# STATE OF THE # UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001 March 14, 2012 Mr. Paul A. Harden Site Vice President FirstEnergy Nuclear Operating Company Beaver Valley Power Station Mail Stop A-BV-SEB1 P.O. Box 4, Route 168 Shippingport, PA 15077 SUBJECT: BEAVER VALLEY POWER STATION, UNIT NOS. 1 AND 2 - ISSUANCE OF AMENDMENTS REGARDING THE SPRAY ADDITIVE SYSTEM BY CONTAINMENT SUMP PH CONTROL SYSTEM (TAC NOS. ME6352 AND ME6353) Dear Mr. Harden: The Commission has issued the enclosed Amendment No. 289 to Renewed Facility Operating License No. DPR-66 for the Beaver Valley Power Station, Unit No. 1 (BVPS-1) and Amendment No. 176 to Renewed Facility Operating License No. NPF-73 for the Beaver Valley Power Station, Unit No. 2 (BVPS-2). These amendments consist of changes to the Technical Specifications (TSs) in response to your application dated May 27, 2011. These amendments revise TSs associated with replacing sodium hydroxide with sodium tetraborate as a chemical additive for containment sump pH control following a loss-of-coolant accident at BVPS-1. Due to common TSs for BVPS-1 and 2, administrative changes were made to the BVPS-2 license to reflect the BVPS-1 changes. A copy of the related safety evaluation is also enclosed. The Notice of Issuance will be included in the Commission's biweekly *Federal Register* notice. Sincerely Madiyah S. Morgan, Project Manager Plant Licensing Branch I-1 Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation Docket Nos. 50-334 and 50-412 **Enclosures:** 1. Amendment No. 289 to DPR-66 2. Amendment No. 176 to NPF-73 3. Safety Evaluation cc w/encls: Distribution via ListServ # UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001 # FIRSTENERGY NUCLEAR OPERATING COMPANY #### FIRSTENERGY NUCLEAR GENERATION CORP. #### **DOCKET NO. 50-334** #### BEAVER VALLEY POWER STATION, UNIT NO. 1 ### AMENDMENT TO RENEWED FACILITY OPERATING LICENSE Amendment No. 289 License No. DPR-66 - 1. The Nuclear Regulatory Commission (the Commission) has found that: - A. The application for amendment by FirstEnergy Nuclear Operating Company, et al. (the licensee), dated May 27, 2011, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I; - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission; - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations; - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied. 2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C.(2) of Renewed Facility Operating License No. DPR-66 is hereby amended to read as follows: #### (2) <u>Technical Specifications</u> The Technical Specifications contained in Appendix A, as revised through Amendment No. 289, are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications. 3. This license amendment is effective as of the date of its issuance and shall be implemented prior to achieving Mode 4 during startup from the BVPS-1 refueling outage in the spring of 2012. FOR THE NUCLEAR REGULATORY COMMISSION George Wilson, Chief Plant Licensing Branch I-1 Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation Attachment: Changes to the License and **Technical Specifications** Date of Issuance: March 14, 2012 #### ATTACHMENT TO LICENSE AMENDMENT NO. 289 #### RENEWED FACILITY OPERATING LICENSE NO. DPR-66 # **DOCKET NO. 50-334** Replace the following page of the Renewed Facility Operating License with the attached revised page. The revised page is identified by amendment number and contains marginal lines indicating the areas of change. | Remove | Insert | |--------|--------| | 3 | 3 | Replace the following pages of Appendix A Technical Specifications with the attached revised pages. The revised pages are identified by amendment number and contain marginal lines indicating the areas of change. | <u>Remove</u> | <u>Insert</u> | |---------------|------------------------------------| | 3.6.8-1 | 3.6.8-1 | | 3.6.8-2 | who have \$100 will have have also | | 3.6.9-1 | | - (3) FENOC, pursuant to the Act and 10 CFR Parts 30, 40 and 70, to receive, possess and use at any time any byproduct, source and special nuclear material as sealed neutron sources for reactor startup, sealed sources for reactor instrumentation and radiation monitoring equipment calibration, and as fission detectors in amounts as required; - (4) FENOC, pursuant to the Act and 10 CFR Parts 30, 40 and 70, to receive, possess and use in amounts as required any byproduct, source, or special nuclear material without restriction to chemical or physical form, for sample analysis or instrument calibration or associated with radioactive apparatus or components; - (5) FENOC, pursuant to the Act and 10 CFR Parts 30, 40, and 70, to possess, but not separate, such byproduct and special nuclear materials as may be produced by the operation of the facility. - C. This renewed operating license shall be deemed to contain and is subject to the conditions specified in the following Commission regulations in 10 CFR Chapter 1: Part 20, Section 30.34 of Part 30, Section 40.41 of Part 40, Sections 50.54 and 50.59 of Part 50, and Section 70.32 of Part 70; and is subject to all applicable provisions of the Act and to the rules, regulations, and orders of the Commission now or hereafter in effect; and is subject to the additional conditions specified or incorporated below: - (1) Maximum Power Level FENOC is authorized to operate the facility at a steady state reactor core power level of 2900 megawatts thermal. (2) Technical Specifications The Technical Specifications contained in Appendix A, as revised through Amendment No. 289, are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications. (3) Auxiliary River Water System (Deleted by Amendment No. 8) #### 3.6 CONTAINMENT SYSTEMS 3.6.8 Containment Sump pH Control System LCO 3.6.8 The Containment Sump pH Control System shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. # ACTIONS | | CONDITION | REQUIRED ACTION | | COMPLETION TIME | |----|---------------------------------------------------|-----------------|----------------------------------------------------------------------|-----------------| | Α. | Containment Sump pH<br>Control System inoperable. | A.1 | Restore Containment<br>Sump pH Control System<br>to OPERABLE status. | 72 hours | | В. | Required Action and associated Completion | B.1 | Be in MODE 3. | 6 hours | | | Time not met. | AND | | | | | | B.2 | Be in MODE 5. | 84 hours | # SURVEILLANCE REQUIREMENTS | | SURVEILLANCE | | | | |------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|--| | SR 3.6.8.1 | Perform a visual inspection of the six sodium tetraborate storage baskets to verify the following: a. Each storage basket is in place and intact; and, | 18 months | | | | | <ul> <li>b. Collectively contain</li> <li>≥ 188 cubic feet of sodium tetraborate (Unit 1)</li> <li>≥ 292 cubic feet of sodium tetraborate (Unit 2).</li> </ul> | | | | | SR 3.6.8.2 | Verify that a sample from the sodium tetraborate baskets provides adequate pH adjustment of containment sump borated water. | 18 months | _ | | # UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001 #### FIRSTENERGY NUCLEAR OPERATING COMPANY #### FIRSTENERGY NUCLEAR GENERATION CORP. #### OHIO EDISON COMPANY #### THE TOLEDO EDISON COMPANY **DOCKET NO. 50-412** #### BEAVER VALLEY POWER STATION, UNIT 2 #### AMENDMENT TO RENEWED FACILITY OPERATING LICENSE Amendment No. 176 License No. NPF-73 - 1. The Nuclear Regulatory Commission (the Commission) has found that: - A. The application for amendment by FirstEnergy Nuclear Operating Company, et al. (the licensee), dated May 27, 2011, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I; - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission; - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations; - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied. - 2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C.(2) of Renewed Facility Operating License No. NPF-73 is hereby amended to read as follows: - (2) Technical Specifications The Technical Specifications contained in Appendix A, as revised through Amendment No. 176, and the Environmental Protection Plan contained in Appendix B, both of which are attached hereto are hereby incorporated in the license. FENOC shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan. 3. This license amendment is effective as of the date of its issuance and shall be implemented prior to achieving Mode 4 during startup from the BVPS-1 refueling outage in the spring of 2012. FOR THE NUCLEAR REGULATORY COMMISSION George Wilson, Chief Plant Licensing Branch I-1 Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation Attachment: Changes to the License and Technical Specifications Date of Issuance: March 14, 2012 # ATTACHMENT TO LICENSE AMENDMENT NO. 176 #### RENEWED FACILITY OPERATING LICENSE NO. NPF-73 #### **DOCKET NO. 50-412** Replace the following page of the Renewed Facility Operating License with the attached revised page. The revised page is identified by amendment number and contains marginal lines indicating the areas of change. | Remove | Insert | |--------|--------| | 4 | 4 | Replace the following pages of Appendix A Technical Specifications with the attached revised pages. The revised pages are identified by amendment number and contain marginal lines indicating the areas of change. | Remove | <u>Insert</u> | |---------|---------------| | 3.6.8-1 | 3.6.8-1 | | 3.6.8-2 | | | 3.6.9-1 | | - (b) Further, the licensees are also required to notify the NRC in writing prior to any change in: (i) the term or conditions of any lease agreements executed as part of these transactions; (ii) the BVPS Operating Agreement, (iii) the existing property insurance coverage for BVPS Unit 2, and (iv) any action by a lessor or others that may have adverse effect on the safe operation of the facility. - C. This renewed operating license shall be deemed to contain and is subject to the conditions specified in the following Commission regulations set forth in 10 CFR Chapter 1 and is subject to all applicable provisions of the Act and to the rules, regulations, and orders of the Commission now or hereafter in effect; and is subject to the additional conditions specified or incorporated below: #### (1) Maximum Power Level FENOC is authorized to operate the facility at a steady state reactor core power level of 2900 megawatts thermal. #### (2) <u>Technical Specifications</u> The Technical Specifications contained in Appendix A, as revised through Amendment No. 176, and the Environmental Protection Plan contained in Appendix B, both of which are attached hereto are hereby incorporated in the license. FENOC shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan. #### 3.6 CONTAINMENT SYSTEMS 3.6.8 Containment Sump pH Control System LCO 3.6.8 The Containment Sump pH Control System shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. # **ACTIONS** | | CONDITION | REQUIRED ACTION | | COMPLETION TIME | |----|---------------------------------------------------------|-------------------|----------------------------------------------------------------------|-----------------| | Α. | Containment Sump pH<br>Control System inoperable. | A.1 | Restore Containment<br>Sump pH Control System<br>to OPERABLE status. | 72 hours | | В. | Required Action and associated Completion Time not met. | B.1<br><u>AND</u> | Be in MODE 3. | 6 hours | | | | B.2 | Be in MODE 5. | 84 hours | # SURVEILLANCE REQUIREMENTS | | SURVEILLANCE | FREQUENCY | |------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------| | SR 3.6.8.1 | Perform a visual inspection of the six sodium tetraborate storage baskets to verify the following: | 18 months | | | <ul> <li>a. Each storage basket is in place and intact; and,</li> <li>b. Collectively contain</li> <li>≥ 188 cubic feet of sodium tetraborate (Unit 1)</li> <li>≥ 292 cubic feet of sodium tetraborate (Unit 2).</li> </ul> | | | SR 3.6.8.2 | Verify that a sample from the sodium tetraborate baskets provides adequate pH adjustment of containment sump borated water. | 18 months | # UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001 #### SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION #### RELATED TO AMENDMENT NOS. 289 AND 176 TO RENEWED FACILITY OPERATING LICENSE NOS. DPR-66 AND NPF-73 FIRSTENERGY NUCLEAR OPERATING COMPANY FIRSTENERGY NUCLEAR GENERATION CORP. OHIO EDISON COMPANY THE TOLEDO EDISON COMPANY BEAVER VALLEY POWER STATION, UNIT NOS. 1 AND 2 DOCKET NOS. 50-334 AND 50-412 #### 1.0 INTRODUCTION By application dated May 27, 2011 (Agencywide Documents Access and Management System Accession No. ML111510646), the FirstEnergy Nuclear Operating Company (licensee), requested changes to the Technical Specifications (TSs) for Beaver Valley Power Station, Unit Nos. 1 and 2 (BVPS-1 and 2). The proposed changes would revise TSs associated with replacing sodium hydroxide (NaOH) with sodium tetraborate (NaTB) as a chemical additive for containment sump pH control following a loss-of-coolant accident (LOCA) at BVPS-1. Due to common TSs for BVPS-1 and 2, administrative changes were made to the BVPS-2 license to reflect the BVPS-1 changes. #### 2.0 REGULATORY EVALUATION # 2.1 <u>Description of System</u> BVPS-1 currently uses NaOH as the buffering agent for the post-LOCA recirculation fluid. The NaOH is stored in one spray additive tank, which contains a minimum of 4,700 gallons of a NaOH solution with a concentration of 19.5 - 20 percent by weight. Upon receipt of a containment isolation Phase B signal, two redundant spray additive subsystems pumps deliver the NaOH to the Quench Spray System pump suctions. This chemical addition is intended to facilitate the removal of radioactive iodine from the containment atmosphere by achieving a spray pH of between 8.39 and 10.1. The final pH of the containment sump water after a design-basis accident (DBA), including the contents of the refueling water storage tank, is approximately 7.8 to 8.79. #### 2.2 Proposed TS Changes TS 3.6.8 would be replaced and the new TS 3.6.8 would include the current wording of TS 3.6.9 modified to be applicable to both BVPS-1 and 2. Limiting Condition for Operation (LCO), applicability and actions statements from current TS 3.6.9 would not change. Modifications to the current TS 3.6.9 wording include the following items. - 1. Changing the title from "Unit 2 Containment Sump pH Control System" to "Containment Sump pH Control System." - Changing the number specified for TS 3.6.9 and LCO 3.6.9 to read 3.6.8. - 3. Changing Surveillance Requirement (SR) numbers 3.6.9.1 and 3.6.9.2 to read 3.6.8.1 and 3.6.8.2, respectively. - 4. Changing the current SR 3.6.9.1.b wording to include the minimum contained volume of NaTB for BVPS-1. TS 3.6.9 would be deleted. #### 2.3 Regulatory Requirements and Guidance The Nuclear Regulatory Commission (NRC) staff review addresses the impact of the proposed change from NaOH to NaTB on the containment sump performance, especially potential chemical effect impact on sump screen blockage and head loss. The containment sump (also known as the emergency recirculation sump) is part of the emergency core cooling system (ECCS). Every nuclear power plant is required by Section 50.46 of Title 10 of the *Code of Federal Regulations* (10 CFR) to have an ECCS to mitigate a DBA. 10 CFR 50.46(a)(1)(i) states in part, that each pressurized light-water nuclear power reactor "fueled with uranium oxide pellets within cylindrical zircaloy or ZIRLO cladding must be provided with an [ECCS] that must be designed so that its calculated cooling performance following postulated [LOCAs] conforms to the criteria set forth in paragraph (b) of this section." 10 CFR 50.46(b)(5), "Long-term cooling," states, "After any calculated successful initial operation of the ECCS, the calculated core temperature shall be maintained at an acceptably low value and decay heat shall be removed for the extended period of time required by the long-lived radioactivity remaining in the core." NUREG-0800, Section 6.5.2, "Containment Spray as a Fission Product Cleanup System," which states, in part, that long-term iodine retention may be assumed only when the equilibrium sump solution pH, after mixing and dilution with the primary coolant and ECCS injection, is above 7. Regulatory Guide 1.82, Revision 3, "Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident," Section 1.1.2, which states, in part, that debris that could accumulate on the sump screen should be minimized. #### 3.0 TECHNICAL EVALUATION #### **BVPS-1** Post-LOCA containment pool buffering is primarily required to control the radiological consequences of the accident by reducing the release of iodine fission products from the pool to the atmosphere as molecular iodine. Maintaining a pH above 7 prevents significant amounts of iodine, released from failed fuel and dissolved in the recirculation water, from converting to a volatile molecular iodine form and evolving into the atmosphere. The pH of the sump water at BVPS-1 is currently controlled by the addition of NaOH buffer to the boric acid solution of the ECCS injection water that becomes a portion of the sump water after a LOCA. However, inspection of the sump chemistry has indicated that NaOH reacts with certain insulation materials forming insoluble aluminum-based precipitates. These precipitates, when generated in significant quantities, may block the flow of fluid though the strainers in the sump. To reduce the potential for strainer blockage by chemical precipitates, the licensee proposes to change the buffer in the sump water from NaOH to NaTB. The NaTB will be stored in baskets and dissolved when the post-LOCA sump water reaches the basket elevation. The method of introducing the buffer material to the post-LOCA environment is different for NaTB than for NaOH. BVPS-1 will install six wire baskets to hold the NaTB. The licensee confirmed that the baskets are adequately sized to hold the required amount of NaTB. The minimum amount of NaTB, 9,002 lbs, was determined by the licensee. Their analyses included consideration of minimum and maximum quantities of boron and borated water. The analyses also included radiolysis of air and water, and the radiolysis of chloride-bearing electrical cable insulation and jacketing. The licensee determined that the minimum amount of NaTB required to maintain the minimum sump pH of 7.0 is greater than or equal to 9,002 lbs. The NRC staff performed an evaluation to confirm the licensee's pH calculations. The NRC staff reviewed the licensee's methodology, assumptions, and performed hand calculations to verify the resulting pH value after 30 days. The NRC staff's independent verification demonstrated the containment sump pH would remain above 7 for at least 30 days with the quantities of NaTB described above. The licensee had calculated that the minimum volume required to be in the baskets would be 188 ft³ assuming a minimum density of NaTB of 48 lbs/ft³ and maximum hydration. The initial loading of the baskets would be based on weight. Once the baskets are filled, the fill level of the basket would be noted and documented for reference in evaluating volume. There would be periodic surveillances to verify that the NaTB volume is at the fill level. However, NaTB has the potential to densify, and therefore, occupy less volume than when initially installed. Although, densification of NaTB would not have an effect on the calculated pH levels, if the volume in the basket has decreased, then more of the fresh NaTB would be added to re-establish the original fill level. The licensee calculated the maximum pH would be 8.28 if the baskets were filled to maximum capacity and at maximum NaTB densification. This is within the acceptance criterion for the sump of maintaining a pH between 7.0 and 10.5. The NRC staff has performed an evaluation of the analysis and assumptions and has found it to be acceptable. The NRC staff noted that the volume of NaTB required to maintain pH at BVPS-1 is significantly less than that required for BVPS-2. The difference in the amount of required NaTB is directly related to the difference in volume in the reactor water storage tanks at the two units. Since BVPS-2 has a larger reactor water storage tank (3,252,254 liters) than BVPS-1 (1,629,600 liters), it requires a greater quantity of NaTB to buffer the larger volume of borated water. The NRC staff reviewed the licensee's regulatory and technical analyses related to the impact of the proposed change from NaOH to NaTB on containment sump performance, particularly the potential impact from chemical effects on sump screen blockage and head-loss aspects of DBAs. The licensee's evaluation determined that NaTB is an acceptable alternative to NaOH based on industry testing of buffers outlined in WCAP-16596-NP, "Evaluation of Alternative Emergency Core Cooling System Buffering Agents," and through plant-specific application of the chemical model developed in WCAP-16530-NP, "Evaluation of Post-Accident Chemical Effects in Containment Sump Fluids to Support [Generic Safety Issue] GSI-191." Under the existing NaOH conditions, the WCAP-16350-NP model predicts approximately 247 lbs of chemical precipitates for a reactor coolant system loop cross-over leg break, approximately 246 lbs of chemical precipitates for a reactor vessel nozzle break, and approximately 272 lbs for a pressurizer safety valve line break. For the proposed NaTB condition using conservative values for pH, temperature, and quantities of contributing materials, the model predicts approximately 137 lbs of chemical precipitates for a reactor coolant system loop cross-over leg break, approximately 141 lbs of chemical precipitates for a reactor vessel nozzle break, and approximately 156 lbs for a pressurizer safety valve line break. Based on the WCAP-16530-NP model, the switch from NaOH to NaTB results in an overall reduction in the mass of predicted chemical precipitates of a range of approximately 105 lbs to 116 lbs, depending on the postulated break location. The NRC staff finds that changing buffer materials from NaOH to NaTB at BVPS-1 will result in an improved situation from a chemical effects standpoint. However, despite the significant reduction in the total amount of chemical precipitates, the WCAP-16530-NP model still predicts well over 100 lbs of precipitate under NaTB conditions, regardless of the postulated break location. The NRC staff notes that the licensee will need to demonstrate acceptable ECCS performance under the proposed NaTB conditions in its responses to Generic Letter (GL) 2004-02. # 3.1 NRC Staff's Findings #### BVPS-1 Based on verification calculations, the NRC staff finds that replacing the NaOH containment sump buffer with NaTB in the quantities specified by the licensee will provide acceptable containment sump buffering, such that the sump pH will be maintained in an acceptable range under LOCA conditions for BVPS-1. Although potential chemical effects exist with the use of NaTB in the BVPS-1 containment, the NRC staff determined that the quantity of chemical effects at BVPS-1 will be lower with NaTB compared to NaOH. Based on the proper buffering to be provided by NaTB in the quantities specified and the relative reduction in the mass of chemical precipitates in the case of a LOCA, the NRC staff finds that the replacement of NaOH with NaTB in the quantities specified is acceptable. The NRC staff will be reviewing the licensee's approach to resolving potential chemical effects associated with NaTB as part its review of the licensee's submittal in response to GL 2004-02. #### BVPS-2 The change in buffer does not have a regulatory or technical significance to BVPS-2 and only administrative changes will be made in regard to BVPS-2 TS. Therefore, NRC staff finds the changes to BVPS-2 portion of the TS acceptable. #### 4.0 STATE CONSULTATION In accordance with the Commission's regulations, the Pennsylvania State official was notified of the proposed issuance of the amendments. The State official had no comments. #### 5.0 ENVIRONMENTAL CONSIDERATION The amendments change a requirement with respect to installation or use of a facility component located within the restricted area as defined in 10 CFR Part 20 and change SRs. The NRC staff has determined that the amendments involve no significant increase in the amounts and no significant change in the types of any effluents that may be released offsite and that there is no significant increase in individual or cumulative occupational radiation exposure. The Commission has previously issued a proposed finding that the amendments involve no significant hazards consideration, and there has been no public comment on such finding (77 FR 1518). Accordingly, the amendments meet the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22(c)(9) and (10). Pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the issuance of the amendments. #### 6.0 CONCLUSION The Commission has concluded, based on the considerations discussed above, that: (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) there is reasonable assurance that such activities will be conducted in compliance with the Commission's regulations, and (3) the issuance of the amendments will not be inimical to the common defense and security or to the health and safety of the public. Principal Contributor: M. Yoder Date: March 14, 2012 Mr. Paul A. Harden Site Vice President FirstEnergy Nuclear Operating Company Beaver Valley Power Station Mail Stop A-BV-SEB1 P.O. Box 4, Route 168 Shippingport, PA 15077 SUBJECT: BEAVER VALLEY POWER STATION, UNIT NOS. 1 AND 2 - ISSUANCE OF AMENDMENTS REGARDING THE SPRAY ADDITIVE SYSTEM BY CONTAINMENT SUMP PH CONTROL SYSTEM (TAC NOS. ME6352 AND ME6353) Dear Mr. Harden: The Commission has issued the enclosed Amendment No. 289 to Renewed Facility Operating License No. DPR-66 for the Beaver Valley Power Station, Unit No. 1 (BVPS-1) and Amendment No. 176 to Renewed Facility Operating License No. NPF-73 for the Beaver Valley Power Station, Unit No. 2 (BVPS-2). These amendments consist of changes to the Technical Specifications (TSs) in response to your application dated May 27, 2011. These amendments revise TSs associated with replacing sodium hydroxide with sodium tetraborate as a chemical additive for containment sump pH control following a loss-of-coolant accident at BVPS-1. Due to common TSs for BVPS-1 and 2, administrative changes were made to the BVPS-2 license to reflect the BVPS-1 changes. A copy of the related safety evaluation is also enclosed. The Notice of Issuance will be included in the Commission's biweekly *Federal Register* notice. Sincerely, /ra/ Nadiyah S. Morgan, Project Manager Plant Licensing Branch I-1 Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation Docket Nos. 50-334 and 50-412 #### Enclosures: 1. Amendment No. 289 to DPR-66 2. Amendment No. 176 to NPF-73 3. Safety Evaluation cc w/encls: Distribution via ListServ Amendment No.: ML120530591 \*Via email \*\*Input received. No substantive changes made. | OFFICE | LPLI-1/PM | LPLI-1/LA | ESGB/BC | STSB/BC | OGC | LPLI-1/BC | |--------|-----------|-----------|-----------|----------|----------|-----------| | NAME | NMorgan | SLittle* | GKulesa** | RElliott | AGhosk | GWilson | | DATE | 2/23/2012 | 2/23/2012 | 1/3/2012 | 3/5/2012 | 3/2/2012 | 3/13/12 | OFFICIAL RECORD COPY DATED: March 14, 2012 AMENDMENT NO. 289 TO RENEWED FACILITY OPERATING LICENSE NO. DPR-66 BEAVER VALLEY POWER STATION, UNIT NO. 1 AND AMENDMENT NO. 176 TO RENEWED FACILITY OPERATING LICENSE NO. NPF-73 BEAVER VALLEY POWER STATION, UNIT NO. 2 #### Distribution: **PUBLIC** LPL1-1 R/F RidNrrDorl RidsNrrDorlLpl1-1 RidsNrrDorlDpr RidsNrrDirsItsb RidsNrrPMNMorgan RidsNrrLASLittle (paper copy) RidsRgn1MailCenter RidsOGCRp RidsAcrsAcnw&mMailCenter RidsNrrDeEsgb MYoder