

•

•

ENERGY METALS CORPORATION US License Application, Environmental Report Moore Ranch Uranium Project

APPENDIX B6

Historic Conoco Hydrologic Test Report

CONOCO INC.

MOORE RANCH MINE/SAND ROCK MILL PROJECT

MINE PERMIT APPLICATION

APPENDIX D-6

HYDROLOGY

TABLE OF CONTENTS

			Page
1.0	GROU	ND-WATER	1
	1.1	GEOLOGIC SETTING	1
	1.2	RECHARGE AREAS	4
	1.3	PIEZOMETER AND WELL CONSTRUCTION	5
	1.4	SUBSOIL AND AQUIFER PROPERTIES	6
		1.4.1 TRANSMITTING PROPERTIES	6
		1.4.2 STORAGE PROPERTIES	10
		1.4.3 ADDITIONAL MATERIAL PROPERTIES	10
Ť,	1.5	WATER LEVEL	10
		1.5.1 GROUND-WATER MONITORING	12
	1.6	WATER MOVEMENT	13
	1.7	GROUND-WATER QUALITY	15
		a A second	
2.0	SURF	ACE WATER	16
	2.1	DRAINAGE BASINS	16
	2.2	CHANNEL GEOMETRY	19
	2.3	SURFACE WATER RUNOFF	20
÷	2.4	SURFACE CONTROL STRUCTURES	21
	2.5	SURFACE WATER QUALITY	22
		2.5.1 SURFACE WATER MONITORING PROGRAM	23
	2.6	PERSPECTIVE OF STREAM CHANNELS IN RELATION TO THE FLUVIAL SYSTEM.	24

TABLE OF CONTENTS . (cont'd)

Page

	3.0	WATE	R RIGHTS	24
		3.1	GROUND-WATER RIGHTS	24
		3.2	SURFACE WATER RIGHTS	25
	4.0	HYDR	OLOGIC IMPACTS	26
	REFE	RENCE	S	29
C a	able N	No.		
	D-6-1	L	Basic Completion and Water Level Data for the Evaporation Fond Area (Area 10)	31
	D-6-2	2	Basic Completion and Water Level Data for the 35N Pit Tailings Disposal Area	32
	D-6-3	3	Basic Well Completion Data for Wells in the Mine Area	33
	D-6-4	ł	Summary of Subsoil Hydraulic Conductivities and Aquifer Properties	34
	D-6-5	5.	Summary of Subsoil Permeabilities from Packer Tests Evaporation Pond Area	36
·	D-6-6	5	Water Level Data for the 70 Sand Wells	40
	D-6-7	7	Groundwater Quality for Private Wells Near Conoco's Sand Rock Project	41
	D-6-8	3	Groundwater Quality for Conoco's Sand Rock Monitoring Wells	44
e	D-6÷9)	Groundwater Quality for the Evaporation Pond and Tailings Site for Conoco's Sand Rock Project	48
	D-6-1	.0	Drainage Basin Characteristics for the Sand Rock Project Area	50
	D-6-1	1	Peak Flood Discharges and Flood Volumes for Selected Recurrence Intervals for Streams in the Sand Rock Project Area	51

TABLE OF CONTENTS (cont'd)

Table No.		Page
D-6-12	Precipitation Values for Selected Recurrence Intervals and Durations in the Sand Rock Project Area	53
D-6-13	Surface Water Analyses for the Sand Rock Project	54
D-6-14	Groundwater Rights in and Adjacent to Moore Ranch Project Permit Area, February 6, 1980	63
D-6-15	Surface-Water Rights Within 16 Kilometers (10 Miles) of the Sand Rock Project	69

FIGURES

D-6-1	Elevation of Top of E Coal and 70 Sand			
D-6-2	Schematic of Lithology - Evaporation Pond			
D-6-3	Outcrop Areas of 70 Sand E Coal			
D-6-4	Well Locations			
D-6-5	Horizontal Permeabilities			
D-6-6	Horizontal Permeabilities			
D-6-7	Water Level Elevation - 70 Sand			
D-6-8	Static Water Level for 70 Sand Well 22-2			
D-6-9	Static Water Level for 70 Sand Well 1809			
D-6-10	Static Water Level for 70 Sand Well 1810			
D-6-11	Static Water Level for 70 Sand Well 885			
D-6-12	Static Water Level for 70 Sand Well 1			
D-6-13	Static Water Level for 70 Sand Well 889			
D-6-14	Water Level Elevation - E Coal & Lower Mudstone			
D-6-15	Water Quality - 70 Sand and Below			
D-6-16	Water Quality - Above the 70 Sand			

TABLE OF CONTENTS (cont'd)

Figures

D-5-17 Drainage Area of Ninemile Creek and Locations of Pre-operational Monitoring Sites Outside the Local				
D-6-18 Drainage Areas and Locations of Pre-operational Monitoring Sites Near the Project Site				
	D-6-19	Drainage Area of Antelope Creek		
•	D-6-20	Channel Cross Section of Upper Wash No. 2 Upstream of Pit 35N		
	D-6-21	Channel Cross Section of Upper Wash No. 2 at Pit 35N		
	D-6-22	Channel Cross Section of Upper Wash No. 4 Downstream from Mill Tailings Evaporation Pond		
	D-6-23	Channel Cross Section of Wash No. 1 West of Backfill Storage Area		
	D-6-24	Channel Cross Section of Lower Wash No. 2 at Upper and Lower Crest Stage Gages		
	D-6-25	Channel Cross Sections of Simmons Draw at Upper and Lower Crest Stage Gages		
	D-6-26	Channel Cross Sections of Ninemile Creek at Crest Stage Gages		
	D-6-27	Channel Cross Sections of Wash No. 3 at Upper and Lower Crest Stage Gages		
	D-6-28	Channel Cross Sections of Simmons Draw Downstream from the Project Area		
×	D-6-29	Grain Size Distribution Curve for Simmons Draw		
	D-6-30	Grain Size Distribution Curve for Wash No. 2		
	D-6-31	Grain Size Distribution Curve for Wash No. 3		
	D-6-32	Mean Monthly Discharge for Antelope Creek near Teckla, Wyoming		
	D-6-33	Suspended Sediment and Discharge for Antelope Creek Near Teckla, Wyoming, Water Year 1978		

TABLE OF CONTENTS (con't)

Figures

D-6-34	Suspended Sediment and	Discharge fo	or Antelope	Creek Near
	Teckla, Wyoming, Water	Year 1979		

- D-6-35 Water Rights Within 10 miles of the Project
- D-6-36 Longitudinal Profiles of Wash No. 1, No. 2, No. 3, and No. 4 Within the Permit Area
- APPENDIX A-1 Constant Head Test Tables and Figures
- APPENDIX A-2 Test Analyses
- APPENDIX A-3 Erosion Potential of the Sand Rock Mill Site

D-6 HYDROLOGY

The ground-water systems in the vicinity of the evaporation pond (Section 1, T 41 N, R 75 W), and the tailings disposal site in Pit 35N (Section 35, T 42 N, R 75 W) were investigated in detail. Numerous tests have been conducted to define the ground-water hydrology in the mine area. The description of the surface water regime in this area is also important. The relationships of the pits in Sections 34 and 35 and the mill water supply to the local hydrologic systems are addressed.

1.0 GROUNDWATER

The major topics presented in the discussion of the ground-water systems are the geologic setting, recharge areas, aquifer properties, water movement, springs, and ground-water quality.

1.1 GEOLOGIC SETTING

The site is situated in the southwestern part of the Powder River Basin approximately 12 miles east-northeast of the Tertiary Wasatch-Fort Junion formation contact. The Wasatch formation, which is the surface geologic unit in this area, is part of the thick Powder River sedimentary series and consists of interbedded sandstones, siltstones, claystones and coals. Seeland (1976) found that the Wasatch sandstones were deposited in a fluvial paleo drainage system which flowed generally northward. These channel deposits are the host rocks for many uranium ore deposits.

The Fort Union formation, which lies under the Wasatch formation, consists primarily of fine grained fluvial silts and clays layered between wedges of arkosic sandstones which were deposited as alluvial fans and

-1-

fore, even though the Madison and Tensleep aquifers produce large quantities of water, the quality would probably make these aquifers unusable. Only the Roland coal and the upper Wasatch formation units will be discussed further, because the lower units will not be influenced by this project.

The local surface geology consists of the Wasatch formation for several miles from the proposed mine and mill site. The top of the Roland is approximately 1,100 feet deep in this area. The dip of the top of the Roland coal is to the west-northwest at an average of one degree.

Conoco exploration nomenclature has designated most sands above the Roland coal with decreasing numbers with depth. Cross sections from exploration logs were developed for this area to evaluate the areal distribution of these sands. The 40 and 50 sands are normally separated only by a few feet of shale or mudstone and extend areally. These two sands contain some coarse material in most areas and are considered significant aquifers.

The 60 sand is fairly massive and continuous over most of the area. The 68 sand is the first sand below the 70 sand, which contains the ore deposits in the area. The thickness of the 70 sand is normally in the range of 60 to 80 feet in this area and is areally extensive. Figure D-6-1 presents the elevation of the top of the 70 sand and shows that the dip of the 70 sand is generally less than one degree toward the northwest. The average dip of the 70 sand over the area of the contour coverage is 0.006 ft/ft.

-3-

A thin coal exists normally a few feet above the top of the 70 sand and has been labeled by Conoco as the E coal. Figure D-6-1 shows contours of the top of the E coal over the area. The average dip of the E coal is one-half of one degree or 0.008 ft/ft toward the northwest.

The remainder of the lithologic section above the 70 sand consists mainly of mudstones (claystones), and interbedded sandstones and thin coal lenses. The thin sandstone lenses do not correlate well, and the thickness and aerial extent of each of these units varies considerably over the project area. These sandstone lenses and thin coal seams above the 70 sand can be seen in the cross sections presented in Appendix D-5. Piezometers were installed in a number of these upper sand lenses to determine the presence of perched water tables and the hydraulic conductivity (permeability) of these units. Basic well completion data along with static water level information are presented in Table D-6-2. Permeabilities of these upper sands are summarized in Table D-6-4. Ground water quality for several of these upper sand wells is presented in Table D-6-9. The long term effect of shallow aquifer table is discussed in Section 8.1.4 of the Reclamation Plan.

Figure D-6-2 shows a schematic of the lithologic units in the evaporation pond area. A Claystone, referred to as the Lower mudstone, exists below the E coal in the evaporation pond area. Another claystone exists above the E coal in the evaporation pond area and has been labeled the Upper mudstone.

The lithologic units above the E coal in the tailings disposal area of Pit 35N do not correlate well. Figure D-6-1 shows that the structure of the top of the E coal and 70 sand is similar to the structure in the evaporation pond area. The mudstone between the E coal and the 70 sand is

-4-

not as thick in the area of Pit 35N as in the evaporation pond area. Thin, noncontinuous sandstone units are interbedded in the mudstones (claystones) above the E coal.

1.2 RECHARGE AREAS

The outcrop area of the 70 sand is important to the flow in this ground-water system. The low permeability materials above the 70 sand should essentially restrict recharge to the 70 sand except in its outcrop area. The quality of water from the claystone and coal above the 70 sand is normally poorer than the 70 sand water quality. This also indicates that very little of the 70 sand water is derived from these upper units. The upper (unsaturated) portion of the 70 sand contains very low permeabilities, which indicates very little water has flowed in this portion of the aquifer to dissolve the cementation.

Figure D-6-3 presents the outcrop of the 70 sand near the project. This outcrop includes areas of the 70 sand which are covered by alluvium and topsoil. The outcrop map is derived mainly from the 70 sand structure map and some known exposures. These areas would be susceptible to recharge to the 70 sand aquifer, also. The 70 sand crops out in a large percentage of Sections 11 and 12 of T41N-R75W and Sections 6 and 7 of T41N-R74W. Water which enters the outcrop area flows down-dip in the 70 sand. Figure D-6-1 gives the structure of the top of the 70 sand and shows that water would be expected to flow north-northwest from the outcrop area.

An outcrop line is shown on Figure D-6-3 for the E coal. This outcrop line is inferred from the structure map of the E coal in Figure D-6-1. Recharge to the E coal and the Lower mudstone should occur mainly in the area of the outcrop line in the eastern half of Section 1, T41N-R75W. Recharge to all units above the 70 sand probably occurs mainly in their outcrop areas, because of alternating low permeability materials.

1.3 PIEZOMETER AND WELL CONSTRUCTION

A total of 47 piezometers and/or wells were constructed in the evaporation pond and tailings disposal site (35N) areas; 17 in and around Pit 35N, and 30 in the area of the evaporation pond. These piezometers and wells have been used to define the static-water levels, permeabilities and

-5-

water quality of the shallow geologic units. Table D-6-1 presents basic well data for the evaporation pond area, including date drilled, depth drilled, perforated interval, lithologic unit and water level for each piezometer, while Table D-6-2 gives the same data for the Pit 35N mine area. The location and perforated interval of the Pit 35N piezometer wells are depicted on the cross-sections presented in Figures D-5-16 through D-5-18. Most piezometers were bailed on several different occasions and observed to determine if their water levels would recover. A permeability test was conducted after a satisfactory static water level was established. Bailing information and water level measurements are given in the tables of Appendix A-1.

Twenty-three additional wells have been used to define the groundwater hydrology for the 70 sand and deeper units in other than the evaporation pond and tailings disposal sites. The completion details for these wells is given in Table D-6-3. The location of all wells is shown in Figure D-6-4.

1.4 SUBSOIL AND AQUIFER PROPERTIES

The transmitting (transmissivity and hydraulic conductivity) and storage (storage coefficient and specific yield) abilities of the aquifers and partially saturated material are discussed in this section. Additional material properties, moisture content, bulk density and grain sizes will also be discussed. The pump test theory, including field tests for hydraulic conductivity, is addressed in Appendix A-2.

1.4.1 TRANSMITTING PROPERTIES

The results of the constant head injection recovery tests from the low yielding wells and dry piezometers in the evaporation pond and tailings disposal areas will be presented first. The permeability and transmissivity results from the 70 sand wells will follow.

Twenty-four constant-head injection tests were conducted to determine the saturated hydraulic conductivity (permeability) of the subsoil materials in the evaporation pond area (Figure D-6-4). The procedures used in conducting the constant-head injection tests are given in Appendix A-2.

The largest permeability found in the evaporation pond area was obtained from piezometer P-18, which is completed in the alluvium of the small drainage channel through the pond area. A permeability of 470 feet/year was obtained for the alluvium at the proposed dam location.

Table D-6-4 summarizes permeabilities obtained from constant-head and pump tests in the project area. The permeabilities from packer tests in the evaporation pond area are summarized in Table D-6-5. The packer tests were normally conducted for 10 to 15 minutes and steady-state analysis was used to calculate the permeability. Therefore, some difference would be expected between the constant-head permeabilities and those obtained by packer tests. Figure D-6-5 presents horizontal permeabilities for the E coal, Upper coal, Lower and Upper mudstone units in the evaporation pond area. Coal and mudstone units in the 35N tailings disposal area are also presented on this figure, which includes permeabilities from only the constant head tests.

Results indicate that approximately one-half of the evaporation pond area has subsoils with permeabilities of less than 1 ft/yr. A zone of higher permeability was observed near the center of the evaporation pond in the E coal and Lower mudstone units. These permeabilities vary from 6.7 to 53 ft/yr. In general, the permeability of the E coal and Lower mudstone is less than 10 ft/yr.

-7-

The horizontal permeabilities for the Upper coal and Upper mudstone units are given in Figure D-6-5 in brackets. These permeabilities are listed in Tables D-6-4 and D-6-5. The packer tests on holes PD-19 and PD-24 were conducted on the mudstone next to the Upper sandstone. Generally, the Upper mudstone and Upper coal have permeabilities in the same range as the Lower mudstone and E coal.

Figure D-6-6 shows the permeabilities for the Upper sandstone and 70 sand in the evaporation pond area. This figure presents permeabilities for piezometers P-6, P-7, P-36, P-17, P-20B and P-21, where constant head injection or recovery tests were conducted. The Upper sandstone shows a much larger areal variation in permeability than the other lithologic units. The variation in permeability is probably relative to the degree of weathering of the sandstone and removal of its cementation. A permeability of 1,000 ft/yr is representative of a significant portion of the Upper sandstone.

The permeabilities of the 70 sand aquifer in the evaporation pond area are also given in Figure D-6-6. Values for the unsaturated portion of the 70 sand at piezometers P-16 and P-17 were calculated to be 1.0 and 0.65 ft/yr respectively. Both of these permeabilities are very low, which shows that the unsaturated portion of the 70 sand is not very permeable. Permeabilities of 94 ft/yr, 8.5 ft/yr and 3.7 ft/yr were determined for the saturated portion of the 70 sand near Wells P-7, P-20B and P-21, respectively, from recovery tests.

The largest permeability determined for units above the 70 sand in the tailings 35N area is 42 ft/yr for a sandstone which piezometer 35N-7E

-8-

penetrates. Values for the E and Upper coals in the area of 35N-7 were determined to be 41 and 0.09 ft/yr respectively. Table D-6-4 presents these permeabilities while Figure D-6-5 shows the values on a map. Permeabilities of mudstone in the 35N area varied between 0.9 to 4.3 ft/yr. These values agree well with permeabilities which were determined for the mudstones in the evaporation pond area. Sandstones other than the 70 sand were tested at seven sites and values ranged from 0.0012 to 42.1 ft/yr. Permeabilities for the sandstones above the 70 sand in the area of Pit 35N are not as high as some of the values in the evaporation pond area. This is probably attributed to the fact that most of the sandstones in the evaporation pond area were exposed on the surface and therefore, some of their cementation was leached.

.,11

The permeability of the unsaturated 70 sand in Pit 35N is low and similar to the values determined in the evaporation pond area. Three piezometers in the unsaturated 70 sand (U70SS) were tested and yielded values of 0.78, 8.5 and 5.5 ft/yr for holes 35N-1C, 35N-2A and 35N-7B respectively. A transmissivity for the saturated 70 sand well, 35N-7A, was computed to be 1170 gal/day/ft from its recovery test. This value compares fairly well to the transmissivities which were earlier determined for other 70 sand wells (1805 and 1806) in the area. The permeability computed from the 35N-7A test is significantly higher than the values determined in the evaporation pond area, which shows that the 70 sand is more permeable in Pit 35N.

Tests on the saturated 70 sand in Wells 886, 888, 1805, 1806, 1814, 1815, 1816 and 1817 are also presented. The analyses of these tests are also presented in Appendix A-2, while Figure D-6-4 gives the location of.

-9-

the wells. Transmissivities ranged for the 70 sand aquifer from 800-5,500 gal/day/ft, while permeabilities varied from 140 to 6,700 ft/yr. Wells 887 and 1823 are completed in the 68 sand (the first sandstone below the 70) and recovery tests were conducted on these two wells. Permeabilities of 3.1 and 306 ft/yr and transmissivities 1.9 and 190 gal/day/ft were computed for this sand. The transmitting ability of the 68 sand is significantly less than the 70 sand. A recovery test on a 50-40 sand well indicates these sands have a permeability in the range of 300 ft/yr while a similar test on a Roland coal well produced a permeability of 850 ft/yr.

1.4.2 STORAGE PROPERTIES

Storage coefficients (the storage ability of a confined aquifer) were determined at five locations in the 70 sand aquifer. Two 70 sand tests were conducted to measure the specific yield (the storage ability of an unconfined aquifer) for the 70 sand. Table D-6-4 presents these storage values.

1.4.3 ADDITIONAL MATERIAL PROPERTIES

Additional material properties (Chen, 1980) were also used in the hydrological analysis. The porosity of the materials at the site is in the range of 40 per cent while most nonsaturated rock has moisture contents in the range of 15 per cent. The average bulk density of the material is roughly 165.4 pounds/cubic foot.

1.5 WATER LEVEL

Water level data is presented with the basic data for each piezo-

-10-

meter in Appendix A-1. Tables D-6-1 and D-6-2 give a static-water level for each piezometer. Several 70 sand wells have been monitored since their installation in 1977, and this data is given in Table D-6-6. Figure D-6-4 gives the location of the preoperational ground-water monitoring sites. A discussion of the water level elevations and changes for each geologic unit is presented below.

The water level elevation map for the 70 sand aquifer is presented in Figure D-6-7 for the project area. The outcrop area of the 70 sand, which is the recharge area for this aquifer, is given in Figure D-6-3. This recharge area and the data points in Table D-6-6 were used to construct the piezometric surface for the 70 sand aquifer. The water level elevation contours are closely spaced next to the recharge areas where the saturated thickness is less. Therefore, steeper gradients are required to transmit the water in this area than further down gradient. The water level elevation is lower in the center of Section 1 (T41N-R75W) than in the center of Section 2 because Section 1 is farther from the outcrop area. The water level elevation varies from a high which is greater than 5,200 feet near the outcrop area to less than 5,160 feet north of the permit area.

Water level changes for six of the 70 sand wells, which have been monitored since 1977, are presented in Figures D-6-8 through D-6-13. These hydrographs show that the water levels in Wells 22-2 and 1809 have varied approximately one foot over this period. Water level fluctuations for Wells 1810, 885 and 1 have been in the range of 2, 3 and 4 feet, respectively.

-11-

Water level elevations for the E coal and Lower mudstone units are presented in Figure D-6-14 and Tables D-6-1 and D-6-2. The piezometric contours drawn from these data points are not very uniform but are probably reflective of variations in permeabilities and distances from a recharge source. The high water level elevation in the stock pond upstream from the proposed dam site has created a small local mound in the groundwater piezometric surface. Generally, higher water level elevations are found on the east side of the evaporation pond area. Significant water level changes are expected during the year for E coal and Lower mudstone wells.

Figure D-6-14 gives the water level elevation for the Upper mudstone, Upper coal and Upper sandstone in the evaporation pond area and mudstone and sandstones in the tailings disposal area. The water level elevations of the Upper coal and Upper mudstone are fairly close to the elevations in the Lower mudstone and E coal. The Upper sandstone piezometric level would be expected to be higher than the coal and mudstone levels because the sandstone is much more permeable and higher stratigraphically.

1.5.1 GROUND-WATER MONITORING

Table D-6-7 presents the results of the pre-mine monitoring of the private wells in the area. Pre-mine monitoring of the project wells are given in Tables D-6-8 and D-6-9, respectively. Figures D-6-17 and D-6-18 give the locations of the private wells while Figure D-6-4 shows the location of Conoco's wells. The mining and post-mining ground-water monitoring program will be the same and are defined in Section 3.5.6 of the Mine Plan.

-12-

1.6 WATER MOVEMENT

The rate of ground-water flow is governed by permeability, effective porosity and hydraulic gradient of the system. The following equation was used to obtain groundwater velocities:

where: V

V = velocity, in ft/yr

V = Ki/n

K = permeability, in ft/yr

i = hydraulic gradient, in ft/ft

n = effective porosity

The permeability and effective porosity were discussed in Section 1.4, Subsoil and Aquifer Properties, and water level elevations were presented in the Water Level section. Hydraulic gradients were obtained from water level contours.

The hydraulic gradient of the 70 sand aquifer can be obtained from Figure D-6-7. The gradient of the water table in the 70 sand varies from 0.012 to 0.0018 ft/ft with an average value of 0.006 ft/ft. An average horizontal rate of movement of the ground water in the 70 sand was estimated to be 120 ft/yr, from an average horizontal permeability of 2,000 ft/yr, an effective porosity of 0.1, and the above average gradient. In general, movement of water in the 70 sand should gradually decrease with distance from the recharge area. Flow directions in the 70 sand are shown in Figure D-6-7.

Hydraulic gradients in Figure D-6-14 vary from 0.004 to 0.05 ft/ft with an average gradient in the range of 0.015 ft/ft. The steeper and flatter gradients should be an indication of lower and higher permeabilities, respectively. An average gradient of 0.015 ft/ft and a permeability

-13-

of 5 ft/yr should yield a velocity fairly representative of both the low and high permeability areas. A ground-water velocity of 1.5 ft/yr was calculated from the above hydraulic gradient and permeability values, and an effective porosity of 0.05. This shows that the ground water in the E coal and Lower mudstone moves very slowly. Flow directions for the Lower mudstone and E coal can be estimated from Figure D-6-14.

Water levels in the Upper mudstone and Upper coal piezometers are very close to the water levels in nearby Lower mudstone and E coal wells. Therefore, gradients in the Upper mudstone and Upper coal are thought to be very similar to those in the Lower mudstone and E coal. The slightly higher permeabilities observed in the Upper mudstone and Upper coal units should allow water transmission at a slightly higher rate. An average velocity of the water in the Upper mudstone and Upper coal was computed to be 3 ft/yr using a permeability of 10 ft/yr, a hydraulic gradient of 0.015 ft/ft, and an effective porosity of 0.05.

Water movement in the Upper sandstone would be expected to be significantly higher than the mudstone because of its higher permeabilities. The velocity of ground water in the Upper sandstone was estimated to be in the range of 50 ft/yr from values of 500 ft/yr, 0.01 ft/ft and 0.1 for horizontal permeability, hydraulic gradient and effective porosity. Water flow direction in the Upper sandstone would be expected to be down-dip.

Rates of water movement in the tailings disposal area for the mudstones and sandstones above the 70 sand are estimated to be in the range of the velocities for the E coal - Lower mudstone in the evaporation pond

-14-

area. The gradient of the piezometric surfaces should mainly be governed by the dip of the beds, which are similar in the two sites.

1.7 GROUND-WATER QUALITY

The ground-water quality in the project area has been collected from three sources, private wells, Conoco's mine monitoring wells, and the evaporation pond and tailings disposal site wells. The water quality for the three sources are tabulated in Tables D-6-7, D-6-8 and D-6-9 respectively. Figure D-6-4 gives the location of Conoco's wells, while private wells are shown on Figures D-6-17 and D-6-18. The ground-water quality is very hard with total dissolved solids normally greater than 500 mg/l. The major cation is calcium while sulfate is the major anion. The sulfate, hardness and iron in some of the groundwater would make its use undesirable for domestic use. The nitrate concentrations in Well A2 (see Table D-6-7 and Figure D-6-17) are significantly above the recommended drinking water standard.

The conductivity, calcium, sulfate and chloride concentration of wells which penetrate the 70 sand or below is given in Figure D-6-15. Water quality from Wells 8-3, 889 and 1808 is not reflective of the 70 sand aquifer in the area of these wells because their piezometric heads indicate they are influenced by a different sand. Calcium and sulfate follow the same pattern as conductivity. Chloride values of the 70 sand aquifer are all low and are not reflective of other major constituents. The 68 sand water quality seems fairly close to the 70 sand. The water quality from the 50-40 sand, Well 1822, is better than most of the 70 sand's water quality while the Roland coal's water quality is similar to that of the 50 and 40 sands.

-15-

Radium and selenium have been detected in the wells in the ore zone. Wells centered in the three pit areas consistently produce Ra-226 concentrations at levels in excess of the 5 pCi/l standard. Selenium has been detected in Well 1 (W-2) at levels in excess of water standards.

Table D-6-9 gives the laboratory water quality results from piezometers in the evaporation pond and tailings areas while the permeability test tables in Appendix A-1 give the field parameters. The conductivity of the water from the E coal - Lower mudstone and other mudstones and sandstones above the 70 sand are plotted in Figure D-6-16. Values for conductivities other than E coal - Lower mudstone are shown in brackets. The conductivity of water in the E coal - Lower mudstone shows a definite pattern in the evaporation pond area. The concentrations around the north and east sides of the evaporation pond are the lowest, and conductivities increase toward the dam. The conductivity of the water from Well 35N-7D (E coal) is 580 umhos/cm, which indicates the concentration does not increase much from just north of the evaporation pond to this well. Conductivities of water from mudstones in the area of Pit 35N vary from 325 to 1,090 umhos/cm while the values of water from the sandstones ranged from 330 to 880 umhos/cm.

2.0 SURFACE WATER

2.1 DRAINAGE BASINS

. The project area lies entirely within the drainage basin of Ninemile Creek, which is tributary to Antelope Creek. Antelope Creek flows

-16-

into the South Cheyenne River (Wyoming nomenclature) which joins the Belle Fourche River in South Dakota to form the Cheyenne River. The Cheyenne River subsequently flows into the Missouri River. The entire Antelope Creek drainage basin is shown on Figure D-6-19. Ninemile Creek's drainage is shown on Figure D-6-17, and the Ninemile Creek tributaries which are relevant to the project are shown on Figures D-6-17 and D-6-18.

Antelope Creek has a drainage area of 980 square miles with an approximate channel length of 62 miles and an average gradient of 0.006 (ft/ft). The elevation at Antelope Creek's headwaters is approximately 6,225 feet above mean sea level (msl), and 4,400 feet at its confluence with the South Cheyenne River. The U.S. Geological Survey has a stream gaging station on Antelope Creek approximately ten miles upstream from its mouth. The drainage area is 959 square miles, at the gage.

Ninemile Creek has a total drainage area of 63 square miles, a channel length of approximately 20 miles, and an average channel gradient of 0.006 (ft/ft). The elevation difference from headwaters to mouth is 610 feet with a maximum basin elevation of approximately 5,500 feet above msl. Upstream of monitoring site I-7 (Figure D-6-17), 34 square miles of the Ninemile Creek basin drain the project area. The channel length within this area is approximately 10.5 miles with an average gradient of 0.007 (ft/ft).

Simmons Draw is a Ninemile Creek tributary flowing southeasterly through the project (Figures D-6-17 and D-6-18). Its total drainage area is 8.1 square miles. The channel length is 6.8 miles with an average gradient of 0.007 (ft/ft). Total basin elevation difference is 260 feet with a maximum elevation of approximately 5,475 feet above msl.

-17-

Pine Tree Draw, with a drainage area of 8.2 square miles, flows from the north into Ninemile Creek on the eastern edge of the project area (Figures D-6-17 and D-6-18). The channel length is approximately 7.6 miles, and the average gradient is 0.009 (ft/ft). The maximum basin elevation approaches 5,470 feet above msl, and the minimum is approximately 5,110 feet.

Simmons Draw has two tributaries which flow in a predominantly southerly direction in the project area. These tributaries are labeled Washes Nos. 1 and 2 on Figures D-6-17 and D-6-18. Wash No. 2 is further subdivided into Upper Wash No. 2 and Lower Wash No. 2 based on the channel reach being upstream and downstream of the proposed mining Pit 35N. Wash No. 4, which is tributary to Ninemile Creek, is also further divided into Upper Wash No. 4 and Lower Wash No. 4 at the location of the proposed mill tailings evaporation pond dam.

Wash No. 1 has a drainage area of 1.7 square miles, a channel length of 2.8 miles, and an average channel gradient of 0.014 (ft/ft). The basin elevation difference is approximately 205 feet with a maximum elevation of 5,475 feet above msl.

Upper Wash No. 2 and Lower Wash No. 2 have drainage areas of 1.9 and 0.95 square miles, respectively. Their respective channel lengths are 3.1 and 2.2 miles with average gradients of 0.012 and 0.007 (ft/ft).

The drainage areas of Upper Wash No. 4 and Lower Wash No. 4 are 0.70 and 0.53 square miles respectively. Channel lengths are 0.46 and 1.3 miles with respective gradients of 0.017 and 0.013 (ft/ft).

-18-

Wash No. 3 (see Figures D-6-17 and D-6-18) drains into Pine Tree Draw from the northwest in Section 36 of T42N-R75W. Its drainage area is 1.8 square miles, the channel length and average gradient are 3.2 miles and 0.014 (ft/ft), respectively, and the basin elevation difference is approximately 230 feet. The maximum basin elevation is approximately 5,480 feet above msl.

Drainage basin characteristics for Antelope Creek, Ninemile Creek, and all of the tributaries relevant to the Moore Ranch project area are summarized in Table D-6-10.

2.2 CHANNEL GEOMETRY

Representative channel cross sections for Upper Wash No. 2 in the area of Pit 35N, and upstream from this pit, are shown on Figures D-6-20 and D-6-21, respectively. The location of each cross section is identified with a letter and a dashed line on Figures D-6-17 and D-6-18. Figure D-6-22 shows a typical channel cross section of Upper Wash No. 4 downstream of the proposed mill evaporation pond, and Figure D-6-23 shows a channel cross section for Wash No. 1 west of the backfill storage area. Channel conveyance characteristics including discharge, cross-sectional area, velocity, channel gradient, hydraulic radius, Manning's roughness coefficient and the volumes for the 5-year and 100-year floods are also shown for each of these channel cross sections on their respective figures. Locations of each channel cross section site are shown on Figures D-6-17 and D-6-18. Additional channel cross sections for Lower Wash No. 2. Simmons Draw, Ninemile Creek, and Wash No. 3 at crest stage gage locations are shown on Figures D-6-24, D-6-25, D-6-26, and D-6-27, respectively. Figure D-6-28 shows a channel cross section with channel conveyance characteristics computed for Simmons Draw downstream from the Moore Ranch project These channel cross section sites are also shown on Figure D-6-18. area.

-19-

Samples of channel bed material from Simmons Draw, Wash No. 2, and Wash No. 3 were collected and subjected to mechanical and radiation analysis. Typically, only 10 to 15 per cent of the samples passed through the 0.1 millimeter sieve. Curves of grain size distribution are given in Figures D-6-29, D-6-30, and D-6-31.

2.3 SURFACE WATER RUNOFF

In Wyoming at least three techniques are available for estimating flood flows and volumes in ungaged basins for different recurrence intervals. Lowham (1976) presented a basin characteristics technique whereby peak flow was related to drainage area with consideration of different regions in the state. Lowham's regression equations can be used for basins with drainage areas between 5 and 5,300 square miles. However, using a graphical approach, his technique can be used for basins slightly less than one square mile in area.

For small basins (approximately 10 square miles and less) Craig and Rankl (1977) developed basin characteristics regression equations which utilize other basin parameters in addition to drainage area to compute peak flows and flood volumes. Also, for small basins, the U.S. Soil Conservation Service (SCS) has developed a technique to estimate peak flows and flood volumes. These techniques are published in their Engineering Field Manual (1969). The SCS technique utilizes peak rainfall values published by the U.S. Weather Bureau and then takes into consideration soil and vegetation characteristics and basin slope and drainage area to make the flood flow and volume estimates.

Additional Text for Section 2.2

Longitudinal profiles of local drainages within the permit area are provided in Figure D-6-36. Features of the proposed complex (Dam 1A, Dam 2 and Pit 35N) which will lie on these drainages are depicted on the appropriate profiles.

Please note that one proposed feature (Dam 1B) does not occupy a position on a major drainage. For a detailed discussion of all these features, please refer to the Mine Plan. Table D-6-11 presents flood flow and volume estimates for the 2-year, 5-year, 10-year, 25-year, 50-year, and 100-year events. For comparison purposes, values obtained by utilizing the three available techniques are tabulated. Mean annual flows using Lowham's technique are also shown. However, mean annual flow values are questionable for ephemeral or intermittent streams because many zero values must be averaged with the relatively infrequent runoff events.

Values listed in Table D-6-11 under the SCS method were obtained using curve number 75 and 24-hour duration precipitation values from Miller and others (1973). Table D-6-12 shows precipitation for selected recurrence intervals for different duration periods.

At the U.S. Geological Survey stream gaging site on Antelope Creek, discharge data are available for the period of record, October 1977 -September 1979. This can be seen in the Survey's annual report entitled <u>Water Resources Data for Wyoming</u>. Maximum flow observed during this period was 6,600 cubic feet/second, and minimum daily flow was 0.10 cubic feet/ second. Mean discharge for water year 1978 was 28.7 cubic feet/second and 7.09 cubic feet/second for water year 1979. Mean monthly discharges for water years 1978 and 1979 are shown on Figure D-6-32.

For the smaller tributaries to Ninemile creek in the project area, long periods of no flow would be expected. Runoff would be observed mainly during snowmelt and rainstorm events occurring between March and August.

2.4 SURFACE CONTROL STRUCTURES

Several small ponds exist downstream of the project. The first major surface water control structure downstream of the project is the

-21-

Angostura Reservoir on the Cheyenne River in South Dakota. This reservoir is approximately 320 river kilometers (200 river miles) downstream of the project. Storage capacity of this reservoir for different pool elevations is given in the U.S. Geological Survey Water Supply Papers on surface water data of this area.

2.5 SURFACE WATER QUALITY

The U.S. Geological Survey has operated a stream gaging and water quality monitoring site (Antelope Creek near Teckla, Wyoming) since October 1977. Total dissolved solids ranged from less than 300 to greater than 2,000 mg/l in the first two years of operation. The water is extremely hard with values often exceeding 1,000 mg/l. Calcium, magnesium, and sodium are all present in significant concentrations with no single cation being overwhelmingly dominant. Sulfate and bicarbonate are the dominant anions. With the exception of most major ions, no chemical contaminants seem to be in Antelope Creek near Teckla in excessive concentrations.

Observed suspended sediment concentrations at the Antelope Creek gage ranged from 5 to greater than 1,000 mg/l for the two-year period of record. The sediment content varies directly with water discharge. Therefore, the bulk of the sediment load is transported during spring snowmelt runoff and spring and summer thunderstorms. Figures D-6-33 and D-6-34 show the seasonal relationship and the relationship with stream discharge at the Antelope Creek gage for water years 1978 and 1979, respectively.

Table D-6-13 shows chemical analyses on samples that have been collected from surface water monitoring sites in the project area. All

-22-

sites listed on this table are plotted on Figures D-6-17 and D-6-18. Total dissolved solids at these sites range from less than 50 to greater than 2,300 mg/l. Some of the lower values represent samples taken during times of snowmelt runoff. Most samples have calcium as the predominant cation with sodium and magnesium as less, but still significant cations. Sodium is not present in quantities large enough to present a hazard for irrigational use. Sulfate and bicarbonate are the dominant anions as they are downstream at the U.S.G.S. Antelope Creek gage.

Total suspended solids (TSS) in creeks draining the Moore Ranch project area are generally low except during some runoff events. During these times, TSS have exceeded 500 mg/1.

Toxic minor elements have not been detected in excessive or potentially dangerous concentrations. Iron has been occasionally observed in levels that would cause inconvenient sink or laundry staining if used as a domestic water supply.

In summary, high sulfate and hardness concentrations would make the surface water draining the project area inconvenient or unpleasant, but not unsuitable for use as a domestic supply. No trace contaminants, including boron, are present in quantities to prevent use as an agricultural water supply.

2.5.1 SURFACE WATER MONITORING PROGRAM

Table D-6-13 presents pre-mine surface water monitoring results while Figures D-6-17 and D-6-18 show the locations of these sites. The mining and post-mining surface water programs will be the same and are defined in Section 3.5.6 of the Mine Plan.

-23-

PERSPECTIVE OF STREAM CHANNELS IN RELATION TO THE FLUVIAL SYSTEM

The fluvial system in Wash 1, 2 and 4 is very small. Figures D-6-30 and D-6-31 give the grain size distribution curves for a sample from the channel bottom in Wash 2 and 3 respectively. These samples indicate the material in these two channels are mainly medium and coarse sand. A sample from Simmons Draw which is slightly coarser material then the samples from Wash 2 and 3 is given in Figure D-6-29. The arroyo channels in this area are mainly grass covered and very stable. The channel of the lower portion of Ninemile Creek has a significant fluvial system.

3.0 WATER RIGHTS

2.6

The ground-water and surface water rights for 10 miles from the project area were searched from the State Engineer's files. Ground-water and surface water rights locations are shown in Figure D-6-35 and are listed in Tables D-6-14 and D-6-15, respectively.

3.1 GROUND-WATER RIGHTS

Table D-6-14 provides well locations to the quarter-quarter section, permit number, use, user, probable aquifer, well depth, water level if reported, and additional information for each of the ground-water rights. Wells 12299 and 39648 through 39656, which are located in the permit area, are held by Conoco, Inc. for the purpose of defining the ground-water hydrology for the project. The only permitted well located in the permit area (not held by Conoco) is Well 14682. This well, which is owned by Taylor Ranch, is 158 feet deep and used for stock watering. Wells 14660 and 14681 are approximately 1/2 mile north of the permit area and are

-24-

2.6 ADDITIONAL DISCUSSION OF FLUVIAL SYSTEM

Channel characteristic information (Section 2.2, page 19) is shown on Figures 6-20 through 6-23 and Figure 6-28. Figure D-6-36 presents longitudinal profiles. Further discussion is found in Section 2.6 on page 24.

In general, the ephemeral southeastward trending drainages within and near the proposed permit area must be described as showing evidence of downcutting with no pronounced flood plains or depositional characteristics. Each of the draws or washes which passes through the area has its origin on the divide between the Cheyenne and Powder River drainage system which is located at an elevation of about 5480 feet to the north of Highway 387. Note that the area north of the divide (Figure D-6-17) which is a portion of the origin of the Powder River system, is typically more rugged and contrasts significantly with the topography of the Cheyenne drainage.

Further specific information on soils and vegetation in the drainages can be found in Appendices D-7, D-7A (Soils) and D-8, D-8A (Vegetation). Figure D-8-4 shows a photograph of a typical drainage meadow.

Additional channel information is available in an erosion study for the site which is attached for reference. This report is included as Appendix A-3 at the end of this appendix. stock-watering wells also. Two deeper wells, Permit Numbers 35330 and 35746, which are 500 feet and 660 feet deep respectively, are located approximately 8,000 feet north of the permit area. These wells are primarily used for stock-watering. Numerous wells, 14675, 14677, 14683, 14684 and 14686, are located within 3 miles of the northeast corner of the permit area. Each of these wells is used for stock-watering. Several wells are located within 3 miles of the permit area, but only Well 6972 is used for purposes other than stock-watering. This well is used for irrigation and wildlife. Well 17305, which is 2,500 feet from the southeast corner of the permit area, is also used to water stock.

The only two permitted domestic wells within 3 miles of the permit area are Wells 12240 and 3909. The depths of these wells are 180 feet and 273 feet, respectively. A shallow stock well is located approximately 1 mile west of the permit boundary.

3.2 SURFACE WATER RIGHTS

The surface water rights for the project are given in Figure D-6-35 and Table D-6-15. Location, permit number, stream, use and user are given in the table for the surface water rights. Surface water rights north, west and east of the permit area do not receive water which drains from the permit area.

The first two surface water rights downstream of the permit area are Numbers 3308 and 14212 which are located on Ninemile Creek. These two sites are approximately 4.6 miles downstream of the permit area.

-25-

Permit 3308 covers the reservoir on Ninemile Creek which is used to store and divert water to the lands to be irrigated under Permit Number 14212. Seventy acres of land were permitted to be irrigated along Ninemile Creek from this reservoir. There is currently no evidence of active irrigation operations which were associated with these 1918 water rights.

4.0 HYDROLOGIC IMPACTS

The main impacts to the hydrologic systems from the project will be the drawdown in the aquifers from pumping. A small impact to the surface water systems will be seen from the containing of some runoff and its usage. The ground-water and surface water impacts are discussed in the Mine Plan under section 3.5.

All of the wells in the permit area are used by Conoco except well 14682. Well 14670 (Permit Number) (see Figure D-6-35 for location) is only 22 feet deep. This well could not be completed in the 70 sand because it is a long distance from the 70 sand outcrop. Mining and milling at the project site should not cause an impact on this well.

Well 17305 is located in the outcrop area of the 70 sand and is only 50 feet deep. This well is likely to be a 70 sand well. A maximum drawdown of four feet in the 70 sand aquifer is expected in this area. The Pine Tree Draw is located near this well and could be very effective in recharging this area of the aquifer. If this is the case, less drawdown should be observed. A drawdown of four feet probably would reduce the maximum yield of the 70 sand in this area by approximately 20 per cent.

-26-
Well 6973 is likely to be completed in the 70 sand. A maximum drawdown in the range of three feet is expected in the 70 sand aquifer in this area. This well has 110 feet of standing water in it. A drawdown of three feet in the aquifer in this area should not significantly reduce the maximum yield of the aquifer.

Well 14683 is a stock well and probably is a 70 sand well. A maximum drawdown of approximately seven feet is expected in the aquifer in this area. This quantity of draw-down should result in approximately ten per cent reduction in maximum yield in this well. Well 14683 (P'-8) is proposed as an operational monitoring well.

Well 14682 which is inside the permit boundary, and well 14681 are much shallower than the projected depth to the top of the 70 sand in these areas. These wells are not expected to be impacted by the project. Well 14682 (P'-26) is proposed as an operational monitoring well.

Well 14660 (see Figure D-6-35 for location) is approximately one-half mile north of the permit boundary. This well is probably completed above the 70 sand aquifer. A maximum drawdown in the range of ten feet is expected in the 70 sand aquifer in this area.

Wells which are further from the mine pits will be impacted less. An estimate of the drawdown in the 70 sand aquifer can be obtained from Figures MP-10, MP-11 and MP-12. The reduction in maximum yield for wells other than the ones discussed should be insignificant.

Pine Tree Spring is the only spring close to the project. The ground-water source for this spring is thought to be above the 70 sand

-27-

aquifer. Impacts to Pine Tree Spring are therefore not expected. A flume with a continuous recorder will be installed at Pine Tree Spring to determine if any decreases of flow are attributed to the mine dewatering. Pine Tree Spring will also be included in the operational monitoring program.

A discussion of the per cent of watershed blocked by the Sand Rock project is given in Section 3.5.1 of the Mine Plan. Permits 3308 and 14212 are the only surface rights which these reductions could influence. Surface water is not presently being used under these two permits.

REFERENCES

- Boulton, N. S., Analysis of Data from Non-equilibrium Pumping Test Allowing for Delayed Yield from Storage. Proceedings Instn. Civil Engineers, Volume 26, 1963.
- Chen and Associates, Inc., <u>Geotechnical Investigation for the Proposed</u> <u>Evaporation Pond and Tailings Disposal Area to be Constructed During</u> <u>Phase I of the Sand Rock Mill Project</u>, <u>Campbell County</u>, <u>Wyoming</u>, 1980.
- Chen and Associates, Inc., <u>Geotechnical Investigation for Proposed Tailings</u> Disposal Scheme, Pit 35N, Sand Rock Mill Project, Campbell County, Wyoming, 1980.
- Craig, Gordon, and James Rankl, Analysis of Runoff from Small Drainage Basins in Wyoming. U.S. Geological Survey, Open-File Report 77-727, 1977.
- Crist and Lowry, Ground-Water Resources of Natrona County, Wyoming, 1972.
- Dagan, G., A Method of Determining the Permeability and Effective Porosity of Unconfined Anisotropic Aquifers. Water Resources Research, Volume 3 (4), 1967.
- Engineer's Field Manual, Chapter 2, Estimating Runoff. U.S. Soil Conservation Service, 1969.
- Ferris, J. G., D. B. Knowles, R. H. Brown, and R. W. Stallman, Theory of Aquifers Tests. U.S. Geological Survey, Water-Supply Paper 1536-E, 1962.
- Jacob, C. E., Notes on Determining Permeability of Pumping Tests Under Water Table Conditions. U.S. Geological Survey, Open File Report, 1944.
- Lohman, S. W., Groundwater Hydraulics, Geological Survey Professional Paper 708, 1972.
- Lowham, H. W., Techniques for Estimating Flow Characteristics of Wyoming Streams, U.S. Geological Survey, Water Resources Investigation 76-112, 1976.

REFERENCES (cont'd)

- Miller and others, Precipitation-Frequency Atlas of the Western United States, Vol. II, Wyoming NOAA Atlas 2, U.S. Department of Commerce, Silver Spring, Maryland, 1973.
- Neuman, S. P., Effect of Partial Penetration on Flow in Unconfined Aquifers Considering Delayed Gravity Response. Water Resources Research, Volume 10 (2), 1974.
- Seeland, David, Relationships Between Early Tertiary Sedimentation Patterns and Uranium Mineralization in the Powder River Basin, Wyoming; Wyoming Geological Association Guidebook 28, Field Conference, pages 53-64, 1976.
- Streltsova, T. D., Flow Near a Pump Well in an Unconfined Aquifer Under Nonsteady Conditions, Water Resources Research, Volume 9 (1), 1973.
- Streltsova, T. D., Unsteady Radial Flow in an Unconfined Aquifer. Water Resources Research, Volume 8 (4), 1972.
- Whitcomb, Cummings & McCullough, Ground Water, Geology, Johnson County, Wyoming, 1966.

		Depth	Perforated			Water Leve	ł	Elevation	M.P. Above
Hole No.	Date Drilled	Drilled (ft-LSD)	(ft-LSD)	Lithologic Unit	Date	Depth (ft-MP)	Elev. (ft-MSL)	of M.P. (ft-MSL)	(ft)
P-I	9/79	51	38-48	LMS - E Coal	4/3/80	dry	5,236.6	5,287.9	1.6
P-2	3/9/80	50.5	35-50	LMS - E Coal*	4/2/80	43.79	5,250.5	5,294.3	1.8
P-3	3/11/80		39-49	LMS ·	3/27/80	50.5	5,233.4	5,283.9	2.4
P-4				LMS - E Cool*	3/24/80	23.18	5,266.7	5,289.9	1.1
P-48	3/3/80	33.2	28-33	UMS - E Coal	3/27/80	21.80			1.8
P-48-1	3/3/80	33	28-33	UMS - E Coal	3/27/80	20.26			3-1
P-4C	3/3/80	25	12-25	UMS - U Coal	3/27/80	19.22			2.6
P-4CA	3/25/80	30	25-30	UM5	3/27/80	22.65			3.7
P-5	3/9/80	47	43-45.5	E Cool	3/24/80	28.37	5,271.9	5,300.3	2.3
P-6	3/4/80	40	28.5-38.5	USS	3/24/80	35.75	5,278.4	5,314.1	1.7
P-7	3/4/80	160	130-160	7055	3/4/80	133	5,175.6	5,308.6	0.5
P-7A	3/4/80	160	75-90	U7055	4/10/80	88.49	5,220.4	5,308.9	0.8
P-8	3/9/80	59.5	32-58	LMS - E Coal	4/2/80	26.09	5,296.9	5,269.0	2.1
P-9	3/10/80	35	25-35	LMS - E Coal*	4/2/80	14.60	5,266.1	5,280.7	2.1
P-9A	3/25/80	18	12-18	UMS	4/9/80	16.04	5,264.3	5,280.3	ŀ-7
P-10	3/10/80	59.5	33-59-5	LMS - E Cool*	3/24/80	28.30	5,268.0	5,296.3	0.5
P-11	3/7/80	20	16.5-19	E Coal	3/27/80	18.60	5,254.0	5,272.6	0.3
P-12	3/9/80	32.5	29-32	E Coat	4/9/80	30.90	5,276.5	5,307.4	1.0
P-13	3/13/80	19.5	9-19	UMS *	4/11/80	17.60	5,263.6	5,281.2	0.4
P-I3A	3/25/80	28	22-28	E Coal	3/27/80	19.96	5,263.9		3.1
P-15	3/11/80	· 35	27-35	LMS - E Coal*	3/27/80	23.03	5,263.5	5,286.5	2.0
P-15A	3/25/80	21	17-21	UMS	3/27/80	22.9	5,263.5		1.9
P-16	3/11/80	73	58-73	U 70 55	3/24/80	75.5	5,218.9	5,294.4	2.4
P-17	3/13/80	89.5	79.5-89.5	U 70 SS	3/24/80	92.7	5,211.9	5,304.6	2.6
P-18		25	14-18	ALI	3/27/80	22.25	5,250.8	5,273	0.3
P-19	3/14/80	59	30-57	LMS	4/10/80	31.34	5,254.2	5,285.5	3.5
P-20	2/28/80	119.3	107-119	\$ 70 SS	3/27/80	97.54	5,184.5	5,282.0	0.7
P-20A		107.2	99-107	S 70 SS	3/26/80	98.18			1.1
P-208		117.5	107-117	5 70 55	3/26/80	98.79			1.6
P-21	3/18/80	120-4	88-118	5 70 55	3/24/80	75.32	5,177.5	5,252.8	2.8

BASIC COMPLETION AND WATER LEVEL DATA FOR THE EVAPORATION POND AREA (AREA 10)

NOTE:

. .

M.P.	æ	Measuring Point
LSD	=	Land Surface Datum
LMS	=	Lower Mudstone
UMS	=	Upper Mudstone
E Coal		E Coal

• Completion of well questionable.

-31-

U Coal = Upper Coal USS = Upper Sandstone U 70 SS = Upper (Unsaturated) 70 Sand 70 SS = 70 Sandstone S 70 SS = Saturated 70 Sandstone

	Data	Depth	Perforated	Lithologic		Nater Level	Fley	Elevation of M.P.	M.P.Above
Hole No.	Drilled	(Ft-LSD)	(Ft-LSD)	Unit	Date	(Ft-MP)	(Ft-MSL)	(Ft-MSL)	(F1)
35N-1C		178.7	154-179	U7055	5/15/80	dry		5354.8	1.2
35N-1D	-	43.2	36-44	SS	5/16/80	39.54	5314.9	5354.4	0.8
35N-1E		29.0	21-29	MS	5/15/80	28.86	5326.1	5355.0	1.4
35N-2A		159.5	145-160	U70SS	5/21/80	147.25	5191.0	5338.3	0.8
35N-2B		131.0	126-131	55	5/19/80	124.28	5214.1	5338.4	0.9
35N-2C		73.3	64-74	MS	5/19/80	69.52	5269.4	5338.9	1.4
35N-3		29.5	20-30	55	4/09/80	dry	-	5401.9	3.2
35N-4		131.6	112-132	55-MS	4/09/80	dry	-	5389.3	1.0
35N-5		79.0	69-79	S5	5/19/80	78.4*	5219?	5294.7	1.3
35N-6		90.3	80-90	55	5/15/80	86.87	5236.5	5323.4	1-2
35N-7A		182.9	143-183	7055	5/18/80	132.30	5172.9	5305.2	1.1
35N-78 ·		115.4	101-116	U7055	5/15/80	dry		5305.6	1.5
35N-7C		83.4	74-84	55	5/15/80	82.09	5229.3	5311.4	4.3
35N-7D		99.0	92-99	E Coal	5/18/80	97.39	5207.9	5305.3	1.2
35N-7E		27.4	22-28	55	5/15/80	18.90	5289.7	5308.6	1.5
35N-7F		17.7	12-18	MS	5/15/80	14.97	5294.5	5309.5	2.4
35N-7G		59.2	51-59	U Coal	5/18/80	33.14	5272.2	5305.3	1.2

BASIC COMPLETION AND WATER LEVEL DATA FOR THE 35N PIT TAILINGS DISPOSAL AREA

NOTE:

M.P.	=	Measuring Point
LSD	2	Land Surface Datum
LMS	=	Lower Mudstone

- UMS = Upper Mudstone E Coal = E Coal

U Coal = Upper Coal USS = Upper Sandstone U 70 SS = Upper (Unsaturated) 70 Sand 70 SS = 70 Sandstane S 70 SS = Saturated 70 Sandstone

* Completion of well questionable.

BASIC WELL COMPLETION DATA FOR WELLS IN THE MINE AREA

	ę.			1	Depths (Et.)			Dian	neters)		
Well No.	Aquifer	Collar Elevation (Ft.Abv.msl)	Total	Casing	Perforated Interval	Gravel Pock	Drill Bit	Casing (1.D.)	Type Casing	State Permit	Date Drilled
1810	7055	5378	265	265	200-260	×	8-3/4	3"	PVC	39650	07/29/77
1808	70-6855	5377	275	275	195-275	x	9-7/8	5"	PVC	39651	07/2B/77
1809	7055	5356	230	230	135-225	×	8-3/4	3"	PVC	39652	07/28/77
889	7055	5334	260	260	200-260	×	8-3/4	3"	PVC	39653	07/29/77
890	70-6855	5410	330	330	240-330	x	8-3/4	3"	PVC	39654	07/29/77
22-2	7055	5287	165	165	85-165	x	8-3/4	3*	PVC	39655	08/01/77
8-3	70-6855	5308	175	175	105-175	×	9-7/B	5°	PVC	39656	06/01/77
885	7055	5350	240	240	180-240	x	9-7/8	5"	PVC	39648	רד/22/דס
886	7055	5349	240	240	180-240	x	8-3/4	3"	PVC		07/21/77
887	6855	5347	320	320 .	290-320	×	8-3/4	3"	PVC		07/20/77
888	7055	5352	250	250	180-240	×	8-3/4	3"	PVC		07/21/77
1	7055	5331	240	240	200-240		6-1/4	5°	PVC	39649	09/17/77
1805	7055	5331	240	240	-120-240	X ·	8-3/4	3"	PVC	-	07/22/77
1806	7055	5324	220	220	120-200	x	8-3/4	3"	PVC	-	07/21/77
1807	6855	5328	290	290	250-290	x	8-3/4	3"	PVC	-	07/22/77
1814	7055	- 5345	207	207	143-207		9-7/8	5"	Steel		11/02/75
1815	7055	5348	208	208	142-208	x	5-1/8	3*	PVČ		11/08/78
1816	7055	5343	207	207	138-207	x	5-1/8	3"	PVC	-	11/08/78
1817	7055	5350	233	233	143-233	x	5-1/8	3"	PVC		11/08/78
893	7055	5348	240	240	153-240	x	9-0	5"	Steel		11/21/78
1821	Roland Co	al 5355	1200	1200	1120-1200		8-3/4	6"	Steel		10/22/79
1822	50-4055	5355	740	740	560-600						
					640-680						
					700-720		8-3/4	6"	Steel	محمود م	10/26/79
1823	6855	5345	240	240	210-240		8-3/4	6"	Steel		-04/ /80-
								÷			3/30/80

NOTE:

M.P.	=	Measuring Point	U Coal	Ξ	Upper Coal	
LSD	=	Lond Surface Datum	USS	=	Upper Sandstone	
LMS	-	Lower Mudstone	U 70 SS		Upper (Unsaturated) 70 Sand	
UMS	=	Upper Mudstoné	70 SS	=	70 Sandstone	
E Coal	=	E Coal	S 70 55	3	Saturated 70 Sandstone	

* Completion of well questionable.

.

.

SUMMARY OF SUBSOIL HYDRAULIC CONDUCTIVITIES AND AQUIFER PROPERTIES (CONSTANT-HEAD AND PUMP TEST)

	Well	Lithogic	Transmiss	sivity	Hydraulic C	Conductivity	Storage	Specific
	No.	<u>Unit</u>	Gal/Day/Ft	M2/Yr	Ft/Yr	Cm/Sec	Coefficient	Yield
	P-I	LMS - E Coai	3.1	14.	15.	1.5 × 10-5		
	P-2	LMS - E Coal	0.10	0.46	0.70	6.8 × 10-7		
	P-3 .	LMS	1.6	7.2	. 7.7	7.5 × 10 ⁻⁶		
	P-4	LMS- E Coal	0.14	0.65	• 0.70	6.8 × 10-7		
	P-48	UMS - E Coal	1.6	7.3	15.8	1.5 X 10-5		
	P-4CA	UMS	0.47	2.1	4.6	4.4 × 10-6		•
	P-5	E Cool	0.32	1.4	6.2	6.0 × 10-6		
	P-6	USS	1.5	6.6	7.1	6.8 × 10-6		
	P-7	7055	58.	262.	94.	9.5 × 10-5		
	P-8	LMS - E Coal	1.4	6.6	2.7	(2.6 × 10-6)		
	P-9	LMS - E Coal	0.079	0.36	0.38	(3.7×10^{-7})		
	P-9A	UMS	0.31	1.4	2.5	2.4 × 10-6		
	P-10	LMS - E Coal	0.67	3.0	1.2	1.2 × 10 ⁻⁶		
	P-11	E Coal	2.7	12.	53.	5.1 × 10 ⁻⁶		
	P-12	E Coal	0.41	1.9	6.7	6.5 × 10 ⁻⁶		
	P-13	UMS	3.6	17.	180.	1.7 × 10-4		
	P-13A	E Coal	1.8	8.3	14.8	1.4 × 10 ⁻⁵		
	P-15	LMS - E Coal	0.12	0.52	0.71	6.8×10^{-7}		
,	PISA	UMS	4.5	20.	55.	5.3 × 10 ⁻⁵		
	P-16	U7055	0.32	1.4	1.0	9.9 × 10 ⁻⁷		
	P-17	U7055	0-13	0.61	0.65	6.3 X 10 ⁻⁷		
	P-18	ALL	25.	110.	470.	4.6 × 10 ⁻⁴		
	P-20B	705S	1.7	7.7	8.5	8.2 × 10-6		
	P-21	7055	2.3	10.3	3.7	3.6 × 10 ⁻⁶		
	35NI-C	U7055	0.40	1.8	0.78	7.5 × 10 ⁻⁷		
	35NI-D	55	1.20	5.2	7.0	6.8 × 10 ⁻⁶		
	35NI-E	MS	0.14	0.65	0.9	8.5 × 10 ⁻⁷		
	35N-2A	U7055	2.6	11.9	8.5	8-2 × 10-6		
	35N-2B	55	0.82	3.6	7.8	7.6 × 10 ⁻⁶		
	35N-2C	MS	0.9	4.0	4.3	4.2 × 10 ⁻⁶		
×	35N-3	55	7-1	32.2	34.7	3.4 × 10 ⁻⁵		

•

₩...

.

• •

(CONT.)

Well	Lithogic	Transmissivity		Hydraulic Conductivity		Storoge	Specific
No.	<u>Unit</u>	Gal/Day/Ft	M ² /Yr	Ft/Yr	Cm/Sec	Coefficient	Yield
35N-4	M5-55	1.1	5.0	2.7	2.6 × 10 ⁻⁶		
35N-5	SS .	0.0025	0.011	0.0012	1.2 × 10 ⁻⁹	*	
35N-6	SS	2.1	9.4	10.2	9.8 × 10 ⁻⁶		
35N-7A	7055	[170.	5320.	1430.	1.4 × 10 ⁻³		
35N-7B	U7055	1.7	7.7	5.5	5.4 × 10 ⁻⁶		
35N-7C	SS	1.7	7.7	8.3	8.0 × 10 ⁻⁶		
35N-7D	E Coal	5.8	26.4	40.6	3.9 X 10 ⁻⁵	24	
35N-7E	S5	5.2	23.5	42.1	4.1 × 10 ⁻⁵	<u>्रकृ</u> ः	
35N-7F	MS	0.37	1.7	3.0	2.9 × 10-6		
35N-7G	U Cool	0.02	0.07	0.09	9.0 × 10 ⁻⁸		
886	7055	800.	3600.	650.	6.2 × 10-4	1.0 × 10 ⁻³	0.015
й.	÷e.	1800.	8000.	1430.	1.4 × 10 ⁻³		
888	7055	170.	770.	140.	1.3 X 10 ⁻⁴	2.9 × 10 ⁻³	
887	6855	1.9	8.5	3.1	3.0 × 10 ⁻⁶		
1805	7055	910.	4100.	560.	5.4 × 10 ⁻⁴	5.2 × 10-4	
806	7055	840.	3800.	510.	4.9 × 10-4	2.8 × 10 ⁻⁴	
1816	7055	3800.	17000.	4600.	4.4 ×10 ⁻³	7.0 × 10 ⁻⁴	0.010
1821	Roland Cool	1400.	6350.	854.	8.3 × 10 ⁻⁴		
1822	50-4055	720.	3260.	351.	3.4 X 10-4		
1823	68SS	190.	860.	306.	3.0 × 10 ⁻⁴		

NOTE:

M.P. LSD LMS UMS E Cool	2 3 3 3 3 2 2	Measuring Point Land Surface Datum Lower Mudstone Upper Mudstone E Coal	U Coal USS U 70 SS 70 SS S 70 SS		Upper Coal Upper Sandstone Upper (Unsaturated) 70 Sand 70 Sandstone Saturated 70 Sandstone	
-------------------------------------	------------------	---	--	--	--	--

* Completion of well questionable.

Hole	Test Interval	Lithologic	Hydraulic (Perm	Conductivity eability)
Number -	<u>(ft-LS)</u>	Unit* .	<u>ft/yr</u>	cm/sec
PD-3	30-40	LMS	<1.0	< 9.7 × 10 ⁻⁷
PD-5	11.5-16.5	UMS	.4</td <td>< 1.4 × 10⁻⁶</td>	< 1.4 × 10 ⁻⁶
	17-22	UMS	63	6.1×10^{-5}
	31-36	LMS	<0.8	< 7.7 × 10 ⁻⁷
PD-6	18-23	UMS	<1.5	< 1.4 × 10 ⁻⁶
	25-30	E Coal	2.3	2.2 × 10 ⁻⁶
	29.5-34.5	LMS	1.6	1.5 × 10 ⁻⁶
PD-7	10-15	USS	330	3.2×10^{-4}
	16-21	UMS	320	3.1 × 10 ⁻⁴
	25-30	E Coal	1.5	1.4 × 10 ⁻⁶
PD-8	7-12	USS	5,070	4.9×10^{-3}
	24-29	UMS	<1.0	< 9.7 × 10 ⁻⁷
PD-9	18-23	USS	1.5	1.4×10^{-6}
	28-33	UMS	< 0.9	< 8.7 × 10 ⁻⁷
	32-37	E Coal	< 0.7	< 6.8 × 10 ⁻⁷
PD-10	12-17	UMS	1.4	1.4×10^{-6}
	17-22	UMS	1.1	1.1 × 10 ⁻⁶
	24-29	UMS	<1.0	<9.7 × 10 ⁻⁷
	29-34	UMS	<0.8	< 7.7 × 10 ⁻⁷

SUMMARY OF SUBSOIL PERMEABILITIES FROM PACKER TESTS EVAPORATION POND AREA

-36-

Hole	Test Interval	Lithologic	Hydraulic (Perme	Conductivity eability)
Number	(ft-LS)	<u>Unit*</u>	<u>ft/yr</u>	<u>cm/sec</u>
PD-11	7-12	USS	250	2.4×10^{-4}
	12-17	USS	14	1.4 x 10 ⁻⁶
	17-22	UMS	<1.3	<1.3 x 10 ⁻⁶
PD-11	24-29	U Coal	<0.9	<8.7 × 10 ⁻⁷
	29-34	UMS	<0.8	<7.7 × 10 ⁻⁷
PD-12	17-22	LMS	1.3	1.3 x 10 ⁻⁶
à,	26-31	LMS	< .	<1.1 × 10 ⁻⁶
ia.	34-39	U70SS	490	4.7×10^{-4}
PD-14	6-11	USS	360	3.5×10^{-4}
	27-32	LMS	1.2	1.2×10^{-6}
PD-15	7-12	USS	<2.1	<2.0 × 10 ⁻⁶
	14.5-19.5	USS	<1.4	<1.4 x 10 ⁻⁶
	27-32	LMS	< .	< . x 10 ⁻⁶
PD-16	8-13	UMS	<2.3	<2.2 × 10 ⁻⁶
ά.	17-22	USS	430	4.2×10^{-4}
	20-25	USS-U Coal	410	4.0×10^{-4}
	30-35	UMS	<0.8	<7.7 × 10 ⁻⁷

(CONT.)

Hole	Test Interval	Lithologic	Hydraulic (Perme	Conductivity ability)
Number	(ft-LS)	Unit*	ft/yr	<u>cm/sec</u>
PD-17	6-11	USS	6.4	6.2×10^{-6}
	8-13	USS	620	6.0×10^{-4}
	17-22	USS	240	2.3×10^{-4}
	20-25	USS-U Coal	630	6.1×10^{-4}
	25-30	UMS	<0.9	<8.7 × 10 ⁻⁷
	35-40	E Coal	0.7	6.8×10^{-7}
PD-18	11-16	USS	34	3 . 3 × 10 ⁻⁵
	19-24	USS	1.2	1.2×10^{-6}
PD-19	12-17	US5	1,060	1.0×10^{-3}
	18-23	U Coal	. 800	7.7×10^{-4}
PD-20	5-10	USS	12	1.2×10^{-5}
	15-20	USS	140 .	1.4×10^{-4}
	22-27	UMS	1.0	9.7 × 10 ⁻⁷
PD-21	8-13	USS	2,800	2.7×10^{-3}
	22-27	USS	17	1.6 × 10 ⁻⁵
PD-22	14-19	USS	1.4	1.4×10^{-4}
PD-24	6-11	USS	210	2.0×10^{-4}
	17-22	UMS	59	5.7 × 10 ⁻⁵
	22-27	USS	72	7.0 × 10 ⁻⁵

]

(CONT.)

Hole	Test Interval	Lithologic	Hydraulic (Perm	Conductivity eability)
Number .	(ft-LS)	Unit*	ft/yr	<u>cm/sec</u>
PD-26	11-16	USS	5.1	4.9×10^{-6}
Ψ.	20-25	USS	13	1.3 × 10 ⁻⁵
	27-32	USS	730	7.1×10^{-4}

NOTE:

М	P.	=	Measuring Point	U Coal	=	Upper Coal
L	SD	=	Land Surface Datum	USS	=	Upper Sandstone
L	MS	=	Lower Mudstone	U 70 SS	2	Upper (Unsaturated) 70 Sand
Ū	MS	=	Upper Mudstone	70 SS	=	70 Sandstone
EC	loo	=	E Coal	S 70 SS	=	Saturated 70 Sandstone

•

WATER LEVEL DATA FOR THE 70 SAND WELLS

						W	ell					
	22	-2	88	35	88	39•		1	18	09	19	10
Date	Depth	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.
8/17/77			181.3	5,168.7	ų.		159.8	5,171.2				
8/24/77							159.2	5,171.8				
דרק 115	97.9	5,189.1	180.3	5,169.7	163.3	5,170.7			187.6	5,168.4	207.2	5,170.8
10/26/77	98.1	5,188.9	180.3	5,169.7	164.1	5,169.9	158.2	5,172.8	187.5	5,168.5	207.5	5,170.5
1/24/78			180.2	5,169.8			157	5,174				
2/13/78			180.3	5,169.7			157	5,174				
3/21/78			179.8	5,170.2			156.7	5,174.3			8	
9/13/78	97.67	5,189.3			17.5	5,316.5			187.83	5,168.2	205.17	5,172.8
2/15/79	98.50	5,188.5	179.58	5,170.4	30.83	5,303.2				*	205.83	5,172.2
3/1/79	98.33	5,188.7	179.08	5,170.9	38.33	5,295.7	157.67	5,173.3	188.17	5,167.8	205.58	5,172.4
5/30/79	98.17	5,188.8	178.33	5,171.7	42.83	5,291.2	158.17	5,172.8	187.76	5,168.2	205.50	5,172.5
7/19/79	97.87	5,189.2	178.75	5,171.3	49.50	5,284.5	156.17	5,174.8	187.33	5,168.7	205.08	5,172.9
9/4/79	97.58	5,189.4	178.33	5,171.7	50.17	5,283.8	156.42	5,174.6	187.31	5,168.7	205.50	5,172.5
9/29/79							156.00	5,175.0				
11/30/79	97.67	5,189.3	179.67	5,170.3	53.62	5,280.4	156.00	5,175.0	187.71	5,168.3	205.17	5,172.8
12/21/79							156.00	5,175.0				

	Well														
	22-2 Dette		88	35	88	19			180	19	181	0			
Date	Depth	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.			
1/2/80	97.58	5,189.4	178.5	5,171.2	62.00	5,272.0	156.08	5,174.9	187.67	5,168.3	205.08	5,172.9			
4/15/80					56.17	5,277.8	-		187.33	5,168.7	204.83	5,173.2			
4/16/80							155.67	5,175.3							

						ell				
	89	3	18	4	1	115	18	16	18	17
Date	Depth	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.
11/16/78			161.3	5,183.7	162.6	5,185.4	158.3	5,184.7	166.5	5,183.5
12/1/78			161.1	5,183.9	162.4	5,185.6	158.2	5,184.8	166.5	5,183.5
6/19/79	179.0	5,169.0	159.92	5,185.1						
9/26/79	179.0	5,169.0	159.0	5,186.0						
9/27/79	178.5	5,169.5								
12/2/79	178.0	5,170.0	159.67	5,185.3						
4/1/80			159.67	5,185.3						
4/9/80	178.08	5,169.9								

.

.....

Note: Depth, in ft below LS Elev., in ft above MSL

* Fluctuations in water level hint at improper completion of well =

-40-

GROUNDWATER GUALITY FOR PRIVATE WELLS NEAR CONOCO'S SAND ROCK PROJECT

.

Well No.	Well Location	Date	TDS	Cond	uctivity	Temperature	Na	ĸ	<u>Co</u>	Mg	<u>504</u>	<u>C1</u>	<u>co</u> ;	HC03		н_
	41N-74W					*										
A-1 17304	04 NESE	6/26/79 ^(a) 12/7/79 ^(b)	492 606	820 870	(705) (839)	(17). (7)	39 46	9 9	101 107	15 17	187 215	6 8	0	234 278	7.53 7.73	(7.15) (7.70)
A-2 17302	04 SENE	6/26/79 ^(c) 8/14/79 12/7/79	655 670	1,100 1,130	(676) (647) (1,069)	(17) (15) (9)	13 -9	, ,	156 169	10 27	_179 _160	25 41	0 0	312 307	7.91 7.61	•.(7.00) (7.45) (7.70)
P'-6 9309	17 SWSE	6/28/79	831	1,270	(1,083)	(16)	107	10	128	19	460	12	0	151	7.66	(7.30)
P'-7 12240	17 SWSE	6/28/79	509	940	(795)	(14)	48	8.	100	20	212	16	٥	Z39	7.58	(7.05)
	41N-75W			×						÷						
P'-9 —	03 NE5W	6/20/79 9/27/79 3/26/80	1,024 1,012 964	1,389 1,365 1,300	(1,163) (1,258) (1,249)	(13) (12) (11)	45 42 42	3 3	201 186 197	48 46 47	550 450 516	766	000	312 315 327	7.32 7.57 7.61	(6.85) (6.95) (7.30)
P'-11	04 NENW	8/16/79	1,048	1,500	(1,308)	(12.5)	65	12	165	53	548	8	0	283	7.74	(7.45)
	42N-74W															
P'-8 14683	30 NWNW	6/28/79	2,339	2,770	(2,466)	(16)	16	11	512	116	1 ,270	4	0	366	6.95	(6.60)
I-30 (Pine Tre	31 SWNE He Spring)	6/29/79 3/25/80	1,030 844	1,450 1,260	(1,176) (1,131)	(30) (1)	31 29	. 9 . 9	211 162	54 50	467 472	25 21	0	376 278	7.83 7.61	(8.85) (8.6)
	42N-75W															
P'-10	33 SWSE	6/20/79	1,566	1,923	(1,608)	(18)	37	5	375	58	910	12	0	359	7.71	(7.45)
T-1 1 2299	33 SEINW	6/26/79 9/18/79 9/25/79	661 690	1,100 1,060 —	(924) (896) (920)	(15) (14) (19)	87 85	9 9 	106 106	17 20	270 284	10 7	00	254 249	7.49 7.69	(7.35) (6.90) (7.05)
P'-36	36 SENW	10/10/79 12/10/79	604 693	921 1,070	(801) (1,042)	(15) (9.5)	15 13	6 5	109 143	43 51	154 251	8 7	0	390 398	7.72 7.80	(7.30) (7.70)

Notes:

Number below well number is the State Engineer's G.W. Permit Number.

All concentrations are in mg/l except Conductivity, in umhas/cm @ 25°C; Temperature, in °C; pH in pH units, U; Pb-210, Po-210, Ra-226 and Th-230 in pCi/l; and Charge Balance = difference in major equivalents divided by sum of major equivalents times 100.

- () Denotes field measurements.
- Denotes less than the value,
- (a) Additional parameter for the sample is silver = *0.01.

(b) Additional parameters for this sample are silver = •.01 and alkalinity (as CoCO3) = 228.

(c) Additional parameter for this sample is silver = *0.01.

(CONT.)

Well <u>No.</u>	<u>_Ai</u> _	NH- (os R)	As	Ba	Be	8	Cd	<u>Cr</u>	<u>Cu</u>	_ <u>F_</u>	Fe	РЬ	Mn	Hg
A-1 17304	• .05 • .05	• .05 • .05	• -002 • .002	• .02 • .02	• .005 • .005	• 1.0 • 1.0	* .002 * .002	* .01 • .01	• .002 0.007	0.13 0.19	0.011 • .05	• .05 • .05	0.007 0.02	• .001 • .001
A-2 17302	• .05 • .05	• .05 0.10	• .002 • .002	• .02 • .02	• .005 • .005	• 1.0 • 1.0	•002 .056	• .01 • .01	•002 .022	0.16	0.024 .17	• .05 .17	• .003 .02	• .001 • .001
P'-6 9309	• .05	• .05	• .002	• .02	• .005	• 1.0	* .002	• .01	• .002	.08	.592	• .05	.072	• .001
P'-7 12240	• .05	• .05	• .002	• .02	• .005	* 1.0	• .002	• .01	• .002	. 14	.424	• .05	.078	• .001
P'-9	• .05 • .05 • .05	• .05 0.10	• .002 • .002 • .002	• .02 • .02 • .02	• .005 • .005 • .005	* 1.0 * 1.0 * 1.0	• .002 • .002 • .005	• .01 • .01 • .01	• .002 • .002 0.010	.13 * .05 0.12	.069 • .05 0.10	• .05 • .05 0.07	-088 .07 0.08	100. • 100. • 100. •
P'-11	* .05	0.06	• .002	• .02	• .005	• 1.0	.008	• .01	.009	.14	.02	* .05	.02	• .001
P'-8 14683	• .05	0.09	• .002	• .02	• .005	• 1.0	* .002	• .01	• .002	.31	5.842	• .05	.856	• .001
I-30 (Pine Tre	• .05 • .05 • Spring)	0.07 0.57	• .002 • .002	• .02 • .02	• .005 • .005	• 1.0 • 1.0	• .002 • .005	• .01 • .01	• .002 0.009	0.90 0.80	0.038 0.10	• .05 0.09	0.279 0.24	• .001 • .001
P'-10	• .05	• .05	• .002	• .02	• .005	• 1.0	.013	• .01	• .002	.36	.139	• .05	.03	• .001
T-1 12299	• .05	• .05 • .05	• .002 • .002	• .02 • .02	• .005 • .005	• 1.0 • 1.0	• .002 • .002	01. 10.	• .002 .005	.17 .23	-012 -12	• .05 • .05	.016	:001 :001
P'-36	• .05	2.81	• .002	• .02	• .005	• 1.0	• .002	• .01	.002	.27	5.6	•05	.08	• .001

	N 17	R

Well No.	Mo	NI	<u>N0</u> 3	<u>Se</u>	<u>_v</u>	Zn	<u> </u>	<u>Pb-210</u>	Po-210	Ra-226	<u>Th-230</u>	Charge Balance
A-1 17304	• .02 • .05	• .01 • .01	1.70 1.86	* .002 * .002	• .02 • .02	1.80 1.83	37 <u>+</u> 2	0 <u>±</u> .3	0.03 ± 0.1	0.15 ± .05	0±.1	1.9 1.6
A-2 17302	• .02 • .05	• .01 • .01	24.0 36.0	• .002 • .002	• .02 • .05	0.054 .135	20 ± 1 ·	0.3 <u>±</u> .1	⁰ ± .04	0.15 = .04	0.41	0.8
P'-6 9309	• .02	• .01	.30	* .002	* .02	.054	0 <u>+</u> 2	0 <u>+</u> 1	0 ± .02	0.35 <u>+</u> .05	0.2 <u>+</u> .1	1.9
P*-7 12240	• .02	• .01	.22	• .002	• .02	.041	6 <u>+</u> 1	0 <u>+</u> .05	0 <u>+</u> .06	0.74 <u>+</u> .07	0.3 ± .1	0.8
ףי-9 —	• .02 • .02 • .05	• .01 • .01 • .01	1.16 0.44	-007 • .002 • .002	• .02 • .02 • .05	.024 .006 0.007	32 ± 2	1.6 <u>+</u> .2	0.4 ±.05	2.0 ± .1	0.2 <u>+</u> .1	1.5 1.6 1.3
P'-()	• .02	• .01	.88	• .002	• .0Z	-050						1.7
P*-8 14683	• .0Z	• .01	.34	• .002	• .02	0.945	7 ± 1	0 ± .5	0.08 ± .02	0.75 <u>+</u> .07	0±-1	5.1
I-30 (Pine Tre	* .02 * .05 # Spring)	: .01 : 01	1.61 2.25	• .002 • .002	• .02 • .05	0.007	2 <u>+</u> I	0 <u>+</u> .9	0.2 <u>+</u> .04	0.35 ± .05	137 - 7	0.1 4.5
P'-10	• .02	• .01	.39	• .002	• .02	.078	17 ± 1	1.9 ± .7	0.10 <u>+</u> .02	80. <u>+</u> 0	0±.1	0.1
T-I 12299	• .02 • .02	• .01 • .01	1.43 3.05	• .002 • .002	• .02 • .02	.113	44 ± 2	0±.4 -	0.02 <u>+</u> .01	0.41 ± .06	0.3 <u>-</u> .1	3.0 3.2
P'-36	• .02	• .01	1.07	• .002	•02	.720						0.2

• .•

GROUNDWATER QUALITY FOR CONOCO'S SAND ROCK MONITORING WELLS

Well No.	Weil Location	Date	TDS	Condi	uctivity	Temperature	Na	к	<u>Ca</u>	Mg	50,	<u>C1</u>	<u>co</u> 3	HCO	3 <u>p</u> l	<u>-</u>
	41N-75W															
22-2	02 NŴNE	1/3/80	508	725			13	8	96	23	106	5	0	305	6.95	
8-3 (W-4A)	03 NENW	6/28/79 9/27/79 12/6/79 4/9/80	1,460 1,426 1,566 1,398	1,950 1,910 1,800 2,000	(1,610) (1,660) (1,680) (1,750)	(B) (12) (10) (10)	8 9 8 10	12 12 13	354 278 245 251	58 96 120 115	980 750 936 860	6 6 12	0000	361 371 361 256	7.10 7.30 7.23 6.75	(6.85) (6.50) (7.75) (7.1)
	42N-75W	-														
893 (W-1)	34 NE5W	11/30/78 6/27/79 9/27/79 10/10/79 12/21/79 4/9/80	975 820 870 914 874 842	1,100 1,250 1,250 1,240 1,150 1,350	(1,080) (1,150) (985) (1,120) (1,150)	(11.1) (15) (13) (15) (11) (11)	42 47 43 45 44 47	10 12 11 12 12 12	180 158 158 160 155 159	36 35 37 34 40 40	470 427 408 418 410 460	2 6 6 5 10	0000000	235 264 278 266 266 281	7.1 7.54 7.27 7.45 7.23 7.31	(7.25) (6.95) (7.70) (7.65) (7.5)
885	34 NESW	4/12/78 ^(a)	836	1,113		-	31.5	8.1	208	33.5	426	3.3	0	281	7.53	
886	34 NESW	4/12/78 ^(b)	827	1,299	٠		46	9.5	229	43	75	4.9	0	851	7.44	
887	34 NESW	4/12/78 ^(c)	1,170	1,490		-	54	9.1	265	56	459	11	D	375	7.66	
888	34 NESW	4/12/78 ^(d)	855	1,155			54	8.1	081	30	424	6.4	٥	311	7.97	
889	34 NWSW	1/3/80 4/15/80	462 395	640 630	(570)	ūŋ	12 8	8	79 78	23 21	198 192	5 6	0 0	134 146	6.60 7.24	(7.0)
	42N-75W															
l (W-2)	35 NWSE	4/12/78 ^(a) 11/30/78 ^(b) 6/27/79 9/29/79 12/21/79 4/16/80	286 364 218 254 352 182	504 510 440 464 515 295	(363) (442) (473)	(11.4) (15) (14) (10)	8.4 4 3 5 4 7	7.0 7.7 8 8 8 7	80 81 47 54 67 35	14.0 15 14 14 16 9	72.5 73 85 64 71 46	•2 1 6 3 4	0000000	22B 172 195 217 242 127	7.87 6.7 7.90 7.68 7.15 7.45	(7.75) (7.20) (7.40) (7.6)
1805	35 NWSE	4/12/78 ^(h)	765	996		-	60	7.7	143	29	433	6.4	0	178	8.06	
1806	35 SWNE	4/12/7B ⁽ⁱ⁾	886	1,290			41	9.1	234	46	28	4.9	0	975	7.25	
1807	35 SWNE	4/12/78 ^(j)	680	1,100			35	8.4	187	35	7 8	+2.0	0	663	7.44	3
1808 (W-48)	3 NWNE	6/28/79 9/27/79 12/15/79 4/2/80	573 570 608 684	950 930 900 1,010	(800) (789) (813) (988)	(15) (14) (9) (10)	69 69 63 77	9 9 8 10	93 86 84 115	19 17 17 24	303 300 280 405	10 8 6 8	0000	161 171 159 173	7.45 7.48 7.34 8.04	(7.20) (6.45) (7.65) (8.2)
1809	34 NESE	4/15/80	877	1,220	(1,160)	(14)	59	12	104	34	432	8	0	317	7.61	(7.5)
1810	S NWSW	4/15/80	824	1,350	(943)	(13)	47	12	159	40	460	10	0	281	7.31	(7.6)
1814 (W-3)	s∰ swsw	11/30/78 ^(C) 6/27/79 9/26/79 12/2/79 4/1/80	1,006 987 1,068 1,104 1,016	1,130 1,440 1,480 1,380 1,370	(1,230) (1,290) (1,390) (1,380)	(13,5) (13) (13) (10) (10)	22 42 45 41 44	8.3 12 14 12 13	190 201 201 197 203	38 45 46 51 52	497 461 490 508 562	3 8 10 5 6	0000000	248 307 305 285 305	6.5 7.29 7.19 7.09 7.47	(7.05) (6.80) (7.85) (7.3)
1821	34 NWNW	10/25/79	680	1,020	(620)	(15)	131	9	78	6	136	12	0	427	7.93	(7.55)
1822	SA NWNW	10/28/79	468	760	(666)	(13)	90	7	53	8	166	10	0	183	7.77	(7.60)

.

Well No.	<u>_AI_</u>		As	Ba	Be	<u> </u>	<u>Cd</u>	<u>Cr</u>	Cu	F	Fe	РЬ	Mn	Hg
22-2	• .05	0.13	• .002	• .02	• .005	• 1.0	• .002	• .01	0.003	0.27	1.51	• .05	0.68	• .001
8-3 (w-4A)	• .05 • .05 • .05 • .05	0.11 0.81 0.47 0.11	• .002 • .002 • .002 • .002	• .02 • .02 • .02 • .02	• .005 • .005 • .005 • .005	• 1.0 • 1.0 • 1.0 • 1.0	• .002 • :002 • .002 • .006	• .01 0.01 • .01 0.03	• .002 0.004 0.002 0.010	0.03 0.07 0.13 0.09	1.98 2.4 2.65 3.75	• .05 • .05 0.07 0.08	0.33 0.33 0.33 0.32	• .001 • .001 • .001 • .001
893 (W-I)	0.04 • .05 • .05 • .05 • .05 • .05	0.15 • .05 0.13 0.36 0.13 • .05	• .002 • .002 • .002 • .002 • .002 • .002	0.07 • .02 • .02 • .02 • .02 • .02	• .005 • .005 • .005 • .005	0.1 • 1.0 • 1.0 • 1.0 • 1.0 • 1.0	 .005 .002 .02 .002 .002 .002 .005 	10.0 10. • 10. • 10. • 10. •	* .02 * .002 • .002 • .002 • .005	0.1 0.12 0.15 0.14 0.13 0.10	0.3 4.43 8.7 7.3 7.55 7.25	0.03 • .05 • .05 • .05 • .05 • .05	0.03 0.13 0.17 0.15 0.16 0.16	 .0005 .001 .001 .001 .001 .001 .001
865	• .1	• .1	0.004	0.19	• .005	0.2	• .005	• .01	• .01	0.1	0.66		0.23	0.00003
886	• .1	0.18	0.008	1.5	• .005	0.2	• .005	• .01	• .01	0.4	5.Z	-	2.3	+ .0000z
887	• .1	• .1	• .002	0.22	• .005	0.2	• .005	• .01	• .01	0.2	0.18	-	0.34	• .00002
886	• .1	0.65	0.019	0.22	• .005	0.2	• .005	• .01	• .05	0.2	0.18	-	1.5	+ .00002
889	• .05 • .05	0.05	• .002 • .005	• .02 • .05	• .005 • .005	• 1.0	• .005 • .005	• .01 0.02	0.003 • .005	0.36 0.34	• .05 • .05	• .05 • .05	0.21 0.23	• .001 • .001
l (w-2)	• .i 0.05 • .05 • .05 • .05 • .05	• .1 0.01 • .05 0.21 0.15 0.05	 .002 .002 .002 .002 .002 .002 .002 .002 	0.13 0.06 • .02 • .02 • .02 • .02	• .005 • .005 • .005 • .005 • .005	0.1 0.1 • 1.0 • 1.0 • 1.0 • 1.0	 .005 .005 .002 .002 .002 .002 .005 	• .01 • .01 • .01 • .01 • .01 • .01	 .01 .03 .002 .002 .003 .005 	0.1 0.15 0.17 0.15 0.15	 .005 .02 .05 .05 .05 .05 .05 	0.01 • .05 • .05 • .05 • .05	0.02 0.01 0.004 0.02 0.02 • .01	 .00002 .0005 .001 .001 .001 .001 .001
1805	• .1	• .1	0.006	0.15	• .005	0.2	• .005	• .01	• .01	0.2	0.11	-	0.06	• .00002
1806	• .1	0.15	0.029	1.4	• .005	0.2	• .005	• .01	• .01	0.2	12		2.2	• .00002
1807	• .1	0.1	0.013	0.67	• .005	0.2	• .005	• .01	• .01	0.2	1.9	-	1.8	• .00002
1080 (W-4B)	• .05 • .05 • .05 • .05	0.38 1.02 0.10 * .05	 .002 .002 .002 .002 .002 	• .02 • .02 • .02 • .02	• .005 • .005 • .005 • .005	• 1.0 • 1.0 • 1.0 • 1.0	 .002 .002 .002 .005 	0.01 • .01 • .01 0.02	• .002 0.003 0.005 • .005	0.21 0.27 0.23 0.20	0.13 0.21 0.11 • .05	• .05 • .05 • .05 0.07	0.09 0.13 0.06 0.05	• .001 • .001 • .001 • .001
1809	• .05	0.33	0.009	• .02	• .005	+ 1.0	0.005	0.02	0.019	0.20	2.37	0.07	1.22	.001
1810	• .05	0.09	• .002	• .02	• -005	• 1.0	• .005	0.02	0.010	0.34	• .05	• .05	1.22	• .001
1814 (W-3)	0.05 • .05 • .05 • .05 • .05	0.11 • .05 • .05 0.14 • .05	 .002 .002 .002 .002 .002 .002 	0.05 •.02 •.02 •.02 •.02	• .005 • .005 • .005 • .005	1.0 • 1.0 • 1.0 • 1.0 • 1.0	 .005 .002 .02 .002 .002 .005 	0.01 • .01 • .01 • .01 • .01 0.02	• .03 • .002 0.003 0.008 0.009	0.1 0.13 0.14 0.12 0.09	0.4 5.7 11.0 12.1 10.0	0.03 • .05 • .05 • .05 0.08	0.05 0.16B 0.21 0.20 0.21	 .0005 .001 .001 .001 .001
1821	• .05	0.80	• .002	0.06	• .005	• 1.0	0.004	• .01	• .002	0.40	• .05	• .05	0.05	• .001
1822	• .05	0.07	• .002	• .02	• .005	- 1.0	• .005	• .01	• .002	• .05	• .05	• .05	0.02	• .001

```
(CONT.)
```

No.	Mo	Ni	NO3	Aq	Se	<u>v</u>	Zn	U	Pb-210	Po-210	<u>Ro-226</u>	Th-230	Charge Balance
22-2	• .05	• .01	0.89	• .01	• .002	• .05	0.035						0.7
8-3 (w-4A)	• .02 • .02 • .05 • .05	• .01 • .01 • .01 • .01	0.58 0.51 0.24 0.15	• .01 • .01 • .01	 .002 .002 .002 .002 .002 	 .02 .02 .05 .05 	0.047 0.021 0.006 0.015	71 <u>+</u> 4	0 <u>+</u> 0.6	0.12 <u>+</u> .03	0.60 <u>+</u> .07	0 <u>+</u> .4	6.8 .4 5.8 2.8
893 (W-1)	 .01 .02 .02 .02 .02 .05 .05 	0.02 • .01 • .01 • .01 • .01 • .01	0.64 0.18 4.20 2.19 0.32 0.12	• .01 • .01 • .01 • .01	0.0023 • .002 • .002 • .002 • .002	• .01 • .02 • .02 • .02 • .05 • .05	0-3 0.014 0.038 0.025 0.047 0.010	81 58 <u>+</u> 3	10±5	1.5 <u>+</u> .1	302 <u>+</u> 20 126 <u>+</u> 6	0.3 <u>+</u> .1	1.0 1.0 0.5 0.7 0.8 3.2
885	0-002	0.02	0.64	0.006	• .005	• .005	0.03	38			163 <u>+</u> 20		4.5
886	0.004	0.02	0.11	0.006	• .005	• .005	0.03	6.8	-	-	170 <u>+</u> 15	-	4.6
887	0.004	0.03	• .05	0.009	• .005	* .005	0.02	8.8		-	1.2 ± 1.2		12.1
888	0.003	0.02	0.21	0.006	• .005	• .005	0.03	4.1		-	8.2 <u>+</u> 3.0		0.3
889	• .05 • .05	• .05 • .01	0.81	• .01 • .01	• .002 • .002	• .05 • .05	0.077 0.023						0.8 3.0
(w-2)	 .002 .01 .02 .02 .05 .05 	• .01 • .01 • .01 • .01 • .01 • .01	0.07 0.64 0.23 0.82 0.44 0.19	• .005 • .01 • .01 • .01	0.115 0.36 0.041 0.093 0.103 0.065	 .005 .01 .02 .02 .05 .05 	0.02 0.1 0.038 0.051 0.037 0.008	338 399 294 <u>+</u> 15	0 ± -2	 0.2 <u>+</u> .03	69 ± 10 27.6 ± 1.7 8.0 ± .4	 0.0 <u>+</u> .1	3.5 16 9.2 2.8 0.8 3.0
1085	0.002	0.02	* .05	 .005 	• .005	• .005	0.01	10	-	• -	6.6 ± 2.3		.1.0
1806	• .005	0.03	0.07	0.009	• .005	· .005	0.03	12	-	··	125 ± 17		2.2
1807	• .002	0.02	• .05	0.006	• .005	• .005	0.07	3.4		-	6.6 <u>+</u> 2.3		3.6
1808 (W-4B)	• .02 • .02 • .05 • .05	• .01 • .01 • .01 • .01	0.27 0.38 0.35 0.16	:01 :01	 .002 .002 .002 .002 .002 	• .02 • .02 • .05 • .05	0.016 0.015 0.084 • .005	71 <u>+</u> 4	0 ± .6	0.12 <u>+</u> .03	0.60 <u>+</u> ,07	0 <u>+</u> .4	1.0 1.9 0.4 0.7
1809	• .05	• .01	0.25	+ .01	• .002	• .05	0.020						2.0
1810	• .05	• .01	0.26	• .01	• .002	• .05	0.012					,	3.2
(W-3)	• .01 • .02 • .02 • .05 • .05	0.02 • .01 • .01 • .01 • .01	0.64 0.33 0.86 0.40 0.18	:.01 :.01	0.012 • .002 • .002 • .002 • .002	 .01 .02 .02 .05 .05 	0.04 0.035 0.087 0.099 0.017	352 106 <u>+</u> 5	0 ± .1	0.26 <u>+</u> .05	753 ± 45 5.1 ± .3	0 <u>+</u> .1	-3 3.3 2.1 2.3 0.6
1821	• .02	• .01	0.35	• .01	• .002	• .02	0.018						1.0
1822	• .02	• .01	0.27	• .01	• .002	• .02	• .005						4.7

-46-

(CONT.)

Concentration in mg/l except Conductivity, in mbos/cm @ 25°C; Temperature, in °C; pH, in pH units; U, Pb-210, Po-210, Ra-226 and Th-230, in pCi/l and Charge Balance = difference in major equivalents divided by sum of major equivalents time 100.

- () Field Measurements; (W-3) Conoca manitaring well number.
- Concentration less than value.
- (a) Additional parameters for this sample are Silica (as 5,0₂) = 10; Alkalinity (as CaCO₂) = 188; Total Hardness (as CaCO₃) = 219; Redax Potential = 196; Nitrite (as N) = •.05; Phospharus (as P) = •.02; and Total Iron = •1.0.
- (b) Additional parameters for this sample are Phosphate = 0.04 and Nitrite = *.01.
- (c) Additional parameters for this sample are Phasphate = 0.025 and Nitrite = *.01.
- (d) Additional parameters for this sample are Silica (as S,O_) = 9.9; Alkalinity (as CaCO₃) = 232.5; Total Hardness (as CaCO₃) = 560; Redax Potential = 206; Nitrite (as N) = 0.13; Phosphorus (as P) = *.03 and Total Iran = 1.3.
- (e) Additional parameters for this sample are Silica (as S₁O₂) = 19.2; Alkalinity (as CaCO₂) = 703; Total Hardness (as CaCO₃) = 640; Redox Potential = 208; Nitrite (as N) = •.05; Phasphärus (as P) = 0.02; and Total Iron = 49.
- (f) Additional parameters for this sample are Silica (as 5,0-) = 8.6; Alkalinity (as CaCO₂) = 310; Total Hardness (as CaCO₃) = 749; Redax Potential = 207; Nitrite (as N) = •.05; Phosphärus (as P) = •.02; and Total Iron = 1.0.
- (g) Additional parameters for this sample are Silica (as S₁O₂) = 17.1; Alkalinity (as CaCO₂) = 257; Total Hardness (as CaCO₃) = 494; Redax Potential = 197; Nitrite (as N) = *.05; Phaspharus (as P) = 0.04; and Total Iron = 23.
- (h) Additional parameters for this sample are Silica (as S_1O_2) = 4; Alkalinity (as $CaCO_2$) = 147; Total Hardness (as $CaCO_3$) = 418; Redax Potential = 196; Nitrite (as N) = *.05; Phospharus (as P) = *.02; and Total Iron = 4.6.
- Additional parameters for this sample are Silica (as 5,0-) = 19.9; Alkalinity (as CaCO-) = 806; Total Hardness (as CaCO-) = 720; Redox Potential = 227; Nitrite (as N) = *.05; Phosphärus (as P) = 0.02; and Total Iran = 54.
- (i) Additional parameters for this sample are Silica (as S_1O_2) = 12.3; Alkalinity (as $CaCO_2$) = 546; Total Hardness (as $CaCO_3$) = 53B; Redax Potential = 210; Nitrite (as N) = *.05; Phasphörus (as P) = 0.02; and Total Iran = 8.8.

Notes:

TA	BL	E	D -	6-	9
	-	1.0			

GROUNDWATER QUALITY FOR THE EVAPORATION POND AN	ID TAILINGS SITE FOR CONOCO'S SAND ROCK PROJEC
---	--

Well No.	Date	TDS	Conde	uctivity	Temperature	Na	к	Ca	Mg	50 ₄	CI	co3	нсоз	рH	AI	NH- (asN)	As	Ba	Be
P-9A & P-4C	4/02/80	4,028	3,700	(2,855)	(7.2 & 8.9)	90	18	532	336	2,860	38	0	281	17.41	0.06	.05*	0.003	.02*	
P-12 & P-481	4/02/80	2,624	2,590	(2,170)	(9.0 & 8.0)	37	17	517	131	1,635	29	0	415	7.60	,05*	0.09	0.004	.02*	
P-5	4/02/80	260	550	(420)	(8.5)	19	7	61	19	96	4	0	207	7.60	.05*	.05*	0.005	.02*	
P-13A & P-15	4/02/80	4,516	4,000	(3,160)	(8.5 & 8.0)	86	30	655	342	3,070	58	0	122	6.85	0.21	2.10	0.003	•02*	
P-2 & P-9	4/02/80	3,052	2,980	(2,385)	(8.2 & 8.1)	56	22	493	218	1,940	29	0	293	7.67	.05*	1.04	.002*	.02*	
P-10 & P-19		-	-	÷	(9.8 & 8.1)	-	-	-	-	-	-	-	-		-	-		-	
P-7	5/23/80	1,743	1,150	(1,462)	(11.1)	38	12	329	75	1,165	27	0	176	7.55	0.05*	.08	.002*	.02*	
P-20B	5/23/80	1,606	2,220	(1,467)	(11.1)	35	22	349	76	970	27	0	220	7.75	.05*	.15	.002*	.02*	
35N-2A	5/23/80	1,002	1,390	(972)	(11.2)	88	15	152	36	614	9	0	176	7.82	.05*	.11	.002*	.02*	
35N-6	5/23/80	724	1,050	(904)	(10.0)	28	10	149	37	374	7	0	220	8.43	.05*	.16	.002*	.02*	
35N-7A	5/23/80	327	599	(463)	(12.0)	20	10	61	13	102	. 2	0	215	7.85	.05*	.09	.002*	.02*	
35N-7C	5/23/80	443	680	(534)	(8.5)	24	9	80	24	197	4	0	185	7.78	.05*	.21	.002*	.02*	
35N-7E	5/23/80	288	480	(366)	(9.5)	6	5	57	22	73	4	0	215	7.59	.05*	.08	.002*	.02*	
35N-7F	5/23/80	250	410	(399)	(8.0)	8	5	59	19	40	7	0	195	7.77	.05*	.13	.002*	.02*	
35N-7G	5/23/80	256	488	(334)	(10.0)	18	7	61	16	28	. 4	0	239	7.72	.05*	.09	.002*	.02*	

Notes: Concentrations in mg/l, except Conductivity which is in umhos/cm @ 25°C, Temperature in °C, pH in pH units, Pb 210, Po 210, Ra 226 and Th 230 in pCi/l, and Charge Balance = Difference in major equivalents.

() Denotes field measurements.

Denotes less than value.

-0

TABLE D-6-9 (cont'd)

	B	Cd	Cr	Cu	F	Fe	РЬ	Mn	Hg	Мо	Ni	NO3	Se	v	Zn	υ	РЬ210	Po210	Ro226	Th230	Charge Balance
		0.01/		0.020	0.21			0.00	004 *	05.	0.03							<u></u>			
	1.0*	0.015	0.05	0.039	0.21	.05*	0.13	0.98	.001*	.05*	0.02	0.62	.002*	.05*	0.028	•	-	-	-	-	5.3
	1.0*	0.013	0.05	0.029	0.13	-05*	0,14	1.34	-001#	•05*	. 01*	1.37	,002*	.05*	0.016	-	-	-	-	-	3.8
•	1.0*	.005*	.01*	•05*	0.29	.05*	•05*	0.16	•001*	.05*	.01*	0.21	.002*	.05*	0.006	•	+	-	-		1.0
	1.0*	1.129	0.05	0.036	0.51	22.9	0.17	2.57	.001*	05*	0.51	0.46	.002*	.05*	0.666	0.12	0±1	0±.1	0.39 ± .04	2.0 ± .4	1.6
	1.0*	0.014	0.04	0.031	0.20	3.50	0.17	1.50	•1001*	.05*	.01*	0.23	.002*	.05*	0.012	0.025	0 ± 1	0±.1	0.66 ± .06	1.5 ± .2	0.6
	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1.0*	.008	0.01*	-02	0.18	0.05*	0.10	0.12	.001+	.05*	.01*	.89	.002*	.05*	.329	-	0 ± 1	0±.1	.84 [±] .08	0±.2	6.4
	1.0	.008	.01*	.03	.08	•05*	.10	.61	.001*	.05*	.01*	.35	.002*	.05*	.092	< <u>-</u>	4±1 '	0±.2	.10 [±] .03	6.8 [±] .2	2.4
	1.0*	.005*	.01*	.02	.16	.05*	•05*	.18	.001*	.05*	.01*	.23	.002*	.05*	•005 *	-	0±1	0 [±] .1	3.6 [±] .2	0±.2	3.8
	1.0*	.005*	+10.	-01*	.13	•05*	•05*	. 14	.001+	.05*	.01*	.44	•002*	.05*	.008		0±1	0±.2	.12 [±] .03	1.5 [±] .4	1.6
	1.0*	.005*	.01*	.02	.15	.05*	.05*	.	.001*	•05*	.01*	.06	.002*	.05*	.008	-	4±1	0 [±] .1	86±4	2.0 [±] .2	6.5
	1.0*	.005*	.01*	.02	.17	.05*	•05*	.10	.001*	•05÷	.01*	.22	,002*	.05*	.006	-	_			-	0
	1.0*	.005*	.01*	.01*	.19	.05*	.05*	.07	.001+	.05*	.01*	.11	,002*	.05*	.101	-	-		-	_	1.1
	1.0*	•005*	•01*	.02*	.22	.05*	.05#	.01+	.001*	.05*	.01*	.56	.002+	.05*	.005*.	-	-		90 92 44 <u>-</u>	_	82
	1.0*	•005 *	.01*	+10,	15	.05*	.05*	.05	.001*	.05*	.01*	.22	.002+	.05*	005#				·	-	7.1
÷.	•		*		<u>.</u>	: .i.	÷., ;	4				15 5 .	· ····			4 X 1 P	·			-	.

Trade States

「「「

1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1.

Legal.

的自己的问题。

1 14

-64-

Drainage Basin	Drainage Area (mi ²)	Channel Length (mi)	Elevation Differences (ft)	Channe (ft/mi)	el Gradient (ft/ft)
Antelope Creek (total)	980	62	1,825	29.4	0.006
Antelope Creek (at USGS gage)	959 ₋	52	1,775	34 . l	0.006
Ninemile Creek (total)	63	20	610	30.5	0.006
Ninemile Creek (@ I-7)	34	10.5	390	37.1	0.007
Pine Tree Draw	8.2	7.6	370	48.9	0.009
Simmons Draw	8.1	6.8	260	38.2	0.007
Wash No. I	1.7	2.8	205	73.2	0.014
Upper Wash No. 2	1.9	3.1	190	61.3	0.012
Lower Wash No. 2	0.95	2.2	80	36.4	0.007
Wash No. 3	1.8	3.2	230	71.9	0.014
Upper Wash No. 4	0.70	0.46	130	90.2	0.017
Lower Wash No. 4	0.53	1.3	90	69.2	0.013

DRAINAGE BASIN CHARACTERISTICS FOR THE SAND ROCK PROJECT AREA

TAL___ D-6-11

PEAK FLOOD DISCHARGES AND FLOOD VOLUMES FOR SELECTED RECURRENCE INTERVALS FOR STREAMS IN THE SAND ROCK PROJECT AREA

				Lowham	's Metho	xd						Crui	g and Ran	k's Mel	hod				
	Drainage		Flo	od Disch	arge, ft	³ /sec				Floor	t Discha	rge, (1 ³ /s	ec		1	Flood Vo	lume, a	:-ft	
Stream	Areo (mi ²)	Qa*	5-yr	10-уг	25-уг	50-yr	100-yr	2-уг	5-уг	10-yr	25-уг	50-yr	100-yr	2-yr	5-уг	lù-yr	25-yr	50-yr	100-yr
Antelope Creek (total)	980	20	3,000	5,400	9,500	14,000	19,000	-	-	•	_	-	-	-	-	-	-	•	•
Antelope Creek (at USG5 gage)	959	20	3,000	5,400	9,400	14,000	19,000	-	-	-	-	•	-	-	-	-	•	-	-
Ninemile Creek (lotal)	63	4.7	1,100	2,000	3,400	5,000	6,900	2,400	4,700	6,900	9,800	14,000	18,000	630	1,100	1,500	2,000	2,400	2,800
Ninemile Creek (permit area)	34	3.4	900	1,600	2,700	3,900	5,500	2,100	3,800	5,300	7,300	10,000	13,000	580	980	1,200	1,600	1,900	2,200
Pine Tree Draw	8.2	1.6	540	930	1,600	2,300	3,200	560	1,100	1,600	2,200	3,100	3,900	98	170	230	310	380	450
Simmons Draw	8.1	1.6	540	920	1,600	2,300	3,200	790	1,400	2,000	2,600	3,600	4,500	170	280	360	470	550	640
Wash No. 1	1.7	0.69	310	520	900	1,300	1,800	220	410	580	770	1,100	1,310	32	55	73	96	110	130
Upper Wash No. 2	1.9	0.73	320	540	940	1,400	1,900	270	480	670	890	1,200	1,500	43	71	92	120	140	160
Lower Wash No. 2	0.95	0.50	250	420	730	1,000	1,500	320	500	640	770	990	1,200	70	100	120	150	170	160
Wash No. 3	1.8	0.71	310	530	920	1,300	1,800	210	400	560	760	1,000	1,300	29	51	67	90	110	130
Upper Wash No. 4	0.70	0.43	220	370	650	940	1,300	150	260	360	460	610	740	21	35	44	57	67	78
Lower Wash No. 4	0.53	0.37	200	340	590	850	1,200	160	270	350	440	570	670	27	41	51	64	73	83

*Ga = mean annual flow (It³/sec)

(CONT.)

				; x :			Soil	Conserva	tion Se	rvice Met	hod '			
	Drainage			Flo	od Disch	arge, ft	³ /sec		-		Flood Vo	lume, ac-	·ft	jil Jackstra
Stream	Area (mi ²)	Qa*	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	2-yr	5-yr	10-yr	25-yr	50-ут	100-yr
Antelope Creek (totai)	980	20	•	-				-			-		-	
Antelope Creek (at USG5 gage)	959	20	-	-	-	-	-	-	-			-	-	-
Ninemile Creek (total)	63	4.7	•		-	-	-		940	2,000	2,800	4,100	5,100	6,100
Ninemile Creek (permit areo)	34	3.4	-	-	-	-	-	-	510	1,100	1,500	2,200	2,800	3,300
Pine Tree Draw	8.2	1.6	-	-	-	-	-	-	120	260	360	540	660	800
Simmons Draw	B.I	1.6		-	•	-	-		120	250	360	530	660	790
Wash No. I	1.7	0.69	63	150	250	350	450	550	25	53	75	110	140	170
Upper Wash No. 2	1.9	0.73	68	160	260	370	480	580	28	60	84	120	150	180
Lower Wash No. 2	0.95	0.50	43	100	150	240	310	360	14	30	42	62	77	92
Wash No. 3	1.8	0.71	65	160	260	360	470	570	27	57	80	120	150	170
Upper Wash No. 4	0.70	0.43	34	85	140	190	250	300	10	22	31	46	57	68
Lower Wash No. 4	0.53	0.37	28	70	110	150	210	250	7.9	17	23	35	43	51

*Ga = mean annual flow (ft³/sec)

-52-

PRECIPITATION VALUES FOR SELECTED RECURRENCE INTERVALS AND DURATIONS IN THE SAND ROCK PROJECT AREA

.

			Precip	itation, in.	•	un S e ut Seut	
<u>2-Yr</u>	<u>5-Yr</u>	<u>10-Yr</u>	<u>25-Yr</u>	<u>50-Yr</u>	<u>100-Yr</u>	<u>500-Yr</u>	Duration
.25	,35	.42	.52	.59	.66	.83	5-Min
.38	.54	.65	.80	.92	1.03	1.29	10-Min
.48	.69	.83	1.01	1.16	1.30	1.64	15-Min
.67	.95	1.14	1.40	1.61	1.81	2.27	30-Min
.85	1.21	1.45	1.78	2.03	2.29	2.87	I-Hour
.95	1.33	1.59	1.94	2.22	2.49	3.12	2-Hour
1.03	1.44	1.71	2.09	2.38	2.67	3.33	3-Hour
1.25	1.71	2.01	2.44	2.77	3.10	3.86	6-Hour
1.47	2.00	2.35	2.84	3.22	3.60	4.47	12-Hour
1.70	2.29	2.69	3.24	3.67	4.10	5.09	24-Hour
	2-Yr .25 .38 .48 .67 .85 .95 1.03 1.25 1.47 1.70	$\begin{array}{cccc} \underline{2-Yr} & \underline{5-Yr} \\ .25 & .35 \\ .38 & .54 \\ .48 & .69 \\ .67 & .95 \\ .85 & 1.21 \\ .95 & 1.33 \\ 1.03 & 1.44 \\ 1.25 & 1.71 \\ 1.47 & 2.00 \\ 1.70 & 2.29 \end{array}$	2-Yr $5-Yr$ $10-Yr$.25.35.42.38.54.65.48.69.83.67.951.14.851.211.45.951.331.591.031.441.711.251.712.011.472.002.351.702.292.69	2-Yr $5-Yr$ $10-Yr$ $25-Yr$.25.35.42.52.38.54.65.80.48.69.831.01.67.951.141.40.851.211.451.78.951.331.591.941.031.441.712.091.251.712.012.441.472.002.352.841.702.292.693.24	Precipitation, in. $2-Yr$ $5-Yr$ $10-Yr$ $25-Yr$ $50-Yr$.25.35.42.52.59.38.54.65.80.92.48.69.831.011.16.67.951.141.401.61.851.211.451.782.03.951.331.591.942.221.031.441.712.092.381.251.712.012.442.771.472.002.352.843.221.702.292.693.243.67	Precipitation, in. $2-Yr$ $5-Yr$ $10-Yr$ $25-Yr$ $50-Yr$ $100-Yr$.25.35.42.52.59.66.38.54.65.80.921.03.48.69.831.011.161.30.67.951.141.401.611.81.851.211.451.782.032.29.951.331.591.942.222.491.031.441.712.092.382.671.251.712.012.442.773.101.472.002.352.843.223.601.702.292.693.243.674.10	Precipitation, in. $2-Yr$ $5-Yr$ $10-Yr$ $25-Yr$ $50-Yr$ $100-Yr$ $500-Yr$.25.35.42.52.59.66.83.38.54.65.80.921.031.29.48.69.831.011.161.301.64.67.951.141.401.611.812.27.851.211.451.782.032.292.87.951.331.591.942.222.493.121.031.441.712.092.382.673.331.251.712.012.442.773.103.861.472.002.352.843.223.604.471.702.292.693.243.674.105.09

1

SURFACE WATER ANALYSES FOR THE SAND ROCK PROJECT

C. and annual

Site No.	Location	Date	TDS	Cond	ctivity	Temperature	DU	TSS	Turbidity	Na	ĸ	Ca	Mg
	41N-74W												
1-7s (-) (Oid Site 4)	IB SENW	4/21/77(a) 3/27/78(b) 6/22/79	770 322 Dry	935 475	(-) (815)	(-) (1.0)	(-) (7.4)	0.0 1.4		39 14	6.3 4	120 68	33 20
		2/25/80 3/27/80	612	99 0	(-) (946)	(-) (10)	(-) (8.5)	-	3.0	41	10	121	36
1-7A (-)	18 SENW	2/25/80	867	1,170	(-)	(-)	(-)	-	9.5	48	17	141	44
	41N-75W												
1-34 (-)	01 5WNW	3/25/80	32	73	(56)	(2)	(13.6)		7.2	6	4	6	1
1-21 (-)	UZ NENW	6/22/79 9/28/79 10/30/79	304 Dry Dry	500	(441)	(26)	2.9	5	7.2	5	4	60	28
Site 2s	02 NESW	3/22/78 ^(c)	54	62	(-)		-	3.1		0.3	I	14	0.5
1-22 (-)	02 NESW	6/26/79 9/28/79	60 Dry	94	(73)	(26)	8.6	37	34.3	2	5	10	3
1-23s (-)	02 SESW	6/26/79 12/2/79 2/20/80	Dry Dry		(-)	(-)	(-)			-	-		-
1-24 (-)	02 SENE	6/26/79 2/20/80	Dry		(-)	(-)	(-)	-	-	-	-	-	_:
1-5 (-)	03 NWNE	6/26/79 12/21/79	Dry Dry						•."				
	41N-75W												
I-6s (1631)	03 SESE	6/22/79	2,386 Dry	2,667			8.2	7	10.4	59	20	528	74
		2/20/80			(-)	(-)	(-)	-	-	-	-		
Site Is	03 NWSE	3/27/78 ^(d)	566	810	(460)	(10)	(8.5)	1.25		14	4	100	61
1-32 (-)	03 NWSE	6/20/79 9/28/79	1,914 638	2,130	(1,870) (918)	(21) (13)	3.3 (9.3)	• 4.0 136	2.3 172	40 15	13 36	417 131	77 37
- 0\$ (-)	04 NENW	6/20/79 12/21/79	Dry Dry		*								
1-11 (-)	ua nene	6/22/79 9/25/79 10/30/79	1,310 842 Dry	1,650 1,120	(1,380) (1,060)	(21) (19)	3.9 (9.4)	20	2.4	56 65	12 19	195 106	83 43
- 4 (-)	04 SESE	6/20/79 9/25/79 2/20/60	Оту 1,282	1,700	(1,070)	(19)	(14.0)	• 4.0	<u>3.2</u>	39 —	8	133	127
1-15 (-)	09 NENE	6/21/79 12/10/79	430	645	(566) (940)	(23) (1)	3.3 (8.25)	• 4.0	5.0	26 	10 —	96 	17
1-15As (-)	10 SENW	12/21/79 2/25/80	Dry		(-)	(-)	(-)						
1-158s (-)	10 SWNE	3/25/80	1,164		(1,320)	(2)	(9.9)		2.7	32	10	225	70

-54-

Site No.	Location	Date	TDS	Condu	ctivity	Temperature	0	TSS	Turbidity	Na	<u>_</u> K_	Co	Mg
	AIN-75W												
1-33 (9352)	II NWNW	6/20/79 9/18/79 9/27/79 12/10/79 3/25/80	259 434 156	437 700	(144) (586) (658) (653) (258)	(18) (18) (17) (2) (2)	2.9 (7.18 (4.20 (5.2)	• 4.0 • 4.0) _	3.6 5.7 	- 19 - 6	5 9 - 6	54 83 37	21 24
-335s (-)	II NWNE	9/18/79 10/10/79 10/30/79	314 376	500 580	(497)	 (3)	(13.0)	• 4.0 88	6.0 73	9 9	16 21	52 61	13 24
1-31 (-)	12 NW5W	6/26/79 9/18/79 9/28/79	308 422 Dry	500 690	(400)	(25)	6.6	• 4.0 • 4.0	5.0 3.6	5 26	10 8	58 65	15 31
20		3/25/80	152		(228)	(0)	(11.4)		6.0	3	9	29	6
1-35 (-)	12 NWNW	3/25/80	96		(171)	(0)	(11.6)		9.5	2	7	23	4
l-30 (-) (Pine Tree	31 SWNE Spring)	6/29/79 3/25/80	1,030 844	1,450 1,260	(1,180) (1,130)	(30) (1)	8.6 (8.6)	• 4.0	6.5 6.5	31 29	9 9	211 162	54 50
	42N-75W												
1-18 (-)	26 SWSW	6/21/79 9/25/79	Dry 144	208	(161)	(2))	(16.8)			2	5	32	3
1-25 (-)	26 NENW	6/21/79	88	. 128	(121)	(24)	3.6	7	7.9	3	7	21	2
1-26s (-)	26NESE	6/21 /79 9/28/79 10/30/79 12/21 /79	Dry 202 Dry Dry	122	(265)	(12)	-	• 4.0	14.0	26	22	22	6
		2/20/80		-	(-)	(-)	(-)	-	-	-	-	-	-
1-27 (-)	26 SENE	6/29/79 9/18/79 9/28/79	84 202	110 335	(79) (247)	(22) (21)	7.3	228 15	252 17.8	4 19	6 19	10 27	 6
•		10/10/79	276 Dry	341	(287)	(18)	(12.5)	516	234	32	23	20	7
		4/9/80	85		(99)	(3)	(11.4)		10.9	11	5	13	2
[-28s (-)	26 SESE	6/29/79 9/28/79 10/30/79 12/21/79 2/20/80	Dry Dry Dry Dry		(-)	(-)	(-)	-	_	_		-	-
1-16 (-)	27 SENE	6/21/79	106	156	(131)	(22)	3.3	• 4.0	6.0	3	5	26	3
1-175 (-)	27 SESE	6/21/79 9/28/79 10/30/79 12/21/79	Dry Dry Dry Dry	,					ಕ				
		2/20/80			(-)	(-)	(-)	-			-		-
I-Z (-)	28 SE5E	6/21/79	49	.56	(50)	(24)	3.3	8	4.3	4	6	S	I
i-8 (-)	33 NWNW	6/21/79 9/28/79	83 94	112	(102) (129)	(21) (13)	2.9 (5.9)	• 4.0 • 4.0	5.0 12.2	3	5 8	17 18	2 3
1-9 (-)	33 SWSE	6/20/79 2/20/80	1,614	2,000	(086,1) (-)	(18) (-)	(-)	Ξ	=	43	11	354	71 —

Site No.	Location	Date	TDS	Conduc	tivity	Temperature	DO	TSS	Turbidity	Na	ĸ	Ca	Mg
1-13 (-)	33 SENW	6/20/79	583	847	(666)	(18)	-	-	-	87	8	53	26
1-1 (-)	34 NESW	6/22/79 9/25/79 10/30/79 2/20/60	438 402	556 410 =	(464) 	(24) (3) (-)	3.3 (14.3) (-)	• 4.0 354	10.0 163 	10 6 1	22 34 	78 65 	19 3 -
I-IAs (-)	34 NENE	12/21/79 2/20/80	Dry		(-)	(-)	(-)	-	-	-	-	-	-
1-3 (-)	34 SESW	6/26/79 9/28/79	74 Dry	97	(79)	(22)	8.3	10	16.8	1	9	8	2
1-12 (-)	34 SW5E	6/22/79 9/28/79 10/30/79 12/21/79	232 Dry Dry Dry	303	(221)	(22)	3.3	124	f13	9	14	36	6
1-19 (-)	35 SWNE	6/29/79 9/25/79	76 220	114 298	(80) (242)	(18) (20)	Z.9 (18.6)	323	440 —	2	5 15	12 34	2
1-20 (-)	35 SESW	6/20/79 9/27/79 12/10/79 3/25/80	199 	156 	(144) (129) (298) (73)	(18) (19) (3) (0)	3.3 (12.2) (11.70) (11.3)	• 4.0 	4.0 - 13.0	3-1-6	7	22 - 7	5
1-19 (-)	36 SEINW	6/28/79 3/25/80	81 204	133	(99) (265)	(24) (2)	8.0 (15.5)	425	510 7.9	3 6	5 [[14 35	01 01
Site 3s	36 NENW	3/22/78 ^(e)	68	96	(-)	(-)	(-)	0.9	-	1	2	16	7

Surface Site No.	<u>50,</u>	CI	<u>co</u> ,	HCO1	P	н			As	Ba	Be	_8_	Cd	Cr	Cu	F	Fe
1-7s (-) (Old Site 4)	290 116 Dry	16 24	0.0)· 270 156	8.0 7.53	(-) (6.8)	• .1 • .05	0.14	• .05 0.02	• .5 • .03	•	3 9 0.02	• .01 • .002	• .1 • .02	• .01 • .01	0.4	0.25 0.45
	332	13	ō	273	7.71	(-) (7.7)	os	· .05	• .002	• .oz	• .005	• 1.0	• .005	or	005	14	.05
I-7A (-)	446	17	0	271	7.30	(-)	• .05	0.37	• .002	• .02	• .005	• 1.0	0.005	0.02	0.019	0.16	0.23
1-34 (-)	20	2	0	24	6,44	(7.6)	• .05	• .05	• .002	• .02	• .005	• 1.0	• .005	• .01	• .005	• .05	.,11
1-21 (~)	33 Dry Dry	4	0	300	8.24	(8.15)	• .05	• .05	• .002	• .02	• .005	• 1.0	• .002	• .01	• .002	0.33	0.029
Site 2s	5	10	0	44	6.18	(-)	0.15	• .1	0.02	• .03	 ·	0.03	• .002	• .02	• .01	• .1	0.47
1-22 (-)	15 Dry	4	0	· 39	7.00	(6.95)	• .005	• .05	• .002	• .02	• .005	• 1.0	• .002	• .01	• .002	0.03	0.083
1-23s (-)	Dry Dry	-	-	-	-	(-)	-	-	-	_	-	-	-	-		-	
1-24 (-)	Dry —	-	-	-	-	(-)	-	-		-	-	-	-	-		-	_
1-5 (-)	Dry Dry								9 ≢ 1-								
I-6s (1631)	1,500	21	U	198	7.79		• .05	0.05	• .002	• .02	• .005	• 1.0	• .002	• .01	• .0U2	0.06	0.031
	<u> </u>	-	-	-	-	(-)	-		-	-		-	- '	-	-	-	 (
Site is	344	14	0	122	7.52	(6.8)	0.08	• .1	0.03	• .03	-	0.03	• .002	• .02	0.01	• .1	0.97
1-32 (-)	1,315 74	15 17	0	249 527	7.93 7.91	(7.85 (7.35	• .05 • .05	• .05 0.16	* .002 0.007	• .02 • .02	• .005 • .005	• 1.0 • 1.0	0.006 • .002	• .01 • .01	• .002 0.004	0.09	0.238 0.05
-10s ()	Dry Dry																
I-II (-)	1,000 410 Dry	9 10	0	93 234	7.78 7.44	(7.75 (7.15	• .05 • .05	• .05 _	• .002 • .002	• .02 • .02	• .005 • .005	• 1.0 • 1.0	• .002 • .002	• .01 • .01	• .002 0.004	0.10	0.014 0.06
- 4 (-)	Dry 890	17	7	107	8.43 —	(8.00)	0.08 _	•.05	•002	•07	• .005 -	• 1.0	•002	0.01	0.004 -	0.25	0.08
1-15 (-)	195	6	14	166	8.59	(8.85 (7.25	• .05	• .05	• .002 _	• .0z	• .005 	• 1.0	•.002 _	• .01 -	• .00z	0.05	0.062
I-15As (-)	Dry			-97 -		(-)					ĸ						
1-158s (-)	666	8	0	351	7.68	(7.4)	• .05	• .05	• .002	• .02	• .005	• 1.0	• .005	-02	.012	.11	• .05

(CONT.)

Surface Site No.	<u>so,</u>	CI	CUT	HCU ₃	pH			As	Ba	Be	<u> </u>	Cd	Cr	Cu	F	Fe
1-33 (9352)	46 99	- 5 6 —	0	232 295	8.03 7.69	(9.35) 0.10 (7.05) • .05 (7.00)	• .05 • .05 -	• .002 • .002	• .02 • .02	.005 .005	• 1.0 • 1.0	0.024 • .002	:.01 .01	• .002 • .002	0.16	0.095 •0.05
	32	3	0	144	7.14	(7.4) • .05	• .05	• .002	• .02	• .005	• 1.0	• .005	• .01	• .005	• .05	.n
1-335s (-)	23 19	5	0	266 325	7.86 8.14	• .05 • .05 (7.95)	• .05 .20	• .002	• .02 • .02	•005	• 1.0 • 1.0	• .002 • .002 —	.01	.002 .002	0.17 0.19	0.08
1-31 (-)	143 126 Dry	6 9	0	98 256	8.46 8.09	(8.85) • .05 • .05 (-)	• .05 • .05	• .002	• .02 • .02	• .005	• 1.0 • 1.0	• .002 • .002	• .01 • .01	• .002 .004	.16 .18	.055 • .05
	86	2	0	32	6.61	(8.0) • .05	.06	• .002	• .02	• .005	• 1.0	• .005	• .01	-005	• .05	• .05
1-35 (-)	47	2	0	51	7.38	(9.1) * .05	• .05	• .002	• .02	• .005	• 1.0	• .005	• .01	• .005	• .05	.07
1-30 (-) (Pine Tree Spring)	467 472	25 Z1	0	376 278	7.83	(8.6) • .05 (8.6) • .05	.07 .057	• .002 • .002	• .02 • .02	• .005 • .005	• 1.0	• .002 • .005	• .01	• .002 .009	.90 .80	0.038
1-18 (-)	Dry 17	2	12	105	8.80	(8.55) = .05		• .002	• .02	• .005	+ 1.0	• .002	• .01	• .002	.09	.05
1-25 (-)	• 1.4	04	0	78	7.69	(8.45)05	• .05	• .002	• .02	• .005	• 1.0	• .002	• .01	.012	.06	.076
I-26s (-)	Dry 26 Dry Dry	6	0	173	7.98	(7.75) • .05	.08	• .002	• .02	• .005	• 1.0	• .002	• .01	.002	.12	.25
	-	-	-	-	-	(-) —	-	-	-	-	-	-	-	-	-	-
1-27 (-)	9 22	4	02	49 168	7.03 8.52	(6.55) .10 (8.50) • .05	.11	• .002 • .002	• .02 • .02	 .005 .005 	• 1.0 • 1.0	• .002 • .002	• .01 • .01	• .002 .004	• .05 .09	.126 .06
	19	8	17	841	8.76	(8.1) • .05	.12	• .002	• .02	• .005	• 1.0	• .002	• .01	.003	0.15	.49
	17	8	0	· 68	7.00	(8.4) • .05	.67	• .002	• .02	• .005	• 1.0	• .005	-02	• .005	• .05	• .05
-28\$(-)	Dry Dry Dry Dry				i a n t					₩						
1.1003	_	-	-			(-)	- 05	• 001		- 005				- 003		-
1-16(-)	4	4	24	88	7.15	(9.70)* .05	• .05	• .002	02	005	• 1.0	• .002	01	• .002	.05	0.137
1-175 (-)		-	-	-	,	(-) —	-	-	: *** *	-		-	-	1		
1-2 (-)	8	4	٥	20	7.45	(9.20) • .05	.15	• .002	• .02	• .005	• 1.0	• .002	• .01	.004	.13	.171
1-8 (-)	8 17	4	24 U	63 71	9.30 7.26	(9.6) • .05 (7.55) • .05	.07 .08	• .002 • .002	• .02 • .02	• .005 • .005	• 1.0 • 1.0	• .002 • .002	10. • 10. •	• .002 • .002	.08 .10	.320 .38
1-9 (-)	834	15	-	481	8.20	(8.25) * .05 (-) —	•05 _	• .002 _	• .0Z	• .005	• 1.0	013	• .01	• .002	27	- 119

-58-

(CUNT.)

Surface					•		NH									
Site No.	<u>50,</u>	<u>CI</u>	<u>co</u> 3!	HCO3	pH	<u>_AI</u>	(as N)	As	80	<u></u>	8	Cd	Cr	Cu	F	Fe
1-13 (-)	426	5	10	46	9.24	(9.40) * .05	• .05	• .002	• .02	• .005 •	• 1.0	.003	• .01	.010	.16	.127
1-1 (-)	114 17 二	19	53 84	171 115 	9.32 9.67 	(9.40) • .05 17 (8.35) - (-) -	.05 .14 _	.005 .009 二	• .02 • .02	• .005 • .005 =	1.0 1.0 二	• .002 • .002 =	.01 10. • 2	• .002 .012 _	:!! =	.020 .27 _
- As (-)	Dry		-	-	-	(-) —	-		-			-	-		-	-
1-3 (-)	• 1.0 Dry	2	0	44	6.88	(6.90) • .05	• .05	• .002	• .02	• .005 •	• 1.0	• .002	• .01	.003	.04	.080
1-12 (-)	6i Dry Dry Dry	15	0	78	7.46	(9.65) .30	.12	.006	• .0Z	• .005 •	• 1.0	.004	• .01	.022	.n	.382
-19 (-)	• 1.0 17	8	0	49 146	7.05 7.52	(6.65) .05 (7.70) • .05	_ ^{.09}	• .002 • .002	• .02 • .02	• .005 • .005	1.0	• .002 • .002	• .01 • .01	• .002 .003	• .05 • .05	.080 • .05
I-20 (~)	19 19	4	10 - 0	81 	9.06 	9.35 • .05 (9.40) (7.20) (8.0) .08	• .05 - • .05	• .002 _ • .002	• .02 - • .02	• .005 •	1.0 	002 005	• .01 - • .01	005 	.08 - • .05	083 13
1-29 (-)	11 73	43	0	49 95	6.86 7.21	7.05 .70 (9.5) • .05	• .05 .07	• .002 • .002	• .02 • .02	.005 .005	1.0	• .002 • .005	• .01 • .01	• .002 • .005	.02 .05	.416 .07
Site 3s	25	8	0	44	6.05	(-) 0.31	• .1	0.02	• .03		0.03	• .002	• .02	• .01	• .1	0.55

. .

(CONT.)

Surface Site Na.	Pb	Mn	Hg	Ma	Ni	NO ₃	<u>5e</u>	<u>_v</u>	Zn	U	· <u>РЬ-210</u>	Po-210	Ko-226	<u>Th-230</u>	Charge Balance
1–7s (–) (Old Site 4)	• .1 • .05 Dry	• .05 0.06	• .001 • .001	•005 _	• .1 • .02	• .1	• .001 • .01	0.007	• .02 0.05	32	-	Ξ	Ξ	-	1.7 0.9
	.06	.01	• .001	• .05	• .01	.72	• .002	• .05		.005	i				3.1
I-7A (-)	0.06	0.24	• .001	• .05	• .01	0.90	• .002	• .05	0.006						3.7
1-34 (-)	• .05	• .01	• .001	• .05	• .01	_i4	• .002		• .05						7.5
1-21 (-)	• .05 Dry Dry	0.015	• .001	• .02	• .01	10.0	• .002	• .02	0.006	0 <u>+</u> .5	3.0 <u>+</u> .3	0.07 <u>+</u> .02	0 <u>+</u> .05	7.5 <u>+</u> .8	0.9
Site Zs	+ .01	• .01	+ .001	• .02	• .02	• .1	• .01	• .05	0.003	17	-	-	-		
1-22 (-)	• .05 Dry	0.006	* .001	• .02	• .01	0.31	• .002	• .02	0.007	0±1	0.9 <u>+</u> .4	0.13 <u>+</u> .04	0 <u>+</u> .05	0.2 <u>+</u> .1	5.5
1-23s (-)	Dry Dry	-	-	-	-	-		-							
1-24 (-)	Dry _	-	-	-	-	-	-	-	-					;¥:	
1-5 (-)	Dry Dry														
I-65 (1631)	• .05 Dry	0.074	• .001	• .02 _	• .01	0.61	• .002	• .02	0.27		•				0.7
Site Is	• .05	0.74	• .001	-	• .02	0.19	÷ .01	-	0.04		-	•		-	5.7
1-32 (-)	• .05 • .05	0.054	• .001 • .001	• .02 • .02	• .01 • .01	1.35	0.006 • .002	• .02 • .02	0.021 0.21	6 <u>+</u> 1	1.0 <u>+</u> .3	0.17 <u>+</u> .03	0 <u>+</u> .05	0.2 <u>+</u> .1	4.3 2.3
1-10s (-)	Dry Dry											×			
- (-)	• .05 • .05 Dry	0.008 0.64	• .001 • .001	• .02 • .02	• .01 • .01	0.32	• .002 • .002	• .02 • .02	0.014 0.010	1.9 <u>-</u> .4	5 <u>+</u> 1	3.2 <u>•</u> .4	0.07 <u>+</u> .03	13 <u>+</u> 1	7.8 2.1
1-14 (-)	Dry .05	0.08 _	• .001	•0Z	• .or	0.83	• .002	• .02	0.008						5.0
1-15 (-)	•.05	0.018	• .001	• .02	•.01	0.22	• .002	02	0.005	0 <u>+</u> 1	0±1	0.19 <u>+</u> .05	0 <u>+</u> .05	0 <u>+</u> .1	1.1
I-15As ()	Dry														
1-158s (-)	.08	.26	.001	• .05	+ .01	.17	• .002	• .05	.016						3.1

-60-

Surface - Site No.	Рь	Mn	Hg	Ma	Ni	<u>NO3</u>	<u>Se</u>	·	Zn	U	<u>Pb-210</u>	Po-210	<u>Ro-226</u>	Th-230	Charge Balance
1-33 (9352)	• .05 • .05	0.042 0.08	• .001 • .001	• .02 • .02	• .01 • .01	1.20	• .00 • .00	2 • .02 2 • .02 -	0.040	0 <u>+</u> 1	0.8 <u>+</u> .4	0.21 <u>+</u> .04	0 <u>+</u> .2	0.6 <u>+</u> .1	5.7 1.2
	÷ .05	.11	* .001	• .05	• .01	.14	• .00	2 • .05	• .005						1.8
-335 <u>s</u> (-)	• .05 • .05	0.28	• .001 • .001	• .02 • .02	• .01 • .01	0.80 1.58 	• .00 • .00	2 • .02 2 • .02	0.008						5.5 4
1-31 (-)	• .05 • .05 Dry	0.003	100.	• .0Z • .02	• .0! • .0!	.39	• .00	12 • .02 12 • .02	0.022	0±1	0 <u>+</u> 2	0 <u>*</u> .03	0 <u>•</u> .05	5.8 <u>+</u> .4	1.6
2	• .05	10,	• .001	• .05	• .01	.19	• .00	12 * .05	• ,005						1.5
1-35 (-)	+ .05	• .01	• .001	• .05	• .01	.13	• .00	12 • .05	• .005	-					3.5
(Pine Tree Spring)	• .05 .09	.279	100.	• .02 • .05	• .01	2.25	• .00	2 • .02 2 • .05	.007 0.006	2 <u>+</u> 1	0 <u>+</u> .9	0.2 <u>+</u> .04	0.35 <u>+</u> .05	137 <u>+</u> 7	0.1 4.5
1-18 (-)	Dry • .05	• .01	• .001	• .02	• .01	-	• .00	202	0.006						8.3
I-25 (-)	• .05	.005	• .001	• .02	• .01	.94	• .00	2 • .02	.008	0±1	1 .9<u>+</u>5	0.28 <u>+</u> .06	0 <u>+</u> .05	1.6 <u>+</u> .3	4.5
I-26s (-)	• .05 Dry Dry Dry	.17	• .001	• .UZ	• .01	1.5 9	• .00	2 ° .02	.010						3.8
с. Ф	-	-	-	-	-	-	-		-					*	-
1-27 (-)	• .05 • .05	.078 .06	100. * 100. *	• .02 • .02	10. • 10. •	1.83 2.54	• .00 • .00	2 • .02 2 • .02	.009 .012	0 <u>+</u> 1	0.5 <u>+</u> .3	0.2 <u>+</u> .1	0 <u>+</u> .05	0 <u>+</u> .1	9.6 4.5
	• .05 Dry	.09	• 1001	• .02	• .01	1.94	• .00	2 • .02	.022						5.2
	• .05	.10	+ .00!	• .05	• .01	.17	• .00	z • .05	• .005						8.8
I-28s (-)	Dry Dry Dry Dry				16 										
	- 05	-	-		-	-									
1-16 (-)	• .05	.015	• .001	• .02	• .01	.23	• .00.	2 • ,02	.003	Z <u>+</u> 1	0 <u>+</u> .7	0.11 .03	02.05	0 <u>+</u> .1	• 17.0
I-17s (-)	Dry Dry Dry Dry														
•	-			-	-		-	• -	-						
1-2 (-)	• .05	.006	• .001	• .02	• .01	1-33	• .002	2 • .02	.017	0.4+1	1.2.3	0.39.07	0 <u>+</u> .05	0 <u>+</u> -2	. 4.1
1-8 (-)	• .05 • .05	.015 .04	100. • 100. •	• .02 • .02	• .01 • .01	.75 .36	• .00 • .00	2 • .02 1 • .02	.004 • .005	0 <u>+</u> 1	14 <u>+</u> 2	0.29 <u>+</u> .05	U <u>*</u> .05	175 <u>-</u> 8	24.8 7.9
1-9 (-)	• .05	.120	•001	• .02 _	• .01	1.00	004	9 • .02 _	027	3±2	0-1	0.19.04	0 <u>+</u> .07	38 <u>+</u> 3	0

(CONT.)

Surface Site No.	РЪ	Mn	Hq	Mo	NI	NO3	Se	<u>v</u>	Zn	<u> </u>	Pb-210	Po-210	<u>Ro-226</u>	Th-230	Charge Balance
1-13 (-)	• .05	.006	• .001	• .02	• .01	-84	.011	• .02	.015	5.4 <u>+</u> .2	0 <u>+</u> 1	0.24 <u>+</u> .06	0 <u>+</u> .05	0.2 <u>+</u> .1	7.0
- (-)	• .05 • .05 =	.020 .04	• .001 • .001	• .02 • .02 _	• .01 • .01 =	.42 1.65 二	* .002 * .002 _	• :02 • :02 =	.009 .027 	0 <u>+</u> 2	1.4 <u>+</u> .2	0.15 <u>+</u> .03	0 <u>+</u> .05	0 <u>+</u> .1	7.3
I-1As (-)	Dry	-	-	-	-	7	-		-				÷		
i-3 (-)	* .05 Dry	.005	• .001	• .02	• .01	-61	• .002	• .02	.010	0 <u>+</u> 1	0.7 <u>+</u> .3	0.28 <u>+</u> .04	1.0 <u>+</u> .1	0.5 <u>+</u> .1	3.6
1-12 (-)	• .05 Dry Dry Dry	.064	• .001	• .02	• .01	1.44	• .002	• .02	-060	2 <u>+</u> 1	1.2 <u>+</u> .3	0.16 <u>+</u> .03	0.09 <u>+</u> .03	0.0 <u>+</u> .1	1.1
1-19 (-)	• .05 • .05	.016 • .01	• .001 • .001	* .02 * .02	• .01 • .01	83	• .002 • .002	• .02 • .02	.012 .011	0 <u>+</u> 1	0 <u>+</u> .7	0.32 <u>+</u> .09	0+.05	0.7 <u>+</u> .1	2.1 3.2
1-20 (-)	•05 •05	• .003 - .01	.001 - - - -	• .02	• .01 - • .01	.63 - .20	• .002 - • .002	• .02	007 005	0 <u>+</u> 1	1.1 <u>+</u> .4	0.13 <u>+</u> .06	0 <u>+</u> .05	2.6.3	8.8 4.2
1-29 (-)	• .05 • .05	.065 .04	• .001 • .001	• .02 • .05	• .01 • .01	2.24 .18	• .002 • .002	• .02 • .05	• .023 • .005	0±1	0.5 <u>+</u> .3	0.13 <u>+</u> .03	0.35 <u>+</u> .05	0.8 <u>+</u> .1	2.5 0.8
Site 3s	• .02	0.03	• .001	• .02	• .02	• .1	• .01	• .05	0.003	10					0.1

NOTES: s Denates flowing stream, the remainder samples are from panded water.

Concentration less than this value.

- () Denotes field measurements.
- (2345) Behind site number is State Engineer Permit Number, (-) if no permit.

All concentrations are in mg/l, except Conductivity, in µmhas/cm @ 25°C; Temperature, in °C; DO, in dissolved axygen units; Turbidity, in NTU; Pb-210, Pa-210, Ra-226 and Th-230, in pCi/l; and Charge Balance = Difference in major equivalents divided by sum of major equivalents times 100.

- (a) Additional parameters from this sample are: Cyanide •.02, Phenols 0.007, M.B.A.S. = •.01, Silver = •.5, Hardness (CaCO₃) = 440, Silica (S_{O2}) = 10, C.O.D. = 24, Total Kjeldahl Nitrogen = 1.5, Oi) and grease = 0.8, Sulfide (S) = •.001 and Total CO₃ = 130.
- (b) Additional parameters from this sample are: Alkalinity (as CoCO₂) = 128, Hardness (as CoCO₂) = 250, Phasphate = 0.04, Air Temperature = 10°C, @ 1,945 hours water panded with ice cover, no flow measurement.
- (c) Additional parameters from this sample are: Alkalinity (as CaCO₃) = 36, Hardness (as CaCO₃) = 38, Phosphate = = =0.01.
- (d) Additional parameters from this sample age: Alkalinity (as CaCO₃) = 100, Hardness (as CaCO₃) = 500, Phosphate = 0.04, @ 1,810 Flow measurement = 1.37 ft⁻¹/sec and air temperature = 14°C.
- (a) Additional parameters from this sample are: Alkalinity (as $CaCO_3$) = 36, Hardness (as $CaCO_3$) = 70, and Phasphate = +0.01.
GROUNDWATER RIGHTS IN AND ADJACENT TO MOORE RANCH PROJECT PERMIT AREA, FEBRUARY 6, 1980. (NOTE: LOCATIONS ARE SHOWN BY SECTION, QUARTER SECTION, AND QUARTER-GUARTER SECTION)

LOCATION	PERMIT	USE ³ /	USER		PROBABLE AQUIFER	WELL DEPTH (ft)	WATER LEVEL (ft below LS)
T40NR73W	:*:						
29, SESE 31, SWNE 33, SESW	29926 43666 12768	STO MIS STO	Bell, R. & C. Woods Petr. U.S. Forest Service	. L	Wasatch Sand	1,100 810	40 195 0
T40NR74W	-						
3, NWSW 4. NESW	42634 50485	STO MIS	Moore, W.I. Apache Corp.	L	Wasatch Sand	600	F ² /
7, NENE 12, SENW 14, SENW 26, NESW	16591 16592 46277 35316	STO STO MIS MIS	Moore, W. I. Moore, W. I. Woods PetrU.S. BLM Process Equip	L L	Wasatch Sand	1,120 500 596	F F 90
140NR75W	•	ыş.		a			
8, SESW 8, SESW 21, NENW 29, NENE 32, SESE 32, SESE	22287 22286 22288 29439 34197 22301	DOM DOM STO STO DOM-STO DOM	Moore, E. 	L	Wasatch Sand H H H H H H H H H H H H H H	450 440 186 535 400 210	140 140 180 100
<u>T40NR76</u> W	-		×				
1, SWSW 4, NESE 8, SESE 17, NENE 17, NENE 19, NWNE 20, SWNW 26, SESW 28, NESW 29, SWNE 34, NWSE	22295 22303 22294 41146 (es 22293 22302 22289 22291 22292 22292 22290	5TO 5TO 5TO 5TO 5TO 5TO 5TO 5TO 5TO 5TO	Moore, E. "" Ogalalla Ranch CoMoo "" Moore, E. "" Moore, E.	ore, E.	Wasatch Sand	300 400 186 200 190 210 183 273 200	
T40NR77W		1011 10					*
13, 5WSE 13, SE5W 24, NENW	8368 8387 8385	STO DOM-STO STO	Gafford, B.	L	Ft. Union Sand """"" """	12 262 20	175 10
T41NR73W							
4, NENE 6, NWSE 6, NWNW 7, NENE 16, SWSE 19, NWNE 22, SWNE 30, SWSW 30, NWNW	18146 11073 11072 11074 18149 18149 9924 18845 9923 9922	STO DOM STO STO STO STO STO STO	Reno & Sons Turnercrest Ranch n Reno & Sons Moore, W.I., Jr. Reno & Sons Moore, W.I., Jr.	L	Wasatch Sand	440 140 120 120 362 200	150 5 40 30 100 80
T41NR74W	<u>l</u>						
3, NWNE 4, SENE 4, SENE	E 17307 17302 17301	STO DOM-STO STO	Pine Tree Ranch	L L	Wasatch Sand	97 165 130	60 90 55

.

CONT.

LOCATION	PERMIT	USE ³ /	USER	OTHER	PROBABLE AQUIFER	WELL DEPTH (ft)	WATER LEVEL (ft below L5)
T41NR74W	(Cont.)						
4, NESE 5, NWSW 7, NWNE 10, SWNW 17, SWSE 20, SENW 26, NESE 28, SWNE 28, SESW 29, SWSW 31, SWSW 33, NWSE	17304 6973 17305 17303 12240 9309 24924 9925 24923 45915 12242 27055 C 12241 47773	DOM-STO STO STO DOM-STO DOM STO STO STO MIS STO RI-IND-OIL-TEM STO MIS	Pine Tree Ranch """" Moore, J.W. """ Moore, J.W. & V.R. Moore, J.W. & V.R. Moore, J.W. & V.R. Apache Corp. Moore, J.W. American Guasar Petr. Moore, J.W. Apache Corp.		Wasatch Sand """ """ """ """ Wasatch Sand """ """	137 170 50 120 273 230 120 200 400 100 340	80 60 18 60 40 85 120 20 60 140
T41NR75W		•					
2, NENW 3, NENW 5, SENW 21, SENW 25, SENE 27, NWIW	39655 39656 14670 48349 28332 22296	MIS MIS STO MIS DRI-IND-TEM STO	Continental Oil """ Taylor Ranch Woods Petroleum Continental Oil Moore, E.	L, Q L, Q L	• Wasatch Sand """ Wasatch Sand	165 175 22 350 326	99 70 5 115
T41NR76W			÷. 6	41	:# ::		
3, SWNE 4, SWSE 4, SESW 5, NENW 5, NENW 5, NENW 6, SENW 6, SENW 16, SWSW 17, SWSW 17, SWNE 18, SWNE 18, SWNE 22, NENW 23, NENW 30, NESE 34, NENW	14669 14667 14668 14663 14665 14666 14661 25848 14671 25845 25845 25847 25844 25845 25847 25844 25849 14672 14674 25849 14673	STO STO DOM DOM DOM STO STO STO STO STO STO STO STO STO STO	Taylor Ranch """ Taylor Ranch """ Taylor Ranch Woods PetrU.S. BLM Moore Land Co. """ Moore Land Co. """ Moore Land Co. """ Moore Land Co. """ Taylor Ranch American Quasar Petr. Taylor Ranch Moore Land Co. Taylor Ranch American Quasar Petr. Taylor Ranch Moore Land Co. Taylor Ranch	L L L L	Wasatch Sand """ Wasatch Sand """ """ Wasatch Sand """ Wasatch Sand Wasatch Sand Wasatch Sand	260 245 245 1,000 1,000 1,010 175 396 323 165 700 460 750 243 185 275 275	130 F 100 F F 60 100 75
T41NR77W 1, NESW 13, NWNW 35, SWNE 35, NWSW	25859 / 25861 13630 13631	STO STO STO STO	Moore Land Co. """ Fiying Diamond Ronch	Ĺ	Wasatch Sand "" Ft. Union Sand """"	353 266 110 110	F F 75 75
5. NWNE	18851	510	Repo & Sons		Wasatch Sand	350	110
6, SESW	17460	STO	n n	L		276	130

-64-

CONI.	C	0	N	T.
-------	---	---	---	----

LOCATION	PERMIT	USE <u>3</u> /	USER	OTHER INFORMATION!/	PROBABLE AQUIFER	WELL DEPTH · (ft)	WATER LEVEL (ft below LS)
T42NR73W	(Cont.)						
6, NWSE B, SWNE 20, NESW 31, SESW 31, NENE	33284 18148 18846 11071 14885	STO DOM STO DOM STO	Reno, H.B. Reno & Sons "" Turnercrest Ranch Turner, Mary, L.J. & G.W.	. L	Wasatch Sand """ """	254 450 160 180 210	90 180 60 120 65
31, SESE	48351	MIS	Campbell Ca. School Dist.		+		×.
T42NR74W							
1, NENW 3, SWNE 3, NESE 7, SESW 5, NESE 7, SESW 7, NENW 8, NENW 12, SENW 13, NENW 16, SESW 17, NWNW 16, SESW 17, NWNW 18, SWSW 28, SWSW 28, SWSW 29, SWNE 29, SWNE 29, SWNE 30, NWNW 33, SESW	19245 14680 37881 14678 14677 14676 37880 14677 14676 37880 14677 18852 3827 14685 14685 14684 12243 12244 17306 37879 14683 6972 26306	5T0 5T0 5T0 5T0 5T0 5T0 5T0 5T0 5T0 5T0	Laur, 'A. Taylor Ranch Pine Tree Ranch """"""""""""""""""""""""""""""""""""	L L L L	Wasatch Sand	120 275 64 275 275 275 283 275 283 275 283 275 2350 237 2350 237 2350 220 200 150 8 275 210	80 125 125 40 180 180 150 150 120 130 150 150 235 100 40 40 4 175 95
T42NR75W			and the second state of the second state of the second states of the second states of the second states of the			1000 3 100	
2, SESW 4, SESE 4, SESE 12, NESE 14, SESE 14, SESE 14, SESE 14, SESE 14, SESE 22, NWSW 26, SENW 26, SENW 26, SENW 26, SENW 26, SENW 26, SENW 34, SESW 34, NESSW 34, NESSW 35, NWSW 35, NWSW	11901 11900 21943 21942 14675 35330 35746 14682 14681 14681 14682 14681 14660 12299 39648 39653 39653 39651 39650 39649	STO STO DOM-STO STO STO STO STO STO STO DOM-IND MIS MIS MIS MIS MIS MIS	Brown Land Ca. """"" Taylor Ranch Brown Land Co. Taylor Rench """" Continental Oil """" """" """" """"		Wasatch Sand	220 450 5 5 275 500 660 158 158 355 240 330 260 227 275 263 240	100 140 0 195 100 320 80 80 150 163 164 163 164 189 144 208 160
T42NR76W	<u>!</u>						
I, NWSE 2, NESW	11890 14674	STO STO	Brown Land Co. Taylor Ranch	L	Wasatch Sand	375 8	105

32.8 12	ALC: 120	2110
~~	140	T
- 64	71.4	
		_

	PERMIT	USE ³ /	USER	OTHER I	PROBABLE AQUIFER	WELL DEPTH (ft)	WATER LEVEL (ft below LS)
142NR76W	(Cont.)						
3, NESW 4, NWNW 4, SWNW 5, SESE 6, SWSE 13, NWNW 14, NWSE 16, NESE 20, SWNE 20, SWNE 21, NWNE 31, NWNE 31, NWNE 33, SWNE 34, SWSE	14646 14648 14649 14651 16452 14655 14655 14655 14655 14654 14656 25846 14656 14659	5T0 5T0 5T0 5T0 5T0 5T0 5T0 5T0 5T0 5T0	Taylor Ranch """ """ American Nuclear Taylor Ronch """ Moore Land Co. Taylor Ranch """ Moore Land Co. Taylor Ranch """	, L	Wasatch Sand P T T T T T T T T T T T T T	383 600 8 8 275 1266 500 8 350 812 275 296 1,000 330 275 240	80 100 315 200 F 100 - 60 F 125
T43NR73W	6						
4, SESE 4, SESE 4, NWNE 9, NENE	2902 2888 2886 2887	DOM DOM STO STO	Ed Willard	L, Q L L	Wasatch Sand """ ""	95 165 169 152	70 90 130 110
T43NR73W							
27, NWNW 27, NWNW 27, NWNW 27, NWNW 27, NWNW 27, NWNW 28, NENW 30, SENW 32, NENW 32, SWSW	45989 45988 45987 45986 45985 45984 2883 26955 2881 18841	MIS MIS MIS MIS MIS-RES STO STO STO STO	Rocky Min Energy Rocky Min Energy Brind Brind August Laur Ed Willard August Laur Ed Willard Reno and Sons	L, Q L	Wasatch Sand Wasatch Sand """" """" """ """ """	405 407 383 461 215 413 80 174 90 300	272.65 278.88 276.4 296.22 183.33 282.27 60 75 65 100
T43NR74W							
1, SENW 2, NWNE 5, NWSW 5, SESE 6, NENW 6, SESE 7, NWSE 7, SESW 9, NENW 9, NESE 13, SWSE 14, NWNE 16, SESE 17, SWNW 19, NESE 20, NWNW 21, SESW 21, NESW 22, NESW	5429 3602 12288 37542 12292 12293 13342 3581 40283 35175 5432 7127 20072 19247 4138 13344 19240 19225 19226 20073	STO STO DOM IRR-STO STO STO DRI-MIS-TEM MIS STO IND-MIS STO STO STO STO STO STO STO STO STO ST	Bozwell Moore Moore, L.W. & P.J. Ruby Ranch William Camblin Ruby Ranch "" L.E. Gilbertz Cleveland Cliffs Iron Co. Gilbertz, Larry Moore, Mike Moore, Wayne "" Todd, Earl Roush, Robert Van Buggenum, Leroy Gilbertz, L.E. Lour, August James H. Roush Estate """	L L,Q L L L L L	Wasatch Sand	83 357 350 555 240 185 Unknown 400 400 310 290 10 160 205 610 116 160 80 126 100	30 30 Unknown 140 Unknown 00 314 314 125 150 0 60 190 125 40 18 50 60 60

-	0	17	•	
-	U	ч.		

LOCATION	PERMIT	USE ³ /	USER	OTHER	PROBABLE AQUIFER	WELL DEPTH (ft)	WATER LEVEL (ft below LS)
<u>T43NR74W</u>	(Cont.)				×		
22, SWSW 24, NWINW 25, SENE 26, SENW 28, NESE 29, SENE 29, SENE 29, SENE 29, SWSW 30, SENE 32, NWNW 33, SWSW 35, NWNE	36176 ¥ 5845 19244 19246 20074 20071 19239 19242 35809 26643 31065 ¥ 35742 3531 19241	DRI-MIS-TEM STO DOM-STO DOM-STO DOM-STO DOM-STO DOM STO STO DRI-IND DOM STO STO STO	Inexco Oil Co. Moare, Wayne Laur, August " Todd, Earl " Laur, August " Atwood, Velma L. Bing, Melissa E. Cleveland Cliffs iron Co. Atwood, E. O. Taylor Ranch Co. Limited Laur, August		Ft. Union Sand Wasotch Sand """ """ """ """ """" """"	2,042 6 180 190 144 160 140 140 145 200 505 540 600 120	500 F 30 110 89 40 120 104 60 90 317 75 90 90
T431/R75W 1, NENE 2, SWSW 5, SENW 5, SENW 7, NESE 9, SESW 13, SESW 13, SESW 13, SESW 13, SESW 14, SENW 24, SENW 24, SENW 28, NWSW 29, SENW 30, SWSW 31, NENW 32, SWNE T43N/R75W	2734 12294 12283 33462 Di 12289 13346 12289 13346 8892 13243 8892 19243 19243 19243 19243 19243 19243 19243 19295 12295 12290 11898 12296	STO STO STO STO STO STO STO STO STO STO	Gilbertz, L.E. Ruby Ranch, Inc. """" Cleveland Cliffs Iron Co. Ruby Ranch, Inc. Gilbertz, L.E. Brown Land Co. """ Ruby Ranch Laur, August Ruby Ranch, Inc. """ Brown Land Co. Ruby Ranch, Inc. Brown Land Co.	L L L L L	Wasatch Sand	430 340 350 320 703 120 6 700 800 180 610 510 400 800 420 162	20 Unknown 228 360 20 F 310 400 140 200 Unknown 175 115 Unknown 125 90
3, NESW 3, SWNE 10, SWNE 14, NWNV 14, N	- 15106 29162 35744 11897 V 27514 V 28297 V 28299 V 28300 V 28300 V 28300 V 28302 V 28303 V 28304 V 28306 E 28307 V 28308 V 28308 V 28307 V 28308 V 11894	STO STO STO IND MIS MIS MIS MIS MIS MIS MIS MIS MIS MIS	Brown Land Co. Brown, Franklin Brown Land Co. """"""""""""""""""""""""""""""""""""		Wasatch Sand	275 720 740 520 160 160 160 160 160 160 160 150 160 150 160 150 160 150 175 160 160 310	125 310 F 50 95 Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown

TABLE D-6-14 a,

CONT. .

LOCATION	PERMIT	USE ³ /	USER	OTHER INFORMATION!/	PROBABLE	WELL DEPTH (ft)	WATER LEVEL (ft below LS)
T43NR76W	(Cont.)						a tang ang ang ang ang ang ang ang ang ang
20, SWNW 21, NWNE 22, SENE 22, SENE 22, SESE 22, SESE 23, SWSW 23, SWNW 23, SWNW 23, SWNW 23, SWNW 30, NWSE 31, NWNW 30, NWSE 35, SENE 35, SENE 35, SENE 35, SENE 35, SENE 35, SENE 35, SENE 35, SENE	13634 11896 11902 11904 15107 32364 33631 11905 45994 11903 13626 13637 14650 33461 D 41140 41141 41142 41143 41145	STO STO STO STO STO STO STO STO STO STO	Flying Diamond Ranch Brown Land Co. """" American Nuclear Corp. """" Brown Land Co. """" Flying Diamond Ranch """ Taylor Ranch Co. Cleveland Cliffs Iron Co. """" """"" """""""""""""""""""""""	L L L L L L L L L L L L L L L L L L L	Wasatch Sand	360 405 550 253 820 820 820 690 560 960 360 960 360 490 135 485 502 504 485 504 485 504 485 504 501	Unknown F 90 48 0.00 0.00 80 82 F Unknown 60 82 444 448 407 428 312 493
T42NR77W	i L						
1, NESKELE NESKELE 14, SSELE 14, SSE	25854 25853 25852 25856 49723 49724 49725 49727 49728 49729 49730 49731 49731 49732 49733 25850 25850 25850	STO STO STO MIS MIS MIS MIS MIS MIS MIS MIS STO STO DOM-STO	Moore Land Ca.		Wasatch Sand """ """ Wasatch Sand	Unknown 560 460 720 585 530	Unknown F F F F F
26, SENW	25858	STO	n n e	L	Wasatch Sand	200	F
T43NR77W		×		1920 			
11, SESE. 13, SWSE 23, SWSE 23, NENE 24, NESE 35, NWNE 36, SWN	3632 3633 3625 3627 3635 3622 2609	STO STO STO STO STO STO STO	Flying Dlamond Ranch		Wasatch Sand 11 11 11 11 111 11 11 1	410 400 480 420 400 655 387	Unknown Unknown Unknown Unknown Unknown Unknown 360

NOTES:

L = Well log available Q = Water quality analysis available

 $\frac{2}{F}$ = Piezometric evaluation greater than land-surface elevation or flowing well

³/ DOM = Domestic (Residential) DRI = Drilling iND = Industrial iRR = Irrigation MIS = Miscellaneous, includes silt storage, medicinal, institutional, highway rest area or unknown OIL = OII Refining/Production -68-RES = Reservoir Supply STO = Stock TEMP = Temporary Use

AN-----TABLE D-6-15

; **`**•

SURFACE-WATER RIGHTS WITHIN 16 KILOMETERS (10 MILES) OF THE SAND ROCK PROJECT

Location	Permit Number	Stream	Use	User	
40N - 73W	ol 1994 of 1993 👻 source-relation dates (* 1993		4 4	e e vezete e e e e e e e e e e e e e e e e e	
07	3251	Ellen Draw	STK	Fred Taylor	
07	20371	Antelope Creek	" IRR	Fred Taylor	
07	26379	Ellen Draw	IND	Woods Petroleum Corp.	
08	20372	Antelope Creek	IRR	Fred Taylor	
08	3908	Taylor Draw	STK	USA Forest Service	
17	6264	Jenson Draw	*. •••••	Fred Taylor	
41N - 73W				4 	
16	6131	Bates Creek		Floyd Reno & Sons	
32	3159	Charley Draw	, STK	Fred M. Taylor	
33	3160	Fred's Draw	STK	Fred M. Taylor	
42N - 73W	*	a s	·		
18	7319	Mary Draw	STK	Turnercrest Ranch	
31	7320	Turner Draw	STK	Turnercrest Ranch	*
32	5420	Turner Dry Lake	STK	U.S. Agri. Forest Service	
43N - 73W	Ni ≹ii Ri	्यः २	*1		
05	25002	Belle Fourche R.		Wyoming State Highway De	pt.
18	24842	Belle Fource R.	ж - 111-1 1	Wyoming State Highway De	pt.
21	967	Dry Gulch to Belle Fou	che	Geo. A. Keeline	
40N - 74W	-75 -75	ی ب ب	त . २ २		
04	4033	Berry's Draw	STK	William I. Moore	
06	1960	Berry's Draw	STK	Fred M. Taylor	
08	13059	Antelope Creek		R. L. O'Dell	
14	4034	Macker Draw	STK	William I. Moore	

Энт за сладова и техника и постора, medicinal la characteria.
 Энт совательной сладова и техника.
 Энт сладова и техника.
 Э

£.--

0.41 45. 2 ret. 11 - 1. 1

.44) 199 072

(cont'd)

I anation	Permit	Ctronger	، ، ، ، ، ،	1 In	
Location	Number	Siredm		Use	User
41N - 74W		-270- S	· ·	• • • • •	
01	5168	Bates Creek		STK	John W. Moore
12	5169	Mexican Springs	na serve e Social	STK	John W. Moore
42N - 75W	 Or #200812403 	ana any mananana na amin'ny taona 2001. Na	÷÷		
06	19788	Glen Spring		IRR	Farl Brown
06	19789	Glen Spring #2		IRR	Earl Brown
19	. 29	Collins Draw		STL	Earl Brown
10	20	Collins Didw		JIN	
43N - 75W					*
01	14226	Four Mile Creek			Florence L. Eychaner
01	3315	Four Mile Creek			Florence L. Eychaner
·[]	29	South Branch 4 Mile	e Creek	STK	Earl Brown
17	4479	Davis Draw	æ		Cecil Davis
24	5439	Little Butte Draw		STK	Lewella Laur
40N - 76Ŵ					
07	3954	Wind Creek	•	STK	Tye & Eddie Moore
12	2512	Spring		STK	Ogalalla Sheep & Cattle Co.
23	2511	Spring		STK	Ogalalla Sheep & Cattle Co.
24	4637	Smyth Draw		STK	Edward D. Moore
28	5147	Findley Draw		IRR	Leroy Moore
41N - 7 6W	1				a dag na
06	2542	Loading Chute Dr.		STK	Robert B. Moore
15	14431	Meadow Draw	<u>.</u> .	•••	Delbert Pierce
15	3365	Meadow Draw R.			D. Pierce
19	14063	Dry Fork Power R.			Nora H. McPhillamey
19	3280	Dry Fork Power R.			Nora H. McPhillamey
19	5217	Dry Fork Power R.		STK	Moore Sheep Co.
19	4706	Red Draw		STK	Moore Sheep Co.
31	6384	S. Prong Dry Fk F	ower R.	2	Moore Land Co.

(cont'd)

_

Location	Permit Number	Stream	л <u>С</u> Use	User	
42N - 76W	4				
02	20567	Water stored in Artesia Lower Reservoir Suppl from Artesian Creek	ied contraction	The Taylor Ranch C	.
02	5777	Artesian Creek	STK T	The Taylor Ranch C	Co. :
12	5776	Artesian Creek	STK	The Taylor Ranch C	0.
42N - 74W	. 57'	€. ÷.	1. T	niaco i el	
03	12407	Belle Fourche	E	B. J. Reno	-
03	799	Belle Fourche	- (George A. Keeline	. ML.
03	2653	Belle Fourche	- È	B. J. Reno	
23	1296	Ralph Draw	STK .	John Moore	
28	1685	West Bates Creek	STK .	John Moore	×xe: ::::
32	2199	Peak Draw	STK U	J. S. Archibald	, 1
43N - 74W	· · ·	• 42 · ···· 4			
07	6260	Gilbertz Draw	STK L	_arry Gilbertz	ં તે.્
13	14201	All Night Creek	/	A. H. Hoodenpyle et	al.
13	1583	All Night Creek	STK (D. B. Moore	
16	798	All Night Creek to Bell	le F (George A. Keeline	1999 - 19
28	1246	All Night Creek	- (Glenn & Graham	
- 31	1874	Dangle Draw	STK T	Claus H. Sievers	1997
40N - 75W					
12	8935	Wind River	STK F	lyn Sheep Co.	
. 15	2508	Br. Little Wind R.	STK	Ogalalla Sheep & Co	attle Co.
17	26415	Wind Creek	IND S	pearhead Energy, li	nc. &
	in heime Mind	* [*] C	, ^C revo⊂ dt. S	it. Bd. Land Commi	ssioners
41N - 75W	vinite niki v ∼		.≓ te s _ 1	. jī j	
13	14212	Nine Mile Creek	IRR B	Bernice Middaugh	
13	3308	Nine Mile Creek	IRR E	Sernice Middaugh	
*	ieu per	6° al 18w(¶ - సెన్యార	γ ⁶ ,3) [*]	

-07--71-

TABLE

(cont^{*}d)

and a strange of the			
Location Permit Number	Strèam	Use	User
42N - 75W	a dista del anti-		
04 8156	Cottonwood Creek	STK	Brown Land Co.
04 8157	Cottonwood Creek	ŠŤK	Brown Land Co.
42N - 76W	3.		· ·
24 3775	Wintermute Draw	STK	The Taylor Ranch Co.
28- 3776	Nichols Draw	STK	The Taylor Ranch Co.

43N - 76W 35 **Collins** Draw 8099 STK Cleveland Cliffs Iron Co 40N - 77W 12:00 STK Brida and Roy Gaff North Fork Wind-Cr. 13 5700 41N - 77W 8064 J. J. Draw STK Moore Land Co. 25 6012 STK Robert Moore Bob Draw 42N - 77W -12 Dry Fork Powder River 26124 IND Woods Petroleum Corp. Crawford Draw STK Robert B. Moore 26 6490

....

STK = Stock IRR = Irrigation IND = Industrial

APPENDIX A-1 CONSTANT HEAD TABLES AND FIGURES

LIST OF TABLES

Γ	able No.		Page
	A-1.1	Constant Head Test Data for Hole P-1 (Lower Mudstone and E Coal)	A-1-1
	A-1.2	Constant Head Test Data for Hole P-2 (Lower Mudstone and E Coal)	A-1-2
	A-1.3	Constant Head Test Data for Hole P-3 (Lower Mudstone)	A-1-3
,	A-1.4	Constant Head Test Data for Hole P-4 (Lower Mudstone and E Coal)	A-1-5
	A-1.5	Constant Head Test Data for Hole P-4B (Upper Mudstone and E Coal)	A-1-6
	A-1.7	Constant Head Test Data for Hole P-4CA (Upper Mudstone)	A-1-7
	A-1.8	Constant Head Test Data for Hole P-5 (E Coal)	A-1-8
	A-1.9	Constant Head Test Data for Hole P-6 (Upper Sandstone)	A-1-9
	A-1.10	Bailing and Recovery Data for Well P-7 (70SS)	A-1-11
	A-1.11	Constant Head Test Data for Hole P-8 (Lower Mudstone and E Coal)	A-1-12
	A-1.12	Constant Head Test Data for Hole P-9 (Lower Mudstone and E Coal)	A-1-14
	A-1.13	Constant Head Test Data for Hole P-9A (Upper Mudstone)	A-1-16
	A-1.14	Constant Head Test Data for Hole P-10 (Lower Mudstone and E Coal)	A-1-17
•	A-1.15	Constant Head Test Data for Hole P-11 (E Coal)	A-1-18
	A-1.16	Constant Head Test Data for Hole P-12 (E Coal)	A-1-20
	A-1.17	Constant Head Test Data for Hole P-13 (Upper Mudstone)	A-1-22
	A-1.18	Constant Head Test Data for Hole P-13A (E Coal)	A-1-24
	A-1.19	Constant Head Test Data for Hole P-15 (Lower Mudstone and E Coal)	A=1-26
	A-1.20	Constant Head Test Data for Hole P-15A (Upper Mudstone)	A-1-28

LIST OF TABLES

(cont'd)

F	able No.	2	Page
	A-1.21	Constant Head Test Data for Hole P-16 (Upper 70 Sand)	A-1-29
	A-1.22	Constant Head Test Data for Hole P-17 (Upper 70 Sand)	A-1-30
	A-1.23	Constant Head Test Data for Hole P-18 (Alluvium)	A-1-31
	A-1.23A	Water Level Data for Wells P-20 and P-20A During Bail Test of Well P-20B	A-1-32
	A-1.23B	Bailing and Recovery Data for Well P-20B (70SS)	A-1-33
	A-1.23C	Bailing ad Recovery Data for Well P-21 (70SS)	A-1-34
	A-1.24	Constant Head Test Data for Hole 35N-1C	A-1-35
	A-1.25	Constant Head Test Data for Hole 35N-1D	A-1-36
	A-1.26	Constant Head Test Data for Hole 35N-1E	A-1-37
	A-1.27	Bailing and Recovery Data for Well 35N-2A (U 70SS)	A-1-38
	A-1.28	Constant Head Test Data for Hole 35N-2B	A-1-39
	A-1.29	Constant Head Test Data for Hole 35N-2C	A-1-40
	A-1.30	Constant Head Test Data for Hole 35N-3	A-1-41
	A-1.31	Constant Head Test Data for Hole 35N-4	A-1-42
	A-1.32	Constant Head Test Data for Hole 35N-5	A-1-43
	A-1.33	Constant Head Test Data for Hole 35N-6	A-1-44
	A-1.34	Constant Head Test Data for Hole 35N-7A	A-1-45
	A-1.35	Constant Head Test Data for Hole 35N-7B	A-1-46
	A-1.36	Constant Head Test Data for Hole 35N-7C	A-1-47 [.]
	A-1.37	Constant Head Test Data for Hole 35N-7D	A-1-48
	A-1.38	Constant Head Test Data for Hole 35N-7E	A-1-49

ii

LIST OF TABLES

(cont'd)

	Table No		Page
	A-1.39	Constant Head Test Data for Hole 35N-7F	A-1-50
	A-1.40	Constant Head Test Data for Hole 35N-7G	A-1-51
	A-1.41	Drawdown Data for Observation Wells 886, 887 and 888 from Pumping Well 885	A-1-52
	A-1.42	Recovery Test for Well 886	A-1-53
	A-1.43	Recovery Test for Well 887	A-1-54
	A-1.44	Drawdown for Observation Well 1805 on June 25, 1978	A-1-55
	A-1.45	Drawdown Data for Observation Well 1806 on June 25, 1978	A-1-56
	A-1.46	Drawdown Data for Observation Well 1807 on June 25, 1978	A-1-57
	A-1.47	Drawdown for Observation Well 1816 on December 1, 1978	A-1-58
	A-1.48	Pumping and Recovery Data for Well 1823 on May 22, 1980	A-1-59
	A-1.49	Water Level Data for Well 1816 During Pump Test of Well 1823 on May 22, 1980	A-1-60
	A-1.50	Pumping and Drawdown Data for Well 1814 (70 Sand)	A-1-61
• •	A-1.51	Drawdown Data for Observation Well 1815 (70 Sand)	A-1-63
	A-1.52	Drawdown Data for Observation Well 1816 (70 Sand)	A-1-64
	A-1.53	Drawdown Data for Observation Well 1817 (70 Sand)	A-1-66
	A-1.54	Drawdown Data for Observation Well 1823 (70 Sand)	A-1-67

iii

.

LIST OF FIGURES

÷

Figure No.

A-1.1	Constant Head Test for Hole P-1 (Lower Mudstone and E coal)
A-1.2	Constant Head Test for Hole P-2 (Lower Mudstone and E coal)
A-1.3	Constant Head Test for Hole P-3 (Lower Mudstone)
A-1.4	Constant Head Test for Hole P-4 (Lower Mudstone and E Coal)
A-1.5	Constant Head Test for Hole P-4B (Upper Mudstone and E Coal)
A-1.7	Constant Head Test for Hole P-4CA (Upper Mudstone)
A-1.8	Constant Head Test for Hole P-5 (E Coal)
A-1.9	Constant Head Test for Hole P-6 (Upper Sandstone)
A-1.10	A Recovery Test for Hole P-7 (70 Sand)
A-1.11	Constant Head Test for Hole P-8 (Lower Mudstone and E Coal)
A-1.12	Constant Head Test for Hole P-9 (Lower Mudstone and E Coal)
A-1.13	Constant Head Test for Hole P-9A (Upper Mudstone)
A-1.14	Constant Head Test for Hole P-10 (Lower Mudstone and E Coal)
A-1.15	Constant Head Test for Hole P-11 (E Coal)
A-1.16	Constant Head Test for Hole P-12 (E Coal)
A-1.17	Constant Head Test for Hole P-13 (Upper Mudstone)
A-1.18	Constant Head Test for Hole P-13A (E Coal)
A-1.19	Constant Head Test for Hole P-15 (Lower Mudstone and E Coal)
A-1.20	Constant Head Test for Hole P-15A (Upper Mudstone)
A-1.21	Constant Head Test for Hole P-16 (Upper 70 Sand)
A-1.22	Constant Head Test for Hole P-17 (Upper 70 Sand)
A-1.23	Constant Head Test for Hole P-18 (Alluvium)
A-1.23A	Drawdown Test for Hole P-20B (70 Sand)
A-1.23B	Recovery Test for Hole P-20B (70 Sand)

i

LIST OF FIGURES

(cont'd)

Figure No.

A-1.23C	Recovery Test for Hole P-21 (70 Sand)
A-1.24	Constant Head Test for Hole 35N-1C (Upper 70 Sandstone)
A-1.25	Constant Head Test for Hole 35N-1D (Sandstone)
A-1.26	Constant Head Test for Hole 35N-1E (Mudstone)
A-1.27	Recovery Test for Hole 35N-2A (Upper 70 Sandstone)
A-1.28	Constant Head Test for Hole 35N-2B (Sandstone)
A-1.29	Constant Head Test for Hole 35N-2C (Mudstone)
A-1.30	Constant Head Test for Hole 35N-3 (Sandstone)
A-1.31	Constant Head Test for Hole 35N-4 (Mudstone)
A-1.32	Constant Head Test for Hole 35N-5 (Sandstone)
A-1.33	Constant Head Test for Hole 35N-6 (Sandstone)
A-1.34	Constant Head Test for Hole 35N-7A (70 Sandstone)
A-1.35	Constant Head Test for Hole 35N-7B (Upper 70 Sandstone)
A-1.36	Constant Head Test for Hole 35N-7C (Sandstone)
A-1.37	Constant Head Test for Hole 35N-7D (E Coal)
A-1.38	Constant Head Test for Hole 35N-7E (Sandstone)
A-1.39	Constant Head Test for Hole 35N-7F (Mudstone)
A-1.40	Constant Head Test for Hole 35N-7G (U Coal)
A-1.41	Drawdown in Observation Well 886 from Pumping Well 885 (70 sand)
A-1.42	Drawdown in Observation Well 888 from Pumping Well 885 (70 Sand)
A-1.43	Recovery of Pumping Well 886 (70 Sand)

ii

LIST OF FIGURES

(cont'd)

Figure No.

A-1.44	Recovery of Pumping Well 887 (68 Sand)
A-1.45	Drawdown in Observation Well 1805 from Pumping Well 1 (70 Sand)
A-1.46	Drawdown in Observation Well 1806 from Pumping Well 1 (70 Sand)
A-1.47	Drawdown in Observation Well 1816 from Pumping Well 1814 (70 Sand)
A-1.48	Recovery of Pumping Well 1823
A-1.49	Drawdown Data for Pumping Well 1814 (70 Sand)
A-1.50	Drawdown Data for Observation Well 1815 (70 Sand)
A-1-51	Dradown Data for Observation Well 1816 (70 Sand)
A-1.52	Drawdown Data for Observation Well 1817 (70 Sand)
A-1.53	Barometric Pressure During the 8/13-15/80 Pump Test

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
12/4/79		i			Dry
12/10/79	1231	0	an an ta	*	Dry
	1247	16	0.276	3.62	€ 0₹:
	1300	29	0.205	4.88	
	1313	42	0.185	5.40	
	1327	56	0.178	5.62	
	1342	71	0.170	5.88	ž
	1358	87	0.164	6.10	
	1418	107	0.162	6.17	
	1433	122	0.159	6.29	
*	1448	137	0.157	6.37	
	1514	163	0.158	6.33	

TABLE A-1.1 CONSTANT HEAD TEST DATA FOR HOLE P-1 (LOWER MUDSTONE AND E COAL)

4/3/80

Dry

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/17/80	1159	n Naj			42.05
	1201	Started bailing			
	1206	Stopped bailing =	= 1 1/4 gal		
	1209	Ý ve	а Х		50.25
	1419				50.1
3/18/80	1053				49.05
	1055	Started bailing			
	1059	Stopped bailing =	= 1/4 gal		
	1100				50.2
3/24/80	1241	т. Х			
	1242	Started bailing			
	1249	Stopped bailing =	: 3/4 gal		
	1251		*		>51.3
4/2/80	1307	T = 8.2 ⁰ C Cond =	2010	i.	43.79
4/11/80	1140				43.08
	1145	Started injection			
	1153	8	0.031	32.7	
1. M	1220	35	0.019	53.3	÷
	1235	50	0.015	67.3	
	1317	92	0.013	76.0	
	1337	112	0.011	93.3	
	1403	138	0.011	89.3	
	1534	229	0,0095	105	

TABLE A-1.2CONSTANT HEAD TEST DATA FOR HOLE P-2
(LOWER MUDSTONE AND E COAL?)

4

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/17/80	1134	ĩ			47.37
	1138	Started bailing			
	· 1142	Stopped bailing =	= 3/4 gal		
	<mark>1144</mark>	×			51.6
	1411				51.6
3/18/80	1018				51.5
3/24/80	1509				50.8
3/27/80	1540	Bailed T = 9.1 ⁰ 0	Cond = 338 @ 25°C	0 µmhos/cm	50.5
4/2/80	1421		Υ.	-	51.35
4/9/80	-	Saturated hole			
4/10/80	0853	Started injection t	est		
	0904	11	.0068	148	
	0920	27	.0060	165	
	0936	. 43	.0055	180	9 9
	0956	63	.0055	181	
	1016	83	.0055	182	
	1047	114	.0055	182	
1977 - L	1117	144	.0055	181	
	1144	171	.0055	181	
	1218	205	.0055	182 ·	*
	1245	232	.0055	182	
сял н	1325	272	.0055	182	

. .

TABLE A-1.3 CONSTANT HEAD TEST DATA FOR HOLE P-3 (LOWER MUDSTONE)

A-1-3

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
4/10/80	1401	308	.0055	183	
	1443	350	.0054	184	
	1503	370	.0054	184	
	1542	409	.0054	184	

TABLE A-1.3- CONSTANT HEAD TEST DATA FOR HOLE P-3 (Cont'd) (LOWER MUDSTONE)

DATE	TIME	TIME SINCE INJECTION STAR (MIN)	RTED DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/13/80	1050		*		19.67
	1200	Started bail	ing		
	1212	Stopped bail	ing ≈ 7.5 gal		
	1223			×	46.50
	1547				33.81
3/17/80	1053	ati IAY			23.81
3/24/80	1350				23.18
3/27/80	1612				23.19
*		$T = 9.9^{\circ} C$	Cond = 1250 µmhos	/cm @ 25 ⁰ C, 1	near water le
		T = 10.1	Cond = 1660 @ =	48' below L	SD
4/2/80	1051				23.16
4/3/80	0917	T = 9.8	Cond = 1470	Ę	23.19
Э.	0938	0	Started test		
	0953	15	.0064	157	0.0
	1021	43	.0026	380	
	1118	100	.0024	413	
	1219	161	.0022	457	
	1320	222	.0024	420	A
	1421	283	.0022	452	
	1521	343	.0023	444	

TABLE A-1.4 CONSTANT HEAD TEST DATA FOR HOLE P-4 (LOWER MUDSTONE AND E COAL)

Date	Time	Time Sind Injection Sta (min)	ce arted	Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
3/13/80	1100					20.88
name - name (Alamana	1126	Started baili	ng			
	1131	Stopped bail	ing	3.0 gal		
	1217	~~	1	-	4	31.83
	1549					26.83
3/17/80	1057					20.94
3/24/80	1352					21.07
	1359	Started baili	ng			
	1409	Stopped bail	ing	3.0 gal		
3/27/80	-	T = 10.0°C	Cond	= 2000 umhos/cr	п @ 25 ⁰ С п	ear top
		T = 10.1°C	Cond	= 2220 umhos/cr	n @ 25 ⁰ C n	ear bottom
	1615			بر ۲		21.8
4/03/80	1239	-#1				20.87
*		T = 9.0°C	Cond	= 1996 umhos/cr	n @ 25 ⁰ C	
5/22/80	1019	Started test				
	1047	28		0.250	4.00	
	1114	55		0.214	4.67	
	1140	81		0.217	4.60	
Ω.	1206	107		0.207	4.83	
	1229	130		0.167	6.00	
	1304	165		0.119	8.40	
	1344	205		0.143	7.00	
	1404	225		0.136	7.33	
	1429	250		0.127	7.90	
	1454	275		0.124	8.10	

TABLE A-1.5 CONSTANT HEAD TEST DATA FOR HOLE P-4B

DATE	TIME	TIME SINCE INJECTION STAN (MIN)	RTED DISCHARG	GE 1/Q PM) (MIN/GAL)	WATER LEVEL (FT-MP)
3/27/80	1603			9 19 19	22.65
199- 199-	24	$T = 10.0^{\circ}C$	Cond = 2040 µmh	nos/cm @ 25 ⁰ C	top of W.L
a.		T = 10.1	Cond = 2150	near bottom o	f well
		Bailed ≃ 3	gal T = 9.9	Cond = 21	50
	1645				32.3
4/2/80	1055				22.49
4/3/80	0910	T = 9.1	Cond = 2010		22.53
	0931	0	Test started		
	0943	12	0.0101	99.2	0.0
÷.	1004	33	0.0094	106	
×.	1039	68	.0082	122	
	1100	89	.0085	117	
	1136	125	. 0082	123	
	1206	155	.0077	129	×
	1236	185	.0084	119	
	1306	215	.0083	120	
	1339	248	.0078	127	
	1409	278	.0072	139	
	1439	308	.0071	141	
	1509	338	.0080	126	
	1539	368	.0078	128	
	1609	398	.0076	132	

TABLE A≃1.7 CONSTANT HEAD TEST DATA FOR HOLE P-4CA (UPPER MUDSTONE)

14 I A

	الواورية الشار مستارين				*:
DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/17/80	1110				27.40
	1112	Started bailing			
	1118	Stopped bailing	≃ 3 cal		
	1120				46.25
	1404		τ.		40.14
3/24/80	1439				28.37
4/2/80	1105	Sample taken	20 0 		28.44
		T = 8.5 ⁰ C C	ond = 420 umhos/	cm @ 25 ⁰ C	
4/9/80	1010		40 × 48 ×		
ಕ.ಕಂಡುಕ ಕ		T = 10.2 Cond	= 390		28.54
-	1016	0 St	arted injection		
	1043	27	0.012	82.7	
	1213	117	0.0099	101	1887 1
	1329	193	0.0091	109	74
	1357	221	0.0091	110	
	1418	242	0.0090	111	
	1452	276	0.0090	111	ā
	1514	298	0.0088	114	
	1540	324	0.0088	113	
4/10/80	0912	1376	0.0038	267	
	1214	1558	0.0036	279	
	1554	1778	0.0033	301	

TABLE	A-1.8	CONSTANT	HEAD	TEST	DATA	FOR	HOLE	P-5
		(E C	OAL)					

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/17/80	1313				35.58
* *	1317	Started bailing			.*
	1320	Stopped bailing	≃ 1/2 gal	ýc.	
	1322				37.28
	1434				35.75
3/18/80	1108				35.72
	1110	Started bailing			
	1117	Stopped bailing	≃ 3/4 gal		
÷	1120				38.25
3/24/80	1343	5 5			35.75
4/3/80	0947	T = 8.5 ⁰ C Cor	nd = $480 \mu mhos$;/cm @ 25 ⁰ C	35.80
	0954	0 Sta	arted test		
	1001	7	0.96	1.04	
	1012	8	0.57	1.75	9 % .
	1022	28	0.42	2.38	
	1038	44	0.38	2.64	
	1049	55	0.31	3.19	
	1106	72	. 0.28	3.50	i
	1116	82	0.27	3.68	×,
	1126	92	0.27	3.70	
	1139	105	0.26	3.88	
	1155	121	0.19	5.18	
	1210	136	0.18	5.46	

TABLE	A-1.9	CONSTANT	HEAD	TEST	DATA	FOR	HOLE	P-6
		(UPPER S	SANDS	FONE)				

í

- -

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
4/3/80	1225	151	0.18	5.71	
	1235	161	.0.19	5.20	
	1245	171	0.17	6.00	
	1255	181	0.17	5.73	
	1310	196	0.16	6.33	
	1316	202	0.16	6.27	
	1321	207	0.15	6.67	×
	1336	222	0.15	6.47	18
	1346	232	0.16	6.33	
	1356	242	0.16	6.27	
	1406	252	0.15	6.67	
	1416	262	0.15	6.67	
×	1426	272	0.15	6.87	
	1436	282	0.14	6.93	
	1446	292	0.14	6.93	
	1501	307	0.14	7.00	
	1511	317	0.14	7.00	
	1521	327	0.14	7.07	
	1531	337	0.14	7.00	
	1541	347	0.14	7.07	
	1551	357	0.14	7.07	

TABLE A-1.9 CONSTANT HEAD TEST DATA FOR HOLE P-6 (UPPER SANDSTONE) (Cont'd)

.

Date	Time	t (min)	t' (mīn)	t/t'	Water Level ft below mp)	Drawdown (ft)	Discharge (gpm)
5/22/80	1000						
5/22/00	1100				33 /1		
	1402				33.47		
	1402	0	Start k	oiling	55147		
	1/12	8			d = 1/38 um	as/cm @ 25°C	0 19
ж.	1412	25	T = 14.0	$^{\circ}$	d = 1/(25)		0.70
	1427	2.) //0	T = 12.7		d = 1/92		0.20
	1455	45	1 = 11.0	C, Con	a = 1472 Umi	105/cm @ 25 C	U.ZI
	1505	01	· ·	•• •	36.24	2.14	
	1508	64	Sample	e collecte	d		
	1515	71	T = [].[`	°C , Con	id = 1462 uml	nos/cm @ 25°C	0.23
	1516	72			36.87	3.37	
	1535	91	$T = 11.2^{\circ}$	'C , Con	id = 1485 uml	nos/cm @ 25°C	0.25
	1545	101			36.66	3.16	
×4.	1555	111	0			* €::	
			$T = 12.0^{\circ}$	°C , Con	id = 1457 umł	nos/cm @ 25 ⁰ C	0.25
*	1600	116	5	23.2	36.40	2.90	
	1609	125	14	8.93	35.20	1.70	
	1615	131	20	6.55	34.69	1.19	
1991 1	1620	136	25	5.44	34.46	0.96	
	1629	145	34	4.26	34.18	0.68	
×	1645	161	50	3.22	33.96	0.46	
	1800	236	125	1.89	33.69	0.19	

TABLE A-1.10 BAILING AND RECOVERY DATA FOR WELL P-7 (70SS)

.

Note: t = time since pumping started

t' = time since pumping stopped

		TIME SINCE			WATER
DATE	TIME	INJECTION STARTED	DISCHARGE	1/Q (MIN/GAL)	LEVEL (FT_MP)
	,1 4/15	\[]_[]_[]_[]_[]_[]_[]_[]_[]_[]_[]_[]_[]_[(Q, IN 0111)	(min/ane)	<u></u>
3/17/80	1234	a 4			26.59
×	1236	Started bailing	well		
¥.	1300	Stopped bailing	15 gal		
	1301				48.26
	1427				27.19
3/24/80	1446				26.96
4/2/80	0949	$T = 8.4^{\circ}C C = 74^{\circ}$	40 μmhos/cm @ 2	25 ⁰ C	26.09
	0956	0 S	tarted test		
	1013	17	0.160	6.25	0.0
	1031	35	0.166	6.03	
	1048	52	0.095	10.6	
	1103	67	0.087	11.5	
Ť	1118	82	0.087	11.4	
	1133	97	0.089	11.2	- ·
	1148	112	0.100	10.0	2000 2000 2000
: %	1203	127	0.094	10.6	
	1218	142	0.095	10.5	
	1239	163	0.097	10.3	
	1257	181	0.078	12.8	
	1309	193	0.080	12.5	
	1325	209	0.080	12.5	

TABLE A-1.11 CONSTANT HEAD TEST DATA FOR HOLE P-8 (LOWER MUDSTONE AND E COAL)

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
4/2/80	1333	217	0.077	12.9	
	1348	232	0.096	10.4	
	1402	246	0.102	9.8	
	1420	264	0.107	9.4	

TABLE	A-1.11	CONSTANT	HEAD	TEST	DATA	FOR HOLE	P-8
	(LOW	ER MUDSTON	IE AND	E CC	DAL) ((Cont'd)	

•

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/17/80	1030				14.98
	1035	Started bailing			
	1041	Stopped bailing	≃ 4 gal		41 41 11
	1043		ά.	đi.	35.2
	1359		έ.		29.48
3/18/80	1616		x x		15.68
ा आ आ र	1619	Started bailing	9		
	1623	Stopped bailing	g = 4 gal		
	1632				35.35
3/24/80	1429			¥	15.01
3/27/80	1551	T = 8.5 ⁰ C	Cond = 2890 µmi 25°C near to	hos/cm p of water	15.02
	tij	T = 9.5	Cond = 3030 nea	r well botto	m
4/2/80	0921	T = 8.1	Cond = 2900		14.60
		Sample collecte	ed		**************************************
<i>≈ø:</i>	0934	Started inject	ion		
	0941	7	0.0107	93.4	
236	0958	24	.0107	93.4	
	1020	46	.0099	· 101 ·	
	1055	81	.0072	139	
	1138	124	.0064	156	
	1222	168	.0055	182	

TABLE A-1.12 CONSTANT HEAD TEST DATA FOR HOLE P-9 (LOWER MUDSTONE AND E COAL)

۲

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
4/2/80	1305	205	.0052	192	
	1355	255	.0046	217	
а ч ,	1440	298	.0042	238	
	1507	315	.0040	250	

TABLE A-1.12 CONSTANT HEAD TEST DATA FOR HOLE P-9 (LOWER MUDSTONE AND E COAL) (Cont'd)

DATE	TIME	TIME SINCE INJECTION STARTE (MIN)	D DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/27/80	1556				19.65
4/2/80	1243				16.98
4/9/80	0935	ц. Ж	ΰ.		16.04
	0939	0 S	tarted injection	a <mark>s</mark> in	
	0944	5	0.075	13.3	
	0949	10	0.073	13.7	
·	0956	17	0.032	31.2	
	1009	30	0.014	. 73.7	
	1035	56	0.0050	197	
	1139	60	0.0012	823	
	1255	196	0.0012	850	
	1417	278	0.0012	848	
	1512	333	0.0012	866	

TABLE A-1.13 CONSTANT HEAD TEST DATA FOR HOLE P-9A (UPPER MUDSTONE)

DATE	TIME	TIME SINCE INJECTION STARTI (MIN)	ED DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/13/80	1401				28.09
	1404	Started bail	ing · ·		i. i
	1426	Stopped bail	ing = 15 gal		
	1429			n A	51.78
	1556	÷			28.65
3/17/80	1127				28.35
3/24/80	1433			¥1	28.30
4/2/80	1127	T = 9.8 ⁰ C	Cond ≈ 2010 µmho	os/cm @ 25 ⁰ C	28.33
8		Sample taker	ı		
	1138	0 5	Started injection	é ÷	
	1141.6	3.6	0.019	51.5	
	1147.8	9.8	0.017	57.9	₹.
	1154	16	0.016	61.9	₩2 .
	1202	24	0.016	61.3	
	1208	30	0.016	62.9	
	1217	39	0.015	68.0	
	1227	49	0.015	67.7	
	1243	65	0.014	69.1	
	1257	79	0.015	68.3	
	1313	95	0.014	72.5	
	1331	113	0.014	72.0	

TABLE A-1.14 CONSTANT HEAD TEST DATA FOR HOLE P-10 (LOWER MUDSTONE AND E COAL)

.

.

DATE	TIME	TIME SINCE INJECTION STA (MIN)	RTED DISCHARGE	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/17/80	1151	A - Andrew Constraints and Andrew Const			18.35
3/18/80	1023				18.4
	1025 :	Started ba	iling		
	1027	Stopped ba	iling ≃ 1/4 gal		
	1029	÷	10 10 10		19.7
3	1607				19.75
3/24/80	1258				18.95
3/27/80	1445	Bailed = 1	1/4 gal		18.60
		$T = 9.0^{\circ}C$	Cond = 2990 µmhos	/cm @ 25 ⁰ C	
4/2/80	0855		×		19.1
ŧ	0900	0	Started test		ي ب
	0904	4	0.015	65.3	0.0
	0913	13	0.025	40.0	
	0924	24	0.019	51.7	
5	0939	39	0.022	45.1	
	0950	50	0.027	37.1	
	1004	64	0.021	48.0	
	1009	69	0.024	41.3	
	1028	88	0.023	42.7	
Ξ.	1046	106	0.024	41.6	×
	1106	126	0.023	43.5	
-	1128	148	0.024	41.9	

TABLE A-1.15 CONSTANT HEAD TEST DATA FOR HOLE P-11 (E COAL)

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)	
4/2/80	1146	166	0.024	41.9		
	1210	190	0.022	45.3		
	1232	212	0.028	34.7		
	1256	236	0.027	37.1		
54) 	1315	255	0.027	37.3	€k	
a	1343	283	0.027	36.5		
	1408	308	0.029	34.7		
	1428	328	0.031	32.0		
	1450	350	0.032	31.2		
	1505	365	0.035	28.4		

TABLE A-1.15 CONSTANT HEAD TEST DATA FOR HOLE P-11 (E COAL) (Cont'd)
DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/13/80	1347				30.61
3/24/80	1447	τ.			27.70
	1450	Started bailing	.*		
	1454	Stopped bailing	≃ 3/4 gal		
	1457				33.3
3/27/80	1528	Bailed = 3/4 ga	1	: <u>8</u> 1	
*		$T = 10.1^{\circ}C$ Cond	- 2090 µmhos/	cm @ 25 ⁰ C	
		Bailed ≃ 3/4 ga	1 T = 9.9	Cond = 2080	
4/2/80	1355	T = 9.0 Cond = 2	2070		30.88
4/9/80	0855		***		30.9
	0908	Started injection			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0912	4	0.089	11.3	
	0927	19	0.051	19.6	
	0939	31	0.043	23.3	
	0952	44	0.036	27.9	
	1002	54	0.033	30.7	
	1012	64	0.032	31.3	?함:
	1022	74	0.031	32.7	
	1032	84	0.029	. 34.1	
	1042	94	0.029	34.9	195
	1052	104	0.028	35.9	
	1102	114	0.027	36.8	
•	1222	194	0.022	46.4	

TABLE A-1.16 CONSTANT HEAD TEST DATA FOR HOLE P-12 (E COAL)

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
4/9/80	1309	241	0.020	51.2	
	1344	276	0.019	53.3	
	1407	299	0.018	54.7	
	1434	326	0.018	55.5	
	1502	354	0.018	55.5	
	1523	375	0.018	56.0	
	1547	399	0.018	55.2	

TABLE A-1.16 CONSTANT HEAD TEST DATA FOR HOLE P-12 (Cont'd) (E COAL)

		TIME SINCE			WATER
		INJECTION STARTED	DISCHARGE	1/0	LEVEL
DATE	TIME	(MIN)	(Q, IN GPM)	(MIN/GAL)	(FT-MP)
3/17/80	1513	Bailed			18.44
	1518				19.45
3/18/80	1035	Bailed ≃ 1/4 gal	*		19.17
	1039		in Tu		19.71
	1612			ж.	19.95
3/24/80	1306	2			18.08
	1307	Started bailing			
	1311	Stopped bailing ≃	1/3 gal		×
	1313	-			19.8
3/27/80	1410			8	18.4
4/2/80	1325	$T = 7.0^{\circ}C$ Cond =	3900 µmhos/c	m @ 25 ⁰ C	17.68
4/11/80	0945				17.60
	0948	Started injection			
ž	0952	4	0.091	11.0	
	1001	13	0.075	13.3	
	1008	20	0.072	13.9	
	1021	33	0.068	14.8	
	1039	51	0.067	14.9	
	1102	74	0.073	13.7	
	1112	84	0.076	13.2	
	1121	93	0.087	11.5	
	1211	143	0.100	10.0	

TABLE A-1.17 CONSTANT HEAD TEST DATA FOR HOLE P-13 (UPPER MUDSTONE)

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
4/11/80	1303	195	0.144	6.93	
	1345	237	0.158	6.33	
	1413	265	0.172	5.80	
	1438	290	0.176	5.67	

TABLE A-1.17 CONSTANT HEAD TEST DATA FOR HOLE P-13 (Cont'd) (UPPER MUDSTONE)

DATE	TIME	TIME SINC INJECTION ST (MIN)	E ARTED	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/27/80	1414	Bailed .≃	10 gal	than a the fair Alex and a fair and an and a second from the fair and		20.86
		T = 9.8 ⁰ C	Cond =	3210 µmhos/0	cm @ 25 ⁰ C	
4/2/80	1331	T = 8.5 ⁰ C	Cond =	3250		19.82
4/9/80	1114	* *				19.81
	1115	Start perme	ability	test		
ά ι	1117	2		1.82	0.55	
	1130	15		1.82	0.55	
1	1140	25		2.0	0.50	
	1150	35		1.97	0.51	٠
ű.	1200	45		1.94	0.52	
	1210	55		1.85	0.54	
	1220	65		1.85	0.54	4
	1231	76		1.24	0.81	
	1240	85		1.74	0.575	
	1252	· 97	¥	1.62	0.62	
	İ305	110		1.33	0.75	
	1320	125		1.14	0.875	
	1335	140		0.56	1.78	Ϋ́.
	1350	155	40 1	0.64	1.57	
	1405	170		0.59	1.68	
	1425	190		0.22	4.58	
	1445	210		0.39	2.54	

TABLE A-1.18 CONSTANT HEAD TEST DATA FOR HOLE P-13A (E COAL)

A-1-24

÷.:

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
4/9/80	1515	240	0.36	2.80	i uuus prosen osin osin osin osin osin osin iĝ∰i
	1545	270	0.25	3.96	
4/11/80	0956		*		19.86
	1432				19.87

TABLE A-1.18 CONSTANT HEAD TEST DATA FOR HOLE P-13A (Cont'd) (E COAL)

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/17/80	1336				23.34
	1340	Started bailing		Ξ.	
	1345	Stopped bailing =	3 gal		
	1347				35.2
¥2	1440				34.77
3/18/80	1004				30.42
	1006	Started bailing	Ŧ		
	1012	Stopped bailing =	2 gal		
	1013				35.95
	1553	Bailed			34.35
	1600				36.27
3/24/80	1504				23.10
3/27/80	1501	Bailed ≃ 2 gal			23.03
*		$T' = 10.0^{\circ}C$ Cond =	3060 µmhos	/cm @ 25 ⁰ C	
		Bailed ≃ 1 gal T	= 9.1 ⁰ C C	ond = 3130	pH = 6.6
	1521		×		35.8
4/2/80	1409	$T = 8.0^{\circ}C$ Cond =	3070		23.05
		Sample taken		×.	
4/10/80	0947	Started injection t	est		
	0959	12	.0100	100	
S∦r	1029	42	.0065	153	1497.
	1100	73	.0062	161	

TABLE A-1.19 CONSTANT HEAD TEST DATA FOR HOLE P-15 (LOWER MUDSTONE AND E COAL)

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
4/10/80	1128	101	.0058	173	
· · · · · ·	1236	169	.0054	184	*
	1307	200	.0055	183	
	1340	233	.0053	187	
	1426	279	.0051	195	
	1526	339	.0049	206	x.
	1554	367	.0048	209	

TABLE A-1.19 CONSTANT HEAD TEST DATA FOR HOLE P-15 (Cont'd) (LOWER MUDSTONE AND E COAL)

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/27/80	-	: *			dry
4/9/80	-	Saturated hole		ų.	1) Ali a
4/10/80	0948	Started injection t	est		
	0953	5	0.048	20.9	
	1006	18	0.042	24.0	
	1037	49	0.041	24.3	*
	1108	80	0.040	25.2	
	1136	108	0.040	25.1	
	1151	123	0.039	25.5	
	1227	159	0.039	25.9	
	1258	190	0.040	25.1	(*
	1349	241	0.039	25.3	
	1416	268	0.039	25.7	×
	1453	305	0.038	26.3	
	1517	329	0.038	26.4	
	1546	358	0.037	26.9	38
	1607	379	0.037	27.1	
	1651	423	0.054	18.7	
	1658	430	0.053	18.8	

TABLE	A-1.20	CONSTANT	HEAD	TEST	DATA	FOR	HOLE	P-15A
		(UPPE	ER MUD	STONE)			

DATE	TIME	TIME SINCE INJECTION STARTED (MIN)	DISCHARGE (Q, IN GPM)	1/Q (MIN/GAL)	WATER LEVEL (FT-MP)
3/13/80			an Namena Somannika da Sheriyan Lanana M		75.0
3/18/80					Dry
3/24/80			an a		Dry
4/9/80	S	aturated zone	н		ара-
4/10/80	1015	0		100 ED	
	1023	8	0.138	7.27	
	1048	33	0.088	11.40	
	1106	51	0.064	15.73	
	1131	76	0.071	14.13	
N SË	1155	100	0.067	14.93	
	1230	135	0.061	16.27	
	1312	177	0.058	17.20	
	1355	220	0.055	18.27	
	1445	270	0.051	19.60	
	1530	315	0.049	20.40	
	1615	360	0.046	21.73	na: S

TABLE A-1.21 CONSTANT HEAD TEST DATA FOR HOLE P-16 (UPPER 70 SAND)

		TIME SINCE INJECTION STARTED	DISCHARGE	1/0	WATER
DATE	TIME	(MIN)	(Q, IN GPM)	(MIN/GAL)	(FT-MP)
3/17/80	1 				Dry
3/24/80	1542			×	Dry
4/9/80	1200	Added water to be	gin saturating	formation	
	1600	Added more water	to saturate fo	rmation	
4/10/80	1600	Added water to sa	turate formati	on	
4/11/80	0935	Begin permeabilit	y test		-
	0944	9	0.03	32.00	
	0952	17	0.031	32.27	
	1028	53	0.030	32.80	
	1108	93	0.025	38.93	
	1141	126	0.023	42.62	
×	1217	162	0.023	42.67	
ŧ	1255	200	0.022	45.87	
	1333	238	0.019	53.33	
	1415	280	0.020	48.80	
	1451	316	0.020	49.87	
	1520	. 345	0.0190	52.53	÷

TABLE A-1.22 CONSTANT HEAD TEST DATA FOR HOLE P-17 (UPPER 70 SAND)

DATE	TINE	TIME SINCE INJECTION STARTED	DISCHARGE	1/Q	WATER
DATE	TIME	(MIN)	(Q, IN GPM)	(MIN/GAL)	(FI-MP)
3/24/80	1227				22.54
	1230	Begin bailing			
	1233	End bailing (< 1	/2 gal)		
	1234	ά.			24.4
3/27/80	1405		2		23.6
4/3/80	1409	T = 8.1 ⁰ C Cond	= 94 µmhos/cm	@ 25 ⁰ C	21.79
4/10/80	1321	¥1			22.25
4/11/80	1000	Start permeabili	ty test	а;	
	1017	17	0.44	2.27	
	1024	24	0.42	2.40	
	1059	59	0.375	2.67	
	1116	76	0.20	4.93	
4	1148	108	0.19	5.20	
સ	1225	145	0.20	4.93	
	1311	191	0.20	4.93	
	1341	221	0.197	5.07	
	1425	. 265	0.192	5.20	
•	1500	300	0.192	5.20	

TABLE A-1.23 CONSTANT HEAD TEST DATA FOR HOLE P-18 (ALLUVIUM)

terration of the second se		
DATE	TIME	(ft below MP)
		WELL P-20
5-21-80	1330	97.62
5-22-80	1122	97.55
4 x	1124	START BAIL TEST ON WELL P-20B
	1141	97.54
÷	1204	97.56
	1244	97.57
	1304	STOP BAIL TEST ON WELL P-20B
2	1313	97.57
		WELL P-20A
5-21-80	1245	98.25
	1430	98.17
5-22-80	1119	98.09
	1124	START BAIL TEST ON WELL P-20B
м.	1131	98.08
(and	1145	98.08
	1159	98.10
	1234	98.10
	1304	STOP BAIL TEST ON WELL P-20B
	1306	98.09
×	1333	98.11
	1354	98.09

TABLE A-1.23A WATER-LEVEL DATA FOR WELLS P-20 AND P-20A DURING BAIL TEST OF WELL P-20B

Date	Time	Time Since Bailing Started (t, in min)	Time Since Pumping Stopped (t', in min)	t/t'	Water Level (ft below mp)	Drawdown (ft)	Discharge (gpm)
5/22/80	1118			al - Malaan an - Annin da murdidi. S	97.95		R fall fand oan rolf fan fan oak die die haar oak die gegeneer op
	1124	0	Start bailing	*			
	1137	13	4. Hereit		105.9	7.95	
	1143	19	T = 12.5°C	Cond = I	020 umhos/cm @ 25 ⁰	Ċ	0.26
	1156	32			111.9	13.95	
	1215	51	$T = 12.8^{\circ}C$	Cond = I	416 umhos/cm @ 25 ⁰	°C	0.16
	1220	56	$T = 11.0^{\circ}C$	Cond = I	682 umhos/cm @ 25 ⁰	Ċ	
	1228	64			116.04	18.09	19 1
			Water sampl	e collected	• •		
	1302	98	$T = 11.7^{\circ}C$	Cond = 1	467 umhos/cm @ 25 ⁰	c	0.10
	1304	100	0	Stop bai	ling	*	
	1311	107	7	15.3	116.15	18.20	
	1320	116	16.	7.25	114.12	16.17	
	1325	121	21	5.76	113.08	15.13	
	1330	126	26	4.85	112.11	14.16	
	1340	136	36	3.78	109.99	12.04	
	1351	147	47	3.13	108.09	10.14	
	1430	186	86	2.16	103.28	5.33	
	1551	267	167	1.60	99.00	1.05	
	1655	331	231	1.43	98.53	-0.22	

TABLE A-1.23B BAILING AND RECOVERY DATA FOR WELL P-20B (7055)

Date	Time	t	t'	t/t'	Water Level (ft-mp)	Residual Drawdown
3/24/80	1523		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		75.32	
4/03/80	1302		4		75.57	
	Bailed 10	times	T = 9.0°C	Cond =	713 umhos/cm @	25°C
4/10/80	1522	э			75.27	
5/18/80	1348		r		73.80	
	1440	0	Started B	Bailing		
			T = 11.0	Cond =	1370	
	1455		T = 10.0	Cond =	1335	
	1506		T = 10,1	Cond =	1360	
	1516		T = 10.5	Cond =	1470	
	1517		Stopped E	Bailing		
	1525	45	8	5.62	116.64	42.84
	1536	56	19	2.95	114.35	40.55
	1544	64	27	2.37	112.60	38.80
	1550	70	33	2.12	111.24	37.44
5/22/80	1541		AVG. Q = 0.41	gpm	73.40	

TABLE A-1.23C BAILING AND RECOVERY DATA FOR WELL P-21 (7055)

Note:

t = time since bailing started, in min.

t' = time since bailing stopped, in min.

· Date	Time	Time Since Injection Started (min)	Discharge (Q, in GPM)	I/Q (min/gal)	Water Level (ft-mp)
4/09/80	1425			anna amhann an - achannailte a bhadhnais	179.4
		Bailed dry			•
5/15/80	1539	·** *	31	5000 -	Dry
		Saturated hole			a
5/16/80	1148	Started test			
	1217	29	0.149	6.73	
	1243	55	0.122	8.20	
	1303	75	0.119	8.41	
	1322	94	0.125	7.99	16 *
	1342	114	0.113	8.83	
~	1408	140	0.396	2.52	
	1410	142	0.30	3.33	
	1428	160	0.288	3.47	
-	1457	189	0.30	3.33	
	1523	215	0.288	3.47	
	1611	263	0.263	3.80	
	1642	294	0.250	4.0	£.

TABLE A-1.24 CONSTANT HEAD TEST DATA FOR HOLE 35N-1C (U 7055)

Date	Time	Time Since Injection Started (min)	Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
4/03/80	1539				39.68
	*	Bailed nearly dry			
		T = 8.5°C Cond	= 281 umhos/cm	@ 25°C	
4/09/80	1435				39.44
		T = 9.4°C Cond	= 339 umhos/cm	@ 25°C	
		Bailed dry		*	
4/10/80	1423				39.39
5/15/80	1542			ji r	39.53
5/16/80	1152		κ.		39.54
		T = 10.5°C Conc	l = 405 umhos/cr	n @ 25 ⁰ C	æ =
ά.			°u		39.54
	а н р	14			1
5/16/80	1301	Started test			
	1310	9	0.153	6.52	
	1324	23	0.132	7.57	
	1344	43	0.113	8.83	
	1410	69	0.113	8.83	
	1431	90	0.101	9.88	
n:	1459	118	0.116	8.62	
	1526	145	0.091	10.94	
	1558	177	0.086	11.56	

TABLE A-1.25 CONSTANT HEAD TEST DATA FOR HOLE 35N-1D (5S)

Date	Time	Time Since Injection Started (min)	Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
4/03/80	1526			in and a second s	27.85
1. 1. 1. 1.		$T = 6.8^{\circ}C$ Cond	= 301 umhos/cm	@ 25°C	
-24		Bailed nearly dry			
4/09/80	1450				28.53
×		$T = 9.4^{\circ}C$ Cond	= 325 umhos/cm	@ 25°C	
		Bailed dry			
4/10/80	1420		ti t : per		29.50
5/15/80	1530				28.86
	*	Saturated hole	з Ф		
5/16/80	1151	0	Start	4 5	
	1211	10	0.0047	211	: 1 0) -
	1238	37	0.0059	170	
	1258	57	0.0060	168	
	1318	77	0.0058	172	
	1338	97	0.0055	183	
	1401	120	0.0057	175	
	1423	142	0.0052	192	
	1453	172	0.0050	202	
	1532	211	0.0047	211	
	1603	242	0.0045	222	

TABLE A-1.26 CONSTANT HEAD TEST DATA FOR HOLE 35N-1E (MS)

4

Date	Time	t (min)	t' (min)	t/t'	Water Level (ft below MP)	Drawdown (ft)	Discharge (gpm)
4/11/80		Bailea	d - 1	4 aal·			
5/15/80	1443			J	144.15		
5/19/80	1257				141.32		
	1259	Starte	ed bailir	ng	3 		
	× 1302	T = 12	2.0°C	Cond =	953 umhos/cm	@ 25°C	
	1310	T = 11	.2°C	Cond =	972 umhos/cm	@ 25°C	
		Sampl	le taker	n		•	
	1325	T ≟ []	.0°C	Cond =	950 umhos/cm	@ 25°C	*
	1333	Stopp	ed baili	ng - 12	gal		
	1335				154.3	•	
	1347	48	14	3.42	156.92		
4	1352	53	19	2.79	156.51	*	
	1403	64	30	2.13	155.83		
	1414	75	41	1.83	155.15		ť
	1427	88	54	1.63	154.34	÷	
	1546	167	133	1.26	150.86		
	1549				150.77		
	1649	230	196	1.17	149.06		8 4)
5/21/80	955				147.25		
	1010				147.22	¥	
	1124				147.17		
	1525				146.83		
					े . द		*

TABLE A-1.27 BAILING AND RECOVERY DATA FOR WELL 35N-2A (U7055)

Note: t = time since pumping started t' = time since pumping stopped

Date	Time	Time Since Injection Started (min)	Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
4/11/80					99.0
5/15/80	1453				124.22
5/19/80	1247				124.28
	1249	Started bailing		€¥.	
	1251	T = 11.0 ⁰ C Cond	= 475 umhos/cr	п @ 25 ⁰ С	
	1256	Stopped bailing			
	1329	•			130.19
	1338				129.88
	1343	78			129.77
	1350	• II **			129.58
18 B.	1418				128.87
5/20/80	1910	Saturated hole			
5/21/80	1000	Started saturation			
	1020	20	0.103	9.67	3
- - 	1045	45	0.100	10.0	
	1100	60	0.0926	10.8	
	1130	90	0.0920	10.9	
	1155	115	0.0857	11.7	
	1310	190	0.0824	12.1	
	1440	280	0.0806	12.4	

TABLE A-1.28 CONSTANT HEAD TEST DATA FOR HOLE 35N-2B (SS)

Date	Time	Time Since Injection Started (min)	Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
5/15/20	1457		enannan an ann an Arraige		69 h
5/15/00	1437				(0 57
5/19/80	1237	C			67.52
	1241	Started bailing			
	1243	$T = 11.5^{\circ}C$ Cond	= 1086 umhos/c	cm @ 25°C	
	1248	Stopped bailing	2.0 gal		
	1313				72.87
	1330		3. € 1		72.65
	1409	•	*		72.49
5/20/80	1855	Saturated hole			*
5/21/80	1010	Started injection to	est		
	1035	25	0.428	2.34	18
	1052	42	0.341	2.93	
	1105	55	0.236	4.23	
	1135	85	0.171	5.86	
	1305	175	0.195	5.13	
	1445	275	0.168	5.97	

TABLE A-1.29 CONSTANT HEAD TEST DATA FOR HOLE 35N-2C (MS)

17 1 1

÷...,

TABLE A-1.30 CONSTANT HEAD TEST DATA FOR HOLE 35N-3 (SS)

Date	Time	Time Since Injection Starte (min)	d Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
4/09/80	aka Mari		いた。 注 <i>戦</i>		Dry
5/15/80	-	Saturated hole	1		
5/19/80	-	Saturated hole			
5/20/80	1505	Start test			
	1525	20	0.660	1.52	
	1550	45	0.445	2.25	÷
	1620	85	0.414	2.42	
	1710	135	0.418	2.39	*2
	1750	165	0.410	2.44	
	1850	225	0.276	3.62	
	1915	250	0.250	4.00	
	1950	285	0.214	4.66	

.....

A-1-41

702 •

 $1 \sim r^2$ 1

Date	Time	Time Since Injection Started (min)	Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
4/09/80	1400		•	9:	131.73
	а. С	T = 10.4°C Cond	= 386 umhos/cr	n @ 25 ⁰ C	
5/16/80	-	Saturated hole			
5/19/80	-	Saturated hole			
5/20/80	1450	Start test			
	1525	35	0.054	18.67	
	1545	55	0.054	18.67	
	1605	75	0.052	19.29	
	1640	110	0.051	19.56	
	1730	160	0.050	20.00	
٠	1852	242	0.049	20.33	

TABLE A-1.31 CONSTANT HEAD TEST DATA FOR HOLE 35N-4 (MS)

Date	Time	Time Sin Injection St (min)	ce arted	Discharge (Q, in GPM)	i/Q (min/gal)	Water Level (ft-mp)
4/09/80	1510	a				23.64
		Started bail	ing			
		$T = 9.0^{\circ}C$	Cond =	= 171 umhos/cm	@ 25°C	
		T = 9.0°C	Cond =	428 umhos/cm	@ 25°C	
		T = 8.9 ⁰ C	Cond =	543 umhos/cm	@ 25°C	
5/15/80	1420					74.6
*		Started bail	ing			
	H ² π	T = 9.1°C	Cond =	640 umhos/cm	@ 25°C	
		Bailed nearl	y dry			
5/19/80	1433		÷			80.2
		T = 11.8°C	Cond	= 732 umhos/cm	@ 25°C	
5/20/80	2010	Started satu	ration			
5/21/80	9:40	Start test		: 		
	1059	158		4.0×10^{-5}	24,920	
	1322	129		3.5×10^{-5}	28,725	
	1613	213		3.7 × 10 ⁻⁵	26,876	

TABLE A-1.32 CONSTANT HEAD TEST DATA FOR HOLE 35N-5 (SS)

Date	Time	Time Since Injection Started (min)	Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
/1/09/90	1400		ann (fann-an s), sy ag sy ann an g		86 70
4/02/00	1000		- 0/11	- 0 35 ⁰ C	00.70
		$T = 9.0^{\circ}C$ Cond	= 041 Umnos/cn		
	÷				
E / I E /00	1250	Dallea – 12 gai			04 07
2/12/80	1337	T 0.000 0 1	770 1 1	c. ar ⁰ c	86.87
			= /69 umhos/cn	n@25°C	
		Sample taken			
5/16/80	0857	0		0	86.87
		$T = 10.0^{\circ}C$, C	= 904 umhos/cm	n @ 25°C	
		Sample taken			
	*	$T = 10.5^{\circ}C$, C	= 879 umhos/cm	n@ 25°C	
	0930	0	Start		
	1025	55	2.93	0.342	
	1056	86	1.90	0.525	
	1124	114	1.60	0.625	
	1202	152	1.20	0.833	
	1232	182	1.07	0.933	
	1300	210	1.00	1.000	
	1330	240	0.909	1.100	
	1355	265	0.858	1.165	
	1416	286	0.811	1.233	
	1437	307	0.828	1.21	

TABLE A-1.33 CONSTANT HEAD TEST DATA FOR HOLE 35N-6 (SS)

Data	Time	t _l (min)	†2 (min)	†3 (min)	t ₄ (min)	$\frac{t_1t_3}{t_2t_4}$	Water Level (ft below mp)	Discharge (gpm)
5/15/80	0915				÷	36 23	132.30	
5/19/80	1051					•	132.44	() * -
	1056		Start	bailin	g			
	1104		T = 1	0.9°C	, C =	290 umhos/	ст @ 25 ⁰ С	
	1117		T = 1	1.1°C	, C=	300 umhos/	cm @ 25°C	0.48
	1136		T = 1	1.0°C	, C=	390 umhos/	cm @ 25 ⁰ C	0.50
			Stop	bailing	1			
5/20/80 5/21/80	1138 1625 1150 1152 1340 1528	đ			-		132.58 132.3 132.3 132.25 132.24 132.21	÷
	1545	0	Start	bailin	g.	×		
	1550	5	T = 1	1.0°C	, C =	434 umhos/	cm @ 25 ⁰ C	0.54
	1603	18	T = 1	2.0°C	, C=	463 umhos/	cm @ 25°C	
	1610	25	T = 1	1.2°C	, C =	452 umhos/	cm @ 25 ⁰ C	0.71
	1615	30	T = 1	1.5°C	, C=	489 umhos/	cm @ 25 ⁰ C	0.73
	1625	40	T = 1	1.8°C	, C =	452 umhos/	cm @ 25 ⁰ C	0.53
	1635	50	T =	2.0°C	, C =	450 umhos/	cm @ 25 ⁰ C	0.49
•	1650	65	T = 1	1.0°C	, C=	468 umhos/	cm @ 25 [°] C	0.68
	1700	75	0 T	= 11.0	°c, (C = 461 umh	os/cm @ 25 ⁰ C	0.79
	1740	115	40	0 Τ	= 11.0	°C,C=4	14 umhos/cm @ 25 ^o C	0.97
	1750 1751 1755 1805 1810 1815	125 126 130 140 145 150	50 51 55 65 70 75	10 11 15 25 30 35	0 1 15 20 25	Stop baili 27.2 7.1 3.6 3.1 2.8	ng 3 .87 32.27 32.20 32.19 32.19	

TABLE A-1.34 BAILING AND RECOVERY DATA FOR WELL 35N-7A (70SS)

Note:

t₁ = Time since pumping started, first time
 t₂ = Time since pumping stopped, first time
 t₃ = Time since pumping started, second time
 t₄ = Time since pumping stopped, second time

Date	Time	Time Since Injection Started (min)	Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
5/15/80	0925			ann an Anna Canada an Anna Anna Anna Anna Anna Anna A	Dry
5/19/80		Saturated hole			
5/20/80	1625	Saturated hole	145-		
5/21/80	1040	Starfed test	-97		
	1050	10	0.395	2.53	
	1110	30	0.288	3.47	
	1150	70	0.254	3.93	
	1237	117	0.250	4.00	
1	1355	195	0.214	4.67	
	1548	308	0.214	4.67	
	1715	395	0.207	4.83	

TABLE A-1.35 CONSTANT HEAD TEST DATA FOR HOLE 35N-7B (U70SS)

Date	Time	Time S Injection S (mir	ince Started)	Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
4/09/80	1630					83.79
	Bailed -	I.5 gal T	= 8.9°C	Cond = 500 u	mhos/cm @ 2	5°C
4/10/80	1343				**************************************	83.76
5/15/80	0958					82.09
	Sample to	iken T	= 8.5°C	Cond = 530 u	mhos/cm @ 2	5°C
	1105	Start perm	neability t	test		
*	1132	27		1.71	0.583	
	1150	45		1.60	0.625	
	1212	67		1.60	0.625	
	1233	. 88		1.26	0.792	×
	1336	151		0.80	1.25	1341
	1407	182		0.73	1.38	
	1441	216		0.65	1.54	
	1513	248		0.60	1.67	

TABLE A-1.36 CONSTANT HEAD TEST DATA FOR HOLE 35N-7C (SS)

Date	Time	Time Since Injection Started (min)	Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
5/15/80	0931				96.45
5/18/80	0911				97.39
		Bailed – ½ gal			
5/19/80	1101	3 4			97.6
	1154	Started bailing		h	
		T = 10.5°C Cond	= 577 umhos/cr	n @ 25 ⁰ C	
	1157	Bailed dry - 1	gal		
5/21/80	1150	Start saturation		tæj:	
	1345	115	1.67	0.600	
	1450	180	. 1.41	0.708	
	1547	237	1.20	0.835	
	1715	325	1.20	0.835	
	1749	359	1.18	0.850	

TABLE A-1.37 CONSTANT HEAD TEST DATA FOR HOLE 35N-7D (E Coal)

• 184	CONSTANT	TABLE A-I HEAD TEST DATA	.38 FOR HOLE 35N	1-7E (SS)	
Date	Time	Time Since Injection Started (min)	Discharge (Q, in GPM)	l/Q (min/gal)	Water Level (ft-mp)
4/03/80	1445				17.41
	Bailed nea	rlydry $T = 8.5^{\circ}C$	Cond = 380 um	nhos/cm @ 25	°C
4/09/80		re α π ε απογο χε ε και αποτοπολο εουβο			17.56
	Bailed - I	.5 gal T = 8.0°C	Cond = 360 un	nhos/cm @ 25	5°C
4/10/80	1338	 Area 		÷€	17.65
5/15/80	0953	*			18.90
	Sample tak	$T = 9.5^{\circ}C$	Cond = 370 un	nhos/cm @ 25	5°C
	1042	Permeability test s	tarted		
	1046	4	0.022	45.2	
	1105	23	0.016	61.5	
	1135	53	0.015	64.7	
*	1155	73	0.014	69.4	
	1227	105	0.015	67.8	
	1256	134	0.014	69.4	
	1357	195	0.015	67.8	*
	1436	234	0.014	72.6	
	1503	261	0.014	72.6	
	1542	300	0.014	74.1	

TABLE A-1.38						
CONSTANT HEAD	TEST	DATA FOR	HOLE 35N-7E (SS)			

· ·

* *

Date	T Injec Time	ime Since ction Started (min)	Discharge (Q, in GPM)	I/Q (min/gal)	Water Level (ft-mp)
4/03/80	1435	¥.	ж 		13.82
	Bailed - 2 gal	T = 7.0°C	Cond = 410 um	hos/cm @ 25 ⁰ C	
4/09/80	1620				13.80
	Bailed – I gal	T = 6.8°C	Cond = 390 um	hos/cm @ 25°C	
4/10/80	1336				14.10
5/15/80	0951	T = 8.0°C	Cond = 390 um	hos/cm @ 25 ⁰ C	14.97
	Sam	ole taken			
	1050 Pern	neability test	started		
	1056	6	0.007	139	
	1129	39	0.006	158	
	1148	58	0.006	164	
	1221	91	0.006	177	
÷.	1249	119	0.005	192	
	1350	180	0.006	183	
	1430	220	0.006	183	
	1456	246	0.005	196	
	1536	286	0.005	186	

TABLE A-1.39 CONSTANT HEAD TEST DATA FOR HOLE 35N-7F (MS)