to declare Appendix R Diesel Generator inoperable.
- INITIATE a WR and a CR.

NO

TAKE applicable action in accordance with TRO 3.8.B.

Form ES-C-1

		APPENDIX R DG FUN			No: 2-PT-M110	Rev: 6
					Page 12 of 14	
. , "\$\$\$.		7.3	7/21) Based on satisfied?	Acceptance Criteria the recorded data, are al NO N/A nent(s) failed to meet the		
			NA . NOT	IFY CRS/SM.		
			<ul> <li>INIT</li> </ul>	IATE a WR and a CR.		
		78	IF NO is circled in taken, with any co	Step 7.1.1 <u>OR</u> Step 7.2.1 mments:	I, <u>THEN</u> LIST corrective	action(s)
			Note: Based Correct. Beck	Jone d on "YES" being o euse "YES" is NOT co 3 as incorrect also.	rect in 7.1.1 the ca	andidate may
1.22.			Reviewed By:	SM or Des Alt	: Print Name / Sign / D	ate
	8.0	FV				
	0.0				14/	
		8.1		COORDINATOR REVIE	<u>vv</u>	
			Comments:			
			open a			
			Reviewed By:	Surveillance Coordinato	or Review: Print Name	/ Sign / Date
eng.			ANSWER KEY			

APPENDIX R DG FUNCTIONAL TEST No: 2-PT-M110 Rev: 6 Page 13 of 14

#### 9.0 REFERENCES

#### 9.1 Commitment Documents

None

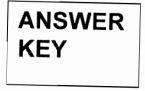
#### 9.2 Development Documents

- 9.2.1 250907, Electrical Distribution and Transmission System
- 9.2.2 400882, Station Blackout and Appendix R Diesel Generator Set P&ID Diesel Cooling Water System Mechanical
- 9.2.3 EC-5000033794, IP2 Station Blackout and Appendix R Diesel Generator Set
- 9.2.4 NUMARC 87-00, Guidelines and Technical Bases for NUMARC Initiatives Addressing Station Blackout at Light Water Reactors
- 9.2.5 NSAC-108, Reliability of Diesel Generators at U.S. Power Plants
- 9.2.6 Cummins Operation and Maintenance Manual QSK78 Series Engines
- 9.2.7 CR-IP2-2010-00036, CA#9

#### 9.3 Interface Documents

- 9.3.1 2-SOP-27.6, Appendix R Diesel Generator Operation
- 9.3.2 TRO 3.8.B
- 9.3.3 TRS 3.7.E.2

#### 10.0 RECORDS AND DOCUMENTATION


#### 10.1 Records

The following required records resulting from this procedure are controlled and maintained in accordance with the IPEC Records Retention Schedule.

10.1.1 This Performance Procedure becomes a Quality Record when completed.

#### 10.2 Documentation

None



APPENDIX R DG FUNCTIONAL TEST	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL (ES)	Page 14 of 14	

### ATTACHMENT 1, APPENDIX R DG DATA SHEET (Page 1 of 1)

Date:TODAY	Date:					38
PARAMETER		FULL LOAD	0	30	60	90
Append	dix R DG Engine	Data ·				
Coolant Temperature		≥ 40 - ≤ 215 °F	178	179	(Fi	
Lube Oil Pressure		<u>≥</u> 45 psig	75	76	77	
Engine Speed		1800 RPM	1801	RU	1501	
Fuel Pump Pressure	_	200 - 400 psig @ 1800 RPM	375	371	382	
Fuel Inlet Temperature		<u>≤</u> 150 °F	73	77	84	
Coolant Pressure		≥ 11 psig	25	25	24	
Lube Oil Temperature		< 250 °F	181	210	212	
Lube Oil Level (Between Run High / Run Low)		Midpoint	1/2	1/2	1/2	
Air Intake Temperature		≤ 180 °F	135	136	136	
After Cooler Temperature		<u>≤</u> 160 °F	107	107	107	
Appendi	x R D/G Generato	or Data				
L1 Amps	**************************************	≤ 141.0 Amps	94	14	94	[
L2 Amps		≤ 141.0 Amps	88	87	88	
L3 Amps		≤ 141.0 Amps	81	§7	88	
Frequency		59.7 – 60.3 Hz	400	60.0	60.0	
	<	≤ 2700 kW	2013	2011	2007	
Total kVA		≤ 3375 kVA	232¢	222	2201	
Total PF (nominal 0.9)		(≥ 0.8 - ≤ 0.95)	<u>۹</u>	-9	.9	
	R DG Other I	Data				
Day Tank Level		7/8 - Full	7/8	718	7/8	
PI-8030, Day Tank Fill Pump Pressure		psig	55	55	55	
TE-8027, Day Tank Oil Cooler Temperature		°F	0	3	0	
Lube Oil Reservoir Sight Glass Level		3/4 - Full	314	3/4	314	
LG-8032, Jacket Water Surge Tank Sight Glas	ss Level	2/3 - 3/4	3/4	314	3N	
LG-8031, After Cooler Surge Tank Sight Glass	s Level	2/3 - 3/4	3/4	2/3	2/3	
TI-908, Jacket Water Heat Exchanger Outlet Temperature		۰F	115	121	121	1
TI-909 After Cooler Heat Exchanger Outlet Temperature		°F	13	72	72	
FI-7979, Appendix R DG Jacket Water Flow ( FI-7979, Appendix R DG Jacket Water Flow (		≤ 118 gpm ≤ 160 gpm	110	140	140	
FI-7980, Appendix R DG Aftercooler Water Flo FI-7980, Appendix R DG Aftercooler Water Flo	ow (City Water)	≤ 87 gpm ≤ 137 gpm	135	135	135	
Battery Voltage		> 24 VDC	36.4	265	367	

Appendix C

Initial Conditions

Initial Conditions:

• 2-PT-M110 was completed 5 hours ago

Initiating Cue:

You are the Spare RO and the CRS has directed you to perform a Peer Review of the completed Surveillance 2-PT-M110

Appendix C	Initial Conditions	Form ES-C-1
<b>Ente</b>	Procedure Use Is:	Control Copy:
Nuclear No	ortheast 🗹 Continuous	
Une Tea		Effective Date: 12/2/2010
ð - I	Information	Page 1 of 14
Indian Poi Energy Con	int	
		Alter -
	<b>2-PT-M</b> 110, Revis	A BANK
Δ	PPENDIX R DG FUNCT	IONAL TEST
	and and a state of the state o	
		Adian Point
		N°
Approved By:		Deration
John C	3. Hette DA May	<u>h</u>
RPO or De	esignee: Print Name / Sign / Date	
Team 2A		
Procedure Owne	er	

# EDITORIAL REVISION

Appendix C	Initial Conditions	Form ES-C-1	
		No: 2-PT-M110	Rev: 6
AP	PENDIX R DG FUNCTIONAL TEST	Page 2 of 14	

# **REVISION SUMMARY**

(Page 1 of 1)

### 1.0 REASON FOR REVISION

1.1 Incorporate feedback IP2-10135.

### 2.0 SUMMARY OF CHANGES

- 2.1 Editorial change [per step 4.6.13 of IP-SMM-AD-102] revised wording in Prerequisite 3.3: from "NOTIFY Watch Chemist prior to start of the diesel in order to obtain a glycol sample approximately 1 hour after diesel operations are secured" to "NOTIFY Watch Chemist prior to start of the diesel in order to obtain a coolant sample within 1 hour after diesel operations are secured".
- 2.2 Editorial change [per step 4.6.13 of IP-SMM-AD-102] added CR-IP2-2010-00036, CA#9 to Development Docs step 9.2.7.

Ар	pendix C	Initial Conditions	Form ES-C-1	
			No: 2-PT-M110	Rev: 6
	APPENDIX R DG	IG FUNCTIONAL TEST	Page 3 of 14	

# TABLE OF CONTENTS

Sect	tion	<u>Title</u> Page
1.0	PURF	OSE
2.0	PREC	AUTIONS AND LIMITATIONS
3.0	PREF	EQUISITES
4.0	PROC	EDURE7
	4.1	Initial Conditions
	4.2	Test of Appendix R Diesel Generator7
	4.3	Restoration
5.0	COM	MENTS
6.0	ACCE	PTANCE CRITERIA
7.0	TEST	ACCEPTANCE
8.0	EVAL	UATION
9.0	REFE	RENCES
10.0	REC	ORDS AND DOCUMENTATION
Atta	tchme	nts
ATT	ACHN	IENT 1, APPENDIX R DG DATA SHEET 14

endix (	2		Initial Conditions	For	m ES-C-1
r					
ĺ.	APP	ENDIX	R DG FUNCTIONAL TEST	No: 2-PT-M110	Rev
L				Page 4 of 14	
1.0	PURF	POSE			
	Ŧ	This pr	ocedure establishes requirements	for the following:	
	-	Ø	Starting and running the SBO / Ap time sufficient to reach stable oper TRS 3.8.B.5.		
			Demonstrating proper operation of SBO/ASS in accordance with TRS		breaker
			Demonstrating proper city water lin exchangers in accordance with TF		DG heat
		G	Verifying exhaust area fan runs in Recommendations.	accordance with Vendor	r
	62	This p	rocedure applies to the following:		
	0	•	Appendix R DG		
		•	Breaker SBO/ASS		
20	PRE	CAUTIO			
Z	6X	Preca	utions And Limitations		
	e	E FT	This test may be performed in a	ny plant mode.	
		2 sh	It is preferable to perform this te observation of Appendix R DG e		to facilitate th
		21.3	Momentary excursions outside t do <u>NOT</u> invalidate the test resul		05 to 2045 K
	22	Gene	ral Information		
		22.7	Test personnel SHALL complete applicable.	e Sections 3.0, 4.0, 5.0,	6.0, and 7.0,
		227	Personnel directing this test SH, performance. Personnel otherwi sections.		
		223	Any discrepancies found SHALI	_ be identified in Section	5.0, Comme
		224	Attachment 1, Appendix R DG I required by Attachment 1, in SC Operation. Therefore completion Appendix R Diesel Generator O performance of this test.	0P-27.6, Appendix R Die on of Attachment 1 in2-S	sel Generato OP-27.6,

Form ES-C-1

	PPENDIX R DG FUNCTIONAL TEST	No: 2-PT-M110	Rev: 6
APPENDIX	R DG FUNCTIONAL TEST	Page 5 of 14	



Appendix R DG will be operated for a minimum of 1 hour at 2005 to 2045 KW to establish operability criteria. The test period may be extended as necessary to obtain data after temperature stability is reached.

Form ES-C-1

	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 6 of 14	

### Initials

OF

# 3.0

# PREREQUISITES

Equipment required for test:

EQUIPMENT	M&TE No.	CAL DUE DATE	
Sample Bottle (minimum capacity 4 ounces)	N/A	N/A	A



80

OBTAIN a current copy of 2-SOP-27.6, Appendix R Diesel Generator Operation, <u>AND</u> REVIEW Precautions and Limitations.

appendix R Diesel Generator d Limitations.	-57
he diesel in order to obtain a	
operations are secured	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

NOTIFY Watch	Chemist prior	to start of the	diesel in orde	r to obtain
coolant sample	within 1 hour	after diesel op	erations are s	ecured
(Reference 9.2.	7).			

13
/34
12%
$\mathbf{\mathbf{\mathcal{C}}}$

Reason for Test - CHECK applicable listing:

Y	Normal Surveillance	Wo #	
	Post Maintenance Test	WO #	
		WO #	
		WO #	
	Increased Test Frequency	/ WO #	
ď	Other <u>DilSample</u>	72297420-01	Smit

pendix C		Initial Conditions	Form ES-C-	1
			No: 2-PT-M110	Rev: 6
APPI	ENDIX R DG F	UNCTIONAL TEST	Page 7 of 14	
				Initials
4.0 PROC	CEDURE			
ar	Initial Conditio	ns		
Ø	ATT OBTAI	N permission from SM or Test:	Designated Alternate to	
	penon	Abuft Managet SM or Des. Alt. Sign	TODA 4	
4.2	Test of Append	dix R Diesel Generator		
<u> </u>	betwee	T (Parallel Mode) <u>AND</u> LC en 2005 and 2045 KW pe Generator Operation.	AD Appendix R DG to 2-SOP-27.6, Appendix R	
		endix R DG does <u>NOT</u> st	art <u>OR</u> load, <u>THEN</u> :	
	4221	NOTIFY the SM.		N
	4.2.252		il any problems and/or that may have caused the	N
		<u>I</u> Appendix R DG reaches 2045 KW, <u>THEN</u> RECORI		
	Time_	Shows 290		
	Load _	<i><u> 2030</u> KW</i>		¥
	42,4 VERIF	Y the DG Area fan is run	ning.	27
	THEN	Iube oil and jacket water INITIATE data collection dance with Attachment 1,		ন
	stabili	<u>N</u> lube oil and jacket water zed during load run, <u>THEN</u> ndix R DG.	temperatures have OBSERVE exhaust from	0°

Form ES-C-1

Initials

ADDENDIX D DO EUNOTIONAL TEAT	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 8 of 14	



CHECK appropriate box indicating color of Appendix R DG exhaust observed.

APF	END	X R DG EXHAL	JST C	OLOR	
CLEAR	$\checkmark$	LT. GRAY		BLACK	
WHITE		DK. GRAY		BLUE	.05

NOTE		
Momentary excursions outside the desired loading of 2005 to 2045 KW do <u>NOT</u> invalidate the test results.		
428	MAINTAIN Appendix R DG load at 2005 to 2045 KW for a minimum of 1 hour.	74
29	RECORD present time and run time at target load (2005 - 2045 KW):	
	Present time 1045	
01	Time loaded ≥ 2005 KW77 м.iu (≥ 1 hour)	A
4.2.10	<u>WHEN</u> time and load conditions have been met, <u>THEN</u> UNLOAD <u>AND</u> SECURE Appendix R DG (Parallel Mode) per 2-SOP-27.6, Appendix R Diesel Generator Operation.	ÐŢ
4.3 Restoration		
4.33	OBTAIN a lube oil sample of approximately 4 ounces from the Appendix R DG dipstick.	se
4,3.2	LABEL lube oil sample with the following information:	
$\bigcirc$	Unit 2 Appendix R DG	
	• 2-PT-M110	al a
~	Date	AS
4 2 3	VERIFY GT1 North and South combined Fuel Oil Storage Tank level is greater than or equal to 12,500 gallons.	- 5J.

ppendix C	Initial Conditions	Form ES-C-1	
		No: 2-PT-M110	Rev: 6
APPENDIX	R DG FUNCTIONAL TEST	Page 9 of 14	
<b>4</b> 37A	VERIFY Fuel Oil Day Tank level is	s between 7/8 - FULL.	Initials A
4/3-5	VERIFY UW-831,City Water Supp Diesel Gen. Heat Exchangers, is o		97
4.3.8	VERIFY UW-833, City Water Sup Appendix 'R' Diesel Gen. J/W Hea		H
434	VERIFY UW-837, City Water Sup Appendix 'R' Diesel Gen. A/C Hea		-24
43.8	NOTIFY CRS or SM the Appendix to standby service.	R DG has been returned	A
4.3.9	DELIVER lube oil sample to Main	tenance.	275

Appendix C	
------------	--

Initial Conditions

Form ES-C-1

	No: 2-PT-M110	Rev:	6
APPENDIX R DG FUNCTIONAL TEST	Page 10 of 14		

### 5.0 COMMENTS

1) There is no TE to read

Tim Jeakins	27	Sha Jakun 1/24/12
Tom Feenan	TÉ	Inikenan 1/20/1/2
Crong Wowall	CW	ano 1/24/12

APPENDIX R DG FUNCTIONAL TEST	No: 2-PT-M110	Rev: 6
	Page 11 of 14	

# 6.0 ACCEPTANCE CRITERIA

# TRM Requirements

Equipment/ Parameter/ Instrument	Step/Att.	Surveillance Requirement	Acceptance Criteria	Actual	Acceptable	Initials
Generator Output Breaker / SBO/ASS	4.2.1		Breaker Closes	N/A	(YES) NO	c
AC Wattmeter – Generator / WM	4.2.9	TRS 3.8.B.5	Load >2005 KW Maintained For ≥ 1 Hour	YES NO	(YES/ NO	c-
Jacket Water Temp	Att. 1		165-198 °F (60 Min Data)	163 °F	YES / NO	c
Lube Oil Temp	Att. 1		≤ 250°F (60 Min Data)	212 °F	YES / NO	Ce-
UW-831	4.3.5		OPEN	OPEN	(YES) NO	L
UW-833	4.3.6	TRS 3.7.E.2	OPEN	OPEN	(YES/NO	cn
UW-837	4.3.7		OPEN	OPEN	(YES/NO	Cu

### 6.2 Other Program Requirements

Equipment	Step	Surveillance Requirement	Acceptance Criteria	Actual	Acceptable	Initials
DG Area Fan	4.2.4	Vendor Recommendation	Fans Starts	(YES) NO	YES / NO	c

# 7.9 TEST ACCEPTANCE

# TRM Acceptance Criteria

YES

Based on recorded data, are all Acceptance Criteria of Section 6.1 satisfied?

NA

N/A

IF all Acceptance Criteria of Section 6.1 are NOT satisfied, THEN:

- NOTIFY CRS/SM to declare Appendix R Diesel Generator inoperable.
- INITIATE a WR and a CR.

NO

• TAKE applicable action in accordance with TRO 3.8.B.

Appendix	<u>c</u>	Initial Conditions	Form ES-C-1	
			No: 2-PT-M110	Rev: 6
	APPI	ENDIX R DG FUNCTIONAL TEST	Page 12 of 14	
~*************************************	7.2	Other Programs Acceptance Criteria		
		7(2.1) Based on the recorded data, are a satisfied?	Il Acceptance Criteria of S	Section 6.2
		YES NO N/A		
		(7.2.2) <u>IF</u> component(s) failed to meet the <u>THEN</u> :	e Acceptance Criteria of S	ection 6.2,
		NA • NOTIFY CRS/SM.		
	at the second	<ul> <li>INITIATE a WR and a CR.</li> </ul>		
	(7,8)	IF NO is circled in Step 7.1.1 <u>OR</u> Step 7.2. taken, with any comments:	1, <u>THEN</u> LIST corrective a	action(s)
		Comments: None		
1 Sak		Reviewed By:		
		SM or Des. A	t: Print Name / Sign / Da	te
8.0	EVA	LUATION		
	8.1	SURVEILLANCE COORDINATOR REVIE	EW	
		Comments:		
				antige de contracto antico antico a seconda de contracto de la contracto de la contracto de la contracto de la
		Reviewed By:		
		Surveillance Coordinat	or Review: Print Name / S	Sign / Date

APPENDIX R DG FUNCTIONAL TEST	No: 2-PT-M110 F	Rev: (	3
	Page 13 of 14		

### 9.0 REFERENCES

### 9.1 Commitment Documents

None

### 9.2 Development Documents

- 9.2.1 250907, Electrical Distribution and Transmission System
- 9.2.2 400882, Station Blackout and Appendix R Diesel Generator Set P&ID Diesel Cooling Water System Mechanical
- 9.2.3 EC-5000033794, IP2 Station Blackout and Appendix R Diesel Generator Set
- 9.2.4 NUMARC 87-00, Guidelines and Technical Bases for NUMARC Initiatives Addressing Station Blackout at Light Water Reactors
- 9.2.5 NSAC-108, Reliability of Diesel Generators at U.S. Power Plants
- 9.2.6 Cummins Operation and Maintenance Manual QSK78 Series Engines
- 9.2.7 CR-IP2-2010-00036, CA#9

#### 9.3 Interface Documents

- 9.3.1 2-SOP-27.6, Appendix R Diesel Generator Operation
- 9.3.2 TRO 3.8.B
- 9.3.3 TRS 3.7.E.2

### 10.0 RECORDS AND DOCUMENTATION

### 10.1 Records

The following required records resulting from this procedure are controlled and maintained in accordance with the IPEC Records Retention Schedule.

10.1.1 This Performance Procedure becomes a Quality Record when completed.

### 10.2 Documentation

None

ژ. حرب

. ....

----

Form ES-C-1

	No: 2-PT-M110	Rev: 6
APPENDIX R DG FUNCTIONAL TEST	Page 14 of 14	

### ATTACHMENT 1, APPENDIX R DG DATA SHEET (Page 1 of 1)

Date: TODAY	e:		TIME/ READINGS			
PARAMETER	FULL LOAD	0	30	60	90	
Appendix R DG Engine Data						
Coolant Temperature	≥ 40 - ≤ 215 °F	178	179	1Fi		
Lube Oil Pressure	≥ 45 psig	Fi	76	17		
Engine Speed	1800 RPM	1801	Ka	1801		
Fuel Pump Pressure	200 - 400 psig @ 1800 RPM	375	571	382		
Fuel Inlet Temperature	<u>≤</u> 150 °F	73	77	84		
Coolant Pressure	≥ 11 psig	25	25	24		
Lube Oil Temperature	<u>≤</u> 250 °F	181	210	212		
Lube Oil Level (Between Run High / Run Low)	Midpoint	1/2	1/2	12		
Air Intake Temperature	≤ 180 °F	135	136	136		
After Cooler Temperature	<u>≤</u> 160 °F	101	107	107		
Appendix R D/G Generato	or Data					
L1 Amps	≤ 141.0 Amps	94	94	94	<u> </u>	
L2 Amps	≤ 141.0 Amps	88	87	88		
L3 Amps	≤ 141.0 Amps	\$7	\$7	88		
Frequency	59.7 - 60.3 Hz	400	60.0	600		
Total kW	≤ 2700 kW	2013	2011	2007		
Total kVA	≤ 3375 kVA	2.224	2220	2201		
Total PF (nominal 0.9)	(≥ 0.8 - ≤ 0.95)	.٩	29	.9		
Appendix R DG Other I	Data					
Day Tank Level	7/8 - Full	7/8	718	7/8		
PI-8030, Day Tank Fill Pump Pressure	psig	55	35	55	t	
TE-8027, Day Tank Oil Cooler Temperature	°F	a	(D)	a	1	
Lube Oil Reservoir Sight Glass Level	3/4 - Full	314	3/4	314		
LG-8032, Jacket Water Surge Tank Sight Glass Level	2/3 - 3/4	314	314	314		
LG-8031, After Cooler Surge Tank Sight Glass Level	2/3 - 3/4	3/4	2/3	3/3		
TI-903, Jacket Water Heat Exchanger Outlet Temperature	°F	115	121	1.21		
TI-909 After Cooler Heat Exchanger Outlet Temperature	۰F	13	72	72	1	
FI-7979, Appendix R DG Jacket Water Flow (City Water) FI-7979, Appendix R DG Jacket Water Flow (Service Water)	≤ 118 gpm ≤ 160 gpm	160	140	140		
FI-7980, Appendix R DG Aftercooler Water Flow (City Water) FI-7980, Appendix R DG Aftercooler Water Flow (Service Water)	≤ 87 gpm ≤ 137 gpm	135	135	135		
Battery Voltage	≥ 24 VDC	34.4	26.8	36.7		

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
Facility: <u>Indian Point</u> Uni	t 2 Task No:2000130101	
Task Title: Prepare a	VC Pressure Relief Release Permit	
1940012 K/A Reference: <u>RO-3.8</u>	2311 Job Performance Measure No:	RO Admin 4
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Method of testing:		
Simulated Performance Classroom	X Actual Performance C Simulator Plan	nt

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- VC pressure has increased to approximately 0.4 psig.
- The Computer Release Permit Program has been corrupted.
- Given:
  - Condenser Air In leakage is 5.25 scfm
  - Plant vent flow is 7.06 X 10⁴ scfm
  - Current reading R-45 is 7.15 X  $10^{-7} \mu$ Ci/cc
  - Current reading R-42 is 1.82  $\times 10^{-7} \mu$ Ci/cc
  - Current reading R-44 is 1.14 X 10⁻⁶ µCi/cc
  - Current High Alarm R-42 is 8.54 X10⁻⁷ μCi/cc
  - Current High Alarm R-44 is 1.5 X 10⁻⁴ µCi/cc
  - Current Warn R-44 is 1.0 X 10⁻⁴ µCi/cc
  - Instantaneous Release Rate 70,000 µCi/sec
  - Most recent grab sample is 8.3  $\times 10^{-7} \,\mu$ Ci/cc

Task Standard: Release Permit complete and accurate.

Required Materials: Calculator

General References: 2-SOP-5.4.1, VC Pressure Relief

# Initiating Cue: You are the spare RO and the CRS has directed you to prepare a Manual VC Pressure Relief Gaseous Release Permit in accordance with 2-SOP-5.4.1, VC Pressure Reliefs

Time Critical Task: No

Validation Time: 30 Minutes

Appendix C	Page 3	Form ES-C-
	Performance Information	
(Denote critical steps with a	a check mark $$ )	
1. Performance Step:	Obtain a current copy of 2-SOP-5.4.1 ar	nd review P&Ls
Standard:	Obtains procedure and reviews P&Ls	
Comment:		
2. Performance Step:	Enter given data on Attachment 1	
Standard:	Enters data on attachment 1	
Comment:		
√3. Performance Step:	Calculate Pressure Release Rate	
vo. renomance step.	Calculate Flessule Release Rate	
Standard:	0.8 X 1.82 X10 ⁻⁷ μCi/cc = 1.46 X10 ⁻⁷ μCi/cc	
	1.46 × 10 µC//CC	
Comment: Step 4.2.4.1		
√4. Performance Step:	Calculate Plant Vent Release Rate	
Standard:	4.72 X 10 ⁻⁴ X 1.14 X 10 ⁻⁶ μCi/cc X 7.0	)6 X 10 ⁴ scfm =
	3.80 X 10 ⁻⁵ Ci/sec	
Comment: Sep 4.2.4.2		

Performance Information a check mark √) Calculate Plant Vent Release Rate I Release Rate 4.72 X 10 ⁻⁴ X 7.15 X 10 ⁻⁷ uCi/co X	Equivalent of CAE
Calculate Plant Vent Release Rate I Release Rate	Equivalent of CAE
Release Rate	Equivalent of CAE
4 70 V 104 V 7 45 V 40-7	
4.72 X 10 ⁻⁴ X 7.15 X 10 ⁻⁷ μCi/cc X 5.25 = 1.77 X 10 ⁻⁹ Ci/sec	
Calculate Total Calculated Releas	se Rate
1.46 X10 ⁻⁷ μCi/cc +3.80 X 10 ⁻⁵ C 3.81 X 10 ⁻⁵ Ci/sec	i/sec + 0 =
Calculate R-44 Alarm Setpoint	
[(.0072 µCi/sec - 3.81 X 10⁻⁵ Ci/s X 10⁴ scfm + 1700) 2.09 X 10⁻⁴ µCi/cc	sec) X 2119] / (7.06
: Calculate R42 Alarm Setpoint	
70,000 X 1.25 10 ⁻⁶ sec/cc = 8.75 X 10 ⁻² μCi/cc	
	<ul> <li>1.46 X10⁻⁷ μCi/cc +3.80 X 10⁻⁵ C 3.81 X 10⁻⁵ Ci/sec</li> <li>Calculate R-44 Alarm Setpoint</li> <li>[(.0072 μCi/sec - 3.81 X 10⁻⁵ Ci/s X 10⁴ scfm + 1700)</li> <li>2.09 X 10⁻⁴ μCi/cc</li> <li>Calculate R42 Alarm Setpoint</li> <li>70,000 X 1.25 10⁻⁶ sec/cc =</li> </ul>

Appendix C	Page 5	Form ES-C-1	
	Performance Information		
(Denote critical steps with a check mark $$ )			
9. Performance Step:	Sign Attachment 1 as Preparer.		
Standard:	Signs Attachment 1		
Comment:			
Terminating Cue: JPM Complete			

Appendix C

Page 6

VC PRESSURE RELIEFS		9	No: 2-SOP-5.4.1	Rev: 17	
VU FREGOURE RELIEFO			Page 25 of 25		
	ATTAC	HMENT 1		. <u></u> ,	
VC PRES	SSURE RELIEF G		LEASE PERMI	Т	
Date: TDDAyTime	(Pa	ge 1 of 1)	Permit No.	120005	
VC Sample # 1 ¹	Date:	Time:	Activity (A)	μCivcc	-
VC Sample # 2	Date:	Time:	Activity	µCi/cc	
Plant Vent Sample #	Date:	Time:	Activity	µCi/cc	
CAE Concentration ²	Date:	Time:	Activity (Ej)	7.15E-7 µCivcc	
CAE in Leakage (Fc)	125 scfm				
Plant Vent Flow (F)	DGE4 scim		R-44 Current Warn	1.0E-4 uCive	
		R-4	4 Current High Alarm		
		R-44 (	Current Reading (Cpv)	1.14E-6 UCICC	
			R-42 Reading (A)	1.80E-7 µCi/cc	
1 Per P&L 2.11, R-42 may b 2 R-45 OR noble gas activity	e used to obtain containment N v grab sample.	loble gas concentration	in lieu of sampling and anal	ysia.	
Pressure Relief Release Ra				- 	-
$RR_{rr} = 0.8^{\circ} (1.82 \times 10^{\circ})$	$\frac{1}{2}, \frac{1}{2}, \frac$	10 ⁻⁷ Ci/sec			
(/	A) (RI	R _{pr} )			
Plant Vent Release Rate: [	Step 4.2.4.2]				ISWER
	4×10-6 ). (7.06	×104 )=	3.80×10-5 CH	er	
MM 472 EM ( )					
HHpv = 4.72 E-4 (	( <b>C</b> _{pv} )	(F)	(RA _{pv} )		:Y
	uivalent of CAE Releas	e Rate: [Step 4.2	.4.3]		:Y
Plant Vent Release Rate Eg	uivalent of CAE Releas	e Rate: [Step 4.2	.4.3]		Y.
Plant Vent Release Rate Eg	uivalent of CAE Releas	e Rate: [Step 4.2	per		:Y
Plant Vent Release Rate Eq RR _{cee} = 4.72 E-4 * ( _7,(5 Total Calculated Release R	uivalent of CAE Releas <u>(E_i)</u> ( (E _i ) ate: [Step 4.2.4.4]	e Rate: [Step 4.2 5,35) =	.4.3] <u>1.77×10⁻⁹</u> Ci/s (RR _{cm} )	ec ³	: <b>Y</b>
Plant Vent Release Rate Eq RR _{cee} = 4.72 E-4 * ( _7,(5 Total Calculated Release R	uivalent of CAE Releas <u>(E_i)</u> ( (E _i ) ate: [Step 4.2.4.4]	e Rate: [Step 4.2 5,35) =	.4.3] <u>1.77×10⁻⁹</u> Ci/s (RR _{cm} )	ec ³	: Y
Plant Vent Release Rate Eq RR _{cee} = 4.72 E-4 * ( _7,(5 Total Calculated Release R	uivalent of CAE Releas <u>(E_i)</u> ( (E _i ) ate: [Step 4.2.4.4]	e Rate: [Step 4.2 5,35) =	.4.3]	ec ³	: Y
Plant Vent Release Rate Eg RR _{cee} = 4.72 E-4 * ( <u>7.15</u> <u>Total Calculated Release R</u> RR = <u>1.46 X/D⁻⁷</u> + (RR _{pr} )	uivalent of CAE Releas <u>x (0⁻⁷)</u> () (E _j ) <u>ate</u> : [Step 4.2.4.4] <u>3.80 x (0⁻⁵)</u> + (RR _{pv} )	$\frac{e \text{ Rate: [Step 4.2]}}{(F_c)} = \frac{D}{(RR_{cae})}$	.4.3] <u>1.77×10⁻⁹</u> Ci/s (RR _{cm} )	ec ³	: <b>Y</b>
Plant Vent Release Rate Eq RR _{cee} = 4.72 E-4 * ( <u>7.15</u> <u>Total Calculated Release R</u> RR = <u>1.46 $\times$10⁻⁷ + (RR_{pr}) Note 3: II RR_{cee} is LESS THAN 2.01</u>	uivalent of CAE Releas <u>(Ej)</u> <u>ate:</u> [Step 4.2.4.4] <u>3.00 x /0⁻⁵</u> (RR _{pv} ) E-4, then no further consideration	$\frac{e \text{ Rate: [Step 4.2]}}{(F_c)} = \frac{D}{(RR_{cae})}$	.4.3] <u>1.77×10⁻⁹</u> Ci/s (RR _{cm} )	ec ³	: <b>Y</b>
Plant Vent Release Rate Eg $RR_{core} = 4.72 E^{-4} \cdot (-7.15)$ Total Calculated Release R $RR = -1.40 \times 10^{-7} + (RR_{pr})$ Note 3: If RR _{core} is LESS THAN 2.01         R-44 Alarm Setimetria: [Stepsing]	uivalent of CAE Releas $(E_j)^{*}$ ()* ( (E_j) <u>ate</u> : [Step 4.2.4.4] $(RR_{pv})^{*}$ + E-4, then no further consideration $(4.2,6.1)^{*}$	e Rate: [Step 4.2 $\overline{D}(\overline{F_c})$ = (F_c) (RR _{cae} ) on of CAE is required.	$\frac{4.3]}{(RR_{cm})} = \frac{3.81 \times 10^{-9}}{(RR)}$	ec ³	: <b>Y</b>
Plant Vent Release Rate Eg         RR _{cae} =       4.72 E-4 * ( $-7.15$ Total Calculated Release R         RR = $1.46 \times 10^{-7}$ + (RR _{pr} )         Note 3: If RR _{ca} is LESS THAN 2.01         R-44 Alarm Setpoints: [Step	uivalent of CAE Releas $(E_j)^{*}$ ()* ( (E_j) <u>ate</u> : [Step 4.2.4.4] $(RR_{pv})^{*}$ + E-4, then no further consideration $(4.2,6.1)^{*}$	e Rate: [Step 4.2 $\overline{D}(\overline{F_c})$ = (F_c) (RR _{cae} ) on of CAE is required.	$\frac{4.3]}{(RR_{cm})} = \frac{3.81 \times 10^{-9}}{(RR)}$	ec ³	: <b>Y</b>
Plant Vent Release Rate Eg         RRcse =       4.72 E-4*(7.(5)         Total Calculated Release R         RR =       1.4( $\times$ )( $D^{-7}$ + (RRpr)         Note 3: II FRcse is LESS THAN 2.01         R-44 Alarm Setpoints: [Ste         R-44 reading in uCl/cc = [()	$\frac{ uivalent of CAE Releas}{ x_10^{-7}} + ($ $\frac{ E_j }{3.00 \times 10^{-5}} + (RR_{pv})$ E-4, then no further considerations p 4.2.6.1] $\frac{3.073}{(ARR)} - \frac{3.81(x_10^{-5})}{(RR)}$	e Rate: [Step 4.2 $\overline{D}(\overline{F_c})$ = (F_c) (RR _{cae} ) on of CAE is required.	$\frac{4.3]}{(RR_{cm})} = \frac{3.81 \times 10^{-5}}{(RR)}$	ec ³	: <b>Y</b>
Plant Vent Release Rate Eq RR _{cae} = 4.72 E-4 * ( _7.(5) <u>Total Calculated Release R</u> RR = _1.4(5 × 10 ⁻⁷ + (RR _{pr} ) Note 3: If RR _{ca} is LESS THAN 2.01 <u>R-44 Alarm Setpoints</u> : [Ste R-44 reading in uCVcc = [(. <u>R-42 Alarm Setpoint (Step 4</u> )	$\frac{ uivalent of CAE Releas}{ x_10^{-7}} + ($ (Ej) ate: [Step 4.2.4.4] 3. $\frac{\partial y_1}{\partial^{-5}} + ($ (RR _{pv} ) E-4. then no further considerations (RR _{pv} ) E-4. then no further considerations (RR _{pv} ) (ARR) (RR) 4.2.7)	$\frac{e \text{ Rate: [Step 4.2]}}{(F_c)} = -\frac{D}{(RR_{cae})}$ on of CAE is required. * 2119] / ( $\frac{7.06X(0)}{(F)}$	$\frac{4.3]}{(RR_{cm})} = \frac{3.81 \times 10^{-5}}{(RR)}$	ci/sec	
Plant Vent Release Rate Eg RR _{cae} = 4.72 E-4 * ( _7.(5) <u>Total Calculated Release R</u> RR = _1.4( <u>x</u> )/ <u>0</u> * 7 (RR _{pr} ) Note 3: If RR _{ca} is LESS THAN 2.01 <u>R-44 Alarm Setpoints</u> : [Ste R-44 reading in uCVcc = [(. <u>R-42 Alarm Setpoint</u> (Step 4) R-42 Maximum Setpoint (µ0)	$\frac{ uivalent of CAE Releas}{ x_10^{-7} } \cdot ( - \frac{ x_1 }{ E_1 }) \cdot ( - \frac{ x_1 }{ E_2 }) \cdot ( - \frac{ x_2 }{ E_2 }) \cdot ($	$\frac{e \text{ Rate: [Step 4.2]}}{(F_c)} = -\frac{D}{(RR_{cae})}$ on of CAE is required. * 2119] / ( $\frac{7.06X(0)}{(F)}$	$\frac{4.3]}{(RR_{cm})} = \frac{3.81 \times 10^{-5}}{(RR)}$	ci/sec	
Plant Vent Release Rate Eq RR _{cae} = 4.72 E-4 * ( _7.(5) <u>Total Calculated Release R</u> RR = _1.4(5 × 10 ⁻⁷ + (RR _{pr} ) Note 3: If RR _{ca} is LESS THAN 2.01 <u>R-44 Alarm Setpoints</u> : [Ste R-44 reading in uCVcc = [(. <u>R-42 Alarm Setpoint (Step 4</u> )	$\frac{ uivalent of CAE Releas}{ x_10^{-7} } \cdot ( - \frac{ x_1 }{ E_1 }) \cdot ( - \frac{ x_1 }{ E_2 }) \cdot ( - \frac{ x_2 }{ E_2 }) \cdot ($	$\frac{e \text{ Rate}}{(F_c)} = \frac{1}{(F_c)}$	$\frac{4.3]}{(RR_{cm})} = \frac{3.81 \times 10^{-5}}{(RR)}$	ci/sec	
Plant Vent Release Rate Eg RR _{ce} = 4.72 E-4 * ( _7.(5) <u>Total Calculated Release R</u> RR = _1.4(5 × 10 ⁻⁷ + (RR _{pr} ) Note 3: If RR _{ce} is LESS THAN 2.01 <u>R-44 Alarm Setpoints</u> : [Ste R-44 reading in uCVcc = [(. <u>R-42 Alarm Setpoint</u> (Step 4) R-42 Maximum Setpoint (µ0)	$\frac{ uivalent of CAE Releas}{ x_{10}^{-7}} \cdot ( -\frac{1}{ E_{j} })^{*} ( -\frac{1}{ E_{j} })^{*}$	$\frac{\mathbf{e} \operatorname{Rate}}{(\mathbf{F}_{c})} = \frac{1}{(\mathbf{F}_{c})} = \frac{1}{(\mathbf{F}_{c})}$ on of CAE is required. $\frac{1}{(\mathbf{R}_{cae})}$ 5E-6 sec/cc) $\frac{1}{(\mathbf{F})} = \frac{1}{(\mathbf{F})}$	$\frac{4.3]}{(RR_{cm})} = \frac{3.81 \times 10^{-5}}{(RR)}$	ec ³ Ci/sec 10 ⁻⁴ <u>354 xw⁻⁷</u> μCi/cc	
$\begin{array}{rcl} Plant Vent Release Rate Eg\\ RR_{cm} = & 4.72 \ E-4 & ( & \underline{-7}, (5) \\ \hline \hline Total Calculated Release R\\ RR = & \underline{1.40 \times 10^{-7}} & + \\ & (RR_{pr}) \\ \hline \hline Note 3: II RR_{cm} & LESS THAN 2.01 \\ \hline \hline \hline R-44 \ Alarm Setpoints: [Ste R-44 reading in uCl/cc = [( \\ \hline \hline R-42 \ Alarm Setpoint (Step 4) \\ \hline \hline R-42 \ Maximum Setpoint (u( \\ \hline \hline Warn = & 0.75'( & \underline{8.15 \times (5)} \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\frac{ uivalent of CAE Releas}{ x_{10}^{-7}} \cdot ( (E_j))$ $\frac{ate: [Step 4.2.4.4]}{3.60 \times 10^{-5}} + (RR_{pv})$ E-4, then no further considerations (RR) (ARR) - <u>3.81 \times 10^{-5}</u> (ARR) (ARR) (RR) 4.2.7) Ci/cc) = <u>70,000</u> (1.20) (IR) $\frac{10^{-2}}{10} = \frac{1.50 \times 10^{-5}}{100}$ (2.20)	$\frac{\mathbf{e} \operatorname{Rate}}{(\mathbf{F}_{c})} = \frac{1}{(\mathbf{F}_{c})} = \frac{1}{(\mathbf{F}_{c})}$ on of CAE is required. * 2119] / ( $\frac{1.05 \times 0}{(\mathbf{F})}$ ) 5E-6 sec/cc)	$\frac{4.3]}{(RR_{cm})} Civs$ $= \frac{3.81 \times 10^{-5}}{(RR)}$ $\frac{4.1700}{(RR)} = 2.09 \times 10^{-5}$ Actual R-42 Setpoint $\frac{2}{2}$	ec ³ Ci/sec 10 ⁻⁴ <u>354 xw⁻⁷</u> μCi/cc	
Plant Vent Release Rate Eq         RR_cm =       4.72 E-4 * ( _7.15         Total Calculated Release R         RR =       1.46 × 10 -7         RR =       1.46 × 10 -7         (RR_pr)         Note 3: If RRcm is LESS THAN 201         R-44 Alarm Setpoints: [Ster         R-44 reading in uCl/cc = [(	$\frac{ uivalent of CAE Releas}{ x_{10}^{-7}} \cdot ( (E_j))$ $\frac{ate: [Step 4.2.4.4]}{3.60 \times 10^{-5}} + (RR_{pv})$ E-4, then no further considerations (RR) (ARR) - <u>3.81 \times 10^{-5}</u> (ARR) (ARR) (RR) 4.2.7) Ci/cc) = <u>70,000</u> (1.20) (IR) $\frac{10^{-2}}{10} = \frac{1.50 \times 10^{-5}}{100}$ (2.20)	$\frac{\mathbf{e} \operatorname{Rate}}{(\mathbf{F}_{c})} = \frac{1}{(\mathbf{F}_{c})} = \frac{1}{(\mathbf{F}_{c})}$ on of CAE is required. * 2119] / ( $\frac{1.05 \times 0}{(\mathbf{F})}$ ) 5E-6 sec/cc)	$[4.3] (1.77 \times 10^{-9} \text{ Civs}) = (1.77 \times 10^{-9} \text{ Civs})$ $= (1.77 \times 10^{-9} \text{ Civs}) = (1.77 \times 10^{-5}  C$	ec ³ Ci/sec 10 ⁻⁴ <u>354 xw⁻⁷</u> μCi/cc	

Appendix C	Simulator Setup	Form ES-C-1
	VERIFICATION OF COMPLETION	
Job Performance Me	asure No.	
Examinee's Name:		
Date Performed:		
Facility Evaluator:		
Number of Attempts:		
Time to complete:		
Question Documenta	ation:	
Question:		
Response:		
Result: SAT or UNS	AT	
Examiner's signature	e and date:	

۸r	ppe	nd	iv	0
~	νhe	nu	~	J

Initial Conditions:

- VC pressure has increased to approximately 0.4 psig.
- The Computer Release Permit Program has been corrupted.
- Given:
  - Condenser Air In leakage is 5.25 scfm
  - Plant vent flow is 7.06  $\times$  10⁴ scfm
  - Current reading R-45 is 7.15 X 10⁻⁷μCi/cc
  - Current reading R-42 is 1.82 X10⁻⁷ µCi/cc
  - Current reading R-44 is 1.14 X 10⁻⁶ µCi/cc
  - Current High Alarm R-42 is 8.54 X  $10^{-7}$  µCi/cc
  - Current High Alarm R-44 is  $1.5 \times 10^{-4} \mu$ Ci/cc
  - Current Warn R-44 is 1.0 X 10⁻⁴ μCi/cc
  - Instantaneous Release Rate 70,000 µCi/sec
  - Most recent grab sample is 8.3  $\times 10^{-7} \,\mu$ Ci/cc

Initiating Cue:

You are the spare RO and the CRS has directed you to prepare a Manual VC Pressure Relief Gaseous Release Permit in accordance with 2-SOP-5.4.1, VC Pressure Reliefs

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
Facility: <u>Indian Point Unit 2</u>	Task No:1500040502	
Task Title: Perform Initial	Unusual Event Notification	
194001243 K/A Reference: <u>RO-3.9</u>	39 Job Performance Measure No:	RO Admin-5
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Method of testing:		
Simulated Performance Classroom	X Actual Performance Simulator X Pl	ant

### READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- A small plane crash in the Buchanan Switchyard has caused all Buchanan Ring Bus Breakers to Trip
- Rescue efforts have prevented restoration of power to the Ring Bus
- The Shift Manager Declared an Unusual Event based on EAL-6.1.1

Task Standard: Notification of event in progress complete to State, Counties and NRC.

Required Materials:	Simulator RECS phone Completed NYS Radiological Data Form Part 1
General References:	IP-EP-115 Form EP-3, NUE Notification Checklist

Initiating Cue: You are the Spare RO, and the Shift Manager has directed you to perform the duties of the Control Room Offsite Communicator.

Time Critical Task: YES

Validation Time: 15 minutes

Appendix C	Page 3	Form ES-C-1
	Performance Information	
(Denote critical steps with	a check mark √)	
1. Performance Step:	Obtain the Offsite Communicator B	inder
Standard:	Obtains Binder from Shift Manager	Office
Comment:		
Comment.		
2. Performance Step:	Inform the Shift Manager that you h duties of the Control Room Offsite	
Standard:	Same as above	
Comment: CUE: Ackno	wledge communication.	
	J	
√ 3. Performance Step:	Obtain the completed and signed	
v 5. i enormance otep.	Radiological Emergency Data Fo 115 Form EP-1) from the Shift Ma	orm Part 1 (IP-EP-
Standard:	Request Form from the Shift Mai	nager.
Comment: CUE: Give	the candidate the completed form.	
	-	

Appendix C	Page 4	Form ES-C-1
	Performance Information	
(Denote critical steps with	a check mark $$	
4. Performance Step:	Review the form to ensure all requentered including the Shift Manage Director) Signature	
Standard:	Determines all necessary data is o	correctly entered.
Comment:		
$\sqrt{5}$ . Performance Step:	Pick up RECS Handset	
Standard:	Picks up RECS Handset	
Comment:		
√6. Performance Step:	When you hear the message "W Please enter session ID" depres	
Standard:	Depresses the "7" button	
Comment:		

Appendix C	Page 5	Form ES-C-
	Performance Information	
(Denote critical steps with	a check mark √)	
√7. Performance Step:	You will hear two tones wait 5 s "This is to report an event at Inc Center. Standby for roll call".	
Standard: After 5 seconds states "This is to at Indian Point Energy Center. State call".		•
Comment:		
√8. Performance Step:	Enter Time you are starting the	initial roll call
Standard:	Enters time on NUE Notification	Checklist
Comment:		

Appendix C

Page 6

Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

√9. Perforn	nance Step:	Initiate roll call by asking "(location title) are you on the line for each of the stations, stopping after each name is read to allow station to identify itself. Check off each location as they answer the roll call
Standard:		Reads each station name, when station acknowledges, checks it on NUE Notification Checklist
Comment:	-	r County unty ounty inty
√10. Perfo	rmance Step:	State, "This is the Unit 2 Central Control Room. An Unusual Event has been declared at the Indian Point Energy Center based on EAL# 6.1.1. A Part 1 Notification # 1 has been sent to you vial Email and FAX".
Standard:		Reads statement
Comment:		

Appendix C		Page 7	Form ES-C-1
		Performance Information	
(Denote critic	cal steps wit	h a check mark √)	
√11. Perfor	mance Ste	p: Confirm the receipt of email o "(location Title) do you ackno Email of FAX from IPEC"?	
Standard:		Reads roll call list and asks f Checks off each station when received.	•
Comment:	is needed. New York Westchest Putnam C Rockland Orange Co Peekskill (	e booth operator to acknowledg If acknowledging yourself then State has received the email. ter County has received the emai ounty has received the email. County has received the email. Dunty has received the email. City has received the email. t has received the email.	CUE candidate"
12. Performa	ance Step:	If any of the above did not rece FAX, THEN FAX part 1 to locat the entire Part 1 form. IF all loc completed reading) proceed	tion and verbally read
Standard:		All locations received email	
Comment:			

Appendix C	Page 8	Form ES-C-1			
	Performance Information				
(Denote critical steps with	a check mark √)				
$\sqrt{13}$ . Performance Step: End notifications by saying "Indian Point out at Enters time					
Standard:	Makes statement and enters curre	ent time			
	itered at checklist step 9 must be w of declaration used for the Part 1 fo				
13. Performance Step:	Signs Reported by and Enters REC	S on Part 1 Form			
13. Performance Step: Standard:	Signs Reported by and Enters REC Signs form and enters RECS	S on Part 1 Form			

Terminating Cue: JPM Complete

Appendix C	Simulator Setup	Form ES-C-1
	VERIFICATION OF COMPLETION	
Job Performance Measu	ire No.	
Examinee's Name:		
Date Performed:		
Facility Evaluator:		
Number of Attempts:		
Time to complete:		
Question Documentation	n:	
Question:		
Response:		
Result: SAT or UNSAT		
Examiner's signature an	d date:	

Ap	pend	lix	С
· • •	P0110		-

Initial Conditions

Initial Conditions:

- A small plane crash in eh Buchanan Switchyard has caused all Buchanan Ring Bus Breakers to Trip
- Rescue efforts have prevented restoration of power to the Ring Bus
- The Shift Manager Declared an Unusual Event based on EAL-6.1.1

Initiating Cue: You are the Spare RO, and the Shift Manager has directed you to perform the duties of the Control Room Offsite Communicator.

A	ope	nd	ix	С

Initial Conditions

Form ES-C-1

1.	This is an EXERCISE at UNIT 2
	Reactor Status: Unit 2A. Shutdown
	Unit 3A. Shutdown
2.	The Emergency Classification
	A. Unusual Event
	This Emergency Classification declared on: at at
	(Date) (Time 24 hr clock)
3.	AC electrical power from all offsite sources has been lost for more than 15 minutes. Power is still available
	from onsite sources. This EAL poses no threat to the safety of the general public.
4.	Release of Radioactive Materials due to the Classified A. No Release
5.	Wind Speed: 2.8 Meters/Sec at elevation 10 meters
6.	Wind Direction:     200     Degrees at elevation 10 meters
7.	Stability Class: A B C D E F G
8.	The following Protective Actions are recommended to be implemented as soon as
	A. NO NEED for PROTECTIVE ACTIONS outside the site boundary
9.	Reported By - Communicator:Telephone #
10.	Emergency Director Approval: <u>Emergency</u> <u>Director</u> Date/Time: <u>Current Time</u>

# **Control Room NUE Notification Checklist**

<ul> <li>PERFORM ONLY CIRCLED ITEMS FOR NUE PERIODIC UPDATE NOTIFICATION</li> <li>Notify Protected Area Personnel: To be completed by Shift Manager or Designee</li> <li>Contact opposite unit's Control Room and inform them of classification, time, EAL# and brief description. Unit 2: 734-5294 (5295) Unit 3: 736-8277 (8282)</li> <li>Coordinate the following with the opposite unit Control Room:         <ul> <li>Announce the following message over both Unit's P.A. systems three (3) times:</li> <li>"Attention all personnel an NUE has been declared. Staffing of facilities (is/is not) required"</li> <li>If staffing of facilities (EOF/OSC/TSC/JIC/AEOF) is required, state the following:</li> <li>"The following facilities are required to be staffed:(fill in with appropriate facilities.)</li> </ul> </li> <li>Notify State and Counties: (within 15 minutes of classification) - to be completed by Offsite Commu Designee</li> <li>Fick up the RECS handset</li> </ul>	NS Time
<ol> <li>Contact opposite unit's Control Room and inform them of classification, time, EAL# and brief description. Unit 2: 734-5294 (5295) Unit 3: 736-8277 (8282)</li> <li>Coordinate the following with the opposite unit Control Room:         <ul> <li>Announce the following message over both Unit's P.A. systems three (3) times:</li> <li>"Attention all personnel an NUE has been declared. Staffing of facilities (is/is not) required"</li> <li>If staffing of facilities (EOF/OSC/TSC/JIC/AEOF) is required, state the following:</li> <li>"The following facilities are required to be staffed:(fill in with appropriate facilities.)</li> </ul> </li> <li>Notify State and Counties: (within 15 minutes of classification) - to be completed by Offsite Commu Designee</li> </ol>	Lime
<ol> <li>Contact opposite unit s control koom and information of classification, inde, Ericks and other description: Unit 2: 734-5294 (5295) Unit 3: 736-8277 (8282)</li> <li>Coordinate the following with the opposite unit Control Room:         <ul> <li>Announce the following message over both Unit's P.A. systems three (3) times: "Attention all personnel an NUE has been declared. Staffing of facilities (is/is not) required"</li> <li>If staffing of facilities (EOF/OSC/TSC/JIC/AEOF) is required, state the following: "The following facilities are required to be staffed:(fill in with appropriate facilities.)</li> </ul> </li> <li>Notify State and Counties: (within 15 minutes of classification) - to be completed by Offsite Commu De signee</li> </ol>	
<ol> <li>Coordinate the following with the opposite unit Control Room:         <ul> <li>Announce the following message over both Unit's P.A. systems three (3) times:</li> <li>"Attention all personnel an NUE has been declared. Staffing of facilities (is/is not) required"</li> <li>If staffing of facilities (EOF/OSC/TSC/JIC/AEOF) is required, state the following:</li> <li>"The following facilities are required to be staffed:(fill in with appropriate facilities.)</li> </ul> </li> <li>Notify State and Counties: (within 15 minutes of classification) - to be completed by Offsite Commu Designee</li> </ol>	
<ul> <li>a. Announce the following message over both Unit's P.A. systems three (3) times:</li> <li>"Attention all personnel an NUE has been declared. Staffing of facilities (is/is not) required"</li> <li>b. If staffing of facilities (EOF/OSC/TSC/JIC/AEOF) is required, state the following:</li> <li>"The following facilities are required to be staffed:(fill in with appropriate facilities.)</li> <li>Notify State and Counties: (within 15 minutes of classification) - to be completed by Offsite Commu Designee</li> </ul>	
<ul> <li>"Attention all personnel an NUE has been declared. Staffing of facilities (is/is not) required"</li> <li>b. If staffing of facilities (EOF/OSC/TSC/JIC/AEOF) is required, state the following:</li> <li>"The following facilities are required to be staffed:(fill in with appropriate facilities.)</li> <li>Notify State and Counties: (within 15 minutes of classification) - to be completed by Offsite Commu Designee</li> </ul>	
"The following facilities are required to be staffed:(fill in with appropriate facilities.) Notify State and Counties: (within 45 minutes of classification) - to be completed by Offsite Commu Designee	
Notify State and Counties: (within 15 minutes of classification) - to be completed by Offsite Commu Designee	
Designee	
	inicator or
When you hear the message "Welcome to Wave. Please enter session ID", Depress the "7" button on the key pad.	
When you hear the message "Welcome to Wave. Please enter session ID", Depress the "7" button on the key pad. IF you did not hear the above message after picking up handset THEN hang up, wait 5 seconds and repeat steps unsuccessful attempts, advise the Emergency Director and PROCEED to step 7.	s 3 and 4. AFTER 3
6 You will hear two tones, wait 5 seconds and State "This is to report an event at Indian Point Energy Center. Standby	/ for roll call."
<ul> <li>You will hear two tones, wait 5 seconds and State "This is to report an event at Indian Point Energy Center. Standby</li> <li>IF RECS is unavailable, THEN use Local Government Radio (LGR) (instructions step 23). IF LGR is unavail audio conference bridge (instructions step 24) to contact the Counties and State. IF audio conference bridge is unavailed to conference bridge instructions are presented for the counties and State.</li> </ul>	
<ul> <li>contact Counties and State via the numbers on Form EP-5 Page 3 of 3 using a commercial telephone.</li> <li>Enter time you are starting the initial roll call in the space provided below.</li> </ul>	
<ul> <li>8 Enter time you are starting the initial roll call in the space provided below.</li> <li>9 Initiate roll call by asking "(location title) are you on the line?" for each of the following stations, stopping after the space provided below.</li> </ul>	ter each name is read to
allow station to identify itself. Check off "Initial Roll Call" for each location as they answer the roll call:	
	wledged receipt of
	Email or FAX YES NO
Time Initial Rall Call Started	
2. Westchester County 2.   2.	<b>o o</b>
	<b>D</b>
Time Call Completed 4. Rockland County 4. 🗅 4.	a a
5. Orange County 5. 🖬 5.	<b>D</b>
6. Putnam County 6. 🖬 6.	a a
7. West Point 7. 🗅 7.	<b>o o</b>
If any location does not respond, please ALL YES	ANY NO go to step 12
notify via Phone after to step 14	
Step 14.	to step 13.
18 State, "This is the (Unit 2/3) Central Control Room. An Unusual Event has been declared at the Energy Center based on EAL A Part I Notification # has been sent to you via	
(1) Confirm the receipt of email or fax by asking "(location title), do you acknowledge receipt of an Email PEC." For each location, mark Yes/No box above	all or FAX from
12 Verbally read the Part I Notification to all partles. When completed, proceed to step 14.	
13 In the event that the electronic Email or FAX of the Part I Notification Form fails:	
<ul> <li>FAX a hard copy of the form via conventional FAX machine to all locations. (FAX #s are prep or see page 3 of 3 of Form EP-5)</li> </ul>	programmed in FAX
<ul> <li>Verbally read the Part I Notification to all parties. When completed, proceed to step 14.</li> </ul>	
End notification by saying "Indian Point out at ( <i>time</i> )". Enter time in the space labeled as "Time Call locations that did not respond to roll call and provide Part I information. See page 3 of 3 of Form EP-	

### Control Room NUE Notification Checklist

			OBITOL ROOM NUE N				
		PERFORM ONLY CI	NOT RCLED ITEMS FOR NU	E JE PERIODIC UPDATE NOTIFICATIONS			
	Notif Time	y Emergency Response Organization.					
* e <b>s</b>	15	The Shift Manger (Emergency Director) Emergency Response Organization shou following as appropriate:	Id receive Event Notification mobilization is need	y Response Organization mobilization is needed or if ation only. Perform or direct notification by one of the ed, <u>THEN</u> use Envelope A "IPEC ALL ERO			
		•		ERO Event Notification" envelope to contact ALL ERO			
		IF ALL Emergency Response Organiza ALL ERO Mobilization to Backup Lo		led for a Security Event, <u>THEN</u> use Envelope C "IPEC obliging the ERO.			
		IF Partial Emergency Response Organi "IPEC TSC/OSC Mobilization" envel		reded for TSC/OSC activation only, <u>THEN</u> use Envelope D ERO members.			
	16	Envelope E "IPEC TSC/OSC/EOF M	<b>obilization''</b> envelope to affected unit and date/tim nessage.	eded for TSC/OSC/EOF activation only, <u>THEN</u> use mobilize specific ERO members se of NUE classification. Call CAS at 736-8067 or 271-5330			
		a. Read the following statement to ind	lividual answering or into om, an Unusual Event v	was declared at (time) on Emergency Action Level			
	Noti	ity NRC (to be juitated wrain Ubon) of class	silication) (within 15 mi	nutes if required by 0- XOP-SFC-1)	line		
	18. <u>IF</u> it is during normal working hours <u>THEN</u> notify the affected unit(s) NRC Resident Inspector x5347, 739-9360, 739-8565 or 739-9361						
		IF during off-hours THEN call the NRC Ser Directory	nior Resident Inspector u	sing phone numbers provided in the Emergency Telephone			
		Provide the Inspector with Date/Time of NU		•			
	(19)	number, or region 4 alternate number lis	sted.)	main number does not work <b>THEN</b> use 1 st , 2 nd or 3 rd backup			
		Inform them that this is a 50.72 notification a description of event. Complete NRC Form 3		ate/Time of emergency classification, EAL # and brief			
	20.	Record any Comments:					
	21)	Date and sign this form	Date:	Signature:			
	22)	Inform the Shift Manager that you hav	e completed NUE notifie	cations			
		of Alternate Notification Methods		1			
	23	Use of Local Government Radio (LGR)					
	<b>A</b> .	Depress "LGR" select call button on Zetr	on panel and depress the	transmit button. Transmit the following: "This is to report an even Step 8 and notify Westchester County of the event via phone at 914			
	24.		Woming Points and EC	Y's to call into the Backup Conference Bridge			
	A.	Call 866-205-9839	y warning rouns and EC	C's to call into the Backup Conference Bridge.			
		NOTE: for steps B, C, and D you will be a					
	B. C.	You will hear: "This is the remote activate You will hear: "Please enter your scenario		r your company ID number followed by the pound sign." Enter a	4732#		
	D.			d sign, or press pound alone for more options." Enter 12345#			
	E.	You will hear "To listen to the current sc	enario message press 1,	to re-record the scenario message press 2, start the scenario press	s 3, to		
	F	return to the main menu press pound: P		HONE			
	F. G.	AFTER you hear: "The scenario is buildi Using a regular telephone call into the con		rione y dialing the following: 888-232-0362, you will be asked to enter a	n		
. A contraction	<b>U</b> .	access code, enter 254479. You will be th	e host of this conference	,			
	Н.	AFTER the tones: State the following: "T		at the Indian Point Energy Center. Stand by for roll call."			
	<u>[.</u>	Return to step 8					

# CCR Initial Notification Checklist – Alert/SAE/GE

lf th	e Shift Manager does not fe	el it is sa	afe to relocate person		r soun	d the Site As	sembly Alarm or
	for personnel to report to the						_
No	tify Protected Area Personne	: - To	be completed by Sh	ift Manager or designee			Time
1.	Contact opposite unit's Control F	oom and	l inform them of classifica	ation, time, EAL# and brief d	escriptic	n.	
	Unit 2: 734-5294 (5295)	Unit 3:	736-8277 (8282)				
2.	Coordinate the following with the	e oppos	ite unit Control Room:				
	a. Sounding of the Site Asse	nbly Ala	rm for 10 seconds and;				
	b. Announce the following me	essage o	ver both Unit's P.A. sys	tems three (3) times:			
		ort to yo	ur assigned emergend	General Emergency) has cy response facility. All o support Building."			
3.	The Shift Manger (Emergency mobilization is needed utili			of Emergency Response C	Organiza	ation	
	a. IF a Security Event, THEN	use En	velope C "IPEC ALL E	RO Mobilization to Back	up Loc	ations"	
	b. Otherwise, use Envelope	A "IPE	C ALL ERO Mobilizati	on"			
No	tify State and Counties: (.vithin 1	5 minute	es of classification) -	to be completed by Olfsite	Comm	unicator or de	signee.
4.	Pick up the RECS handset						
5.	When you hear the message "W	elcome 1	to Wave. Please enter se	ssion ID", Depress the "7" bu	tton on t	he key pad.	
6.	IF you did not hear the above AFTER 3 unsuccessful attemp					and repeat st	eps 4 and 5.
7.	You will hear two tones, wait 5 s	iconds a	nd State "This is to repo	rt an event at Indian Point	Energy	Center. Stand	by for roll call."
8.	IF RECS is unavailable, THE	luca lo	cal Government Badio	(I GB) (instructions step 24		CD ie unavaile	ble THEN use the
0.	audio conference bridge (instr THEN contact Counties and Si	ictions s	tep 25) to contact the C	ounties and State. IF audi	o confe	rence bridge i	
9.	Enter time you are starting the	e initial re	oll call in the space prov	rided below.			
10	Initiate roll call by asking "(Io read to allow station to identif						
			Location	Initial	-	owledged recei	pt of Email or FAX
	Time Initial Roll Call Started	1.	New York State	Roll Call 1. 🖵	1.	YES D	NO
	······	2.	Westchester County	2. 🔾	2.	a	Q
		3.	Peekskill City	3. 🗅	3.	<b>u</b>	ū
	Time Cali Completed	4.	Rockland County	4. 🗅	4.	a	
		5.	Orange County	5. 🗅	5.	D	ū
		6.	Putnam County	6. 🗳	6.	0	L)
		7.	West Point	7. 🗅	7.	<b>ב</b>	a
				lf any location does not respond, please notify via	AL	L YES go	ANY NO Go to step 13
				please notify via Phone after Step 15.		step 15	ALL NO go to step 14
	State, "This is the (Unit 2/3) Cent Indian Point Energy Center base						
12.	Confirm the receipt of email or each location, mark Yes/No box		sking "( <i>location title),</i> d	o you acknowledge rece	ipt of a	n Email or F/	X from IPEC" for

13. Verbally read the Part I Notification to all parties. When completed proceed to step 15.

6

1 Stand

1

Enlergy. IPEC EMERGENCY PLAN	NON-QUALITY RELATED PROCEDURE	IP-EP-2	IP-EP-210 Revisio			
Implementing Procedure		Reference Use	Page	22	of	<u>38</u>

### Attachment 9.3 CCR Offsite Communicator Checklist Sheet 1 of 6

	Sheet 1 of 6	
1.0 1. <u>1</u>	Initial Responsibility/Activity Assume the Duties of CR Offsite Communicator	<u>Notes</u>
minut 2. No	<b>NOTE:</b> tification of State and local authorities SHALL be initiated within 15 tes of emergency declaration. tification to NRC SHALL be initiated within 1 hour of the emergency ration.	
	A. Upon being notified to fulfill the CCR Offsite Communicator role, IMMEDIATELY report to the effected Unit's Control Room.	I
	B. IF site accountability has been directed, THEN swipe your security badge through the CCR accountability card reader.	
	C. Inform the Shift Manager (Emergency Director) and the Control Room staff that you have assumed the duties of CCR Offsite Communicator.	
	D. IF making the initial notification for a Notification of Unusual Event classification, THEN, proceed to step 1.2.	
	E. IF making the initial notification for an Alert or higher classification, THEN, proceed to step 1.4.	
	F. IF making a periodic update of the NUE, THEN proceed to step 2.1	
	G. IF making a periodic update of the Alert/SAE/GE, THEN proceed to step 2.2	
	H. IF making an upgrade classification, THEN proceed to step 2.3	
1.2	Perform Confirmation of Receipt of Initial UNUSUAL EVENT Notifications (Use Form EP-3)	
	A. Obtain the completed and signed NYS Radlological Emergency Data Form Part I (Form EP-1) from the Shift Manager. Review form to ensure all required information is completed, including Shift Manager (Emergency Director) signature.	
	B. Verify SM has sent electronic Fax and email of the NYS Radiolog Data Form Part I to State/Countles/EOF.	gical
	C. Using, "Control Room NUE Notification Checklist" (Form EP- 3) start the initial roll call to State and counties within 15	

minutes of the declaration of the Unusual Event.

Enlergy. IPEC EMERGENCY PLAN IMPLEMENTING PROCEDURE	Non-Quality Related Procedure	IP-EP-210 Revisio		lon 8		
	PROCEDURE	REFERENCE USE	Page	<u>23</u>	al	<u>38</u>

### Attachment 9.3 CCR Offsite Communicator Checklist Sheet 2 of 6

### Initial Responsibility/Activity (cont)

### <u>Notes</u>

- C. Using, "Control Room NUE Notification Checklist" (Form EP-3) start the initial roll call to State and counties within 15 minuets of the declaration of the Unusual Event.
- D. IF plant condition/emergency classification change prior to initiating notification:
  - a. Disregard previous classification and continue notification with highest current classification.
  - a. Follow-up notification shall include details of all conditions/emergency classifications.
- E. IF plant condition/emergency classification changes while performing notification, THEN continue notification and state at the end the following "Changes in plant conditions indicate a potential for escalating the Emergency Classification. A completed Part I will be transmitted within 15 minutes."

# 1.3 Support Shift Manager (Emergency Director) with other notifications.

- A. Determine if notification of ERO has been completed.
- B. If ERO notification has not been completed request direction from Shift Manager (Emergency Director) if Emergency Response Organization mobilization is needed or if Emergency Response Organization should receive event notification only.
- C. Complete the remaining notifications as specified on the Control Room NUE Notification Checklist (Form EP-3)
- 1.4 Perform confirmation of receipt of Initial ALERT/SAE/GE Notifications (Use Form EP-4)

### NOTE:

Control Room Alert/SAE/GE Initial Notification Checklist (Form EP-4) is used only once. After notifications are complete using this form, all subsequent upgrade and update notifications shall be made using an Upgrade/Update Notification Alert/SAE/GE Checklist (Form EP-5)



IPEC Emergency Plan Implementing Procedure

### Attachment 9.3 CCR Offsite Communicator Checklist Sheet 3 of 6

# Initial Responsibility/Activity (cont)

- A. Obtain the completed and signed NYS Radiological Emergency Data Form Part I (Form EP-1) from the Shift Manager. Review form to ensure all required information is completed, including Shift Manager (Emergency Director) signature.
- B. Verify that SM has sent Fax and email of the NYS Radiological Data Form Part I to State/Countles/EOF.
- C. Using "Control Room Initial Notification Checklist Alert/SAE/GE (Form EP-4), start the initial roll call to State and Counties within 15 minutes of the declaration of the Alert, SAE or GE
- D. Complete the remaining notifications as specified on the (Form EP-4 Checklist).
- E. IF plant condition/emergency classification change prior to initiating notification:
  - a. Disregard previous classification and continue notification with highest current classification.
  - b. Follow-up notification shall include details of all conditions/emergency classifications.
- F. IF plant condition/emergency classification changes while performing notification, THEN continue notification and state at the end the following "Changes in plant conditions indicate a potential for escalating the Emergency Classification. A completed Part I will be transmitted within 15 minutes."

# 1.5 Support Shift Manager (Emergency Director) with other notifications

- A. Determine if notification of ERO has been completed.
- B. Determine if personnel assembly is being suspended from the Emergency Director.
- C. IF ERO notification has not been completed, request direction from Shift Manager (Emergency Director) and initiate notification of personnel located in the Protected Area, and the Emergency Response Organization.
- D. Complete the remaining notifications as specified on the (Form EP-4 Checklist).

### Notes



[≇]Enlergy_●

# Attachment 9.3

### CCR Offsite Communicator Checklist Sheet 4 of 6

# 2.0 Continuous Responsibility/Activity

## 2.1 Perform Periodic Update Notifications – UNUSUAL EVENT (Use Form EP-3)

### NOTE:

Periodic Update Notifications to offsite authorities shall be made approximately every 30 minutes or whenever conditions change. Time interval may be lengthened with concurrence of offsite agencies.

- A. Obtain the completed NYS Radiological Emergency Data Form Part I (Form EP-1) from the Shift Manager. Review the form to ensure all required information is completed, including Emergency Director's signature.
- B. Verify Fax and email of the NYS Radiological Data Form Part I to State/Counties/EOF.
- C. Using Control Room NUE Notification Checklist (Form EP-3) perform ONLY the circled items, to make the periodic update notifications.
- D. Fax, or have CCR Admin Support Fax, copies of the NYS Radiological Data Form Part 1 to State/Countles/EOF



IPEC Emergency Plan Implementing Procedure

**Revision 8** 

### Attachment 9.3 CCR Offsite Communicator Checklist Sheet 5 of 6

# Continuous Responsibility/Activity (cont)

Notes

# 2.2 Perform Periodic Update Notifications – Alert/SAE/GE (Use Form EP-5)

### NOTE:

Periodic Update Notifications to offsite authorities shall be made approximately every 30 minutes or whenever conditions change. Time interval may be lengthened with concurrence of offsite agencies.

- A. Obtain the completed NYS Radiological Emergency Data Form Part I (Form EP-1) (Part II if a radiological release has occurred or is in progress) from the Emergency Director. Review form to ensure all required information is completed, including Emergency Director's signature.
- B. Verify that SM has sent Fax and email of the NYS Radiological Data Form Part I to State/Counties/EOF.
- C. Using an Upgrade/Update Alert/SAE/GE Checklist (Form EP-5) start the roll call to State and Counties.
- D. Complete the remaining notifications as specified on the (Form EP-5 Checklist).

### 2.3 IF the Emergency Classification is Upgraded, THEN Perform Upgrade Notifications (Use Form EP-5)

- A. Obtain the completed NYS Radiological Emergency Data Form Part I (Form EP-1) from the Emergency Director. Review form to ensure all required information is completed, including Emergency Director's signature.
- B. Verify that SM has sent Fax and email of the NYS Radiological Data Form Part I to State/Counties/EOF.



### Attachment 9.3

### CCR Offsite Communicator Checklist

Sheet 6 of 6

- C. Using an Upgrade/Update Alert/SAE/GE Checklist (Form EP-5) start the roll call to State and Counties within 15 minutes of upgrade of the emergency classification.
- D. Fax, or have CCR Admin Support fax, copies of the NYS Radiological Data Form Part 1 to the State/Counties/EOF, if required.
- E. Support Shift Manager, as needed, with the remaining notifications as specified on the Checklist.

#### Closeout Responsibility/Activity 3.0

- When directed by the Shift Manager, return all equipment 3.1 utilized in the response to proper storage locations
- **Review all documentation the CR Offsite Communicators** 3.2 generated during the emergency:
  - A. Ensure all logs, forms and other documentation is complete.
  - B. Collect all forms, logs and other documentation.
- 3.3 Provide all logs and records to the Shift Manager upon termination of the emergency and entry into the Recovery Phase.

Appendix C	ndix C Job Performance Measure Worksheet		Form ES-C-1
Facility: Indian Point Unit 2	Tas	sk No: <u>084022042</u>	2
Task Title: Align 23 Charging Pump to 12FD3			
000068AA K/A Reference: RO-4.1 SR		Performance Measur	e In Plant - 1
Examinee:	NRC	Examiner:	
Facility Evaluator:	Date	:	
Method of testing:			
Simulated Performance Classroom	X A Simulator	Actual Performance	Plant X

### READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- The CCR has been evacuated due to a fire and 2-AOP-SSD-1, Control Room Inaccessibility Safe Shutdown Control, has been implemented.
- Radio communications have been established and operators are standing by in the PAB.
- Sub-Station 12FD3 is energized.
- 480V Switchgear Room is accessible

Task Standard: 23 Charging Pump is aligned to 12FD3.

Required Materials: None

General References: 2-AOP-SSD-1, Control Room Inaccessibility Safe Shutdown

Initiating Cue: You are the BOP assisting the Conventional NPO and the SM has directed you to perform the required actions to Align 23 Charging Pump to its safe shutdown power supply per 2-AOP-SSD-1, Attachment 8.

Time Critical Task: No

Validation Time: 20 minutes

Appendix C		Page 3	Form ES-C-
		Performance Information	
(Denote crit	ical steps with	a check mark √)	
1. Performa	ance Step:	Obtain Correct Procedure	
Standard:		Obtain 2-AOP-SSD-1	
Comment:	Cue: hand ca	andidate Attachment 8 of 2-AOP-SSD-1.	
	During a con locker in the	trol room evacuation the procedure is ob CCR Foyer.	tained from the App F
2. Performa	ance Step:	Is 480V Switchgear Room Access	sible
Standard:		Given in Initial Conditions that 480V accessible.	Switchgear Room is
Comment:			
3. Performa	ance Step:	If At Any Time 21 Charging Pump av the 480V Switchgear Room <u>and</u> the To Step 8.20.	
Standard:			
Comment:	CUE: The S	M desires 23 Charging Pump placed in s	ervice on ASSD feed.

Appendix C	Page 4	Form ES-C-1
	Performance Information	
(Denote critical steps with a	check mark √)	
(	· · · · · · · · · · · · · · · · · · ·	
$\sqrt{4}$ . Performance Step:	Open breaker on bus 6A using trip DC Control Power Fuse Block	button and Remove
Standard:	Locate Breaker for 23 Charging Pu TRIP button located on front of bro Simulate Opening the breaker doo removal of control power fuse blo OFF position.	eaker. or and describe
Comment: CUE: Break reinstalled	er is open and control power fuse in OFF	es pulled and
5. Performance Step:	Observe NOTES before step 8.4	
Standard:	Reviews the NOTES	
Comment:		
6. Performance Step:	Is 12FD3 Sub-Station energized	
Standard:	Given in Initial Conditions 12FD3 is e	energized
Comment:		

Performance Information         (Denote critical steps with a check mark √)         √7. Performance Step:       Place "LOCAL-REMOTE Control Switch Device substation 12FD3 in LOCAL.         Standard:       Locate Switch and simulate rotating switch to I         Comment:       CUE: The switch is in LOCAL.         The switch is located in a control panel/box directly above CH.         PUMP 23 Breaker Control Switch         8. Performance Step:       Is Substation 12FD3 Breaker 1M Open         Standard:       Determines Breaker is OPEN         Comment:       V 9. Performance Step:       Place Transfer Switch EDC4 to EMERGENCY F         v 9. Performance Step:       Place Transfer Switch EDC4 to EMERGENCY FEED         Standard:       Locate switch and rotate to EMERGENCY FEED         Ormment:       Comment:       Cocate switch is in EMERGENCY FEED.         The Switch is located inside the cabinet       The Switch is located inside the cabinet	Appendix C	Page 5	Form ES-C-1
<ul> <li>√7. Performance Step: Place "LOCAL-REMOTE Control Switch Device substation 12FD3 in LOCAL.</li> <li>Standard: Locate Switch and simulate rotating switch to I</li> <li>Comment: CUE: The switch is in LOCAL. The switch is located in a control panel/box directly above CH. PUMP 23 Breaker Control Switch</li> <li>8. Performance Step: Is Substation 12FD3 Breaker 1M Open</li> <li>Standard: Determines Breaker is OPEN</li> <li>Comment:</li> <li>√9. Performance Step: Place Transfer Switch EDC4 to EMERGENCY FEED</li> <li>Standard: Locate switch and rotate to EMERGENCY FEED</li> </ul>		Performance Information	
substation 12FD3 in LOCAL.         Standard:       Locate Switch and simulate rotating switch to I         Comment:       CUE: The switch is in LOCAL.         The switch is located in a control panel/box directly above CH.         PUMP 23 Breaker Control Switch         8. Performance Step:       Is Substation 12FD3 Breaker 1M Open         Standard:       Determines Breaker is OPEN         Comment:       ✓ 9. Performance Step:       Place Transfer Switch EDC4 to EMERGENCY F         Standard:       Locate switch and rotate to EMERGENCY FEEL         Standard:       Locate switch and rotate to EMERGENCY FEEL         Comment:       Cocate switch and rotate to EMERGENCY FEEL	(Denote critical steps with a	r check mark √)	
Comment:       CUE: The switch is in LOCAL.         The switch is located in a control panel/box directly above CH.         PUMP 23 Breaker Control Switch         8. Performance Step:       Is Substation 12FD3 Breaker 1M Open         Standard:       Determines Breaker is OPEN         Comment:       ✓         ✓       9. Performance Step:         Place Transfer Switch EDC4 to EMERGENCY F         position         Standard:       Locate switch and rotate to EMERGENCY FEED         Comment:       Coate switch is in EMERGENCY FEED.	√7. Performance Step:		tch Device 69" for
The switch is located in a control panel/box directly above CH.         PUMP 23 Breaker Control Switch         8. Performance Step:       Is Substation 12FD3 Breaker 1M Open         Standard:       Determines Breaker is OPEN         Comment:       V9. Performance Step:         V9. Performance Step:       Place Transfer Switch EDC4 to EMERGENCY F position         Standard:       Locate switch and rotate to EMERGENCY FEEL position         Comment:       Comment:	Standard:	Locate Switch and simulate rotating	switch to LOCAL
PUMP 23 Breaker Control Switch         8. Performance Step:       Is Substation 12FD3 Breaker 1M Open         Standard:       Determines Breaker is OPEN         Comment:       ✓         ✓ 9. Performance Step:       Place Transfer Switch EDC4 to EMERGENCY F         position       Standard:         Locate switch and rotate to EMERGENCY FEED         Comment:       Comment:	Comment: CUE: The su	vitch is in LOCAL.	
Standard:       Determines Breaker is OPEN         Comment:       ✓         ✓       9. Performance Step:       Place Transfer Switch EDC4 to EMERGENCY F         Standard:       Locate switch and rotate to EMERGENCY FEED         Standard:       Comment:       CUE: The switch is in EMERGENCY FEED.			above CHARGING
✓ 9. Performance Step:       Place Transfer Switch EDC4 to EMERGENCY F         ✓ 9. Performance Step:       Place Transfer Switch EDC4 to EMERGENCY F         ✓ standard:       Locate switch and rotate to EMERGENCY FEED         ✓ Standard:       Locate switch and rotate to EMERGENCY FEED         ✓ Comment:       CUE: The switch is in EMERGENCY FEED.	8. Performance Step:	Is Substation 12FD3 Breaker 1M Open	
<ul> <li>√ 9. Performance Step: Place Transfer Switch EDC4 to EMERGENCY F position</li> <li>Standard: Locate switch and rotate to EMERGENCY FEED position</li> <li>Comment: CUE: The switch is in EMERGENCY FEED.</li> </ul>	Standard:	Determines Breaker is OPEN	
position         Standard:       Locate switch and rotate to EMERGENCY FEED         position         Comment:       CUE: The switch is in EMERGENCY FEED.	Comment:		
position Comment: CUE: The switch is in EMERGENCY FEED.	√9. Performance Step:		RGENCY FEED
	Standard:		ENCY FEED
The Switch is located inside the cabinet	Comment: CUE: The s	witch is in EMERGENCY FEED.	
	The Switch	is located inside the cabinet	

Terminating Cue: JPM Complete

Appendix C	Simulator Setup	Form ES-C-1
	VERIFICATION OF COMPLETION	
Job Performance Meas	ure No.	
Examinee's Name:		
Date Performed:		
Facility Evaluator:		
Number of Attempts:		
Time to complete:		
Question Documentation	on:	
Question:		
Response:	<b>.</b>	
Result: SAT or UNSAT	-	
Examiner's signature a	nd date:	

Ar	pen	dix	C
			<b>U</b>

Initial Conditions:

- The CCR has been evacuated due to a fire and 2-AOP-SSD-1, Control Room Inaccessibility Safe Shutdown Control, has been implemented.
- Radio communications have been established and operators are standing by in the PAB.
- Sub-Station 12FD3 is energized.
- 480V Switchgear Room is accessible

Initiating Cue:

You are the BOP assisting the Conventional NPO and the SM has directed you to perform the required actions to Align 23 Charging Pump to its safe shutdown power supply per 2-AOP-SSD-1, Attachment 8.

# Control Room Inaccessibility Safe Shutdown Control Attachment 8 Placing 21 OR 23 Charging Pump in Service Page 1 of 11

2-AOP-SSD-1 Rev. 18

Page 203 of 329

	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED
8.1	Is 480V Switchgear Room accessible?	1. <u>IF all three</u> diesel generator control switches are <b>NOT</b> in OFF, <b>THEN</b> place <u>all three</u> diesel generator control switches in OFF.
		2IF breaker SS6 (6.9KV Breaker for Station Service Transformer No. 6) is NOT open, THEN perform the following for breaker SS6.
		ARemove 51/50 Phase A relay cover.
		B Gently rotate relay disc clockwise until breaker opens.
		CReplace relay cover.
		DReset targets.
		E IF breaker did NOT open, THEN lift trip coil plunger mechanism.
		3GO TO Step 8.4.
8.2	IAAT 21 Charging Pump available to start from the 480V Switchgear Room and the SM desires, THEN GO TO Step 8.20.	GO TO Step 8.3
8.3	Perform the following for 23 Charging Pump breaker:	
	A Open breaker on Bus 6A using trip button, compartment 11B.	
	B Remove DC control power fuse block and reinstall in the OFF position (upper right corner, inside breaker).	

......

A. A.

Page 204 of 329

# Control Room Inaccessibility Safe Shutdown Control Attachment 8 Placing 21 OR 23 Charging Pump in Service Page 2 of 11

# IF AT ANY TIME:

(8.2) 21 Charging Pump available to start from the 480V Switchgear Room and the SM desires...

# Control Room Inaccessibility Safe Shutdown Control Attachment 8 Placing 21 OR 23 Charging Pump in Service

2-AOP-SSD-1 Rev. 18

Page 205 of 329

# Page 3 of 11

ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED
	NTE
<ul> <li>Substation 12FD3 is located at 33 ft el. Su Deaerating Tank.</li> </ul>	uperneater building next to Cold water
<ul> <li>Figure 1 (PAB Transfer Switch Locations) (Pag EDC4.</li> </ul>	e 11 of this attachment) shows location of
<ul> <li>Attachment 28 (Safe Shutdown Power Dia diagram fo Safe Shutdown Power Supplie</li> </ul>	stribution) (Page 319) provides a simplified
8.4Is 12FD3 Sub-Station energized?	WHEN 12FD3 Sub-Station is energized, THEN continue with Step 8.5.
8.5Place "LOCAL-REMOTE Control Switch Device 69" for Substation 12FD3 Breaker 1M in LOCAL (in control panel/box directly above CHARGING PUMP 23 Breaker Control Switch).	
8.6 Is Substation 12FD3 Breaker 1M open?	<ul> <li>Operate CLOSE/TRIP switch to open breaker.</li> </ul>
8.7 Place transfer switch EDC4 (inside cabinet) to EMERGENCY FEED position.	
8.8Is instrument air available?	1Uncouple air speed controller from scoop tube linkage (above pump).
	2. Place scoop tube in position "A".
8.9Open 288 (RWST MANUAL INLET STOP) (22 Charging Pump cell).	
8.10Close 297 (BORIC ACID BLENDER OUTLET STOP) (Concentrates Holding Tank Cell – PAB 98' near FCV-110B).	

. All

(March)

Page 206 of 329

# Control Room Inaccessibility Safe Shutdown Control Attachment 8 Placing 21 OR 23 Charging Pump in Service Page 4 of 11

#### IF AT ANY TIME:

(8.2) 21 Charging Pump available to start from the 480V Switchgear Room and the SM desires...

# Control Room Inaccessibility Safe Shutdown Control Attachment 8 Placing 21 OR 23 Charging Pump in Service

2-AOP-SSD-1 Rev. 18

Page 207 of 329

# Page 5 of 11

ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED
8.11Unlock and place Substation 12FD3 Breaker 1M in the vertical position.	
8.12Close Substation 12FD3 Breaker 1M by operating CLOSE/TRIP switch.	
8.13Raise 23 CHP speed to maximum.	
8.14Open disconnect switch 1HR on MCC-26A (LCV-112C).	
8.15Manually close LCV-112C (VCT OUTLET STOP) (VCT alleyway).	
8.16Note time LCV-112C was closed (charging pump placed on RWST suction)	
8.17IAAT CCW to Charging Pumps CAN NOT be established within 45 minutes, THEN Initiate Attachment 10 (Backup Cooling Water Supply to Charging Pumps)	1
8.18IAAT PAB ventilation is NOT available, THEN establish alternate PAB ventilation per 2-SOP-ESP-001, Local Equipment Operation and Compensatory Actions.	
8.19WHEN actions specified by IAAT Steps 8.17 <u>and</u> 8.18 are complete, OR 23 Charging Pump operation is no longer necessary, THEN EXIT this attachment.	
• • • E	ND • • •

``

Page 208 of 329

# Control Room Inaccessibility Safe Shutdown Control Attachment 8 Placing 21 OR 23 Charging Pump in Service Page 6 of 11

#### IF AT ANY TIME:

(8.17) CCW to Charging Pumps CAN NOT be established within 45 minutes...

# Control Room Inaccessibility Safe Shutdown Control Attachment 8 Placing 21 OR 23 Charging Pump in Service Page 7 of 11

2-AOP-SSD-1 Rev. 18

Page 209 of 329

ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED
8.20Is instrument air available?	1Uncouple air speed controller from scoop tube linkage (above pump).
	2Place scoop tube in position "A".
8.21Open 288 (RWST MANUAL INLET STOP) (22 Charging Pump cell).	
8.22 Close 297 (BORIC ACID BLENDER OUTLET STOP) (Concentrates Holding Tank Cell – PAB 98' near FCV-110B).	
CAU	TION
Local operation of 21 Charging Pump remove voltage trip from the control circuit.	es both the low bearing oil trip and the under-
8.23Insert key into Control Switch for 21 Charging Pump at Panel EDA56 (480V south wall behind switchgear).	
8.24Place 21 Charging Pump Control Switch to Start.	
8.25 Is 21 Charging Pump Running?	GO TO Step 8.3.
8.26Manually close LCV-112C (VCT OUTLET STOP) (VCT alleyway).	· · · ····
8.27Note time LCV-112C was closed (charging pump placed on RWST suction).	
8.28 <b>IAAT</b> CCW to Charging Pumps CAN NOT be established within 45 minutes, THEN Initiate Attachment 10 (Backup Cooling Water Supply to Charging Pumps)	

Page 210 of 329

# Control Room Inaccessibility Safe Shutdown Control Attachment 8 Placing 21 OR 23 Charging Pump in Service Page 8 of 11

# IF AT ANY TIME:

(8.17) CCW to Charging Pumps CAN NOT be established within 45 minutes...

(8.28) CCW to Charging Pumps CAN NOT be established within 45 minutes...

#### Control Room Inaccessibility Safe Shutdown Control Attachment 8 Placing 21 OR 23 Charging Pump in Service Page 9 of 11

**RESPONSE NOT OBTAINED** ACTION/EXPECTED RESPONSE 8.29 **IAAT PAB ventilation is NOT** available. **THEN** establish alternate PAB ventilation per 2-SOP-ESP-001, Local Equipment Operation and Compensatory Actions. 8.30 __IAAT 21 Charging Pump is not needed. THEN place control switch to STOP. 8.31 __ WHEN actions specified by IAAT Steps 8.28 and 8.29 are complete, **OR** 21 Charging Pump operation is no longer necessary, THEN EXIT this attachment.

2-AOP-SSD-1 Rev. 18

Page 211 of 329

Page 212 of 329

Control Room Inaccessibility Safe Shutdown Control Attachment 8 Placing 21 OR 23 Charging Pump in Service Page 10 of 11

THIS PAGE INTENTIONALLY BLANK

Control Room Inaccessibility Safe Shutdown Control Attachment 8 Placing 21 OR 23 Charging Pump in Service Page 11 of 11 2-AOP-SSD-1 Rev. 18

Page 213 of 329

Figure 1 - PAB Transfer Switch Locations

Panel BORON TANKS CC Hx'S EDF9 Air Receivers 23 Chrg Pumps 22( WCT's 21 WGC EDC4 BALING 21 WGS STATION NCSC ocsc VPC To UNIT 1 EDG1 PC STORAGE RACKS

( alter

1 mar

80' Elev. PAB

Control Room Inaccessibility Safe Shutdown Control 2-AOP-SSD-1 Rev. 18

C.

١,

Page 214 of 329

# THIS PAGE INTENTIONALLY BLANK

Appendix C		ormance Measure Worksheet		Form ES-C-1
Facility:Indian Point Unit 2	2	Task No:	0840390422	
Task Title: Lineup Alter	nate Cool	ling to SIS and R	HR Pumps	
005000 2.4 K/A Reference: RO-4.2 SF		Job Perform No:	ance Measure	In Plant – 2
Examinee:		NRC Examir	ner:	
Facility Evaluator:		Date:		
Method of testing: Simulated Performance Classroom	×	Actual Pe	erformance	ant X

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- The CCR has been evacuated due to a fire and 2-AOP-SSD-1, Control Room Inaccessibility Safe Shutdown Control.
- CCW cooling is not available to the SI and RHR Pumps

Task Standard: Backup Cooling has been established to the SI and RHR Pumps.

Required Materials: None

General References: 2-AOP-SSD-1 Attachment 14 Steps 14.4 - 14.13

Initiating Cue: You are the ATC assisting the Nuclear NPO and the SM has directed you to establish backup cooling to the SI and RHR Pumps in accordance with 2-AOP-SSD-1 Attachment 14 steps 14.4 – 14.13.

Time Critical Task: No

Validation Time: 20 Minutes

A	ppe	nd	ix '	$\overline{\mathbf{C}}$
· `	220		~	~

# Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

1 Perform		
	ance Step:	Obtain Correct Procedure
Standard:		Obtain 2-AOP-SSD-1
Comment:	Cue: hand can	ndidate Attachment 14 of 2-AOP-SSD-1.
	During a contr locker in the C	ol room evacuation the procedure is obtained from the App R CR Foyer.
$\sqrt{2}$ . Perfor	mance Step:	Close 734A SI/RHR Supply Header Stop
Standard:		Locate valve and simulate rotating clockwise to close
Comment:	CUE: The Val	ve is CLOSED
√3. Perfor	mance Step:	Close 734B SI/RHR Normal Outlet Stop
√3. Perfor Standard:	mance Step:	Close 734B SI/RHR Normal Outlet Stop Locate valve and simulate rotating clockwise to close
Standard:	mance Step: CUE: The Val	Locate valve and simulate rotating clockwise to close
Standard: Comment:		Locate valve and simulate rotating clockwise to close

Comment: *CUE: Hose is connected.* 

Appendix C	Page 3	Form ES-C-					
	Performance Information						
(Denote critical steps with a	a check mark √)						
√ 5. Performance Step:	Connect a hose at 734F SI/RHR Pumps Emergency Cooling Outlet Stop and direct to a drain						
Standard: drain	Locate hose and valve. Connect hose and direct to						
Comment: CUE: Hose is	connected						
√6. Performance Step:	OPEN 734F SI/RHR Pumps Emer Outlet Stop	rgency Cooling					
Standard:	Locate valve and simulate rotating to OPEN valve	g counterclockwise					
Comment: CUE: Valve is	S OPEN						
√7. Performance Step:	OPEN 734E SI/RHR Pumps Emerg Stop	ency Cooling Outle					
Standard:	Locate Valve and simulate rotating to OPEN valve	g counterclockwise					
Comment: CUE: Valve is	OPEN						
8. Performance Step:	Is PW-114 PW and CCW Supply iso	lation closed?					
Standard:	Locate valve and check valve closed	I					
Comment: CUE: The val	ve is closed.						

Appendix C	Page 4	Form ES-C-1
	Performance Information	
(Denote critical steps with a	check mark √)	
√9. Performance Step:	Open PW-115 PW to CCW Supply	Telltale Drain Stop
Standard:	Locate valve and simulate rotating to OPEN valve	
Comment: CUE Valve is	s OPEN	
√10. Performance Step:	OPEN MW 746 City Water Header	Outlet Stop
Standard:	Locate Valve and simulate rotating to OPEN valve	g counterclockwise
Comment: CUE Valve is C	OPEN	
$\sqrt{11}$ . Performance Step:	OPEN 733C SI/RHR Pump Primary Supply Stop	Water Emergency
Standard:	Locate Valve and simulate rotating to OPEN valve	g counterclockwise
Comment: CUE Valve is O	PEN	

Terminating Cue: JPM Complete

Appendix C

Simulator Setup

# VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date:

Initial Conditions:

- The CCR has been evacuated due to a fire and 2-AOP-SSD-1, Control Room Inaccessibility Safe Shutdown Control.
- CCW cooling is not available to the SI and RHR Pumps

Initiating Cue:

You are the ATC assisting the Nuclear NPO and the SM has directed you to establish backup cooling to the SI and RHR Pumps in accordance with 2-AOP-SSD-1 Attachment 14 steps 14.4 – 14.13.

#### Control Room Inaccessibility Safe Shutdown Control Attachment 14 Placing 21 SI Pump in Service with Safe Shutdown Power Page 3 of 11

2-AOP-SSD-1 Rev. 18

Page 247 of 329

ACTION/EXPECTED RESPONSE **RESPONSE NOT OBTAINED** 14.2 Perform the following for 21 SI Pump breaker: A. ___ Open breaker on Bus 5A using trip button, compartment 15A. B. __ Remove DC control power fuse block and reinstall in the OFF position (upper right corner. inside breaker). C. ___ Engage breaker racking lever. D. ___ Press and hold interlock lever (left side of breaker frame). E. _ Press breaker racking lever to move breaker from CONNECT to TEST position. F. ___ Release interlock lever. G. ___ Remove breaker racking lever. H. __ Press and hold interlock lever (left side of breaker frame). I. __ Pull breaker forward until locking pin is in front notch. J. __ Release interlock lever. 14.3 __ IAAT CCW cooling to 21 SI Pump GO TO Step 14.15. does NOT exist. THEN perform Steps 14.4 - 14.13. 14.4 __Close 734A (SI/RHR SUPPLY HEADER STOP). 14.5 Close 734B (SI/RHR NORMAL OUTLET STOP).

Page 248 of 329

## Control Room Inaccessibility Safe Shutdown Control Attachment 14 Placing 21 SI Pump in Service with Safe Shutdown Power Page 4 of 11

# IF AT ANY TIME:

(14.3) CCW cooling to 21 SI Pump does NOT exist...

#### Control Room Inaccessibility Safe Shutdown Control Attachment 14 Placing 21 SI Pump in Service with Safe Shutdown Power Page 5 of 11

**RESPONSE NOT OBTAINED** ACTION/EXPECTED RESPONSE 14.6 Connect a hose between the following: PW-115 (PW TO CCW SUPPLY TELLTALE DRAIN STOP) MW-746 (CITY WATER HEADER OUTLET STOP) 14.7 __Connect a hose at 734F (SI/RHR PUMPS EMERGENCY COOLING OUTLET STOP) and direct to a drain. 14.8 __Open 734F. 14.9 _Open 734E (SI/RHR PUMPS EMERGENCY COOLING OUTLET STOP). 14.10 Is PW-114 (PW AND CCW Close PW-114. SUPPLY ISOLATION) closed? 14.11 __ Open PW-115 (PW TO CCW SUPPLY TELLTALE DRAIN STOP). 14.12 Open MW-746 (CITY WATER HEADER OUTLET STOP). 14.13 Open 733C (SI/RHR PUMPS PRIMARY WATER EMERGENCY SUPPLY STOP). 14.14 Is 12FD3 Sub-Station energized? WHEN 12FD3 Sub-Station is energized, THEN continue with Step 14.15. 14.15 Place "LOCAL-REMOTE Control Switch Device 69" for Substation 12FD3 Breaker 1T in LOCAL (in control panel/box directly above 21RHR 21SIS Breaker Control Switch).

2-AOP-SSD-1 Rev. 18

Page 249 of 329

2)

-

Page 250 of 329

## Control Room Inaccessibility Safe Shutdown Control Attachment 14 Placing 21 SI Pump in Service with Safe Shutdown Power Page 6 of 11

# IF AT ANY TIME:

(14.3) CCW cooling to 21 SI Pump does NOT exist...

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
Facility: Indian Point 2	Task No: 0720060122	
	Gas Decay Tank for start of discharge	
071000A4.0 K/A Reference: (2.6/2.6)	)5 Job Performance Measure No:	In Plant – 3
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Method of testing: Simulated Performance	X Actual Performance	
Classroom	Simulator Pla	ant X

### READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- The system is aligned in accordance with COL 5.2.1.
- The SM has directed 24 Large Gas Decay Tank is to be released.
- 24 Large Gas Decay Tank had been isolated, sampled, and the sample has been analyzed.
- A PAB Exhaust Fan is Running
- Iodine and Particulate Composite Collection Device IS in place
- Release Permit has been completed and approved to release 24 LGDT in accordance with SOP-5.2.1.
- Radiation Monitor R-44 is in service R_{TA} for the release permit is 3.525 E-06 µCi/cc

Task Standard: 24 LGDT Release has been started.

Required Materials: None

General References: SOP-5.2.1 Gaseous Waste Disposal System Operation

Initiating Cue: You have been directed to **SIMULATE** lining up and starting a release on 24 Large Gas Decay Tank in accordance with SOP-5.2.1.

Time Critical Task: No

Appendix C
------------

Validation Time: 30 minutes

Appendix C

Page 3

#### Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

1. Performance Step: Obtain correct procedure

CUE: Give candidate 2-SOP-5.2.1

Standard: 2-SOP-5.2.1 section 4.4 and Attachment 4

#### Comment:

√2. Perfo	rmance Step:	Veri	fy R	CV-014	Plai	nt Sta	ick Disc	harge	Valve Close	d

CUE: After candidate locates valve on the Waste Disposal Panel, state the valve is CLOSED

Standard: Locate Valve on the Waste Disposal Panel, position checked closed

Comment:

#### $\sqrt{3}$ . Performance Step: CLOSE 1644D, PCV-1039A inlet stop

CUE: After candidate locates valve and checks position CUE *the valve is closed* 

Standard: Locate Valve and position checked

Comment: Attachment 4 should be used for the next sequence of steps.

#### Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

# $\sqrt{4}$ . Performance Step: Close 1632, 24 LGDT Reuse Outlet

CUE: After candidate locates valve and checks position CUE *the valve is closed* 

Standard: Valve located on Waste Disposal Panel

Comment:

### $\sqrt{5}$ . Performance Step: CLOSE PCV-1039B, Gas Analyzer Sample Inlet

CUE: After candidate locates valve, question candidate on the method used to determine its position. If candidate states that he would use the print, allow candidate to use the print 9321-2730. After appropriate discussion CUE *the valve is closed* 

- NOTE: Drawing indicates the valve fails closed. Air supply is from under the diaphragm. Therefore, air to open, spring to close. Closed would be stem in the down position.
- Standard: Valve located and methods for determining position verification discussed.

#### Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

#### √ 6. Performance Step: CLOSE 1617, 21 LGDT Outlet Stop

- CUE: After candidate locates valve and proper motion simulated, CUE *the valve is closed*
- Standard: Valve is located and hand wheel turned clockwise (simulated) until closed

Comment:

### $\sqrt{7}$ . Performance Step: CLOSE 1618, 22 LGDT Outlet Stop

 CUE:
 After candidate locates valve and proper motion simulated, CUE the valve is closed

 Standard:
 Valve is located and hand wheel turned clockwise (simulated) until closed

Comment:

# $\sqrt{8}$ . Performance Step: CLOSE 1619, 23 LGDT Outlet Stop

- CUE: After candidate locates valve and proper motion simulated, CUE *the valve is closed*
- Standard: Valve is located and hand wheel turned clockwise (simulated) until closed

#### Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

#### √ 9. Performance Step: CLOSE 1652F, 21 SGDT Outlet Stop

- CUE: After candidate locates valve and proper motion simulated, CUE *the valve is closed*
- Standard: Valve is located and hand wheel turned clockwise (simulated) until closed

Comment:

#### 10. Performance Step: CLOSE 1652E, 22 SGDT Outlet Stop

- CUE: After candidate locates valve and proper motion simulated, CUE *the valve is closed*
- Standard: Valve is located and hand wheel turned clockwise (simulated) until closed

Comment:

#### $\sqrt{11.}$ Performance Step: CLOSE 1652D, 23 SGDT Outlet Stop

- CUE: After candidate locates valve and proper motion simulated, CUE *the valve is closed*
- Standard: Valve is located and hand wheel turned clockwise (simulated) until closed

#### Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

#### $\sqrt{12}$ . Performance Step: CLOSE 1652C, 24 SGDT Outlet Stop

- CUE: After candidate locates valve and proper motion simulated, CUE *the valve is closed*
- Standard: Valve is located and hand wheel turned clockwise (simulated) until closed

Comment:

#### $\sqrt{13}$ . Performance Step: CLOSE 1652B, 25 SGDT Outlet Stop

 CUE:
 After candidate locates valve and proper motion simulated, CUE the valve is closed

 Standard:
 Valve is located and hand wheel turned clockwise (simulated) until closed

Comment:

#### $\sqrt{14}$ . Performance Step: CLOSE 1652A, 26 SGDT Outlet Stop

- CUE: After candidate locates valve and proper motion simulated, CUE *the valve is closed*
- Standard: Valve is located and hand wheel turned clockwise (simulated) until closed

#### Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

### $\sqrt{15.}$ Performance Step: OPEN 1620, 24 LGDT Outlet Stop

- CUE: After candidate locates valve and proper motion simulated, CUE *the valve is opened*
- Standard: Valve is located and hand wheel turned counter clockwise (simulated) until opened.

Comment:

# $\sqrt{16.}$ Performance Step: OPEN 1643D, 24 LGDT Stop (Inlet and PT)

- CUE: After candidate locates valve and proper motion simulated, CUE *the valve is opened*
- Standard: Valve is located and hand wheel turned counter clockwise (simulated) until opened.

Comment:

17. Performance Step:	Manually Select Waste Gas Release Line (WG RELEASE) on Gas Analyzer.
Standard:	Steps listed below in 18 -

Appendix C	Page 9	Form ES-C-
	Performance Information	
(Denote critical steps with	a check mark √)	
18. Performance Step:	If Sample is to be drawn for greater	than 3 ½ minutes
Standard:	Determines sample will be drawn for minutes	r greater than 3 ½
Comment:		
19. Performance Step:	Verify all Sample-Bypass switches a	ITE BYPASSED
Standard:	Locates switches	
Comment: CUE: All swit	ches are in BYPASS	
20. Performance Step:	If Switch is NOT in manual THEN no	otify CCR that an
	expected alarm "WASTE DISPOSAL PANEL" may annunciate.	
	-	
Standard:	Simulate contacting CCR and comm	nunicate alarm
Comment: CUE: CCR	Acknowledges	
	, lon nou goo	
21 Derformance Stan	Place MODE switch in MAN	
21. Performance Step:	Flace MODE SWITCH IT MAIN	
Standard:	Locates switch and simulates placin	ig in MAN
Comment: CUE: Swite	ch is in MAN	

Appendix C	Page 10	Form ES-C-
	Performance Information	
(Denote critical steps wit	h a check mark √)	
22. Performance Step:	Place Sample-Bypass Switch for the in SAMPLE	ne desired sample point
Standard:	Locate WG RELEASE switch and	place in SAMPLE
Comment: CUE: Sw	itch is in SAMPLE	
23. Performance Step:	Record the following on the appro	oriate Discharge/Sample
	Checkoff Attachment 4	
Standard:	All data was previously recorded o	n form
Comment:		
24. Performance Step:	Verify a PAB Exhaust Fan is runni	ng
Standard:	Given in Initial Conditions, a PAB	Exhaust fan is running
Comment: CUE: If a	sked, cue a PAB Exhaust Fan is running	9
25. Performance Step:	Determine if lodine and Particulate Device is in place	e Composite Collection
Standard:	Given in Initial Conditions, Iodine a Composite Collection Device is in	
Comment: CUE: If a in place	sked, cue lodine and Particulate Compo	osite Collection Device is

Appendix C	Page 11	Form ES-C-1
	Performance Information	
(Denote critical steps with a	check mark √)	
√ 26. Performance Step:	Commence Discharge by:	
Standard:	Given in Initial Conditions R-44 is in se <b>Slowly open RCV-014 until R-44 indi</b> R _{TA}	, , ,
Comment:	CUE: R-44 indication is approaching	

Terminating Cue: JPM Complete

Appendix C

Page 12

Form ES-C-1

## VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date:

Α	ppe	endi	хC

Initial Conditions

Initial Conditions:

- The system is aligned in accordance with COL 5.2.1.
- The SM has directed 24 Large Gas Decay Tank is to be released.
- 24 Large Gas Decay Tank had been isolated, sampled, and the sample has been analyzed.
- A PAB Exhaust Fan is Running
- Iodine and Particulate Composite Collection Device IS in place
- Release Permit has been completed and approved to release 24 LGDT in accordance with SOP-5.2.1.
- Radiation Monitor R-44 is in service R_{TA} for the release permit is 3.525 E-06 μCi/cc

Initiating Cue:

You have been directed to **SIMULATE** lining up and starting a release on 24 Large Gas Decay Tank in accordance with SOP-5.2.1.

GASEOUS WASTE DISPOSAL SYSTEM OPERATION	No: 2-SOP-5.2.1	Rev: 32
	Page 22 of 41	

## 4.4 GASEOUS WASTE DISCHARGE

- _____ 4.4.1 VERIFY RCV-014, Plant Stack Discharge Valve, is Closed.
- 4.4.2 DETERMINE appropriate Discharge/Sample Checkoff Attachment(s) (1 through 5) to be used for discharge and ALIGN selected GDT(s) for release by completing Section 1 of appropriate attachment.
- 4.4.3 Manually SELECT Waste Gas Release Line (WG RELEASE) on Gas Analyzer per 2-SOP-5.2.3, Waste Gas Analyzer Operation.
- _____ 4.4.4 PREPARE an Airborne Radioactive Waste Release Permit per 2-SOP-5.4.2, Gas Decay Tank Gaseous Releases.
  - ____ 4.4.5 RECORD the following on the appropriate Discharge/Sample Checkoff(s), Attachments 1 through 5 (obtained from the CRS):
    - ---- Release permit number
    - R_{TA} <u>OR</u> Release Time
    - Minimum and Planned Release times
- 4.4.6 VERIFY PAB exhaust fan running.
- 4.4.7 <u>IF</u> lodine and Particulate Composite Collection Device is <u>NOT</u> in place, <u>THEN</u> DO <u>NOT</u> start release.
- _____ 4.4.8 COMMENCE Discharge by performing <u>ONE</u> of the following:
  - _____ 4.4.8.1 IF R-44, Plant Vent Noble Gas Monitor, is in service, THEN:

## NOTE

R-44, Plant Vent Noble Gas Monitor, values are one minute averages. Readings should be allowed to stabilize following flow adjustments prior to use.

- a) <u>IF</u> directed by CCR, <u>THEN</u> slowly OPEN RCV-014, Plant Stack Discharge Valve, **until** R-44 indication (WDP right side) approaches calculated R_{TA} (Reference 5.3.1).
- b) <u>IF R-44 Warn alarm actuates</u>, <u>THEN</u> CLOSE RCV-014.

# GASEOUS WASTE DISPOSAL SYSTEM OPERATION

Page 23 of 41

- 4.4.8.2 IF R-44, Plant Vent Noble Gas Monitor, is NOT in service, THEN SLOWLY CRACK OPEN RCV-014, Plant Stack Discharge Valve using the release time determined from the permitting process and the rate of tank pressure decrease to gauge required RCV-014 position. Making very small adjustments, REPOSITION RCV-014 as a) needed over the duration of the release interval approximates the planned release time. 4.4.9 IF a N₂ purge will NOT be performed at end of release, THEN RETURN Gas Analyzer to AUTO (sampling the in-service LGDT) per 2-SOP-5.2.3, Waste Gas Analyzer Operation. 4.4.10 ENTER permit number and start time in CCR Unit Log. 4.4.11 Periodically MONITOR the following during the release: RCV-014, Plant Stack Discharge Valve, position GDT(s) pressure R-44, Plant Vent Noble Gas Monitor, activity (If in service) PAB exhaust fan RUNNING 4.4.12 Periodically ADJUST release rate as follows: 4.4.12.1 IF R-44, Plant Vent Noble Gas Monitor, is in service, THEN ADJUST RCV-014, Plant Stack Discharge Valve, as GDT pressure decreases to maintain recorded RTA. 4.4.12.2 IF R-44, Plant Vent Noble Gas Monitor, is out of service, THEN MONITOR rate of GDT pressure decrease and ADJUST RCV-014, Plant Stack Discharge Valve, to comply with calculated release. 4.4.13 WHEN release has been completed OR pre-maturely terminated, THEN: 4.4.13.1 IF a N₂ purge will NOT be performed,
  - .13.1 <u>IF</u> a N₂ purge will <u>NOT</u> be performed, <u>THEN</u> CLOSE RCV-014, Plant Stack Discharge Valve, AND GO TO step 4.4.14.

# GASEOUS WASTE DISPOSAL SYSTEM OPERATION

Page 24 of 41

#### CAUTION

Do <u>NOT</u> start purging a GDT with  $N_2$  **unless** its pressure is 10 psig or less. Release Time (T) as determined by CCR, SHALL have been reached or exceeded <u>prior</u> to commencing a purge.

- _____ 4.4.13.2 VERIFY Release Time requirements are met.
- _____ 4.4.13.3 VERIFY GDT pressure is less than or equal to 10 psig.
- _____ 4.4.13.4 VERIFY N₂ inlet stop(s) for GDT(s) being purged is OPEN:
  - 1637
     21 LGDT N₂ Purge Inlet Stop
    - IG38 22 LGDT N₂ Purge Inlet Stop
  - ----- 1639 23 LGDT N₂ Purge Inlet Stop
  - 1640 24 LGDT N₂ Purge Inlet Stop
  - 1641F 21 SGDT N₂ Purge Inlet Stop
  - ----- 1641E 22 SGDT N₂ Purge Inlet Stop
  - 1641D 23 SGDT N₂ Purge Inlet Stop
  - 1641C 24 SGDT N₂ Purge Inlet Stop
  - IG41B 25 SGDT N₂ Purge Inlet Stop
  - ----- 1641A 26 SGDT N₂ Purge Inlet Stop
- _____ 4.4.13.5 OPEN 1685, N₂ Purge Supply Stop.
- 4.4.13.6 VERIFY N₂ purge flow by observing a pressure increase on GDT(s) being purged or increased flow on outlet of PCV-1046, 15 psig N₂ Header Regulator.

# GASEOUS WASTE DISPOSAL SYSTEM **OPERATION**

Rev: 32

Page 25 of 41

No: 2-SOP-5.2.1

## NOTE

To provide a back pressure for PCV-1069B, MSA Sample Supply Line, do NOT fully open RCV-014, Plant Stack Discharge Valve.

# CAUTION

Do NOT allow R-44, Plant Vent Noble Gas Monitor, Activity to exceed recorded RTA.

- 4.4.13.7 Slowly ADJUST RCV-014, Plant Stack Discharge Valve, to maintain between 5 and 15 psig on GDT(s) being purged.
- 4.4.13.8 WHEN Purge has gone for 90 minutes OR Gas Analyzer indicates that the GDT(s) being purged meet the Radiological, Chemistry or Inerted Tank specifications, THEN:
  - CLOSE N₂ purge stop(s) opened in step 4.4.13.4. a)
  - CLOSE 1685, N₂ Purge Supply Stop. b)
- 4.4.13.9 PERFORM one of the following:
  - IF GDT(s) is to be ready for service, THEN CLOSE RCV-014, Plant Stack Discharge Valve.
  - IF GDT(s) is to be removed from service, THEN ALLOW GDT(s) to reach atmospheric pressure and CLOSE RCV-014, Plant Stack Discharge Valve.
- 4.4.14 ENTER finish time in Unit Narrative Log.
- 4.4.15 VERIFY Gas Analyzer is returned to AUTO (sampling the in-service LGDT) per 2-SOP-5.2.3, Waste Gas Analyzer Operation.
- 4.4.16 COMPLETE Section 2 of Discharge/Sample Checkoff(s) to restore normal system lineup.
  - RETURN completed applicable attachment to CCR.
  - 4.4.17 IF R-44, Plant Vent Noble Gas Monitor, High Alarm setpoint had been raised for discharge, THEN RETURN it to previous value.

	GASEOUS WASTE DISPOSAL SYSTEM		No:2-SOP-5.2.1	Rev: 32
	OPE	RATION Page 37 of 41		
		ATTACHMENT 4 24 LGDT Discharge / Sample C (Page 1 of 1)	heckoff	
Relea	se Permit Number		R _{TA} =	μCi/cc
MIN =	= min.	{SEE Attachment 8} Planned	Release Time (T) = _	mim
		NOTE		
<b>`</b>		Ts are to be sampled and releas		
		ociated discharge stops are NOT	-	
7	Chemistry Manager	permission is required, when a 2	4 LGDT IS >1E-2 UC	/CC
.0	24 Large Gas Deca	y Tank Start of Discharge	Position Init.	<u>Date</u>
	• 1644D	PCV-1039A Inlet Stop	CLOSED	
	• 1632	24 LGDT Reuse Outlet	CLOSED _	
	<ul> <li>PCV-1039B</li> </ul>	Gas Analyzer Sample Inlet	CLOSED	
	• 1617	21 LGDT Outlet Stop	CLOSED _	
	• 1618	22 LGDT Outlet Stop	CLOSED	
	• 1619	23 LGDT Outlet Stop	CLOSED _	
	• 1652 <b>F</b>	21 SGDT Outlet Stop	CLOSED	<u> </u>
	• 1652E	22 SGDT Outlet Stop	CLOSED	
	• 1652D	23 SGDT Outlet Stop	CLOSED _	
	• 1652C	24 SGDT Outlet Stop	CLOSED	
	• 1652 <b>B</b>	25 SGDT Outlet Stop	CLOSED	
	• 1652A	26 SGDT Outlet Stop	CLOSED	
	• 1620	24 LGDT Outlet Stop	OPEN	
	• 1643D	24 LGDT Stop (Inlet and PT)	OPEN	
2.0	Termination of Disc	charge		
	• 1620	24 LGDT Outlet Stop	CLOSED _	
	• 1644D	PCV-1039A Inlet Stop	OPEN	
	• 1643D	24 LGDT Stop (Inlet and PT)	OPEN _	
Comp	leted by:	Date:	Time:_	

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
Facility: <u>Indian Point Unit 2</u>	Task No: _0040170101	
Task Title: Align CVCS M	lakeup after Chemistry Sample	
K/A Reference: 004000A4.0	Job Performance Measure No:	Sim 1
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Method of testing:		
Simulated Performance Classroom	X Actual Performance Simulator X P	Plant
READ TO THE EXAMINEE		

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- The plant is operating near Middle of Life.
- A power reduction was required.
- Following the power reduction the watch Chemist reports that current RCS Boron concentration is 430 ppm

Task Standard: Proper boric acid flow rate is determined for 120 gpm makeup; the controllers are properly set for current boron concentration and 120 gpm makeup capability.

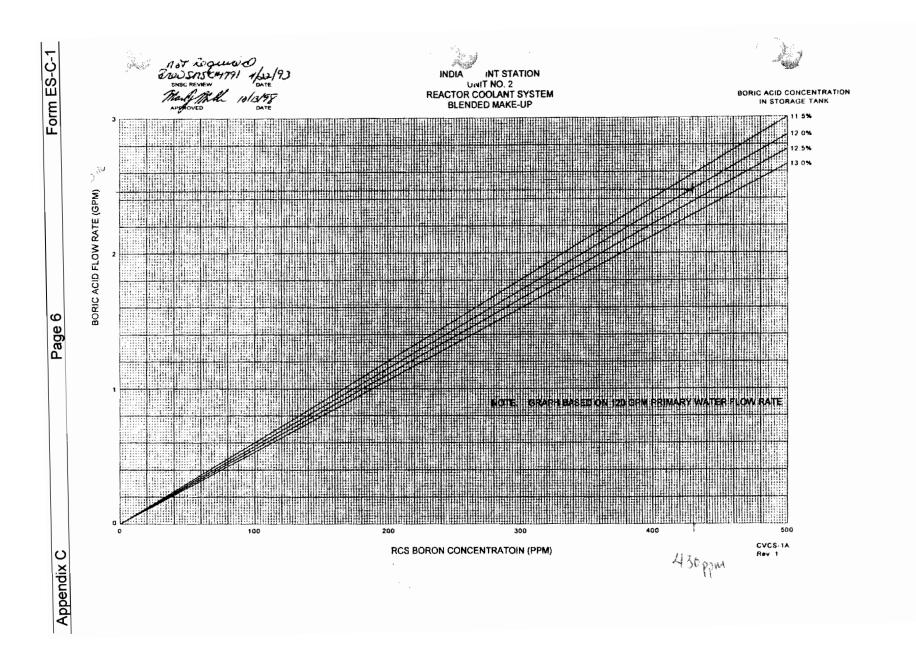
Required Materials: None

General References: Graphs Book (CVCS section) CVCS-1A 2-SOP-3.2, RCS Boron Concentration Control

Initiating Cue: You are the ATC and the CRS has directed you to adjust automatic makeup controls for a 120 gpm blend and to match the current chemistry sample boron concentration.

۸		11.	$\sim$
Ар	penc	IX	

Time Critical Task: NO


Validation Time:

Page 3	Form ES-C-1
Performance Information	
a check mark $\checkmark$ )	
Obtain Correct Procedure and Rev Limitation	iew Precautions and
Obtains 2-SOP-3.2 Reactor Coolar Concentration Control	nt Sustem Boron
ection Automatic Makeup Section 4.0	
Determine RCS Boron Concent	ration
Current Boron Concentration is 430 Conditions	0 ppm Given in Initial
Verify both Boric Acid Transfer Pur switches are in SLOW	np speed selector
Observes pump speed switches se	elected to SLOW
Verify in-service Boric Acid Transfe	er Pump in AUTO
Observes pump switches selected	to AUTO
	Performance Information a check mark √) Obtain Correct Procedure and Rev Limitation Obtains 2-SOP-3.2 Reactor Coolar Concentration Control ection Automatic Makeup Section 4.0 Determine RCS Boron Concent Current Boron Concentration is 430 Conditions Verify both Boric Acid Transfer Pur switches are in SLOW Observes pump speed switches se Verify in-service Boric Acid Transfer

Appendix C	Page 4	Form ES-C-1
	Performance Information	
(Denote critical steps with a	check mark √)	
5 Performance Step:	Verify on Primary Water (PW) pumps is	s running
Standard:	Observes 21 PW pump running	
Comment:		
Comment.		
6. Performance Step:	Verify FIC-110 Boric Acid Flow Control	l in AUTO
Standard:	Observes controller selected to AUTO	
Comment:		
√7. Performance Step:	Adjust FIC-110, Boric Acid Flow Cor to match blender output Boron cond existing in Reactor Coolant. (refer to Graphs Book)	centration to that
Standard:	Using Graph CVCS-1A determine th setpoint for FIC is 2.46 ± 0.02 gallon Adjust potentiometer to 24.6	
	c controller for Boric Acid flow is a 0 t setting of 24.6 on the controller will yie ic acid flow	
√ 8. Performance Step:	Verify remote primary water control (Foxboro Rack A-6) is set to desired = 0 - 120 gpm)	
Standard:	In Rack A-6 rotate potentiometer for	HFC-111 to 100
Comment:		

Appendix C	Page 5	Form ES-C-1		
	Performance Information			
(Denote critical steps with a	check mark √)			
√ 9. Performance Step:	Place RCS Makeup Mode Selector sw	vitch in Auto		
Standard:	Rotate RCS Makeup Mode Selector s	witch to AUTO		
Comment:				
√10. Performance Step:	Place RCS Makeup Control Switch to	START		
Standard:	Rotate Makeup Control Switch to ST	ART		
Comment:				

Terminating Cue: JPM Complete



6 of 9

Appendix C

#### VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

This JPM can be performed from any plant condition.

Ensure the Automatic setpoint for controller HFC-111 is set to approximately 79%.

Ensure the Automatic setpoint for controller FCV-110 is set for < 10 (1 gpm).

Initial Conditions:

- The plant is operating near Middle of Life.
- A power reduction was required.
- Following the power reduction the watch Chemist reports that current RCS Boron concentration is 430 ppm

Initiating Cue:

You are the ATC and the CRS has directed you to adjust automatic makeup controls for a 120 gpm blend and to match the current chemistry sample boron concentration.

Page 7 of 49

#### 4.0 PROCEDURE

#### 4.1 Automatic Makeup

- 4.1.1 DETERMINE RCS Boron concentration.
- 4.1.2 VERIFY both boric acid transfer pump speed selector switches are in SLOW.
- 4.1.3 VERIFY in-service boric acid transfer pump in AUTO.
- 4.1.4 VERIFY one PW pump is running.
- 4.1.5 VERIFY FIC-110, Boric Acid Flow Control, is in AUTO.

#### NOTE

- GRAPH CVCS-1C, Blended Makeup With Various PW Flows, is based on a PW flow rate of 60 to 120 gpm.
- GRAPH CVCS-1A, Blended Makeup (0-500) with 120 gpm PW, and GRAPH CVCS-1B, Blended Makeup - (0-2000) with 120 gpm PW, are based on a PW flow rate of 120 gpm.
  - 4.1.6 ADJUST FIC-110, Boric Acid Flow Control, auto setpoint to match blender output Boron concentration to that existing in Reactor Coolant (or to desired boron concentration if borating). (Refer to CVCS section in Graphs Book.)
    - 4.1.6.1 <u>IF</u> boron flow becomes erratic at low flows, <u>THEN</u> ADJUST HCV-104, CVCS/Boric Acid Tank 22 BA Inlet, OR HCV-105, CVCS/Boric Acid Tank 21 BA Inlet, as required to stablize at a lower boron flow.
  - 4.1.7 <u>IF</u> required blended makeup Boron concentration is greater than 1700 ppm, <u>THEN</u> PERFORM the following, as appropriate:
    - ADJUST FIC-111, Demin Water Flow Control, in MANUAL to obtain a primary water flow rate to achieve required makeup Boron concentration
    - ADJUST FIC-110, Boric Acid Flow Control, to greater than 10 gpm
  - 4.1.8 <u>IF</u> desired to maximize Boron flow, <u>THEN</u> CLOSE the appropriate BATP recirculation valve.
    - HCV-104, CVCS/Boric Acid Tank 22 BA Inlet
    - HCV-105, CVCS/Boric Acid Tank 21 BA Inlet

Rev: 37

# REACTOR COOLANT SYSTEM BORON CONCENTRATION CONTROL

#### Rev: 37

Page 8 of 49

- 4.1.9 VERIFY remote primary water controller HFC-111 (Foxboro Rack A-6) is set to desired flow rate (0-100% = 0-120 gpm).
- 4.1.10 PLACE the RCS Makeup Mode Selector switch in AUTO.
- 4.1.11 PLACE the RCS Makeup Control switch to START.
- 4.1.12 IF VCT level decreases to the automatic makeup point of 21 percent, THEN VERIFY makeup is initiated.
  - 4.1.12.1 VERIFY BATPs shift to fast speed.
  - 4.1.12.2 <u>WHEN</u> VCT level reaches the automatic makeup reset of 28.5 percent, <u>THEN</u> VERIFY makeup stops.
- 4.1.13 OBSERVE T_{AVE} and control rod bank position following addition of makeup.

# CAUTION

The following will prevent further auto makeup until the RCS Makeup Control switch is again moved to START.

- 4.1.14 <u>WHEN</u> automatic makeup is no longer required <u>OR</u> is to be stopped, <u>THEN</u> PLACE RCS Makeup Control switch to STOP.
- 4.1.15 IF HCV-104, CVCS/Boric Acid Tank 22 BA Inlet, was adjusted, THEN return it to its original position.
- 4.1.16 IF HCV-105, CVCS/Boric Acid Tank 21 BA Inlet, was adjusted, THEN return it to its original position.

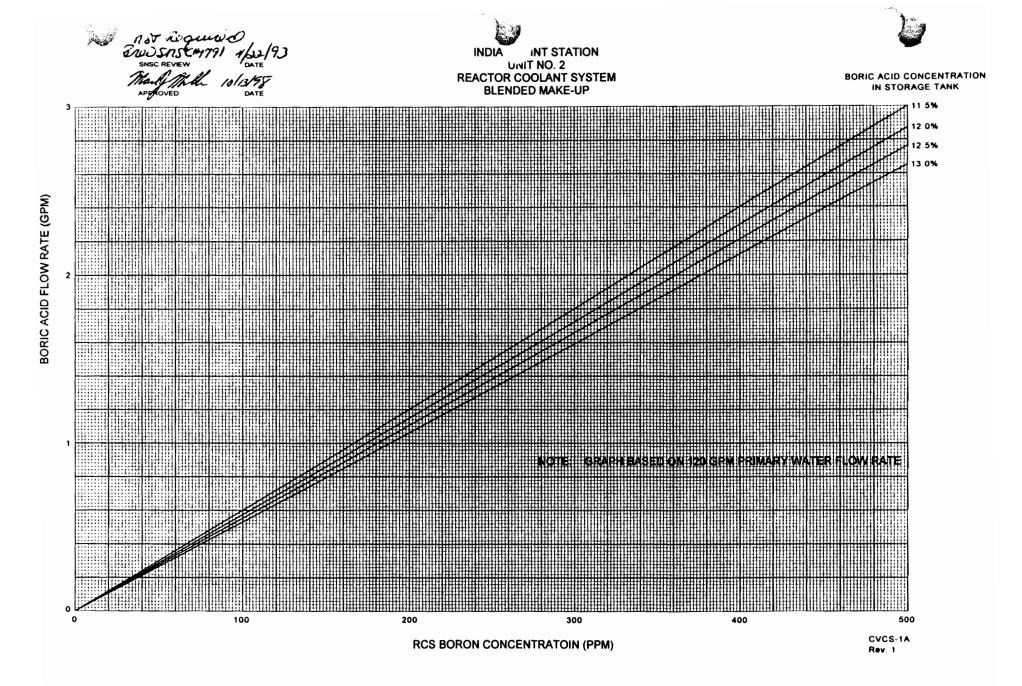
INDIAN POINT STATION

UNIT 2

GRAPH CVCS-1A Rev. 2

REACTOR COOLANT SYSTEM BLENDED MAKEUP

COLLED


?

- alla
Drafted by
×. 00 10/9/98
Reviewed by
NA
Concurrence by
Plant Manager / Section Head
nor Required
www. shsc. nitg 1791 4/20193
SNSC Review Mtg. No. / Date
Marly Mulli 10/13/98
Approved by / Date

Approved 10

GRAPH CVCS-1A Rev-2.wpd

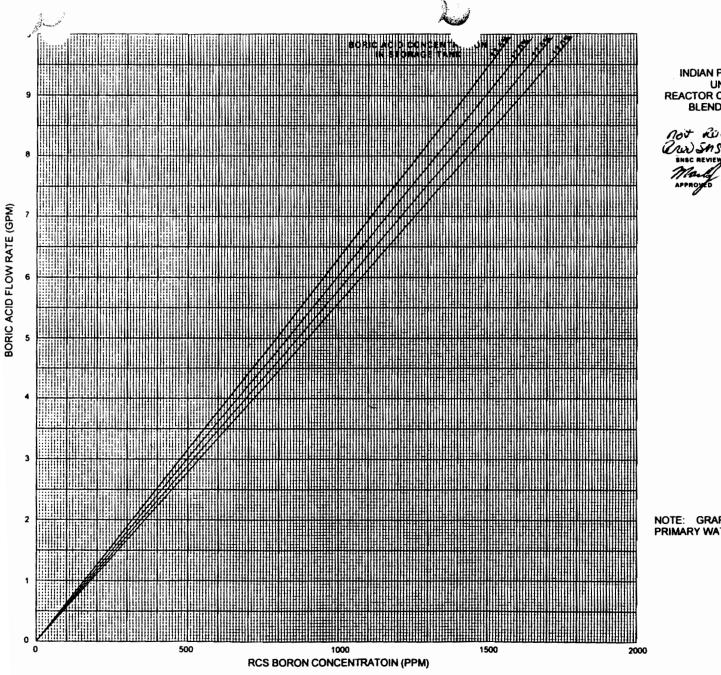
Effective Date



INDIAN POINT STATION

#### UNIT 2

GRAPH CVCS-1B Rev. 2


REACTOR COOLANT SYSTEM BLENDED MAKE-UP

# CONTROLLED

Drafted by 19/98 Reviewed by Concurrence by Plant Manager / Section Head Not wounter Rw Snis Mig #1791 4/22/ SNSC Review Mtg. No. 1 Date 10/13/98 Non Approved by Date / 23 98 70

Effective Date

GRAPH CVCS-1B Rev-2.wpd



INDIAN POINT STATION UNIT NO. 2 REACTOR COOLANT SYSTEM BLENDED MAKE-UP

Not Ruguined and Strict 1791 4/20/23 Enge Review Date March Mill 10/13/95 Date Date

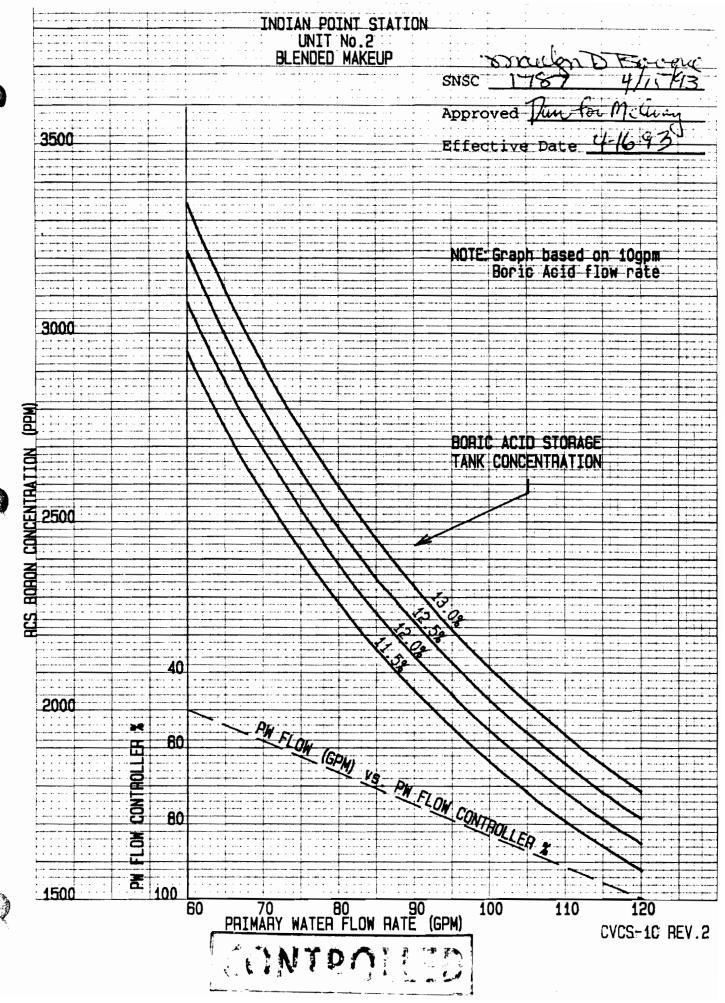
NOTE: GRAPH BASED ON 120 GPM PRIMARY WATER FLOW RATE

> CVCS-1B Rev 2

INDIAN POINT STATION

١.

#### UNIT 2


## CONTROL OF PAGES TO GRAPH BOOK

GRAPH Bloudal Makey with Various PW Flows PAGE CVCS-IC REV. 2

nomas Sorrantino Afted by Ruthin, R. Ceese Reviewed Concurrence by General Manager/Section Head Society D Society 1767 4/15/9 SNSC Review Mtg. No. /Dat /Date Dun for Mcaway Approved by 4-16-

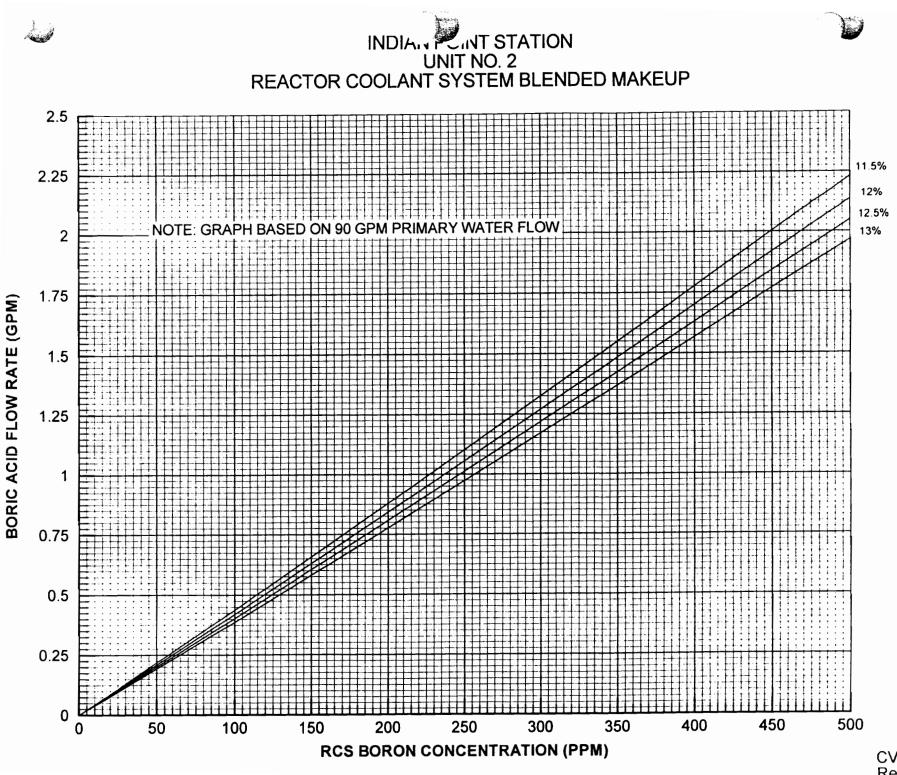
Effective Date

10 10 10 New York Contraction



46 1610

5 X 5 TO THE CENTIMETER 18 X KEUFFEL & ESSER CO. MADEIN USA


х М

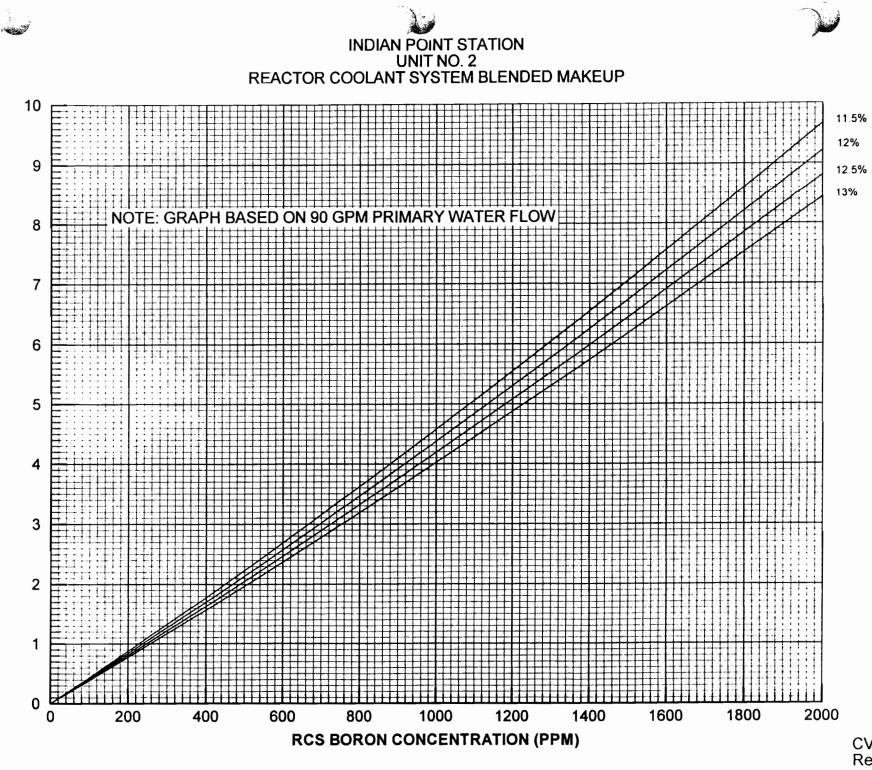
#### CON EDISON INDIAN POINT STATION OPERATIONS



# BLENDED MAKEUP - (0-500) WITH 90 GPM PW

Prepared by: Reviewer: Reviewer: SNSC Review: Approval:	MARK LEONE H. Chisles not Required Checking No. / Date Meeting No. / Date Meeting No. / Date Signature	-1/sch Ma	Reviewer: Reviewer: Reviewer: Reviewer:		$\frac{1}{\frac{1}{\frac{24}0c}}$ Date
Reviewer		ENNIAL	REVIEW		Effective Date
For use as field	copy. Valid for 24 hou	rs:	Control Roon	n Supervisor	Date / Time
	R	EFERE	ENCE USE		CREW ""
I點即證證證證證證證證證 GRAPH CVCS-1D Rev		~	· · · • • •		






CVCS-1 Rev. 0

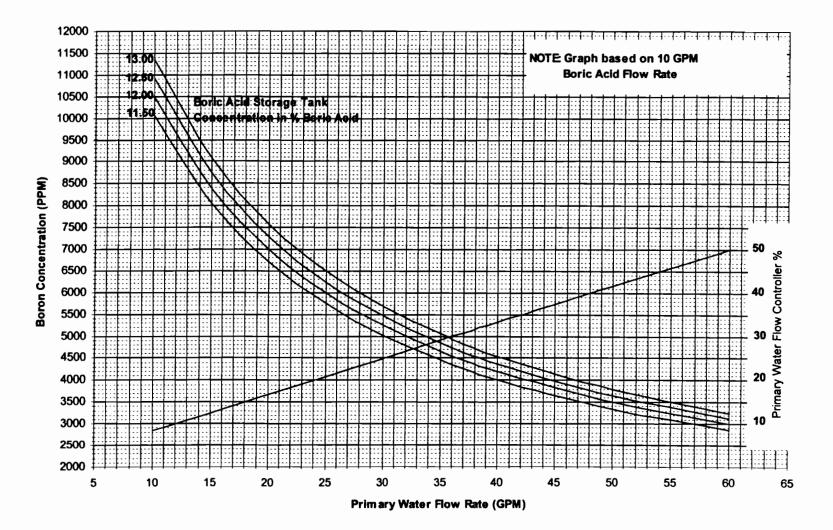
## CON EDISON INDIAN POINT STATION OPERATIONS

# BLENDED MAKEUP - (0-2000) WITH 90 GPM PW

Prepared by:	MARK LEONE	Reviewer:		
Reviewer:	M. Clepsler	Reviewer:		
Reviewer:		Reviewer:		
SNSC Review:	not Reguise	Reviewer:		
Approval:	Meeting No. / Date	Horm	1	6/20100
- FF	Signature		6/30/00	Date 7 <u>/3/00</u>
			E	ffective Date
	BIENN	IAL REVIEW		
Reviewer	/ Date		Reviewer	/ Date
Converse field a	and Malid for 24 hours			
-or use as field o	opy. Valid for 24 hours:	Control Roc	m Supervisor	Date / Time
	DEEE	RENCE USE		CREW ""
		NENCE USE		CREW
面面的的 <mark>面面的面面的。</mark> GRAPH CVCS-1E Rev 0.	und			
GRAPH CVCS-12 Rev 0	wpa			
		۲. ۲۰. ۲۰. ۲۰. به کوب بر از از ۲		
		· · · · · · · · · · · · · · ·		



BORIC ACID FLOW (GPM)


CVCS-1 Rev. 0



K

Prepared by:	GE Walling Hill ally 8/23/	2 Reviewer:		
Reviewer:	Jame Poters street	er Reviewer:		
Reviewer:	Eltim &26	Reviewer:		
SNSC Review:		Reviewer:		
	Meeting No. / Date			
Approval:	- my m			1 8/26/2
	Signature		ai /	
				19123 82
				Effective Da
Reviewer		L REVIEW	Review	Per / Date
	r / Date	L REVIEW	Review	
		L REVIEW		er / Date
	r / Date			
	r / Date d copy. Valid for 24 hours:	Qualified Op		er / Date Date / Tim
	r / Date d copy. Valid for 24 hours:	Qualified Op	erator	er / Date Date / Tim
	r / Date d copy. Valid for 24 hours: 24 Hr Extension:	Qualified Op Control Room	erator	er / Date

# Indian Point Station Unit No. 2 Blended Makeup



CVCS-1C.1 REV 0

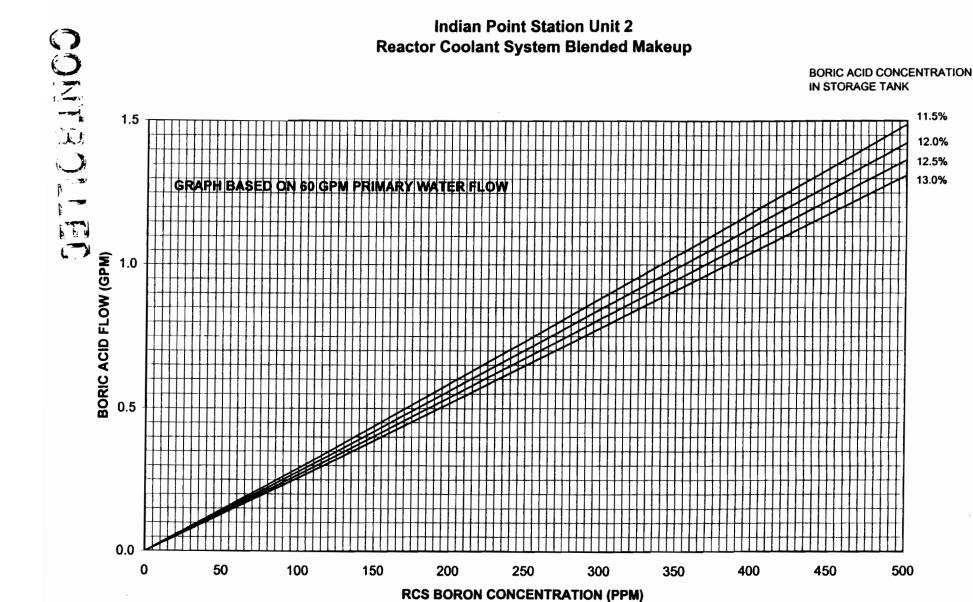


# GRAPH CVCS-1G Revision 0

# BLENDED MAKEUP - (0-500) WITH 60 GPM PW

	Prepared by: Reviewer: Reviewer: SNSC Review:	Don Dewey U. Clustus N/A Meeting No. / Date	Reviewer: Reviewer: Reviewer: Reviewer:		
	Approval:	Signature		09/1	1 9/6/z Date 1/02 Effective Date
-					
		BIENNIA	L REVIEW		
	Reviewer		L REVIEW	Review	er / Date
			L REVIEW	Review	er / Date
		/ Date	L REVIEW		er / Date Date / Time
		/ Date			
		/ Date copy. Valid for 24 hours:		erator	
		/ Date copy. Valid for 24 hours:	Qualified Ope	erator	Date / Time




S.

GRAPH CVCS-1G Rev 0.wpd

1 the strong

1.5

1 1 1 P



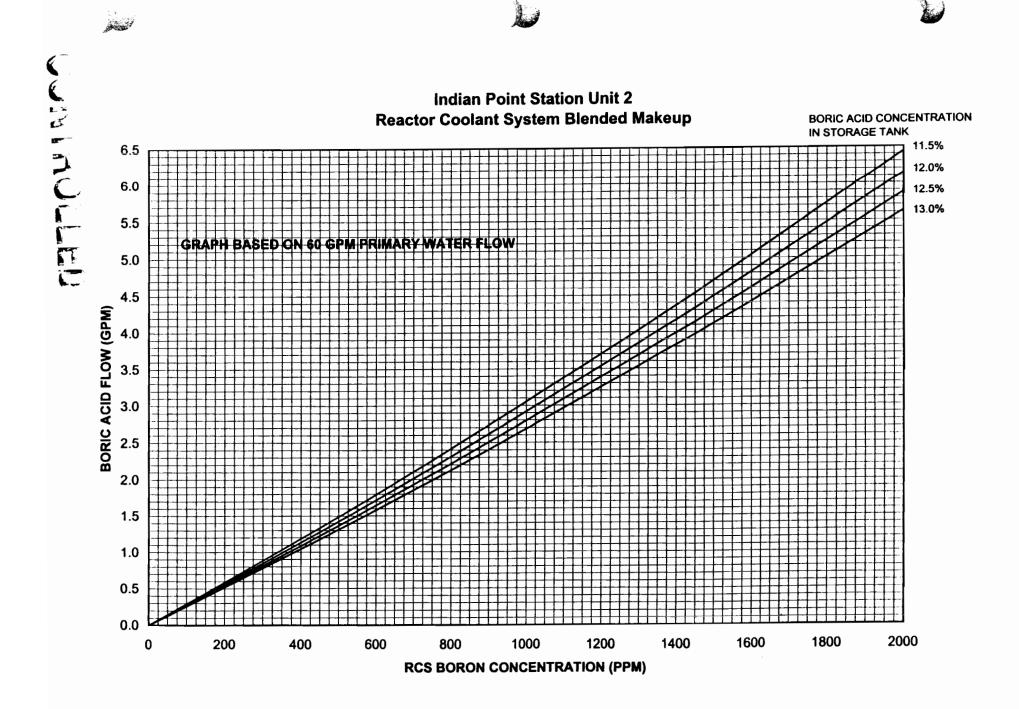
**Indian Point Station Unit 2** 

A



#### GRAPH CVCS-1H Revision 0

# BLENDED MAKEUP - (0-2000) WITH 60 GPM PW


Prepared by: D Reviewer:	Don Dewey	<b>_</b>	
Reviewer:		Reviewer:	
	1. Clesles	Reviewer:	
Reviewer:		Reviewer:	
SNSC Review:	N/A	Reviewer:	
Ň	Meeting No. / Date		
Approval:	atta	for	1 9/6/2
Ę	Signature	/	/ Date
		09/_	11/2002
			Effective Date
Reviewer / D		IAL REVIEW	viewer / Date
			viewer / Date
	Date		riewer / Date
	Date	Rev	
	Date opy. Valid for 24 hours:	Rev	Date / Time
	Date opy. Valid for 24 hours:	Rev Qualified Operator	Date / Time
	Date opy. Valid for 24 hours:	Rev	



بنيمة د 180 د∔ ب

GRAPH CVCS-1H Rev 0.wpd

STRIED



Appendix C	Job Performance Measure Worksheet	Form ES-C-1
Facility: Indian Point Unit 2	Task No: 00004205	501
Task Title: Transfer to Ho	t Leg Recirculation	
	Job Performance Measu	ure
K/A Reference: 000011EA	1.13 No:	SIM-2
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
	Bate	
Method of testing:		
Simulated Performance	X Actual Performance	
Classroom	Simulator	Plant
		Plant _

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- A Large Break LOCA occurred approximately 6.5 hours ago.
- The operating crew properly aligned Cold Leg Recirculation per 2-ES-1.3 Transfer to Cold Leg Recirculation using 21 Recirculation Pump.
- FSB Ventilation has been previously shutdown

Task Standard: The Safety Injection System is aligned for Hot Leg Recirculation .

Required Materials: None

General References: 2-ES-1.4, Transfer to Hot Leg Recirculation

Initiating Cue: You are the BOP and the CRS has directed you to align the Safety Injection System for Hot Leg Recirculation.

Time Critical Task: No

Validation Time: 20 Minutes

Form ES-C-
ulation
ed
anel SBF-2
n
Shutdown
er MOV 8564
3

Appendix C	Page 3	Form ES-C-
	Performance Information	
(Denote critical steps with a	a check mark √)	
√ 5. Performance Step:	p 23	
Standard:	Locate and rotate switch for MOV-85 2	6B on Panel SBF-
Comment:		
√6. Performance Step:	Close Cold Leg Injection Valve	
Standard:	Locate and rotate switch to close for or 856D on Panel SBF-2	r either MOV 856C
Comment:		
√7. Performance Step:	Open Hot Leg Injection Valve to Loo	p 21
Standard:	Locate and rotate switch for MOV-85	6F on Panel SBF-
Comment:		
8. Performance Step:	Check Recirculation System Alignment	
Standard:	Locate indications for MOV 746 and 74 or SGF and observe one closed	7 on Panel SBF-1
	Observe Safety Injection Recirc Switch SBF-1	6 is OFF on Panel
Comment:		

Page 4

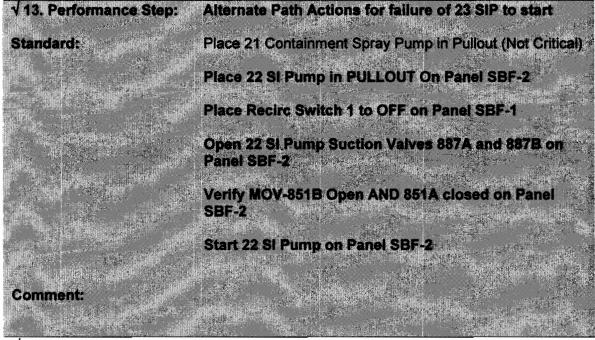
## Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

$\sqrt{9}$ . Performance Step:	Check System Alignment for Starting SI Pumps
Standard:	Locates and Observes only 21 Recirculation Pump Running on SBF-1
	Locates and Observes SI Pump Miniflow valves MOV-842 and 843 closed on SBF-1
	Locate and rotate switch for MOV-888A & 888B to OPEN
	Locate and place toggle switch for SI Pump Low Suction Pressure Alarm to ON on SBF-1
	Locate and Observe Recirculation Switch 7 in OFF on SBF-1

## Comment: Only the step for opening MOV-888A/B is critical for this step.

10. Performance Step:	Check SI Suction Pressure > 75 psig
To. Ferformance Step.	Check St Suction Pressure > 75 psig
Standard:	Locate and observe SI Pump Suction Pressure Indicator PI-947 > 75 psig on Panel SBF-2
Comment: Candidate may on Panel SBF-	also observe SI Pump Suction Low Pressure Alarm CLEAR 1
11. Performance Step:	Observe Caution before Step 10
Standard:	Candidate should observe EDG Loading at this time
Comment:	


Page 5

### Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

12. Performance Step:	Start 23 SI Pump
Standard:	Locate and Observe 23 EDG Load on Bus 6A is less than 1300 KW
	Attempt start 23 Safety Injection Pump. The Pump will trip on overcurrent when start is attempted.

Comment: Alternate Path actions are listed in the next step.



## $\sqrt{14}$ Performance Step: Verify 746 and 747 CLOSED

Standard:Locate indications for MOV 746 and 747 on Panel SBF-1 or SGF and observe one valve closed. Rotate switch<br/>for Opened valve to CLOSE on Panel SGF-1

### Comment:

Appendix C	Page 6	Form ES-C-1				
	Performance Information					
(Denote critical steps with a	(Denote critical steps with a check mark $$ )					
15. Performance Step:	Check SI Pump Suction Pressure C	Greater than 75 psig				
Standard:	Locate and observe SI Pump Suction PI-947 > 75 psig on Panel SBF-2	on Pressure Indicator				
Comment: Candidate may on Panel SBF-	also observe SI Pump Suction Low	Pressure Alarm CLEAR				
16. Performance Step:	Observe Caution before Step 13					
Standard:	Candidate should observe EDG Lo	ading at this time				
		-				
Comment:						
$\sqrt{17}$ . Performance Step:	Start 21 SI Pump					
Standard:	Locate and Observe 21 EDG Loa than 1300 KW	d on Bus 5A is less				
	Locate and rotate switch for 21 S to START on Panel SBF-2.	Safety Injection Pump				
Comment:						
18. Performance Step:	Verify Adequate Recirculation Flow	I				
Standard:	Observe Core Exit Thermocouples on QSPDS	Stable or Decreasing				
Comment:						

Terminating Cue: JPM Complete

Page 8

Form ES-C-1

# VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

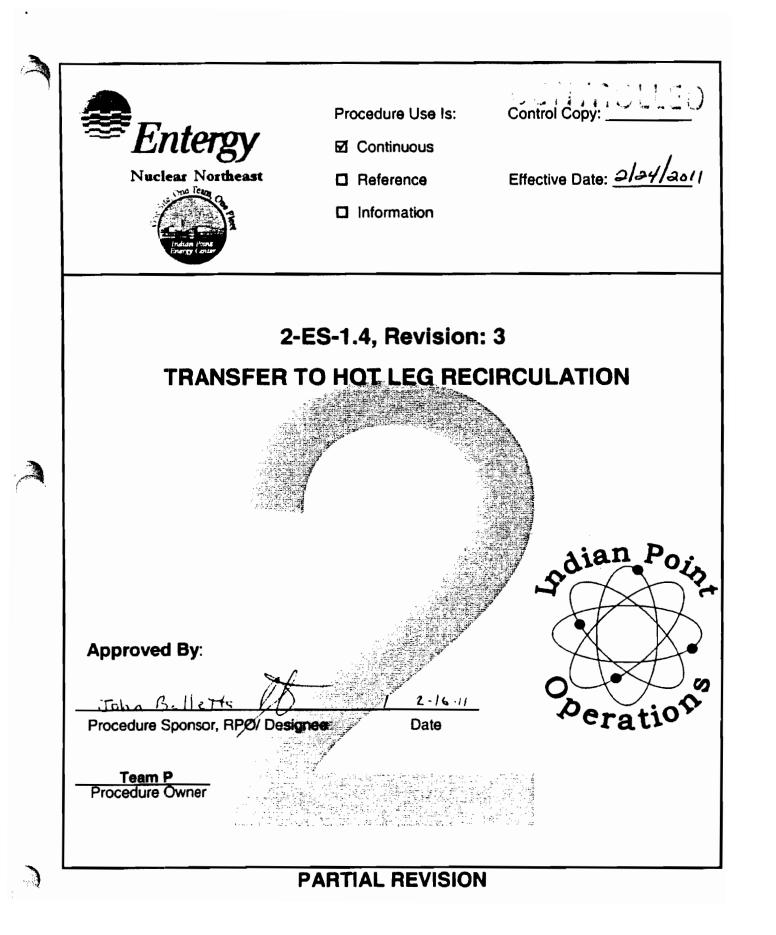
Simulator Setup

Initialize Simulator to any 100% Power IC

Insert Malfunction MAL-RCS001A Rupture 21 Loop Cold Leg

Perform Actions of E-0, E-1 and ES-1.3 when conditions require.

A	ppen	dix	С


Initial Conditions

Initial Conditions:

- A Large Break LOCA occurred approximately 6.5 hours ago.
- The operating crew properly aligned Cold Leg Recirculation per 2-ES-1.3 Transfer to Cold Leg Recirculation using 21 Recirculation Pump.
- FSB Ventilation has been previously shutdown

Initiating Cue:

You are the BOP and the CRS has directed you to align the Safety Injection System for Hot Leg Recirculation.



2-ES-1.4

#### A. <u>PURPOSE</u>

This procedure provides the necessary instructions for transferring the safety injection system to hot leg recirculation.

#### B. <u>SYMPTOMS OR ENTRY CONDITIONS</u>

This procedure is entered:

- 1) From 2-E-1, LOSS OF REACTOR OR SECONDARY COOLANT. Step 24, when the specified time interval has elased, or
- 2) When a decision is made, based upon the recommendation of the TSC, that transfer to hot leg recirculation is required. Iransfer to hot leg recirculation might be required eventually, after transferring to cold leg recircultion during the implementation of:

o 2-ES-1.2. POST LOCA COOLDOWN AND DEPRESSURIZATION;

- o 2-ECA-3.1, SGTR WITH LOSS OF REACTOR COOLANT SUBCOOLED RECOVERY DESIRED;
- o 2-ECA-3.2. SGTR WITH LOSS OF REACTOR COOLANT SATURATED RECOVERY DESIRED.

### C. ADVERSE CONTAINMENT CONDITIONS

EOP values for adverse containment should be used if either of the following conditions exist:

o Containment radiation levels greater than 1E5 R/hr.

- OR -

o Containment pressure greater than 4 psig.

	Number:	fitle:		Revision Number:
C	2 · ES · 1.4	TRANSFER TO HOT L	EG RECIRCULATION	REV. 3
	STEP	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	
		Check Low-Head Recirculation - FLOW INDICATED	<u>IF</u> any HHSI Pump is runn go to step 15.	ing, <u>THEN</u>
	2.	<u>Check [f FSB_Ventilation -</u> <u>PREVIOUSLY_SHUIDOWN</u>	Dispatch NPO to shut down ventilation.	n FSB
			<u>IF</u> FSB ventilation can <u>N</u> shut down, <u>IHEN</u> notify T FSB ventilation exhaust monitored for radioactive contamination.	SC that should be
	3.	<u>Close Cold Leg Injection Valve:</u>		
		o MOV-856A - OR -		
		o MOV-856E		
	4.	<u>Open Hot Leg Injection Valve To</u> Loop 23:		
		o MOV-856B		
	5.	<u>Close Cold Leg Injection Valve:</u> o MOV-856C		
		- OR -		
		o MOV-856D		
	6.	<u>Open Hot Leg Injection Valve To</u> Loop 21:		
		o MOV-856F		

	Number:	Title:		Revision Number:
2	2-ES-1.4	TRANSFER TO HOT L	EG RECIRCULATION	REV. 3
	STEP	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	
	1.	<u>Check Recirculation System</u> <u>Alignment:</u>		
		a. MOV-746 OR MOV-747 - CLOSED	a. Verify 746 <u>OR</u> 747 close	ed.
			<u>IE</u> neither valve can be closed, <u>THEN</u> close HCV 640.	
		b. Safety injection recirc switch 6 - OFF	b. Place safety injection switch 6 to OFF.	recirc
	8.	<u>Check System Alignment For</u> <u>Starting SI Pumps:</u>		
		a. Check recirculation pumps – ONLY ONE running	a. Place ONE recirculation in trip pullout.	n pump
		b. SI pump miniflow valves - PREVIOUSLY CLOSED	b. Manually close valves.	
		o MOV-842 o MOV-843		
		c. SI pump suction valves from RHR Hx - OPEN:	c. Manually open valve(s)	
		0 MOV-888A 0 MOV-888B		
		d. Arm SI pump suction low pressure alarm by placing toggle switch to ON:		
		o PT-947		
		e. Check recirculation switch No. 7 - OFF	e. Place switch in off.	
	9.	<u>Check SI Suction Pressure -</u> <u>GREATER THAN 75 PSIG</u>	Check SI valve alignment.	
			<u>IF</u> adequate suction pressunction pressunction <u>NOI</u> be established, <u>THEN</u> of ISC prior to continuing.	

	Number:	litle:		Revision Number:
	2-ES-1.4	TRANSFER TO HOT	LEG RECIRCULATION	REV. 3
		CTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	]
	• • • • •	_	AUTION	•
	* 2000 *	load should be maintained les KW for a maximum of 2 hrs in	any 24 hr period.	
		art 23 SI Pump As Follows: Verify adequate power:	a. <u>IF</u> adequate power ca	
		o Bus 6A - ENERGIZED BY OFFSITE POWER - OR -	established, <u>THEN</u> co prior to continuing.	
		o Load on 23 diesel generato - LESS THAN 1300 KW	r	
	b.	Start 23 SI pump	b. Perform the followin	lg:
			<ol> <li>Place 21 containm pump in PULLOUT.</li> </ol>	ent spray
			2) Place 22 SI pump	
			3) Place Safety Inje Recirc Switch 1 t	
			4) Open 22 SI pump s valves:	uction
			0 MOV-887A 0 MOV-887B	
			5) Verify:	
			o MOV-851B open	
			AND -	
			o MOV 851A closed	
			6) Start 22 SI pump.	
)				

	Number:	Title:			Revision Number:
	2-ES-1.4		NSFER TO HOT L	EG RECIRCULATION	REV. 3
[	STEP A	CTION/EXPECTED RE	ESPONSE	RESPONSE NOT OBTAINED	}
	11. <u>Ver</u>	ify 146 AND 147	- CLOSED	<u>IF</u> either valve can <u>NO</u> closed, <u>IHEN</u> close HCV 640.	[ be -638 <u>AND</u>
				<u>IF</u> either HCV-638 <u>OR</u> 64 be closed, <u>THEN</u> go to s	40 can <u>NOT</u> step 21.
	12. <u>Che</u> <u>GR</u>	eck SI Suction Pr EATER THAN 75 PSI	<u>essure -</u> G	Check SI valve alignmen	
				<u>IF</u> adequate suction pro <u>NOT</u> be established, <u>TH</u> TSC prior to continuing	EN consult

	Number: Fitle:		Revision Number:
	2-ES-1.4 TRANSFER TO HOT LE	G RECIRCULATION	REV. 3
	STEP ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	
	• • •	<u>rion</u>	•
	<ul> <li>EDG load should be maintained less t</li> <li>2000 KW for a maximum of 2 hrs in an</li> </ul>		creased to *
			* * * * * * * *
	13. <u>Start 21 SI Pump As Follows:</u>		
	a. Verify adequate power:	a. <u>IF</u> adequate power can	
	O BUS 5A - ENERGIZED BY OFFSITE POWER	established, <u>THEN</u> com prior to continuing.	isuit isc
	- OR -		
	o Load on 21 diesel generator - LESS THAN 1300 KW		
	b. Start 21 SI pump	b. Perform the following	]:
~~		<ol> <li>Place 21 containme pump in PULLOUT.</li> </ol>	ent spray
		2) Place 22 SI pump	in PULLOUT.
		3) Place Safety Inje Recirc Switch 1 to	
		<ol> <li>Open 22 SI pump si valves:</li> </ol>	uction
		o MOV~887A o MOV-887B	
		5) Verify:	
		o MOV-851A open	
		AND -	
		o MOV-851B closed	
		6) Start 22 SI pump.	
4			

	Number: 2-ES-1.4	Title: IRANSFER TO HOT	LEG RECIRCULATION	Revision Number: REV. 3
Г	STEP	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	
	14.	Go To Step 20		
	15.	Close Cold Leg Injection Valve:		
		o MOV-856A		
		- OR -		
		o MOV-856E		
	16.	Open Hot Leg Injection Valve To Loop 23:	2	
		o MOV-856B		
	17.	Close Cold Leg Injection Valve:	-	
		o MOV-856C		
		- OR - o MOV-856D		
~~	18.	Open Hot Leg Injection Valve To Loop 21:	2	
		o MOV-856F		
7 L			. <u></u>	

	Number:	litle:		Revision Number:
	2-ES-1.4	TRANSFER TO HOT L	EG RECIRCULATION	REV. 3
, 	STEP	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	]
		<u>heck High Head Recirculation</u> tatus:		
	a	. Check SI pumps – ANY RUNNING	a. <u>IF</u> SI pumps 21 and 2 shutdown, <u>THEN</u> CONSU TSC.	
	b	. Check SI pumps – 21 AND 23 RUNNING	b. <u>IF</u> 21 <u>OR</u> 23 SI pump started, <u>THEN</u> perfor following:	
			1) Place 21 containm pump control swit PULLOUT.	
			2) Place 22 SI pump switch in PULLOUT	
1			3) Place recirculati No. 1 to OFF.	on switch
			4) Manually open 22 suction valves:	SI pump
			0 MOV-887A 0 MOV-887B	
			5) Start 22 SI pump.	
			6) <u>IF</u> 21 <u>AND</u> 22 SI p running, <u>THEN</u> :	
			a) Verify MOV-851	.B open.
			b) Verify MOV–851	A closed.
			7) <u>IF</u> 22 <u>AND</u> 23 SI p running, <u>IHEN</u> :	oumps
			a) Verify MOV–851	A open.
			b) Verify MOV-851	B closed.

Number:	Title:		Revision Numbe
2-ES-1	.4 FRANSFER TO HOT L	EG RECIRCULATION	REV. 3
STEP	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	
20.	Verify Adequate Recirculation		
	a. Core exit TCs - STABLE OR DECREASING	a. Return to Step 1.	
21.	<u>Aliqn Seal Gas System;</u>		
	a. Verify following valves are closed:		
	o PCV-1090 outlet stop 1443 o PCV-1090 bypass stop 1444		
	b. Verify nitrogen supply is available - PI-1075 GREATER THAN 250 PSIG		
	c. Slowly open PCV-1090 outlet stop valve 1443		
	d. Verify PCV–1090 set to maintain 250 psig on PI–1089		

	Number: 2·FS·1.4	Title: TRANSFER TO HOT LEG RECIRCULATION	Revision Number: REV. 3
1		CTION/EXPECTED RESPONSE CTION/EXPECTED RESPONSE	
	area break 2-SOP	<u>NOTE</u> 744 bonnet may pressure lock if closed due to system and po temperature differences. Valve should remain open with MCG er locked open unless required for Passive Failure isolat 2-10.1.1. N2 seal gas should only be applied if valve has b reopening is not expected.	C-26A ion in
	<u>Iso</u> a. b. c. 23. <u>Ret</u>	Diation Valves: Consult SM to determine the necessary valves on AITACHMENT 1 to be isolated Consult TSC prior to isolation of MOV-744 Dispatch NPO to isolate the necessary valves with Health Physics assistance	
		- END -	

litle: **Revision Number:** Number: 2-ES-1.4 TRANSFER TO HOT LEG RECIRCULATION REV. 3 ATTACHMENT 1 (Attachment page 1 of 7) Permission* Valving** Granted Valve Operation Location Completed А Isolate Charging Line a) Close MOV-205 4 b) Close MOV-226 4 Close MOV-227 c) 4 d) Open SOV 3501 (IVSW) 2 B Isolate RCP 21 Seal Injection a) Close MOV-4925 4 b) Close MOV-250A 4 c) Open SOV 3514 (IVSW) 2 C Isolate RCP 22 Seal Injection a) Close MOV-4926 4 b) Close MOV-250B 4 c) Open SOV 3515 (IVSW) 2 D Isolate RCP 23 Seal Injection a) Close MOV-4927 4 b) Close MOV-250C 4 c) Open SOV 3516 (IVSW) 2 1 Piping Penetration Area Location: 2 IVSW Control Panel - PAB 98 ft. E1. 3 Gallery above Piping Penetration Area 4 MCC 26 AA and BB - PAB 98 ft. E1. 5 PACS/PACV Panels - PAB 98 ft. E1. 6 Spray Pump Area - PAB 68 ft. El. Personnel Air Lock - Fan House 80 ft. El. 1 8 Equipment Hatch Air Lock MO Bldg 95 ft. El. * The SM should initial those lines which it is permissible to isolate. ** The NPO should initial each valve as he properly positions it. The CRS can previously position some MOVs. If he does so, he should initial the appropriate right hand column entry.

2-ES-1.4

litle:

### TRANSFER TO HOT LEG RECIRCULATION

**Revision Number:** 

REV. 3

ATTACHMENT 1 (Attachment page 2 of 7) (Continued) Valving** Permission* Granted Valve Operation Location Completed Isolate RCP 24 Seal Injection Ε Close MOV-4928 a) 4 Close MOV-250D b) 4 c) Open SOV 3517 (IVSW) 2 Isolate RCP Seal Return F a) Close MOV-222 CCR G Isolate RCP Component Cool. Wtr. a) Close MOV-769 (Supply) CCR b) Close MOV-797 (Supply) CCR c) Close MOV-786 (Mtr Brg Return) CCR Close MOV-784 (Mtr Brg Return) d) CCR e) Close MOV-789 (Thermal Barrier) CCR f) Close FCV-625 (Thermal Barrier) CCR H Isolate Containment Spray Headers a) Close MOV-869A 4 b) Close MOV-869B 4 c) Open SOV 3504 (IVSW-869B) 2 d) Open SOV 3511 (IVSW-869A) 2 e) Close 878A (Test Line Stop) 6 Isolate Recirculation Sample Line I a) Close MOV-990A 4 Ъ) Close MOV-990B 4 c) Open (N2 Gas) SOV 3505 2 Location: Piping Penetration Area 1 2 IVSW Control Panel - PAB 98 ft. El. 3 Gallery above Piping Penetration Area 4 MCC 26 AA and BB · PAB 98 ft E1. 5 PACS/PACV Panels · PAB 98 ft. El. 6 Spray Pump Area - PAB 68 ft. E1. Personnel Air Lock - Fan House 80 ft. El. 1 8 Equipment Hatch Air Lock - MO Bldg 95 ft. El. The SM should initial those lines which it is permissible to isolate. The NPO should initial each valve as he properly positions it. The CRS can previously position some MOVs. If he does so, he should initial the appropriate right hand column entry.

fitle:

## TRANSFER TO HOT LEG RECIRCULATION

**Revision Number:** 

2-ES-1.4

REV. 3

	ATTACHMENT 1	(Atta	chment page 3 of 7)
		(Continued)	
Permission* Granted	Valve Operation***	Location	Valving** Completed
J	Isolate RHR System		
	a) Close MOV-882	CCR	
	b) Close MOV-744***	CCR	
	c) Close MOV-743	4	
	d) Close MOV-1870	4	
	e) Close MOV-958 (Sample L		
	f) Close MOV-959 (Sample L		
	g) Close 990D (Sample L		
	h) Open SOV 3500 (N2Gas 73)		
	i) Open SOV 3506 (N2Gas MO)		
	j) Open SOV 3509 (N2Cas Sau k) Open SOV 3510 (N2Cas -	mple Line)2	
	k) Open SOV 3510 (N2Cas - Between Mov-743/1870)	2	
	1) Close /32 (RHR Suction)	2	
	m) Close 859A (SIS Test Lin	-	
	n) Close 859C (SIS Test Li		
	o) Close MOV-885A (VC Sump		
	p) Close MOV-885B (VC Sump		
к	Isolate N2 to PRT/RCDT/SIS	ACCUM/PORV	
ĸ	a) Close SOV 3418 and 3419		
	b) Close SOV 3416 and 3417		
	c) Close PCV-863 (VC Nz Su		
	d) Close 5459 (RCDT Nz Sup		
	e) Close 4136 (PRT N, Supp	ly) l	
Location:	1 Piping Penetration Are	9.	
	2 IVSW Control Panel - PA	AB 98 ft. El.	
	3 Gallery above Piping P		
	4 MCC 26 AA and BB - PAB		
	5 PACS/PACV Panels - PAB		
	6 Spray Pump Area – PAB		
	7 Personnel Air Lock - Fi		
	8 Equipment Hatch Air Loc	ck - MO Bldg 95	ft. El.
<ul> <li>The SM shoul isolate.</li> </ul>	d initial those lines which it .	is permissible to	0
it. The CRS	ld initial each valve as he prop can previously position some MC	OVs. If he does	so.
he should in	itial the appropriate right hand	i column entry.	
	sure of MOV-744 (and opening of nnet pressurization and capabil:		to evaluate

2-ES-1.4

Title:

### TRANSFER TO HOT LEG RECIRCULATION

Revision Number:

REV. 3

(Attachment page 4 of /) ATTACHMENT 1 (Continued) Valving** Permission* Completed Valve Operation Granted Location Isolate Containment Pressure Instrumentation L a) Close 1814A 1 b) Close 1814B 1 Close 1814C 1 c) Isolate PRZR Level Instrumentation DW Tester Μ a) Close 580A 1 b) Close 580B 1 Isolate CCW To Recirc Pump Motors Ν a) Close 753G (Return) 1 Close 753H (Supply) ь) 1 0 Isolate Weld Channel to Racks in VC a) Close PCV-1111-1 Rack 16 & 17 1 Close PCV-1111-2 Rack 14 & 18 1 b) Isolate Station Air To VC Ρ a) Close SA-24 1 b) Close SA-24-1 1 Isolate Service Water to FCU's Q a) Close SWN-41-1A (21 Inlet Iso) 4 Close SWN-41-1B (21 Block) b) 4 Close SWN-41-2A (22 Inlet Iso) 4 c) d) Close SWN-41-2B (22 Block) 4 1 Piping Penetration Area Location: 2 IVSW Control Panel - PAB 98 ft. E1. 3 Gallery above Piping Penetration Area 4 MCC 26 AA and BB - PAB 98 ft. E1. 5 PACS/PACV Panels - PAB 98 ft. El. 6 Spray Pump Area - PAB 68 ft. El. 7 Personnel Air Lock - Fan House 80 ft. El. 8 Equipment Hatch Air Lock - MO Bldg 95 ft. El. The SM should initial those lines which it is permissible to isolate. The NPO should initial each valve as he properly positions it. The CRS can previously position some MOVs. If he does so. he should initial the appropriate right hand column entry.

	Number:	Title:	Revision Number:
- I	2-ES-1.4	TRANSFER TO HOT LEG RECIRCULATION	REV. 3
Ľ			
ſ		ATTACHMENT 1 (Attachme	nt page 5 of 7)
			and puge 5 of 77
	Permission Granted		alving** ompleted
	Q	Isolate Service Water to FCU's (continued)	
	u.	e) Close SWN-41-3A (23 Inlet Iso) 4 f) Close SWN-41-3B (23 Block) 4 g) Close SWN-41-4A (24 Inlet Iso) 4 h) Close SWN-41-4B (24 Block) 4 i) Close SWN-41-5A (25 Inlet Iso) 4	
		j) Close SWN-41-5B (25 Block) 4 k) Close SWN-43-1 (21 Hdr Drain) 1	
		<pre>l) Close SWN-43-2 (22 Hdr Drain) 1 m) Close SWN-43-3 (23 Hdr Drain) 1 n) Close SWN-43-4 (24 Hdr Drain) 1</pre>	
		o) Close SWN-43-5 (25 Hdr Drain) 1 p) Close SWN-44-1A (21 Out Isol ) 4	
		q) Close SWN-44-1B (21 Block) 4 r) Close SWN-44-2A (22 Out Isol ) 4	
		s) Close SWN-44-2B (22 Block) 4 t) Close SWN-44-3A (23 Out Isol ) 4	
		u) Close SWN-44-3B (23 Block) 4 v) Close SWN-44-4A (24 Out Isol ) 4	
		w) Close SWN-44-4B (24 Block) 4 x) Close SWN-44-5A (25 Out Isol ) 4	
		y) Close SWN-44-5B (25 Block) 4	
		z) Close SWN-51-1A (21 Out Sample) 4 aa) Close SWN-51-2A (22 Out Sample) 4	
		ab) Close SWN-51-3A (23 Out Sample) 4	
		ac) Close SWN-51-4A (24 Out Sample) 4 ad) Close SWN-51-5A (25 Out Sample) 4	
	Location:	<ol> <li>Piping Penetration Area</li> <li>IVSW Control Panel - PAB 98 ft. El.</li> <li>Gallery above Piping Penetration Area</li> <li>MCC 26 AA and BB - PAB 98 ft. El.</li> <li>PACS/PACV Panels - PAB 98 ft. El.</li> <li>Spray Pump Area - PAB 68 ft. El.</li> <li>Personnel Air Lock - Fan House 80 ft. El.</li> <li>Equipment Hatch Air Lock - MO Bldg 95 ft.</li> </ol>	E1.
	• The SM isolat	f should initial those lines which it is permissible to te.	
	it. 1	PO should initial each valve as he properly positions The CRS can previously position some MOVs. If he does so. Bould initial the appropriate right hand column entry.	

C

ber: Title:			Revision Numb
2-ES-1.4	TRANSFER TO HOT LEG R	ECIRCULATION	REV. 3
	ATTACHMENT	1 (Atta	chment page 6 of
		(Continued)	chinetre page o o
		(concented)	
Permission* Granted	Valve Operation	Location	Valving** Completed
	-		
Q	Isolate Service Water to ae) Close SWN-71-1A (21		
	af) Close SWN-71-1B (21		
	ag) Close SWN-71-2A (22		
	ah) Close SWN-71-2B (22		
	ai) Close SWN-71-3A (23		
	aj) Close SWN-71-3B (23		
	ak) Close SWN-71-4A (24		
	al) Close SWN-71-4B (24 am) Close SWN-71-5A (25	-	
	an) Close SWN-71-5B (25		
R	Isolate Auxiliary Steam		
	a) Close UH-43 (Steam S b) Close UH-44 (Condens		
	b) crose on 44 (condens	ale Reluin; I	
S	Isolate Alternate Safe S	hutdown Instrumenta	tion
	a) Close IIP-504 (Przr		
	b) Close IIP-505 (Przr		
	c) Close IIP-506 (Przr		
	d) Close IIP-507 (Przr		
	e) Close IIP-500 (22 SC f) Close IIP-501 (22 SC		
		· ·	
	g) Close IIP-502 (21 SC h) Close IIP-503 (21 SC		
Location:	1 Piping Penetration		
	2 IVSW Control Panel		
	3 Gallery above Pipin	g Penetration Area	
	4 MCC 26 AA and BB - 5 PACS/PACV Panels -		
	6 Spray Pump Area - P		
	7 Personnel Air Lock		E1.
		Lock - MO Bldg 95	
<ul> <li>The SM should isolate.</li> </ul>	l initial those lines which	it is permissible to	o
20010161			
	d initial each valve as he		
	can previously position som		50.
he should ini	tial the appropriate right	hand column entry.	

	ATTACHMENT	l (Atta	achment page / c
		(Continued)	
Permission* Granted	Valve Operation	Location	Valving** Completed
Τ	Isolate Post Accident Air a) Move SOV 5018 (VC Samp b) Move SOV 5019 (VC Samp c) Move SOV 5020 (VC Samp d) Move SOV 5021 (VC Samp e) Move SOV 5022 (VC Retu f) Move SOV 5023 (VC Retu g) Move SOV 5024 (VC Retu h) Move SOV 5025 (VC Retu	p Ch 1) 5 p Ch 1) 5 p Ch 2) 5 p Ch 2) 5 urn Ch 1) 5 urn Ch 1) 5 urn Ch 1) 5 urn Ch 2) 5	
U 	Isolate City Water To VC a) Close MW-17 b) Close MW-17-1	1 1	
V 	Isolate Post Accident Vent a) Close E-1 (VC IA Supp b) Close E-2 (VC Isolation c) Close E-3 (Vent Exhaus d) Close E-5 (Vent Exhaus	ly Štop) 5 on Stop) 5 st Isol) 5	)
W 	<u>IF</u> Personnel And Equipment Doors <u>NOT</u> Operating. Isola a) Close 85A (80 ft Air b) Close 85B (80 ft Air c) Close 95A (95 ft Air d) Close 95B (95 ft Air	ate Equalizing Va Lock) 7 Lock) 7 Lock) 8	lves 
Location:	<ol> <li>Piping Penetration And</li> <li>IVSW Control Panel -</li> <li>Gallery above Piping</li> <li>MCC 26 AA and BB - PA</li> <li>PACS/PACV Panels - PA</li> <li>Spray Pump Area - PAH</li> <li>Personnel Air Lock -</li> <li>Equipment Hatch Air I</li> </ol>	PAB 98 ft. El. Penetration Area AB 98 ft. El. AB 98 ft. El. B 68 ft. El. Fan House 80 ft.	
• The SM shou isolate.	ld initial those lines which it	t is permissible	to

Ĉ

Ì

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
Facility:Indian Point Unit 2	Task No: _0000150501	
Task Title: Depressurize R	CS during Natural Circ to Block Low P	ressure SI
K/A Reference: _WE09EA1.	Job Performance Measure	Sim-3
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Method of testing:		
Simulated Performance Classroom	X Actual Performance Simulator X P	ant

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- A Unit Trip occurred coincident with a loss of off site power.
- All 480 V buses are energized from the Emergency Diesel Generators.
- All actions of E-0, Reactor Trip or Safety Injection and ES-0.1, Reactor Trip Response have been completed.
- The RCS has been borated to the Cold Shutdown Boron Concentration.
- An RCS Cooldown has been established at approximately 24°F/hr.
- RCS Temperature is approximately 540°F.
- The Shift Manager has determined that a Natural Circulation Cooldown will be performed.

Task Standard:RCS Pressure is stable at approximately 1890 psig.Low Pressure SI is blocked

Required Materials:

General References: 2-ES-0.2, Natural Circulation Cooldown 2-SOP-1.4, Pressurizer Pressure Control Initiating Cue: You are the ATC and the CRS has directed you to Depressurize the RCS and Block Low Pressure SI.

Time Critical Task: No

Validation Time: 20 Minutes

Appendix C		Page 3	Form ES-C-1		
	Performance Information				
(Denote critic	(Denote critical steps with a check mark $$ )				
1. Performar	nce Step:	Obtain a copy of ES-0.2			
Standard:		Obtains copy of ES-0.2 and reviews act	ions up to step 7		
Comment:					
Comment.					
2. Performar	nce Sten	Depressurize RCS to 1890 psig			
z. i chonnai		Depressuinze mee to root paig			
Standard:		The sub steps to accomplish this are lis 5.	ted below steps 3-		
		w cannot be established (Seal injection is i establishing < 320°F differential temperatu ne PRZR.			
3. Performar	nce Step:	Check Letdown in service			
Standard:		Observes Letdown valve alignment and	indicated flow		
Comment:					

Appendix C	Page 4	Form ES-C-1

# Performance Information

(Denote critical steps with a check mark  ${\bf \sqrt{}}$ 

4. Performance Step:		Check differential temperature between PRZR and Aux Spray (TI-126) LESS THAN 320°F		
Standard:		Observes differential temperature is > 320°F		
Comment:	Candidate I	may attempt to adjust HCV-142 to establish < 320°F		

Comment:	Candidate may attempt to adjust HCV-142 to establish < 320°F
	differential temperature. HCV-142 is failed closed and will not operate.

√ 5. Performance Step:	Use One PORV (to depressurize to 1890 psig)		
Standard:	Open One PORV Motor Operated Block Valve Open One PORV Observe PRZR Pressure decreasing		
Comment: Alternate Pati	n Actions		
√ 6. Performance Step:	Block Low Pressure SI		
Standard:	Observe LO PRESS PERMISSIVE TO BLOCK S.I. light illuminated Rotate <u>BOTH</u> SAFETY INJECTION BLOCK 1940 PSIG Switches to Block position Observe CH. A and CH. B light illuminated		

## Comment:

Page 5

Form ES-C-1

## Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

7. Performance Step:	Maintain Following RCS Conditions		
Standard:	RCS Pressure 1890 PRZR Level 37% to 71% Cooldown Rate < 25°F/hr RCS Temp and Press within limits of Figure 1 ES02-1		

Comment:

Terminating Cue: JPM Complete

Page 6

## VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

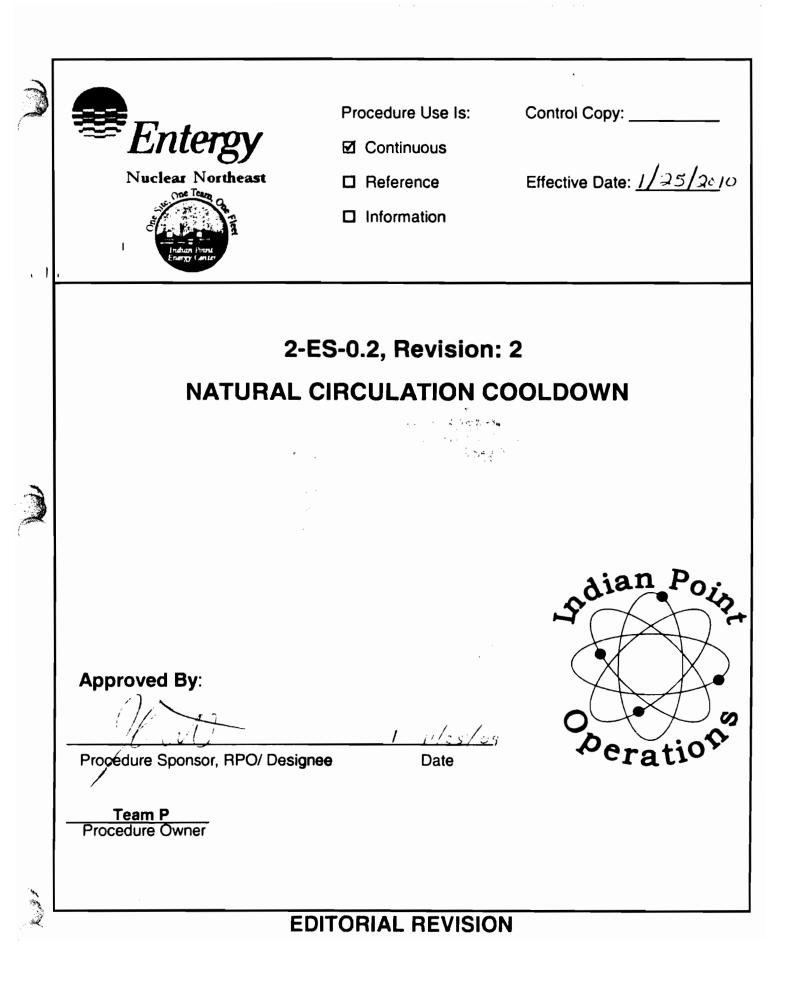
Response:

Result: SAT or UNSAT

Examiner's signature and date:

Reset the simulator to any 100% power IC. Insert Malfunction MAL-EPS001

A	pr	ber	ndi	ix	С


Initial Conditions

Initial Conditions:

- A Unit Trip occurred coincident with a loss of off site power.
- All 480 V buses are energized from the Emergency Diesel Generators.
- All actions of E-0, Reactor Trip or Safety Injection and ES-0.1, Reactor Trip Response have been completed.
- The RCS has been borated to the Cold Shutdown Boron Concentration.
- An RCS Cooldown has been established at approximately 24°F/hr.
- RCS Temperature is approximately 540°F.
- The Shift Manager has determined that a Natural Circulation Cooldown will be performed.

Initiating Cue:

You are the ATC and the CRS has directed you to Depressurize the RCS and Block Low Pressure SI.



2 ES 0.2

REV. 2

#### A. <u>PURPOSE</u>

This procedure provides actions to perform a natural circulation RCS cooldown and depressurization to cold shutdown, with no accident in progress, under requirements that will preclude any upper head void formation.

#### B. <u>SYMPTOMS OR ENTRY CONDITIONS</u>

This procedure is entered from:

- 1) 2-ES-0.1, REACTOR TRIP RESPONSE. Step 14, when it has been determined that a natural circulation cooldown is required.
- 2) 2-ECA-0.1, LOSS OF ALL AC POWER RECOVERY WITHOUT SI REQUIRED, Step 19, after the plant conditions have been stabilized following the restoration of 480V bus power.

#### 1. SI ACTUATION CRITERIA:

Ē

IF EITHER condition listed below occurs, actuate SI AND go to 2-E O, REACTOR TRIP OR SAFETY INJECTION. Step 1:

- o PRZR level CANNOT BE MAINTAINED GREATER THAN 9%
- o RCS subcooling based on core exit TCs LESS THAN VALUE OBTAINED FROM TABLE:

WR RCS PRESSURE RO (PSIG)	° F
0 - 400	52
401 - 800	36
801 - 1200	23
1200 - 2500	19

## 2. AFW SUPPLY SWITCHOVER CRITERION:

Г

IF CST level decreases to less than 2 ft, switch to city water supply.

1.15

	ber: 2 ES 0.2	NATURAL CIRCULAT	ION COOLDOWN	Revision Number	
r			[]		
Ц	STEP A	CTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED		
	• • • •		L <u>ON</u>	•••••	
	<ul> <li>o If SI actuation occurs during this procedure, transition to 2-E-O,</li> <li>REACTOR TRIP OR SAFETY INJECTION, step 1.</li> </ul>				
	<ul> <li>o If RCP seal cooling had previously been lost, the affected RCP should</li> <li><u>NOT</u> be started prior to a status evaluation.</li> </ul>				
	• • • •			• • • • • • •	
		<u>NO</u>	<u>IE</u>		
	RCF	Ps should be run in the following P 24, RCP 23. Running 23 RCP may ovide adequate spray flow.			
		conditions can be established for ocedure, Step 1 should be repeated		this	
	* 1. <u>Try</u>	<u>/ To_Restart_An_RCP:</u>			
	d.	Establish conditions for starting an RCP per 2-SOP-1.3, REACTOR COOLANT PUMP OPERATION	a. Go to Step 2.		
	b.	Start one RCP	b. Go to Step 2.		
	с.	Go to 2-POP-3.2, PLANT RECOVERY FROM TRIP, HOT STANDBY			
		rate RCS To Cold_Shutdown_Boron oncentration			
		rify Cold Shutdown RCS Boron acentration By Sampling:			
	a.	Verify Boration Complete	a. Return to Step 2.		
	b	Verify RCS Boron Concentration exceeds cold shutdown	b. Return to Step 2.		

## 1. <u>SI ACTUATION CRITERIA:</u>

I.

IF EITHER condition listed below occurs, actuate SI AND go to 2-E-O, REACTOR TRIP OR SAFETY INJECTION. Step 1:

o PRZR level - CANNOT BE MAINTAINED GREATER THAN 9%

o RCS subcooling based on core exit TCs - LESS THAN VALUE OBTAINED FROM TABLE:

1	۰,

)

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	°F
0 - 400	52
401 - 800	36
801 - 1200	23
1200 - 2500	19

#### 2. AFW SUPPLY SWITCHOVER CRITERION:



1	Number: 2 ES:0.2	2 NATURAL CIRCUL	ATION COOLDOWN	Revision Number: REV. 2
J.		ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	
	4.	Check VCT Makeup Control System:	Adjust controls as neces	sary.
		a. Makeup set for cold shutdown boron concentration		
	. <b>.</b>	b. RCS makeup control switch placed to START		
	<ul><li>● 5.</li></ul>	Verify All CRDM Fans - RUNNING	Start all fans.	
	6.	<u>Initiate RCS Cooldown To Cold</u> <u>Shutdown:</u>		
		a. Maintain cooldown rate in RCS cold legs – LESS THAN 25°F/HR		
		b. Dump steam to condenser:	b. Dump steam using SG atmospheric steam dum	05
		1) Check condenser – AVAILABLE		μ3.
		<ol> <li>Place steam dump controller switch to manual and adjust for zero output.</li> </ol>		
-		<ol> <li>Transfer condenser steam dump to pressure control mode and adjust manual setpoint as necessary.</li> </ol>		
		c. Maintain SG narrow range level – BETWEEN 46% <u>AND</u> 52%	c. Control feed flow as a	necessary.
		d. RCS temperature and pressure - WITHIN LIMITS OF FIGURE ESO2-1		
	7.	<u>Check RCS Hot Leg Temperatures</u> LESS THAN 550°F	Return to Step 6.	
2				
A. A.				

C

2

#### 1. <u>SI ACTUATION CRITERIA:</u>

ŧ

IF EITHER condition listed below occurs, actuate SI AND go to 2-E 0, REACTOR TRIP OR SAFETY INJECTION, Step 1:

o PRZR level - CANNOT BE MAINTAINED GREATER THAN 9%

o RCS subcooling based on core exit TCs LESS THAN VALUE OBTAINED FROM TABLE:

. 14

)

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	°F
0 400	52
401 800	36
801 1200	23
1200 2500	19

#### 2. AFW SUPPLY SWITCHOVER CRITERION:

	Number:	litle:		Revision Number:
	2 ES 0.2	NATURAL CIRCULAT	TION COOLDOWN	REV. 2
Z	STEP A	CTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	
	8. <u>Dep</u>	pressurize RCS To 1890 psig:		
	a.	Check letdown - IN SERVICE	a. Try to establish letdo 2-SOP-3.1, CHARGING, S WATER <u>AND</u> LETDOWN CON	SEAL
			<u>IF</u> letdown can <u>NOT</u> be established, <u>THEN</u> use PORV. Go to Step 9. CAUTION PRIOR TO STEP	OBSERVE
		Check differential temperature between PRZR and auxiliary spray (TI-126) – LESS THAN 320°F	b. Use one PRZR PORV. G Step 9. OBSERVE CAUT TO STEP 9.	
	c.	Use auxiliary spray:		
		o Refer to 2-SOP-1.4. PRESSURIZER PRESSURE CONTROL		
	••••		· · · · · · · · · · · · · · · · · · ·	
		<u>CAUT</u> ctuation circuits will automatica eases to greater than 1940 psig.		ure •
	•		•••••	
	9. <u>Blo</u>	ock Low PRZR Pressure SI		
		ntain Following RCS nditions:		
	o F	RCS pressure – AT 1890 PSIG		
	o P	PRZR level - BETWEEN 37% AND 71%		
		cooldown rate in RCS cold legs LESS THAN 25°F/HR		
		RCS temperature and pressure - NITHIN LIMITS OF FIGURE ESO2-1		
1				

# 1. <u>SI ACTUATION CRITERIA:</u>

۱

- IF EITHER condition listed below occurs, actuate SI AND go to 2.E.O, REACTOR TRIP OR SAFETY INJECTION, Step 1:
  - o PRZR level CANNOT BE MAINTAINED GREATER THAN 9%
  - o RCS subcooling based on core exit TCs  $\sim$  LESS THAN VALUE OBTAINED FROM TABLE:

	- 1		
1	- 1	· •	

)

)

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	°F
0 400	52
401 800	36
801 1200	23
1200 2500	19

#### 2. AFW SUPPLY SWITCHOVER CRITERION:

	Number:	litle:			Revision Number:
	2 E.S·0.2	NAT	TURAL CIRCULATI	ON COOLDOWN	REV. 2
		ACTION/EXPECTED RESP	ONSE	RESPONSE NOT OBTAINED	ر <u>ہے۔۔۔</u> ر ۱
	11. <u>Mo</u>	nitor RCS Cooldown:		L	-
		Core exit TCs - DECF RCS hot leg temperat			
1.	4	DECREASING RCS subcooling based			
		exit TCs - INCREASIN	NG		
			5 of 14		

# 1. <u>SI ACTUATION CRITERIA:</u>

۱

IF EITHER condition listed below occurs, actuate SI AND go to 2-E 0, REACTOR TRIP OR SAFETY INJECTION, Step 1:

o PRZR level - CANNOT BE MAINTAINED GREATER THAN 9%

o RCS subcooling based on core exit TCs - LESS THAN VALUE OBTAINED FROM TABLE:

	t ·	
•	•	

ł

)

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	°F
0 - 400	52
401 - 800	36
801 - 1200	23
1200 - 2500	19

## 2. AFW SUPPLY SWITCHOVER CRITERION:

Numbe	r: ES 0.2	litle:	NATURAL CIRCULAT	TON COOLDOWN	Revision Number: REV. 2
		ACTION/EXPECTED R	ESPONSE	RESPONSE NOT OBTAINED	<u> </u>
	de in o o I	pressurization mu the vessel, one 2-ES-0.3, NATURA (WITH RVLIS) 2-ES-0.4, NATURA (WITHOUT RVLIS) RVLIS changes st	ist be performed of the following AL CIRCULATION CO OR- AL CIRCULATION CO Satus after enter	TE at a natural circulation c at a rate that may form a g procedures should be use DOLDOWN WITH STEAM VOID IN DOLDOWN WITH STEAM VOID IN ring these procedures, <u>THE</u> appropriate procedure resp	steam void d: VESSEL VESSEL N TSC will
	a. b.	itiate RCS Depres Check CRDM fans Maintain RCS sub on core exit TCs THAN VALUE OBTAI WR RCS PRESSURE (PSIG) 0 - 400 401 - 800 801 - 1200	- ALL RUNNING	a. Maintain RCS temperat pressure per ATTACHME FIGURE ESO2 2. Go to	NT 1 and
	đ.	1201 - 2500 Check letdown - Check differenti between PRZR and spray (TI-126) - 320°F Use auxiliary sp o Refer to 2-SOP	69 IN SERVICE al temperature auxiliary LESS THAN	<ul> <li>c. Use one PR7R PORV. G Step 13. UBSERVE NOT TO STEP 13.</li> <li>d. Use one PR7R PORV. G Step 13. UBSERVE NOT TO STEP 13.</li> </ul>	E PRIOR

## 1. <u>SI ACTUATION CRITERIA:</u>

I

IF EITHER condition listed below occurs, actuate SI AND go to 2.E O, REACTOR TRIP OR SAFETY INJECTION, Step 1:

o PRZR level - CANNOT BE MAINTAINED GREATER THAN 9%

o RCS subcooling based on core exit TCs - LESS THAN VALUE OBTAINED FROM TABLE:

1.15

)

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	°F
0 400	52
401 800	36
801 1200	23
1200 2500	19

### 2. AFW SUPPLY SWITCHOVER CRITERION:

2-ES 0	.2 NATURAL CI	RCULATION COOLDOWN	REV. 2
STEP			
	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	]
	2-POP-3.3, PLANT COOLDOWN - HOT for plant alignment during cool		referred to
13.	<u>Continue RCS Cooldown And</u> <u>Depressurization:</u> a. Maintain cooldown rate in cold legs – LESS THAN 25°F		
	<ul> <li>b. Maintain subcooling requirements of Step 12</li> <li>c. Maintain RCS temperature a pressure - WITHIN LIMITS ( FIGURE ES02-1</li> </ul>		
14.	Verify Steam Void In Reactor Vessel Does Not Exist: o PRZR level - NO UNEXPECTED LARGE VARIATIONS o RVLIS natural circulation r	FIGURE ESO2-1 to colla potential voids in sys continue cooldown. <u>IF</u> depressurization must <u>THEN</u> go to one of the	pse tem and RCS continue,
	indication - GREATER THAN 8	0 2 ES-0.3, NATURAL CI COOLDOWN WITH STEAM VESSEL (WITH RVLIS)	
		o 2-ES-0.4, NATURAL CI COOLDOWN WITH STEAM VESSEL (WITHOUT RVLI	VOID IN

## 1. <u>SI ACTUATION CRITERIA:</u>

ŧ

IF EITHER condition listed below occurs, actuate SI AND go to 2-E-O, REACTOR TRIP OR SAFETY INJECTION. Step 1:

o PRZR level - CANNOT BE MAINTAINED GREATER THAN 9%

o RCS subcooling based on core exit TCs - LESS THAN VALUE OBTAINED FROM TABLE:

)

)

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	°F
0 - 400	52
401 - 800	36
801 - 1200	23
1200 - 2500	19

#### 2. AFW SUPPLY SWITCHOVER CRITERION:

Number: 2 FS 0.2	Title: NATURAL CIR	RCULATION COOLDOWN	Revision Number: REV. 2
	CTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	
		<u>CAUTION</u> conment conditions should be ended	valuated
	<u>ck If SI Accumulators Shoul</u> Isolated:		
	RCS pressure – LESS THAN 1000 PSIG	a. Continue with Step 1 RCS pressure less th 1000 psig. <u>THFN</u> do S through 15d.	an
	Locally restore power to isolation valves:		
	o 894A (MCC 26A) o 894C (MCC 26A) o 894B (MCC 26B) o 894D (MCC 26B)		
This St	ep continued on the next pa	age.	
-	8	3 of 14	

# 1. <u>SI ACTUATION CRITERIA:</u>

ŧ

IF EITHER condition listed below occurs, actuate SI AND go to  $2 \le 0$ , REACTOR TRIP OR SAFETY INJECTION, Step 1:

o PRZR level. - CANNOT BE MAINTAINED GREATER THAN 9%

o RCS subcooling based on core exit TCs - LESS THAN VALUE OBTAINED FROM TABLE:

1 . 15

)

RCS SUBCOOLING °F
52 36 23

#### 2. AFW SUPPLY SWITCHOVER CRITERION:

Nu	mber:	litle:		Revision Number:
	2 ES 0.2	NATURAL CIRC	ULATION COOLDOWN	REV. 2
ے ابر	STEP	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	
וו	512			
		c. Close all SI accumulator isolation valves	c. Vent any unisolated accumulators:	
	ł		<ol> <li>Close nitrogen sup to accumulators: H</li> </ol>	
. 19.			o <u>IF</u> HCV-863 will <u>THEN</u> locally clo following nitrog	ose the
			o 1809	
			o 1811A o 1811B	
			<ol> <li>Open the following as necessary:</li> </ol>	g valves
			o Accumulator 21:	
			o 891A o HCV-943	
Ì			o Accumulator 22:	
1			o 891B o HCV 943	
			o Accumulator 23:	
			o 891C o HCV-943	
			o Accumulator 24:	
			o 891D o HCV-943	
		d. Open all SI accumulator isolation valve breakers		
<u>}</u> L				

#### 1. <u>SI ACTUATION CRITERIA:</u>

1

IF EITHER condition listed below occurs, actuate SI AND go to 2 E O, REACTOR TRIP OR SAFETY INJECTION, Step 1:

- o PRZR level · CANNOT BE MAINTAINED GREATER THAN 9%
- o RCS subcooling based on core exit TCs LESS THAN VALUE OBTAINED FROM TABLE:

1	,	I	۰.

)

)

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	°F
0 400	52
401 - 800	36
801 - 1200	23
1200 - 2500	19

#### 2. AFW SUPPLY SWITCHOVER CRITERION:

Nu:	mber:	litle:		Revision Number:
	? FS 0.	2 NATURAL CIRCU	LATION COOLDOWN	RE <b>V</b> . 2
ے ام	STEP	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	]
	16.	<u>Check If SI Pumps Should Be</u> Locked Out:		-
		a. RCS hot leg temperature – LES THAN 350°F	S a. Continue with Step 1 RCS hot leg temperat than 350°F, <u>THEN</u> do	ure less
		b. Place SI pump control switche in PULLOUT	s	
	17.	<u>Maintain Letdown Flow:</u>		
		a. Open letdown orifice isolatio valves as necessary	n	
		b. Adjust low pressure letdown control valve PCV-135 setpoin as necessary	t	
	18.	<u>Maintain Required RCP Seal</u> Injection Flow:		
9		o 6 gpm to 12 gpm per pump		
	19.	<u>Check If RHR System Can Be Place</u> <u>In Service:</u>	d	
		a. RCS temperature - LESS THAN 350°F	a. Return to Step 13. NOTE PRIOR TO STEP 1	
		b. RCS pressure – LESS THAN 370 PSIG	b. Return to Step 13. NOTE PRIOR TO STEP 1	
		c. Place RHR System in service per 2-SOP-4.2.1, RESIDUAL HEA REMOVAL SYSTEM	Т	
	20.	<u>Continue RC\$ Cooldown To Cold</u> Shutdown		

10 of 14

# 1. <u>SI ACTUATION CRITERIA:</u>

ł

IF EITHER condition listed below occurs, actuate SI AND go to 2.6.0, REACTOR TRIP OR SAFETY INJECTION, Step 1:

o PRZR level - CANNOT BE MAINTAINED GREATER THAN 9%

o RCS subcooling based on core exit TCs - LESS THAN VALUE OBTAINED FROM TABLE:

1

)

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	°F
0 - 400	52
401 - 800	36
801 - 1200	23
1200 - 2500	19

## 2. AFW SUPPLY SWITCHOVER CRITERION:

Number:		litle:			Revision Number:
2 ES	0.2	N#	NTURAL CIRCULATI	ION COOLDOWN	RFV. 2
/					
STEP		TION/EXPECTED RES	PONSE	RESPONSE NOT OBTAINED	
	Depre	ssurizing the RCS	<u>CAUTIO</u> before the ent	<u>ON</u> ire RCS is less than 200	••••••••••••••••••••••••••••••••••••••
	resul	t in void formatio	on in the RCS.		• • • • • • • • •
21.	. <u>Con</u> Por	<u>tinue Cooldown Of</u> tion Of RCS:	Inactive		
		ool upper head re RDM fans	gion using		
		ool SG U-tubes by team from all SGs	dumping		
l r			NOT	E	
		DM fans are <u>NOT</u> r low the head to c		ng period of 27 hours is n 200°F.	necessary
2.2		<u>ermine_lf_RCS_Dep</u> <u>Permitted:</u>	<u>ressurization</u>		
	a.	Entire RCS LESS	THAN 200°F	a. Return to Step 20.	
		Go to 2-POP-3.3, COOLDOWN - HOT TO			
			END		
~					
			11 of 1	14	

## 1. <u>SI ACTUATION CRITERIA:</u>

ŧ

- IF EITHER condition listed below occurs, actuate SI AND go to 2-E-0, REACTOR TRIP OR SAFETY INJECTION. Step 1:
- o PRZR level CANNOT BE MAINTAINED GREATER THAN 9%
- o RCS subcooling based on core exit TCs LESS THAN VALUE OBTAINED FROM TABLE:

1	•	15	

)

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	°F
0 400	52
401 - 800	36
801 - 1200	23
1200 - 2500	19

## 2. AFW SUPPLY SWITCHOVER CRITERION:

Number: litle: **Revision Number:** 2 ES 0.2 NATURAL CIRCULATION COOLDOWN REV. 2 FIGURE ESO2 1 RCS PRESSURE (PSIG) 2500 -2000 -1500 -UNACCEPTABLE OPERATION 1000 -MAXIMUM COOLDOWN RATES: •F/HR 0 20 500 -ACCEPTABLE 40 **OPERATION** 60 100 Ĺ 0 . 1 0 50 100 150 200 250 300 350 RCS COLD LEG TEMPERATURE (°F)

FIGURE ESO2-1, REACTOR COOLANT SYSTEM COOLDOWN LIMITATIONS END

12 of 14

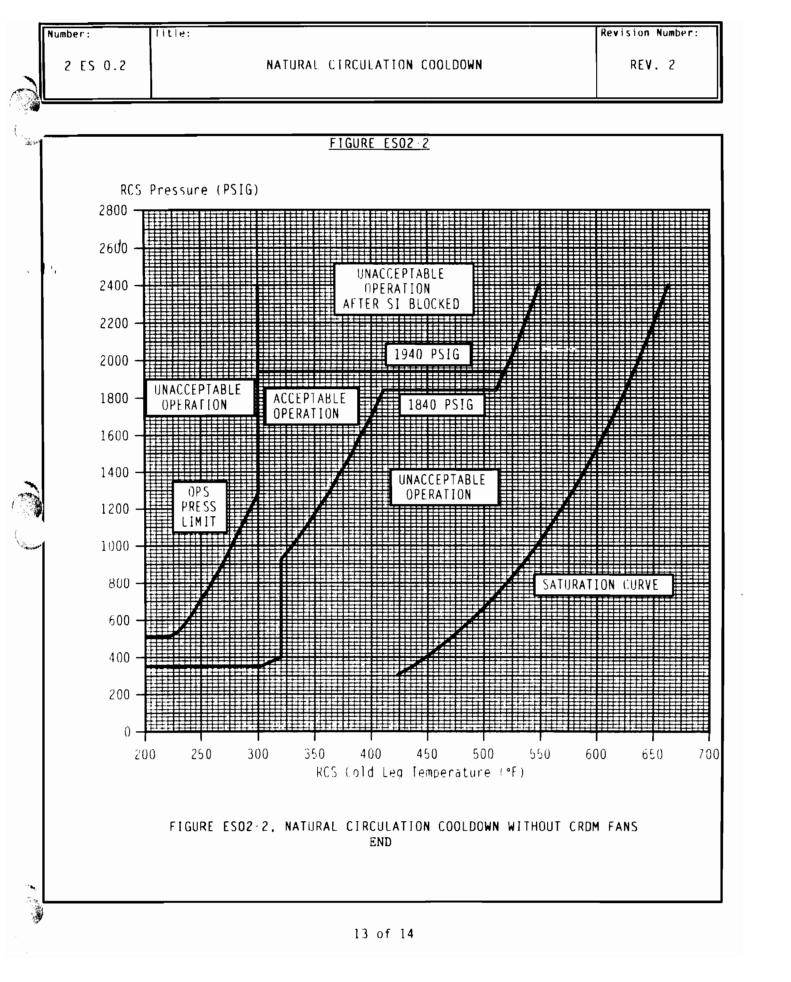
14

### 1. <u>SI ACTUATION CRITERIA:</u>

ł

IF EITHER condition listed below occurs, actuate SI AND go to 2.E.O, REACTOR TRIP OR SAFETY INJECTION, Step 1:

o PRZR level - CANNOT BE MAINTAINED GREATER THAN 9%


o RCS subcooling based on core exit TCs - LESS THAN VALUE OBTAINED FROM TABLE:

1	,	I	۰,	

)

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	°F
0 - 400	52
401 - 800	36
801 - 1200	23
1200 - 2500	19

#### 2. AFW SUPPLY SWITCHOVER CRITERION:



# 1. <u>SI ACTUATION CRITERIA:</u>

ł

)

IF EITHER condition listed below occurs, actuate SI AND go to 2-E-O, REACTOR TRIP OR SAFETY INJECTION. Step 1:

o PRZR level - CANNOT BE MAINTAINED GREATER THAN 9%

o RCS subcooling based on core exit TCs LESS THAN VALUE OBTAINED FROM TABLE:

1 . 15

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	• F
0 - 400	52
401 - 800	36
801 - 1200	23
1200 - 2500	19

## 2. AFW SUPPLY SWITCHOVER CRITERION:

2 ES 0.2

t		
· • • • • • • • • • • • • • • • • • • •		ATTACHMENT 1 (Attachment page 1 of 1) RCS SUBCOOLING WITHOUT CRDM FANS
	1.	Perform the following in conjunction with Procedure Steps.
		a) Refer to FIGURE ESO2-2 for the acceptable operating region.
		b) Maintain RCS pressure approximately 1890 psig until RCS cold leg temperature is decreased to 400°F at a rate less than 25°F/hr.
		c) Continue the cooldown at a rate less than 25°F/hr and initiate a depressurization of the RCS while maintaining a minimum of 150°F subcooling (or the Tech Spec limit) until RCS pressure is 1100 psig.
		d) Maintain RCS pressure approximately 1100 psig until RCS cold leg temperature is decreased below 320°F at a rate less than 25°F/hr.
		e) Wait 8 hours to allow the upper head to cool before continuing depressurization.
		f) Continue the cooldown at a rate less than 25°F/hr and initiate a depressurization of the RCS while maintaining a minimum of 50°F subcooling (or the Tech Spec limit) until RCS pressure is between 350 psig and 370 psig.
		g) With RHR in service for cooldown, maintain RCS pressure between 350 psig and 370 psig for 27 hours until the entire RCS is decreased below 200°F.
		END
5996		
1		

#### 1. <u>SI ACTUATION CRITERIA:</u>

1

- IF EITHER condition listed below occurs, actuate SI AND go to 2-E-O, REACTOR TRIP OR SAFETY INJECTION, Step 1:
  - o PRZR level CANNOT BE MAINTAINED GREATER THAN 9%
  - o RCS subcooling based on core exit TCs  $\cdot$  LESS THAN VALUE OBTAINED FROM TABLE:
- 1 . 15

)

)

WR RCS PRESSURE	RCS SUBCOOLING
(PSIG)	°F
0 - 400	52
401 - 800	36
801 - 1200	23
1200 - 2500	19

#### 2. AFW SUPPLY SWITCHOVER CRITERION:

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
Facility: Indian Point Unit 2	Task No: 00700	)10101
Task Title: Fill the PRT		
K/A Reference: 007000A4.0	Job Performance Mo 01 No:	easure Sim-4
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Method of testing:		
Simulated Performance Classroom	X Actual Performa Simulator X	nce Plant

# READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

• PRT is currently 65%

Task Standard: PRT Level is restored to approximately 70%.

Required Materials:

General References: 2-SOP-1.6 Pressurizer Relief Tank Operations

Initiating Cue: You are the ATC and the CRS has directed you to Fill the PRT to 70% in accordance with 2-SOP-1.6

Time Critical Task: NO

Validation Time: 15 Minutes

Appendix C	Page 2	Form ES-C-1
	Performance Information	
Denote critical steps with a	ı check mark √)	
1. Performance Step:	Obtain correct Procedure	
Standard:	Obtains 2-SOP-1.6, Pressurizer Relie and reviews the Precautions and Limi	
Comment: Hand candida	te a copy of 2-SOP-1.6	
2. Performance Step:	Verify 519 552 PRI WTR ISOL Val switch is in REMOTE (Panel SNF)	ves RCP PRT
Standard:	Locates switch and verifies switch is in	n REMOTE postion
Comment:		
√ 3. Performance Step:	OPEN PW Containment Isolation V	alves (Panel SAF)
Standard:	Rotate Switch for 519 to OPEN Rotate Switch for 552 to OPEN	
Comment:		
4. Performance Step:	Observe Caution before Step 4.4.3	
Standard:	Reviews caution and locates PRT Pre	essure Indicator.
Comment:		

Appendix C		Page 3	Form ES-C-
		Performance Information	
(Denote critic	al steps with	a check mark √)	
√5. Perform	ance Step:	OPEN 560 PW Stop VIv to PRT (	Panel SAF)
Standard:		Locates Switch and rotates to C Monitors PRT Level increasing.	PEN position.
Comment:			
6. Performan	ce Step:	Vent PRT using section 4.3 as ne	cessary to maintain PRT
	-		
Standard:		pressure less than 25 psig.	
Standard: Comment:	PRT ventin		this JPM.
	_	pressure less than 25 psig.	this JPM.
Comment:	_	pressure less than 25 psig.	this JPM.
Comment: 7. Performan	_	pressure less than 25 psig. Ig is not expected to be necessary for Observe NOTE before step 4.4.5	this JPM.
Comment: 7. Performan Standard:	ce Step:	pressure less than 25 psig. Ig is not expected to be necessary for Observe NOTE before step 4.4.5	
Comment: 7. Performan Standard: Comment:	ce Step:	pressure less than 25 psig. og is not expected to be necessary for Observe NOTE before step 4.4.5 Reviews NOTE	ached, stop filling PRT

Appendix C

Terminating Cue: JPM Complete

Appendix C

Page 5

# VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date:

Α	ppen	Idix	С

Simulator Setup

This JPM can be run from any IC with normal PRT alignment. Drain the PRT level to approximately 65%. Appendix C

Initial Conditions

Initial Conditions:

• PRT is currently 65%

Initiating Cue:

You are the ATC and the CRS has directed you to Fill the PRT to 70% in accordance with 2-SOP-1.6



Rev: 29

Page 11 of 22

### 4.4 Filling PRT With Primary Water (PW)

- 4.4.1 VERIFY 519 552 PRI WTR ISOL Valves RCP PRT switch is in REMOTE (Panel SNF).
- 4.4.2 OPEN PW Containment isolation valves (Panel SAF):
  - 519, PW Isol M/U Valve
  - 552, PW Isol M/U Valve

#### CAUTION

PRT pressure SHALL be monitored during filling, do NOT exceed 25 psig.

- 4.4.3 OPEN 560, PW Stop VIv To PRT (Panel SAF).
- 4.4.4 VENT PRT using Section 4.3 as necessary to maintain PRT pressure less than 25 psig.

## NOTE

Valve 552 tends to re-open after it is closed due to trapped pressure and thermal expansion when filling the PRT; therefore Valve 560 needs to be the last valve closed. Step 4.4.6 allows operators to cycle 560 whenever 552 is closed and then re-opens due to thermal expansion of Primary Water in the pipe.

- 4.4.5 <u>WHEN</u> desired PRT level is reached (normal level 69 75%), THEN:
  - 4.4.5.1 CLOSE 519, PW Isol M/U Valve.
  - 4.4.5.2 CLOSE 552, PW Isol M/U Valve.
  - 4.4.5.3 CLOSE 560, PW Stop VIv To PRT.
- 4.4.6 <u>IF</u> valve 552 re-opens (dual indication) due to thermal expansion of isolated Primary Water, <u>THEN</u> CYCLE valve 560 at any time to relieve water pressure.

Appendix C	Job Performance Measure Worksheet	Form ES-C-1
Facility: Indian Point Unit	: 2 Task No:03500104	01
Task Title: Respond to	22 SG "B" Level Channel failure Hig	h
K/A Reference: 059000A	Job Performance Measu 4.08 No:	ıre Sim-5
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Method of testing:		
Simulated Performance Classroom	X Actual Performance Simulator X	Plant

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- Reactor at indicated power.
- Steady State, equilibrium Xenon.
- No equipment out of service.

Task Standard: Plant stabilized, failed channel removed from service.

Required Materials:

General References: 2-AOP-INST-1, Instrument or Controller Failures

Initiating Cue: You are the ATC.

Time Critical Task: No

Validation Time: 25 Minutes

Appendix C	Page 2	Form ES-C-1
	Performance Information	
(Denote critical stans with		
(Denote critical steps with a		
√1. Performance Step:	Operator takes Immediate Action (steps 3.1-3.3)	s from memory
	Note: Immediate actions of 2-AC	DP-INST-1
Standard:	<ol> <li>Checks all parameters listed an 22 S/G Level Channel (447B) is fai 2. Verify 22 S/G level control is aff 3. Place 22 FW Reg Valve in MA 4. Take manual actions as necess parameters and stabilize the place 5. Assures all control systems listed checked.</li> </ol>	iled high. fected NUAL. ssary to control nt.
Comment: Note: Placing	g 22 Feedwater Reg Valve in Manua plant are critical	al and stabilizing
2. Performance Step:	Has an instrument failure occurred	?
Standard:	Operator determines that 22 SG Leve high	l 427B has failed
Comment: The purpose a controller fa	of this step is to distinguish between an ir ilure	nstrument failure and
3. Performance Step:	Go To the applicable step for the indic	cated failure
Standard:	Candidate determines Step 4.22 is co	prrect
	ormally "peer checked" the candidate ma CUE: "I agree" with whatever step the car	

Appendix C	Page 3	Form ES-C-
	Performance Information	
(Denote critical steps with a	check mark √)	
4. Performance Step:	Has Channel "B" failed	
Standard:	Candidate determines that Channel '	'B" has failed.
Comment:		
√ 5. Performance Step:	Manually control affected SG Feed necessary to maintain SG level	Regulating Valve as
Standard:	Make periodic adjustments on 22 s to maintain SG level.	SG Feed Reg Valve
Comment:		
6. Performance Step:	Refer to the following Tech Specs for	r required actions
Standard:	Candidate should verbalize Tech Sp	ec reference.
Comment: CUE: The STA	will refer to Tech Specs.	
7. Performance Step:	Review NOTES prior to step 4.25	
Standard:	Candidate reviews NOTES prior to s	tep
Comment:		

Appendix C	Page 4	Form ES-C-1
		Form ES-C-1
	Performance Information	
(Denote critical steps with a	check mark √)	
8. Performance Step:	If At Any Time (IAAT) SM/CRS determine listed on Attachment 1 should be tripped bistables as directed by SM/CRS	
Standard:		
Comment: CUE: The SI	M has determined that all necessary bista	bles will be tripped.
$\sqrt{9}$ . Performance Step:	Trip Bistables	
Standard:	Place bistable trip switches for 427B position in Protection Rack B-2	in tripped (UP)
	<ul> <li>LC-427E Loop 2B High Level</li> <li>LC-427F Loop 2B Low Level</li> <li>LC-427A-2 Loop 2B AMSAC L</li> </ul>	ow Level
SG to ensur The bistable The candida	te should verify that no other bistables that tripping the bistables will not ca status panel is on Panel SOF. Ite should verify that the bistable statu ofter the bistables are tripped.	use a reactor trip.

Terminating Cue: JPM Complete

Appendix C

Page 5

Form ES-C-1

### VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

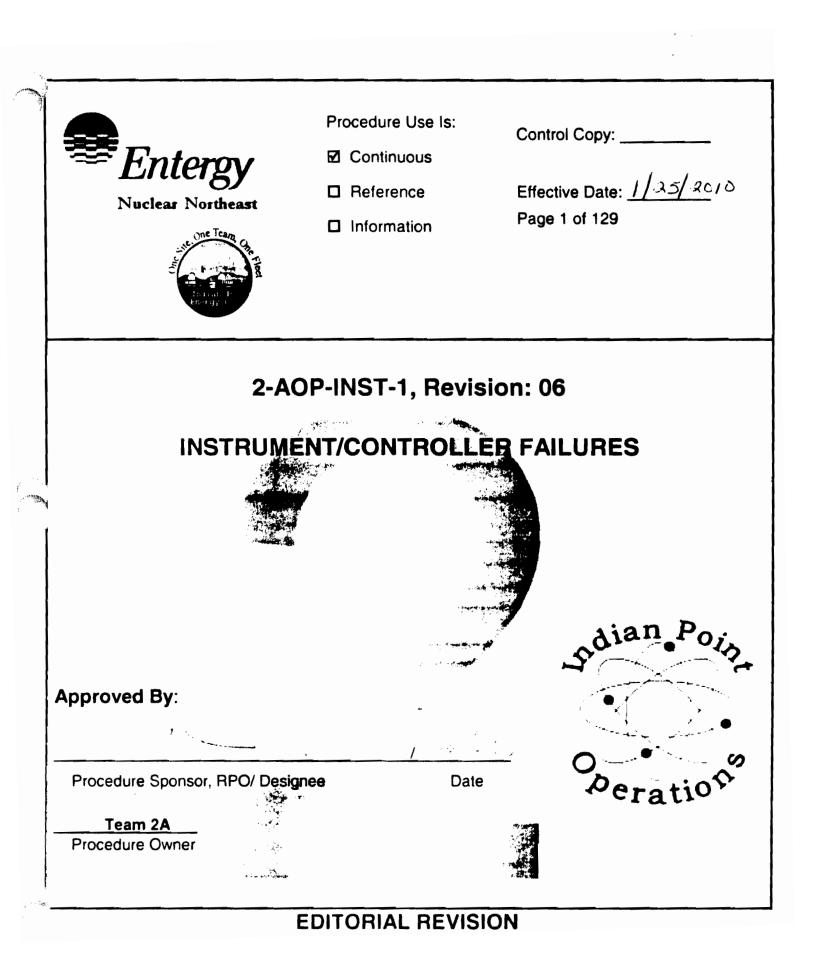
Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

Appendix C

This JPM can be run from any 100% power IC


Insert Malfunction XMT-SGN018A 100%, 0 delay, 0 ramp.

Initial Conditions:

- Reactor at indicated power.Steady State, equilibrium Xenon.
- No equipment out of service.

Initiating Cue:

You are the ATC.



2-AOP-INST-1Rev. 06 Page 3 of 129

# **REVISION SUMMARY**

(Page 1 of 1)

### 1.0 REASON FOR REVISION

1.1 Incorporate feedback

## 2.0 SUMMARY OF CHANGES

2.1 Step 4.47 - Add TS per IP2-9091. (Editorial 4.6.13)

# 1. PURPOSE

- 1.1 To maintain operator control of the plant and recover from failed instrumentation that provides input to control or protective systems.
- 1.2 To provide for rapid operator control of systems whose auto control function has failed.

# 2. ENTRY CONDITIONS

- 2.1 <u>Any</u> of the following instruments indicate abnormal behavior when compared to other instruments measuring the same parameter:
  - PRZR pressure or level
  - SG pressure or level
  - Steam flow
  - Feedwater flow
  - RCS flow or NR temperature (Thot or Tcold)
  - Turbine 1st stage pressure
  - Containment Pressure
  - NIS Power Range
  - Feedwater pressure
  - Main steam line pressure
- 2.2 Failure of <u>any</u> of the following to control in automatic:
  - Rod control
  - PRZR pressure control
  - PRZR level control
  - MBFP speed control
  - SG level control
  - SG pressure control

2-AOP-INST-1Rev. 06 Page 7 of 129

# 3. IMMEDIATE ACTIONS

	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED
3.1	Are <u>any</u> of the following affected by the failure?	GO TO Step 4.2.
	Rod control	
	PRZR pressure control	
	PRZR level control	
	MBFP speed control	
	SG level control	
	Steam pressure	
	Steam flow	
	Feedwater flow	
	SG pressure control	
	<ul> <li>Atmospheric Steam Dump Control</li> </ul>	
	<ul> <li>High Pressure Steam Dump Pressure or Temperature Control</li> </ul>	
3.2	Take manual actions as necessary to control parameters and stabilize the plant.	
3.3	Have all control systems listed in step 3.1 been checked as being affected?	GO TO Step 3.1.

# 4. SUBSEQUENT ACTIONS

AC	TION/EXPECTED RESPO	NSE	RESPONSE NOT OBTAINED
.1	Has an instrument failure occurred?		<ol> <li>Initiate repairs of failed controller.</li> <li>WHEN controller is repaired, THEN restore applicable controls to automatic as directed by CRS/SM.</li> <li>RETURN to procedure and step in</li> </ol>
	O TO the applicable step fo dicated failure:	or the	effect.
	Failed Parameter	Step	
	NIS Power Range	4.3	
	MBFP suction pressure	4.4	
	MBFP discharge pressure	4.11	
ſ	Steam header pressure (PT-404)	4.16	
	S/G level	4.22	
	S/G pressure	4.36	
Γ	Feedwater flow	4.56	
	Steam flow	4.66	
	PRZR pressure	4.76	
	PRZR level	4.108	
	NR Thot or Tcold	4.141	
	RCS flow	4.162	
	Turbine1 st stage pressure	4.168	
	Containment pressure	4.198	

Instrument Malfunction).

7

• • • END • • •

ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED
<u>Unit S</u>	itatus
A SG level channel f	ailure has occurred.
4.22Has a Channel B instrument failed?	GO TO Step 4.24.
4.23 <u>Manually control affected SG FRV</u> as necessary to maintain SG level on program.	
4.24 Refer to the following Tech Spec Tables for required actions:	
3.3.1-1 (Functions 13 and 14)	
3.3.2-1 (Functions 5.b and 6.b)	
<ul> <li>Attachment 1 (Steam Generator Level Trip Bistables associated with each SG.</li> </ul>	able Switches) (Page 89) contains a list of
• Tripping 2/3 channels of low level bistable	es on the same SG will initiate a reactor trip.
• Tripping ½ low level mismatch bistables of flow/feedflow mismatch bistables will initia	
<ul> <li>Tripping 2/3 channels of high level bistable reactor if &gt; P-8).</li> </ul>	es on the same SG will trip the turbine (and
Tripping bistables in 3/4 loops causes AM	SAC to trip the turbine (and reactor if > P-8)
be tripped. Only those bistables that will	for when bistables for a failed channel mus NOT cause a reactor trip should be tripped. which, if any, bistables to trip on the effects
4.25IAAT SM/CRS determines any bistables listed on Attachment 1 (Steam Generator Level Trip Bistable Switches) (Page 89) associated with failed channel should be tripped, THEN trip bistables as directed by	

SM/CRS.

ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED
4.26 Have <u>any</u> of the following AMSAC SG level channels failed?	GO TO Step 4.29.
417A	
427B	
437C	
447C	
<u></u>	DTE
An AMSAC train out of service is defined as failure of one channel to perform its function.	•
<ul> <li>4.27IAAT both trains of AMSAC are out of service, THEN perform one of the following:</li> <li>A Restore one train within 30 days.</li> <li>B Limit reactor power to less than 40%.</li> </ul>	
4.28IAAT only one train of AMSAC is out of service, THEN restore train as soon as practical.	
4.29WHEN failed instrument has been restored to service is in service. THEN continue in this procedure.	

<u>_____</u>

2-AOP-INST-1Rev. 06 Page 21 of 129

ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED
4.30Were bistables associated with failed channel listed in Attachment 1 (Steam Generator Level Trip Switches) (Page 89) manually tripped?	GO TO Step 4.32.
4.31Un-trip affected bistables.	
4.32Was failure a Channel B failure?	GO TO Step 4.35.
4.33 Is automatic control of affected FRV desired?	GO TO Step 4.35.
4.34 Place FRV in automatic control.	
4.35RETURN to procedure and step in effect.	

and the second second

1

••• END •••

2-AOP-INST-1 Rev. 06 Page 89 of 129

## Attachment 1 Steam Generator Level Trip Bistable Switches Page 1 of 3

		Steam Generator 21		
FAILED CHANNEL	BISTABLE	SWITCH NAME	PROTECTION RACK	TRIP
417A	LC-417A	Loop 1A High Level	Yellow B-9	
	LC-417B	Loop 1A Low Level	Yellow B-9	
	LC-417G	Loop 1A Low Level Mismatch	Yellow B-9	
	LC-417A-1	Loop 1A AMSAC Low Level	Yellow B-9	
	Sutton A Car South			
417B	LC-417E	Loop 1B High Level	Blue B-2	
	LC-417F	Loop 1B Low Level	Blue B-2	
			. <b>2</b> .	
417C	LC-417C	Loop 1C High Level	White A-9	
	LC-417D	Loop 1C Low Level	White A-9	
	LC-417K	Loop 1C Low Level Mismatch	White A-9	

		Steam Generator 22		
FAILED CHANNEL	BISTABLE	SWITCH NAME	PROTECTION RACK	TRIP
427A	LC-427A	Loop 2A High Level	Yellow B-9	
	LC-427B	Loop 2A Low Level	Yellow B-9	
	LC-427G	Loop 2A Low Level Mismatch	Yellow B-9	
427B	LC-427E	Loop 2B High Level	Blue B-2	
	LC-427F	Loop 2B Low Level	Blue B-2	
	LC-427A-2	Loop 2B AMSAC Low Level	Blue B-2	
		\$13 ^{mm}		
427C	LC-427C	Loop 2C High Level	Red A-1	
	LC-427D	Loop 2C Low Level	Red A-1	
	LC-427K	Loop 2C Low Level Mismatch	Red A-1	

١

2-AOP-INST-1 Rev. 06 Page 91 of 129

# Attachment 1 Steam Generator Level Trip Bistable Switches Page 3 of 3

	Steam Generator 23					
FAILED CHANNEL	BISTABLE	SWITCH NAME	PROTECTION RACK	TRIP °		
437A	LC-437A	Loop 3A High Level	Yellow B-9			
	LC-437B	Loop 3A Low Level	Yellow B-9			
	LC-437G	Loop 3A Low Level Mismatch	Yellow B-9			
437B	LC-437E	Loop 3B High Level	Blue B-2			
	LC-437F	Loop 3B Low Level	Blue B-2			
437C	LC-437C	Loop 3C High Level	Red A-1			
4370						
	LC-437D	Loop 3C Low Level	Red A-1			
	LC-437K	Loop 3C Low Level Mismatch	Red A-1			
	LC-437A-3	Loop 3C AMSAC Low Level	Red A-1			

ł

Steam Generator 24						
FAILED BISTABLE CHANNEL		SWITCH NAME	PROTECTION RACK	TRIP °		
447A	LC-447A	Loop 4A High Level	Yellow B-9			
	LC-447B	Loop 4A Low Level	Yellow B-9			
	LC-447G	Loop 4A Low Level Mismatch	Yellow B-9			
447B	LC-447E	Loop 4B High Level	Blue B-2			
	LC-447F	Loop 4B Low Level	Blue B-2			
447C	LC-447C	Loop 4C High Level	White A-9			
	LC-447D	Loop 4C Low Level	White A-9			
	LC-447K	Loop 4C Low Level Mismatch	White A-9			
	LC-447A-4	Loop 4C AMSAC Low Level	White A-9			

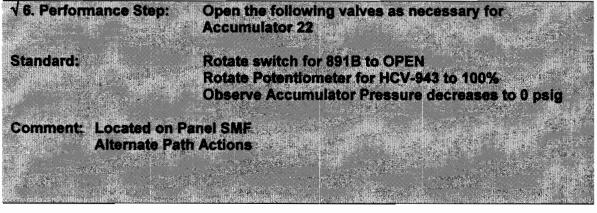
Appendix C	pendix C Job Performance Measure Worksheet		e	Form ES-C-1
Facility: <u>Indian Point Unit</u>	2	Task No:	0000280501	
	-		solate the SI A with failure o	
006000A3 K/A Reference: RO-4.0 SI		Job Perform No:	ance Measure	Sim-6
Examinee:		NRC Exami	ner:	
Facility Evaluator:		Date:		
Method of testing: Simulated Performance Classroom	X		erformance X Plai	
READ TO THE EXAMINEE				
I will explain the initial condit initiating cues. When you co performance measure will be	omplete the tas			
Initial Conditions:				
<ul> <li>A small break LOC.</li> <li>The Operating Creation to step 19.</li> </ul>			ed actions of E-	-0 and E-1 up
	nulator Isolatio nulator vented.		Accumulators cl	osed and one
Required Materials: None				
General References: 2-E-1,	Loss of React	or or Seconda	ary Coolant	
Initiating Cue: You are the B Accumulators	OP and the CF in accordance		•	e SI
Time Critical Task: NO				

Validation Time: 15 Minutes

Appendix C	Page 3	Form ES-C-1
	Performance Information	
(Denote critical steps with a	check mark √)	
1. Performance Step:	Obtain correct procedure	
Standard:	Obtains E-1	
Comment: CUE: Give C	andidate a copy of E-1	
2. Performance Step:	Check at least 2 hot leg temperature	es < 400°F
Standard:	Observes hot leg temperatures and determines all are < 400°F	
Comment:		
√ 3. Performance Step:	Locally restore power to Isolation Va	lves
Standard:	Contact Nuc NPO and direct him/her 894A – D on MCCs 26A and 26B	to re-energize
Comment: CUE: Nuc N energized.	PO reports that the Accumulator Isolat	ion Valves are
√4. Performance Step:	Close All SI Accumulator Isolation Va	alves
Standard:	Rotate switches for 894A – D to CLO Observe 894B failed to close and go column (RNO)	
Comment:		

Appendix C

Page 4


Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

5. Performance Step: Close HCV – 863

Standard: Candidate observes 863 is closed

Comment: Located on Panel SMF



7. Performance Step:	Open all SI Accumulator Isolation Valve Breakers
Standard:	Contact Nuc NPO and direct him/her to de-energize 894A – D on MCCs 26A and 26B

Comment: CUE: Nuc NPO reports that the Accumulator Isolation Valves are deenergized.

Terminating Cue: JPM Complete

Appendix C

Page 5

# VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

Appendix C	Simulator Setup	Form ES-C-1

Initialize the Simulator to any 100% power IC Insert Malfunction MAL-RCS004A; FINAL VALUE 0.2; Small Break Loop 21 Crossover Leg. Allow the simulator to run

Perform the actions of E-0 and E-1 up to Step 19.

А	p	be	nd	ix	С
•••	~	~ ~			-

Initial Conditions:

- A small break LOCA has occurred.
- The Operating Crew has performed all required actions of E-0 and E-1 up to step 19.

Initiating Cue:

You are the BOP and the CRS has directed you to Isolate the SI Accumulators in accordance with E-1 step 19.

	mber: 2   1	TITLE: TOSS OF REACTOR OR S	SECONDARY COOLANT	Revision Number: REV. 2
ſ	11P	ACTIONZEXPECTED RESPONSE	RESPONSE NOT OBTAINED	
		Depressurization Is_Required: a. RCS pressure - GREATER THAN 320 PSIG (350 PSIG FOR ADVERSE CONTAINMENT)	a. <u>IF</u> RHR pump flow grea 240 gpm (400 gpm FOR CONTAINMENT). <u>THEN</u> go Step 18.	ADVERSE
		b. Go to 2-ES-1.2, POSE LOCA COOLDOWN AND DEPRESSURIZATION, Step 1		
	18.	<u>Check If Transfer To Cold Leg</u> <u>Recirculation Is Required:</u>		
		a. RWST level - LESS THAN 9.24 FT	a. Return to Step 16.	
À.		b. Go to 2-ES-1.3, TRANSFER FO COLD LEG RECIRCULATION, Step 1 unless previously performed		
	19.	<u>Check If SI Accumulators Should</u> <u>Be Isolated:</u>		
		a. At least two RCS hot leg temperatures – LESS THAN 400°F	a. Continue with Step 20 at least two RCS hot temperatures less tha <u>lHEN</u> do steps 19b thr	leg n 400°F
		b. Locally restore power to isolation valves:		
		o 894A (MCC 26A) o 894C (MCC 26A) o 894B (MCC 26B) o 894D (MCC 26B)		

This Step continued on the next page.

P

#### FOLDOUT PAGE FOR 2-E-1

# RCP TRIP CRITERIA: IF BOTH conditions listed below occur, trip all RCPs: a. SI pumps AT ILAST ONE RUNNING b. RCS subcooling based on core exit ICs - LESS IHAN 23°F (30°F FOR ADVERSE CONTAINMENT) SI TERMINATION CRITERIA: 2. IF ALL conditions listed below occur. go to 2-ES-1.1, SI TERMINATION: a. RCS subcooling based on core exit TCs - GREATER THAN 19°F (26°F FOR ADVERSE CONTAINMENT) b. Total feed flow to intact SGs - GREATER THAN 400 gpm - OR -Narrow range level in at least one intact SG - GREATER THAN 10% (2/% FOR ADVERSE CONTAINMENT) c. RCS pressure: STABLE OR INCREASING GREATER THAN 1720 PSIG (1750 PSIG FOR ADVERSE CONTAINMENT) d. PRZR level - GREAFER THAN 14% (33% FOR ADVERSE CONTAINMENT) SI REINITIATION CRITERIA:

<u>IF</u> EITHER condition listed below occurs, manually start SI system pumps as necessary:

- PRZR level CANNOT BE MAINTAINED GREATER THAN 14% (33% FOR ADVERSE CONTAINMENT)
- RCS subcooling based on core exit TCs LESS THAN VALUE OBTAINED FROM TABLE

RCS PRESSURE - PSIG	0 · 400	401-800	801-1200	1200-2500
RCS SUBCOOLING °F (ADVERSE)	52 (83)	36 (49)	23 (30)	19 (26)

#### 4. SECONDARY INTEGRITY CRITERIA:

<u>IF</u> any SG pressure is decreasing in an uncontrolled manner or has completely depressurized, and has not been isolated, go to 2-E-2, FAULTED STEAM GENERATOR ISOLATION, Step 1.

#### 5. E-3 TRANSITION CRITERIA:

<u>IF</u> any SG level increases in an uncontrolled manner or any SG has abnormal radiation, manually start SI system pumps as necessary and go to 2-E-3, STEAM GENERATOR TUBE RUPTURE, Step 1.

### COLD LEG RECIRCULATION CRITERION:

IF RWST level decreases to less than 9.24 ft, go to 2-ES-1.3, TRANSFER TO COLD LEG RECIRCULATION, Step 1.

#### 7 AFW SUPPLY SWITCHOVER CRITERION:

	2 E 1	LOSS OF REACTOR	OR SECONDARY COOLANT	REV. 2
Г	STEP A	CITONZEXPECTED RESPONSE	RESPONSE NOT OBTAINED	
	с.	Close all SI accumulator isolation valves	c. Vent any unisolated accumulators:	
			<ol> <li>Close nitrogen sup to accumulators: H</li> </ol>	
			o <u>IF</u> HCV-863 will <u>THEN</u> locally clo following nitrog	se the
			o 1809 o 1811A o 1811B	
			<ol> <li>Open the following as necessary:</li> </ol>	valves
			o Accumulator 21:	
3			o 891A o HCV-943	
			o Accumulator 22:	
			o 891B o HCV-943	
			o Accumulator 23;	
			o 891C o HCV-943	
			o Accumulator 24:	
			o 891D o HCV-943	
	d.	Open all SI accumulator isolation valve breakers		

#### FOLDOUT PAGE FOR 2-E-1

# 1 ) <u>RCP TRIP CRITERIA:</u> <u>IF</u> BOTH conditions listed below occur, trip all RCPs: a. S1 pumps - AT LEASE ONE RUNNING b. RCS subcooling based on core exit LLSS LLSS THAN 23°F (30°F FOR ADVERSE CONTAINMENT) 2. <u>SI TERMINATION CRITERIA:</u> <u>IF</u> ALL conditions listed below occur, go to 2-ES-1.1, SI TERMINATION: a. RCS subcooling based on core exit TCs - GREATER THAN 19°F (26°F FOR ADVERSE CONTAINMENT) b. Total feed flow to intact SGs - GREATER THAN 400 gpm -OR-

Narrow range level in at least one intact SG - GREATER THAN 10% (2/% FOR ADVERSE CONTAINMENT)

- c. RCS pressure:
  - STABLE <u>OR</u> INCREASING
  - GREATER THAN 1720 PSIG (1750 PSIG FOR ADVERSE CONTAINMENT)
- d. PRZR level GREATER THAN 14% (33% FOR ADVERSE CONTAINMENT)

SI REINITIATION CRITERIA:

<u>IF</u> EITHER condition listed below occurs, manually start SI system pumps as necessary:

- PRZR level CANNOT BE MAINTAINED GREATER THAN 14% (33% FOR ADVERSE CONTAINMENT)
- RCS subcooling based on core exit TCs LESS THAN VALUE OBTAINED FROM TABLE

RCS PRESSURE - PSIG	0-400	401-800	801-1200	1200-2500
RCS SUBCOOLING °F (ADVERSE)	52 (83)	36 (49)	23 (30)	19 (26)

#### 4. <u>SECONDARY INTEGRITY CRITERIA:</u>

<u>LF</u> any SG pressure is decreasing in an uncontrolled manner or has completely depressurized, and has not been isolated, go to 2-E-2, FAULTED STEAM GENERATOR ISOLATION, Step 1.

#### 5. E-3 TRANSITION CRITERIA:

<u>IF</u> any SG level increases in an uncontrolled manner or any SG has abnormal radiation, manually start SI system pumps as necessary and go to 2-E-3, STEAM GENERAFOR TUBE RUPFURE, Step 1.

### COLD LEG RECIRCULATION CRITERION:

<u>IF</u> RWST level decreases to less than 9.24 ft, go to 2-ES-1.3, TRANSFER TO COLD LEG RECIRCULATION, Step 1.

7 AFW SUPPLY SWITCHOVER CRITERION:

-- than 2 ft switch to city water supply.

Appendix C Job Pe	rformance Measure Worksheet	Form ES-C-1
Facility: Indian Point Unit 2	Task No: 0001030501	
Task Title:Perform the required AInadequate Core Cooli	Actions to Start 1 RCP During Re ng	sponse to
WE06EA1.01 K/A Reference: RO3.8 SRO-3.8	Job Performance Measure	Sim-7
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Simulated Performance X Classroom S READ TO THE EXAMINEE I will explain the initial conditions, whic initiating cues. When you complete th performance measure will be satisfied	e task successfully, the objective for	provide
Initial Conditions:		
Response to Inadequate Co	me ago that resulted in a transiti re Cooling. e unable to be depressurized.	on to FR-C.1,
Task Standard: One RCP is running.		
Required Materials: None		
General References: 2-FR-C.1, Resp	onse to Inadequate Core Cooling	

Initiating Cue: You are the BOP and the CRS has directed you to determine if one RCPs should be started and to start one RCP if conditions warrant in accordance with 2-FR-C.1 step 18.

Time Critical Task: No

Validation Time: 15 Minutes

Ar	ope	ndix	С

Page 2

Form ES-C-1

## Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

1. Performance Step:	Obtain correct procedure
Standard:	Obtains 2-FR-C.1

Comment: CUE: Hand candidate 2-FR-C.1

2. Performance Step:	Check if RCPs Should be Started	
Standard:	Sub Steps Below Steps 3 - 4	
Comment:		
3. Performance Step:	Check Core Exit Thermocouples GREATER THAN 1200°F	
Standard:	Observes CETs > 1200°F	
Comment:		
4. Performance Step:	Check if an idle RCS cooling loop is available	
Standard:	Observe Narrow Range SG Level GREATER THAN 27% RCP in associated loop available and not running	
Comment:		

Appendix C	Page 3	Form ES-C-	
	Performance Information		
(Denote critical steps with a	i check mark √)		
√ 5. Performance Step:	p: Place RCP BEARING LIFT PERMISSIVE BYPASS key switch in bypass located on the rear of SA Panel		
Standard:	Enter the Supervisory Panel and locate the key switches (near the floor) and place selected RCP switch in bypass		
Comment:			
√ 6. Performance Step:	Start one RCP		
	Rotate RCP Switch to Start Posit	tion	
Standard:			

Terminating Cue: JPM Complete

#### VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

Appendix C

Reset Simulator to Snapshot for this JPM.

Initial Conditions:

- An event occurred a short time ago that resulted in a transition to FR-C.1, Response to Inadequate Core Cooling.
- The Steam Generators were unable to be depressurized.

Initiating Cue:

You are the BOP and the CRS has directed you to determine if one RCPs should be started and to start one RCP if conditions warrant in accordance with 2-FR-C.1 step 18.

Number: 2 FR-C	.1 RES	PONSE TO INADEQU	ATE CORE COOLING	Revision Number: REV. 1
STEP	ACTION/EXPECTED	RESPONSE	RESPONSE NOT OBTAINED	
•	Placing key switches	CAUT to DEFEAT will	<u>ION</u> prevent auto SI actuation.	
Γ		NO	<u>TE</u>	
	Normal conditions ar	re desired but <u>NO</u>	<u>T</u> required for starting th	e RCPs.
18.	Check If RCPs Show	uld Be Started:		
	a. Core exit TCs 1200°F	GREATER THAN	a. Go to Step 19.	
	b. Check if an idl loop is availat		-	:
	o Narrow range GREATER THAN ADVERSE CONTA	10% (27% FOR	<ol> <li>Reset SI signal:</li> <li>a) Check all CCW p running.</li> </ol>	umps
	o RCP in associ AVAILABLE ANI	iated loop – D NOT OPERATING	<u>IF NOT, THEN</u> pl non-running CCW CCR control swi PULLOUT.	pumps
			b) Place controls <u>AND</u> bypass feed regulating valv CLOSE.	water
			c) Verify Automati Safeguards Actu switches on Pan in DEFEAT posit	ation key el SB-2
			o Train A SIA-1 o Train B SIA-2	
Th	is Step continued on	the next page.		

N	um	b	e	r	:	

2 FR C.1

litle:

RESPONSE TO INADEQUATE CORE COOLING

Revision Number:

**REV.** 1

	RESPONSE NOT OBTAINED
	d) One at a time, depress Safety Injection reset buttons (Panel SB-2):
i 1	o Train A o Train B
	e) Verify Train A <u>AND</u> B reset.
	<u>IF NOT, THEN</u> verify Relays reset (Top of Safeguards Initiation Racks 1–1 <u>AND</u> 2–1):
	o SIA-1 o SIM-1 o SIA-2 o SIM-2
	2) Reset containment isolation Phase A:
1	a) Place IVSW switches to OPEN on SN panel:
	o 1410 o 1413 o SOV 3518 o SOV 3519
	b) Place CNTMT RAD MON WCPS VALVES control switch to OPEN on SN panel.
	c) Verify personnel and equipment hatch solenoid control switches to INCIDENT on SM panel.
	d) Place control switches for all Phase A

Number:	litle:		Revision Number
2 FR-C.1	RESPONSE TO INADE	QUATE CORE COOLING	RE <b>V</b> . 1
	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED	}
		e) One at a time. Phase A reset	
		o CI Phase A T o CI Phase A T	
		f) Verify Train A reset.	and B
		<u>IF</u> signal does reset, <u>THEN</u> :	<u>NOT</u>
		1. Place key s BYPASS.	witches to
		2. One at a ti depress Pha buttons:	
		o CI Phase o CI Phase	
		<u>IF</u> signal can reset, <u>THEN</u> re CA1 <u>AND</u> CA2 or Safeguards Ini Racks 1-2 <u>AND</u>	eset relays top of tiation
		<ol> <li>Establish instrum containment by op isolation valve p</li> </ol>	ening
		<u>IF</u> valve will <u>NOT</u> <u>THEN</u> verify relay of Safeguards Ini Racks 1–2 <u>AND</u> 2–2	s on top tiation
		o CA1 o CA2	
		4) Open all PRZR POR block valves.	Vs and
This S	tep continued on the next page		

Number: 2 FR-C.1	Title: RESPONSE TO INADEQU	ATE CORE COOLING	Revision Number: REV. 1
	CTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED 5) <u>IF</u> core exit TCs r greater than 1200° open all other ver to containment: a) Restore power to reactor head ver by closing the breakers: o MCC 26A/7MR (	F, <u>THEN</u> at paths to all ent valves following HCV-3100) HCV-3101)
	Start RCP in one idle RCS cooling loop: o If necessary, use RCP BFARING LIFT PERMISSIVE BYPASS key switch located on rear of SA panel Return to Step 18a	<ul> <li>b) Open all reactor vent valves:</li> <li>o HCV-3100 o HCV-3101</li> <li>6) Go to Step 19.</li> </ul>	or head
rinni			

Appendix C Jo	b Performance Measure Worksheet	Form ES-C-1
Facility: Indian Point Unit 2	Task No: _0000020	501
Task Title: Verify Phase A Iso	olation	
103000A3.01 K/A Reference: RO-3.9 SRO-4	Job Performance Meas 4.2 No:	sure Sim-8
Examinee:	NRC Examiner:	
Facility Evaluator:	Date:	
Method of testing:		
Simulated Performance Classroom	X Actual Performance	e Plant

### READ TO THE EXAMINEE

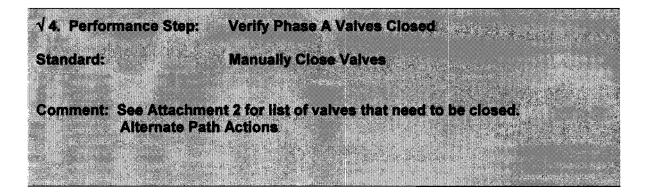
I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this job performance measure will be satisfied.

Initial Conditions:

- A Reactor Trip and Safety Injection have just occurred.
- The crew is performing the actions of E-0.

Task Standard: Phase A valves Manually closed.

Required Materials: None


General References: E-0 Attachments 1 and 2

Initiating Cue: You are the BOP. You are at the step to verify Phase A in Attachment 1. Continue with Attachment 1 actions.

Time Critical Task: No

Validation Time: 15 Minutes

Appendix C	Page 2	Form ES-C-1		
	Performance Information			
(Denote critical steps with	a check mark √)			
1. Performance Step:	Obtain correct procedure			
Standard:	Obtains E-0 Attachments 1 and 2			
Comment: CUE: Hand	candidate a copy of Attachments 1 and 2			
2. Performance Step:	Verify Containment Isolation Phase A			
Standard:	Sub steps are listed below steps 3 - 7			
Comment:				
3. Performance Step:	Verify Phase A Actuated			
Standard:	Observes Phase A did not fully actuate Attempts to manually actuate Phase A (Not	t Successful)		
Comment:				



.

# Performance Information

(Denote critical steps with a check mark  $\sqrt{}$ )

√5. Performance Step;	Verify IVSW Valves OPEN:
Standard:	Manually Open the following Valves 1410 1413 SOV-3518 SOV-3519
Comment: Alternate Path	Actions
√ 6. Performance Step:	Verify WCP Valves OPEN
Standard:	Manually Open the following Valves PCV- 1238 PCV- 1239 PCV- 1240 PCV- 1241
Comment: Alternate Path	Actions
√7. Performance Step:	Place Personnel and Equipment hatch solenoid control switches to INCIDENT on SM Panel
Standard:	Rotate switches to INCIDENT

Comment:

Appendix C	Page 4	Form ES-C-1			
	Performance Information				
(Denote critical steps with	(Denote critical steps with a check mark $\checkmark$ )				
9 Defermence Star	Dispetch NOD to periodically shock I	VOW Tark Laval and			
8. Performance Step:	Dispatch NOP to periodically check I Pressure and WCP header pressure				
Standard:	Contact NPO and direct monitoring of	of IVSW and WCP			
Comment					
Comment:					

Terminating Cue: JPM Complete

Appendix C

Page 5

Form ES-C-1

# VERIFICATION OF COMPLETION

Job Performance Measure No.

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to complete:

Question Documentation:

Question:

Response:

Result: SAT or UNSAT

Examiner's signature and date: _____

Reset the simulator to any at power IC Insert the following Malfunctions to prevent Phase A Isolation: RLY-PPL086 DE-ENERGIZED RLY-PPL087 DE-ENERGIZED RLY-PPL088 DE-ENERGIZED RLY-PPL089 DE-ENERGIZED RLY-PPL091 DE-ENERGIZED RLY-PPL092 DE-ENERGIZED RLY-PPL093 DE-ENERGIZED RLY-PPL094 DE-ENERGIZED

Ar	pen	dix	С
1 1 1			<b>U</b>

Initial Conditions

Initial Conditions:

- A Reactor Trip and Safety Injection have just occurred.
- The crew is performing the actions of E-0.

Initiating Cue:

You are the BOP. You are at the step to verify Phase A in Attachment 1. Continue with Attachment 1 actions.

STEP		RESPONSE NOT OBTAINED TACHMENT 1 (Attachment page 8
	<u>AUTOMATIC /</u>	CTION VERIFICATION
	ATTACHMENF 2 provides a list of	<u>NOTE</u> F Phase A valves.
12.	<u>Verify Containment Isolation</u> Phase A:	
	a) Phase A - ACTUATED	a) Manually actuate phase A.
	o Train A master relay CA1 (above rack E)	L
	o Train B master relay CA2 (above rack F)	2
	b) Phase A valves - CLOSED	b) Manually close valves.
	c) IVSW valves - OPEN:	c) Manually open valves.
	o 1410 o 1413 o SOV-3518 o SOV-3519	
	d) WCP valves - OPEN:	d) Manually open valves.
	o PCV 1238 o PCV 1239 o PCV 1240 o PCV 1241	
	e) Place personnel AND equipm hatch solenoid control switches to INCIDENT on SM panel	
	f) Dispatch NPO to periodical check:	1 <b>y</b>
	1) IVSW tank:	1) Direct NPO to fill or
	o Level - GREATER THAN	92% pressurize tank as necessary.
	o Pressure – GREATER IH 57 PSIG	AN
	2) WCP header pressures -	2) Direct NPO to verify

Numper:

· State

2 E 0

REV. 4

<u>ATTACHMENT 2</u> CONTAINMENT ISOLATION VALV	(Attachment page <u>VES</u>
1. The following valves will close on Phase A is	solation:
VALVE NAME	VALVE NUMBER(s)
CCW from excess letdown Hx	/96, 793
CCW to excess letdown Hx	798, 791
Vent header from RCDT	1786, 1787
Gas analyzer PRT	548, 549
Gas analyzer RCDT	1788, 1789
Letdown from regenerative HX	201, 202
Letdown oriface control stop valves	200A, 200B, 200C
Make-up to PRT	519, 552
Containment sump pumps to WDS - hold-up tank	1723, 1728
Instrument air to containment	PCV-1228
RCDT to WDS - hold-up tank	1702, 1705
SG blowdown and sampling system	PCV-1214, 1214A
	PCV-1215, 1215A
	PCV-1216, 1216A
	PCV-1217, 1217A
Radiation monitor return to containment	PCV-1234, 1235
	PCV-1236, 1237
Accumulator samples	956G, 956H
Sample – pressurizer steam	956A, 956B
Sample – pressurizer liquid	956C, 956D
Sample – RCS loops	21, 22, 23
	MOV-956E, 956F
SJAE to containment	1229, 1230
Hi-Rad sample system return to containment su	
Recirculation pump discharge sample line Accumulator N2 Supply Line Stop	MOV-990A, 990B 863

2. The following valves will close on Phase B isolation:

	VALVE NAME		VALVE NUMBER(s)
	Component cooling	to RCS pumps	MOV-/69, /97
	Component cooling	from RCS thermal barrier return	MOV-789, FCV-625
	Component cooling	from RCS motor bearing return	MOV-786, 784
	Seal water return	containment isolation valve	MOV-222
1			

END -

Facility: _	Indian Point 2	Scenario N	o.: _1 Op-Test No.: _1		
Examiners					
The Plant Turnover:	ditions: ulator to IC-11	4 Load Simula er. 23 EDG is (	tor Schedule-Scenario1 OOS due to a malfunctioning governor.		
Event No.	Malf. No.	Event Type*	Event Description		
1	N/A	R (ATC) N (CRS) N (BOP)	Power Escalation		
2	XMT- SGN008A	I(ATC) I(BOP) TS(CRS)	23 SG Controlling Steam Flow Transmitter Fails High		
3	MAL- EPS008L	C (BOP) C (CRS) TS (CRS)	MCC-28 will trip on overcurrent.		
4	MAL- EPS001	C (ALL)	Loss of offsite power due to Loss of Station Aux Transformer. The running charging pump (21) will trip.		
5	MAL SWD003A	M(ALL)	Complete loss of off site power resulting in a Reactor Trip		
6	MAL- DSG007A	M(ALL)	21 EDG will trip and team will enter ECA-0.0.		
7	N/A	C(BOP)	22 EDG will be repaired and started. Team must start a service water pump to cool the EDG before it overheats and trips.		
8	N/A	C(ATC) C(CRS)	Prior to starting a charging pump, RCP Seal Injection must be isolated.		
1) *	N)ormal, (R)ea	ctivity, (I)nstru	ment, (C)omponent, (M)ajor		

U2 NRC 2012 Scenario 1: Power Escalation from 15%, FT-439B fails high, MCC-28 trips, Loss of offsite power, Loss of all EDG to ECA-0.0.

## Session Outline:

The evaluation begins with the plant at 16% power steady state operation. 23 EDG is out of service due to a malfunctioning governor. Post maintenance testing will be performed this shift. After completion of testing, the diesel will be declared operable. The team is currently raising power.

After taking the watch, 23 SG Steam Flow Transmitter fails high. The team will take actions in accordance with 2-AOP-INST-1, Instrument and Controller Failures.

After failed channel is removed from service, MCC-28 will trip on overcurrent. The team will need to restart Control Rod Drive Cooling Fans on MCC-28A.

Following restart on the CRD cooling fans, a loss of offsite power will occur due to a widespread blackout. The running charging pump (21) will trip and EDG 22 will fail to start.

About three minutes after the loss of offsite power, a loss of grid will occur resulting in a unit trip. The team will perform actions of E-0, Reactor Trip or Safety Injection. Only Bus 5A will be energized. Because both motor driven AFW Pumps are de-energized, the team will take manual action to align AFW flow from the turbine driven AFW pump.

Soon after AFW flow is established, 21 EDG will trip. The team will recognize a loss of all AC and enter EOP ECA-0.0, Loss of All AC Power. After equipment is placed in pullout per ECA-0.0, 22 EDG will be repaired and started. However, 22 Service Water Pump will not auto start. The team will manually start the Service Water pump to provide cooling to the EDG before the diesel overheats and trips. The team will proceed through ECA-0.0 and transition to 1) ECA-0.1, Loss of All AC Recovery without SI Required, and then transition to ES-0.2, Natural Circulation Cool down OR 2) ECA-0.2, Loss of All AC Recovery with SI Required, and then to E-1, Loss of Reactor or Secondary Coolant. The scenario will be terminated after transition to ES-0.2, E-1, or at the lead evaluator's discretion.

Procedure flow path: AOP-INST-1, 2-AOP-138 KV-1, ECA-0.0, ECA-0.1 or ECA-0.2, ES-0.2 E-1

# Scenario Critical Task and Malfunction Analyses

## Critical Tasks:

CT-1

Establish greater than 400 gpm AFW flow to the SGs before transition out of E-0 or tripping the RCPs in the FR-H.1.

### Actions to complete task :

Increase speed on 22 AFW Pump and establish >760 gpm feed to all SGs

# CT-2

Manually start the ESW pump such that the EDG does not fail because of damage caused by engine overheating.

## Actions to complete task :

• Team will ensure 22 ESW pump is running for 22 EDG

# CT-3

Isolate RCP Seal Injection before starting a Charging Pump.

### Actions to complete task :

• Team will isolate RCP Seal Injection

## Credited Events:

- 1. Power escalation. ATC will add positive reactivity via dilution and/or rods. BOP will increase MTG load. CRS will coordinate activities.
- 2. FT-439B fails high. The ATC should diagnose the event with help from the BOP and swap to the unaffected channel. The CRS will implement the AOP and have the BOP remove the affected channel from service. This malfunction also requires evaluation of Tech Specs by the CRS.
- 3. MCC-28 will trip on overcurrent. The team will diagnose the loss of MCC-28. BOP will restart tripped CRD fans in accordance with ARP. The CRS will coordinate and supervise activities. This malfunction also requires evaluation of Tech Specs by the CRS.
- 4. Loss of offsite power occurs due to the loss of the Station Aux Transformer.
- 5. A complete loss of power will occur. The unit will trip and the team will perform the immediate actions of E-0. BOP will align 22 AFWP to supply >760 gpm to the S/Gs.
- 6. 21 EDG will trip and the team will enter ECA-0.0. BOP will place equipment in Pullout. CRS will coordinate and supervise activities.
- 7. 22 EDG will be repaired and the team will be able to start and load the EDG. BOP should realize there is no ESW pump running and start an ESW pump to prevent the EDG from overheating and being damaged. BOP will start equipment on the running EDG. CRS will coordinate and supervise activities.
- 8. ATC will be requested to start a charging pump. RCP seal injection must be isolated prior to starting a charging pump.

	Simulator Setup an	d Instructor Directions
Setup/Event	INSTRUCTOR ACTIONS	EXPECTED RESPONSE/INSTRUCTOR CUES
IC Reset	114	RESET SIMULATOR TO 16% POWER IC
SES Setup Schedule	Load schedule and verify malfunctions and over- rides have been entered	Removes 23 EDG from service Loads 22 EDG starting failure Loads 2A and 3A service water pump start failures Sets trigger 2 to fail FT-439B Sets trigger 3 to fail MCC 28 on a fault Sets trigger 4 for loss of the station aux transformer Sets trigger 5 for loss of grid Sets trigger 6 to restart 22 EDG Sets trigger to trip 21 EDG once AFW flow is established
Floor Setup	Perform setup checklist Ensure 21 Charging Pump is In Service Ensure 2 CRD fans are powered from MCC-28	Watch team walks the panels and assumes the watch. Place #23 EDG output breaker control switch in Pullout and apply a Danger tag. Place protected equipment placards on 21 and 22 EDGs. Update the protected equipment computer to show 21 and 22 EDGs and 13.8/138KV power supplies as protected equipment. Risk is yellow. Ensure 21 Charging Pump is In Service Ensure 2 CRD fans are powered from MCC- 28
Event 1	Respond as requested by Crew	Crew performs power ascension
Event 2	Actuate Trigger 2 when directed	MAL-SGN008A, FT-439B Main Steam flow transmitter fails high
Role Play	Acknowledge requests for I&C to troubleshoot	I&C will develop a troubleshooting plan
Role Play	If called about tripping bistables	Inform team that bistables are to be tripped.
Event 3	Actuate Trigger 3 At lead evaluator direction	MAL-EPS008L, Fault on MCC-28

(

Role Play	When NPO contacted	NPO will report that investigation with FIN reveals that the breaker appears to have a mechanical issue that caused it to open. No flags were up on the breaker. Alternate Path-If team does not use 28A, and team requests changing out the MCC breaker, report that time compression is being used and that a spare breaker has been inserted in the cubicle. Remove the malfunction and then mechanically close the breaker from the Rack in/ Rack out LOA.
Event 4	Actuate Trigger 4 At lead evaluator direction	MAL-EPS001, Loss of Station Aux Transformer
Role Play	When ConEd contacted	ConEd reports wide spread blackout across CT, Westchester, and NYC, and Long Island
Event 5	Occurs ~ 2 minutes after event 4	MAL-SWD003A, Main Generator trip 345KV EASTVIEW LINE FAULT
Event 6	60 seconds after AFW established	MAL-DSG007A, 21 EDG Trips. Loss of All AC Power – ECA-0.0.
Role Play	If asked, Unit 3 has tripped and is stable on the EDGs. The IP 3 SM should state that Unit 3 meets the emergency plan EAL 6.1.1 classification if only IP3 were affected	
Role Play	If dispatched to App R DG	After 1 minute. report that there is a lot of oil all around the diesel and it cannot be run.

After equipment in pullout in ECA-0.0 step 6 Restore 22 EDG:	To Start 22 EDG Delete air start malfunction on Director (MAL- DSG003B), Actuate trigger 6 to start the EDG After it starts, call again to ensure that they know it has been started.	<ul> <li>Restore 22 EDG. Deletes failure, resets and starts 22EDG.</li> <li>AFTER all four of the following conditions are met, NPO call CCR and let them know that you are ready to start 22 EDG:</li> <li>Equipment placed in pullout</li> <li>NPO dispatched to start EDGs</li> <li>All 480V buses have been de-energized for &gt;15 minutes</li> <li>CCR notified that 22 EDG is ready to start and CCR gave permission to start 22 EDG</li> </ul>
Role Play	Perform requested NPO actions except any that restore power other than 22 EDG as directed above.	

1

٦.

Event Description: Power Escalation				
Time	Position Applicant's Actions or Behavior			
Note: The reactivity plan for the power ascension should be developed by the team in the briefing room prior to taking the watch. The plan could call for dilution and/or rod withdrawal				
	CRS	Assigns roles for power ascension		
	ATC	Reviews reactivity plan		
	ATC	If rods are withdrawn:		
		Places/verifies rods are in Manual		
		Withdraws rods		
		Observes:		
		<ul> <li>Proper rod motion</li> </ul>		
		o Tavg		
		o Power		
	BOP	Peer checks rod withdrawal		
	ATC	If dilution is performed:		
		Places RCS Makeup control to Stop		
		Place RCS Makeup Mode selector to Dilute		
		Adjusts integrator to desired dilution amount		
		Places RCS Makeup control to Start		
		Observes:		
		<ul> <li>Proper makeup response</li> </ul>		
		○ Tavg		
		• Power		
	BOP	Peer check dilution		
		Adjust Low Flow Feed Reg Valves to maintain SG levels.		
Lead Eva	aluator	When the following has been demonstrated/observed:		
		Sufficient load ascension.		
		<ul> <li>Sufficient normal plant operations by the BOP.</li> </ul>		
		Then instruct Booth to insert Event 2.		

Op-Test No.: <u>1</u> Scenario No.: <u>1</u> Event No.: <u>2</u>

Page <u>1</u> of <u>1</u>

Event Description: 23 SG Controlling Steam Flow Transmitter Fails High

Time	Position	Applicant's Actions or Behavior	
	BOP/ATC	Diagnose failed instrument:	
		High Steam Flow Channel Trip Alarm	
		High Steam Flow indicated for 23 SG	
	BOP	Refers to ARPs for alarms	
	ATC	Places Channel A in service for 23 SG Steam Flow (may switch to the A Channel for Feed Flow as well)	
	CRS	Directs team to perform immediate operator actions of 2-AOP-INST-1	
	ATC	Checks all instruments listed in 2-AOP-INST-1	
	CRS	Implements 2-AOP-INST-1	
Į		Verifies no other instrument failures	
		Ensures actions have been taken to stabilize the plant	
		Refers to Tech Spec Table 3.3.2-1	
		<ul> <li>6 hour AOT to trip bistables</li> </ul>	
		Directs tripping of bistables (may ask SM for direction)	
Lead Evaluator		If the CRS asks the SM if bistables are to be tripped, a cue to trip bistables will be given.	
	BOP	Trips the following bistable:	
In Rack A-11 Loop 3B SF > FWF		In Rack A-11 Loop 3B SF > FWF	
Lead Evaluator		When bistables have been tripped, direct the Booth Instructor to insert trigger for Event 3	

Op-Test No.: 1 Scenario No.: 1 Event No.: 3

Page <u>1</u> of <u>1</u>

Event Description: MCC-28 Trip on overcurrent.

Time	Position	Examinee's Actions or Behavior
	BOP/ATC	Diagnose loss of MCC-28
	BOP	Diagnose loss of power to two CRD Fans and review ARP-SLF Window 4-5, Common Control Rod Cooling Fan Tripped.
		Verify fans are available for restart
		Restart tripped fans on MCC-28A
	CRS	Direct implementation of ARP-SHF Window 3-8, MCC-28 Auto Trip.
	BOP	Restart CRD Fans
Lead E	valuator	NPO will report that investigation with FIN reveals that the breaker appears to have a mechanical issue that caused it to open. No flags were up on the breaker.
		Alternate Path- if team requests changing out the MCC breaker report that time compression is being used and that a spare breaker has been inserted in the cubicle. Remove the malfunction and then mechanically close the breaker from the Rack in/ Rack out LOA.
	CRS	Review TRM for loss of power to VC Sump Pump
		<ul> <li>TRM 3.4D Condition B- Start operable sump once per 24 hours and restore failed pump within 7 days.</li> </ul>
Lead Evaluator		Proceed to next event following crew brief, or at the discretion of the Lead Evaluator.

# Op-Test No.: 1 Scenario No.: 1 Event No.: 4

Event Description: Loss of offsite power due to Loss of Station Aux Transformer.

Time	Position	Examinee's Actions or Behavior			
	BOP/CRS	Diagnose loss of offsite Power			
	ATC	Diagnose loss of 21 Charging Pump			
	ATC	Start 22 Charging Pump			

me	Position	Examinee's Actions or Behavior
	CRS	When Unit trips, direct team to perform immediate actions of E-0
		<ul> <li>Verifies immediate actions using the procedure.</li> </ul>
	ATC	Verifies Reactor Trip:
		Reactor trip breakers open
		Nuclear flux decreasing
		Rod bottom lights lit
		IRPIs < 12.5 inches Verify Turbine is tripped
	ATC	Verifies Turbine Trip by observing stop valves closed
	BOP	Check status of 480V buses
		Observe ONLY bus 5A is energized
	ATC	Check SI status
		Determine SI is not required
	BOP	Check AFW status
		Manually aligns 22 AFWP to supply >760 gpm to the S/Gs
		Critical Teek
	1.	0 gpm AFW flow to the S/Gs before transition out of E-0 or tripping RCPs in FR-H.

U2 NRC 2012 Scenario 1: Power Escalation from 15%, FT-439B fails high, MCC-28 trips, Loss of offsite power, Loss of all EDG to ECA-0.0.

Op-Test No.:	1	Scenario No.:	1	Event No.: 6
--------------	---	---------------	---	--------------

1723

× .,

Page <u>1</u> of <u>2</u>

Event Description: 21 EDG will trip and team will enter ECA-0.0.

Time	Position	Examinee's Actions or Behavior
	CRS	Transitions to ECA-0.0, Loss of All AC Power and directs crew actions during implementation of ECA-0.0
	ATC	<ul> <li>Verify Reactor trip</li> <li>Reactor trip breakers open</li> <li>Nuclear flux decreasing</li> <li>Rod bottom lights lit</li> <li>IRPIs &lt; 12.5 inches Verify Turbine is tripped</li> </ul>
	ATC	Verifies Turbine Trip by observing stop valves closed
	BOP	Check if RCS is isolated <ul> <li>Isolates letdown</li> <li>Close LCV-459</li> <li>Close 200A, B, and D</li> </ul>
	BOP	Verifies AFW flow > 400 GPM
	CRS/BOP	Try to restore power o Manually actuate Safety Injection
Lead E	valuator	There is no 138KV from the Buchanan Switchyard. 138KV and 13.8KV are NOT available. IF asked, the team can attempt starting the Appendix R DG to restore 13.8KV supply. NPO will report major oil system failure and DG is not available. If asked, Unit 3 has tripped and is stable on the EDGs and meets Emergency Plan NUE classification if only IP3 were affected. ConEd reports widespread blackout across CT, Westchester, NYC and Long Island

Op-Test No.: 1 Scenario No.: 1 Event No.: 6 Page 2 of 2 Event Description: 21 EDG will trip and team will enter ECA-0.0. BOP Place equipment to Pullout **Containment Spray Pumps** SI Pumps FCUs Motor Drive ABFPs Turning Gear Oil pump Bearing Oil pump Turbine Auxiliary Oil pump CCW Pumps • RHR Pumps • Reset Safety Injection when directed by the CRS CRS Direct RO/BOP to reset Safety Injection Dispatch Personnel to Locally Close Valves to Isolate RCP Seals and Place Valve Switches in CLOSED position MOV-222, Seal Water Return Isolation • RCP Seal Injection valves 250A, B, C, and D FCV-789, CCW return From RCP Thermal Barrier Isolate the CST Initiate depressurization of Steam Generators. Critical Task Isolate RCP Seal Injection before starting a Charging Pump

U2 NRC 2012 Scenario 1: Power Escalation from 15%, FT-439B fails high, MCC-28 trips, Loss of offsite power, Loss of all EDG to ECA-0.0.

Op-Test No.: 1 Scenario No.: 1 Event No.: 7

Event Description: 22 EDG will be repaired and started

Event Description. 2	22 EDG will be repaired and started
	AFTER all of the following conditions are met, NPO call CCR and let them know that he is ready to start 22 EDG:
	• NPO has been dispatched to isolate RCP seal injection per ECA-0.0 step 8
	<ul> <li>All 480V buses have been de-energized for &gt;15 minutes (use time from RX trip on PICS)</li> </ul>
Lead Evaluator	<ul> <li>CCR has been notified by NPO that 22 EDG is ready to start and CCR has provided permission to NPO to start 22 EDG</li> </ul>
	THEN clear the air start failure, reset 22 EDG, and start it:
	<ul> <li>Delete air start malfunction: DMF MAL-DSG003B</li> </ul>
	<ul> <li>o Initiate trigger 6</li> </ul>
CRS	Provide permission to NPO to start 22 EDG
BOP	Diagnose 22 EDG is running and bus 2A/3A energized
	<ul> <li>Observe no SW pump running</li> </ul>
	<ul> <li>Manually start 22 ESW Pump</li> </ul>
CRS	Ensure SW Pump running for 22 EDG
	Critical Task SW pump such that the EDG does not fail because of damage caused by engine
overheating	
CRS	Continue recovery actions with ECA-0.0 step 24
	Refers to step 18b to reset SI
	Directs actions to load equipment onto 2A/3A
BOP	Reset SI (if not previously reset)
	Verify EDG SW valves open
	Verify equipment loaded onto bus 2A/3A
CRS	Transition to ECA-0.1 OR ECA-0.2
Lead Evaluator	After review of the scenario set for the exam, this scenario may be terminated at this point provided a valid exam with the required attributes is given to all candidates.

# Post Scenario Event Classification

Event Classification - Site Area Emergency Alert

EAL 6.1.4 following determination of the inability to power required core cooling systems with alternate power sources for greater than 15 minutes and loss of all AC for greater than 15 minutes

# **Turnover Information**

Date/Time:	Today/Now
Condition:	Power Ops
% Power:	16%
Xenon:	Equilibrium
RCS Boron:	1621 ppm
PZR Press Control:	Channel 1
PZR Level Control:	Channel 2
RCS Total Leakage:	0.1 gpm
RCS Unidentified Leakage:	0.01 gpm
Condenser Air leakage	6 SCFM
RCS Gas activity	1.78E-2 µCi/cc
Risk Assessment:	Yellow

# **Plant Equipment Status:**

- 1. 23 EDG is out of service due to a malfunctioning governor. Maintenance is complete and post maintenance testing will be performed this shift.
- 2. TS 3.8.1.B surveillance requirement last performed 3 hours ago.
- 3. 21 and 22 EDGs are protected equipment. 138KV and 13.8KV Offsite Power Supplies are protected.

## Instructions:

Return power to 100% at 200 MW/hr.

Facility: Indian Point 2	Scenario No.:	2
--------------------------	---------------	---

Op-Test No.: 1

Examiners:

_____ Operators:

Initial Conditions:

The Plant is in a 100% normal full power lineup.

Turnover:

-

21 Charging Pump and 21 CCW pump are out of service.

Event No.	Malf. No.	Event Type*	Event Description
1	XMT RCS043A	l (ALL) TS (CRS)	RCS Loop 23 T-Hot fails high
2	N/A	R (ATC) N (CRS) N (BOP)	Rapid Load Shutdown
3	MAL CRF002AV	C (ATC) C (CRS) TS (CRS)	Control Rod P-6 "ratchets in" during rod motion.
4	MOT CVC004A	C (ATC) C (CRS) TS (CRS)	22 Charging Pump trips.
5	MAL SGN004A	M (ALL)	Steam Break down stream of 21 MSIV & Check Valve in Aux Boiler Feed Pump Building.
6	PLP RHR033 PLP RHR022 RLY PPL487 RLY PPL488 MOV RHR011	M (ALL)	LOCA outside Containment in Primary Auxiliary Building (PAB) Safety Injection fails to Auto Actuate requiring Manual Actuation. RHR valve 746 will fail to auto open requiring Manual Action

#### Session Outline:

The evaluation begins with the plant at 100% power steady state operation.

21 Charging Pump and 21 CCW pump are out of service.

Shortly after the crew assumes the watch 23 Loop T-hot instrument fails high. The team will take actions in accordance with 2-AOP-INST-1, Instrument and Controller Failures.

The Shift Manager will call the control room and report that 24 SG Feed Regulating Valve air line has been damaged by a maintenance crew. The shift manager will direct the team to begin a rapid shutdown in accordance with 2-AOP-RSD-1.

After adequate power reduction has taken place, Control Rod P-6 will ratchet into the core due to a movable gripper failure, requiring the load reduction to be stopped and the condition evaluated per 2-AOP-ROD-1.

After the load reduction is resumed, 22 Charging pump will trip. The crew will respond using 2-AOP-CVCS-1 and isolate letdown. Charging and letdown then will be re-established.

Subsequently a Main Steam Rupture will occur downstream of 21 MSIV and check valve. The team may use 2-AOP-UC-1 to trip the reactor and close the MSIVs.

Simultaneously with the reactor trip, a rupture will occur on the RHR discharge header outside of containment. Automatic SI will fail to actuate when demanded, requiring manual actuation.

The team will progress through E-0 and may determine that RCP trip criteria is met. (This depends on the magnitude of the cooldown during the steam break.) The BOP will manually open MOV-746 while performing E-0 Attachment 1. The team will continue in E-0 until a transition to ECA-1.2 is directed. In ECA-1.2, the source of the LOCA outside containment will be identified and isolated. The scenario is terminated when the team has determined a transition to E-1 is required.

Procedural flow path: 2- AOP-INST-1, 2-AOP-RSD-1, 2-AOP-ROD-1, 2-AOP-CVCS-1, 2-AOP-UC-1, 2-E-0, 2-ECA-1.2, 2-E-1.

# Scenario Critical Task and Event Analyses

### Critical Tasks:

### CT-1

Manually actuate at least one train of SIS-actuated safeguards before any of the following:

- Transition to any E-1 series, E-2 series, or E-3 series procedure or transition to any FRP.
- Completion of step 5.a of ES-0.1.

### Actions to complete task:

Automatic actuation of SI will not occur. Team must manually actuate SI via pushbuttons.

## CT-2

When RCP trip criteria are met, trip all RCPs prior to completion of the first step in the EOP network that directs tripping RCPs.

### Actions to complete task:

BOP/ATC will secure RCPs once the RCP trip criteria is met

### CT-3

Isolate the LOCA outside of containment before transition out of ECA-1.2.

### Actions to complete task:

BOP/ATC will Close RHR pump cold leg injection valves 746 and 747

## **Credited Events:**

1. A.

- RCS Loop 23 T-Hot fails high. The ATC should diagnose the event with help from the BOP. ATC should take Charging pump control and Rod control to manual control and perform the immediate actions of AOP-INST-1. CRS will implement the AOP. BOP will remove the affected channel from service.
- 2. Team will commence Rapid Shutdown. CRS will supervise activities of the crew. ATC will develop a reactivity plan for the shutdown and perform the shutdown. BOP will perform peer checks and load reductions.
- 3. Control Rod P-6 "ratchets in" during rod motion. CRS will evaluate Tech Specs. ATC will verify or place rod control in manual.
- 4. 22 Charging Pump trips. BOP will close 200A, B, C and LCV-459. ATC will start a charging pump. BOP will restore letdown.
- 5. Steam Break down stream of 21 MSIV & Check Valve in Aux Boiler Feed Pump Building. CRS will direct actions of AOP-UC-1. ATC will manually trip the reactor and verified it is tripped. BOP will close all MSIVs.
- LOCA outside containment in the PAB. ATC will manually initiate SI when the auto actuation fails. BOP will be operating equipment on the panel in accordance with Attachment 1 including opening RHR 746 which will fail to auto open. ATC will secure RCPs when sub-cooling lowers and reset SI. CRS will diagnose LOCA outside containment and transition to ECA-1.2. CRS will coordinate and supervise activities. BOP will isolate the LOCA by closing RHR pump cold leg injection valves 746 and 747.

	•	and Instructor Directions
Setup/Event	INSTRUCTOR ACTIONS	EXPECTED RESPONSE/INSTRUCTOR CUES
IC Reset	118	Reset Simulator to 100% power IC.
SES Setup Schedule File	Load schedule and verify malfunctions and over-rides have been entered	<ul> <li>Racks out 21 Charging Pump 480V breaker.</li> <li>Racks out 21 CCW Pump 480V breaker.</li> <li>Loads movable gripper malfunction on control rod P-6.</li> <li>Loads failure of Auto SI master relays SIA- 1&amp;2.</li> <li>Loads auto open failure MOV-746.</li> <li>Loads steam line break on trigger 1.</li> <li>Sets conditional trigger 30 which auto actuates when reactor trip occurs.</li> <li>Loads malfunctions to cause RHR piping LOCA outside containment on trigger 30.</li> <li>Loads failure of 23 MSIV Remote Closure</li> </ul>
Floor Setup	Perform setup checklist. Place pump control switch for 21 Charging Pump in TPO and apply danger tag. Place pump control switch for 21 CCW Pump in TPO and apply danger tag.	Watch team walks the panels and informs Lead Evaluator when ready to take the watch Place Protected equipment placards on the other Charging and CCW pumps. Update the Protected Equipment LCD screen
Event 1	Actuate Trigger 1 At lead evaluator direction	XMT-RCS043A RCS Loop 23 hot leg temperature fails high
Role Play	Acknowledge requests for I&C to troubleshoot	I&C will develop a troubleshooting plan
Event 2	As SM tell team to commence rapid shutdown	Team begins load reduction using AOP-RSD-1
Event 3	Occurs following rod motion:	Rod P-6 ratchets in during rod motion IMF MAL-CRF002AV

<u>, , , , , , , , , , , , , , , , , , , </u>	Simulator Setup	and Instructor Directions
Setup/Event	INSTRUCTOR ACTIONS	EXPECTED RESPONSE/INSTRUCTOR CUES
Role Play	Acknowledge requests for I&C to troubleshoot Acknowledge requests for Reactor Engineer assistance.	<ul> <li>I&amp;C will develop a troubleshooting plan Using "time compression" report back that I&amp;C troubleshooting has discovered an open circuit on the movable gripper circuit for rod P- 6.</li> <li>Reactor Engineer will report to CCR. Using "time compression" report back that RE has determined CCR should allow rod P-6 to ratchet the rest of the way into the core rather than attempting to retrieve it.</li> </ul>
Event 4	Actuate Trigger 4 At lead evaluator direction:	MOTCVC004A winding short in 22 Charging Pump
Event 5	Actuate Trigger 5 At lead Evaluator direction	Steam Line Rupture Downstream of MSIVs. RCS Leak Outside of VC. Failure of automatic actuation of Safety Injection. Manual initiation required.
Role Play	When NPO dispatched	Close 23 MSIV without delay.
Role Play	When RO/CRS are checking SI flow in E-0 step 8. Nuclear NPO calls CCR	"A large leak of steam is billowing up from the mezzanine area. I cannot get close due to steam"
Role Play	to report: When NPOs dispatched:	Perform field actions as requested.

Op-Test No.: 1 Scenario No.: 2 Event No.: 1

Page <u>1</u> of <u>1</u>

Event Description: Loop 23 Hot leg temperature fails high

Time	Position	Applicant's Actions or Behavior
	BOP/ATC	Diagnose failed instrument:
		High T-AVE 568F
		T AVE Deviation
		OVERPOWER Delta-T Channel Trip or Rod Stop
		OVERTEMP Delta-T Channel Trip or Rod Stop
	ļ	Delta-T Deviation
		T AVE T REF Deviation 5F
		T AVE Loop 3 reading higher than normal
		Rod Step Speed indicating 72
	BOP	Refers to ARPs for alarms
	ATC	Place Rod control and Charging Pumps to manual
	CRS	Directs team to perform immediate operator actions of 2-AOP-INST-1
-	ATC	Checks all instruments listed in 2-AOP-INST-1
	CRS	Implements 2-AOP-INST-1
Į.		Verifies no other instrument failures
		Ensures actions have been taken to stabilize the plant
		Refers to Tech Spec Table 3.3.2-1
		<ul> <li>72 hour AOT to trip bistables</li> </ul>
		Directs tripping of bistables (may ask SM for direction)
Lead Ev	valuator	If the CRS asks the SM if bistables are to be tripped, a cue to trip bistables will be given.
	BOP	Trips the following bistables:
		In Rack D-10 Switch T/412A to DEFEAT LOOP 3
		In Rack B-8 Switch T/411B to DEFEAT LOOP 3
	CRS/ATC	Return Rod control and Charging Pumps to AUTO
Lead Ev	valuator	Inform team that a Rapid Shutdown is required due to 24 SG Feed Regulating Valve air line has been damaged by maintenance. Perform plant Shutdown in 2 hours.

. Japan

Event Description: Perform Rapid Shutdown

1

Time	Position	Examinee's Actions or Behavior		
	CRS	Develop shutdown plan and reactivity plan.		
	ATC			
	CRS	Supervise activities of the crew during rapid shutdown.		
		<ul> <li>Performs a crew brief on shutdown plant.</li> </ul>		
		<ul> <li>Directs the RO to perform the reactivity plan.</li> </ul>		
		o Directs load reduction.		
	ATC	Develops reactivity plan.		
		• Borates the reactor.		
	ſ	<ul> <li>Monitors critical parameters during load reduction.</li> </ul>		
	ВОР	Performs actions as directed by the CRS during load reduction.		
		<ul> <li>Peer checks reactivity manipulations (when personnel available).</li> </ul>		
		<ul> <li>Performs load reduction when directed by CRS.</li> </ul>		
	ATC	When rod motion occurs, diagnoses rod P-6 is misaligned.		
	CRS	<ul> <li>Discuss stopping the shutdown.</li> </ul>		
		<ul> <li>Stabilize the plant per AOP-RSD-1 Attachment 1.</li> </ul>		
Lead E	valuator	Proceed to next event when the team diagnoses a misaligned control rod.		

Time	Position	Examinee's Actions or Behavior
Lead Evaluator		Rod P-6 has a failed moving gripper. Alarm SF 2-7 Control Rod or Power Distribution Trouble. Alarm FC 2-4 NIS Power Range Channel Deviation 3%. Control Rod P-6 IRPI indicates lower than the rest of Control Bank D. PICS alarms for Rod to Bank deviation and Rod to Rod deviation.
	CRS	Diagnose Rod P-6 misaligned (dropped if rod motion not stopped).
	ATC	
	CRS	Implement AOP-ROD-1.
		Supervise the actions of the crew during AOP-ROD-1.
	CRS	Perform AOP-ROD-1 actions:
	ATC	<ul> <li>Check if entry into the AOP was due to continuous unwarranted rod motion.</li> </ul>
		<ul> <li>Go to section for Misaligned Rod.</li> </ul>
		<ul> <li>Determine that the malfunction is clearly a misaligned rod.</li> </ul>
		<ul> <li>Verify Rod Control is in manual and operate rods in manual as directed b CRS.</li> </ul>
		<ul> <li>Direct I&amp;C to investigate.</li> </ul>
	CRS	Evaluate the following TS:
		3.1.4 (Rod Group Alignmerit Limits).
		3.2.3 (Axial Flux Difference (AFD)).
		3.2.4 (Quadrant Power Tilt Ratio (QPTR)).
		(Cue from Reactor Engineer)
	ALL	Continue with AOP-RSD-1 Shutdown.
Lead Evaluator		At the discretion of the Lead Evaluator, direct the Booth Instructor to actuate trigger 4.

f. See

Page <u>1</u> of <u>1</u>

Event Description: 22 Charging Pump trips

"They

Time	Position	Examinee's Actions or Behavior		
	ATC	Diagnose trip of 22 Charging pump		
	вор	<ul> <li>Perform ARPs for associated alarms</li> <li>SH 3-10 480V SWGR Motor Trip (Common)</li> <li>SF 3-5 RCP Thermal Barrier Low Delta-P θ</li> <li>Dispatch NPO to 22 Charging pump, to 480V room breaker, and to standby pump selected for start.</li> </ul>		
	CRS	Direct actions of AOP-CVCS-1, "Loss of Charging or Letdown"		
	CRS BOP	<ul> <li>Perform AOP-CVCS-1 actions as directed by CRS</li> <li>Close 200A, B, C and LCV-459</li> <li>Verify VCT level &gt; 9%</li> <li>Check 112C open</li> <li>Determine indications of gas buildup in charging pump suction did not exist prior to pump trip</li> </ul>		
	ATC	<ul> <li>Start selected Charging pump</li> <li>Adjust speed to control RCP seal injection</li> </ul>		
	BOP	<ul> <li>Restore letdown per Attachment 2</li> </ul>		
Lead Evaluator		NOTE: Team may utilize ARP SFF, Window 3-5 "Low Thermal Barrier Delta-P to start a charging pump.		
	CRS	Monitor PRZR Level. If $\geq$ 65.1%, then evaluate ITS 3.4.9. Evaluate TRO 3.1.B.1.c) Boration Systems requirements.		
Lead Evaluator		When charging and letdown have been reestablished, proceed to the next event. At the discretion of the lead evaluator, direct the Booth Instructor to actuate trigger 5		

Sec. S.

Page <u>1</u> of <u>1</u>

Event Description: Steam Break down stream of 21 MSIV and Check Valve in the AUX Boiler Feed Pump Building

Time	Position	Examinee's Actions or Behavior		
	CRS	Diagnose Steam Leak.		
	ATC			
	CRS	Implement AOP-UC-1		
	ATC	Direct operators to perform the following:		
		<ul> <li>Manually trip the reactor.</li> </ul>		
		<ul> <li>Verify the reactor is tripped.</li> </ul>		
	BOP	o Close MSIVs.		
	CRS	◦ Go to E-0.		
Lead Evaluator		When the reactor trip breakers open the LOCA commences on the RHR piping in the PAB piping penetration. SI will fail to actuate. The team will perform E-0 and successfully isolate the leak in ECA-1.2		

Page <u>1</u> of <u>1</u>

Event Description: LOCA outside containment in the PAB. SI fails to Auto actuate and RHR valve 746 will fail to auto open

Time	Position	Examinee's Actions or Behavior		
	CRS	When Unit trips, direct team to perform immediate actions of E-0		
		Verifies immediate actions using the procedure.		
	ATC	Verifies Reactor Trip:		
		Reactor trip breakers open		
		Nuclear flux decreasing		
		Rod bottom lights lit		
		IRPIs < 12.5 inches Verify Turbine is tripped		
	ATC	Verifies Turbine Trip by observing stop valves closed		
	BOP	Check status of 480V buses		
	ATC	Check SI status		
		Manually actuate at least one train of SIS-actuated safeguards before any o the following:		
Critical Task • Transition to any E-1 series, E-2 series, or E-3 series pro transition to any FRP		· · · · · · · · · · · · · · · · · · ·		
		• Completion of step 5.a of ES-0.1		
	BOP	Perform E-0 immediate actions.		
		Perform E-0 Attachment 1.		
		<ul> <li>Start a charging pump.</li> </ul>		
		<ul> <li>Dispatch NPO to reset lighting and MCCs 24A, 27A, 29A.</li> </ul>		
		<ul> <li>Stop Condensate Pumps.</li> </ul>		
	1			
		<ul> <li>Check automatic actions.</li> </ul>		

Event Description: LOCA outside containment in the PAB. SI fails to Auto actuate and RHR valve 746 will fail to auto open

Time	Position	Examinee's Actions or Behavior
0 0 0 0 0 0 0		<ul> <li>Start 25 SWP.</li> <li>When RCS sub-cooling lowers, check RCP trip criteria and stop all RCPs.</li> <li>Reset SI.</li> </ul>
	CRS	Evaluate plant conditions and diagnose LOCA outside containment.
	CRS	Transition to ECA-1.2 and supervise the actions of the crew to identify and isolate the leak.
	CRS	Perform ECA-1.2 actions.
	ATC	o Verify SI reset.
	BOP	<ul> <li>Close RHR pump cold leg injection valves 746 and 747.</li> <li>Observe rising RCS pressure.</li> </ul>
	ATC	Diagnose LOCA outside containment has been isolated.
Criti	<b>cal Task</b>	Isolate the LOCA outside of containment before transition out of ECA-1.2. (Team will close 746 and 747)
	CRS	Transition to E-1.
Lead E	valuator	Terminate scenario following transition to E-1, or at the discretion of the Lead Evaluator.

## **Post Scenario Event Classification**

NP.

Event Classification - Site Area Emergency Alert

EAL 4.1.3 Inability to isolate any primary system discharging outside containment AND Radiological release to the environment exists as a result.

# **Turnover Information**

Date/Time:	Today/Now
Condition:	Power Ops
% Power:	100%
Xenon:	Equilibrium
RCS Boron:	1040 ppm
PZR Press Control:	Channel 1
PZR Level Control:	Channel 2
RCS Total Leakage:	0.1 gpm
RCS Unidentified Leakage:	0.01 gpm
Condenser Air leakage	6 SCFM
RCS Gas activity	1.78E-2 µCi/cc
Risk Assessment:	Yellow

## **Plant Equipment Status:**

- 1. 21 Charging pump is out of service for troubleshooting. Scoop tube positioner erratic operation. 22 and 23 Charging pumps are protected.
- 2. 21 CCW pump is out of service to replace pump packing. 22 and 23 CCW Pumps are protected.

## Instructions:

12:00

Maintain current 100% Steady State operations.

Facility:	Indian Point	2 Scenario	No.: <u>3</u> Op-Test No.: <u>1</u>				
Examine	Examiners: Operators:						
Initial Co	nditions:						
	mulator to IC-1 It is at 30% por	-	s OOS for major PM.				
Turnove	r:						
Return p	lant to 100% p	ower.					
Event No.	Malf. No.	Event Type*	Event Description				
1	N/A	R (ATC) N (CRS) N (BOP)	Power Escalation				
2	XMT- SGN037A	l (ALL) TS (CRS)	PT-419C (31 SG C Channel Pressure) fails high causing 21 ADV to fail open requiring manual closure.				
3	MOC CCW003A MOC CCW001/2	C(CRS) C (BOP) TS (CRS)	23 CCW Pump trips and 21 and 22 CCW Pump fail to auto start				
4	MAL- RCS002A	C (ALL) TS (CRS)	35 gpm RCS leak.				
5	MAL- RCS001A	M (ALL)	Large Break RCS LOCA.				
6	MOC- RHR003/4	C (CRS) C (BOP)	RHR pumps will not auto start and need to be started manually.				
7	RLY- PPL085/09 0	C (BOP)	Failure of Containment Phase A requiring manual initiation.				
* (N)ormal, (R)eactivity, (I)nstrument, (C)omponent, (M)ajor							

je ^{nos}alet, r

> U2 NRC 2010 Scenario 3: Power Escalation from 30%, SG Pressure Failure causing ADV to open, CCW Pump trip with auto start failure, RCS leakage, LBLOCA with multiple actuation failures. Page 1 of 17

## **Session Outline:**

The evaluation begins with the plant at 30% power steady state operation. The team is instructed to raise power to return to full load. The following equipment is out of service:

21 EDG is out of service for 36 hours for malfunctioning governor. Maintenance is in progress with expected return to service this shift.

After starting the power ascension, a SG pressure channel (PT-419C) fails high. The team will take actions in accordance with 2-AOP-INST-1, Instrument/Controller Failures.

Prior to completion of the Subsequent Actions of 2-AOP-INST-1, 23 CCW Pump will trip. 21 and 22 CCW Pumps will fail to auto start requiring the BOP to manually start 21 or 22 CCW Pump before RCP trip is required.

After CCW is restored, a 35 gpm RCS leak will occur. The crew will diagnose RCS leakage, quantify the leak rate and take actions per 2-AOP-LEAK-1.

Large Break LOCA will occur. The team will perform actions of E-0, Reactor Trip or Safety Injection. Both RHR Pumps will fail to Auto start and must be started manually. Containment Isolation Phase A will fail to auto actuate requiring manual actuation by the operator. Fan Cooler Units 23 and 25 will trip due to bearing failures and will remain out of service for the remainder of the scenario. The team will subsequently transition to E-1, Loss of Reactor or Secondary Coolant.

When RWST level decreases to 9.24 feet, the team will transition to ES-1.3, Transfer to Cold Leg Recirculation. The team will take the appropriate action to place a train of recirculation in service. The scenario is terminated when recirculation is established to one train and SI pumps are secured.

Procedure flow path: 2-AOP-INST-1, 2-AOP-CCW-1, 2-AOP-LEAK-1, 2-E-0, 2-E-1, 2-ES-1.3

## Scenario Critical Task and Malfunction Analyses

## Critical Tasks:

CT-1

Manually start at least one low-head ECCS pump before completion of E-0 Attachment 1.

### Actions to complete task :

21 and 22 RHR Pumps will be started. The team may notice that the pumps did not start and start them due to an automatic system not working properly. E-0 main body has a prompt to check RHR Pump status, and Attachment 1 checks RHR Pump Status.

## CT-2

Close containment isolation valves such that at least one valve is closed on each critical penetration before the end of the scenario.

## Actions to complete task :

Automatic Phase A will not work and manual use of pushbuttons is successful;

CT-3

Transfer to cold leg recirc and establish minimum ECCS requirements of ES-1.3 prior to core uncovery based on CET temperature exceeding 700°F.

### Actions to complete task :

Team will have to establish cold leg recirc per ES-1.3. Failure of the team to adequately progress through ES-1.3 could lead to having to secure all injection into the RCS (when RWST level reaches 3 ft.) prior to establishing internal recirc.

## Credited Events:

- 1. Power escalation. ATC will add positive reactivity via dilution and/or rods. BOP will increase MTG load. CRS will coordinate activities.
- PT-419C fails high. The ATC should diagnose the event with help from the BOP. The ATC will place 21 SG ADV in manual and closed. The CRS will implement the AOP and have the BOP trip bistables. This malfunction also requires evaluation of Tech Specs by the CRS.
- 3. 23 CCW Pump will trip. 21 and 22 CCW Pumps will fail to auto start requiring the BOP to manually start 21 or 22 CCW Pump before RCP trip is required. The CRS will coordinate and supervise activities.
- 4. RCS leak and LOCA. Initially the leak rate will be 35 gpm. There are no specific actions required by the team, so no actions are credited, however, time will be allowed for them to calculate leak rate. This will be challenging because of changing plant load and putting Excess Letdown in service. The CRS will have time to evaluate Tech Specs for the leak.
- 5. When the leak rate is increased to a LOCA, this will be a major malfunction.
- 6. RHR pumps do not auto-start. This will require manual action to prevent challenging core cooling. Credit is given to the BOP since this addressed by E-0 Attachment 1, however, the CRS may direct the ATC to perform this action.
- 7. Phase A will not actuate automatically. This will require manual action by the BOP to isolate containment.

Simulator Setup and Instructor Directions					
Setup/Event	INSTRUCTOR ACTIONS	EXPECTED RESPONSE/INSTRUCTOR CUES			
IC Reset	Reset Simulator to IC-115	Reset Simulator to 30% power IC.			
Schedule Setup	Run schedule for NRC Scenario 3.	<ol> <li>Loads LOA-DSG055 to OFF</li> <li>Loads LOA-DSG032 to OUT</li> <li>Loads MOC-RHR003 to AUT_CLS</li> <li>Loads MOC-RHR004 to AUT_CLS</li> <li>Loads MOC-CCW001 to AUT_CLS</li> <li>Loads MOC-CCW002 to AUT_CLS</li> <li>Loads RLY-PPL085 to STUCK_CONTACTS</li> <li>Loads RLY-PPL090 to STUCK_CONTACTS</li> <li>Loads MOT-CCW003A to UINDING_SHORT o event 3</li> <li>Loads MAL-RCS002A to 0.00650 on event 4</li> <li>Loads MOT-CNM010A after 30 to WINDING_SHORT on event 30</li> <li>Loads MOT-CNM012B after 22 to 100.00000 or event 30</li> <li>Loads RLY-PPL090 to N/A on event 21</li> <li>Create Event 30 jbkrta==0 -desc RTA Open</li> <li>Create Event 21 xdoi048f==1 -desc Phase A Train A Push Button</li> <li>Create Event 21 xdoi048f==1 -desc Phase A Train B Push Button</li> </ol>			
Floor Setup	Perform setup checklist.	Hang protected equipment signs for 22 and 23 EDGs. Place 21 EDG 52/EG1 to pullout and apply danger tag. Update the protected equipment PC. Ensure Rod Control is in manual			
Event 1	No Booth actions other than responding to requests and communications from the crew.	Crew performs power ascension.			
Event 2	Actuate Trigger 2 (there is no trigger 1) At lead evaluator direction	21 SG Pressure Channel C Fails High XMT-SGN037A FIXED OUTPUT failed high with no ramp or delay.			

2

 $\Im r_n$ 

Simulator Setup and Instructor Directions						
Setup/Event	INSTRUCTOR ACTIONS	EXPECTED RESPONSE/INSTRUCTOR CUES				
Role Play	Acknowledge requests for I&C to troubleshoot.	I&C will develop a troubleshooting plan.				
	When CRS asks SM if B/S should be tripped:	Provide cue that SM requests bistables be placed in trip.				
Event 3	Actuate Trigger 3 At lead evaluator direction	23 CCW Pump trips MOT-CCW003A to short the windings on the CCW Pump.				
Event 4	Actuate Trigger 4 At lead evaluator	35 gpm RCS Leak				
	direction.	MAL-RCS002A failed to 0.003 no ramp or delay.				
Event 5	Actuate Trigger 5 At lead evaluator direction.	LBLOCA 31 CL MAL-RCS001A to TRUE with no ramp or delay				
Note:		When SI is actuated, the following SI equipment will not auto-start (manual available): 21 RHR Pump 22 RHR Pump. The following will fail and not be able to be started either in Auto or Manual: 23 FCU 25 FCU.				
Role Play	If asked to investigate 23 and 25 FCU failures:	Overcurrent trip actuated on both breakers. No obvious problem (no visual damage and no smell of burning or over heat condition).				
Role Play	At CCR Request:	Perform various LOAs per NPO Task List.				

N.S.

14

U2 NRC 2010 Scenario 3: Power Escalation from 30%, SG Pressure Failure causing ADV to open, CCW Pump trip with auto start failure, RCS leakage, LBLOCA with multiple actuation failures. Page 6 of 17

4m . .

Op-Test No.:         1         Scenario No.:         3         Event No.:         1         Page         1 of         1							
Event Description: Power Escalation							
Time	Position	Position Applicant's Actions or Behavior					
	CRS	Supervise the actions of the team during power reduction					
		<ul> <li>Refers to POP-2.1 Attachment 2, Reactor Power Ascension Checklist and Attachment 1, Operation At Power.</li> </ul>					
		Refers to Reactivity Summary Sheet					
		<ul> <li>Develops and implements a reactivity plan (should be done prior to team taking watch)</li> </ul>					
		<ul> <li>Directs the ATC to make reactivity additions</li> </ul>					
		Directs the BOP to make turbine load changes					
	ATC	Commences dilution using 2-SOP-3.2, Reactor Coolant System Boron, and/or withdraws Control Rods to raise Tavg to support load increase.					
		Observes: Tavg, NIs					
	BOP	Peers Checks dilution and/or rod withdrawal.					
	BOP	<ul> <li>Initiate generator load increase at rate directed by CRS</li> <li>Monitor Tave – Tref deviation</li> </ul>					
		<ul> <li>Coordinate load increase with ATC reactivity addition rate.</li> </ul>					
		<ul> <li>Maintain Feed Water Regulating Valve controllers manual setpoint nulled during power reduction.</li> </ul>					
	ATC	Peers Checks MTG load increase					

Op-Test No.: 1 Scenario No.: 3 Event No.: 2 Page <u>1</u> of <u>1</u> Event Description: PT-419C (31 SG C Channel Pressure) fails high causing 21 ADV to fail open requiring manual closure. Time Position **Applicant's Actions or Behavior** BOP Observes Steam Line Delta-P 21 CHNL Trip 155 PSID alarm. ATC Observes PI-419C is pegged high and increased steam flow on 21 SG ATC Diagnoses PT-419C has failed high ATC Places 21 SG ADV in manual and closes valve CRS Instructs team to perform immediate operator actions of 2-AOP-INST-1 ATC Checks all instrumentation associated with instrument failures covered by 2-AOP-INST-1. No additional actions are necessary. Announces immediate actions complete. CRS Instructs team that they are entering 2-AOP-INST-1 CRS/ATC Re-checks all instrumentation associated with instrument failures covered by 2-AOP-INST-1. Verifies that no additional actions are necessary. CRS Evaluate TS 3.3.2. Function 1e and g. Function 4e. Determine Condition A requires review of table 3.3.2-1 and associate actions. From table 3.3.2-1 determine Condition D requires bistables placed in trip within 72 hours. CRS Consults with SM to determine if bistables are to be tripped. When called the Booth will inform team that bistables will be tripped. The CRS may just elect to trip bistables without consulting SM. This is allowed per 2-AOP-INST-1 step 4.39. BOP Trips bistables in Rack B-9: Loop 1C, Low Pressure SI Loop 1C, P1<P4-A Loop 1C, P4<P1-A</li> Lead Evaluator When bistables are tripped, have Booth initiate Event 3

U2 NRC 2010 Scenario 3: Power Escalation from 30%, SG Pressure Failure causing ADV to open, CCW Pump trip with auto start failure, RCS leakage, LBLOCA with multiple actuation failures.

C.

.....

Op-Test No.:         1         Scenario No.:         3         Event No.:         3         Page         1_of         1           Event Description:         Trip of 23 CCW pump.         Page         1         Page         1 <td< th=""></td<>					
Time	Time Position Applicant's Actions or Behavior				
	вор	Diagnose that 23 CCW pump has tripped:			
	CRS	Enters 2-AOP-CCW-1			
	CRS/BOP	CRS coordinate with BOP to manually start 21 or 22 CCW Pump			
Lead Eva	aluator	When CCW is restored initiate Event 4			

 $2_{23}$ 

Time	Position	Applicant's Actions or Behavior	
	CREW	Diagnose RCS Leakage:	
		VCT level decrease	
		PZR level decrease	
		Containment humidity increase	
		Containment Sump level increase	
	CRS	Enters 2-AOP-LEAK-1	
Lead Evaluator		Booth operator acting as SM or OM will ask CRS what implications leak rate has on continued operation. This will prompt determination of leak rate and evaluation of T.S.	
	ATC or BOP	Team should quantify leak rate using:	
		Seal injection flows	
		Seal return flows	
		VCT level trend	
		PZR level trend	
	CRS	Determine required shutdown due to leak rate.	
		T.S. 3.4.13 requires leakage to be reduced within 4 hours. Be in Mode 3 6 hours after 4 hours exceeded.	
	CREW	Team may:	
		Adjust charging pump speed	

U2 NRC 2010 Scenario 3: Power Escalation from 30%, SG Pressure Failure causing ADV to open, CCW Pump trip with auto start failure, RCS leakage, LBLOCA with multiple actuation failures. Page 10 of 17 19.00

n.

**Required Operator Actions** 

Time	Position Applicant's Actions or Behavior		
	CRS	Direct team to perform immediate operator actions of E-0	
	ATC	Verifies Reactor Trip:	
		Reactor trip breakers open	
		Nuclear flux decreasing	
		Rod bottom lights lit	
		IRPIs < 12.5 inches	
	ATC	Verifies Turbine Trip by observing stop valves closed	
	ВОР	Verifies Power to 480V Busses - all powered from offsite power	
	ATC	Verifies SI has actuated in both trains	
	CRS	Enters E-0 and performs read-through of steps 1-4	
	CRS	Recognizes foldout criteria are met for tripping RCPs	
	ATC	Trips RCPs	
	CRS	Directs BOP to perform E-0 Attachment 1	

1. A. B.

• ^

**Required Operator Actions** 

Op-Test	No.: <u>1</u> Scenari	o No.: <u>3</u> Event No.: <u>6</u> Page <u>1</u> of <u>7</u>
Event Description: RHR pumps will not auto start and need to be started manually.		
Time	Position	Applicant's Actions or Behavior
		Note:
		crew responds, Events 6 and 7 may be addressed in either order. Also ning Attachment 1 in parallel, the actions may be addressed at differe points in E-0.
	CRS/ATC	Verify AFW Pumps and Flow
	The second second	Critical Total * ***
		ander som en stander at de stander at de stander en stander at de stander at de stander at de stander at de st Na de stander at de stander
<b>k</b> 1	CRS/ATC	Checks that RCS Press is < 1750 psig
	CRS/ATC	Checks that High Head SI flow is indicated
	CRS/ATC	Checks that RCS Press is < 350 psig
	CRS/ATC	Checks that RHR flow is indicated - it is not
	BOP	Starts 21 and 22 RHR Pumps
	CRS/ATC	Directs local closure of service water valves:
		FCV-1111/1112
		SWN-4,5,6,7
	CRS	When service water valves are reported closed, directs start of one non- Essential Service Water Pump.
	CRS/ATC	Continue verification steps in E-0
		May reduce AFW flow at RCS Temperature verification step
	CRS	Will transition to E-1 based on numerous indications of RCS leakage in containment

U2 NRC 2010 Scenario 3: Power Escalation from 30%, SG Pressure Failure causing ADV to open, CCW Pump trip with auto start failure, RCS leakage, LBLOCA with multiple actuation failures. Page 12 of 17

Form ES-D-2

	Dp-Test No.: 1_ Scenario No.: 3_ Event No.: 7_       Page 1_of 1         Event Description: Failure of Containment Phase A requiring manual initiation.		
Time	Position	Applicant's Actions or Behavior	
	BOP	Will note that adverse containment conditions exist.	
	BOP	Will start one Charging Pump and adjust to maximum speed.	
	BOP	Will open LCV-112B and close LCV-112C	
	BOP	Place RCS makeup control to STOP	
	BOP	Opens 345 KV Switch F7-9	
	BOP	Checks all 480V busses energized by offsite power	
	BOP	Dispatches NPOs to reset:	
		Lighting	
		• MCC-24A, 27A, 29A	
	BOP	Stops all condensate pumps	
Солач		Verifies: • FW isolation • MSIV closure • Service Water alignment • SI Pumps alignment • RHR Pump alignment • Containment Fan Cooler status - note 23 and 25 have tripped and will remain out of service • AFW flow • Containment Ventilation isolation Critical Table 2 More values auch that it hads one value is closed on each other penaltypes	
al la site du	вор	Notes Phase A valves not closed	
	BOP	Presses both Phase A actuation pushbuttons	

U2 NRC 2010 Scenario 3: Power Escalation from 30%, SG Pressure Failure causing ADV to open, CCW Pump trip with auto start failure, RCS leakage, LBLOCA with multiple actuation failures. Page 13 of 17

Time	Position	Applicant's Actions or Behavior	
	BOP	Checks containment spray system	
	BOP	Verifies CCR AC in incident mode	
	CRS	Announces entry into E-1	
	CRS/ATC	Verifies:	
		RCPs are stopped	
		SGs not faulted	
		SGs not ruptured	
		Checks PORV/Block status	
	ATC/BOP	Resets SI:	
		Close MFRV/Bypass FRVs	
		Place SI Defeat Keys in switches	
		Reset both trains SI	
	ВОР	Reset Phase A:	
		Put switches in Open for valves 1410, 1413, SOV-3518, 3519	
		Place CNTMT Rad Mon WCPS valves to Open	
		Verify both airlock solenoid switches are in Incident	
		Place remaining SN panel Phase A switches to Close	
		Press both Phase A reset buttons (will not work)	
		Place Key Defeat switches in bypass	
		Press both Phase A reset buttons	
	BOP	Reset Phase B:	
		(If Containment Pressure <17 psig)	
		Press both Containment Spray Reset buttons	
		Press both Phase B Reset buttons	
	ВОР	Open PCV-1228 to establish Instrument Air to Containment	
		Note:	
Ar	ound this point,	RWST Level will reach 9.24 ft and the Crew will transition to ES-1.3	
	BOP/ATC	Announce that both RWST Low Low 9.24 Ft. Alarms are up	
	CRS	Announces entry in to ES-1.3	

U2 NRC 2010 Scenario 3: Power Escalation from 30%, SG Pressure Failure causing ADV to open, CCW Pump trip with auto start failure, RCS leakage, LBLOCA with multiple actuation failures.

Page 14 of 17

-

	CRS/ATC	Verify RWST alarms are up and VC Sump Level is increasing	
	CRS/BOP	Reset SI if not already done	
	CRS/BOP	Dispatch NPO to CCW HXs	
	ATC	Stops Charging Pump and Secures PZR Heaters	
	ATC	Reset Containment Spray	
	ATC	Place Recirc Switches 1 and 3 to On	
		Verifies:	
		22 SI Pump stopped	
		21 Containment Spray Pump stopped	
		Both RHR Pumps stopped	
	CRS	Verifies that Service Water Valves are closed (order sent out in E-0)	
	АТС	Place Recirc Switch 2 to On	
		Verifies:	
		One NESW Pump running	
		3 CCW Pumps running	
	1	Stops 23 CCW Pump	
		Function Complete Light Lit	
	CRS/BOP	Check 822A/B 746/747 Open	
		Close 746	
		Construction of the second	
Transfer.	an a	and exterplants minimum EDICB requirements of EQ-1.3 prior to core to opyrate	
		ecceding /00 F	
	ATC	Place Recirc Switch 4 to On	
	[	Verify:	
		21 Recirc Pump Running	
		MOV-1802A/B are open	
		Function Complete Light Lit	
Lead Eva	aluator	The next steps verify adequate recirculation flow. Scenario can be terminated when flow is established.	

U2 NRC 2010 Scenario 3: Power Escalation from 30%, SG Pressure Failure causing ADV to open, CCW Pump trip with auto start failure, RCS leakage, LBLOCA with multiple actuation failures. Page 15 of 17

## **Post Scenario Event Classification**

**Event Classification - Alert** 

EAL 3.1.2 Primary system leakage exceeding the capacity (> 75 gpm) of a single charging pump.

Candidate should understand that EAL 4.1.3 SAE was challenged without automatic Phase A actuation

## **Turnover Information**

Date/Time:	Today/Now
Condition:	Power Ops
% Power:	30%
Xenon:	Equilibrium
RCS Boron:	1529 ppm
Rods	CB D - 174
PZR Press Control:	Channel 1
PZR Level Control:	Channel 2
RCS Total Leakage:	0.1 gpm
RCS Unidentified Leakage:	0.01 gpm
Condenser Air leakage	6 SCFM
RCS Gas activity	1.78E-2 µCi/cc
Risk Assessment:	Green

## Plant Equipment Status:

Plant is at 30% power. Power was reduced a week ago for work on 22 MBFP. The work is complete and power is to be returned to 100%. 21 EDG has been out for 12 hours due to a major PM. It is expected back in 24 hours.

## Instructions:

Return power to 100% at 200 MW/hr.

Facility: <u>Indian Point 2</u> Scenario No.: <u>4</u>	Op-Test No.: <u>1</u>
Examiners:	Operators:
Initial Conditions: The Plant is in a 100% normal full power li	ineup.
Turnover: 21 AFW Pump of out of service for sche hours.	eduled maintenance and is expected back within 4
Maintain 100% Power	

Event <u>No</u> .	Malf. No.	Event Type*	Event Description
1	XMT CVC019A	I (ALL)	VCT Level Transmitter LT-112 fails low
2	MAL RCS014D	C (ALL) TS (CRS)	6 gpm SG Tube Leak 24 SG
3	NA	R (ATC) N (CRS) N (BOP)	Rapid Load Reduction/Shutdown
4	MAL RCS014D	M (ALL)	Steam Generator Tube Rupture
5	MAL EPS007D	C (ALL)	Bus 6A fault after Safety Injection
6	MAL SIS001	C (BOP)	Safety Injection Pump 21 Fails to Auto Start
7	AOV RCS003A SWI RCS006B SWI RCS006C	C (CRS) C (ATC)	PORV 456 loss of control power when attempted to open
8	AOV CVC008A	C (CRS) C (BOP)	Auxiliary Spray Valve 212 fails to open resulting in a transition to ECA-3.3 SGTR With Loss of Pressure Control
*	* (N)ormal, (R)eactivity, (I)nstrument, (C)omponent, (M)ajor		

## Session Outline:

The evaluation begins with the plant at 100% power steady state operation.

21 AFW Pump of out of service for scheduled maintenance and is expected back within 4 hours.

Shortly after the crew takes the shift, VCT level transmitter 112 will fail low. The crew will take actions in accordance with 2-AOP-CVCS-1 to restore a normal charging lineup. VCT level will be maintained by maintaining VCT pressure above the pre-failed value.

A 6 gpm Steam Generator Tube leak will occur in 24 SG. The team will take actions in accordance with 2-AOP-SG-1 and determine that a shutdown must commence per TS 3.4.13. After the magnitude of the leak is determined, the crew will initiate a power reduction using either 2-AOP-RLR-1 or 2-AOP-RSD-1. (The crew may determine that the leakrate will not be adequately reduced at 50% power and perform 2-AOP-RSD-1 to shutdown the unit.)

During the power reduction the tube leak will increase to a Steam Generator Tube Rupture requiring a Reactor Trip and Safety Injection. When the Main Generator output breakers open, the Station Auxiliary Transformer will fault resulting in a loss of offsite power. Approximately 45 seconds after Safety Injection is actuated, bus 6A will fault. With 6A faulted and 21 AFW pump out of service, 22 Auxiliary Boiler Feed Pump will have to be manually aligned to supply water to the SGs. 21 Safety Injection Pump will fail to auto start and must be manually started.

The team will transition to E-3. Pressurizer Spray will not be available due to loss of RCPs. PORV 456 control power will fail when the valve is placed to open. Auxiliary Spray Valve AOV-212 will not open when the crew attempts to align Aux Spray. The crew will transition to ECA-3.3. The scenario is terminated when SI pumps are secured.

Procedure Flow Path: 2-AOP-CVCS-1, 2-AOP-SG-1, 2-AOP-RSD-1, E-0, E-3, ECA-3.3.

## Scenario Critical Task and Event Analyses

## Critical Tasks:

## CT-1

Establish greater than 400 gpm AFW flow to the SGs before transition out of E-0 or tripping the RCPs in the FR-H.1.

## Actions to complete task :

• Increase speed on 22 AFW Pump and establish >400 gpm feed to all SGs

## CT-2

Isolate Feedwater flow to and steam flow from the ruptured SG before transition to ECA-3.1 occurs.

### Actions to complete task :

Isolate feedflow and steam flow to 24 SG

## CT-3

Establish/Maintain RCS temperature to ensure transition out of E-3 does not occur due to either of the following:

- RCS temperature too high to maintain required subcooling
- RCS temperature too low resulting in severe challenge to the subcriticality or integrity CSF (due to the fault of the team).

### Actions to complete task :

In E-3, cooldown must be controlled

## CT-4

When SI termination criteria are met, stop SI pumps before completion of ECA-3.3 step 9.

### Actions to complete task :

Terminate SI

## Credited Events:

- VCT level instrument failure low. The ATC and BOP both have control board indications that will be used to diagnose failure. The BOP will acknowledge alarms and take action to restore Charging Pump suction to the VCT. The ATC will have to monitor for reactivity effects when the Charging Pump is taking suction from RWST. Additionally, the ATC will secure makeup at the proper time. The CRS will coordinate and supervise activities.
- 2. 24 SG Tube Leak. The BOP and ATC will have to diagnose event. The BOP will take actions to isolate leakage. A load reduction will occur which will be a reactivity manipulation for the ATC and normal plant operation for the BOP and CRS. This malfunction also requires evaluation of Tech Specs by the CRS.
- 3. Rapid Load Reduction. CRS will direct the activities of a rapid load reduction. The ATC will control rods and boron while the BOP will lower MTG load.
- 4. 24 SG Tube Rupture. This is a major malfunction for all operators. Complicating the event is a loss of the Station Aux Transformer.
- 5. 480 Bus 6A fault. With 6A faulted and 21 AFW pump out of service, 22 Auxiliary Boiler Feed Pump will have to be manually aligned to supply water to the SGs.
- 6. 21 Safety Injection Pump will fail to auto start and must be manually started.
- 7. PORV 456 loss of control power when attempted to open. ATC will attempt to open PORV 456, but control power will fail
- 8. Auxiliary Spray Valve 212 fails to open resulting in a transition to ECA-3.3 SGTR With Loss of Pressure Control. Crew will perform actions of ECA-3.3 up to and including the securing of SI.

Simulator Setup and Instructor Directions				
Setup/Event	INSTRUCTOR ACTIONS	EXPECTED RESPONSE/INSTRUCTOR CUES		
IC Reset	118	Reset Simulator to 100% power IC		
SES Setup Batch File	Run setup schedule and verify malfunctions and over-rides have been entered.	<ol> <li>Loads LOA-EPS008 to OUT</li> <li>Loads AOV-CVC008A to CLOSE</li> <li>Loads MOC-SIS001 to AUT_CLS</li> <li>Loads XMT-CVC019A to 0 on event 1</li> <li>Loads MAL-RCS014D to 0.1200 on event 2</li> <li>Loads MAL-RCS014D from 0.25000 to 8.00000 on event 4</li> <li>Loads MAL-EPS001 on event 30</li> <li>Loads MAL-EPS007D on event 30</li> <li>Loads AOV-RCS003A to CLOSE on event 29</li> <li>Loads SWI-RCS006B to Off on event 29</li> <li>Loads SWI-RCS006C to Off on event 29</li> <li>Create Event 30 ji_p==1 -desc ji_p</li> <li>Create Event 29 xeoi327o==1 -desc xeoi327o</li> </ol>		
Floor Setup	Perform setup checklist. Update the Protected Equipment PC. Risk is Yellow			
Event 1	Actuate Trigger 1 button at lead evaluator direction	VCT Level Transmitter LT-112 Fails low		
Role Play	If NPO sent to investigate VCT level instrumentation:	NPO reports no obvious problems.		
Role Play	If I&C asked to investigate VCT level instrumentation:	Inform the crew that a troubleshooting plan will be developed.		
Event 2	Actuate Trigger 2 button at lead evaluator direction.	6 gpm Steam Generator Tube Leak on 24 SG		
Role Play	If NPO sent to N16 panel:	Acknowledge the local alarm and report reading on 24 main steam line.		
		Team will start a shutdown based on SGTL		
Event 3	No Booth Operator Action	Rapid Shutdown due to SGTL		
Event 4	Actuate Trigger 4 button at lead evaluator direction. No Booth Operator Action;	Steam Generator Tube Rupture Station Aux Transformer Fault – Loss of		
Event 5	event loaded at setup No Booth Operator Action; event loaded at setup	Offsite Power Bus 6A Fault		

1. A.

	Simulator Setup and Instructor Directions			
Setup/Event	INSTRUCTOR ACTIONS	EXPECTED RESPONSE/INSTRUCTOR CUES		
Event 6	No Booth Operator Action; event loaded at setup	21 Safety Injection Pump fails to auto start		
Event 7	No Booth Operator Action; event loaded at setup	PORV 456 Loss of control power when attempted to open		
Event 8	No Booth Operator Action; event loaded at setup	Auxiliary Spray Valve AOV-212 fails to open resulting in a transition to ECA-3.3		

a state

Page <u>1</u> of <u>1</u>

Event Description: <u>VCT level instrument fails low causing automatic makeup and charging pump</u> suction to swap to the RWST.

Time	Position	Applicant's Actions or Behavior	
	CRS	Diagnose VCT Level Instrument failing low by the following:	
	BOP	Automatic Makeup to VCT initiating	
		VCT Level Low Alarm (FB-1)	
		<ul> <li>Charging Pump Suction swaps to RWST (LCV-112B opens LCV- 112C closes)</li> </ul>	
	CRS	Enters 2-AOP-CVCS-1	
	BOP	Place and hold LCV-112C in Open	
	BOP	When LCV-112C indicates Full Open, place LCV-112B in Close	
	BOP	When LCV-112B indicates Full Closed, place LCV-112C in Auto	
	ATC	Place Makeup Control in Stop	
	ATC	Place Makeup Mode Selector Switch in Manual	
	CRS	Determine if RCS Temperature was affected by RWST makeup.	
No action should be needed if Crew response was timely		No action should be needed if Crew response was timely	
	ATC	Makeup or divert from VCT as necessary to maintain VCT Pressure 2-5 psi above pre-event value.	
	CRS	Complete AOP actions:	
		Have Chemistry determine RCS Boron concentration	
		Have NPO monitor running Charging Pump	
		Make notifications	
Lead Eva	aluator	Request Booth Operator initiate Event 2	

54

Page <u>1</u> of <u>2</u>

Event Description: 6 gpm tube leak on 24 SG

Time	Position	Applicant's Actions or Behavior	
	CRS	Diagnose SG Tube Leakage by the following Alarms:	
1	ATC	Steam Line N-16 Monitor	
		Air Ejector Exhaust R-45	
	BOP	Dispatch NPO to N-16 Monitor	
		Report back will be that 24 SG leakage is approximately 8600 gpd.	
	CRS	Enter 2-AOP-SG-1	
	ATC	Determines that PZR Level is not affected	
	CRS	Determine that leakage is greater than 75 gpd (report from N-16 panel and R-45 will confirm)	
	CRS	Perform AOP actions:	
		Make notifications	
		Direct operator to fill out leakrate attachment	
		Have Chemistry obtain samples	

ſ.

Event Description: Rapid Load Reduction/Shutdown

CRS	Initiate Shutdown to achieve <50% in one hour and Mode 3 in additional 2 hours using: 2-POP-2.1, 2-AOP-RSD-1, or 2-AOP-RLR-1	
	Perform notifications	
	Hold briefing for load reduction	
ATC	Perform Boration for shutdown	
BOP	Reduce Turbine Load using Governor	
BOP	Perform Actions per 2-AOP-SG-1:	
	Actions performed depend on crew pace and when Event 4 is initiated.	
	Adjust 24 SG ADV to 1030 psig	
	Attempt to close 24 SG Blowdown valves	
	$\circ$ Valve 1216 will not close, can be failed closed in field	
Lead Evaluator	When sufficient load reduction has been observed, request Booth Operator to proceed to Event 4.	

Event Description: <u>SG Tube Leak will turn into a rupture. This will lead to team performing a manual reactor trip and SI.</u>

ATC	<ul> <li>Diagnose that SG Leakage has increased:</li> <li>Decreasing PZR level</li> <li>RCS Low Pressure Alarm</li> <li>Charging Pump speed increase in automatic</li> <li>VCT lowering level</li> </ul>
	<ul> <li>RCS Low Pressure Alarm</li> <li>Charging Pump speed increase in automatic</li> </ul>
	Charging Pump speed increase in automatic
	VCT lowering level
	-
	VCT Level Low Low Alarm
	May start additional Charging Pump and/or Place 45 gpm orifice in service.
CRS	Directs ATC to trip Reactor
	Directs BOP to Initiate SI
ATC	Trip Reactor from Flight Panel
BOP	Initiates Safety Injection
CRS	Directs Operators to perform immediate operator actions of E0.
ATC	Verifies Reactor Trip:
	Checks trip breakers open
	Checks flux decreasing
	<ul> <li>Checks rod bottom lights lit (will have lost power)</li> </ul>
	Checks IRPIs <12.5 inches (will have lost power)
ATC	Verifies Turbine Trip by observing all Turbine Stop Valves closed.
BOP	Verifies Power to 480V Busses:
	<ul> <li>Depending on the timing of this step the Station Aux Transformer and bus 6a may be faulted.</li> </ul>
	ATC BOP CRS ATC ATC

Page <u>2</u> of <u>2</u>

Event Description: <u>SG Tube Leak will turn into a rupture. This will lead to team performing a manual reactor trip and SI.</u>

Time	Position	Applicant's Actions or Behavior	
	ATC	<ul> <li>Checks SI Status:</li> <li>SI Annunciators are lit</li> <li>SI Pumps are running</li> <li>Both Trains of SI are actuated</li> </ul>	
	CRS	Directs BOP to perform Attachment 1 of E-0	
	BOP	<ul> <li>Performs Attachment 1 in parallel with the CRS/ATC progressing through E-0:</li> <li>Start a charging pump and align suction to RWST by opening LCV-112B and closing LCV-112C.</li> <li>Dispatch NPO to reset lighting and MCCS 24A, 27A, and 29A.</li> <li>Stop condensate pumps.</li> </ul>	

١

Page <u>1</u> of <u>1</u>

Event Description: Fault on 480 V Bus 6A during the SI loading sequence. 22 Aux Boiler Feed Pump will have to be started and aligned to feed SGs.

Time	Position	Applicant's Actions or Behavior	
	ATC	Reports that no AFW pumps are running.	
		Critical Task	
		0 gpm AFW flow to the SGs before transition out of E-0 or tripping the RCPs	
in the FR	- FT - F.		
e . e	ATC	Establish greater than 400 gpm AFW flow:	
		Increase speed on 22 AFW Pump which is idling.	
		<ul> <li>Adjust 22 AFW Pump Aux Feed Reg Valves to establish greater than 400 gpm total AFW Flow. 24 SG should be fed if level is less than 10%</li> </ul>	

Page <u>1</u> of <u>5</u>

Event Description: Safety Injection Pump 21 Fails to Auto Start. PORV 456 loss of control power when attempted to open. Auxiliary Spray Valve 212 fails to open resulting in a transition to ECA-3.3 SGTR With Loss of Pressure Control

Time	Position	Applicant's Actions or Behavior
	CRS/ATC	<ul> <li>Verify SI System Flow:</li> <li>21 SI pump Failed to Auto Start and must be manually started</li> </ul>
	CRS/ATC	Checks RCS Pressure Checks SI Flow indicated if RCS Pressure is below 1720 psig Verifies RHR flow established/required.
	CRS/ATC	<ul> <li>Check RCP Seal Cooling:</li> <li>Notes no CCW flow</li> <li>Secures RCPs if not already done</li> <li>Direct Service Water Valves FCV-1111, FCV-1112, SWN-6, SWN-7, SWN-4, SWN-5 be closed locally</li> <li>When valves are closed start 24 or 25 SWP</li> </ul>
	CRS/ATC	Check RCS Temperature: AFW Flow may be throttled back to just above 400 gpm at this point to maintain RCS Temperature.

Event Description: Safety Injection Pump 21 Fails to Auto Start. PORV 456 loss of control power when attempted to open. Auxiliary Spray Valve 212 fails to open resulting in a transition to ECA-3.3 SGTR With Loss of Pressure Control

Time	Position	Applicant's Actions or Behavior
CRS/ATC		Will check that Spray, Aux Spray, and PORVs are all closed.
	CRS/ATC	Check if RCPs should be stopped: RCPs are already secured
	CRS/ATC	Check for Faulted SG
	CRS/ATC	<ul> <li>Check for Ruptured SG:</li> <li>24 SG Level will be increasing in an uncontrolled manner</li> <li>Air Ejector, Steam Line and Blowdown Radiation Monitors for 24 SG will be abnormal.</li> <li>Team will identify 24 SG is ruptured.</li> </ul>
	CRS	Transition to E-3 Steam Generator Tube Rupture
	CRS/ATC	Check if RCPs should be stopped: RCPs are already secured
	CRS	Identifies 24 SG as ruptured
	andratan faar te	

Isolating AFW Flow to 24 SG may have occurred in E-0 when level reached 10% as a Prudent Operator Action.

If AFW is secured immediately after 10% level is reached, the team may have to re-initiate feeding to maintain level >10%

CRS/ATC	Close 24 MSIV
CRS/ATC	Direct check that MS-55D (MSIV bypass) is closed.
CRS/ATC	Direct closure of steam traps upstream of 24 MSIV.
CRS/ATC	Verify Blowdown Valves closed for 24 SG. This should have been done in AOP-SG-1
CRS/ATC	Adjust 24 SG ADV to 1030 psig (74% on dial) and check that it is closed if pressure is below 1030 psig. ADV should have been adjusted in AOP-SG-1.

Event Description: Safety Injection Pump 21 Fails to Auto Start. PORV 456 loss of control power when attempted to open. Auxiliary Spray Valve 212 fails to open resulting in a transition to ECA-3.3 SGTR With Loss of Pressure Control

Time	Position	Applicant's Actions or Behavior	
	CRS/ATC	Check 24 SG Pressure greater than 440 psig. If properly isolated, pressure will be approximately 1030 psig.	
	CRS/ATC	Determine Core Exit Thermal Couple target temperature for cooldown:	
	CRS/ATC	Commence Cooldown to target CET temperature: Note: ADVs will be used if RCPs not proactively tripped earlier. Place HP Steam Dumps in Pressure Mode and Manual Initiate Cooldown Do not exceed 0.5E6 lbs/hr on each of 21, 22, 23 SG Team will continue in procedure while CETs are lowering When CET temperatures are less than target: Stop cooldown by closing HP Steam Dumps or ADVs Maintain CET temperature below target temperture	
	CRS/ATC	Check SG Levels and maintain AFW flow	
	CRS/ATC	Check PORVs and Block Valves. Will not be able to open any block valves.	

Event Description: Safety Injection Pump 21 Fails to Auto Start. PORV 456 loss of control power when attempted to open. Auxiliary Spray Valve 212 fails to open resulting in a transition to ECA-3.3 SGTR With Loss of Pressure Control

Time	Position	Applicant's Actions or Behavior	
	CRS/ATC	Reset SI:	
		Place non-running CCW Pumps in Trip Pullout	
		Close MFRV and Bypass FRVs	
		Place SI Defeat Key Switches in Defeat	
		Press SI Reset Pushbuttons	
	CRS/BOP	Reset Phase A:	
		<ul> <li>Place switches in open for IVSW valves 141, 1413, SOV-3518, SOV-3519</li> </ul>	
		Place Containment Rad Monitor WCPS Valve Switch to open	
		Place VC Hatch switches in incident	
		Place all remaining Phase A Valve switches to close	
		Depress Phase A reset pushbuttons	
	CRS/BOP	Establish Instrument Air to Containment by opening PCV-1228	
	CRS/BOP	Secure remaining in service RHR Pump	
	CRS/ATC	Start the remaining Charging Pump and establish maximum charging flow	
	CRS/ATC	After cooldown stopped, check 24 SG Pressure stable or increasing. It will be stable	
	CRS/ATC	Check that adequate RCS subcooling exists. Subcooling will be greater than the required 43 degrees	
	CRS/ATC	Will realize that due to conditions (Loss of Aux Spray, loss of Bus 6A, a loss of power to PORV), depressurization is not possible	
	CRS	Transition to ECA-3.3	
	CRS/BOP	Check status of 480V Busses. Will start one Electrical Tunnel Exhaust Fan and direct restoring some auxiliary loads locally.	

Event Description: Safety Injection Pump 21 Fails to Auto Start. PORV 456 loss of control power when attempted to open. Auxiliary Spray Valve 212 fails to open resulting in a transition to ECA-3.3 SGTR With Loss of Pressure Control

Time	Position	Applicant's Actions or Behavior
	CRS/ATC	Check 24 SG Level <73%:
		<ul> <li>Depending on Crew timing, level may be above 73%</li> </ul>
		<ul> <li>If Level is above 73%, Crew will proceed to termination step</li> </ul>
		If Level is below 73%, Crew will first perform following steps
	CRS/ATC	Check 24 RCP not in service
	CREW	Try to establish pressure control:
		Check normal spray - is not available
		Check PORV - is not available
		Check Aux Spray - is not available
	CRS/ATC	Check intact SG Levels
	CRS/ATC	Check PZR Level greater than 14% (PZR Level should be greater than 14%. If not, Crew will loop in procedure until 24 SG is 73% and/or PZR Level is above 14%)
News C	and the second se	an an Alexandra Malana, Lanco Completion of BICA (2000)
an general gel an general franken i ko	CRS/ATC	Terminate SI:
		Check Subcooling - will be above required 36 degrees
Check H		Check Heat Sink - will have greater than 400 gpm available flow
		Check RVLIS - Indication will be available and level will be above required
		Check 24 SG Level - Increasing in an uncontrolled manner
		Stop SI Pumps and place in auto
Lead Evaluator		Terminate Scenario

## Post Scenario Event Classification

**Event Classification - ALERT** 

EAL - 3.1.2 Primary system leakage exceeding the capacity (>75 gpm) of a single charging pump.

# **Turnover Information**

Date/Time:	Today/Now
Condition:	Power Ops
% Power:	100%
Xenon:	Equilibrium
RCS Boron:	1234 ppm
PZR Press Control:	Channel 1
PZR Level Control:	Channel 2
RCS Total Leakage:	0.1 gpm
RCS Unidentified Leakage:	0.01 gpm
Condenser Air leakage	6 SCFM
RCS Gas activity	1.78E-2 µCi/cc
Risk Assessment:	Yellow

## Plant Equipment Status:

21 AFW Pump of out of service for scheduled maintenance and is expected back within 4 hours.

## Instructions:

Maintain 100% power