SOAR MODEL VERIFICATION REPORT

Prepared for

U.S. Nuclear Regulatory Commission Contract No. NRC-02-07-006

Prepared by

Ron Janetzke¹ Christopher Markley² Osvaldo Pensado¹ Keith Compton² George Adams¹ Razvan Nes¹ Sitakanta Mohanty¹

¹Center for Nuclear Waste Regulatory Analyses San Antonio, Texas

²U.S. Nuclear Regulatory Commission Washington, DC

February 2012

FIG	SURE	S	iv
		·	
AC	KNOV	WLEDGMENTS	xiii
ΕX	ECUT	TIVE SUMMARY	xv
1	INTF	RODUCTION	1-1
_	~		.
2	GEN	NERAL DESCRIPTION OF VERIFICATION ACTIVITIES	2-1
3	VER	RIFICATION SUMMARY REPORTS	3_1
0	3.1	Summary Report Template	
	3.2	• • •	
	0.2	3.2.1 I-29 Release Rate Factor	
		3.2.2 Cs-135 Release Rate Factor	
4	SOA	AR MODEL RUNS	4-1
5	CON	MPARISON TO LITERATURE RESULTS	51
5	5.1	Simulation of Engineered Barrier System Release Rates of Japanese	
	5.1	Geologic Disposal System.	5-1
	5.2		
	0.2	Rates of Swedish Geologic Disposal System	5-6
6	REF	ERENCES	6-1

CONTENTS

FIGURES

Figure	S	Page
3-1	WP Failure Fraction From General Corrosion	3-98
3-2	WP Failure Fraction From General Corrosion, SOAR Output File	3-98
3-3	SOAR Output Chart of the Breached Area Per Failed WP Due To	
	General Corrosion	
3-4	WP Failure Fraction From General Corrosion	
3-5	WP Failure Fraction From General Corrosion, SOAR Output File	3-102
3-6	SOAR Output Chart of the Breached Area Per Failed WP Due To	
	General Corrosion	
3-7	WP Failure Fraction From General Corrosion	
3-8	WP Failure Fraction From General Corrosion, SOAR Output File	
3-9	SOAR Output Chart of the Breached Area Per Failed WP Due To	0.407
2 40	General Corrosion WP Failure Fraction From General Corrosion	
3-10 3-11	WP Failure Fraction From General Corrosion, SOAR Output File	
3-12	SOAR Output Chart of the Breached Area Per Failed WP Due To	
5-12	General Corrosion	3 111
3-13	WP Failure Fraction From General Corrosion	
3-14	WP Failure Fraction From General Corrosion, SOAR Output File	
3-15	SOAR Output Chart of the Breached Area Per Failed WP Due To	
0 10	General Corrosion	3-115
3-16	WP Failure Fraction From General Corrosion	
3-17	WP Failure Fraction From General Corrosion, SOAR Output File	
3-18	SOAR Output Chart of the Breached Area Per Failed WP Due To	
	General Corrosion	
3-19	WP Failure Fraction From General Corrosion	
3-20	WP Failure Fraction From General Corrosion, SOAR Out File	3-123
3-21	SOAR Output Chart of the Breached Area Per Failed WP Due To	
	General Corrosion	
3-22	WP Failure Fraction From General Corrosion	
3-23	WP Failure Fraction From General Corrosion, SOAR Output File	3-126
3-24	SOAR Output Chart of the Breached Area Per Failed WP Due To	
	General Corrosion	-
3-25	WP Failure Fraction From General Corrosion	
3-26	WP Failure Fraction From General Corrosion, SOAR Output File	3-130
3-27	SOAR Output Chart of the Breached Area Per Failed WP Due To	0 404
2 20	General Corrosion WP Failure Fraction From General Corrosion	
3-28	WP Failure Fraction From General Corrosion, SOAR Output File	
3-29 3-30	WP Failure Fraction From Localized, Corrosion SOAR Output File	
3-30	SOAR Output Chart of the Breached Area Per Failed WP Due To	
5-51	General Corrosion	3_136
3-32	SOAR Output Chart of the Breached Area Per Failed WP	
3-33	WP Failure Fraction From General Corrosion	

Figures	S	Page
3-34	WP Failure Fraction From General Corrosion, SOAR Output File	3-140
3-35	WP Failure Fraction From Localized Corrosion, SOAR Output File	3-141
3-36	SOAR Output Chart of the Breached Area Per Failed WP Due To	
-	General Corrosion	
3-37	SOAR Output Chart of the Breached Area Per Failed WP	
3-38	WP Failure Fraction From General Corrosion	
3-39	WP Failure Fraction From General Corrosion, SOAR Output File	
3-40	WP Failure Fraction From Localized Corrosion, SOAR Output File	3-147
3-41	SOAR Output Chart of the Breached Area Per Failed WP Due To	0 4 4 7
2 4 2	General Corrosion	
3-42 3-43	SOAR Output Chart of the Breached Area Per Failed WP WP Failure Fraction From General Corrosion	
3-43 3-44	WP Failure Fraction From General Corrosion, SOAR Output File	
3-44	SOAR Output Chart of the Breached Area Per Failed WP Due To	
0-40	General Corrosion	3-152
3-46	WP Failure Fraction From General Corrosion	
3-47	WP Failure Fraction From General Corrosion, SOAR Output File	
3-48	SOAR Output Chart of the Breached Area Per Failed WP Due To	
0.0	General Corrosion	3-156
3-49	Far Field Leg 3 Radionuclide Release Rates	
3-50	Far Field Leg 3 Radionuclide Release Rates	
3-51	Far Field Leg 3 Radionuclide Release Rates	
3-52	Far Field Leg 3 Radionuclide Release Rates	
4-1	Total Dose for Simulation 1: Waste Form Degradation Rate—Oxidizing	
4-2	Total Dose for Simulation 1: Waste Form Degradation Rate—Reducing	
4-3	I-29 Dose for Simulation 1: Waste Form Degradation Rate—Oxidizing	
4-4	I-29 Dose for Simulation 1: Waste Form Degradation Rate—Reducing	
4-5	Tc-99 Dose for Simulation 1: Waste Form Degradation Rate—Oxidizing	
4-6	Tc-99 Dose for Simulation 1: Waste Form Degradation Rate—Reducing	
4-7	Np-237 Dose for Simulation 1: Waste Form Degradation Rate—Oxidizing	
4-8 4-9	Np-237 Dose for Simulation 1: Waste Form Degradation Rate—Reducing	
4-9 4-10	Total Dose for Simulation 2: Initial Enrichment—Oxidizing Total Dose for Simulation 2: Initial Enrichment—Reducing	
4-10	I-29 Dose for Simulation 2: Initial Enrichment—Oxidizing	
4-12	I-29 Dose for Simulation 2: Initial Enrichment—Coldizing	
4-13	Tc-99 Dose for Simulation 2: Initial Enrichment—Oxidizing	
4-14	Tc-99 Dose for Simulation 2: Initial Enrichment—Reducing	
4-15	Np-237 Dose for Simulation 2: Initial Enrichment—Oxidizing	
4-16	Np-237 Dose for Simulation 2: Initial Enrichment—Reducing	
4-17	Total Dose for Simulation 3: Burnup—Oxidizing	
4-18	Total Dose for Simulation 3: Burnup—Reducing	
4-19	I-129 Dose for Simulation 3: Burnup—Oxidizing	
4-20	I-129 Dose for Simulation 3: Burnup—Reducing	4-13
4-21	Tc-99 Dose for Simulation 3: Burnup—Oxidizing	
4-22	Tc-99 Dose for Simulation 3: Burnup—Reducing	
4-23	Np-237 Dose for Simulation 3: Burnup—Oxidizing	4-15

Figures

4-24	Np-237 Dose for Simulation 3: Burnup—Reducing	.4-15
4-25	Total Dose for Simulation 4: Alternative Waste Forms—Oxidizing	.4-16
4-26	Total Dose for Simulation 4: Alternative Waste Forms-Reducing	.4-17
4-27	I-129 Dose for Simulation 4: Alternative Waste Forms—Oxidizing	.4-17
4-28	I-129 Dose for Simulation 4: Alternative Waste Forms-Reducing	.4-18
4-29	Tc-99 Dose for Simulation 4: Alternative Waste Forms—Oxidizing	.4-18
4-30	Tc-99 Dose for Simulation 4: Alternative Waste Forms—Reducing	.4-19
4-31	Np-237 Dose for Simulation 4: Alternative Waste Forms—Oxidizing	.4-19
4-32	Np-237 Dose for Simulation 4: Alternative Waste Forms—Reducing	.4-20
4-33	Total Dose for Simulation 5: High-Level Waste (Glass) Loading—Oxidizing	
4-34	Total Dose for Simulation 5: High-Level Waste (Ceramic) Loading—Oxidizing	
4-35	I-129 Dose for Simulation 5: High-Level Waste (Glass) Loading—Oxidizing	
4-36	I-129 Dose for Simulation 5: High-Level Waste (Ceramic) Loading—Oxidizing	
4-37	Tc-99 Dose for Simulation 5: High-Level Waste (Glass) Loading—Oxidizing	
4-38	Tc-99 Dose for Simulation 5: High-Level Waste (Ceramic) Loading—Oxidizing	
4-39	Np-237 Dose for Simulation 5: High-Level Waste (Glass) Loading—Oxidizing	
4-40	Np-237 Dose for Simulation 5: High-Level Waste (Ceramic) Loading—Oxidizing	.4-24
4-41	Total Dose for Simulation 6: High-Level Waste (Glass) Mass Per	
	Waste Package—Oxidizing	.4-25
4-42	Total Dose for Simulation 6: High-Level Waste (Ceramic) Mass Per	
	Waste Package—Oxidizing	.4-26
4-43	I-129 Dose for Simulation 6: High-Level Waste (Glass) Mass Per	
	Waste Package—Oxidizing	.4-26
4-44	I-129 Dose for Simulation 6: High-Level (Ceramic) Mass Per	4 07
	Waste Package—Oxidizing.	.4-27
4-45	Tc-99 Dose for Simulation 6: High-Level Waste (Glass) Mass Per	4.07
4.46	Waste Package—Oxidizing.	.4-27
4-46	Tc-99 Dose for Simulation 6: High-Level Waste (Ceramic) Mass Per	.4-28
4 47	Waste Package—Oxidizing	.4-20
4-47	Np-237 Dose for Simulation 6: High-Level Waste (Glass) Mass Per Waste Package—Oxidizing	.4-28
4-48	Np-237 Dose for Simulation 6: High-Level Waste (Ceramic) Mass Per	.4-20
4-40	Waste Package—Oxidizing	.4-29
4-49	Total Dose for Simulation 7: Waste Package General Corrosion Rate and	.4-23
4-43	5 cm Waste Package Thickness—Oxidizing	4-30
4-50	I-129 Dose for Simulation 7: Waste Package General Corrosion Rate and	30
4 -30	5 cm Waste Package Thickness—Oxidizing	4-31
4-51	Tc-99 Dose for Simulation 7: Waste Package General Corrosion Rate and	0 1
4 0 1	5 cm Waste Package Thickness—Oxidizing	4-31
4-52	Np-237 Dose for Simulation 7: Waste Package General Corrosion Rate and	
102	5 cm Waste Package Thickness—Oxidizing	4-32
4-53	Total Dose for Simulation 8: Waste Package Breach Area with General	
	Corrosion Rate 1e6 um/yr and Not Bypassing the Backfill—Oxidizing	.4-33
4-54	I-129 Dose for Simulation 8: Waste Package Breach Area With General	
	Corrosion Rate 1e6 um/yr and Not Bypassing the Backfill—Oxidizing	.4-34
4-55	Tc-99 Dose for Simulation 8: Waste Package Breach Area With General	
	Corrosion Rate 1e6 um/yr and Not Bypassing the Backfill—Oxidizing	.4-34
		-

Figure	s	Page
4-56		.4-35
4-57	Total Dose for Simulation 9: Buffer Integrity With Varying Fraction Backfill Cracked—Oxidizing	.4-37
4-58	I-129 Dose for Simulation 9: Buffer Integrity With Varying Fraction Backfill Cracked—Oxidizing	.4-37
4-59	Tc-99 Dose for Simulation 9: Buffer Integrity With Varying Fraction Backfill	.4-37
4-60	Np-237 Dose for Simulation 9: Buffer Integrity With Varying Fraction Backfill	.4-38
4-61	Total Dose for Simulation 9: Buffer Integrity With Varying Backfill	.4-39
4-62	I-129 Dose for Simulation 9: Buffer Integrity With Varying Backfill	.4-39
4-63	Tc-99 Dose for Simulation 9: Buffer Integrity With Varying Backfill	.4-40
4-64	Np-237 Dose for Simulation 9: Buffer Integrity With Varying Backfill Lifetime—Oxidizing	-
4-65	Total Dose for Simulation 10: Waste Package Water Volume—Oxidizing	
4-66	I-129 Dose for Simulation 10: Waste Package Water Volume—Oxidizing	
4-67	Tc-99 Dose for Simulation 10: Waste Package Water Volume—Oxidizing	
4-68	Np-237 Dose for Simulation 10: Waste Package Water Volume—Oxidizing	
4-69	Total Dose for Simulation 11: Hydraulic Gradient With Fractured Rock-Oxidizing	
4-70	Total Dose for Simulation 11: Hydraulic Gradient With Porous Rock-Oxidizing	
4-71	I-129 Dose for Simulation 11: Hydraulic Gradient With Fractured Rock-Oxidizing	
4-72	I-129 Dose for Simulation 11: Hydraulic Gradient With Porous Rock—Oxidizing	
4-73	Tc-99 Dose for Simulation 11: Hydraulic Gradient With Fractured Rock—Oxidizing	
4-74	Tc-99 Dose for Simulation 11: Hydraulic Gradient With Porous Rock—Oxidizing	
4-75	Np-237 Dose for Simulation 11: Hydraulic Gradient With Fractured	
	Rock—Oxidizing	.4-47
4-76	Np-237 Dose for Simulation 11: Hydraulic Gradient With Porous Rock—Oxidizing	1 17
4-77	Total Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured	.4-4/
	Rock and Porous Rock—Oxidizing	4-48
4-78	Total Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured	+0
- 70	Rock and Porous Rock—Reducing	4-49
4-79	I-129 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured	. 1 10
		4-49
4-80	I-129 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured	
		4-50
4-81	Tc-99 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured	
		4-50
4-82	Tc-99 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured	
	0	4-51
4-83	Np-237 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured	
	Rock and Porous Rock—Oxidizing	.4-51

Figures	S	Page
4-84	Np-237 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured Rock and Porous Rock—Reducing	4-52
4-85	Total Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Oxidizing	4-53
4-86	Total Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Reducing	
4-87	I-129 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Oxidizing	
4-88	I-129 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Reducing	
4-89	Tc-99 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Oxidizing	
4-90	Tc-99 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Reducing	
4-91	Np-237 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Oxidizing	
4-92	Np-237 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Reducing	
Г 4		
5-1 5-2	Comparison Between JNC and SOAR Models for U-234 Comparison Between JNC and SOAR Models for U-238 and Pu-242 Release Rates	
5-3	Comparison Between JNC and SOAR Models for Np-237 and U-233 Release Rates	
5-4	Comparison Between JNC and SOAR Models for U-236 and Pu-240 Release Rates	
5-5	Comparison Between JNC and SOAR Models for Cs-135, Tc-99, and Se-79	
5-6	Release Rates Comparison Between SKB (2010a) and SOAR Model Results for	
5-7	Radionuclide-Specific Doses (Deterministic Case) Comparison Between SKB (2010a) and SOAR Model Results for Radionuclide-Specific Doses (Probabilistic Case)	

TABLES

Tables		Page
3-1 3-2	Test Identification GoldSim Model Release Rates for WF 18 and WF 24	
4-1	Summary of the Simulations Including the Primary Input Evaluated in Each Simulation	4-1
5-1	SOAR Dashboard Data and Database Changes for Modeling the Swedish Disposal System Scenario	5-7

ACKNOWLEDGMENTS

The authors would like to recognize the model developers of SOAR Version 1.0 (Markley, et al., 2011) for their assistance in defining test cases, as well as support from R.W. Rice to perform a number of runs in Chapters 4 and 5. This report is an independent product of the Center for Nuclear Waste Regulatory Analyses (CNWRA[®]) under Contract No. NRC–02–07–006 and does not necessarily reflect the view or regulatory position of the U.S. Nuclear Regulatory Commission (NRC). The NRC staff views expressed herein are preliminary and do not constitute a final judgment or determination of the matters addressed or of the acceptability of any licensing action that may be under consideration at NRC. The activities reported here were performed on behalf of the NRC Office of Nuclear Material Safety and Safeguards, Division of High-Level Waste Repository Safety. The authors would like to thank K. Axler for the technical review, D. Pickett for the programmatic review, and T. Wilt for his assistance to facilitate the review effort and carry out model runs. The authors also appreciate B. Street, L. Selvey, and A. Ramos for providing word processing support and L. Mulverhill for editorial support in preparation of this document.

QUALITY OF DATA, ANALYSES, AND CODE DEVELOPMENT DATA

DATA: The <u>S</u>coping of <u>O</u>ptions and <u>A</u>nalyzing <u>R</u>isk (SOAR) model was developed outside a formal quality control program for software development [CNWRA Technical Operating Procedure (TOP)–18, Development and Control of Scientific and Engineering Software]. However, simplified procedures (mutually agreed upon by NRC and CNWRA staffs) were implemented for model development that included version control and verification testing. This report documents a systematic effort for model verification.

ANALYSES AND CODES: SOAR was developed using GoldSim (GoldSim Technology Group, LLC, 2010). The SOAR model utilizes the Microsoft[®] Access[®] Database (Microsoft Corporation, 2007) to track input parameters.

REFERENCES

GoldSim Technology Group, LLC. "GoldSim Probabilistic Simulation Environment User's Guide." Vols. 1 and 2. Issaquah, Washington: GoldSim Technology Group, LLC. 2010.

Markley, C., O. Pensado, J.-P. Gwo, J. Winterle, T. Ahn, R. Benke, T. Cao, H. Gonzalez, A. Gray, X. He, R. Janetzke, H. Jung, G. Oberson, P. Shukla, T. Sippel, S. Stothoff, and L. Tipton. "SOAR: A Model for Scoping of Options and Analyzing Risk: Version 1.0, User Guide." Accession Number ML112440119. San Antonio, Texas: Center for Nuclear Waste Regulatory Analyses. 2011.

Microsoft Corporation. "Microsoft Access Database 2007." Redmond, Washington: Microsoft Corporation. 2007

EXECUTIVE SUMMARY

This report describes the verification of the **S**coping of **O**ptions and **A**nalyzing **R**isk (SOAR) model, a tool jointly developed by the U.S. Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA®) staffs, to provide timely risk and performance insights for a variety of potential high-level waste (HLW) disposal options. The verification activities, aimed at ensuring that models in SOAR were appropriately implemented, are an important aspect of the SOAR development cycle as it moved toward its release as SOAR Version 1.0. Verification activities involved tasks such as deterministic testing [e.g., running the probabilistic SOAR model deterministically using high and low input parameter values (Chapter 3)], probabilistic testing [i.e., Monte Carlo runs with controlled (i.e., discrete) variations to one parameter at a time over its entire range (Chapter 4)], and comparison with published information (i.e., benchmarking). Verification activities involved visual inspection of equations and qualitative comparison of results with respect to expected values. Intermediate results and system-level responses as a function of time were inspected to ensure that trends were reasonable and explainable with respect to the changes to the input values. For deterministic verification calculations, different combinations of waste form, waste package material, and geochemical environments were used with the intention of testing the major model components. For the probabilistic verification, calculations were carried out for selected radionuclides for a variety of combinations of fuel mass, enrichment, and burnup; alternative waste forms; environmental chemistry (oxidizing versus reducing); waste package corrosion rate; backfill integrity; water volume in the waste package; porous/fractured media hydraulic gradient: and disturbed zone characteristics.

The benchmarking activity focused on providing confidence that SOAR can simulate different process corresponding to different geologic repository programs. This activity involved two selected repository system models with calculations available in the literature: Swedish (SKB, 2011) and Japanese (JNC, 2000). Only portions of these systems were selected for modeling by the SOAR code. This report documents the specific changes to SOAR needed to emulate the test problems. The maximum difference between the SOAR result and the Japanese model was within one order of magnitude. The difference in results is attributed to the difference in the number of radionuclides being tracked, the number of isotopes associated with some of the radionuclides, finite difference discretization of the diffusive buffer material pathway, buffer material geometry (cylindrical versus one dimensional representation), and timestepping. The maximum difference between the SOAR result and the Swedish model was within an order of magnitude. The difference in results is attributed to the difference in radionuclide inventory, dose conversion factors, and gap fraction inventory. Although exhaustive verification is possible for any computer code if abundant time and resources are available, the level of verification carried out on the SOAR model is considered to be appropriate given that this code is intended to be used as a generic tool for scoping computations.

References:

JNC. "H12: Project To Establish the Scientific and Technical Basis for HLW Disposal in Japan. Supporting Report 3: Safety Assessment of the Geological Disposal System." Ibaraki, Japan: Japan Nuclear Cycle Development Institute. April 2000.

Svensk Kärnbränslehantering AB (SKB). "Long-Term Safety for the Final Repository for Spent Nuclear Fuel at Forsmark." Vol. 1: Main Report of the SR-Site Project. SKB TR–11–01. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Company. March 2011.

1 INTRODUCTION

The U.S. Nuclear Regulatory Commission (NRC) developed a performance assessment model named Scoping of Options and Analyzing Risk (SOAR) (Markley, et al., 2011). This model is one of the elements identified in NRC's Plan for Integrating Spent Nuclear Fuel Regulatory Activities (NRC, 2010a), which focuses on achieving a predictable, effective, and efficient regulatory program. Considering the current uncertainty in the U.S. national policy for high-level waste (HLW) disposal, the SOAR model is designed with the goal of maximizing flexibility to consider a variety of disposal options. The simplified model abstractions and associated parameter inputs are built upon the knowledge and experience gained by the NRC staff and the Center for Nuclear Waste Regulatory Analyses (CNWRA®), and from other domestic and international performance assessments for a variety of geologic disposal options. The model is parameterized with data available in existing literature from international disposal programs for a variety of engineered and geologic materials. Many of the input parameters are stochastically sampled from broad ranges of values to account for uncertainty and variability. The insights gained from analyses with the SOAR model will be used to assist the NRC staff to focus its evolving regulatory program for HLW disposal on characteristics of geologic disposal important to waste isolation. The model will also assist the staff in identifying regulatory research and development activities related to physical processes (e.g., radionuclide solubility, water flow) and characteristics (e.g., waste package materials, waste form inventories and characteristics, host-rock types) on which a regulatory program should focus.

This report documents SOAR Version 1.0 verification activities. A general description of the verification activities of the models implemented in SOAR is given in Chapter 2. Chapter 3 documents the results of formal tests, mostly designed by SOAR model developers, but implemented by independent testers. Chapter 4 presents a library of SOAR results varying one parameter at a time, to provide analysts with trends in SOAR outputs. Chapter 5 compares results derived with SOAR, and appropriate modifications, to results published in the literature on performance assessments of geologic disposal systems. SOAR modifications and the modeled systems are detailed in Chapter 5. In general, comparison tests were not designed to yield identical results, but to produce similar trends and magnitudes in radionuclide release rates or dose estimates.

2 GENERAL DESCRIPTION OF VERIFICATION ACTIVITIES

In this chapter, activities aimed at enhancing confidence in the models implemented in SOAR are discussed. The model review and testing conducted to gain model confidence are summarized in the following bullets.

- All GoldSim model elements (e.g., data elements, mixing cells, pipe pathways, selectors, results elements) were inspected to ensure correct computations and algorithms were implemented, correct units were used, and inputs and outputs were connected to the correct elements. For most model elements, text descriptions were added to help users understand the purpose of the element.
- Individual realizations were run using high and low input parameter values, and results were inspected to ensure intermediate outputs and system-level responses were reasonable. For example, the model was run using the highest and lowest waste form degradation rate and results compared against the expectation that higher waste form degradation rates resulted in proportionally higher release.
- Different combinations of waste form, waste package material, and geochemical environment were run, and intermediate-level and system-level outputs were evaluated to verify that the model selected the correct inputs and computational algorithms appropriate to the model settings.
- The initial inventory of radionuclides was varied from very small to very large values to check a proportional output response.
- In addition to these initial testing efforts, developers at the U.S. Nuclear Regulatory Commission (NRC) and Center for Nuclear Waste Regulatory Analyses (CNWRA[®]) carried out a more detailed verification effort. The effort included development of a number of test plans, test reports, and a status spreadsheet and focused on testing all of the major model components. These tests are documented in Chapter 3.

A brief summary of the system modeled in SOAR is provided. The SOAR model includes a source model, components to compute radionuclide transport in geologic media, and a biosphere dose model. The source model includes descriptions of four waste forms, radionuclide inventories, and waste form dissolution rates. The source model also incorporates abstractions for waste package failure, transport through a buffer material (a diffusive barrier that surrounds the waste packages), and transport through a drift and radionuclide discharge into nearby fractures. The radionuclide discharge is used as input to the geologic media transport computations. From a broad perspective, the SOAR system has a number of features that were extensively used in the verification activities. For example, if solubility constraints in the model for the engineered barrier system are disabled, the system offers a linear response to changes in the inventory (e.g., doubling the inventory would double the dose). However, if solubility constraints are enabled, the dose response is less than linear to changes in the inventory. Radionuclides that are fission products and activation products are modeled as mutually independent. On the other hand, actinides are connected by decay chains; solubility constraints can also link the release of isotopes of an element. Thus, it is straightforward in some instances to anticipate the effect of input parameters on releases of fission and activation products, but not on radionuclides that are part of a decay chain or that share element mass with other modeled isotopes. The radionuclide transport pathway is modeled as a one-dimensional pathway, from the source to the biosphere. This simplification allowed for

designing tests and anticipating results arising from changes in pathway lengths. In this report, the term "software verification" refers to checking whether model abstractions and equations were properly implemented in SOAR. The verification checking was implemented by quantitative and qualitative tests. In the quantitative tests, outputs were checked against limiting cases or against expected outputs independently computed. In the qualitative tests, trends of outputs were compared to general expectations of the development team, rather than to a set of precise predetermined values.

The SOAR code was developed with the GoldSim language, which is an icon-based, high-level programming language. As such, it does not lend itself to traditional verification techniques associated with sequential languages (e.g., FORTRAN, C++) frequently used for modeling physical phenomena. However, it can automatically perform many of the checks that would be required for a sequential language. For example, GoldSim can automatically check for proper parameter types, consistent units of physical quantities, and meaningful syntax. It can also automatically establish a proper connection between functional elements. Because these concepts are part of the basic GoldSim product, they were not the main focus of the verification effort. Rather, many test activities focused on performing visual inspections of equations in the GoldSim elements, determining their logical relationship to other programming elements, and analyzing results.

Teams of analysts developed the multidiscipline models, or model components, in SOAR. Giving all team members full edit and review access to all of the model components presented an opportunity to check the work of other team members. Many self-checks of this nature were performed during code development, including visual inspection of equations and review of the logical structure of each model component. A first level of confidence in the code was attained during development using this self-checking technique. Also, the availability of intermediate values and outputs enabled the inspection of the output response of each component to changes in input values.

A model that represents a physical process with inherent uncertainties requires the ability to vary the value of model parameters to represent ranges of possible conditions. Flexible parameter values are also required to investigate relevant scenarios that may differ from base models. Parameters are also used to implement specific features of the model or otherwise control the operation of the model during execution. During the model development, a number of input parameters were revised. In general, modifying input parameters in a SOAR model component does not affect the functionality of another independent model component. Therefore, in general, tests on a particular model component were not repeated when input parameters for other model components changed. Numerous preliminary input parameter values were used in development testing.

During the code development process, repeated tests were commonly executed by inputting many different values for the relevant parameters to check the behavior of the component being constructed. This process frequently used the dashboards to enter the new values, with the intention to test the dashboard interface, as well as the corresponding model component. In this way the mechanics of the parameter entry dialog and the propagation of the parameter value to the model components were evaluated. The dashboard interface also enabled the convenient testing of parameter minimum and maximum value limits. During code development, no formal documentation was prepared to establish agreement with external calculations; however, the output was continually checked to ensure self-consistency. Qualitative testing was also performed on input values and mode selectors available in dashboards.

The SOAR model has the ability to consider up to four different waste form types. While the model components for each waste form type share similarities, separate independent tests were performed for each type. Integrated tests were also performed to test the capability of the model to handle cases with simultaneous presence of multiple waste forms. These kinds of tests were performed during the development of the Waste Form model component and during formal testing phases.

Once the model was considered to be relatively mature, formal verification tests were implemented. These formal verification tests, documented in Chapter 3, were mostly high-level tests that focused on one specific model component at a time. Each test was summarized in a test report. These formal tests exercised the operation of model component dashboards, input parameter values, and switches. These test reports included the qualitative analysis of intermediate output values from the particular model component under test. By studying the qualitative trends of outputs, or changes in outputs in response to changes in inputs, a conclusion was reached as to whether an aspect of a model was appropriately implemented. The SOAR model was revised when necessary to address issues identified during the formal testing phase.

Formal tests were organized into six groups, each identified with one of the following two letter abbreviations:

- (1) Waste Form (WF)
- (2) Waste Package (WP)
- (3) Near Field (NF)
- (4) Far Field (FF)
- (5) Dashboard (DB)
- (6) Disruptive Events (DE)

Each group tested one or more aspects of the target component. To isolate the aspect/parameter for a test, other parameters or switches were often configured to disable parts of the model that could potentially influence the results more than the aspect being tested. The testing of a particular aspect was, in general, compared to a reference run and a suite of other runs with different inputs.

The verification effort was documented in Microsoft[®] Word[®] and Excel[®] files on a hard drive NRC and CNWRA developers shared. The documentation consisted of test plans, test reports, and a status spreadsheet. The test plan identified the test objective, specified the criteria for a successful test, and was generated prior to each test. Test results were documented in a test report summary that displayed the data in text or chart form as output by SOAR and displayed test status.

In the SOAR model, mass conservation constraints are enforced by using GoldSim elements (e.g., species elements, cell pathways, pipe pathways, and source container elements), which perform mass balance computations in detail while accounting for radioactive decay and ingrowth. The GoldSim software developers have extensively tested those mass balance solutions. Additional testing was needed to verify that model abstractions were properly implemented and that the computational modules were adequately interconnected. The testing was not intended to be exhaustive, but to represent a balance between available time and resources, and the intended use of SOAR as a generic tool for scoping computations. This balance resulted in the execution of a limited number of tests, which are considered to be sufficient for the intent of SOAR. Additional tests for internal consistency could be aimed at

database value propagation, convergence of statistical results as a function of increasing number of realizations, and dependence of results on the number of timesteps. Quantitative tests can be defined; for example, the SOAR model could be compared to external codes that perform a subset of similar calculations. This type of test is time consuming to implement because inputs must be identical for results to match, the model or code used as comparison must be thoroughly understood, and SOAR and the comparison code must be adjusted to yield comparable outputs. In Chapter 5, a limited effort was aimed at qualitatively simulating geologic disposal systems with performance assessments documented in the literature. At this time, the extent of the verification applied to SOAR is considered to be sufficient given the intent of SOAR for scoping computations and given that tests show the flexibility of SOAR to model scenarios of geologic disposal.

3 VERIFICATION SUMMARY REPORTS

3.1 Summary Report Template

The verification effort was documented as Microsoft[®] Word[®] and Excel[®] files on a shared drive. The documentation consisted of

- Test plans that identified the test objective, specified the criteria for a successful test, and were generated prior to each test
- A test report that displayed test results in text or chart form as provided by the <u>S</u>coping of <u>O</u>ptions and <u>A</u>nalyzing <u>R</u>isk (SOAR) program
- A test status spreadsheet

The plan contained the following elements:

Test Title:	Identifies the scenario or the configuration of the code to be tested, or some other unique aspect of the test
Model Component:	Identifies the component to be tested
Test Objective:	Identifies the model behavior, parameter, or result that represents a certain physical phenomenon
Assumptions:	Identifies any assumptions or limitations of the test
Test Configuration:	Identifies conditions, parameter settings, component modes, and dashboard settings required for the test
Result Parameters:	Identifies the final or intermediate parameters that are to be analyzed to determine the success or failure of the test
Success Criteria:	Specifies the conditions that must be met for a successful test
	umented in a test report that contained all of the information of the test and the status of the test. The test report for each test contained the
Test ID:	A unique identifier for the test consisting of two alphabetic characters, corresponding to one of the six test groupings mentioned in Chapter 2, followed by two numeric characters (e.g., WP01 for waste package test #1)

- **Test Title**: Identifies the scenario or the configuration of the code to be tested, or some other unique aspect of the test
- Model Component: Identifies the component to be tested
- Analyst: The name of the analyst performing the test

Date:	Date on which the test was performed
Test Environment:	Identifies the computer on which the test was performed and the version of the GoldSim software used for the test
SOAR Version:	Identifies the version of the SOAR code used for the test
Run Directory:	Specifies the directory used to store the input used for the test and results of the code execution
Test Objective:	Identifies the model behavior, parameter, or result that represents a certain physical phenomenon
Assumptions:	Identifies any assumptions or limitations of the test
Test Configuration:	Identifies conditions, parameter settings, component modes, and dashboard settings required for the test
Result Parameters:	Identifies the final or intermediate parameters that are to be analyzed to determine the success or failure of the test
Success Criteria:	Specifies the conditions that must be met for a successful test
Results:	Indicates the success or failure of the test with respect to each of the success criteria

3.2 Verification Status File

Documentation of the tests also included the Verification Status file—a single sheet Excel file containing columns for test ID, title, test plan file name, test report file name, and the status of the test. Table 3-1 presents the verification status file, summarizing the results of the tests. Following Table 3-1, the detailed Verification Test Reports documenting this SOAR verification effort are included.

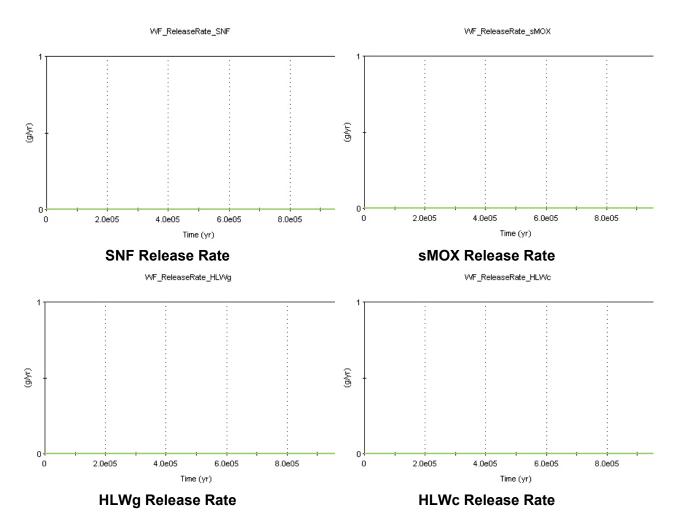
	Table 3-1. Te	st Identification		
Test ID	Title	Test Plan File	Test Report Files	Test Status
	Wast	e Form		
WF01	Radionuclide Release Rate versus All Zero Degradation Rates	WF01TestPlan.docx	WF01TestReport.docx	PASS
WF02	Radionuclide Release Rate versus CSNF_9e-7 Degradation Rate	WF02TestPlan.docx	WF02TestReport.docx	PASS
WF03	Radionuclide Release Rate versus CSNF_9.2e-5 Degradation Rate	WF03TestPlan.docx	WF03TestReport.docx	PASS
WF04	Radionuclide Release Rate versus CSNF_6.e-4 Degradation Rate	WF04TestPlan.docx	WF04TestReport.docx	PASS
WF05	Radionuclide Release Rate versus sMOX_9.e-7 Degradation Rate	WF05TestPlan.docx	WF05TestReport.docx	PASS
WF06	Radionuclide Release Rate versus sMOX_9.2e-5 Degradation Rate	WF06TestPlan.docx	WF06TestReport.docx	PASS
WF07	Radionuclide Release Rate versus sMOX_6.e-4 Degradation Rate	WF07TestPlan.docx	WF07TestReport.docx	PASS
WF08	Radionuclide Release Rate versus HLWg_1.5e-6 Degradation Rate	WF08TestPlan.docx	WF08TestReport.docx	PASS
WF09	Radionuclide Release Rate versus HLWg_4.e-5 Degradation Rate	WF09TestPlan.docx	WF09TestReport.docx	PASS
WF10	Radionuclide Release Rate versus HLWg_2.e-4 Degradation Rate	WF10TestPlan.docx	WF10TestReport.docx	PASS
WF11	Radionuclide Release Rate versus HLWc_1.5e-8 Degradation Rate	WF11TestPlan.docx	WF11TestReport.docx	PASS
WF12	Radionuclide Release Rate versus HLWc_4.e-7 Degradation Rate	WF12TestPlan.docx	WF12TestReport.docx	PASS
WF13	Radionuclide Release Rate versus HLWc_2.e-6 Degradation Rate	WF13TestPlan.docx	WF13TestReport.docx	PASS
WF14	Basecase Run for Radionuclide Release Tests Involving Adjustment of Inventory	WF14TestPlan.docx	WF14TestReport.docx	PASS
WF15	Radionuclide Release in Reprocessing HLW Glass with Initial Inventory Factor of 1.2	WF15TestPlan.docx	WF15TestReport.docx	PASS
WF16	Omitted	-		
WF17	Radionuclide Release in Reprocessing HLW Glass with Initial Inventory Factor of 1.5	WF17TestPlan.docx	WF17TestReport.docx	PASS

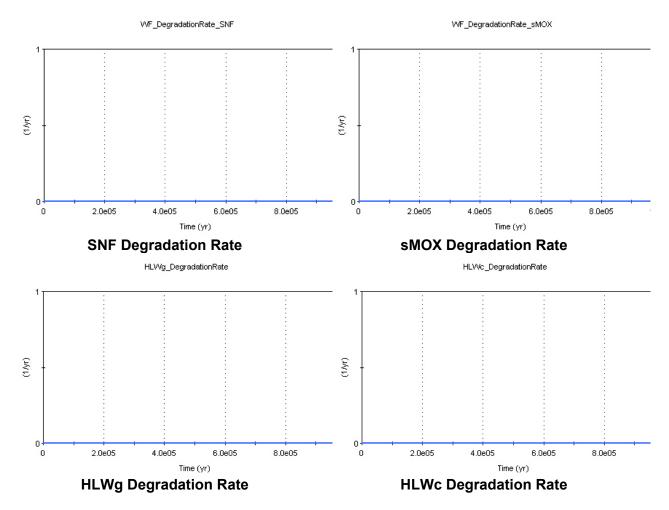
	Table 3-1. Test Iden	tification (continued)		-
Test ID	Title	Test Plan File	Test Report Files	Test Status
WF18	Basecase Run for Radionuclide Release Tests Involving Adjustment of the HLW Ceramic Initial Inventory	WF18TestPlan.docx	WF18TestReport.docx	PASS
WF19	Omitted	—		—
WF20	Omitted	_		
WF21	Omitted	—		—
WF22	Omitted	_	_	—
WF23	Radionuclide Release from Reprocessed HLW Ceramic Waste with Initial Inventory Factor of 3.75	WF23TestPlan.docx	WF23TestReport.docx	PASS
WF24	Radionuclide-Specific (I-129) Release from Reprocessed HLW Ceramic Waste	WF24TestPlan.docx	WF24TestReport.docx	PASS
WF25	Radionuclide-Specific (I-129 & Cs-135) Release from Reprocessed HLW Ceramic Waste	WF25TestPlan.docx	WF25TestReport.docx	PASS
WF26	Basecase for Runs Regarding the Fraction of Initial Inventory Available for Release and the Degradation Rate Multiplier	WF26TestPlan.docx	WF26TestReport.docx	PASS
WF27	Radionuclide Release with the Fraction of Initial Inventory Available for Release at 0.10	WF27TestPlan.docx	WF27TestReport.docx	PASS
WF28	Radionuclide Release with the Fraction of Initial Inventory Available for Release at 0.30	WF28TestPlan.docx	WF28TestReport.docx	PASS
WF29	Omitted	—	—	—
WF30	Radionuclide Release with the Degradation Rate Multiplier at 5	WF30TestPlan.docx	WF30TestReport.docx	PASS
WF31	Radionuclide Release with the Degradation Rate Multiplier at 0.2	WF31TestPlan.docx	WF31TestReport.docx	PASS
	Wastel	Package		-
WP01	WP Failure Time and Breached Area for Cu porous rock oxidizing 2.5cm Reference case	WP01TestPlan.docx	WP01TestReport_11_30_2010	PASS
WP02	WP Failure Time and Breached Area for Cu_porous_rock_oxidizing_2.5cm_10X corrosion rate	WP02TestPlan.docx	WP02TestReport_11_30_2010	PASS
WP03	WP Failure Time and Breached Area for Cu_fractured_rock_reducing_2.5cm_reference case	WP03TestPlan.docx	WP03TestReport_12_01_2010	PASS

	Table 3-1. Test Identification (continued)					
Test ID	Title	Test Plan File	Test Report Files	Test Status		
		Waste Package				
WP04	WP Failure Time and Breached Area for Cu_fractured_rock_reducing_2.5cm_10X corrosion rate	WP04TestPlan.docx	WP04TestReport_12_01_2010	PASS		
WP05	WP Failure Time and Breached Area for Cu_fractured_rock_reducing_0.5 cm_Effects of material thickness	WP05TestPlan.docx	WP05TestReport_12_01_2010	PASS		
WP06	WP Failure Time and Breached Area for CS_porous_rock_oxidizing_10.0 cm_Reference case	WP06TestPlan.docx	WP06TestReport_12_02_2010	PASS		
WP07	WP Failure Time and Breached Area for CS_porous_rock_oxidizing_10.0 cm_5X corrosion rate	WP07TestPlan.docx	WP07TestReport_12_03_2010	PASS		
WP08	WP Failure Time and Breached Area for CS_porous_rock_oxidizing_10.0 cm_0.1X corrosion rate	WP08TestPlan.docx	WP08TestReport_12_03_2010	PASS		
WP09	WP Failure Time and Breached Area for CS_porous_rock_oxidizing_10.0 cm_0.1X corrosion rate	WP09TestPlan.docx	WP09TestReport_12_06_2010	PASS		
WP10	WP Failure Time and Breached Area for SS_porous_rock_oxidizing_5.0 cm_Reference case	WP10TestPlan.docx	WP10TestReport_12_06_2010	PASS		
WP11	WP Failure Time and Breached Area for SS_fractured_rock_reducing_5.0 cm_Reference case	WP11TestPlan.docx	WP11TestReport_12_06_2010	PASS		
WP12	WP Failure Time and Breached Area for SS_fractured_rock_reducing_5.0 cm_2X the breach area fraction	WP12TestPlan.docx	WP12TestReport_12_08_2010	PASS		
WP13	WP Failure Time and Breached Area for Ti_porous_rock_oxidizing_1.0 cm_Reference case	WP13TestPlan.docx	WP13TestReport_12_08_2010	PASS		
WP14	WP Failure Time and Breached Area for Ti_fractured_rock_reducing_1.0 cm_Reference case	WP14TestPlan.docx	WP14TestReport_12_08_2010	PASS		

	Table 3-1. Tes	st Identification (continued)		
Test ID	Title	Test Plan File	Test Report Files	Test Status
	· ·	Near Field	•	L.
NF01	Basecase for Runs with Adjusted Buffer Geometry and Near-Field Transport Properties	NF01TestPlan.docx	NF01TestReport.docx	PASS
NF02	Backfill Effects Case with Backfill Submodel Disabled	NF02TestPlan.docx	NF02TestReport.docx	PASS
NF03	Backfill Effects Case with Length 0.08, Diffusion 1, and Kd 0	NF03TestPlan.docx	NF03TestReport.docx	PASS
		Far Field		
FF01	Release Rates at the End of Leg 3—Reference Case	FF01TestPlan.docx	FF01_Test_Report.docx	PASS
FF02	Release Rates at the End of Leg 3, Diffusive Medium in Leg 1	FF02TestPlan.docx	FF02_Test_Report.docx	PASS
FF03	Release Rates at the End of Leg 3, Diffusive Medium in Leg 2	FF03TestPlan.docx	FF03_Test_Report.docx	PASS
FF04	Release Rates at the End of Leg 3, Diffusive Medium in Leg 3	FF04TestPlan.docx	FF04_Test_Report.docx	PASS
		Dashboard	-	
DB01	Dashboard Range Test for Level 1 Parameters Set at Maximum Permissible Values	DB01TestPlan.docx	DB01TestReport.docx	PASS
	Di	sruptive Events		L.
DE01	Radionuclide Dose for Single Event Reference Case	DE01TestPlan.docx	DB01TestReport.docx	PASS
DE02	Radionuclide Dose for Single Event Disruptive Event	DE02TestPlan.docx	DB02TestReport.docx	PASS
DE03	Radionuclide Dose for Multiple Event Reference Case	DE03TestPlan.docx	DB03TestReport.docx	PASS
DE04	Radionuclide Dose for Multiple Disruptive Events	DE04TestPlan.docx	DB041TestReport.docx	PASS
DE05	Radionuclide Dose for WP Failure Rate Reference Case	DE05TestPlan.docx	DB05TestReport.docx	PASS
DE06	Radionuclide Dose for WP Failure Rate Disruptive Event	DE06TestPlan.docx	DB06TestReport.docx	PASS

SOAR Verification Test Reports


Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version Run Directory: Test Objective:	Ron Janetzke December 6, 2010 ALBY, GoldSim 10.11 Beta 6.4 D:\RonJ-\SOAR\V6_4 Verify the WF calculati	Rate versus All Zero Degradation Rates on performed by SOAR in terms of radionuclide release rate degradation rate for all waste forms is set to zero to check th	
Assumptions:	None		
Test Configuration:	Dashboard	Waste package material:	Copper
		Define waste package thickness	Checked
		Waste package thickness	0.5 cm
		Far Field Leg One, Geologic Media	Fractured Rock
		Far Field Leg Two, Geologic Media	Fractured Rock
		Far Field Leg Three, Geologic Media	Fractured Rock
		Far Field Leg One, Redox Condition	Reducing
		Far Field Leg Two, Redox Condition	Reducing
		Far Field Leg Three, Redox Condition	Reducing
		Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
		Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
	Level 2	Spent_Nuclear_Fuel\SNF_Degradation_Calcs\SNF_De gRates\DegRate SNF Combined	0
		Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\s MOX_DegRates\DegRate_sMOX_Combined	0
		High_Level_Waste_Glass\HLWg_Degradation_Calcs\H	Data Source: None
		LWg_DegRates\DegRate_HLW_Glass	Discrete, 1, 0
		High_Level_Waste_Ceramic\HLWc_Degradation_Calcs \HLWc_DegRates\DegRate_HLW_Ceramic	Discrete, 1, 0


SOAR Verification Test Reports (continued)

Result Parameters:	Time histories of the following parameters are used in the analysis:
	\Waste_Form_Component\Spent_Nuclear_Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF
	\Waste_Form_Component\Spent_Mixed_Oxide_Fuel \sMOX_Degradation_Calcs\WF_DegradationRate_sMOX
	\Waste_Form_Component\ High_Level_Waste_Glass \HLWg_Degradation_Calcs\WF_DegradationRate_HLWg
	\Waste_Form_Component\ High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWc
	\Results\Waste_Form_Results\WF_ ReleaseRate_SNF_Result
	\Results\Waste_Form_Results\WF_ ReleaseRate_sMOX_Result
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWc_Result
Success Criteria:	All of the waste form release rates should be 0.
	(2) The zero degradation rates should be reflected in all of the \Results\Waste_Form_Results* displays.

Results:

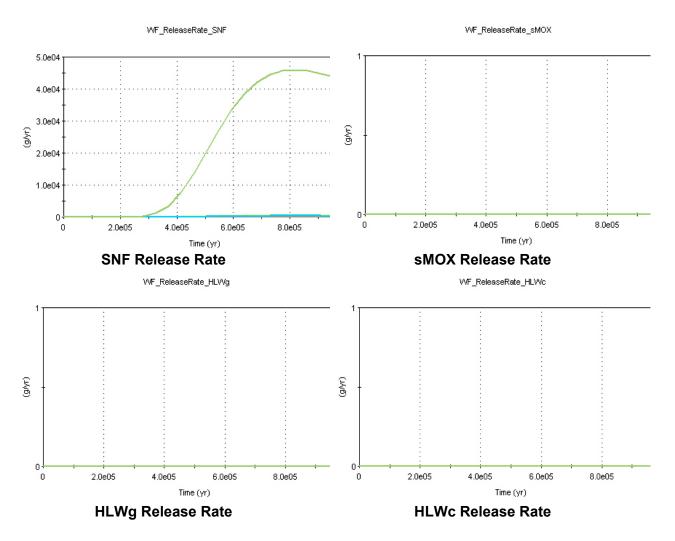
The release rates for all waste forms are 0.

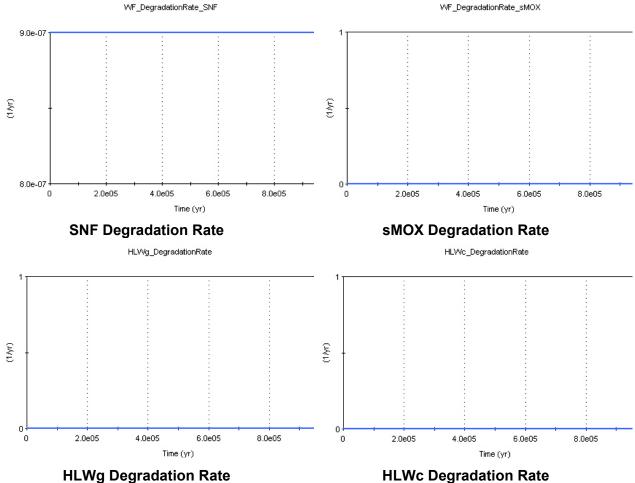
The fuel degradation rates for all fuel types are 0.

Disposition:

- (1) Criterion 1: PASS
- (2) Criterion 2: **PASS**

SOAR Verification Test Report


Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Object:	Ron Janetzke December 6, 2 ALBY, GoldSir Beta 6.4 D:\RonJ-\SOA Verify the WF on CSNF wast the WF model	m 10.11	
Assumptions:	None		
Test	Simulation	Monte Carlo	Deterministic, Mean
Configuration :	Settings	Timestone	Values
	Dashboard	Timesteps Wasto poekago material	95 Connor
	Dashboard	Waste package material	Copper
		Define waste package thickness	Checked
		Waste package thickness	0.5 cm
		Far Field Leg One, Geologic Media	Fractured Rock
		Far Field Leg Two, Geologic Media	Fractured Rock
		Far Field Leg Three, Geologic Media	Fractured Rock
		Far Field Leg One, Redox Condition	Reducing
		Far Field Leg Two, Redox Condition	Reducing
		Far Field Leg Three, Redox Condition	Reducing
		Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
		Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checker
	Level 2	Spent_Nuclear_Fuel\SNF_Degradation_Calcs\SNF_DegRates\DegRate_	Uniform, 0,
		SNF_Combined	(9.0e-7)
		Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\sMOX_DegRates\	0
		DegRate_sMOX_Combined	Data Cauraa Nara
		High_Level_Waste_Glass\HLWg_Degradation_Calcs\HLWg_DegRates\	Data Source: None
		DegRate_HLW_Glass	Discrete, 1, 0
		High_Level_Waste_Ceramic\HLWc_Degradation_Calcs\HLWc_DegRates\DegRate_H LW_Ceramic	Discrete, 1, 0


SOAR Verification Test Report (continued)

Result	Time histories of the following parameters are used in the analysis:
Parameters:	\Waste_Form_Component\Spent_Nuclear_Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF
	\Waste_Form_Component\ Spent_Mixed_Oxide_Fuel \sMOX_Degradation_Calcs\WF_DegradationRate_sMOX
	\Waste_Form_Component\ High_Level_Waste_Glass \HLWg_Degradation_Calcs\WF_DegradationRate_HLWg
	\Waste_Form_Component\ High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWc
	\Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result
	\Results\Waste_Form_Results\WF_ ReleaseRate_sMOX_Result
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWc_Result
Success Criteria:	The CSNF degradation rate should be reflected in the \Waste_Form_Component\Spent_Nuclear_
	Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF display.
	(2) The CSNF waste form release rates should be higher than the 0 case, and all other waste forms should be equal to the 0
	degradation rate case.

Results:

The release rates for all waste forms are 0, except for the SNF, which is greater than the basecase (WF01).

The fuel degradation rates for all fuel types are 0, except for SNF, which equals the mean value of 9.0e-7 1/yr.

HLWg Degradation Rate

Disposition:

- Criterion 1: PASS (1)
- (2) Criterion 2: PASS

Tests WF01 and WF02 were run using the same inventory. The following table shows the inventory per WP (SOAR parameter name SNF_InitialBound_WP) used to verify the models implemented in SOAR.

	SNF_InitialBo	
C14	0.81094	
Cs135	6005.4	
1129	2067	
Np237	5782	
Pu238	597.43	
Pu239	61721	
Pu240	25544	
Pu242	6689.7	
Se79	59.914	
Tc99	9873.9	
U232	0	
U233	0.069817	
U234	2286.1	
U235	1.042e+05	
U236	54760	
U238	9.7204e+06	

Inventory Per WP Used in WP01 and WP02

SOAR Verification Test Report

		SOAR vernication rest report	
Test ID:	WF03		
Test Title:	Radionuclide Release Rate versus CSNF 9.2e-5 Degradation Rate		
Analyst:	Ron Janetzke		
Date	December 6, 2010		
Test Environment:	ALBY, GoldSim		
SOAR Version:	Beta 6.4		
Run Directory:	D:\RonJ-\SOAR	V6 4	
Test Objective:	Verify the WF calculation performed by SOAR in terms of radionuclide release rate amount depending on CSNF waste		
form degradation rate. The degradation rate for all other waste forms will be set to zero, and the results from			
		n will be compared to the results of test WF02.	
Assumptions:	None		
Test Configuration:	Simulation	Monte Carlo	Deterministic, Mean
	Settings		Values
		Timesteps	95
	Dashboard	Waste package material	Copper
		Define waste package thickness	Checked
		Waste package thickness	0.5 cm
		Far Field Leg One, Geologic Media	Fractured Rock
		Far Field Leg Two, Geologic Media	Fractured Rock
		Far Field Leg Three, Geologic Media	Fractured Rock
		Far Field Leg One, Redox Condition	Reducing
		Far Field Leg Two, Redox Condition	Reducing
		Far Field Leg Three, Redox Condition	Reducing
		Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
		Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
	Level 2	Spent Nuclear Fuel/SNF Degradation Calcs/SNF DegRates/DegRate	9.2e-5
		SNF Combined	
		Spent Mixed Oxide Fuel\sMOX Degradation Calcs\sMOX DegRates\	0
		DegRate sMOX Combined	
		High_Level_Waste_Glass\HLWg_Degradation_Calcs\HLWg_DegRates\	Data Source: None
		DegRate_HLW_Glass	Discrete, 1, 0
		High Level Waste Ceramic\HLWc Degradation Calcs\HLWc DegRates\De	Discrete, 1, 0
		gRate_HLW_Ceramic	
		grace_new_ocianic	

SOAR Verification Test Report (continued)

- Result Parameters:
 Time histories of the following parameters are used in the analysis:

 \Waste_Form_Component\Spent_Nuclear_Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF

 \Waste_Form_Component\Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\WF_DegradationRate_sMOX

 \Waste_Form_Component\High_Level_Waste_Glass \HLWg_Degradation_Calcs\WF_DegradationRate_HLWg

 \Waste_Form_Component\High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWg

 \Waste_Form_Component\High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWc

 \Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result

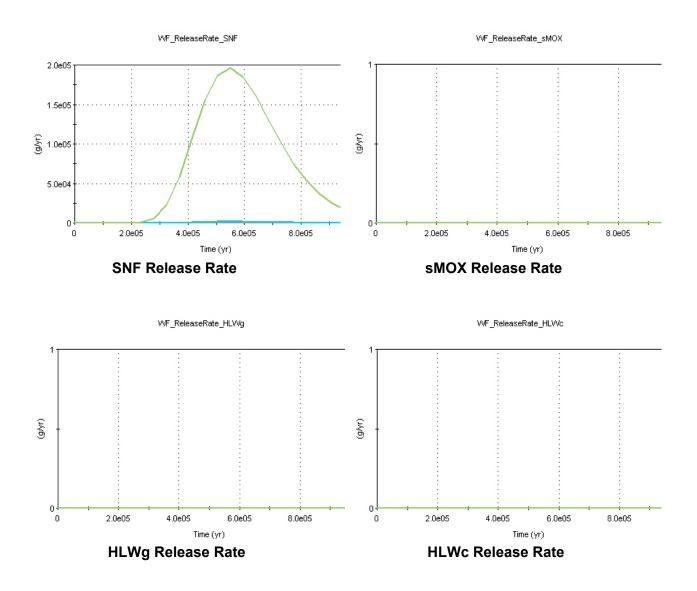
 \Results\Waste_Form_Results\WF_ReleaseRate_SNC_Result

 \Results\Waste_Form_Results\WF_ReleaseRate_HLWg_Result

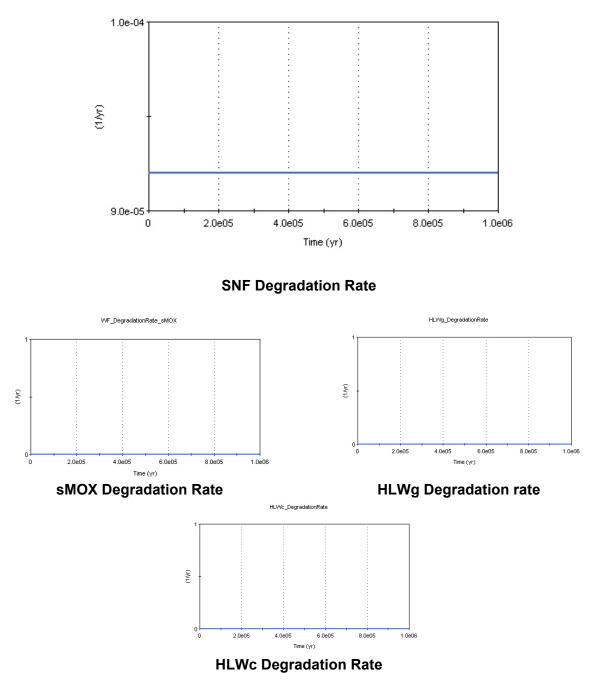
 \Results\Waste_Form_Results\WF_ReleaseRate_HLWc_Result

 \Results\Waste_Form_Results\WF_ReleaseRate_HLWc_Result

 \Waste_Form_Component\Spent_Nuclear_Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF display.


 (1) The CSNF degradation rate should be reflected in the

 \Waste_Form_Component\Spent_Nuclear_Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF display.


 (2) The CSNF weater form release rate a bighter then text WE02 and all other weater form should be acqual.
 - (2) The CSNF waste form release rates should be higher than test WF02, and all other waste forms should be equal to the 0 degradation rate case.

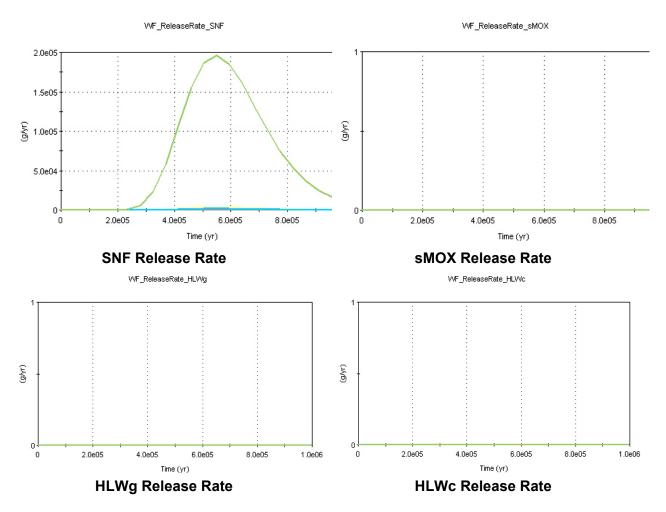
Results:

The release rates for all waste forms are 0, except for the SNF, which is greater than the reference case (WF02). The fuel degradation rates for all fuel types are 0, except for SNF, which equals the mean value of 9.2e-5.

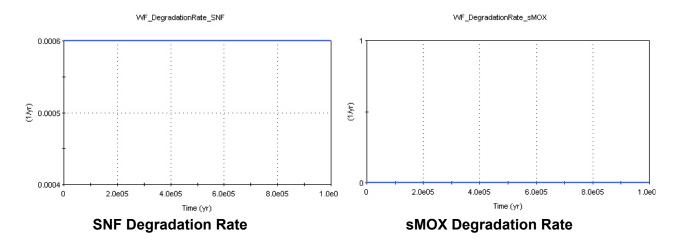
WF_DegradationRate_SNF

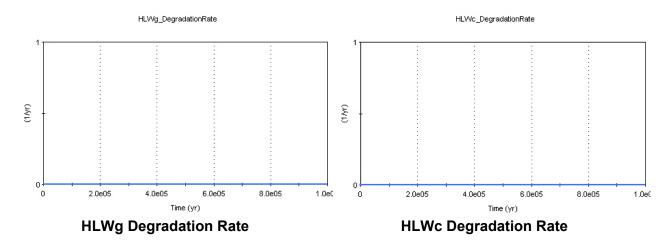
Disposition:

- (1) Criterion 1: PASS
- (2) Criterion 2: **PASS**


		SOAR Verification Test Report		
Test ID:	WF04			
Test Title:	Radionuclide Release Rate versus CSNF_6.e-4 Degradation Rate			
Analyst:	Ron Janetzke			
Date:	December 8, 201	0		
Test Environment:	ALBY, GoldSim 1			
SOAR Version:	Beta 6.4			
Run Directory:	D:\RonJ-\SOAR\V6 4			
Test Objective:	Verify the WF calculation performed by SOAR in terms of radionuclide release rate amount depending on CSNF waste			
	form degradation rate. The degradation rate for all other waste forms will be set to zero, and the results from the WF			
		n will be compared to the results of test WF03.		
Assumptions:	None			
Test Configuration:	Simulation	Monte Carlo	Deterministic,	
i oot o oningalationi	Settings		Mean Values	
	ootanigo	Timesteps	95	
	Dashboard	Waste package material	Copper	
	Daomboara	Define waste package thickness	Checked	
		Waste package thickness	0.5 cm	
		Far Field Leg One, Geologic Media	Fractured Rock	
		Far Field Leg Two, Geologic Media	Fractured Rock	
		Far Field Leg Three, Geologic Media	Fractured Rock	
		Far Field Leg One, Redox Condition	Reducing	
		Far Field Leg Two, Redox Condition	Reducing	
		Far Field Leg Three, Redox Condition	Reducing	
		Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked	
		Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked	
	Level 2	Spent_Nuclear_Fuel\SNF_Degradation_Calcs\SNF_DegRates\DegRate_	6.e-4	
		SNF Combined	0.0 4	
		Spent Mixed Oxide Fuel\sMOX Degradation Calcs\sMOX DegRates\	0	
		DegRate_sMOX_Combined	0	
		High Level Waste Glass\HLWg Degradation Calcs\HLWg DegRates\	Data Source:	
		DegRate_HLW_Glass	None	
		Degitale_IILVV_Olass	Discrete, 1, 0	
		High Level Waste Ceramic\HLWc Degradation Calcs\HLWc DegRates\Deg	Discrete, 1, 0	
		Rate HLW Ceramic		

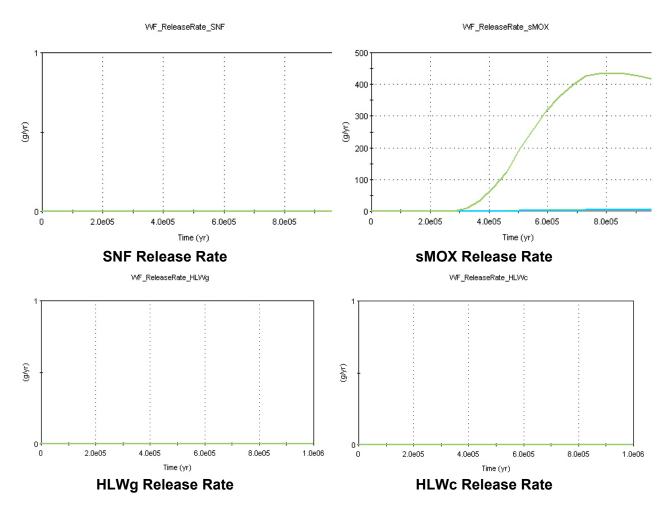
SOAR Verification Test Report


SOAR Verification Test Report (continued)

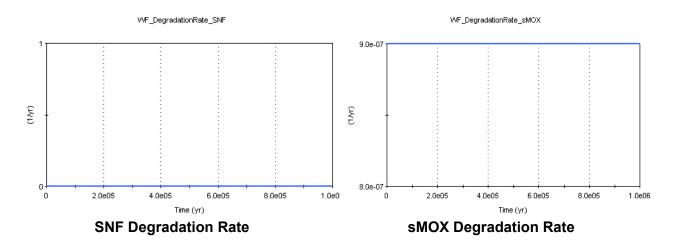

Result Parameters:	Time histories of the following parameters are used in the analysis:
	\Waste_Form_Component\Spent_Nuclear_Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF
	\Waste_Form_Component\ Spent_Mixed_Oxide_Fuel \sMOX_Degradation_Calcs\WF_DegradationRate_sMOX
	\Waste_Form_Component\ High_Level_Waste_Glass \HLWg_Degradation_Calcs\WF_DegradationRate_HLWg
	\Waste_Form_Component\ High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWc
	\Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result
	\Results\Waste_Form_Results\WF_ ReleaseRate_sMOX_Result
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWc_Result
Success Criteria:	(1) The CSNF degradation rate should be reflected in the
	\Waste_Form_Component\Spent_Nuclear_Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF display.
	(2) The CSNF waste form release rates should be higher than test WF02, and all other waste forms should be equal to
	the 0 degradation rate case.

The release rates for all waste forms are 0, except for the SNF, which is greater than the reference case (WF03).

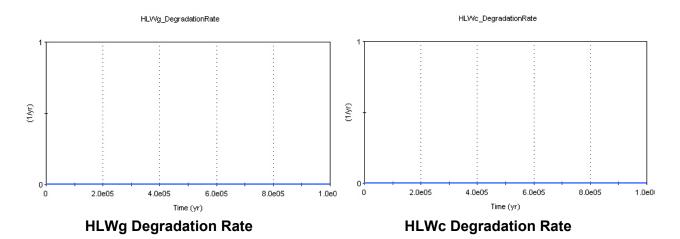
The fuel degradation rates for all fuel types are 0, except for SNF, which equals the mean value of 6.e-4.


- (1) Criterion 1: PASS(2) Criterion 2: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	WF05 Radionuclide Release Rate versus sMOX_9.e-7 Degradation Rate Ron Janetzke December 8, 2010 ALBY, GoldSim 10.11 Beta 6.4 D:\RonJ-\SOAR\V6_4 Verify the WF calculation performed by SOAR in terms of radionuclide release rate amount depending on sMOX waste form degradation rate. The degradation rate for all other waste forms will be set to zero, and the results from the WF model calculation will be compared to the results of test WF01.		
Assumptions:	None		
Test Configuration:	Simulation	Monte Carlo	Deterministic,
	Settings	—	Mean Values
	Deelahaand	Timesteps	95
	Dashboard	Waste package material	Copper
		Define waste package thickness	Checked
		Waste package thickness	0.5 cm
		Far Field Leg One, Geologic Media	Fractured Rock
		Far Field Leg Two, Geologic Media	Fractured Rock
		Far Field Leg Three, Geologic Media	Fractured Rock
		Far Field Leg One, Redox Condition	Reducing
		Far Field Leg Two, Redox Condition	Reducing
		Far Field Leg Three, Redox Condition	Reducing
		Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
		Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
	Level 2	Spent_Nuclear_Fuel\SNF_Degradation_Calcs\SNF_DegRates\DegRate_ SNF_Combined	0
		Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\sMOX_DegRates\ DegRate_sMOX_Combined	9.e-7
		High_Level_Waste_Glass\HLWg_Degradation_Calcs\HLWg_DegRates\	Data Source:
		DegRate_HLW_Glass	None Discrete, 1, 0
		High_Level_Waste_Ceramic\HLWc_Degradation_Calcs\HLWc_DegRates\DegRa te_HLW_Ceramic	Discrete, 1, 0

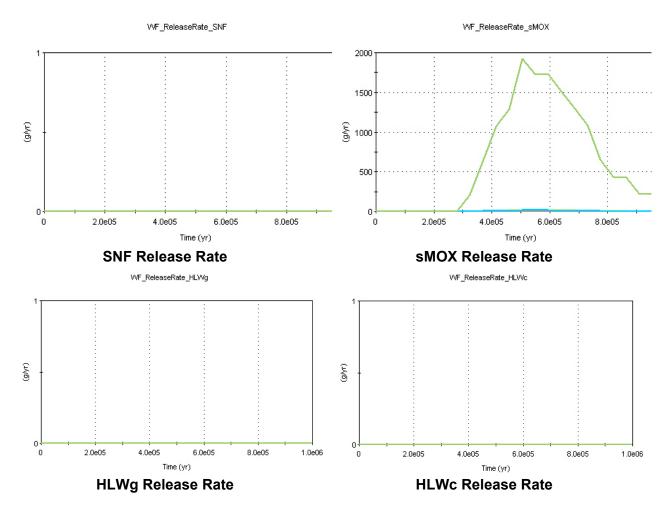

Result Parameters:	ers: Time histories of the following parameters are used in the analysis:	
Waste Form Component/Spent Nuclear Fuel/SNF Degradation Calcs/WF DegradationRate SN		
	\Waste_Form_Component\ Spent_Mixed_Oxide_Fuel \sMOX_Degradation_Calcs\WF_DegradationRate_sMOX	
	\Waste_Form_Component\ High_Level_Waste_Glass \HLWg_Degradation_Calcs\WF_DegradationRate_HLWg	
	\Waste_Form_Component\ High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWc	
	\Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result	
	\Results\Waste_Form_Results\WF_ ReleaseRate_sMOX_Result	
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result	
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWc_Result	
Success Criteria:	(1) The sMOX degradation rate should be reflected in the Waste_Form_Component\Spent_Nuclear_Fuel\ sMOX	
	_Degradation_Calcs\WF_DegradationRate_sMOX display.	
	(2) The sMOX waste form release rates should be higher than test WF01, and all other waste forms should be equal to	

the 0 degradation rate case.

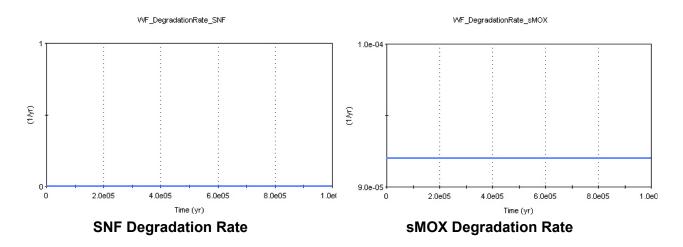

The release rates for all waste forms are 0, except for the sMOX, which is greater than the reference case (WF01).

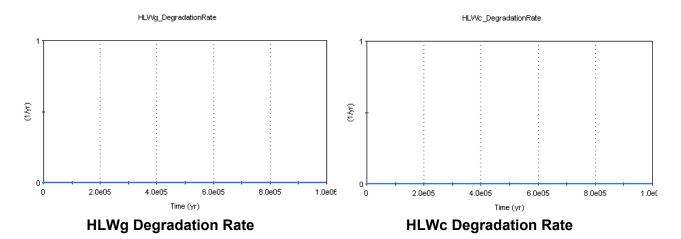
The fuel degradation rates for all fuel types are 0, except for sMOX, which equals the mean value of 9.e-7.

3-26


- (1) Criterion 1: PASS(2) Criterion 2: PASS

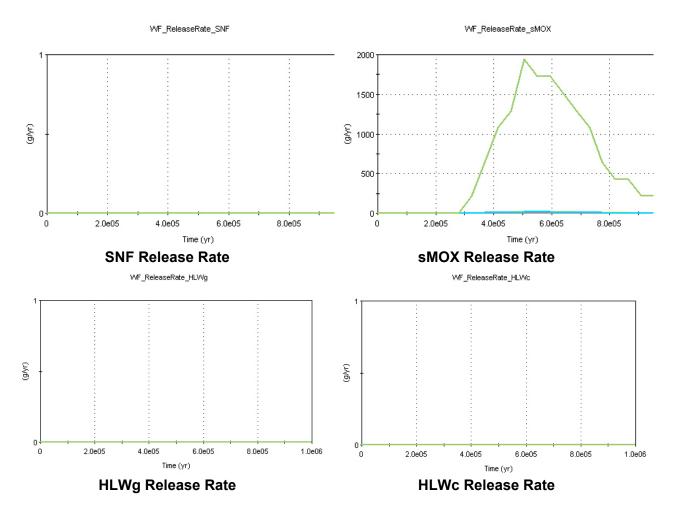
Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	Ron Janetzke December 8, 201 ALBY, GoldSim 1 Beta 6.4 D:\RonJ-\SOAR\\ Verify the WF cal form degradation model calculation	0.11	
Assumptions: Test Configuration:	None Simulation Settings	Monte Carlo Timesteps	Deterministic, Mean Values 95
	Dashboard Level 2	Waste package material Define waste package thickness Waste package thickness Far Field Leg One, Geologic Media Far Field Leg Two, Geologic Media Far Field Leg Three, Geologic Media Far Field Leg One, Redox Condition Far Field Leg Two, Redox Condition Far Field Leg Three, Redox Condition Far Field Leg Three, Redox Condition Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate Spent_Nuclear_Fuel\SNF_Degradation_Calcs\SNF_DegRates\DegRate_ SNF_Combined Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\sMOX_DegRates\ DegRate_sMOX_Combined High_Level_Waste_Glass\HLWg_Degradation_Calcs\HLWg_DegRates\ DegRate_HLW_Glass High_Level_Waste_Ceramic\HLWc_Degradation_Calcs\HLWc_DegRates\DegRates	Copper Checked 0.5 cm Fractured Rock Fractured Rock Fractured Rock Reducing Reducing Reducing Checked Checked 0 9.2e-5 Data Source: None Discrete, 1, 0 Discrete, 1, 0


Result Parameters:	Time histories of the following parameters are used in the analysis:		
	Waste Form Component/Spent Nuclear Fuel/SNF Degradation Calcs/WF DegradationRate SNF		
	\Waste_Form_Component\ Spent_Mixed_Oxide_Fuel \sMOX_Degradation_Calcs\WF_DegradationRate_sMOX \Waste Form Component\ High Level Waste Glass \HLWg Degradation Calcs\WF DegradationRate HLWg		
	Waste Form Component High Level Waste Ceramic HLWc Degradation Calcs WF DegradationRate HLWc		
	\Results\Waste Form Results\WF ReleaseRate SNF Result		
	\Results\Waste_Form_Results\WF_ ReleaseRate_sMOX_Result		
	\Results\Waste Form Results\WF ReleaseRate HLWg Result		
	\Results\Waste Form Results\WF ReleaseRate HLWc Result		
Success Criteria:	(1) The sMOX degradation rate should be reflected in the		
	\Waste_Form_Component\Spent_Nuclear_Fuel\sMOX_Degradation_Calcs\WF_DegradationRate_		
	sMOX display.		
	(2) The sMOX waste form release rates should be higher than test WE05, and all other waste forms should be equal		

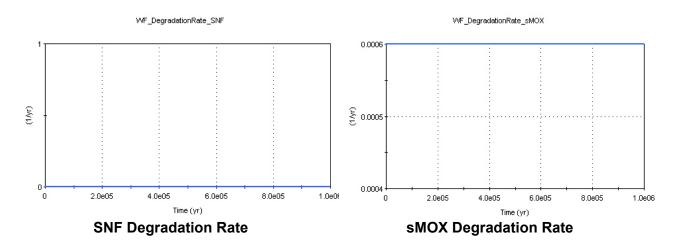

(2) The sMOX waste form release rates should be higher than test WF05, and all other waste forms should be equal to the 0 degradation rate case.

The release rates for all waste forms are 0, except for the sMOX, which is greater than the reference case (WF05).

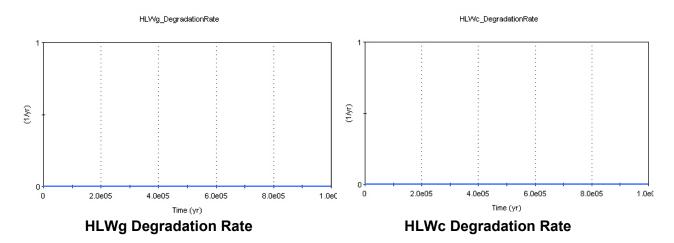
The fuel degradation rates for all fuel types are 0, except for sMOX, which equals the mean value of 9.2e-5.


- (1) Criterion 1: PASS(2) Criterion 2: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	Ron Janetzke December 8, 20 ALBY, GoldSim Beta 6.4 D:\RonJ-\SOAR' Verify the WF ca form degradation model calculatio	10.11	
Assumptions: Test Configuration:	None Stimulation Settings	Monte Carlo Timesteps	Deterministic, Mean Values 95
	Dashboard Level 2	Waste package material Define waste package thickness Waste package thickness Far Field Leg One, Geologic Media Far Field Leg Two, Geologic Media Far Field Leg Three, Geologic Media Far Field Leg One, Redox Condition Far Field Leg Two, Redox Condition Far Field Leg Two, Redox Condition Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate Spent_Nuclear_Fuel\SNF_Degradation_Calcs\SNF_DegRates\DegRate_ SNF_Combined Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\sMOX_DegRates\ DegRate_sMOX_Combined High_Level_Waste_Glass\HLWg_Degradation_Calcs\HLWg_DegRates\ DegRate_HLW_Glass High_Level_Waste_Ceramic\HLWc_Degradation_Calcs\HLWc_DegRates\ DegRate_HLW_Ceramic	Copper Checked 0.5 cm Fractured Rock Fractured Rock Fractured Rock Reducing Reducing Reducing Checked Checked 0 6.e-4 Data Source: None Discrete, 1, 0 Discrete, 1, 0

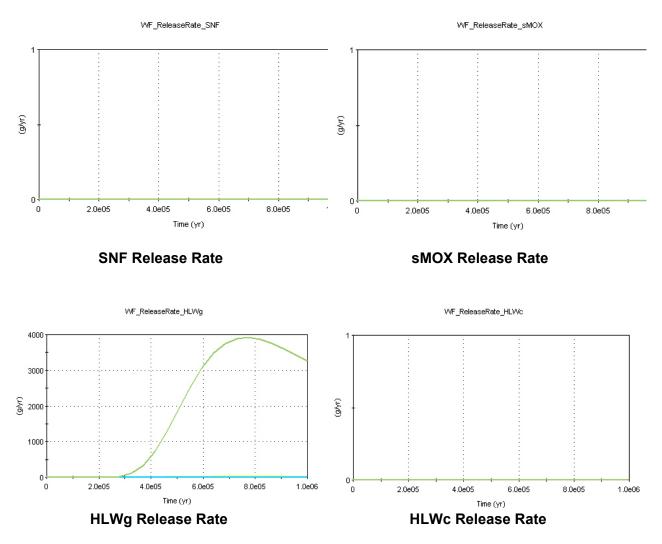

Result Parameters:	Time histories of the following parameters are used in the analysis:
	Waste Form Component/Spent Nuclear Fuel/SNF Degradation Calcs/WF DegradationRate SNF
	Waste Form Component Spent Mixed Oxide Fuel SMOX Degradation Calcs WF DegradationRate SMOX
	\Waste Form Component\ High Level Waste Glass \HLWg Degradation Calcs\WF DegradationRate HLWg
	Waste Form Component High Level Waste Ceramic HLWc Degradation Calcs WF DegradationRate HLWc
	\Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result
	\Results\Waste Form Results\WF ReleaseRate sMOX Result
	\Results\Waste_Form_Results\WF_ReleaseRate_HLWg_Result
	\Results\Waste Form Results\WF ReleaseRate HLWc Result
Success Criteria:	(1) The sMOX degradation rate should be reflected in the Waste Form Component\Spent Nuclear Fuel\ sMOX
	Degradation Calcs\WF DegradationRate sMOX display.
	(2) The SMOX waste form release rates should be higher than test WE06, and all other waste forms should be equal t

(2) The sMOX waste form release rates should be higher than test WF06, and all other waste forms should be equal to the 0 degradation rate case.

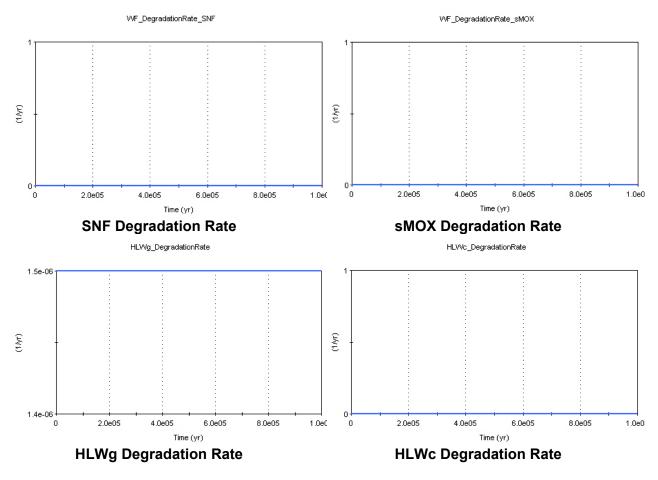

The release rates for all waste forms are 0, except for the sMOX, which is greater than the reference case (WF06).

The fuel degradation rates for all fuel types are 0, except for sMOX, which equals the mean value of 6.e-4.

3-34


- (1) Criterion 1: PASS(2) Criterion 2: PASS

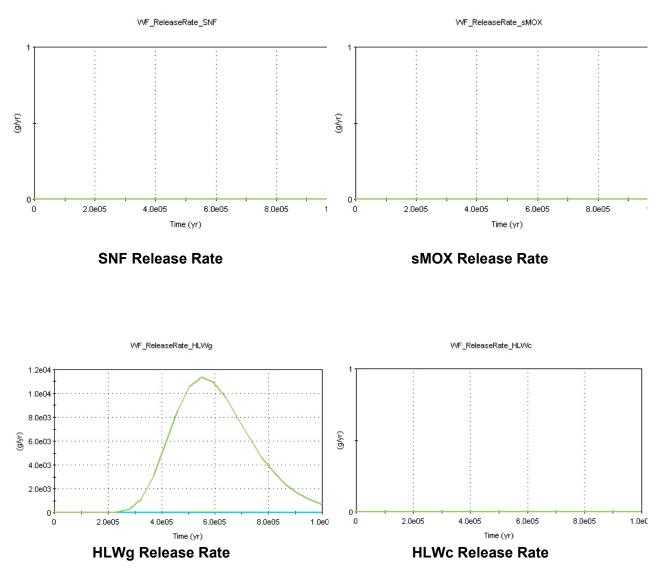
Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective	Ron Janetzke December 8, 2010 ALBY, GoldSim 10 Beta 6.4 D:\RonJ-\SOAR\V Verify the WF calc form degradation r model calculation	D.11	
Assumptions: Test Configuration	None Simulation	Monte Carlo	Deterministic, Mean
rest configuration	Settings		Values
	0	Timesteps	95
	Dashboard	Waste package material	Copper
		Define waste package thickness	Checked
		Waste package thickness	0.5 cm
		Far Field Leg One, Geologic Media	Fractured Rock
		Far Field Leg Two, Geologic Media	Fractured Rock
		Far Field Leg Three, Geologic Media	Fractured Rock
		Far Field Leg One, Redox Condition	Reducing
		Far Field Leg Two, Redox Condition	Reducing
		Far Field Leg Three, Redox Condition	Reducing
		Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
		Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
	Level 2	Spent_Nuclear_Fuel\SNF_Degradation_Calcs\SNF_DegRates\DegRate_ SNF Combined	0
		Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\sMOX_DegRates\ DegRate sMOX Combined	0
		High_Level_Waste_Glass\HLWg_Degradation_Calcs\HLWg_DegRates\ DegRate_HLW_Glass	Data Source: None Uniform Min = 0
		High_Level_Waste_Ceramic\HLWc_Degradation_Calcs\HLWc_DegRates\ DegRate_HLW_Ceramic	Max = 2 * 1.5e−6 Discrete, 1, 0


Result Parameters:	Time histories of the following parameters are used in the analysis:		
	Waste Form Component Spent Nuclear Fuel SNF Degradation Calcs WF Degradation Rate SNF		
	Waste Form Component Spent Mixed Oxide Fuel SMOX Degradation Calcs WF DegradationRate SMOX		
	Waste Form Component\ High Level Waste Glass \HLWg Degradation Calcs\WF DegradationRate HLWg		
	Waste Form Component\ High Level Waste Ceramic \HLWc Degradation Calcs\WF DegradationRate HLWc		
	\Results\Waste Form Results\WF ReleaseRate SNF Result		
	\Results\Waste Form Results\WF ReleaseRate sMOX Result		
	\Results\Waste Form Results\WF ReleaseRate HLWg Result		
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWc_Result		
Success Criteria:	(1) The HLWg degradation rate should be reflected in the \Waste_Form_Component\Spent_Nuclear_Fuel\ HLWg		
	_Degradation_Calcs\WF_DegradationRate_HLWg display.		
	(2) The HI Wa waste form release rates should be higher than test WE01, and all other waste forms should be equal		

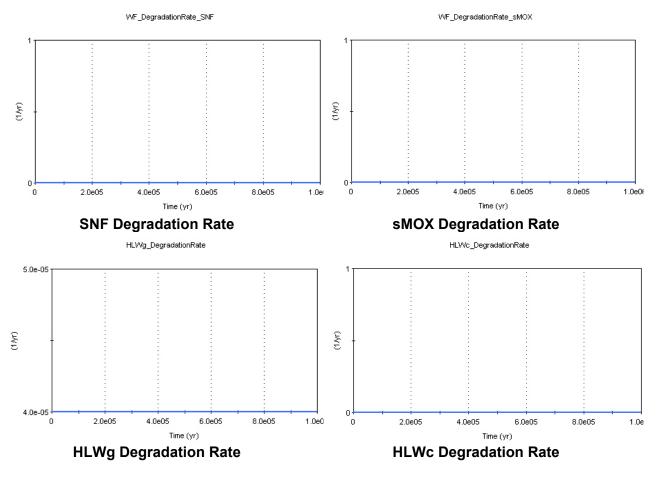
(2) The HLWg waste form release rates should be higher than test WF01, and all other waste forms should be equal to the 0 degradation rate case.

The release rates for all waste forms are 0, except for the HLWg, which is greater than the reference case (WF01).

The fuel degradation rates for all fuel types are 0, except for HLWg, which equals the mean value of 1.5e–6.


- Criterion 1: **PASS** Criterion 2: **PASS** (1)
- (2)

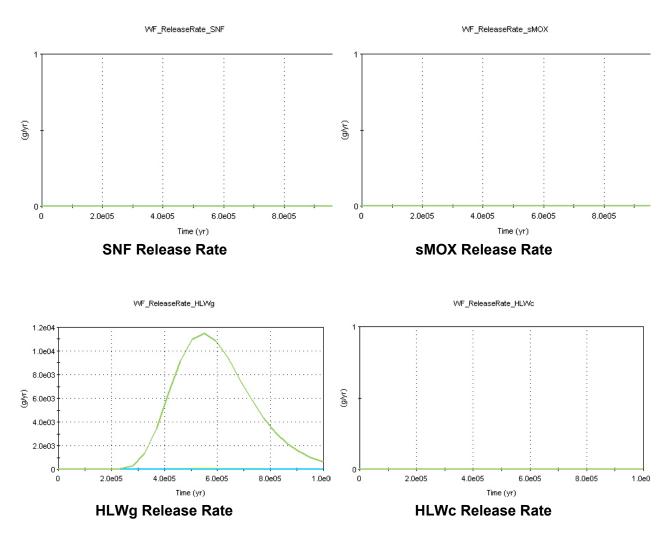
Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	WF09 Radionuclide Release Rate versus HLWg_4.e-5 Degradation Rate Ron Janetzke December 8, 2010 ALBY, GoldSim 10.11 Beta 6.4 D:\RonJ-\SOAR\V6_4 Verify the WF calculation performed by SOAR in terms of radionuclide release rate amount depending on HLWg waste form degradation rate. The degradation rate for all other waste forms will be set to zero, and the results from the WF model calculation will be compared to the results of test WF08.		
Test Configuration:	None Simulation	Monte Carlo	Deterministic, Mean
	Settings		Values
		Timesteps	95
	Dashboard	Waste package material	Copper
		Define waste package thickness	Checked
		Waste package thickness	0.5 cm
		Far Field Leg One, Geologic Media	Fractured Rock
		Far Field Leg Two, Geologic Media	Fractured Rock
		Far Field Leg Three, Geologic Media	Fractured Rock
		Far Field Leg One, Redox Condition	Reducing
		Far Field Leg Two, Redox Condition Far Field Leg Three, Redox Condition	Reducing
		Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Reducing Checked
		Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
	Level 2	Spent Nuclear Fuel/SNF Degradation Calcs/SNF DegRates/DegRate SNF C	0
		ombined	-
		Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\sMOX_DegRates\DegRate _sMOX_Combined	0
		High_Level_Waste_Glass\HLWg_Degradation_Calcs\HLWg_DegRates\DegRate _HLW_Glass	Data Source: None Uniform M = 0
		High_Level_Waste_Ceramic\HLWc_Degradation_Calcs\HLWc_DegRates\DegR ate_HLW_Ceramic	Max = 2 * 4.e−5 Discrete, 1, 0

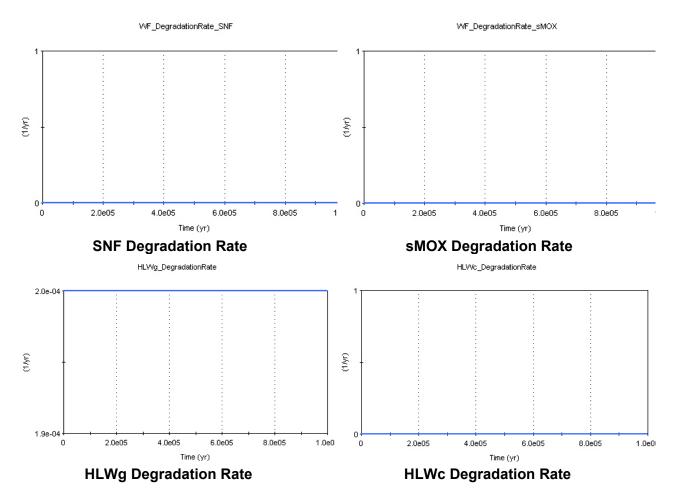

Result Parameters:	Time histories of the following parameters are used in the analysis:		
	Waste Form Component/Spent Nuclear Fuel/SNF Degradation Calcs/WF DegradationRate SNF		
	Waste Form Component Spent Mixed Oxide Fuel sMOX Degradation Calcs WF DegradationRate sMOX		
	\Waste_Form_Component\ High_Level_Waste_Glass \HLWg_Degradation_Calcs\WF_DegradationRate_HLWg		
	\Waste_Form_Component\ High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWc		
	\Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result		
	\Results\Waste Form Results\WF ReleaseRate sMOX Result		
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result		
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWc_Result		
Success Criteria:	(1) The HLWg degradation rate should be reflected in the \Waste_Form_Component\Spent_Nuclear_Fuel\HLWg		
	_Degradation_Calcs\WF_DegradationRate_HLWg display.		
	(2) The HI Wa waste form release rates should be higher than test WE08 and all other waste forms should be equal t		

(2) The HLWg waste form release rates should be higher than test WF08, and all other waste forms should be equal to the 0 degradation rate case.

The release rates for all waste forms are 0, except for the HLWg, which is greater than the reference case (WF08).

The fuel degradation rates for all fuel types are 0, except for HLWg, which equals the mean value of 4.e–5.


- Criterion 1: **PASS** Criterion 2: **PASS** (1)
- (2)


Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Ron Janetzke December 8, 201 ALBY, GoldSim 1 Beta 6.4 D:\RonJ-\SOAR\\ Verify the WF cal form degradation	0.11	
Test Configuration	Simulation	Monte Carlo	Deterministic, Mean
	Settings		Values
		Timesteps	95
	Dashboard	Waste package material	Copper
		Define waste package thickness	Checked
		Waste package thickness	0.5 cm
		Far Field Leg One, Geologic Media	Fractured Rock
		Far Field Leg Two, Geologic Media Far Field Leg Three, Geologic Media	Fractured Rock Fractured Rock
		Far Field Leg One, Redox Condition	
		Far Field Leg Two, Redox Condition	Reducing Reducing
		Far Field Leg Three, Redox Condition	Reducing
		Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
		Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
	Level 2	Spent_Nuclear_Fuel\SNF_Degradation_Calcs\SNF_DegRates\DegRate_SNF	0
	LOVOLE	Combined	Ũ
		Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\sMOX_DegRates\DegR	0
		ate sMOX Combined	
		High_Level_Waste_Glass\HLWg_Degradation_Calcs\HLWg_DegRates\DegR ate_HLW_Glass	Data Source: None Uniform M = 0
			Max = 2 * 2.e-4
		High_Level_Waste_Ceramic\HLWc_Degradation_Calcs\HLWc_DegRates\Deg Rate_HLW_Ceramic	Discrete, 1, 0

Result Parameters:	Time histories of the following parameters are used in the analysis:			
	\Waste_Form_Component\Spent_Nuclear_Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF			
	\Waste_Form_Component\ Spent_Mixed_Oxide_Fuel \sMOX_Degradation_Calcs\WF_DegradationRate_sMOX			
	\Waste_Form_Component\ High_Level_Waste_Glass \HLWg_Degradation_Calcs\WF_DegradationRate_HLWg			
	\Waste_Form_Component\ High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWc			
	\Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result			
	\Results\Waste_Form_Results\WF_ ReleaseRate_sMOX_Result			
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result			
	\Results\Waste_Form_Results\WF_ ReleaseRate_HLWc_Result			
Success Criteria:	(1) The HLWg degradation rate should be reflected in the \Waste_Form_Component\Spent_Nuclear_Fuel\			
	HLWg_Degradation_Calcs\WF_DegradationRate_HLWg display.			
	(2) The HLWg waste form release rates should be higher than test WF09, and all other waste forms should be equal to			

the 0 degradation rate case.

The release rates for all waste forms are 0, except for the HLWg, which is greater than the reference case (WF09).

The fuel degradation rates for all fuel types are 0, except for HLWg, which equals the mean value of 2.e-4.

- (1) Criterion 1: PASS
- (2) Criterion 2: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Ron Janetzke December 8, 201 ALBY, GoldSim 1 Beta 6.4 D:\RonJ-\SOAR\\ Verify the WF cal form degradation	10.11	
Test Configuration:	Simulation Settings	Monte Carlo	Deterministic, Mean Values
	Settings	Timesteps	95
	Dashboard	Waste package material	Copper
	Dashbuaru	Define waste package thickness	Checked
		Waste package thickness	0.5 cm
		Far Field Leg One, Geologic Media	Fractured Rock
		Far Field Leg Two, Geologic Media	Fractured Rock
		Far Field Leg Three, Geologic Media	Fractured Rock
		Far Field Leg One, Redox Condition	Reducing
		Far Field Leg Two, Redox Condition	Reducing
		Far Field Leg Three, Redox Condition	Reducing
		Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
		Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation	Checked
		Rate	
	Level 2	Spent_Nuclear_Fuel\SNF_Degradation_Calcs\SNF_DegRates\DegRate_ SNF Combined	0
		Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\sMOX_DegRates\	0
		DegRate_sMOX_Combined	Data Osuma Nasa
		High_Level_Waste_Glass\HLWg_Degradation_Calcs\HLWg_DegRates\	Data Source: None
		DegRate_HLW_Glass	Discrete, 1, 0
		High_Level_Waste_Ceramic\HLWc_Degradation_Calcs\HLWc_DegRate	Uniform
		s\DegRate_HLW_Ceramic	Min = 0
			Max = 2 * 1.5e-8

 Result Parameters:
 Time histories of the following parameters are used in the analysis:

 \Waste_Form_Component\Spent_Nuclear_Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF

 \Waste_Form_Component\Spent_Mixed_Oxide_Fuel \sMOX_Degradation_Calcs\WF_DegradationRate_sMOX

 \Waste_Form_Component\High_Level_Waste_Glass \HLWg_Degradation_Calcs\WF_DegradationRate_HLWg

 \Waste_Form_Component\High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWg

 \Waste_Form_Component\High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWc

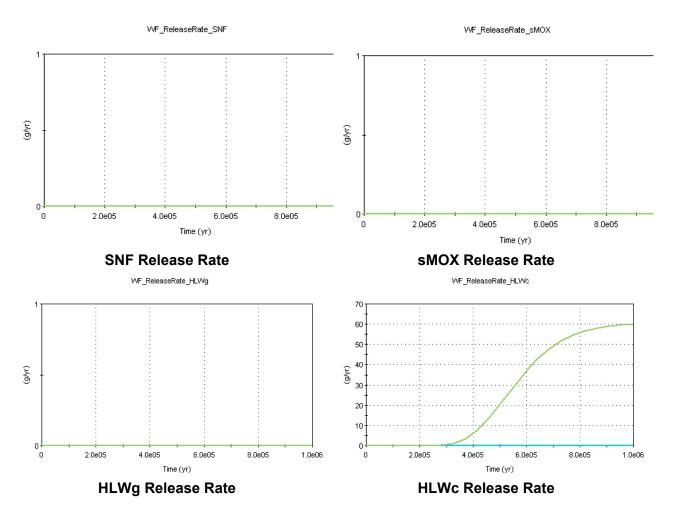
 \Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result

 \Results\Waste_Form_Results\WF_ ReleaseRate_sMOX_Result

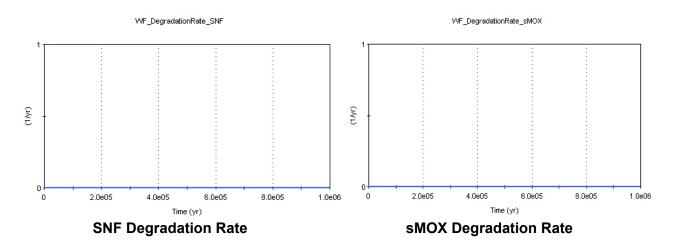
 \Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result

 \Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result

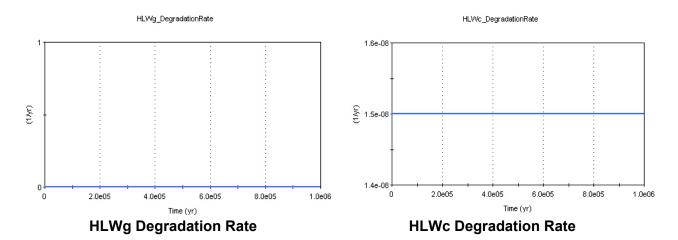
 \Results\Waste_Form_Results\WF_ ReleaseRate_HLWG_Result


Success Criteria:

- (1) The HLWc degradation rate should be reflected in the \Waste_Form_Component\Spent_Nuclear_Fuel\ HLWc _Degradation_Calcs\WF_DegradationRate_ HLWc display.
- (2) The HLWc waste form release rates should be higher than test WF01, and all other waste forms should be equal to the 0 degradation rate case.


	Value
C14	0 tonne
Cs135	2.19e0 tonne
1129	1.25e0 tonne
Np237	2.39e0 tonne
Pu238	6.74e-1 tonne
Pu239	9.63e0 tonne
Pu240	7.96e-1 tonne
Pu242	6.71e-2 tonne
Se79	1.21e-1 tonne
Tc99	1.75e1 tonne
U232	7.04e-6 tonne
U233	3.35e-1 tonne
U234	4.02e-1 tonne
U235	2.43e1 tonne
U236	1.03e0 tonne
U238	4.08e3 tonne

HLWc_Inventory_2010


The release rates for all waste forms are 0, except for the HLWc, which is greater than the reference case (WF01).

The fuel degradation rates for all fuel types are 0, except for HLWc, which equals the mean value of 1.5e-8.

3-50

- (1) Criterion 1: PASS(2) Criterion 2: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	Ron Janetzke December 9, 201 ALBY, GoldSim 1 Beta 6.4 D:\RonJ-\SOAR\\ Verify the WF call form degradation model calculation	0.11	
Assumptions:	None		
Test Configuration:	Stimulation	Monte Carlo	Deterministic, Mean
	Settings	- , .	Values
	Deckhered	Timesteps	95
	Dashboard	Waste package material	Copper
		Define waste package thickness	Checked
		Waste package thickness	0.5 cm
		Far Field Leg One, Geologic Media	Fractured Rock
		Far Field Leg Two, Geologic Media	Fractured Rock
		Far Field Leg Three, Geologic Media	Fractured Rock
		Far Field Leg One, Redox Condition	Reducing
		Far Field Leg Two, Redox Condition	Reducing
		Far Field Leg Three, Redox Condition	Reducing
		Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
		Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
	Level 2	Spent_Nuclear_Fuel\SNF_Degradation_Calcs\SNF_DegRates\DegRate_S	0
		NF_Combined	-
		Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\sMOX_DegRates\Deg	0
		Rate_sMOX_Combined	- /
		High_Level_Waste_Glass\HLWg_Degradation_Calcs\HLWg_DegRates\Deg	Data Source: None
		Rate_HLW_Glass	Discrete, 1, 0
		High_Level_Waste_Ceramic\HLWc_Degradation_Calcs\HLWc_DegRates\D	Uniform
		egRate_HLW_Ceramic	Min = 0
			Max = 2 * 4.e-7

 Result Parameters:
 Time histories of the following parameters are used in the analysis:

 \Waste_Form_Component\Spent_Nuclear_Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF

 \Waste_Form_Component\Spent_Mixed_Oxide_Fuel \sMOX_Degradation_Calcs\WF_DegradationRate_sMOX

 \Waste_Form_Component\High_Level_Waste_Glass \HLWg_Degradation_Calcs\WF_DegradationRate_HLWg

 \Waste_Form_Component\High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWc

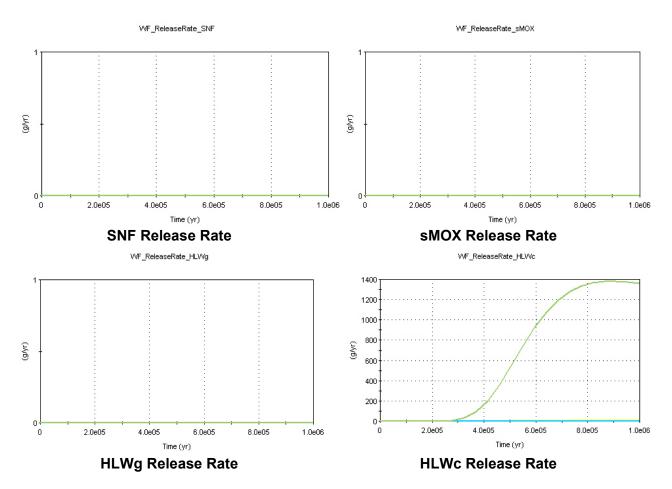
 \Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result

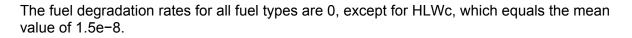
 \Results\Waste_Form_Results\WF_ReleaseRate_sMOX_Result

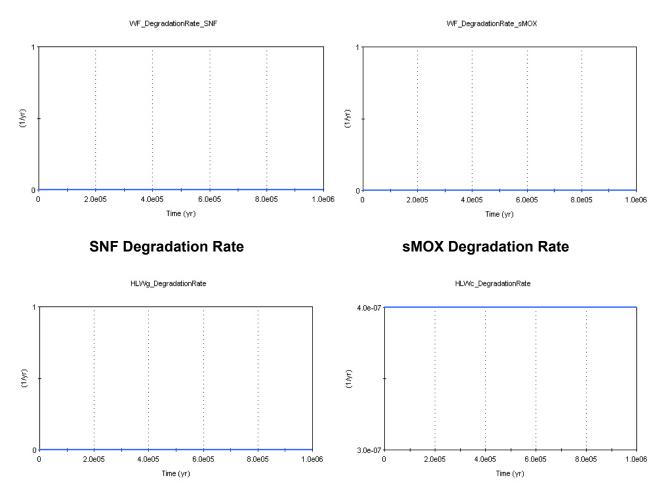
 \Results\Waste_Form_Results\WF_ReleaseRate_HLWg_Result

 \Results\Waste_Form_Results\WF_ReleaseRate_FORM_Result

 \Results\Waste_ForM_Results\WF_REREASERATE_HLWG_Result


 \Results\Waste_ForM_Results\WF_REREASERAT


- eria: (1) The HLVVC degradation rate should be reflected in the \Waste_Form_Component\Spent_Nuclear_Fuel\HLVVC _Degradation_Calcs\WF_DegradationRate_HLWc display.
 - (2) The HLWc waste form release rates should be higher than test WF11, and all other waste forms should be equal to the 0 degradation rate case.


🔲 Edit	Vector: HLWc_Inventory_2010.Definition 🛛 🛛
	Value
C14	0 tonne
Cs135	2.19e0 tonne
1129	1.25e0 tonne
Np237	2.39e0 tonne
Pu238	6.74e-1 tonne
Pu239	9.63e0 tonne
Pu240	7.96e-1 tonne
Pu242	6.71e-2 tonne
Se79	1.21e-1 tonne
Tc99	1.75e1 tonne
U232	7.04e-6 tonne
U233	3.35e-1 tonne
U234	4.02e-1 tonne
U235	2.43e1 tonne
U236	1.03e0 tonne
U238	4.08e3 tonne
,	ОК

HLWc_Inventory_2010

The release rates for all waste forms are 0, except for the HLWc, which is greater than the reference case (WF01).

HLWg Degradation Rate

- (1) Criterion 1: **PASS**
- (2) Criterion 2: PASS

HLWc Degradation Rate

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	Ron Janetzke December 9, 201 ALBY, GoldSim Beta 6.4 D:\RonJ-\SOAR\ Verify the WF ca waste form degra	10.11	
Assumptions: Test Configuration	Stimulation Settings	Monte Carlo	Deterministic, Mean Values
	ootanigo	Timesteps	95
	Dashboard	Waste package material	Copper
	Baomboard	Define waste package thickness	Checked
		Waste package thickness	0.5 cm
		Far Field Leg One, Geologic Media	Fractured Rock
		Far Field Leg Two, Geologic Media	Fractured Rock
		Far Field Leg Three, Geologic Media	Fractured Rock
		Far Field Leg One, Redox Condition	Reducing
		Far Field Leg Two, Redox Condition	Reducing
		Far Field Leg Three, Redox Condition	Reducing
		Spent Nuclear Fuel, Enable Combined Oxic/Anoxic Degradation Rate	Checked
		Spent Mixed-Oxide Fuel, Enable Combined Oxic/Anoxic Degradation	Checked
		Rate	
	Level 2	Spent_Nuclear_Fuel\SNF_Degradation_Calcs\SNF_DegRates\DegRate SNF Combined	0
		Spent_Mixed_Oxide_Fuel\sMOX_Degradation_Calcs\sMOX_DegRates\	0
		DegRate sMOX Combined	
		High_Level_Waste_Glass\HLWg_Degradation_Calcs\HLWg_DegRates\	Data Source: None
		DegRate_HLW_Glass	Discrete, 1, 0
		High_Level_Waste_Ceramic\HLWc_Degradation_Calcs\HLWc_DegRate	Uniform
		s\DegRate_HLW_Ceramic	Min = 0
			Max = 2 * 2.e-6

 Result Parameters:
 Time histories of the following parameters are used in the analysis:

 \Waste_Form_Component\Spent_Nuclear_Fuel\SNF_Degradation_Calcs\WF_DegradationRate_SNF

 \Waste_Form_Component\Spent_Mixed_Oxide_Fuel\SMOX_Degradation_Calcs\WF_DegradationRate_sMOX

 \Waste_Form_Component\High_Level_Waste_Glass \HLWg_Degradation_Calcs\WF_DegradationRate_HLWg

 \Waste_Form_Component\High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWc

 \Waste_Form_Component\High_Level_Waste_Ceramic \HLWc_Degradation_Calcs\WF_DegradationRate_HLWc

 \Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result

 \Results\Waste_Form_Results\WF_ ReleaseRate_sMOX_Result

 \Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result

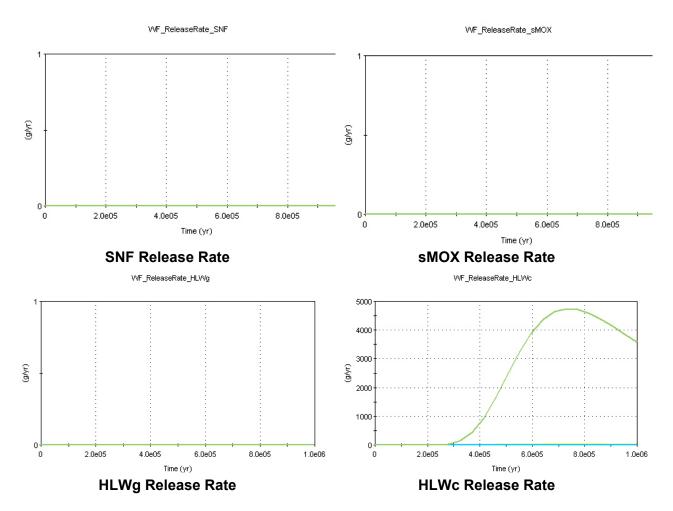
 \Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result

 \Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result

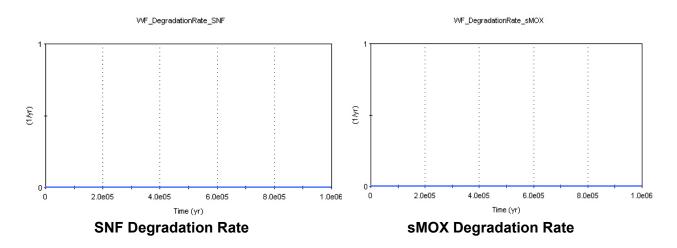
 \Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result

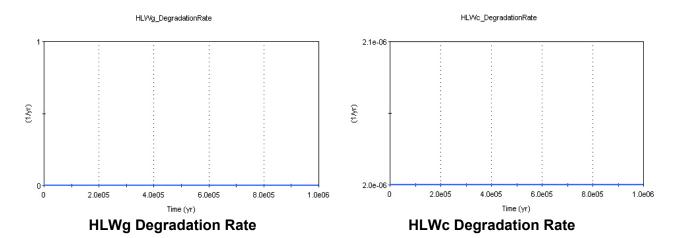
 \Results\Waste_Form_Results\WF_ ReleaseRate_HLWg_Result

 \Results\Waste_Form_Results\WF_ ReleaseRate_HLWG_Result


Success Criteria:

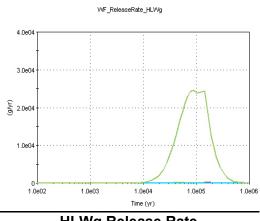
- (1) The HLWc degradation rate should be reflected in the \Waste_Form_Component\Spent_Nuclear_Fuel\ HLWc _Degradation_Calcs\WF_DegradationRate_ HLWc display.
- (2) The HLWc waste form release rates should be higher than test WF12, and all other waste forms should be equal to the 0 degradation rate case.


	Value
C14	0 tonne
Cs135	2.19e0 tonne
1129	1.25e0 tonne
Np237	2.39e0 tonne
Pu238	6.74e-1 tonne
Pu239	9.63e0 tonne
Pu240	7.96e-1 tonne
Pu242	6.71e-2 tonne
Se79	1.21e-1 tonne
Tc99	1.75e1 tonne
U232	7.04e-6 tonne
U233	3.35e-1 tonne
U234	4.02e-1 tonne
U235	2.43e1 tonne
U236	1.03e0 tonne
U238	4.08e3 tonne
	ОК


HLWc_Inventory_2010

The release rates for all waste forms are 0, except for the HLWc, which is greater than the reference case (WF01).

The fuel degradation rates for all fuel types are 0, except for HLWc, which equals the mean value of 1.5e-8.



- (1) Criterion 1: PASS(2) Criterion 2: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	Ron Janetzke December 10, 20 ALBY, GoldSim 1 Beta 7.2 D:\RonJ-\SOAR\\ This run is config waste from reprod	I0.11 √7_2 ured for the basecase that is to be compared to r	ent of Inventory runs of various waste inventories selected to simulate
Assumptions:	None	Marsta Oarda	Deterministic Many Malues
Test Configuration:	Simulation Settings Dashboard	Monte Carlo Timesteps Material: Carbon Steel Media: Fractured Rock Redox: Reducing 2010 Radionuclide Inventory (Metric Tons)	Deterministic, Mean Values 95 Carbon Steel Fractured Rock Reducing Spent Nuclear Fuel =0 Spent Mixed-Oxide Fuel = 0 High-Level Waste (glass) = 4140 High-Level Waste (ceramic) = 0
Result Parameters:		the following parameters are used in the analysis	S:
Success Criteria:	High_Level_Was (1) The run sho	ease Rate\High-Level Waste (glass) te_Glass\HLWg_Inventory_Calcs\HLWg_Initial_I uld produce a chart of Waste Form Release Rate uld produce a table of High_Level_Waste_Glass\	

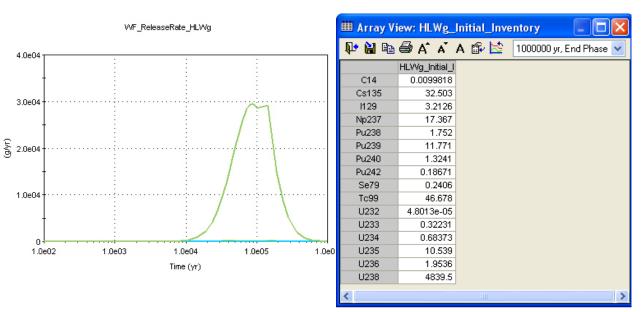
The run produced the following chart and table without errors.

HLWg Release Rate

💵 🗎 🖶 🍜 🗛 👗 A 🎲 🖄 🚺 1000000 yr, End Phase 🛩 HLVVg_Initial_I 0.0083181 C14 Cs135 27.086 1129 Np237 2.6771 14.473 Pu238 Pu239 Pu240 Pu242 Se79 Tc99 U232 U233 U234 U235 U236 1.46 9.8091 1.1035 0.15559 38.898 4.0011e-05 0.26859 0.56977 8.7822 1.628 U238 4032.9

Inventory

HLWg Initial Inventory


- Criterion 1: PASS (1)
- (2) Criterion 2: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Ron Janetzke December 10, 20 ALBY, GoldSim Beta 7.2 D:\RonJ-\SOAR\ Radionuclide inv These waste forr	10.11 V7_2 entory varies in reprocessing waste forms, v	al Inventory Factor of 1.2 which have various radionuclide loading configurations. ests will be conducted for realistic ranges of radionuclide
Test Configuration:	Simulation Settings Dashboard	Monte Carlo Timesteps Material Media Redox 2010 Radionuclide Inventory (Metric Tons)	Deterministic, Mean Values 95 Carbon Steel Fractured Rock Reducing Spent Nuclear Fuel = 0 Spent Mixed-Oxide Fuel = 0 High-Level Waste (glass) = 4140 High-Level Waste (ceramic) = 0
	Level 2	High_Level_Waste_Glass\HLWg_ Inventory_Calcs\HLWg_Inventory_2010	Edit Vector: HLWg_Inventory_2010.Definition Value C14 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[C14] * 1.2 C5135 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[C14] * 1.2 H292 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[C14] * 1.2 H292 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu231] * 1.2 H233 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu238] * 1.2 Pu239 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu238] * 1.2 Pu239 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu238] * 1.2 Pu240 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu242] * 1.2 Pu241 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu242] * 1.2 Ser9 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu242] * 1.2 Ser9 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu242] * 1.2 Y232 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[U232] * 1.2 Y233 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[U232] * 1.2 Y233 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[U232] * 1.2 Y234 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[U235] * 1.2

OK

Result Parameters:	Time histories of the following parameters are used in the analysis: Waste Form Release Rate\High-Level Waste (glass) High_Level_Waste_Glass\HLWg_Inventory_Calcs\HLWg_Initial_Inventory				
Success Criteria:	 The release rate of radionuclides from the waste form should be 1.2 times that of the basecase (WF14). The initial inventory of HLWg should be 1.2 times greater than that of the basecase (WF14). 				

The HLWg release rates are 1.2 times the basecase.

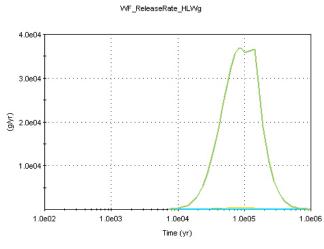
HLWg Release Rate

HLWg Initial Inventory

Disposition:

- (1) Criterion 1: PASS
- (2) Criterion 2: PASS

The HLWg initial inventory is 1.2 times the basecase.


Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	Ron Janetzke December 10, 20 ALBY, GoldSim 1 Beta 7.2 D:\RonJ-\SOAR\\ Radionuclide inve These waste form inventory by vary	0.11 /7_2 entory varies in reprocessing waste forn	Initial Inventory Factor of 1.5 ns, which have various radionuclide loading configurations. . Tests will be conducted for realistic ranges of radionuclide
Assumptions: Test Configuration:	None Simulation Settings Dashboard	Monte Carlo Timesteps Material Media Redox 2010 Radionuclide Inventory (Metric Tons)	Deterministic, Mean Values 95 Carbon Steel Fractured Rock Reducing Spent Nuclear Fuel = 0 Spent Mixed-Oxide Fuel = 0 High-Level Waste (glass) = 4140 High-Level Waste (ceramic) = 0
	Level 2	High_Level_Waste_Glass\HLWg_ Inventory_Calcs\HLWg_Inventory_ 2010	Edit Vector: HLWg_Inventory_2010.Definition Value C14 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[C14] * 1.2 C3135 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[1235] * 1.2 1129 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[1235] * 1.2 1129 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[1236] * 1.2 129237 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[N233] * 1.2 120238 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu238] * 1.2 120238 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu238] * 1.2 120240 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu240] * 1.2 120241 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu242] * 1.2 2679 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu242] * 1.2 2679 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[Pu242] * 1.2 2023 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[C33] * 1.2 2023 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[U232] * 1.2 2023 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[U232] * 1.2 2034 HLWg_Total_Mass_2010_Dashboard * HLWg_Radionuclide_Ratio[U233] * 1.2 2035<

ОК

SOAR Verification Test Report (continued)

Result Parameters:	Time histories of the following parameters are used in the analysis: Waste Form Release Rate\High-Level Waste (glass) High_Level_Waste_Glass\HLWg_Inventory_Calcs\HLWg_Initial_Inventory
Success Criteria:	 (1) The release rate of radionuclides from the waste form should be 1.5 times greater than that of the basecase (WF14). (2) The initial inventory of HLWg should be 1.5 times greater than that of the basecase (WF14).

The HLWg release rates are 1.5 times the basecase.

The HLWg initial inventory is 1.5 times the basecase.

ĺ	🇰 Array Vi	iew: HLW	/g_	Init	ial_	Inve	ntory		\mathbf{X}
	🃭 🗎 🖻	🖨 A^ /	A .	A	ŝ,	×	1000000 y	ır, End Phase	<
		HLVVg_Initi	ial_l						
	C14	0.0124	477						
	Cs135	40.6	529						
	1129	4.01	157						
	Np237	21.7	709						
	Pu238	2	.19						
	Pu239	14.7	714						
	Pu240	1.65	552						
	Pu242	0.233	339						
	Se79	0.300	075						
	Tc99	58.3	347						
	U232	6.0016e	-05						
	U233	0.402	288						
	U234	0.854	466						
	U235	13.1	173						
	U236	2.4	442						
	U238	604	9.3						
	<								>

HLWg Release Rate

HLWg Initial Inventory

- (1) Criterion 1: PASS
- (2) Criterion 2: **PASS**

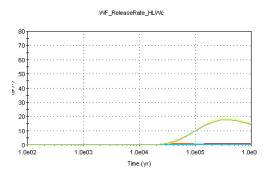
Test ID: Test Title:	WF18 Basecase Run f	or Radionuclide Release Tests Invol	lving Adjustment of the HI W Ceramic Initial Inventory					
Analyst:	Ron Janetzke	Basecase Run for Radionuclide Release Tests Involving Adjustment of the HLW Ceramic Initial Inventory						
Date:		December 10, 2010						
Test Environment:	ALBY, GoldSim							
SOAR Version:	Beta 7.2							
Run Directory:	D:\RonJ-\SOAR	D:\RonJ-\SOAR\V7 2						
Test Objective:	This run is configured for the basecase that is to be compared to runs of HLWc initial inventories selected to simulate waste from reprocessing activities.							
Assumptions:	None	5						
Test Configuration:	Simulation	Monte Carlo	Deterministic, Mean Values					
•	Settings	Timesteps	95					
	Dashboard	Material	Carbon Steel					
		Media	Fractured Rock					
		Redox	Reducing					
		2010 Radionuclide Inventory	Spent Nuclear Fuel = 0					
		(Metric Tons)	Spent Mixed-Oxide Fuel = 0					
			High-Level Waste (glass) = 0					
			High-Level Waste (ceramic) = 108					

Level 2 HLWc Mass

0 g 765 g	
765 g	
177 P	
102 g	
105 g	
1.69 g	
13000 g	
304 g	
5.84 g	
Og	
Og	
8.2e-6 g	
1.5e-3 g	
30.6 g	
2730 g	
65.1 g	
14600 g	
	105 g 1.69 g 13000 g 304 g 5.84 g 0 g 0 g 3.2e-6 g 1.5e-3 g 30.6 g 2730 g 35.1 g

HLWc_DegradationRate

4.06e-7 1/yr


SOAR Verification Test Report (continued)

Result Parameters: Time histories of the following parameters are used in the analysis: Waste Form Release Rate\High-Level Waste (ceramic) High_Level_Waste_Ceramic\HLWc_Inventory_Calcs\HLWc_Initial_Inventory High_Level_Waste_Ceramic\HLWc_Inventory_Calcs\HLWc_Radionuclide_Ratio \Results\Waste_Form_Results\WF_ReleaseRate_HLWc_Result

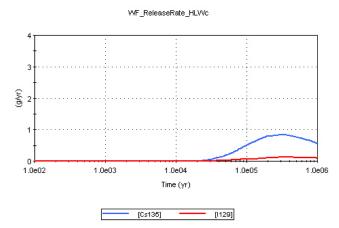
Success Criteria:

- riteria: (1) The run should produce a chart of Waste Form Release Rate\High-Level Waste (ceramic) with no errors.
 - (2) The run should produce a table of High_Level_Waste_Ceramic\HLWc_Inventory_Calcs\HLWc_Initial_Inventory with no errors.

The HLWc release rate chart was produced without a run-time error.

The HLWc inventory tables were produced without a run-time error.

		Initial_Inve	
🃭 🔛 🖶	🖨 A* A*	A 🗊 🖄	1000000 yr, End Phase 🔽
	HLWc_Initial_I		
C14	0]	
Cs135	2.6055]	
1129	0.34741	1	
Np237	0.35762	1	
Pu238	0.0055332	1	
Pu239	44.271	1	
Pu240	1.0349	1	
Pu242	0.019891	1	
Se79	0	1	
Tc99	0	1	
U232	2.6578e-08	1	
U233	5.6782e-06		
U234	0.10444	1	
U235	9.3045	1	
U236	0.22226	1	
U238	49.727	1	
<			>


HLWc Release Rate—General Chart

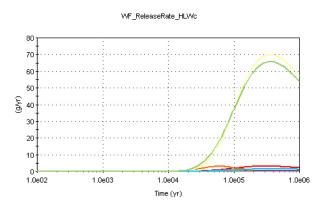
HLWc Initial Inventory The release rate for I-129 is found on the Results pane.

🇰 Атгау V	/iew: HLWc_l	Radionucli	de_Ratio			WF.	_ReleaseRate_HLVVc		
Pr 🗎 🖻	🗃 🖨 🔺 👗	A 🗊 🔛	1000000 yr, End Phase		1.0				
	HLWc_Radio				ł	÷	÷	÷	
C14	0				0.8				
Cs135	0.024125								
1129	0.0032167								
Np237	0.0033113			5	0.6	:	:	:	
Pu238	5.3297e-05			(JVI)	t	÷			
Pu239	0.40998			-	0.4				
Pu240	0.0095871				ļ	-	-		
Pu242	0.00018417				0.2			:	
Se79	0				0.2	÷	÷		
Tc99	0				Ť	:	÷		
U232	2.586e-10				0.0+	4.0-00	4 0-04	4.0-05	······
U233	4.7305e-08				1.0e02	1.0e03	1.0e04	1.0e05	1.0e0
U234	0.00096502						Time (yr)		
U235	0.086095								
U236	0.002053								
U238	0.46043								
	Je l								
<		400							
HLV	Vc_Radio	onuclide	e_Ratio	\Resu	lts\Waste	_Form_R	esults\WF	_ReleaseRa	ate_H

LWc_Result for I-129

The release rates for I-129 and Cs-135 are also found on the Results pane.

\Results\Waste_Form_Results\WF_ReleaseRate_HLWc_Result


- Criterion 1: **PASS** Criterion 2: **PASS** (1) (2)

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	Ron Janetzke December 13, 2 ALBY, GoldSim Beta 7.2 D:\RonJ-\SOAR\ This run is config waste from repro	10.11 \V7_2	e with Initial Inventory Factor of 3.75 to runs of HLWc initial inventories selected to simulate
Assumptions: Test Configuration:	None Simulation Settings Dashboard	Monte Carlo Timesteps Material Media Redox 2010 Radionuclide Inventory (Metric Tons)	Deterministic, Mean Values 95 Carbon Steel Fractured Rock Reducing Spent Nuclear Fuel = 0 Spent Mixed-Oxide Fuel = 0 High-Level Waste (glass) = 0 High-Level Waste (ceramic = 108
	Level 2	Set the HLWc_Inventory_2010 equation to: HLWc_Total_Mass_2010_Dashboard* HLWc_Radionuclide_Ratio * 3.75 HLWc mass	Value Value C14 0 g Cst35 765 g 1129 102 g Np237 105 g Pu238 1.68 g Pu239 1300 g Pu240 304 g Pu242 5.84 g Ser9 0 g U233 1.5e-3 g U234 30.6 g U235 2730 g U236 65.1 g U238 1.4600 g

SOAR Verification Test Report (continued)

Result Parameters:	Time histories of the following parameters are used in the analysis: Waste Form Release Rate\High-Level Waste (ceramic) High_Level_Waste_Ceramic\HLWc_Inventory_Calcs\HLWc_Initial_Inventory
Success Criteria:	 The run should produce a chart of Waste Form Release Rate\High-Level Waste (ceramic) with release rates that are 3.75 times that of the basecase (WF18). The run should produce a table of High_Level_Waste_Ceramic\HLWc_Inventory_Calcs\HLWc_Initial_Inventory that is 3.75 times that of the basecase (WF18).

The HLWc release rate is 3.75 times that of the basecase (WF18).

HLWc Release Rate

Disposition:

(1) Criterion 1: PASS

(2) Criterion 2: PASS

The HLWc inventory is 3.75 times that shown in the basecase (WF18).

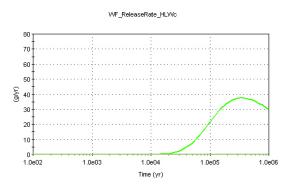
🇰 Array View: HLWc_Initial_Inventory 💦 🔲 🔀				
🃭 🗎 🖻	🖨 A° A'	A 🗊 🖄	1000000 yr, End Phase 💌	
	HLVVc_Initial_I			
C14	0			
Cs135	9.7708			
1129	1.3028			
Np237	1.3411	1		
Pu238	0.02075	1		
Pu239	166.02	1		
Pu240	3.8807	1		
Pu242	0.07459	1		
Se79	0	1		
Tc99	0	1		
U232	9.9666e-08	1		
U233	2.1293e-05			
U234	0.39165			
U235	34.892			
U236	0.83349			
U238	186.48			
<]>	

HLWc Initial Inventory

Test ID:	WF24				
Test Title:	Radionuclide Specific (I-129) Release from Reprocessed HLW Ceramic Waste				
Analyst:	Ron Janetzke				
Date:	December 13, 20	10			
Test Environment:	ALBY, GoldSim 1	0.11			
SOAR Version:	Beta 7.2				
Run Directory:	D:\RonJ-\SOAR\\	/7 2			
Test Objective:	Radionuclide inventory varies in reprocessing waste forms, which have various radionuclide loading configurations.				
-	These waste forms include high-level waste (HLW) ceramic. Tests will be conducted by selecting the default HLWc				
	inventory for I-129	9 while setting all other inventories t	o 0. All other waste forms are not present.		
Assumptions:	None				
Test Configuration:	Simulation	Monte Carlo	Deterministic, Mean Values		
	Settings	Timesteps	95		
	Dashboard	Material	Carbon Steel		
		Media	Fractured Rock		
		Redox	Reducing		
		2010 Radionuclide Inventory	Spent Nuclear Fuel = 0		
		(Metric Tons)	Spent Mixed-Oxide Fuel = 0		
		. ,	High-Level Waste (glass) = 0		

High-Level Waste (ceramic) = 108

Level 2 HLWc Initial Mass per WP


Value
Og
Og
102 g
Og

SOAR Verification Test Report (continued)

Result Parameters:	Time histories of the following parameters are used in the analysis:
	Waste Form Release Rate\High-Level Waste (ceramic)
	High_Level_Waste_Ceramic\HLWc_Inventory_Calcs\HLWc_Initial_Inventory
	High_Level_Waste_Ceramic\HLWc_Inventory_Calcs\HLWc_Radionuclide_Ratio
Success Criteria:	(1) The initial inventory values should be zero for all radionuclides except I-129, which should be the I-129 fuel ratio
	times the total mass displayed on the dashboard.
	(0) The valence veter for all variance idea should be says support for 1.400 which should be the same so the bases

(2) The release rates for all radionuclides should be zero except for I-129, which should be the same as the basecase (WF18) adjusted for the difference in the WP mass ratio for I-129.

The HLWc release rate is 0 for all radionuclides except I-129. The release rate for I-129 is the same as the basecase, times the release rate factor shown here. Release rate factor = $I129_mass_ratio_WF24/I129_mass_ratio_WF18 = 1.0/0.0032167 \sim 310.88$, where $I129_mass_ratio_WF24$ is the I129 mass ratio used for the WF24 test case with I129 mass/HLW initial inventory = 108/108 = 1.0 and $I129_mass_ratio_WF18$ is the I-129 mass ratio used for the basecase WF18 (i.e., 0.0032167). This release rate factor accounts for the increase in inventory of a given radionuclide when all of the mass present is attributed to one radionuclide rather than a mix. The release rates are 310 times the I-129 release rates in WF18.

I-129 HLWc Release Rate

The HLWc inventory is zero except for I-129, which is the I-129 fuel ratio (1.0) times the total mass displayed on the dashboard (108).

🇰 Array Vi	ew: HLWc_Initial_Inventory
🏴 🗎 🖻	🖨 🗛 🖌 A 🎲 🖄 🛛 1000000 yr, End Phase 🔽
	HLWc_Initial_Inventory
C14	0
Cs135	0
1129	108
Np237	0
Pu238	0
Pu239	0
Pu240	0
Pu242	0
Se79	0
Tc99	0
U232	0
U233	0
U234	0
U235	0
U236	0
U238	0
<	

HLWc Initial Inventory

Disposition:

- (1) Criterion 1: PASS
- (2) Criterion 2: **PASS**

The GoldSim models for tests WF18 and WF24, available as electronic files and summarized in Table 3-2, give WF release rates in a ratio of 310.87.

Table 3-	-2. GoldSim Model R	Release Rates for WF 18	and WF 24
Year	WF 24	WF 18	WF 24/ WF 18
14500	0.40466	0.001302	310.8704
19000	0.40429	0.001301	310.8727
23500	1.2125	0.0039	310.8815
28000	2.0197	0.006497	310.8713
32500	2.8252	0.009088	310.8715
37000	4.0332	0.012974	310.8679
41500	5.2389	0.016852	310.877
46000	6.4419	0.020722	310.8725
50500	7.6423	0.024583	310.8774
55000	9.2439	0.029735	310.8761
59500	10.439	0.033578	310.8881
64000	12.034	0.03871	310.8757
68500	13.222	0.042533	310.8645
73000	14.408	0.046346	310.879
77500	15.994	0.051449	310.871
82000	17.174	0.055244	310.8754
86500	18.351	0.059029	310.8811
91000	19.525	0.062806	310.8779
95500	20.293	0.065278	310.8704
100000	21.462	0.069039	310.8678
145000	29.622	0.095287	310.8714
190000	33.818	0.10878	310.8844
235000	35.928	0.11557	310.8765
280000	37.196	0.11965	310.8734
325000	37.64	0.12108	310.8688
370000	37.678	0.1212	310.8746
415000	37.318	0.12004	310.8797
460000	36.964	0.1189	310.8831
505000	36.224	0.11652	310.8823
550000	35.891	0.11545	310.8792
595000	35.171	0.11314	310.8626
640000	34.467	0.11087	310.8776
685000	33.776	0.10865	310.8698
730000	33.489	0.10772	310.8893
775000	32.818	0.10557	310.8648
820000	32.16	0.10345	310.8748
865000	31.515	0.10138	310.8601
910000	30.884	0.099345	310.8762
955000	30.265	0.097354	310.8758
1.00E+06	29.658	0.095403	310.8707

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	WF25 Radionuclide Specific (I-129 and Cs-135) Release from Reprocessed HLW Ceramic Waste Ron Janetzke December 14, 2010 ALBY, GoldSim 10.11 Beta 7.2 D:\RonJ-\SOAR\V7_2 Radionuclide inventory varies in reprocessing waste forms, which have various radionuclide loading configurations These waste forms include high-level waste (HLW) ceramic. Tests will be conducted by selecting the default HLW inventory for I-129 and Cs-135 while setting all other inventories to 0. All other waste forms are not present.			
Assumptions:	None	Manta Carla	Deterministic Maan Values	
Test Configuration:	Simulation Settings Dashboard	Monte Carlo Timesteps Material Media Redox 2010 Radionuclide Inventory (Metric Tons)	Deterministic, Mean Values 95 Carbon Steel Fractured Rock Reducing Spent Nuclear Fuel = 0 Spent Mixed-Oxide Fuel = 0 High-Level Waste (glass) = 0 High-Level Waste (ceramic) = 108	

Level 2 HLWc Initial Mass per WP

	Value
C14	Og
Cs135	765 g
129	102 g
Np237	Og
Pu238	Og
Pu239	Og
Pu240	Og
Pu242	Og
Se79	Og
Tc99	Og
U232	Og
U233	Og
U234	Og
J235	Og
U236	Og
U238	Og

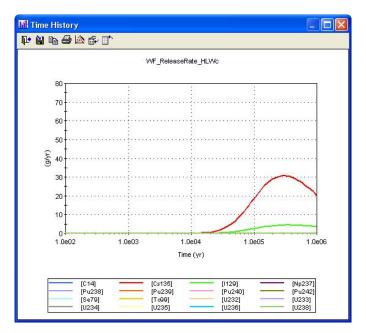
SOAR Verification Test Report (continued)

Result Parameters:	Time histories of the following parameters are used in the analysis:
	Waste Form Release Rate\High-Level Waste (ceramic)
	High_Level_Waste_Ceramic\HLWc_Inventory_Calcs\HLWc_Initial_Inventory
	High_Level_Waste_Ceramic\HLWc_Inventory_Calcs\HLWc_Radionuclide_Ratio
Success Criteria:	(1) The initial inventory values should be zero for all radionuclides except I-129 and Cs-135, which should be their fuel
	ratios times the total mass displayed on the dashboard.
	(2) The release rates for all radionuclides should be zero except for I-129 and Cs-135, which should be the same as the
	basecase (WF18) values adjusted for the difference in the WP mass ratio for I-129 and Cs-135.

l• 🗎 🖻		🕻 🛱 🔛 🛛 1000000 yr, End Phase 🔽
	HLVVc_Radio	
C14	0	
Cs135	0.88235	
1129	0.11765	
Np237	0	
Pu238	0	
Pu239	0	
Pu240	0	
Pu242	0	
Se79	0	
Tc99	0	
U232	0	
U233	0	
U234	0	
U235	0	
U236	0	
U238	0	

Radionuclide Mass Ratios

The HLWc release rate is 0 for all radionuclides except I-129 and Cs-135. The release rates for I-129 and Cs-135 are the same as the basecase, times the following release rate factors:


3.2.1 I-29 Release Rate Factor

I129_mass_ratio_WF25/I129_mass_ratio_WF18 = 0.11765/0.0032167 = 36.57, where I129_mass_ratio_WF25 is the I-129 mass ratio used for the WF25 test case and I129 mass_ratio_WF18 is the I-129 mass ratio used for the basecase WF18

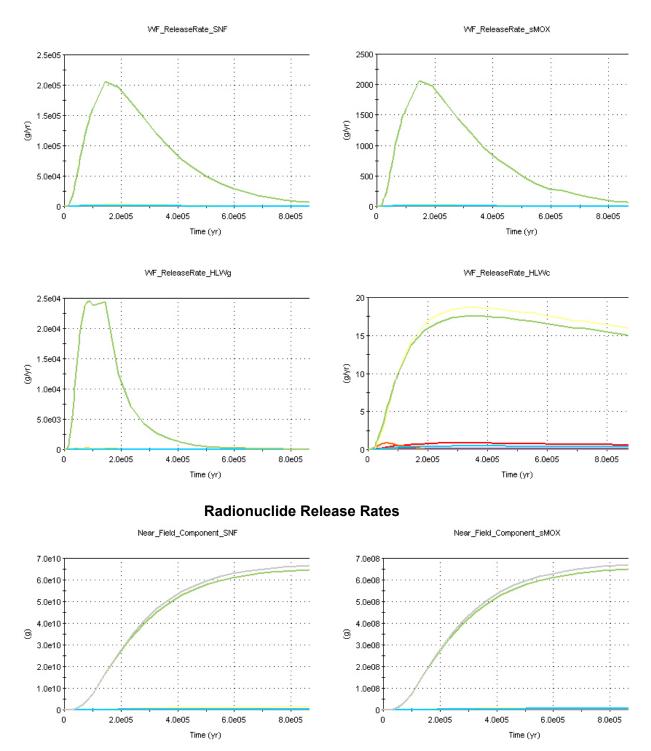
3.2.2 Cs-135 Release Rate Factor

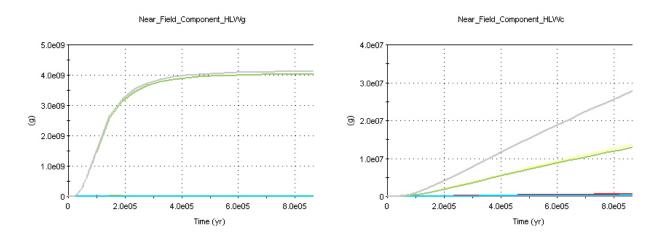
Cs135_mass_ratio_WF25/Cs135_mass_ratio_WF18 = 0.88235 / 0.024125 = 36.57, where Cs135_mass_ratio_WF25 is the Cs-135 mass ratio used for the WF25 test case and Cs135_mass_ratio_WF18 is the Cs-135 mass ratio used for the basecase WF18

These release rate factors account for the increase in inventory of a given radionuclide when the mass present is attributed to fewer than the original radionuclide set. The release rates are 36 times the release rates in WF18 for both I-129 and Cs-135. The value 36.57 resulted from the data in HLWc_Radionuclide_Mass_WP.Definition tables of tests WF18 and WF25. The total mass in HLWc_Radionuclide_Mass_WP.Definition table of WF18 is 31709.2 g, the cumulative mass of I-129 and Cs-135 in table HLWc_Radionuclide_Mass_WP.Definition of test WF25 is 102 + 765 = 867 g, and 31709.2/867 = 36.57.

HLWc Release Rate

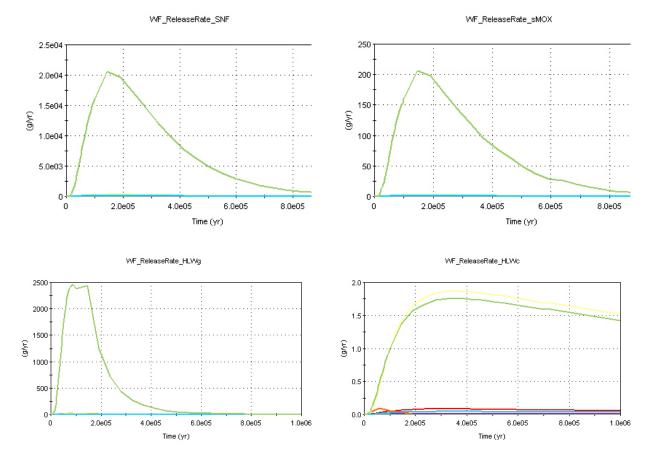
The HLWc inventory is zero except for I-129 and Cs-135, which are the fuel ratios (0.118 and 0.882, respectively) times the total mass displayed on the dashboard (108 tonnes).


ゆ 🗒 🧃		🗛 🎲 🔛 🛛 1000000 yr, End Phase 💌
	HLWc_Invent	
C14	0	
Cs135	95.294	
1129	12.706	
Np237	0	
Pu238	0	
Pu239	0	
Pu240	0	
Pu242	0	
Se79	0	
Tc99	0	
U232	0	
U233	0	
U234	0	
U235	0	
U236	0	
U238	0	


HLWc Initial Inventory

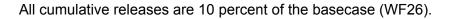
- (1) Criterion 1: PASS
- (2) Criterion 2: **PASS**

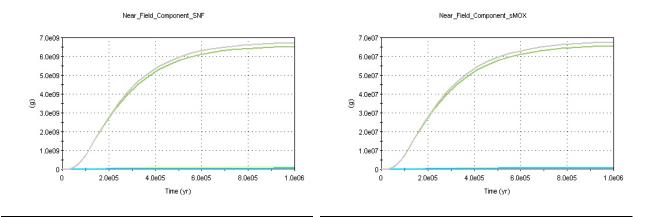
Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	Ron Janetzke December 17, 20 ALBY, GoldSim 1 Beta 8.1 D:\RonJ-\SOAR\V Provide a basecas	0.11	sting the fraction of initial inventory
Assumptions:	None		
Test Configuration:	Simulation Settings Dashboard	Monte Carlo Timesteps Material Media Redox Fraction of Initial Inventory Available for Release for all fuel types Degradation Rate Multiplier for all fuel types	Deterministic, Mean Values 95 Carbon Steel Fractured Rock Reducing 1 1
Result Parameters:	\Results\Waste_F \Results\Waste_F \Results\Waste_F \Results\Waste_F \Results\Waste_F \Results\Waste_F	Form_Results\WF_ReleaseRate_SNF_Result Form_Results\WF_ReleaseRate_sMOX_Result Form_Results\WF_ReleaseRate_HLWg_Result Form_Results\WF_ReleaseRate_HLWc_Result Form_Results\WF_CumRelease_SNF_Result Form_Results\WF_CumRelease_sMOX_Result Form_Results\WF_CumRelease_HLWg_Result Form_Results\WF_CumRelease_HLWg_Result	
Success Criteria:		ould generate charts of the result parameters without a run-time error.	

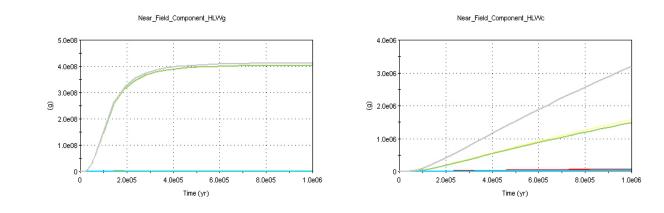


Radionuclide Cumulative Release

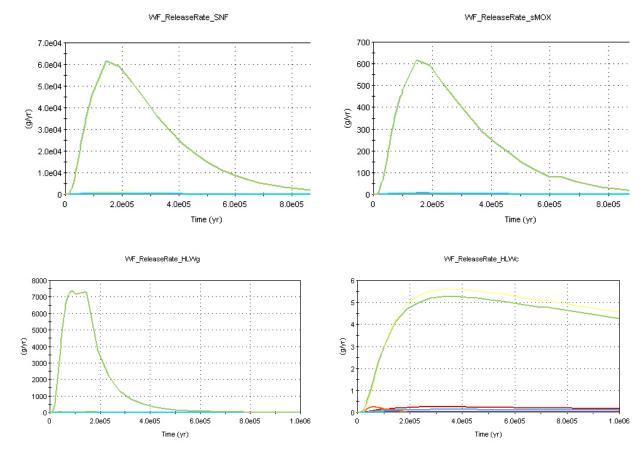
Disposition:


(1) Criterion 1: PASS


Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	WF27 Radionuclide Release with the Fraction of Initial Inventory Available for Release at 0.10 Ron Janetzke December 17, 2010 ALBY, GoldSim 10.11 Beta 8.1 D:\RonJ-\SOAR\V8_1 Provide a test of input that is representative of intact cladding protection by adjusting the fraction of initial inventory available for release parameter on the dashboard.					
Assumptions:	None					
Test Configuration:	Simulation Settings Dashboard	Monte Carlo Timesteps Material Media Redox Fraction of Initial Inventory Available for Release for all fuel types Degradation Rate Multiplier for all fuel types	Deterministic, Mean Values 95 Carbon Steel Fractured Rock Reducing 0.10 1			
Result Parameters:	\Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result \Results\Waste_Form_Results\WF_ReleaseRate_sMOX_Result \Results\Waste_Form_Results\WF_ReleaseRate_HLWg_Result \Results\Waste_Form_Results\WF_ReleaseRate_HLWc_Result \Results\Waste_Form_Results\WF_CumRelease_SNF_Result \Results\Waste_Form_Results\WF_CumRelease_sMOX_Result \Results\Waste_Form_Results\WF_CumRelease_HLWg_Result \Results\Waste_Form_Results\WF_CumRelease_HLWg_Result \Results\Waste_Form_Results\WF_CumRelease_HLWg_Result					
Success Criteria:		form release rates for all fuel types should be 10 percent those of the b form cumulative release curve for all fuel types should be 10 percent th WF26).				

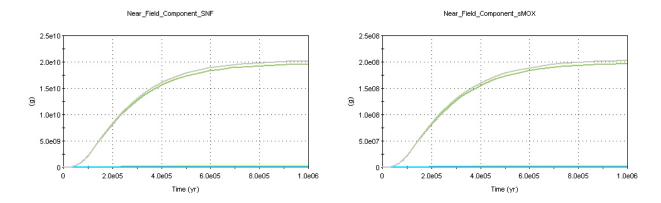


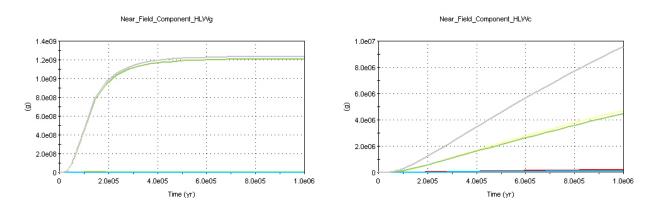
All release rates are 10 percent of the basecase (WF26) release rates.



Radionuclide Cumulative Releases

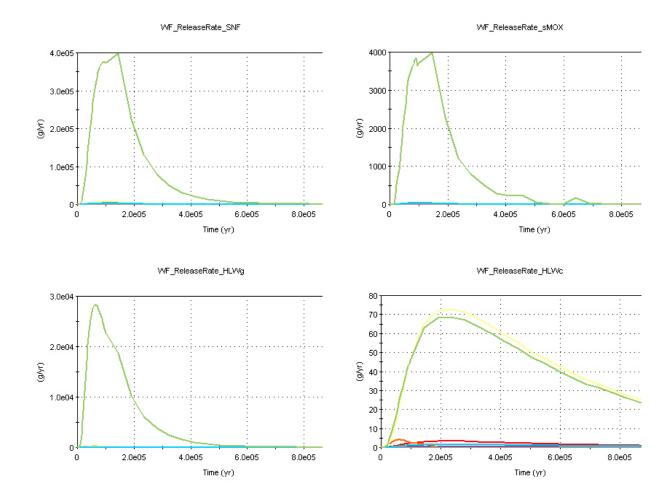
- (1) Criterion 1: PASS
- (2) Criterion 1: **PASS**


SOAR Verification Test Report								
Test ID: Test Title:	-	WF28 Radionuclide Release with the Fraction of Initial Inventory Available for Release at 0.30						
Analyst:	Ron Janetzke	·						
Date:	,	December 17, 2010						
Test Environment:	ALBY, GoldSim 10.11							
SOAR Version:	Beta 8.1							
Run Directory:	D:\RonJ-\SOAR\V8_1							
Test Objective:	Provide a test of input that is representative of intact cladding protection by adjusting the fraction of initial inventory available for release parameter on the dashboard.							
Assumptions:	None							
Test Configuration:	Simulation	Monte Carlo	Deterministic, Mean Values					
	Settings	Timesteps	95					
	Dashboard	Material	Carbon Steel					
		Media	Fractured Rock					
		Redox	Reducing					
		Fraction of Initial Inventory Available for Release for all fuel types	0.30					
		Degradation Rate Multiplier for all fuel types	1					
Result Parameters:	\Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result							
	\Results\Waste_Form_Results\WF_ReleaseRate_sMOX_Result \Results\Waste_Form_Results\WF_ReleaseRate_HLWg_Result \Results\Waste_Form_Results\WF_ReleaseRate_HLWc_Result \Results\Waste_Form_Results\WF_CumRelease_SNF_Result \Results\Waste_Form_Results\WF_CumRelease_sMOX_Result							
	\Results\Waste_Form_Results\WF_CumRelease_HLWg_Result							
	\Results\Waste_Form_Results\WF_CumRelease_HLWc_Result							
Success Criteria: (1) The waste form release rates for all fuel types should be 30 percent those of the basecase (WF26). (2) The waste form cumulative release curve for all fuel types should be 30 percent that of								
							basecase (\	WF26).



All release rates are 30 percent of the basecase (WF26) release rates.

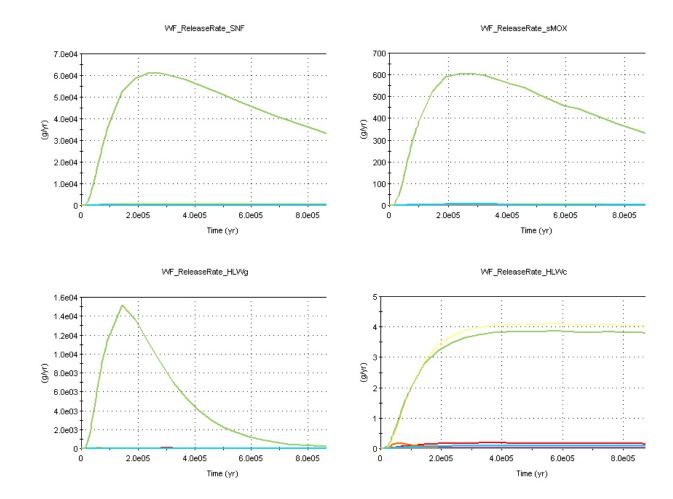
All cumulative releases are 30percent of the basecase (WF26) release rates.



Radionuclide Cumulative Releases

- Criterion 1: **PASS** Criterion 2: **PASS**
- (1) (2)

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Ron Janetzke December 17, 2 ALBY, GoldSim Beta 8.1 D:\RonJ-\SOAR Provide a test of	10.11	usting the degradation rate	
Test Configuration:	Simulation	Monte Carlo	Deterministic, Mean Values	
	Settings Dashboard	Timesteps Material Media Redox Fraction of Initial Inventory Available for Release for all fuel types Degradation Rate Multiplier for all fuel types	95 Carbon Steel Fractured Rock Reducing 1 5	
Result Parameters:	\Results\Waste_Form_Results\WF_ReleaseRate_SNF_Result \Results\Waste_Form_Results\WF_ReleaseRate_sMOX_Result \Results\Waste_Form_Results\WF_ReleaseRate_HLWg_Result \Results\Waste_Form_Results\WF_ReleaseRate_HLWc_Result			
Success Criteria:	 (1) The waste form release rates for all fuel types should be greater than those of the base case (WF26). 			


All fuel types have releases that are greater than the basecase (WF26).

Disposition:

(1) Criterion 1: PASS

		SOAR Verification Test Report	
Test ID:	WF31		
Test Title:	Radionuclide Re	elease with the Degradation Rate Multiplier at 0.2	
Analyst:	Ron Janetzke	- · ·	
Date	December 17, 2	010	
Test Environment:	ALBY, GoldSim	10.11	
SOAR Version:	Beta 8.1		
Run Directory:	D:\RonJ-\SOAR	V8 1	
Test Objective:	Provide a test of	f input that is representative of variable waste form fragment sizes by adju	sting the degradation rate
-		eter on the dashboard.	5 5
Assumptions:	None		
Test Configuration:	Simulation	Monte Carlo	Deterministic, Mean Values
-	Settings	Timesteps	95
	Dashboard	Material	Carbon Steel
		Media	Fractured Rock
		Redox	Reducing
		Fraction of Initial Inventory Available for Release for all fuel types	1
		Degradation Rate Multiplier for all fuel types	0.2
Result Parameters:	\Results\Waste	Form Results\WF ReleaseRate SNF Result	-
		Form_Results\WF_ReleaseRate_sMOX_Result	
		Form Results\WF ReleaseRate HLWg Result	
		Form Results\WF ReleaseRate HLWc Result	
Success Criteria:		orm release rates for all fuel types should be less than those of the base	
	case (WF26		

All fuel types have releases that are less than the basecase (WF26).

Disposition:

(1) Criterion 1: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	WP01 WP Failure Time and Breached Area for Cu_porous_rock_oxidizing_2.5cm Razvan Nes November 30, 2010 Frisco, GoldSim 10.11 Beta 6.4 Gryphon, D:\Public\razvan\SOAR_beta_V6.4 Verify the consistency of failure times and breached areas from the Waste Package component model with hand calculations. Hand calculations will use the equations in NRC (2010b, Chapter 4.2.2). None			
Test Configuration:	Simulation	Number of realizations	10	
	Settings Dashboard	Number of timesteps Waste package material	95 Copper	
	Duonbourd	Far Field Leg One, Geologic Media	Porous Rock	
		Far Field Leg One, Redox Condition	Oxidizing	
		Define waste package thickness	On	
		Waste package thickness	2.5 cm	
		Distribution of general corrosion rates	Normal	
		Scale of distribution of general corrosion rates	Logarithmic	
		Minimum general corrosion breach area fraction	1.0	
		Maximum general corrosion breach area fraction	1.0	
		Disable localized corrosion	Checked	
	Level 2	Cu_GC_Ox_Low	0.04 µm/yr	
		Cu_GC_Ox_High	7.0 µm/yr	
		Dashboard_WastePackage, Waste package thickness, Properties, Maximum Value	10 cm	
Result Parameters:		te_Package, Waste package failure fraction from general corrosion		
		te_Package, Waste package failure fraction from localized corrosion te_Package, Waste package breach area		
Success Criteria:	Output should	agree with equations in NRC (2010b, Chapter 4.2.2).		

(1) Using NRC [2010b, Eq. (4-3)], we calculate the waste package (WP) failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-1)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.001 and 0.999 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{2.5}{7.0} = 3.571 \times 10^3 \text{ years}$$
 (3-2)

$$t_{gc} = 10^4 \times \frac{2.5}{0.04} = 6.250 \times 10^5 \text{ years}$$
 (3-3)

These values satisfactorily agree with the output values in WP01GCFractionWPFailedTable.txt and WP01GCFractionWP Failed.BMP files. The graph in Figure 3-1, created in WP01GCFractionFailedExcel.xls, is based on the data in WP01GCFractionWP FailedTable.txt and shows the fraction of failed WPs between 0.001 and 0.999, which are the values of the fractions marking the initiation and the completion of the WPs' failure due to general corrosion. Figure 3-2 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

(2) Using NRC [2010b, Eq. (4-4)], we calculate the breached area per failed WP

$$WP_{breached area} = \left(\frac{f_{gc}}{f_{failed WP}} f_{gc breached area} + \frac{f_{lc}}{f_{failed WP}} f_{lc breached area}\right)A$$
(3-4)

The only corrosion mechanism responsible for WP breaching considered here is general corrosion, so the first term in the parentheses equals one (i.e., $\frac{f_{gc}}{f_{failed WP}} = 1.0$ after 6.250×10^5 years). Based on the data in WP01GCFractionWPFailedTable, the second term in parentheses equals zero (i.e., $\frac{f_{lc}}{f_{failed WP}} = 0.0$). In both cases, minimum general corrosion breach area fraction and maximum general corrosion breach area fraction are set to one (i.e., $f_{gc breached area} = f_{lc breached area} = 1.0$). As per NRC (2010b, Table A–2), in the default parameter for the SOAR Waste Package Model Component, A = constant = 40.0 m^2 .

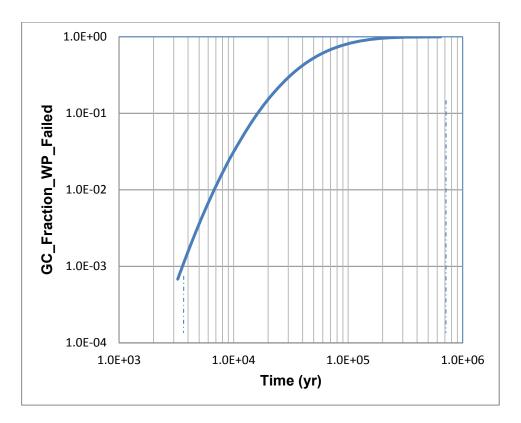


Figure 3-1. WP Failure Fraction From General Corrosion

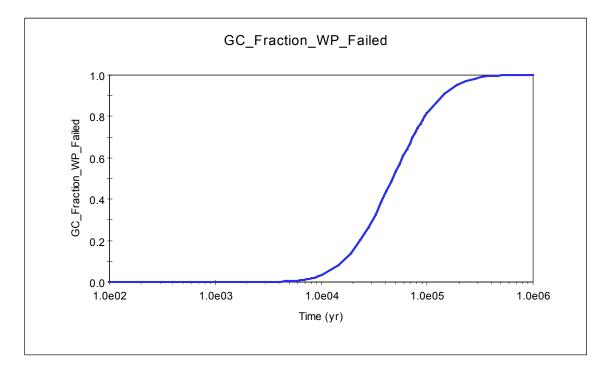


Figure 3-2. WP Failure Fraction From General Corrosion, SOAR Output File

With these assumptions, after $6.250\times 10^5\,{\rm years}$, the breached area per failed WP equals the area A of the WP

$$WP_{breached area} = (1.0 \times 1.0 + 0.0 \times 1.0) \times 40.0 = 40.0 \ m^2$$
(3-5)

The value agrees with the output value in WP01BreachArea.BMP and

WP01BreachAreaTable.txt files. Figure 3-3 shows the original SOAR output chart of the breached area per failed WP due to general corrosion, as per WP01BreachArea.BMP. The chart shows that WP breach area equals zero over the first 3,571 years. This is consistent with the model because the WP failure is initiated when the fraction of failed WPs exceeds 0.001, so it does not occur during the first 3,571-year period.

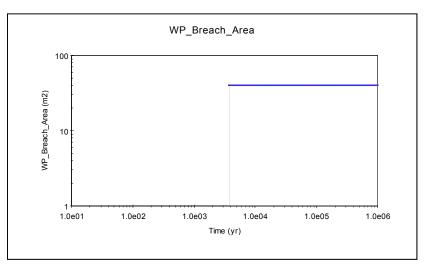


Figure 3-3. SOAR Output Chart of the Breached Area Per Failed WP Due To General Corrosion

Disposition:

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Razvan Nes November 30, 2 Frisco, GoldSim Beta 6.4 Gryphon, D:\Put Verify the consis		el with hand
Test Configuration:	Simulation	Number of realizations	10
	Settings	Number of timesteps	95
	Dashboard	Waste package material	Copper
		Far Field Leg One, Geologic Media	Porous Rock
		Far Field Leg One, Redox Condition	Oxidizing
		Define waste package thickness	On
		Waste package thickness	2.5 cm
		Distribution of general corrosion rates	Normal
		Scale of distribution of general corrosion rates	Logarithmic
		Minimum general corrosion breach area fraction	1.0
		Maximum general corrosion breach area fraction	1.0
		Disable localized corrosion	Checked
	Level 2	Data Source	None
		Cu_GC_Ox_Low	0.04 µm/yr
		Cu_GC_Ox_High	7.0 µm/yr
		Dashboard_WastePackage, Waste package thickness, Properties, Maximum Value	10 cm
Result Parameters:	Results_Waste_	Package, Waste package failure fraction from general corrosion Package, Waste package failure fraction from localized corrosion Package, Waste package breach area	
Success Criteria:	Output should a	gree with equations in NRC (2010b, Chapter 4.2.2).	

(1) Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-6)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.001 and 0.999 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{2.5}{70.0} = 3.571 \times 10^2 \text{ years}$$
 (3-7)

$$t_{gc} = 10^4 \times \frac{2.5}{0.4} = 6.250 \times 10^4 \text{ years}$$
 (3-8)

These values satisfactorily agree with the output values in WP02GCFractionWPFailedTable.txt and WP02GCFractionWPFailed.BMP files. The graph in Figure 3-4, created in WP02GCFractionFailedExcel.xls, is based on the data in WP02GCFractionWPFailedTable.txt and shows the fraction of failed WPs between 0.001 and 0.999, which are the values of the fractions marking the initiation and the completion of the WPs' failure due to general corrosion. Figure 3-5 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

(2) Using NRC [2010b, Eq. (4-4)], we calculate the breached area per failed WP

$$WP_{breached area} = \left(\frac{f_{gc}}{f_{failed WP}} f_{gc breached area} + \frac{f_{lc}}{f_{failed WP}} f_{lc breached area}\right)A$$
(3-9)

The only corrosion mechanism responsible for WP breaching considered here is general corrosion, so the first term in the parentheses equals one (i.e., $\frac{f_{gc}}{f_{failed WP}} = 1.0$ after 6.250 × 10⁴ years). Based on the data in WP02GCFractionWPFailedTable, the second term in parentheses equals zero (i.e., $\frac{f_{lc}}{f_{failed WP}} = 0.0$). In both cases, minimum general corrosion breach area fraction and maximum general corrosion breach area fraction are set to one (i.e., $f_{gc breached area} = f_{lc breached area} = 1.0$). As per NRC (2010b, Table A–2), in the default parameter for the SOAR Waste Package Model Component, A = constant = 40.0 m^2 .

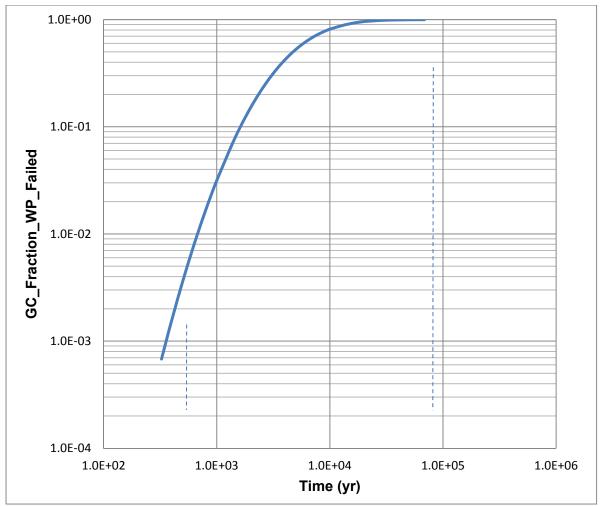


Figure 3-4. WP Failure Fraction From General Corrosion

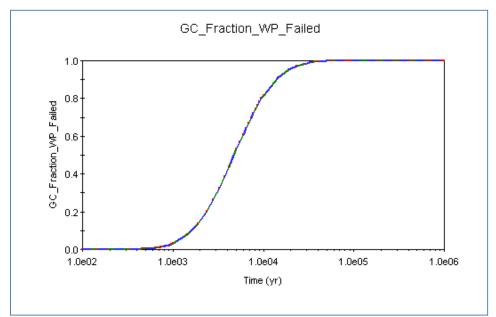


Figure 3-5. WP Failure Fraction From General Corrosion, SOAR Output File

With these assumptions, after 6.250×10^4 years, the breached area per failed WP equals the area A of the WP

$$WP_{breached area} = (1.0 \times 1.0 + 0.0 \times 1.0) \times 40.0 = 40.0 \ m^2$$
(3-10)

The value agrees with the output value in WP02BreachArea.BMP and WP02BreachAreaTable.txt files. Figure 3-6 shows the original SOAR output chart of the breached area per failed WP due to general corrosion, as per WP02BreachArea.BMP. The chart shows that WP breach area equals zero over the first 357 years. This is consistent with the model because the WP failure is initiated when the fraction of failed WPs exceeds 0.001, so it does not occur within the first 357-year period.

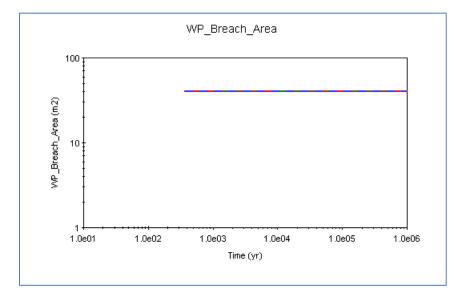


Figure 3-6. SOAR Output Chart of the Breached Area Per Failed WP Due To General Corrosion

Disposition:

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	WP03 WP Failure Time and Breached Area for Cu_fractured_rock_reducing_2.5cm _Effects of Material Thickness Razvan Nes December 01, 2010 Frisco, GoldSim 10.11 Beta 6.4 Gryphon, D:\Public\razvan\SOAR_beta_V6.4 Verify the consistency of failure times and breached areas from the Waste Package component model with hand calculations. Hand calculations will use the equations in NRC (2010b, Chapter 4.2.2). None			
Test Configuration:	Simulation	Number of realizations	10	
	Settings Dashboard	Number of timesteps Waste package material Far Field Leg One, Geologic Media Far Field Leg One, Redox Condition Define waste package thickness Waste package thickness Distribution of general corrosion rates Scale of distribution of general corrosion rates Minimum general corrosion breach area fraction Maximum general corrosion breach area fraction Disable localized corrosion	95 Copper Fractured Rock Reducing On 2.5 cm Normal Logarithmic 1.0 1.0 Checked	
	Level 2	Cu_GC_Ox_Low Cu_GC_Ox_High Dashboard_WastePackage, Waste package thickness, Properties, Maximum Value	0.004 µm/yr 0.02 µm/yr 10 cm	
Result Parameters:	Results_Waste_	Package, Waste package failure fraction from general corrosion Package, Waste package failure fraction from localized corrosion Package, Waste package breach area		
Success Criteria:	Output should a	gree with equations in NRC (2010b, Chapter 4.2.2).		

(1) Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-11)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.001 and 0.999 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{2.5}{0.02} = 1.250 \times 10^6 \text{ years}$$
 (3-12)

$$t_{gc} = 10^4 \times \frac{2.5}{0.004} = 6.250 \times 10^6 \text{ years}$$
 (3-13)

These values satisfactorily agree with the output values in WP03GCFractionWPFailedTable.txt and WP03GCFractionWPFailed.BMP files. The graph in Figure 3-7, created in WP03GCFractionFailedExcel.xls, is based on the data in WP03GCFractionWPFailedTable.txt and shows the fraction of failed WPs between 0 and 1 million years. Both WP03GCFractionWPFailedTable.txt and WP03GCFractionWPFailed.BMP files confirm that the 0.001 and 0.999 fractions of failed WPs due to general corrosion occur after more than 1 million years; however, the resolution of the original output chart shown in Figure 3-8 cannot read fractions lower than one or more orders of magnitude than 0.001.

(2) Using NRC [2010b, Eq. (4-4)], we calculate the breached area per failed WP

$$WP_{breached area} = \left(\frac{f_{gc}}{f_{failed WP}} f_{gc \ breached \ area} + \frac{f_{lc}}{f_{failed WP}} f_{lc \ breached \ area}\right)A$$
(3-14)

The only corrosion mechanism responsible for WP breaching considered here is general corrosion, so the first term in the parentheses is negligible (i.e., $\frac{f_{gc}}{f_{failed WP}} \sim 0$). Based on the data in WP03GCFractionWPFailedTable, the second term in parentheses equals zero (i.e., $\frac{f_{lc}}{f_{failed WP}} = 0.0$). In both cases, minimum general corrosion breach area fraction and maximum general corrosion breach area fraction are set to one (i.e., $f_{gc breached area} = f_{lc breached area} = 1.0$). As per NRC (2010b, Table A–2), in the default parameter for the SOAR Waste Package Model Component, A = constant = 40.0 m^2 . Figure 3-8 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

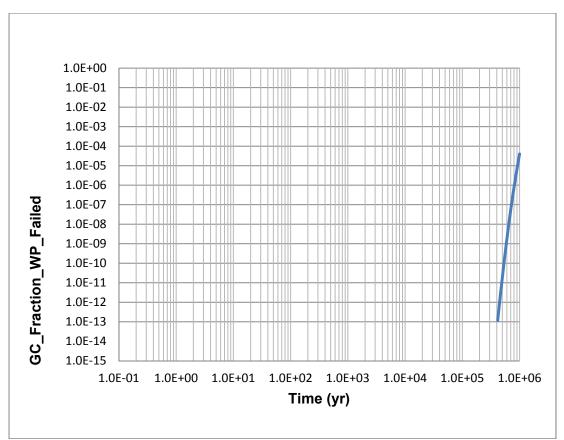


Figure 3-7. WP Failure Fraction From General Corrosion

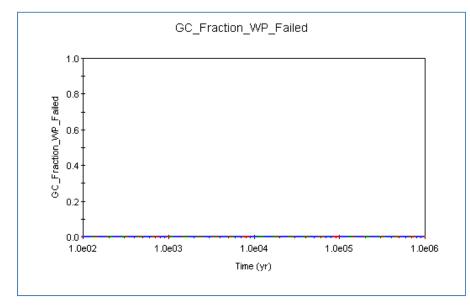


Figure 3-8. WP Failure Fraction From General Corrosion, SOAR Output File

With these assumptions, over the 1-million-year simulation, the breached area per failed WP is negligible

$$WP_{breached area} = (0 \times 1.0 + 0.0 \times 1.0) \times 40.0 = 0 m^2$$
(3-15)

The value agrees with the output value in WP03BreachArea.BMP and WP03BreachAreaTable.txt files. Figure 3-9 shows the original SOAR output chart of the breached area per failed WP due to general corrosion, as per WP03BreachArea.BMP. The chart shows that WP breach area equals zero over the first 1 million years. This is consistent with the model because the WP failure is initiated when the fraction of failed WPs exceeds 0.001, so it does not occur within the 1-million-year simulation period.

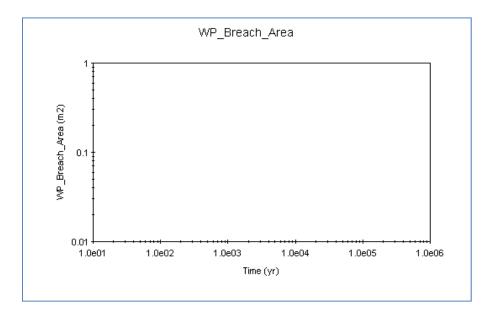


Figure 3-9. SOAR Output Chart of the Breached Area Per Failed WP Due To General Corrosion

Disposition:

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	WP04 WP Failure Time and Breached Area for Cu_fractured_rock_reducing_2.5cm _10X Corrosion Rate Razvan Nes December 01, 2010 Frisco, GoldSim 10.11 Beta 6.4 Gryphon, D:\Public\razvan\SOAR_beta_V6.4 Verify the consistency of failure times and breached areas from the Waste Package component model with hand calculations. Hand calculations will use the equations in NRC (2010b, Chapter 4.2.2). None			
Test Configuration:	Simulation	Number of realizations	10	
-	Settings	Number of timesteps	95	
	Dashboard	Waste package material	Copper	
		Far Field Leg One, Geologic Media	Fractured Rock	
		Far Field Leg One, Redox Condition	Reducing	
		Define waste package thickness	On	
		Waste package thickness	2.5 cm	
		Distribution of general corrosion rates	Normal	
		Scale of distribution of general corrosion rates	Logarithmic	
		Minimum general corrosion breach area fraction	1.0	
		Maximum general corrosion breach area fraction	1.0	
		Disable localized corrosion	Checked	
	Level 2	Data Source	None	
		Cu_GC_Ox_Low	0.04 µm/yr	
		Cu_GC_Ox_High	0.2 µm/yr	
		Dashboard_WastePackage, Waste package thickness, Properties, Maximum Value	10 cm	
Result Parameters:	Results_Waste_	Package, Waste package failure fraction from general corrosion Package, Waste package failure fraction from localized corrosion Package, Waste package breach area		
Success Criteria:	Output should ag	gree with equations in NRC (2010b, Chapter 4.2.2).		

(1) Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{Rgc}$$
(3-16)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.001 and 0.999 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{2.5}{0.2} = 1.250 \times 10^5 \text{ years}$$
 (3-17)

$$t_{gc} = 10^4 \times \frac{2.5}{0.04} = 6.250 \times 10^5 \text{ years}$$
 (3-18)

These values satisfactorily agree with the output values in WP04GCFractionWPFailedTable.txt and WP04GCFractionWPFailed.BMP files. The graph in Figure 3-10, created in WP04GCFractionFailedExcel.xls, is based on the data in WP04GCFractionWPFailedTable.txt and shows the fraction of failed WPs between 0.001 and 0.999, which are the values of the fractions marking the initiation and the completion of the WPs' failure due to general corrosion. Figure 3-11 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

(2) Using NRC [2010b, Eq. (4-4)], we calculate the breached area per failed WP

$$WP_{breached area} = \left(\frac{f_{gc}}{f_{failed WP}} f_{gc breached area} + \frac{f_{lc}}{f_{failed WP}} f_{lc breached area}\right)A$$
(3-19)

The only corrosion mechanism responsible for WP breaching considered here is general corrosion, so the first term in the parentheses equals one (i.e., $\frac{f_{gc}}{f_{failed WP}} = 1.0$, after 6.250 × 10⁵ years). Based on the data in WP04GCFractionWPFailedTable, the second term in parentheses equals zero (i.e., $\frac{f_{lc}}{f_{failed WP}} = 0.0$). In both cases, minimum general corrosion breach area fraction and maximum general corrosion breach area fraction are set to one (i.e., $f_{gc breached area} = f_{lc breached area} = 1.0$). As per NRC (2010b, Table A–2), in the default parameter for the SOAR Waste Package Model Component, A = constant = 40.0 m².

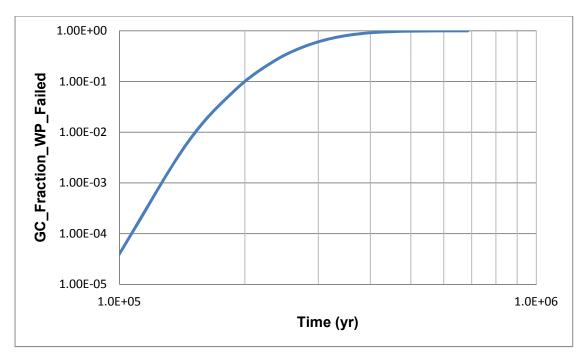


Figure 3-10. WP Failure Fraction From General Corrosion

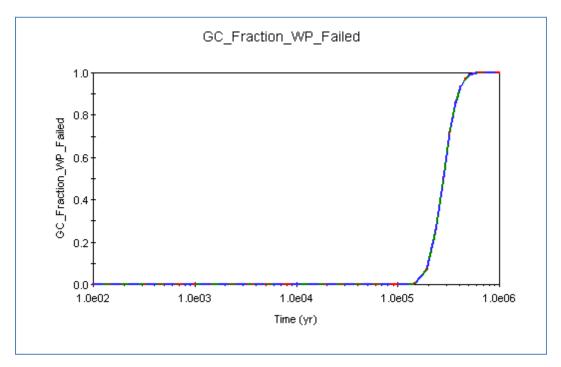


Figure 3-11. WP Failure Fraction From General Corrosion, SOAR Output File

With these assumptions, after 6.250×10^5 years, the breached area per failed WP equals the area A of the WP

$$WP_{breached area} = (1.0 \times 1.0 + 0.0 \times 1.0) \times 40.0 = 40.0 \ m^2$$
(3-20)

The value agrees with the output value in WP04BreachArea.BMP and WP04BreachAreaTable.txt files. Figure 3-12 shows the original SOAR output chart of the breached area per failed WP due to general corrosion, as per WP04BreachArea.BMP. The chart shows that WP breach area equals zero over the first 1.250×10^5 years. This is consistent with the model because the WP failure is initiated when the fraction of failed WPs exceeds 0.001, so it does not occur within the 1.250×10^5 -year period.

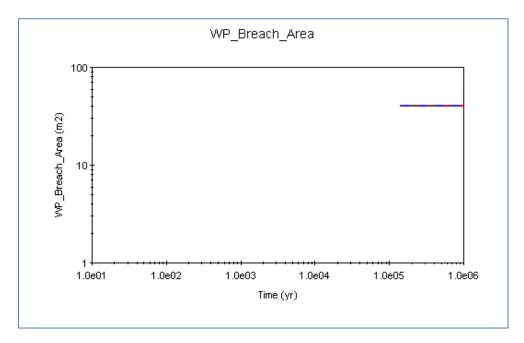


Figure 3-12. SOAR Output Chart of the Breached Area Per Failed WP Due To General Corrosion

Disposition:

		SOAR Verification Test Report		
Test ID:	WP05			
Test Title:	WP Failure Time and Breached Area for Cu_fractured_rock_reducing_0.5cm _Effects of Material Thickness			
Analyst:	Razvan Nes			
Date:	December 01, 2	010		
Test Environment:	Frisco, GoldSim	10.11		
SOAR Version:	Beta 6.4			
Run Directory:		blic\razvan\SOAR_beta_V6.4		
Test Objective:	•	stency of failure times and breached areas from the Waste Package component mod	el with hand	
		and calculations will use the equations in NRC (2010b, Chapter 4.2.2).		
Assumptions:	None			
Test Configuration:	Simulation	Number of realizations	10	
	Settings	Number of timesteps	95	
	Dashboard	Waste package material	Copper	
		Far Field Leg One, Geologic Media	Fractured Rock	
		Far Field Leg One, Redox Condition	Reducing	
		Define waste package thickness	On	
		Waste package thickness	0.5 cm	
		Distribution of general corrosion rates	Normal	
		Scale of distribution of general corrosion rates	Logarithmic	
		Minimum general corrosion breach area fraction	1.0	
		Maximum general corrosion breach area fraction	1.0	
		Disable localized corrosion	Checked	
	Level 2	Data Source	None	
		Cu_GC_Ox_Low	0.004 µm/yr	
		Cu_GC_Ox_High	0.02 µm/yr	
		Dashboard_WastePackage, Waste package thickness, Properties, Maximum Value	10 cm	
Result Parameters:	Results_Waste_	Package, Waste package failure fraction from general corrosion Package, Waste package failure fraction from localized corrosion Package, Waste package breach area		
Success Criteria:	Output should a	gree with equations in NRC (2010b, Chapter 4.2.2).		

(1) Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-21)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.001 and 0.999 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{0.5}{0.02} = 2.500 \times 10^5 \text{ years}$$
 (3-22)

$$t_{gc} = 10^4 \times \frac{0.5}{0.004} = 1.250 \times 10^6 \text{ years}$$
 (3-23)

These values satisfactorily agree with the output values in WP05GCFractionWPFailedTable.txt and WP05GCFractionWPFailed.BMP files. The graph in Figure 3-13, created in WP05GCFractionFailedExcel.xls, is based on the data in WP05GCFractionWPFailedTable.txt and shows the fraction of failed WPs between 0 and 10⁶ years. Both WP05GCFractionWPFailedTable.txt and WP05GCFraction WPFailed.BMP files confirm that the 0.999 fraction of failed WPs due to general corrosion occurs after more than 1 million years. Figure 3-14 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

(2) Using NRC [2010b, Eq. (4-4)], we calculate the breached area per failed WP

$$WP_{breached area} = \left(\frac{f_{gc}}{f_{failed WP}} f_{gc breached area} + \frac{f_{lc}}{f_{failed WP}} f_{lc breached area}\right)A$$
(3-24)

The only corrosion mechanism responsible for WP breaching considered here is general corrosion, so the first term in the parentheses is less than one (i.e., $\frac{f_{gc}}{f_{failed WP}} < 1.0$). Based on the data in WP05GCFractionWPFailedTable, the second term in parentheses equals zero (i.e., $\frac{f_{lc}}{f_{failed WP}} = 0.0$). In both cases, the minimum general corrosion breach area fraction and maximum general corrosion breach area fraction are set to one (i.e., $f_{gc breached area} = f_{lc breached area} = 1.0$). As per NRC (2010b, Table A–2), in the default parameter for the SOAR Waste Package Model Component, A = constant = $40.0 m^2$.

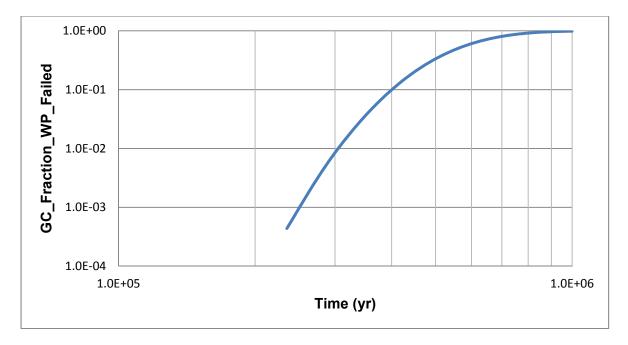
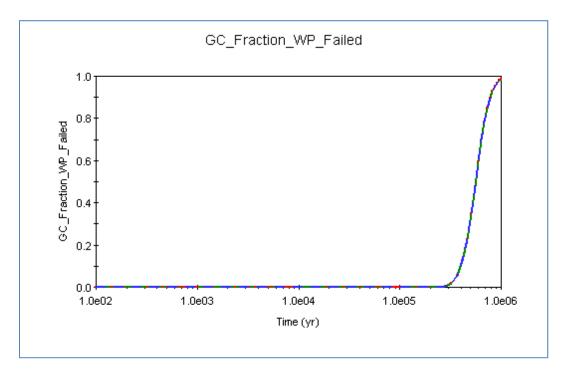



Figure 3-13. WP Failure Fraction From General Corrosion

With these assumptions the breached area per failed WP equals

$$WP_{breached area} < (1.0 \times 1.0 + 0.0 \times 1.0) \times 40.0 < 40.0 m^2$$
(3-25)

The value agrees with the output value in WP05BreachArea.BMP and WP05BreachAreaTable.txt files. Figure 3-15 shows the original SOAR output chart of the breached area per failed WP due to general corrosion, as per WP05BreachArea.BMP. The chart shows that WP breach area equals zero over the first 2.500×10^5 years. This is consistent with the model because the WP failure is initiated when the fraction of failed WPs exceeds 0.001, so it does not occur within the 2.500×10^5 -year period.

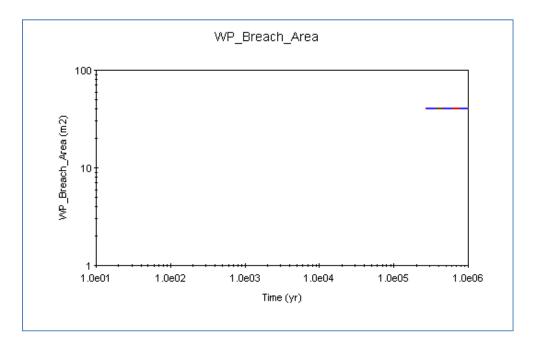


Figure 3-15. SOAR Output Chart of the Breached Area Per Failed WP Due To General Corrosion

Disposition:

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Razvan Nes December 02, 2 Frisco, GoldSim Beta 7.2 Gryphon, D:\Put Verify the consis		el with hand
Test Configuration:	Simulation	Number of realizations	10
-	Settings	Number of timesteps	95
	Dashboard	Waste package material	Carbon Steel
		Far Field Leg One, Geologic Media	Porous Rock
		Far Field Leg One, Redox Condition	Oxidizing
		Define waste package thickness	On 10.0 cm
		Waste package thickness Distribution of general corrosion rates	Uniform
		Scale of distribution of general corrosion rates	Logarithmic
		Minimum general corrosion breach area fraction	1.0
		Maximum general corrosion breach area fraction	1.0
		Disable localized corrosion	Checked
		Type of disruptive event	None
	Level 2	Cu GC Ox Low	15.0 µm/yr
	Level 2	Cu_GC_Ox_High	150.0 µm/yr
		Dashboard WastePackage, Waste package thickness, Properties, Maximum	10 cm
		Value	
Result Parameters:	Results_Waste_	Package, Waste package failure fraction from general corrosion Package, Waste package failure fraction from localized corrosion Package, Waste package breach fraction implemented	
Success Criteria:	Output should ag	gree with equations in NRC (2010b, Chapter 4.2.2).	

(1) Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-26)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.0 and 1.0 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{10.0}{150.0} = 666.7 \text{ years}$$
 (3-27)

$$t_{gc} = 10^4 \times \frac{10.0}{15.0} = 6,667 \text{ years}$$
 (3-28)

These values satisfactorily agree with the output values in WP06GCFractionWPFailedTable.txt and WP06GCFractionWPFailed.BMP files. The graph in Figure 3-16, created in WP06GCFractionFailedExcel.xls, is based on the data in WP06GCFractionWPFailed Table.txt and shows the fraction of failed WPs between 0.0 and 1.0, which are the values of the fractions marking the initiation and the completion of the WPs failure due to general corrosion. Extrapolating the data in WP06GCFractionWPFailedTable.txt leads to 665.8 and 6,652 years, times at which WP failure is initiated and is completed, respectively. These results agree within 0.1–0.2 percent with Eq. (4-3).

$$t_{gc} = 6400 + \frac{(1 - 0.98227)(6400 - 5950)}{(0.98227 - 0.95061)} = 6,652 \text{ years}$$
(3-29)

$$t_{gc} = 685 - \frac{(0.011782 - 0.0)(730 - 685)}{(0.039414 - 0.011782)} = 665.8 \text{ years}$$
(3-30)

(2) Using NRC [2010b, Eq. (4-4)], we calculate the breached area per failed WP

$$WP_{breached area} = \left(\frac{f_{gc}}{f_{failed WP}} f_{gc breached area} + \frac{f_{lc}}{f_{failed WP}} f_{lc breached area}\right)A$$
(3-31)

The only corrosion mechanism responsible for WP breaching considered here is general corrosion, so the first term in the parentheses equals one (i.e., $\frac{f_{gc}}{f_{failed WP}} = 1.0$ after 6,667 years).

Based on the data in WP06GCFractionWPFailedTable, the second term in parentheses equals zero (i.e., $\frac{f_{lc}}{f_{failed WP}} = 0.0$). In both cases, the minimum general corrosion breach area fraction and maximum general corrosion breach area fraction are set to one (i.e., $f_{gc breached area} = f_{lc breached area} = 1.0$). As per NRC (2010b, Table A–2), in the default parameter for SOAR Waste Package Model Component, A = constant = $40.0 m^2$. Figure 3-17 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

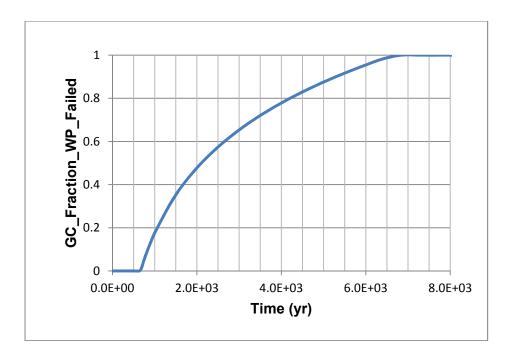


Figure 3-16. WP Failure Fraction From General Corrosion

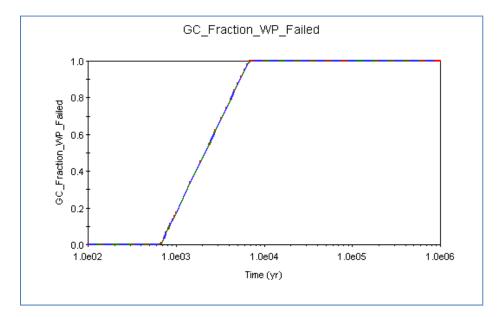


Figure 3-17. WP Failure Fraction From General Corrosion, SOAR Output File

With these assumptions the breached area per failed WP equals the area A of the WP

$$WP_{breached area} = (1.0 \times 1.0 + 0.0 \times 1.0) \times 40 = 40 \ m^2$$
(3-32)

Therefore the WP breach fraction is 1.0 after 6,667 years.

The value agrees with the output value in WP06BreachArea.BMP and WP06BreachAreaTable.txt files. Figure 3-18 shows the original SOAR output chart of the breached area per failed WP due to general corrosion, as per WP06BreachArea.BMP. The chart shows that the WP breach area equals zero over the first approximately 667 years. This is consistent with the model because the WP failure is initiated when the fraction of failed WPs exceeds 0.0, and it does not occur within the first 667-year period.

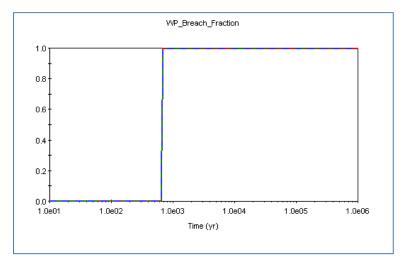


Figure 3-18. SOAR Output Chart of the Breached Area Per Failed WP Due To General Corrosion

Disposition:

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	WP07 WP Failure Time and Breached Area for CS_porous_rock_oxidizing_10.0cm _5X Corrosion Rates Razvan Nes December 03, 2010 Frisco, GoldSim 10.11 Beta 7.2 Gryphon, D:\Public\razvan\SOAR_beta_V7.2 Verify the consistency of failure times and breached areas from the Waste Package component model with hand calculations. Hand calculations will use the equations in NRC (2010b, Chapter 4.2.2). None		
Test Configuration:	Simulation	Number of realizations	10
	Settings	Number of timesteps	95
	Dashboard	Waste package material	Carbon Steel
		Far Field Leg One, Geologic Media Far Field Leg One, Redox Condition	Porous Rock Oxidizing
		Define waste package thickness	On
		Waste package thickness	10.0 cm
		Distribution of general corrosion rates	Uniform
		Scale of distribution of general corrosion rates	Logarithmic
		Minimum general corrosion breach area fraction	1.0
		Maximum general corrosion breach area fraction	1.0
		Disable localized corrosion	Checked
		Type of disruptive event	None
	Level 2	Data Source	None
		Cu_GC_Ox_Low	75.0 µm/yr
		Cu_GC_Ox_High	750.0 µm/yr
		Dashboard_WastePackage, Waste package thickness, Properties, Maximum Value	10 cm
Result Parameters:	Results_Waste_	Package, Waste package failure fraction from general corrosion Package, Waste package failure fraction from localized corrosion Package, Waste package breach fraction implemented	
Success Criteria:	Output should a	gree with equations in NRC (2010b, Chapter 4.2.2).	

(1) Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-33)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.0 and 1.0 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{10.0}{750.0} = 133.3 \text{ years}$$
 (3-34)

$$t_{gc} = 10^4 \times \frac{10.0}{75.0} = 1333 \text{ years}$$
 (3-35)

These values satisfactorily agree with the output values in WP07GCFractionWPFailedTable.txt and WP07GCFractionWP Failed.BMP files. The graph in Figure 3-19, created in WP07GCFractionFailedExcel.xls, is based on the data in WP07GCFractionWPFailedTable.txt and shows the fraction of failed WPs between 0.0 and 1.0, which are the values of the fractions marking the initiation and the completion of the WPs' failure due to general corrosion. Extrapolating the data in WP07GCFractionWPFailedTable.txt leads to 131.0 and 1,281 years, times at which WP failure is initiated and is completed, respectively. These results satisfactorily agree with Eq. (4-3)

$$t_{gc} = 145 - \frac{(0.036429 - 0.0)(190 - 145)}{(0.15381 - 0.036429)} = 131.0 \ yr \tag{3-36}$$

$$t_{gc} = 1000 + \frac{(1 - 0.87506)(1000 - 955)}{(0.87506 - 0.85506)} = 1281 \, yr$$
(3-37)

The times for the beginning and the end of the WP failure process are, in this case, five times shorter than the times in WP06TestReport_12_02_2010, consistent with corrosion rates five times higher.

(2) Using NRC [2010b, Eq. (4-4)], we calculate the breached area per failed WP

$$WP_{breached area} = \left(\frac{f_{gc}}{f_{failed WP}} f_{gc breached area} + \frac{f_{lc}}{f_{failed WP}} f_{lc breached area}\right)A$$
(3-38)

The only corrosion mechanism responsible for WP breaching considered here is general corrosion, so the first term in the parentheses equals one (i.e., $\frac{f_{gc}}{f_{failed WP}} = 1.0$ after 1,333 years). Based on the data in WP07GCFractionWPFailedTable, the second term in parentheses equals zero (i.e., $\frac{f_{lc}}{f_{failed WP}} = 0.00$). In both cases, minimum general corrosion breach area fraction and

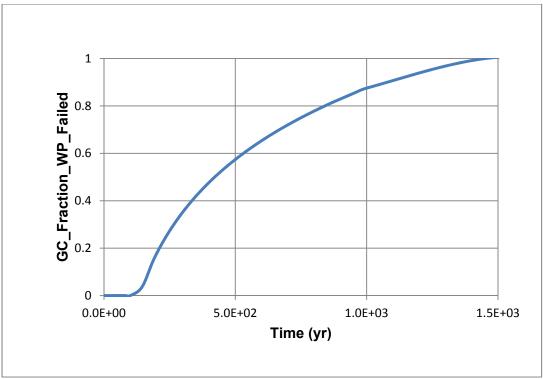


Figure 3-19. WP Failure Fraction From General Corrosion

maximum general corrosion breach area fraction are set to one (i.e., $f_{gc breached area} = f_{lc breached area} = 1.0$). As per NRC (2010b, Table A–2), in the default parameter for the SOAR Waste Package Model Component, A = constant = 40.0 m^2 . Figure 3-20 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

With these assumptions the breached area per failed WP equals the area A of the WP after 1,333 years

$$WP_{breached area} = (1.0 \times 1.0 + 0.0 \times 1.0) \times 40 = 40 \ m^2$$
(3-39)

Therefore the corresponding WP breach fraction is 1.0.

The value agrees with the output value in WP07BreachArea.BMP and WP07BreachAreaTable.txt files. Figure 3-21 shows the original SOAR output chart of the breached area per failed WP due to general corrosion, as per WP07BreachArea.BMP. The chart shows that the WP breach area equals zero over the first approximately 133 years. This is consistent with the model because the WP failure is initiated when the fraction of failed WPs exceeds 0.0, so it does not occur within the first approximately 133-year period.

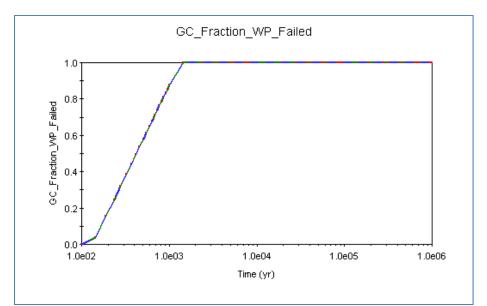


Figure 3-20. WP Failure Fraction From General Corrosion, SOAR Output File

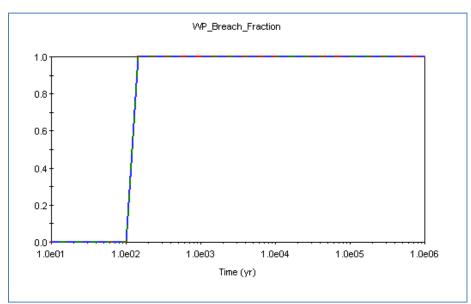


Figure 3-21. SOAR Output Chart of the Breached Area Per Failed WP Due To General Corrosion

Disposition:

		SOAR Verification Test Report			
Test ID:	WP08				
Test Title:	WP Failure Time and Breached Area for CS_porous_rock_oxidizing_10.0cm _0.1X Corrosion Rates				
Analyst:	Razvan Nes				
Date:	December 03, 2				
Test Environment:	Frisco, GoldSim	10.11			
SOAR Version:	Beta 7.2				
Run Directory:		olic\razvan\SOAR_beta_V7.2			
Test Objective:		Verify the consistency of failure times and breached areas from the Waste Package component model with hand			
		and calculations will use the equations in NRC (2010b, Chapter 4.2.2).			
Assumptions:	None		10		
Test Configuration:	Simulation	Number of realizations	10		
	Settings	Number of timesteps	95		
	Dashboard	Waste package material	Carbon Steel		
		Far Field Leg One, Geologic Media	Porous Rock		
		Far Field Leg One, Redox Condition	Oxidizing		
		Define waste package thickness	On		
		Waste package thickness	10.0 cm		
		Distribution of general corrosion rates	Uniform		
		Scale of distribution of general corrosion rates	Logarithmic		
		Minimum general corrosion breach area fraction	1.0		
		Maximum general corrosion breach area fraction	1.0		
		Disable localized corrosion	Checked		
		Type of disruptive event	None		
	Level 2	Data Source	None		
		Cu_GC_Ox_Low	1.5 µm/yr		
		Cu_GC_Ox_High	15.0 µm/yr		
		Dashboard_WastePackage, Waste package thickness, Properties, Maximum Value	10 cm		
Result Parameters:		Package, Waste package failure fraction from general corrosion			
		Package, Waste package failure fraction from localized corrosion Package, Waste package breach fraction implemented			
Success Criteria:	Output should a	gree with equations in NRC (2010b, Chapter 4.2.2).			

(1) Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-40)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.0 and 1.0 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{10.0}{15.0} = 6667$$
 years (3-41)

$$t_{gc} = 10^4 \times \frac{10.0}{1.5} = 6.667 \times 10^4 \text{ years}$$
 (3-42)

These values satisfactorily agree with the output values in WP08GCFractionWPFailedTable.txt and WP08GCFractionWP Failed.BMP files. The graph in Figure 3-22, created in WP08GCFractionFailedExcel.xls, is based on the data in WP08GCFractionWPFailedTable.txt and shows the fraction of failed WPs between 0.0 and 1.0, which are the values of the fractions marking the initiation and the completion of the WPs failure due to general corrosion. Extrapolating the data in WP08GCFractionWPFailedTable.txt leads to 6,658 and 6.652×10^4 years, times at which WP failure is initiated and is completed, respectively. These results agree within 0.1–0.2 percent with Eq. (4-3).

$$t_{gc} = 6,850 - \frac{(0.011782 - 0.0)(7300 - 6850)}{(0.39414 - 0.011782)} = 6,658 \text{ years}$$
(3-43)

$$t_{gc} = 64,000 + \frac{(1 - 0.98227)(64000 - 59500)}{(0.98227 - 0.95061)} = 6.652 \times 10^5 \text{ years}$$
(3-44)

The times for the beginning and the end of the WP failure process are, in this case, 10 times longer than the times in WP06TestReport_12_02_2010, consistent with corrosion rates 5 times lower.

(2) Using NRC [2010b, Eq. (4-4)], we calculate the breached area per failed WP

$$WP_{breached area} = \left(\frac{f_{gc}}{f_{failed WP}} f_{gc breached area} + \frac{f_{lc}}{f_{failed WP}} f_{lc breached area}\right)A$$
(3-45)

The only corrosion mechanism responsible for WP breaching considered here is general corrosion, so the first term in the parentheses equals one (i.e., $\frac{f_{gc}}{f_{failed WP}} = 1.0$ after 6.667 × 10⁴ years). Based on the data in WP08GCFractionWPFailedTable, the second term in parentheses equals zero (i.e., $\frac{f_{lc}}{f_{failed WP}} = 0.0$). In both cases, the minimum general corrosion breach area fraction and maximum general corrosion breach area fraction are set to one (i.e., $f_{gc breached area} = f_{lc breached area} = 1.0$). Figure 3-23 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

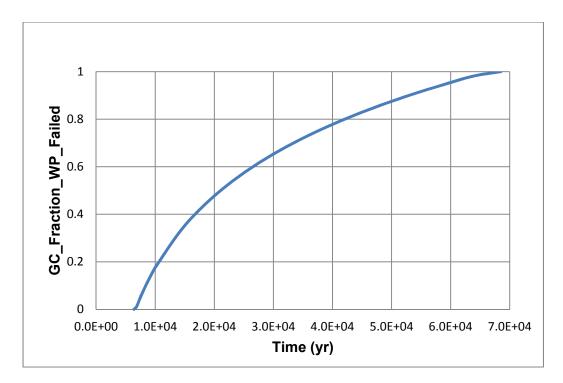


Figure 3-22. WP Failure Fraction From General Corrosion

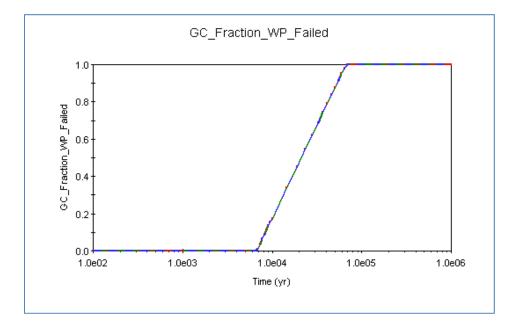


Figure 3-23. WP Failure Fraction From General Corrosion, SOAR Output File

As per Beta-SOAR User Guide (NRC, 2010b, Table A–2), Default Parameter for SOAR Waste Package Model Component, A = constant = $40.0 m^2$. With these assumptions, after 6.667×10^4 years, the breached area per failed WP equals the area A of the WP

$$WP_{breached area} = (1.0 \times 1.0 + 0.0 \times 1.0) \times 40 = 40 \ m^2$$
(3-46)

Therefore the WP breach fraction is 1.0.

The value agrees with the output value in WP08BreachArea.BMP and WP08BreachAreaTable.txt files. Figure 3-24 shows the original SOAR output chart of the breached area per failed WP due to general corrosion, as per WP08BreachArea.BMP. The chart shows that WP breach area equals zero over the first approximately 6,700 years. This is consistent with the model because the WP failure is initiated when the fraction of failed WPs exceeds 0.0, so it does not occur within the first approximately 6,700-year period.

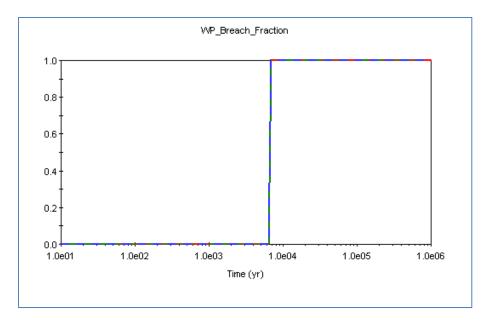


Figure 3-24. SOAR Output Chart of the Breached Area Per Failed WP Due To General Corrosion

Disposition:

		SOAR Verification Test Report		
Test ID:	WP09			
Test Title:	WP Failure Time and Breached Area for Carbon Steel_fractured_rock_reducing_10.0cm _Reference Case			
Analyst:	Razvan Nes			
Date:	December 6, 20			
Test Environment:	Frisco, GoldSim	10.11		
SOAR Version:	Beta 7.2			
Run Directory:		olic\razvan\SOAR_beta_V7.2		
Test Objective:	Verify the consistency of failure times and breached areas from the Waste Package component model with hand			
		and calculations will use the equations in NRC (2010b, Chapter 4.2.2).		
Assumptions:	None		40	
Test Configuration:	Simulation	Number of realizations	10	
	Settings	Number of timesteps	95	
	Dashboard	Waste package material	Carbon Steel	
		Far Field Leg One, Geologic Media	Fractured Rock	
		Far Field Leg One, Redox Condition	Reducing	
		Define waste package thickness	On	
		Waste package thickness	10.0 cm	
		Distribution of general corrosion rates	Normal	
		Scale of distribution of general corrosion rates	Logarithmic	
		Minimum general corrosion breach area fraction	1.0	
		Maximum general corrosion breach area fraction	1.0	
		Disable localized corrosion	Checked	
		Type of disruptive event	None	
	Level 2	Cu_GC_Ox_Low	0.1 µm/yr	
		Cu_GC_Ox_High	10.0 µm/yr	
		Dashboard_WastePackage, Waste package thickness, Properties, Maximum Value	10 cm	
Result Parameters:		Package, Waste package failure fraction from general corrosion		
		Package, Waste package failure fraction from localized corrosion Package, Waste package breach area		
Success Criteria:	Output should a	gree with equations in NRC (2010b, Chapter 4.2.2).		

(1) Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-47)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.001 and 0.999 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{10.0}{10.0} = 1.0 \times 10^4 \text{ years}$$
 (3-48)

$$t_{gc} = 10^4 \times \frac{10.0}{0.1} = 1.0 \times 10^6 \text{ years}$$
 (3-49)

These values satisfactorily agree with the output values in WP09GCFractionWPFailedTable.txt and WP09GCFractionWPFailed.BMP files. The graph in Figure 3-25, created in WP09GCFractionFailedExcel.xls, is based on the data in WP09GCFractionWPFailedTable.txt and shows the fraction of failed WPs between 0.001 and 0.999, which are the values of the fractions marking the initiation and the completion of the WPs' failure due to general corrosion.

(2) Using NRC [2010b, Eq. (4-4)], we calculate the breached area per failed WP

$$WP_{breached area} = \left(\frac{f_{gc}}{f_{failed WP}} f_{gc \ breached \ area} + \frac{f_{lc}}{f_{failed WP}} f_{lc \ breached \ area}\right)A$$
(3-50)

The only corrosion mechanism responsible for WP breaching considered here is general corrosion, so the first term in the parentheses equals one (i.e., $\frac{f_{gc}}{f_{failed WP}} = 1.0$) at the end of the 1-million-year simulation. Based on the data in WP08GCFractionWPFailedTable, the second term in parentheses equals zero (i.e., $\frac{f_{lc}}{f_{failed WP}} = 0.0$). In both cases, the minimum general corrosion breach area fraction and maximum general corrosion breach area fraction are set to one (i.e., $f_{gc breached area} = f_{lc breached area} = 1.0$). As per NRC (2010b, Table A–2), in the default parameter for SOAR Waste Package Model Component, A = constant = $40.0 m^2$.

With these assumptions, after $1.0\times10^6\,{\rm years},$ the breached area per failed WP equals the area A of the WP

$$WP_{breached area} = (1.0 \times 1.0 + 0.0 \times 1.0) \times 40 = 40 \ m^2$$
(3-51)

and the WP breach fraction is 1.0.

Figure 3-26 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

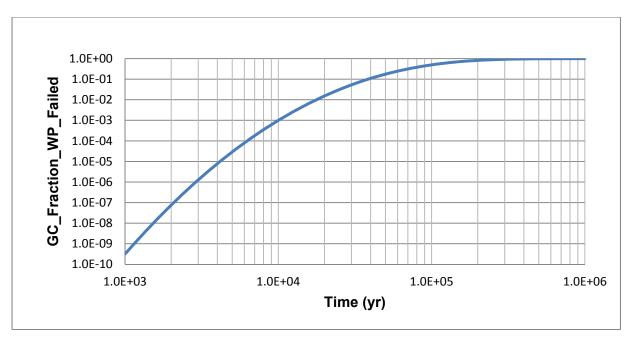


Figure 3-25. WP Failure Fraction From General Corrosion

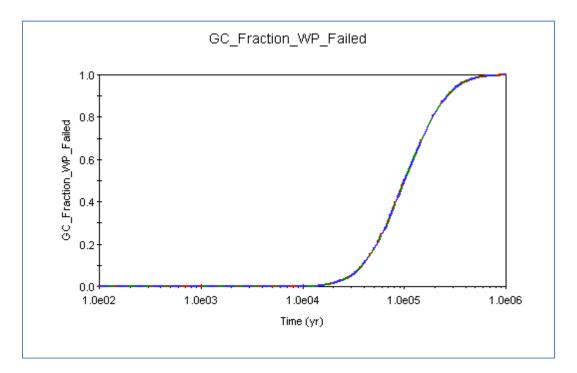


Figure 3-26. WP Failure Fraction From General Corrosion, SOAR Output File

The value agrees with the output value in WP08BreachArea.BMP and WP08BreachAreaTable.txt files. Figure 3-27 shows the original SOAR output chart of the breached area per failed WP due to general corrosion, as per WP08BreachArea.BMP. The chart shows that the WP breach area equals zero over the first 10,000 years. This is consistent with the model because the WP failure is initiated when the fraction of failed WPs exceeds 0.001, so it does not occur within the first approximately 10,000-year period.

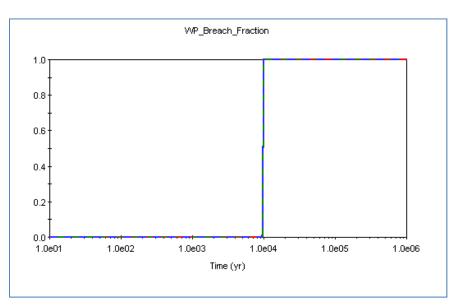


Figure 3-27. SOAR Output Chart of the Breached Area Per Failed WP Due To General Corrosion

Disposition:

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Razvan Nes December 6, 20 Frisco, GoldSim Beta 7.2 Gryphon, D:\Pul Verify the consis		ackage component model with hand
Test Configuration:	Simulation	Number of realizations	10
loot oonngalation	Settings	Number of timesteps	95
	Dashboard	Waste package material	Stainless Steel
		Far Field Leg One, Geologic Media	Porous Rock
		Far Field Leg One, Redox Condition	Oxidizing
		Define waste package thickness	On
		Waste package thickness	5.0 cm
		Distribution of general corrosion rates	Normal
		Scale of distribution of general corrosion rates	Logarithmic
		Minimum general corrosion breach area fraction	1.0
		Maximum general corrosion breach area fraction	1.0
		Disable localized corrosion	Checked
		Type of disruptive event	None
	Level 2	Cu_GC_Ox_Low	0.01 µm/yr
		Cu_GC_Ox_High	3.0 µm/yr
		LC_FailureTime_Period_I	Log-Uniform, 30–280 yr
		LC FailureTime Period II	Log-Uniform,
			280–100,000 yr
		SS_LC_Period_I_Oxidizing	Triangular, 0.25, 0.45,
			0.5 μm/yr
		SS_LC_Period_II_Oxidizing	0.0
		LC_FractioAreaBreached	Triangular, 0.001, 0.1216, 0.2 μm/yr
		Dashboard_WastePackage, Waste package thickness, Properties, Maximum Value	10 cm

SOAR Verification Test Report (continued)

Result Parameters:	Results_Waste_Package, Waste package failure fraction from general corrosion
	Results_Waste_Package, Waste package failure fraction from localized corrosion
	Results_Waste_Package, Waste package breach area
Success Criteria:	Output should agree with equations in NRC (2010b, Chapter 4.2.2).

(1) Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-52)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.001 and 0.999 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{5.0}{3.0} = 1.667 \times 10^4 \text{ years}$$
 (3-53)

$$t_{gc} = 10^4 \times \frac{5.0}{0.01} = 5.0 \times 10^6 \text{ years}$$
 (3-54)

These values satisfactorily agree with the output values in WP10GCFractionWPFailedTable.txt and WP10GCFractionWP Failed.BMP files. The graph in Figure 3-28, created in WP10GCFractionFailedExcel.xls, is based on the data in WP10GCFractionWPFailedTable.txt and shows the fraction of failed WPs between 0.001 (initiation of the failure due to general corrosion) and the fraction of failed WPs at the end of the 1-million year simulation period. Both WP10GCFractionWPFailedTable.txt and WP10GCFractionWPFailed.BMP files confirm that the 0.999 fraction of failed WPs due to general corrosion occurs in more than 1 million years, consistent with the value of 5 million years calculated with NRC [2010b, Eq. (4-3)]. Figure 3-28 also indicates that the failure process is initiated at approximately 1.7×10^4 years , consistent with 1.667×10^4 years calculated with Eq. (4-3). SOAR output file WP10GCFractionWPFailedTable.txt indicates that the WP failure fraction from general corrosion at the end of simulation period is 0.9109, less than 0.999.

WP failure fraction due to localized corrosion illustrated in Figure 3-30 starts approximately 30 years into the simulation and reaches a plateau starting at approximately 280 years at a mean value of approximately 0.45. Figure 3-29 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion. Figure 3-30 shows the original SOAR output chart of the fraction of failed WPs due to localized corrosion.

(2) The WP breach fraction over a 1-million-year simulation time is shown in Figure 3-31. The breach fraction shows a first plateau between 280 and 1.667×10^4 years. Based on the output data in WP10BreachAreaTable.txt, the WP10BreachAreaExcel.xls file was generated, as well as the plot shown in Figure 3-32. A constant WP area of 40 m² is considered in all calculations.

As expected, the mean WP failed area due to general corrosion and localized corrosion is less than 10 m² between approximately 280 and 1.667×10^4 years. After the general corrosion process is initiated, the WP breach area increases to 40 m².

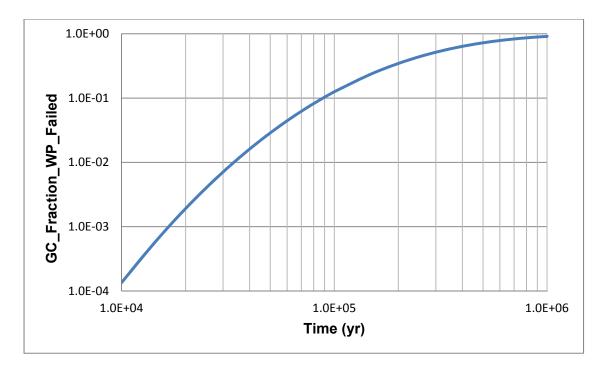


Figure 3-28. WP Failure Fraction From General Corrosion

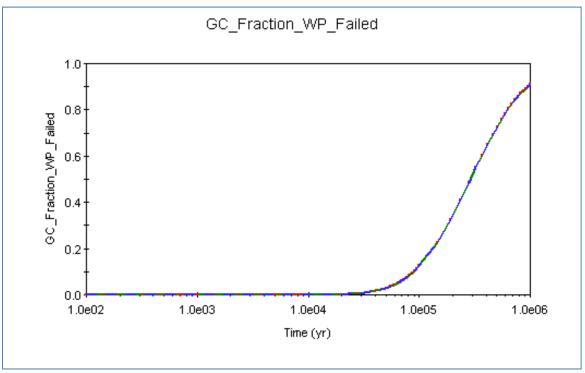


Figure 3-29. WP Failure Fraction From General Corrosion, SOAR Output File

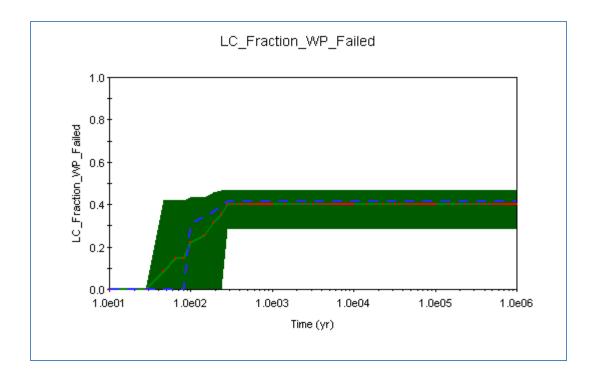


Figure 3-30. WP Failure Fraction From Localized Corrosion, SOAR Output File

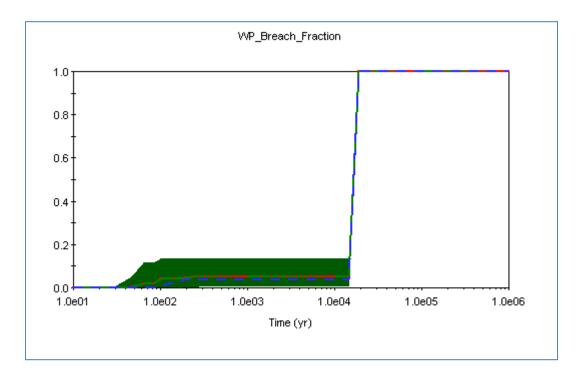


Figure 3-31. SOAR Output Chart of the Breached Area Per Failed WP Due To General Corrosion



Figure 3-32. SOAR Output Chart of the Breached Area Per Failed WP

		SOAR Verification Test Report	
Test ID:	WP11		
Test Title:		e and Breached Area for Stainless Steel_fractured_roc	k_reducing_5.0cm _Reference Case
Analyst:	Razvan Nes		
Date:	December 7, 20		
Test Environment:	Frisco, GoldSim	10.11	
SOAR Version:	Beta 7.2	history COAD hate 1/7 0	
Run Directory:		blic\razvan\SOAR_beta_V7.2	acto Dookago component model with hand
Test Objective:		stency of failure times and breached areas from the Wa and calculations will use the equations in NRC (2010b,	
Assumptions:	None		
Test Configuration:	Simulation	Number of realizations	10
root ooringulation	Settings	Number of timesteps	95
	Dashboard	Waste package material	Stainless Steel
	Bachboara	Far Field Leg One, Geologic Media	Fractured Rock
		Far Field Leg One, Redox Condition	Reducing
		Define waste package thickness	On
		Waste package thickness	5.0 cm
		Distribution of general corrosion rates	Normal
		Scale of distribution of general corrosion rates	Logarithmic
		Minimum general corrosion breach area fraction	1.0
		Maximum general corrosion breach area fraction	1.0
		Disable localized corrosion	Checked
		Type of disruptive event	None
	Level 2	Cu_GC_Anox_Low	0.003 µm/yr
		Cu GC Anox High	0.1 µm/yr
		LC_FailureTime_Period_I	Log-Uniform, 30–280 yr
		 LC_FailureTime_Period_II	Log-Uniform, 280–100,000
		SS LC Period I Reducing	Triangular, 0.0, 0.125, 0.25 µm/yr
		SS_LC_Period_II_ Reducing	Uniform, 0.01, 0.1 µm/yr
		LC FractioAreaBreached	Log-Triangular, 0.001, 0.1216, 0.2 µm/yr
		Dashboard WastePackage, Waste package	10 cm
		thickness, Properties, Maximum Value	
Result Parameters:	Results Waste	Package, Waste package failure fraction from general	corrosion
	Results_Waste	Package, Waste package failure fraction from localize	d corrosion
	Results_Waste	Package, Waste package breach area	
Success Criteria:	Output should a	gree with equations in NRC (2010b, Chapter 4.2.2).	

 Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate R_{gc}(µm/yr)

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-55)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.001 and 0.999 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{5.0}{0.1} = 5.0 \times 10^5 \text{ years}$$
 (3-56)

$$t_{gc} = 10^4 \times \frac{5.0}{0.003} = 1.667 \times 10^7 \text{ years}$$
 (3-57)

These values satisfactorily agree with the output values in WP11GCFractionWPFailedTable.txt and WP11GCFractionWP Failed.BMP files. The graph in Figure 3-33, created in WP11GCFractionFailedExcel.xls, is based on the data in WP11GCFractionWPFailed Table.txt and shows that the fraction of failed WPs above 0.001, which is the value of the fraction marking the initiation of the WPs failure due to general corrosion, occurs at 5.0×10^5 years into the simulation, consistent with NRC [2010b, Eq. (4-3)]. WP11GCFractionWPFailedTable.txt and WP11GCFractionWPFailed.BMP files confirm that the 0.999 fraction of failed WPs due to general corrosion occurs in more than 1 million years, consistent with the value of 1.667×10^7 years calculated with Eq. (4-3). Figure 3-34 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

WP failure fraction due to localized corrosion illustrated in Figure 3-35 starts approximately 30 years into the simulation and reaches a plateau approximately 280 years into the simulation time, at a mean value of approximately 0.15. Figure 3-36 shows the original SOAR output chart of the fraction of failed WPs due to localized corrosion.

(2) The WP breach fraction over a 1-million-year simulation time is shown in Figure 3-36. The breach fraction shows a plateau value between 280 and 5.0×10^5 years. Based on the output data in WP11BreachAreaTable.txt, the WP11BreachAreaExcel.xls file was generated, as well as the plot shown in Figure 3-37. A constant WP area of 40 m² is considered in all calculations.

As expected, the mean WP failed area due to GC and LC is less than 10 m² between 280 and approximately 5.0×10^5 years. After the general corrosion is initiated, the WP breach area increases to 40 m².

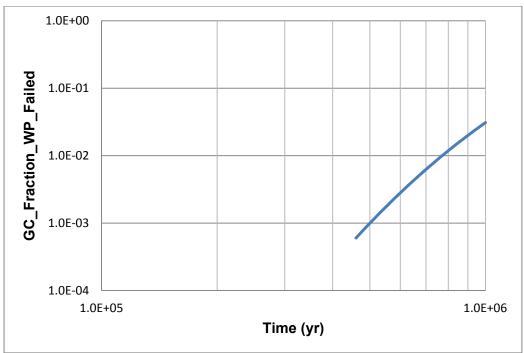


Figure 3-33. WP Failure Fraction From General Corrosion

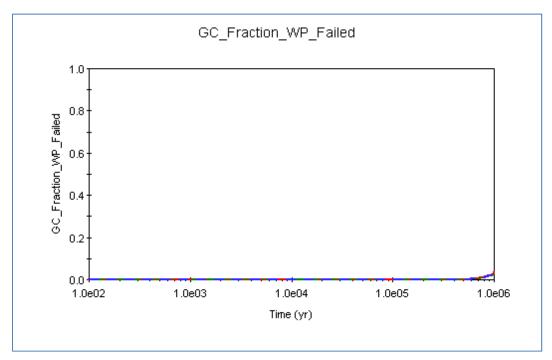


Figure 3-34. WP Failure Fraction From General Corrosion, SOAR Output File

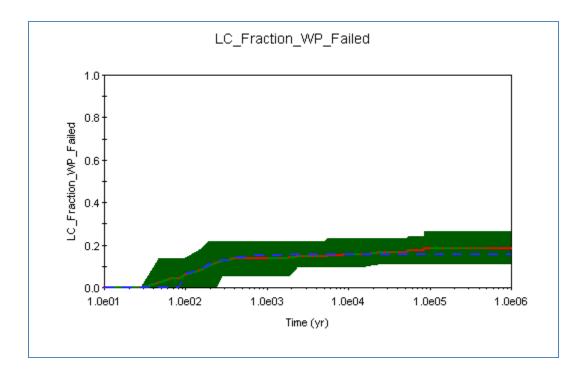


Figure 3-35. WP Failure Fraction From Localized Corrosion, SOAR Output File

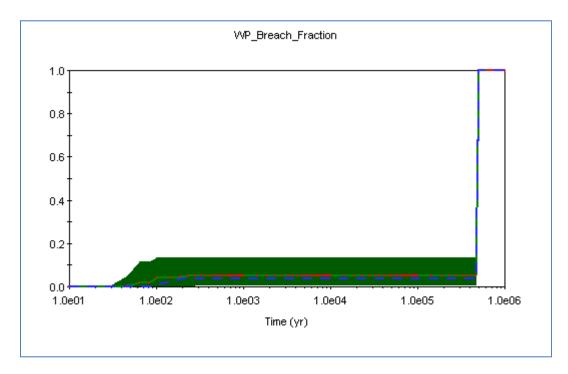


Figure 3-36. SOAR Output Chart of the Breached Area Per Failed WP Due to General Corrosion

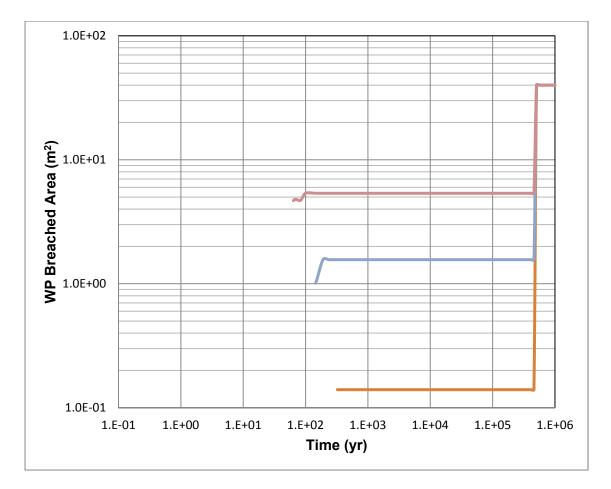


Figure 3-37. SOAR Output Chart of the Breached Area Per Failed WP

Test ID: WP12 WP Failure Time and Breached Area for Stainless Steel fractured rock reducing_5.0cm 2X the Breach Area Fraction Test Title: Analyst: Razvan Nes December 8, 2010 Date: Frisco, GoldSim 10.11 **Test Environment:** Beta 7.2 SOAR Version: Run Directory: Grvphon, D:\Public\razvan\SOAR beta V7.2 Test Objective: Verify the consistency of failure times and breached areas from the Waste Package component model with hand calculations. Hand calculations will use the equations in NRC (2010b, Chapter 4.2.2). **Assumptions:** None Test Configuration: Simulation Number of realizations 10 Settings Number of timesteps 95 Dashboard Waste package material Stainless Steel Far Field Leg One, Geologic Media Fractured Rock Far Field Leg One, Redox Condition Reducing Define waste package thickness On Waste package thickness 5.0 cm Distribution of general corrosion rates Normal Scale of distribution of general corrosion rates Logarithmic Minimum general corrosion breach area fraction 1.0 Maximum general corrosion breach area fraction 1.0 Disable localized corrosion Not Checked Type of disruptive event None Data Source Level 2 None Cu GC Anox Low 0.003 µm/yr Cu GC Anox High 0.1 µm/yr LC FailureTime Period I Log-Uniform, 30-280 yr LC FailureTime Period II Log-Uniform, 280-100,000 SS LC Period I Reducing Triangular, 0.0, 0.125, 0.25 µm/yr Uniform, 0.01, 0.1 µm/yr SS LC Period II Reducing LC FractioAreaBreached Log-Triangular, 0.002, 0.2432, 0.4 µm/yr Dashboard WastePackage, Waste package 10 cm thickness, Properties, Maximum Value

SOAR Verification Test Report (continued)

Result Parameters:	Results_Waste_Package, Waste package failure fraction from general corrosion
	Results_Waste_Package, Waste package failure fraction from localized corrosion
	Results_Waste_Package, Waste package breach area
Success Criteria:	Output should agree with equations in NRC (2010b, Chapter 4.2.2).

 Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate R_{gc}(µm/yr)

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-58)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.001 and 0.999 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{5.0}{0.1} = 5.0 \times 10^5 \text{ years}$$
 (3-59)

$$t_{gc} = 10^4 \times \frac{5.0}{0.003} = 1.667 \times 10^7 \text{ years}$$
 (3-60)

These values satisfactorily agree with the output values in WP12GCFractionWPFailedTable.txt and WP12GCFractionWPFailed.BMP files. The graph in Figure 3-38, created in WP12GCFractionFailedExcel.xls, is based on the data in WP12GCFractionWPFailedTable.txt and shows the fraction of failed WPs above 0.001, which is the value of the fraction marking the initiation of the WPs' failure due to general corrosion. WP12GCFractionWPFailedTable.txt and WP12GCFractionWPFailed.BMP files confirm that the 0.999 fraction of failed WPs due to general corrosion occurs in more than 1 million years, consistent with the value of 1.667×10^7 years calculated with NRC [2010b, Eq. (4-3)]. Figure 3-39 also indicates that the failure process is initiated at approximately 5.0×10^5 years, consistent with that calculated with Eq. (4-3).

WP failure fraction due to localized corrosion illustrated in Figure 3-40 starts approximately 30 years into the simulation and reaches a plateau approximately 280 years into the simulation time, at a mean value of approximately 0.15.

(2) The WP breach fraction over a 1-million-year simulation time is shown in Figure 3-41. The breach fraction shows a plateau value between 280 and 5×10^5 years. Based on the output data in WP12BreachAreaTable.txt, the WP12BreachAreaExcel.xls file was generated, as well as the plot shown in Figure 3-42. A constant WP area of 40 m² is considered in all calculations.

As expected, the mean WP failed area due to GC and LC is less than 10 m² between approximately 280 and 5.0×10^5 years. After the general corrosion process is initiated, the WP breach area increases to 40 m².

Figure 3-39 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion. Figure 3-40 shows the original SOAR output chart of the fraction of failed WPs due to localized corrosion.

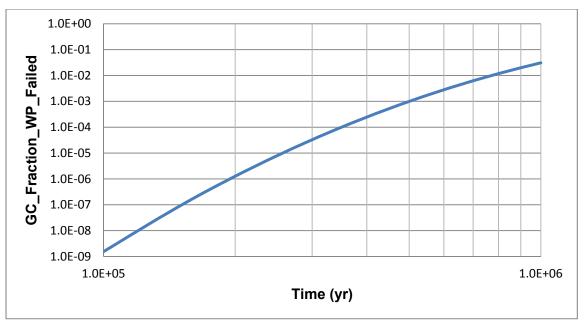


Figure 3-38. WP Failure Fraction From General Corrosion

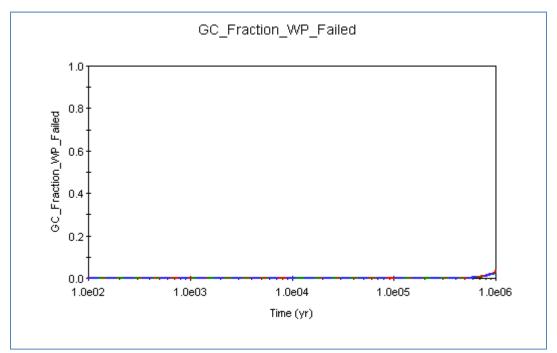


Figure 3-39. WP Failure Fraction From General Corrosion, SOAR Output File

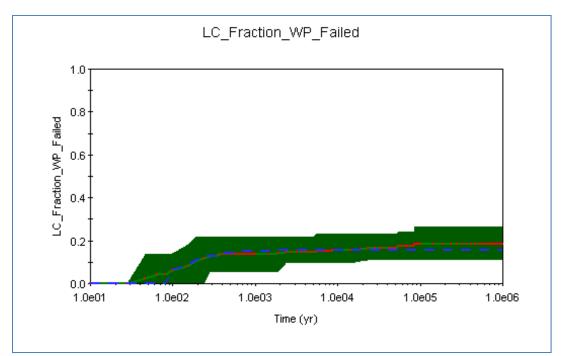


Figure 3-40. WP Failure Fraction From Localized Corrosion, SOAR Output File

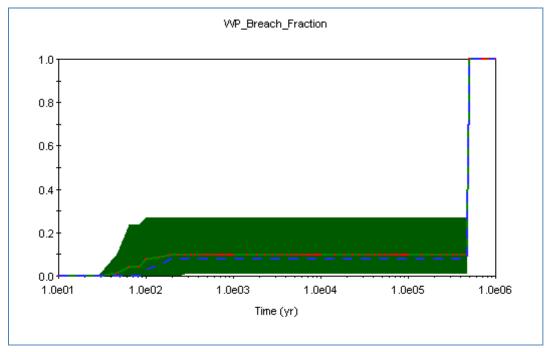


Figure 3-41. SOAR Output Chart of the Breached Area Per Failed WP Due To General Corrosion

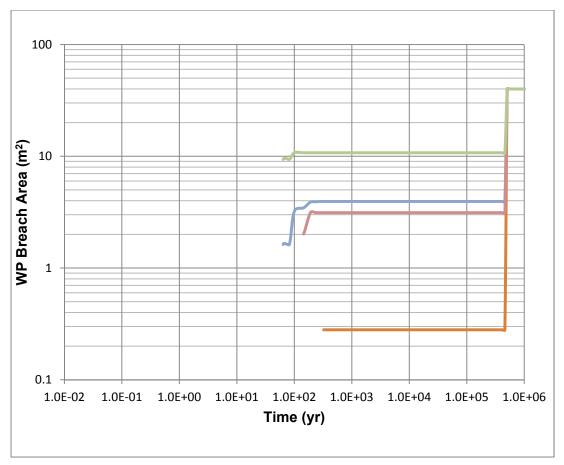


Figure 3-42. SOAR Output Chart of the Breached Area Per Failed WP

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Razvan Nes December 8, 20 Frisco, GoldSim Beta 7.2 Gryphon, D:\Put Verify the consis		aste Package component model with hand
Test Configuration:	Simulation	Number of realizations	10
	Settings	Number of timesteps	95
	Dashboard	Waste package material	Titanium
		Far Field Leg One, Geologic Media	Porous Rock
		Far Field Leg One, Redox Condition Define waste package thickness	Oxidizing On
		Waste package thickness	1.0 cm
		Distribution of general corrosion rates	Normal
		Scale of distribution of general corrosion rates	Logarithmic
		Minimum general corrosion breach area fraction	1.0
		Maximum general corrosion breach area fraction	1.0
		Disable localized corrosion	Checked
	Level 2	Ti GC Ox Low	0.008 µm/yr
		Ti_GC_Ox_High	0.2 μm/yr
		Dashboard_WastePackage, Waste package thickness, Properties, Maximum Value	10 cm
Result Parameters:	Results_Waste_	Package, Waste package failure fraction from general Package, Waste package failure fraction from localized Package, Waste package breach area	
Success Criteria:	Output should a	gree with equations in NRC (2010b, Chapter 4.2.2).	

(1) Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-61)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.001 and 0.999 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{1.0}{0.2} = 5.0 \times 10^4 \text{ years}$$
 (3-62)

$$t_{gc} = 10^4 \times \frac{1.0}{0.008} = 1.25 \times 10^6 \text{ years}$$
 (3-63)

These values satisfactorily agree with the output values in WP13GCFractionWPFailedTable.txt and WP13GCFractionWPFailed.BMP files. The graph in Figure 3-43, created in WP13GCFractionFailedExcel.xls, is based on the data in WP13GCFractionWPFailedTable.txt and shows the fraction of failed WPs between 0.001 and 0.996, which are the values of the fractions marking the initiation of the WPs failure due to general corrosion and the fraction of the WPs failed due to general corrosion at the end of the 1-million-year simulation. The model shows that the WP failure by general corrosion is 0.999 (complete) later than 1 million years, consistent with the value 1.25×10^6 years calculated with NRC [2010b, Eq. (4-3)].

(2) Using NRC [2010b, Eq. (4-4)], we calculate the breached area per failed WP

$$WP_{breached area} = \left(\frac{f_{gc}}{f_{failed WP}} f_{gc breached area} + \frac{f_{lc}}{f_{failed WP}} f_{lc breached area}\right)A$$
(3-64)

The only corrosion mechanism responsible for WP breaching considered here is general corrosion, so the first term in the parentheses equals one (i.e., $\frac{f_{gc}}{f_{failed WP}} = 1.0$, after 5.0×10^4 years). Based on the data in WP13GCFractionWPFailedTable, the second term in parentheses equals zero (i.e., $\frac{f_{lc}}{f_{failed WP}} = 0.0$). In both cases, the minimum general corrosion breach area fraction and maximum general corrosion breach area fraction are set to one (i.e., $f_{gc breached area} = f_{lc breached area} = 1.0$). As per NRC (2010b, Table A–2), in the default parameter for the SOAR Waste Package Model Component, A = constant = $40.0 m^2$.

With these assumptions the breached area per failed WP equals the area A of the WP after 5.0×10^4 years. Figure 3-44 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

$$WP_{breached area} = (1.0 \times 1.0 + 0.0 \times 1.0) \times 40.0 = 40.0 \ m^2$$
(3-65)

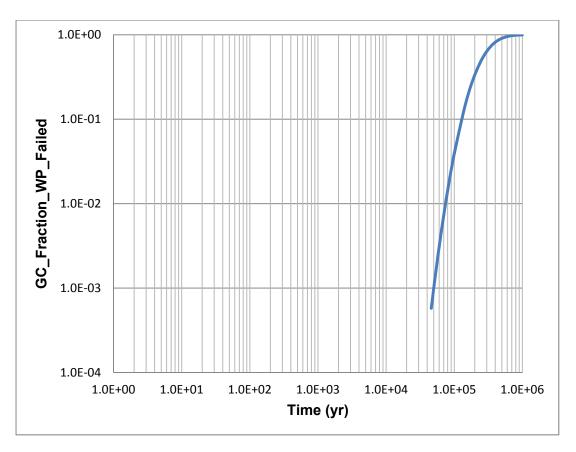
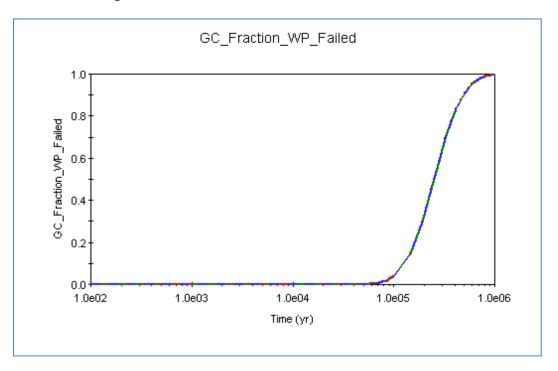
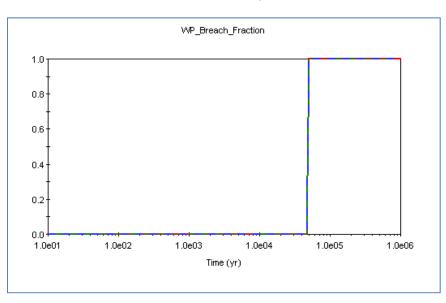




Figure 3-43. WP Failure Fraction From General Corrosion

The value agrees with the output value in WP13BreachArea.BMP and WP13BreachAreaTable.txt files. Figure 3-45 shows the original SOAR output chart of the breached area per failed WP due to general corrosion, as per WP13BreachArea.BMP. The chart shows that WP breach area equals zero over the first 5.0×10^4 years. This is consistent with the model because the WP failure is initiated when the fraction of failed WPs exceeds 0.001, so it does not occur within the initial 5.0×10^4 -year period.

Figure 3-45. SOAR Output Chart of the Breached Area Fraction Per Failed WP Due To General Corrosion

Disposition:

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Razvan Nes December 8, 20 Frisco, GoldSim Beta 7.2 Gryphon, D:\Pul Verify the consis		aste Package component model with hand
Test Configuration:	Simulation	Number of realizations	10
	Settings	Number of timesteps	95
	Dashboard	Waste package material	Titanium
		Far Field Leg One, Geologic Media Far Field Leg One, Redox Condition	Fractured Rock Reducing
		Define waste package thickness	On
		Waste package thickness	1.0 cm
		Distribution of general corrosion rates	Normal
		Scale of distribution of general corrosion rates	Logarithmic
		Minimum general corrosion breach area fraction	1.0
		Maximum general corrosion breach area fraction	1.0
		Disable localized corrosion	Checked
	Level 2	Ti_GC_Ox_Low	0.008 μm/yr
		Ti_GC_Ox_High	0.2 μm/yr
		Dashboard_WastePackage, Waste package thickness, Properties, Maximum Value	10 cm
Result Parameters:	Results_Waste_F	Package, Waste package failure fraction from general of Package, Waste package failure fraction from localized Package, Waste package breach area	
Success Criteria:	Output should a	gree with equations in NRC (2010b, Chapter 4.2.2).	

(1) Using NRC [2010b, Eq. (4-3)], we calculate the WP failure time t_{gc} as the time in years at which the corrosion front penetrates the material thickness L (cm) given the general corrosion rate $R_{gc}(\mu m/yr)$

$$t_{gc} = 10^4 \times \frac{L}{R_{gc}}$$
(3-66)

Introducing into Eq. (4-3) the bounding values of the lognormal distribution function of the GC_Rate_Inputs gives the time range at which 0.001 and 0.999 of the WPs have failed, respectively

$$t_{gc} = 10^4 \times \frac{1.0}{0.2} = 5.0 \times 10^4 \text{ years}$$
 (3-67)

$$t_{gc} = 10^4 \times \frac{1.0}{0.008} = 1.25 \times 10^6 \text{ years}$$
 (3-68)

These values satisfactorily agree with the output values in WP14GCFractionWPFailedTable.txt and WP14GCFractionWPFailed.BMP files. The graph in Figure 3-46, created in WP14GCFractionFailedExcel.xls, is based on the data in WP14GCFractionWPFailedTable.txt and shows the fraction of failed WPs between 0.001 and 0.996, which are the values of the fractions marking the initiation of the WPs' failure due to general corrosion and the fraction of the WPs failed due to general corrosion at the end of the 1-million-year simulation. The model shows that the WP failure by general corrosion is 0.999 (complete) later than 1 million years, consistent with the value 1.25×10^6 years calculated with NRC [2010b, Eq. (4-3)].

(2) Using NRC [2010b, Eq. (4-4)], we calculate the breached area per failed WP

$$WP_{breached area} = \left(\frac{f_{gc}}{f_{failed WP}} f_{gc breached area} + \frac{f_{lc}}{f_{failed WP}} f_{lc breached area}\right)A$$
(3-69)

The only corrosion mechanism responsible for WP breaching considered here is general corrosion, so the first term in the parentheses equals one (i.e., $\frac{f_{gc}}{f_{failed WP}} = 1.0$) after 5.0×10^4 years. Based on the data in WP14GCFractionWPFailedTable, the second term in parentheses equals zero (i.e., $\frac{f_{lc}}{f_{failed WP}} = 0.0$). In both cases, the minimum general corrosion breach area fraction and maximum general corrosion breach area fraction are set to one (i.e., $f_{gc breached area} = f_{lc breached area} = 1.0$). As per NRC (2010b, Table A–2), in the default parameter for the SOAR Waste Package Model Component, A = constant = $40.0 m^2$.

With these assumptions the breached area per failed WP equals, after $5.0\times10^4\,\rm years,$ the area A of the WP

$$WP_{breached area} = (1.0 \times 1.0 + 0.0 \times 1.0) \times 40.0 = 40.0 \ m^2$$
(3-70)

This leads to a WP breach fraction of 1.0. Figure 3-47 shows the original SOAR output chart of the fraction of failed WPs due to general corrosion.

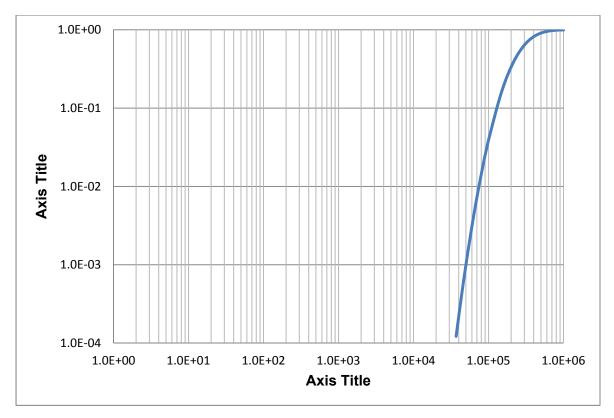


Figure 3-46. WP Failure Fraction From General Corrosion

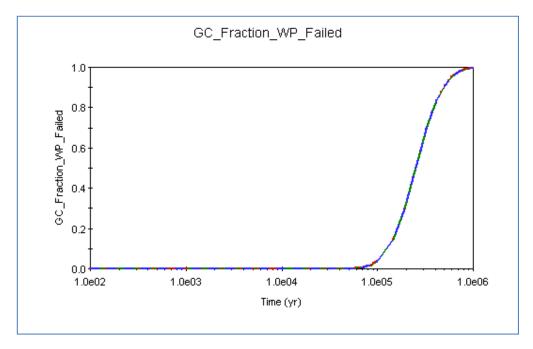
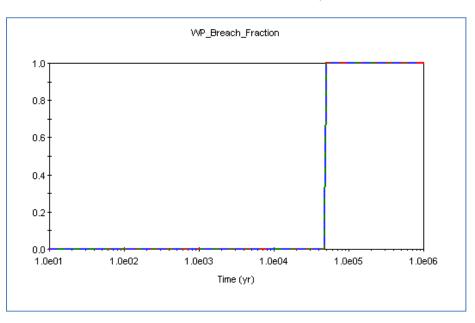



Figure 3-47. WP Failure Fraction From General Corrosion, SOAR Output File

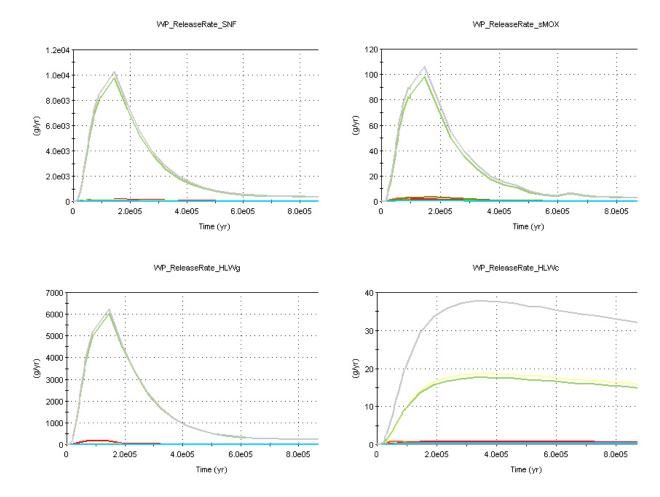
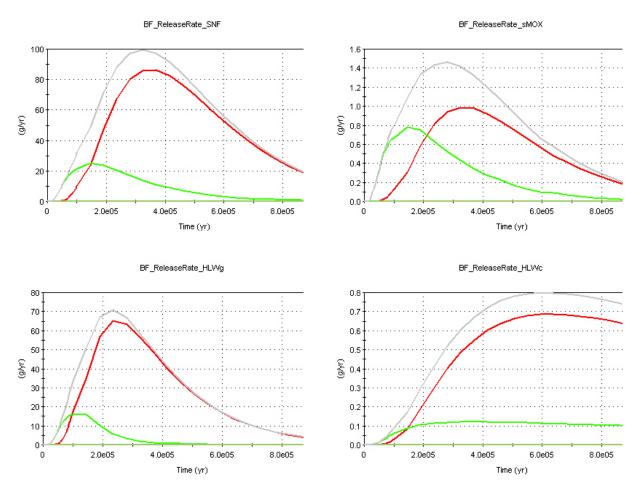
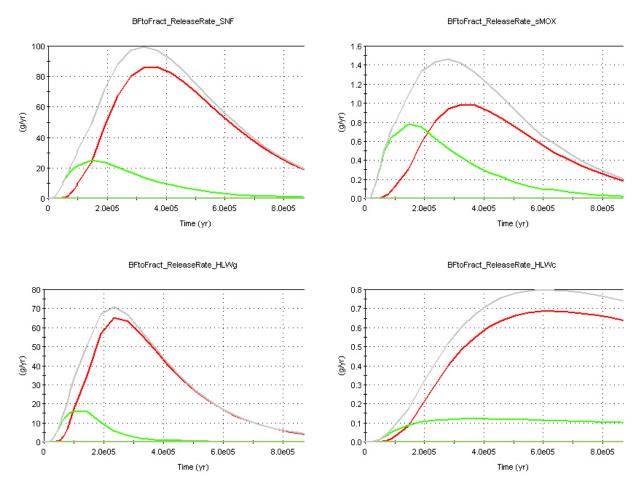

The value agrees with the output value in WP14BreachArea.BMP and WP14BreachAreaTable.txt files. Figure 3-48 shows the original SOAR output chart of the breached area per failed WP due to general corrosion, as per WP14BreachArea.BMP. The chart shows that the WP breach area equals zero over the first 5.0×10^4 years. This is consistent with the model because the WP failure is initiated when the fraction of failed WPs exceeds 0.001, so it does not occur within the first 5.0×10^4 year time period.

Figure 3-48. SOAR Output Chart of the Breached Area Fraction Per Failed WP Due To General Corrosion


Disposition:

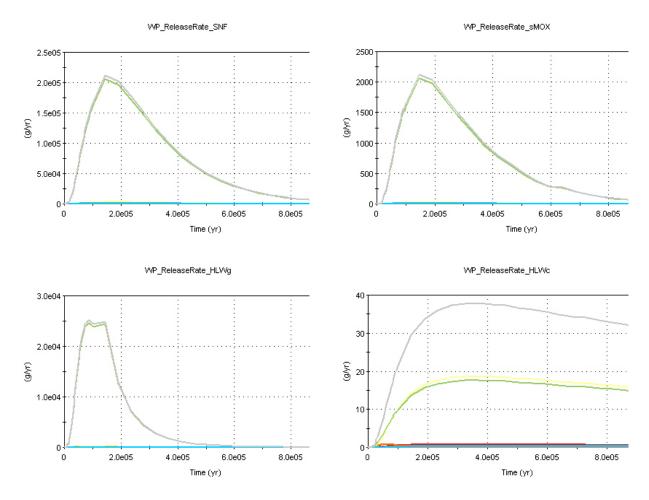
Test ID:	NF01		
Test Title:		Iffer Geometry and Near-Field Transport Properties	
Analyst:	Ron Janetzke	mer Geometry and Near-Field Transport Froperaes	
Date:	December 28, 2010		
Test Environment:			
	ALBY, GoldSim 10.11		
SOAR Version:			
Run Directory:	D:\RonJ-\SOAR\V8_1	an with the heal fill offects enabled	
Test Objective:	Verify that the code runs to complete		
Assumptions:	None	Material	Carban Staal
Test Configuration:	Waste Package Dashboard	Material	Carbon Steel
	Near Field Dashboard	Bypass the backfill	Unchecked
		Enable degradation of the backfill	Unchecked
		Minimum time of Initial backfill failure	1 yr
		Maximum time of Initial backfill failure	1e+6 yr
		Minimum expected lifetime of backfill	1 yr
		Maximum expected lifetime of backfill	1e+6 yr
		Minimum fraction of backfill cracked	0
		Maximum fraction of backfill cracked	1
Result Parameters:	\Results\Near_Field_Results\WP_Re	eleaseRate_SNF_Result	
	\Results\Near_Field_Results\WP_Re	eleaseRate_sMOX_Result	
	\Results\Near_Field_Results\WP_Re	eleaseRate_HLWg_Result	
	\Results\Near_Field_Results\WP_Re	eleaseRate_HLWc_Result	
	\Results\Near_Field_Results\BF_Re	leaseRate_SNF_Result	
	\Results\Near_Field_Results\BF_Re	leaseRate_sMOX_Result	
	\Results\Near_Field_Results\BF_Re	leaseRate_HLWg_Result	
	\Results\Near_Field_Results\BF_Re	leaseRate_HLWc_Result	
	\Results\Near_Field_Results\NF_Re	leaseRate_SNF_Result	
	\Results\Near_Field_Results\NF_Re	eleaseRate_sMOX_Result	
	\Results\Near_Field_Results\NF_Re	leaseRate_HLWg_Result	
	\Results\Near_Field_Results\NF_Re	leaseRate_HLWc_Result	
Success Criteria:	The model result mode should be en	ntered upon completion of the model run with no GoldSim or sy	stem errors exhibited.



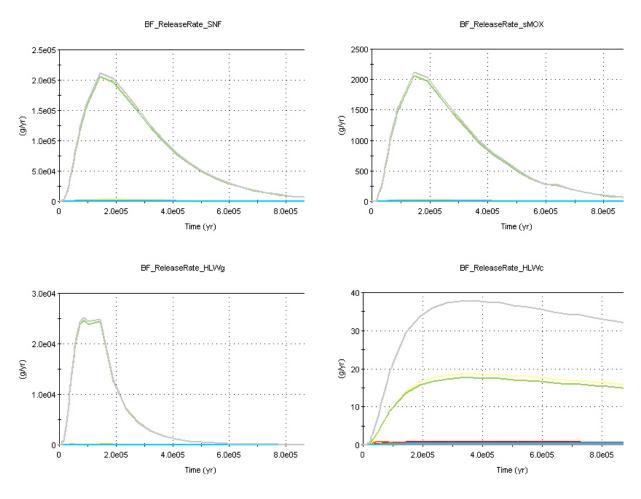
Run completed with no errors with the following displays generated.

WP Release Rates

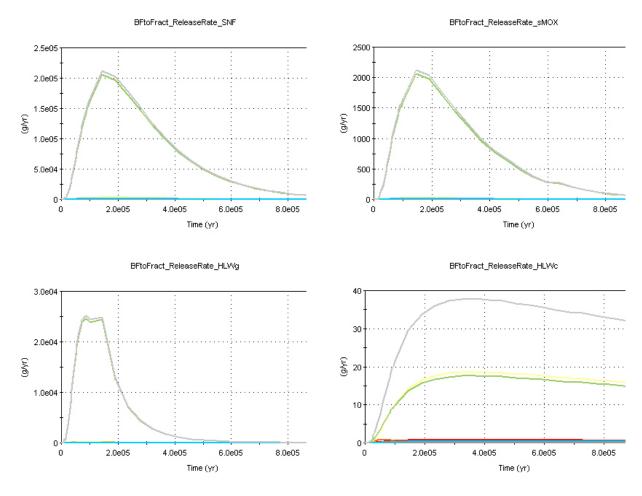
BF Release Rates



NF Release Rates


Criterion 1: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	NF02 Backfill Effects Case with Backfill Sul Ron Janetzke December 28, 2010 ALBY, GoldSim 10.11 Beta 8.1 D:\RonJ-\SOAR\V8_1 Verify that the release rates are higher None	bmodel Disabled er with the backfill submodel disabled.	
Test Configuration:	Waste Package Dashboard	Material	Carbon Steel
	Near Field Dashboard	Bypass the backfill Enable degradation of the backfill Minimum time of Initial backfill failure Maximum time of Initial backfill failure Minimum expected lifetime of backfill Maximum expected lifetime of backfill Minimum fraction of backfill cracked Maximum fraction of backfill cracked	Checked Unchecked 1 yr 1e+6 yr 1 yr 1e+6 yr 0 1
Result Parameters:	\Results\Near_Field_Results\WP_Results\Near_Field_Results\WP_Results\Near_Field_Results\WP_Results\Near_Field_Results\WP_Results\Near_Field_Results\WP_Results\Near_Field_Results\BF_Results\Near_Field_Results\BF_Results\Near_Field_Results\BF_Results\Near_Field_Results\BF_Results\Near_Field_Results\BF_Results\Near_Field_Results\BF_Results\Near_Field_Results\BF_ResUlts\BF_Re	eleaseRate_sMOX_Result eleaseRate_HLWg_Result eleaseRate_HLWc_Result easeRate_SNF_Result easeRate_sMOX_Result easeRate_HLWg_Result leaseRate_SNF_Result leaseRate_SMOX_Result leaseRate_HLWg_Result leaseRate_HLWg_Result leaseRate_HLWg_Result	
Success Criteria:	The result charts should show the rel	lease rates are higher compared to the basecase, NF01.	


All release rates are greater than the basecase NF01. Release rates for WP, BF, and NF are the same in the present test because the backfill was bypassed, as illustrated in the Near Field Dashboard.

WP Release Rates

BF Release Rates

NF Release Rates

Criterion 1: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Ron Janetzke December 28, 201 ALBY, GoldSim 10 Beta 8.1 D:\RonJ-\SOAR\V).11	
Test Configuration:	Waste Package	Material	Carbon Steel
	Dashboard Near Field Dashboard	Bypass the backfill Enable degradation of the backfill Minimum time of Initial backfill failure Maximum time of Initial backfill failure Minimum expected lifetime of backfill Maximum expected lifetime of backfill Minimum fraction of backfill cracked Maximum fraction of backfill cracked	Unchecked Unchecked 1 yr 1e+6 yr 1 yr 1e+6 yr 0 1
	Level 2	Model_Inputs\Near_Field_ Common_Inputs\NF_ Parameters\BF_Dimensions\NF_Length_A	1.08

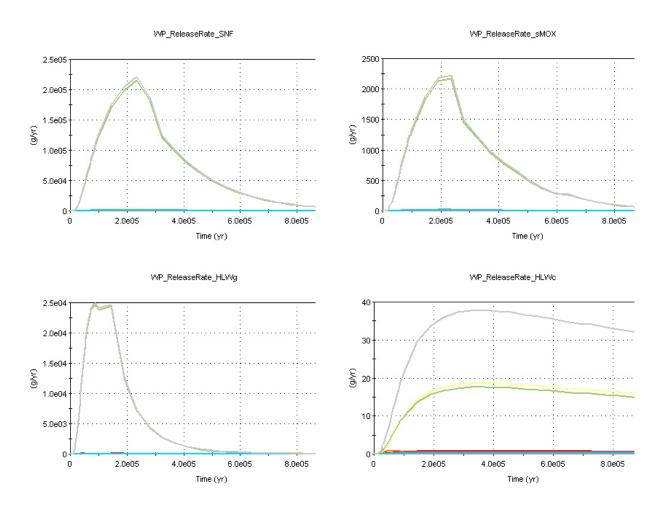
	Value	^
C14	Dc_C_Backfill*0 +1 m2/yr	
Cs135	Dc_Cs_Backfill*0 +1 m2/yr	
1129	Dc_l_Backfill*0 +1 m2/yr	
Np237	Dc_Np_Backfill*0 +1 m2/yr	
Pu238	Dc_Pu_Backfill*0 +1 m2/yr	
Pu239	Dc_Pu_Backfill*0 +1 m2/yr	
Pu240	Dc_Pu_Backfill*0 +1 m2/yr	
Pu242	Dc_Pu_Backfill*0 +1 m2/yr	
Se79	Dc_Se_Backfill*0 +1 m2/yr	
Tc99	Dc_Tc_Backfill*0 +1 m2/yr	
U232	Dc_U_Backfill*0 +1 m2/yr	
U233	Dc_U_Backfill*0 +1 m2/yr	~
<	·	>

SOAR Verification Test Report (continued)

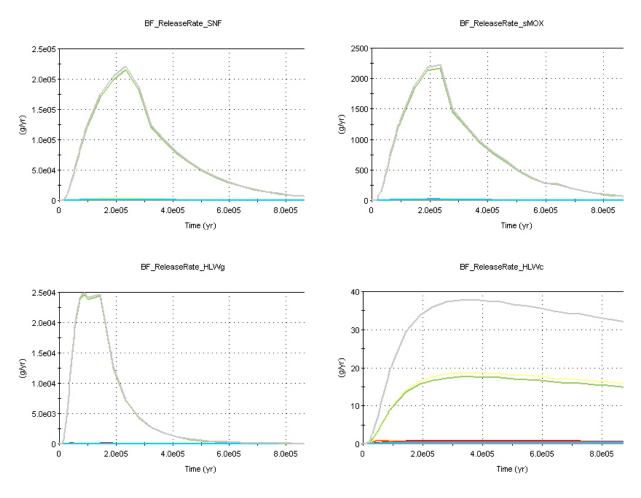
Test Configuration:

Model_Inputs\Near_Field_ Common_Inputs\NF_ Parameters\BF_Kd\Kd_BF_Anox

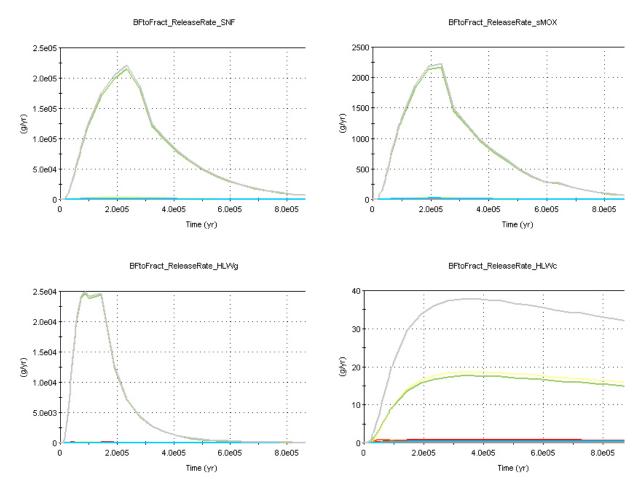
	Value	
C14	Kd_C_BF_Anox*0	
Cs135	Kd_Cs_BF_Anox*0	
1129	Kd_I_BF_Anox*0	
Np237	Kd_Np_BF_Anox*0	
Pu238	Kd_Pu_BF_Anox*0	
Pu239	Kd_Pu_BF_Anox*0	
Pu240	Kd_Pu_BF_Anox*0	
Pu242	Kd_Pu_BF_Anox*0	
Se79	Kd_Se_BF_Anox*0	
Tc99	Kd_Tc_BF_Anox*0	
U232	Kd_U_BF_Anox*0	
U233	Kd_U_BF_Anox*0	
U234	Kd_U_BF_Anox*0	
U235	Kd_U_BF_Anox*0	
U236	Kd_U_BF_Anox*0	
U238	Kd_U_BF_Anox*0	
<		3


Result Parameters:	\Results\Near_Field_Results\WP_ReleaseRate_SNF_Result
	\Results\Near_Field_Results\WP_ReleaseRate_sMOX_Result
	\Results\Near_Field_Results\WP_ReleaseRate_HLWg_Result
	\Results\Near_Field_Results\WP_ReleaseRate_HLWc_Result
	\Results\Near_Field_Results\BF_ReleaseRate_SNF_Result
	\Results\Near_Field_Results\BF_ReleaseRate_sMOX_Result
	\Results\Near_Field_Results\BF_ReleaseRate_HLWg_Result
	\Results\Near_Field_Results\BF_ReleaseRate_HLWc_Result
	\Results\Near_Field_Results\NF_ReleaseRate_SNF_Result
	\Results\Near_Field_Results\NF_ReleaseRate_sMOX_Result
	\Results\Near_Field_Results\NF_ReleaseRate_HLWg_Result
	\Results\Near_Field_Results\NF_ReleaseRate_HLWc_Result
Cusasa Cuitaria	(1) The MD release rates for all four field times about directed the

Success Criteria:


: (1) The WP release rates for all four fuel types should match the WP release rates of the basecase, NF02.

(2) The buffer and buffer to fracture release rates should be the same as the WP release rates for each respective fuel type.


All WP release rates match the WP release rates in NF02. To expedite transport through the backfill, the transport properties of the backfill were adjusted: diffusion coefficients were maximized and distribution coefficients were minimized. This explains why all three release rates are the same for the respective fuel types.

WP Release Rates

BF Release Rates

NF Release Rates

Disposition:

- (1) Criterion 1: PASS
- (2) Criterion 2: PASS

		SOAR Verification Test Report	
Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	FF01 Release Rates at the End of L Razvan Nes February 10, 2011 Frisco, GoldSim 10.11 Beta 8.2 Gryphon, D:\Public\razvan\SC Verify that the model runs prop Leg 3 of the far field. None		the release rates at the end of
Assumptions: Test Configuration:	Simulation Settings	Deterministic Simulation	On
-		Element Mean Values Number of realizations Number of timesteps	On 1 95
	Dashboard Far Field	Far Field Leg One Geologic Medium Far Field Leg One Redox Condition Far Field Leg One Transport Length (km) Far Field Leg Two Geologic Medium Far Field Leg Two Redox Condition Far Field Leg Two Transport Length (km) Far Field Leg Three Geologic Medium Far Field Leg Three Redox Condition Far Field Leg Three Redox Condition Far Field Leg Three Transport Length (km)	Fractured Rock Reducing 1.67 Fractured Rock Reducing 1.67 Fractured Rock Reducing 1.67
Result Parameters:	Results Far Field Leg 3 Relea		
Success Criteria:	Output should provide radionu	clide release rates at the end of Leg 3.	

The radionuclide release rates chart is shown in Figure 3-49, available in output file FF01 Leg 3 Release Rate.bmp. The release rates are consistent with the ones in output file FF01 Leg3 Release Rates Table.txt.

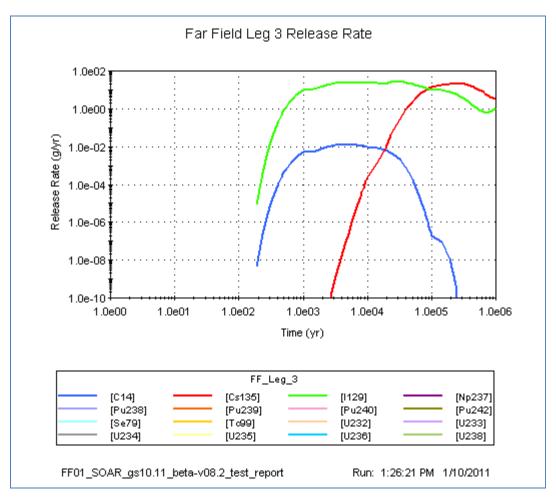


Figure 3-49. Far Field Leg 3 Radionuclide Release Rates

Disposition:

PASS

		SOAR Verification Test Report	
Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	FF02 Release Rates at the End of Leg 3, Diffusive Medium in Leg 1 Razvan Nes February 11, 2011 Frisco, GoldSim 10.11 Beta 8.2 Gryphon, D:\Public\razvan\SOAR_beta_V8.2_TDRW Verify that the release rates at the end of Leg 3 are insensitive to permutations of the properties (length and rock type) of the three legs of the far field. None		
Test Configuration:	Simulation Settings	Deterministic Simulation	On
		Element Mean Values Number of realizations Number of timesteps	On 1 95
	Dashboard Far Field	Far Field Leg One Geologic Medium Far Field Leg One Redox Condition Far Field Leg One Transport Length (km) Far Field Leg Two Geologic Medium Far Field Leg Two Redox Condition Far Field Leg Two Transport Length (km) Far Field Leg Three Geologic Medium Far Field Leg Three Redox Condition	Fractured Rock Reducing 0.001 Fractured Rock Reducing 1.67 Fractured Rock Reducing
		Far Field Leg Three Transport Length (km)	1.67
Result Parameters:	Results Far Field Leg 3 Relea	ise Rates Chart/Table	
Success Criteria:		rates for Leg 3 should exhibit reasonable suppression a ck, relative to the output of reference case FF01.	and retardation effects, due to

(2) The release rates for Leg 3 should be the same as FF03 and FF04, where the diffusive leg is assigned to Legs 2 and 3, respectively.

The radionuclide release rates chart is shown in Figure 3-50, available in output file FF02 Leg 3 Release Rate.bmp. The release rates are consistent with the ones in output file FF02 Leg 3 Release Rates Table.txt. The chart presented in Figure 3-50 is also identical with Far Field Leg3 Radionuclide Release Rates as per FF03 Leg 3 Release Rate.bmp and FF04 Leg 3 Release Rate.bmp, where the diffusive medium is located in Legs 2 and 3, respectively. The effect of the diffusive leg in the far field is illustrated with the differences between the plots in FF02Leg3ReleaseRates.bmp and the reference case presented in

FF01Leg3ReleaseRates.bmp. As expected, the plot in FF02Leg3ReleaseRates.bmp shows retardation for two of the featured radionuclides, C-14 and Cs-135, that have higher distribution coefficients. Note that charts show only radionuclides that contribute to the release rates by more than 10⁻¹⁰ g/yr.

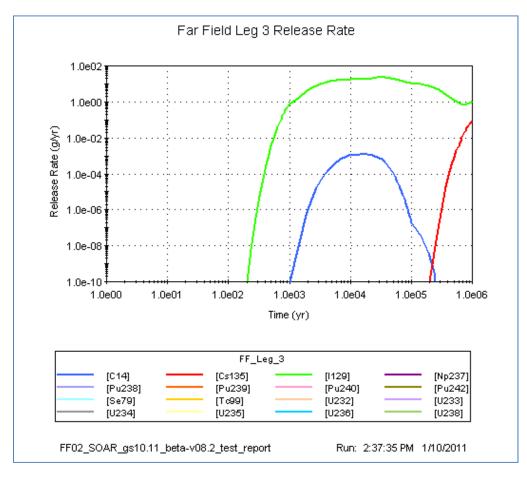


Figure 3-50. Far Field Leg 3 Radionuclide Release Rates

Disposition:

- (1) Criterion 1: PASS
- (2) Criterion 2: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Razvan Nes February 11, 2011 Frisco, GoldSim 10.11 Beta 8.2 Gryphon, D:\Public\razvan\SC	eg 3, Diffusive Medium in Leg 2 PAR_beta_V8.2_TDRW the end of Leg 3 are insensitive to permutations of the p	roperties (length and rock type) of
Test Configuration:	Simulation Settings	Deterministic Simulation	On
		Element Mean Values	On
		Number of realizations	1
		Number of timesteps	95
	Dashboard Far Field	Far Field Leg One Geologic Medium	Fractured Rock
		Far Field Leg One Redox Condition	Reducing
		Far Field Leg One Transport Length (km)	1.67
		Far Field Leg Two Geologic Medium	Fractured Rock
		Far Field Leg Two Redox Condition	Reducing
		Far Field Leg Two Transport Length (km)	0.001
		Far Field Leg Three Geologic Medium	Fractured Rock
		Far Field Leg Three Redox Condition	Reducing
		Far Field Leg Three Transport Length (km)	1.67
Result Parameters:	Results Far Field Leg 3 Relea		
Success Criteria:		rates for Leg 3 should exhibit reasonable suppression ar ck, relative to the output of reference case FF01.	nd retardation effects, due to

(2) The release rates for Leg 3 should be the same as FF02 and FF04, where the diffusive leg is assigned to Legs 1 and 3, respectively.

The radionuclide release rates chart is shown in Figure 3-51, available in output file FF03 Leg 3 Release Rate.bmp. The release rates are consistent with the ones in output file FF03 Leg 3 Release Rates Table.txt. The chart presented in Figure 3-51 is also identical with Far Field Leg 3 Radionuclide Release Rates as per FF02 Leg 3 Release Rate.bmp and FF04 Leg 3 Release Rate.bmp, where the diffusive medium is located in Legs 1 and 3, respectively. The effect of the diffusive leg in the far field is illustrated with the differences between the plots in FF03Leg3ReleaseRates.bmp and the reference case presented in

FF01Leg3ReleaseRates.bmp. As expected, the plot in FF03Leg3ReleaseRates.bmp shows retardation for two of the featured radionuclides, C-14 and Cs-135, that have higher distribution coefficients. Note that charts show only radionuclides that contribute to the release rates by more than 10^{-10} g/yr.

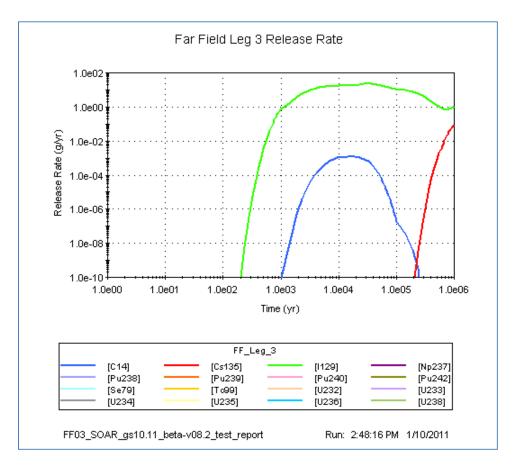


Figure 3-51. Far Field Leg 3 Radionuclide Release Rates

Disposition:

- (1) Criterion 1: PASS
- (2) Criterion 2: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Razvan Nes February 11, 2011 Frisco, GoldSim 10.11 Beta 8.2 Gryphon, D:\Public\razvan\SC	eg 3, Diffusive Medium in Leg 3 DAR_beta_V8.2_TDRW t the end of Leg 3 are insensitive to permutations of the pr	operties (length and rock type) of
Test Configuration:	Simulation Settings	Deterministic Simulation	On
-	-	Element Mean Values	On
		Number of realizations	1
		Number of timesteps	95
	Dashboard Far Field	Far Field Leg One Geologic Medium	Fractured Rock
		Far Field Leg One Redox Condition	Reducing
		Far Field Leg One Transport Length (km)	1.67
		Far Field Leg Two Geologic Medium	Fractured Rock
		Far Field Leg Two Redox Condition	Reducing
		Far Field Leg Two Transport Length (km)	1.67
		Far Field Leg Three Geologic Medium	Fractured Rock
		Far Field Leg Three Redox Condition	Reducing
		Far Field Leg Three Transport Length (km)	0.001
Result Parameters:	Results Far Field Leg 3 Relea		
Success Criteria:	diffusion in the porous roo	rates for Leg 3 should exhibit reasonable suppression and ck, relative to the output of reference case FF01.	retardation effects, due to

(2) The release rates for Leg 3 should be the same as FF02 and FF03, where the diffusive leg is assigned to Legs 1 and 2, respectively.

The radionuclide release rates chart is shown in Figure 3-52, available in output file FF04 Leg 3 Release Rate.bmp. The release rates are consistent with the ones in output file FF04 Leg 3 Release Rates Table.txt. The chart presented in Figure 3-52 is also identical with Far Field Leg 3 Radionuclide Release Rates as per FF02 Leg 3 Release Rate.bmp and FF03 Leg 3 Release Rate.bmp, where the diffusive medium is located in Legs 1 and 2, respectively. The effect of the diffusive leg in the far field is illustrated with the differences between the plots in FF04Leg3ReleaseRates.bmp and the reference case presented in

FF01Leg3ReleaseRates.bmp. As expected, the plot in FF04Leg3ReleaseRates.bmp shows retardation for two of the featured radionuclides, C-14 and Cs-135, that have higher distribution coefficients. Note that charts show only radionuclides that contribute to the release rates by more than 10⁻¹⁰ g/yr.

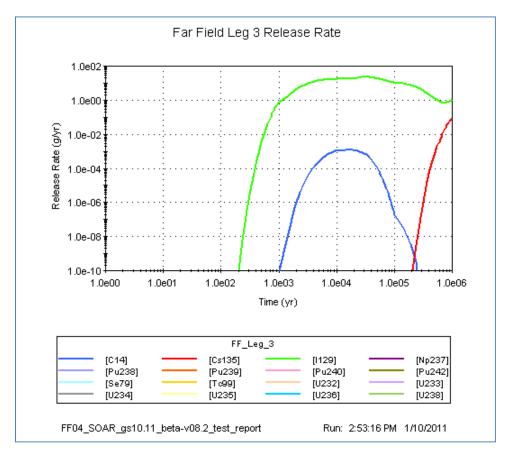


Figure 3-52. Far Field Leg 3 Radionuclide Release Rates

Disposition:

- (1) Criterion 1: PASS
- (2) Criterion 2: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	Ron Janetzke December 16, 2010 ALBY, GoldSim 10.1 Beta 8.0 D:\RonJ-\SOAR\V8_ Verify that the code r controlled by the das		
Test Configuration:	Simulation Settings	Monte Carlo	Probabilistic, 10 realizations
		Timesteps	95
	Waste Form	Length of Aging Prior to Disposal (years): 2010 Inventories	300
	Dashboard	only	
		2010 Radionuclide Inventory (Metric Tons)\ Spent Nuclear	67892
		Fuel	
		2010 Radionuclide Inventory (Metric Tons)\ Spent Mixed-	677
		Oxide Fuel	
		2010 Radionuclide Inventory (Metric Tons)\ High-Level Waste	4140
		(glass)	
		2010 Radionuclide Inventory (Metric Tons)\ High-Level Waste	108
		(ceramic)	
		Additional Radionuclide Inventory (Total Waste Mass in Metric	1.e6
		Tons)\Spent Nuclear Fuel	
		Additional Radionuclide Inventory (Total Waste Mass in Metric	1.e6
		Tons)\Spent Mixed-Oxide Fuel	
		Additional Radionuclide Inventory (Total Waste Mass in Metric	1.e6
		Tons)\High-Level Waste (glass)	
		Additional Radionuclide Inventory (Total Waste Mass in Metric	1.e6
		Tons)\High-Level Waste (ceramic)	
		Total Disposed Mass per Waste Package (grams)\Spent	1.e10
		Nuclear Fuel	
		Total Disposed Mass per Waste Package (grams) \Spent	1.e10
		Mixed-Oxide Fuel	

SOAR Verification Test Report (continued)

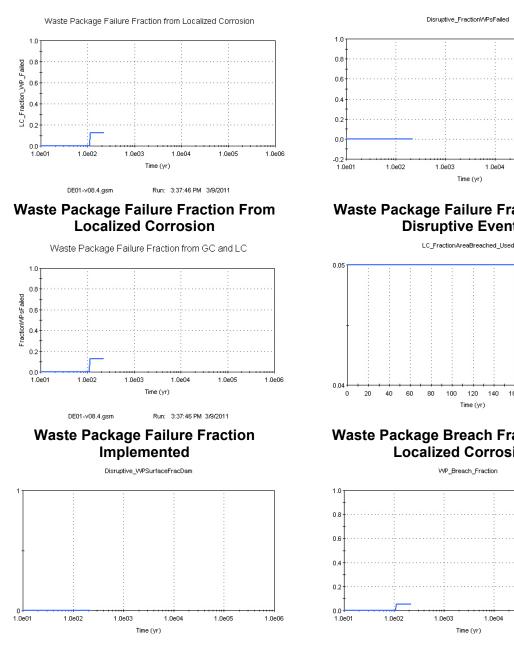
Test Configuration:		Total Disposed Mass per Waste Package (grams) \High-Level Waste (glass)	1.e10
		Total Disposed Mass per Waste Package (grams) \High-Level Waste (ceramic)	1.e10
		Fraction of Initial Inventory Available for Release: \Spent Nuclear Fuel	1
		Fraction of Initial Inventory Available for Release: \Spent Mixed-Oxide Fuel	1
		Fraction of Initial Inventory Available for Release: \High-Level Waste (glass)	1
		Fraction of Initial Inventory Available for Release: \High-Level Waste (ceramic)	1
		Degradation Rate Multiplier\Spent Nuclear Fuel	1.0e6
		Degradation Rate Multiplier\Spent Mixed-Oxide Fuel	1.0e6
		Degradation Rate Multiplier\ High-Level Waste (glass)	1.0e6
		Degradation Rate Multiplier\ High-Level Waste (ceramic)	1.0e6
		Enable Combined Oxic/Anoxic Degradation Rates\Spent Nuclear Fuel = checked	Checked
		Enable Combined Oxic/Anoxic Degradation Rates\ Spent Mixed-Oxide Fuel	Checked
		Initial U235 Enrichment (percent)\Spent Nuclear Fuel	6
		Burnup Value (GWe/MTU)\ Spent Nuclear Fuel	60
		Waste Form Loading Factor (percent)\ High-Level Waste (glass)	100
		Waste Form Loading Factor (percent)\High-Level Waste (ceramic)	100
	aste Package Dashboard	Check to define waste package thickness (default values used if unchecked)	Checked
		Waste package thickness (cm)	1
		Minimum general corrosion breach area fraction	1
		Maximum general corrosion breach area fraction	1
	Near Field Dashboard	Enable radionuclide sorption in transition region between buffer and far field	Checked
L	Jashbuaru	Water volume inside the waste package (cubic meters)	10

SOAR Verification Test Report (continued)

Test Configuration:		Near field flow factor (only used if repository host rock is fractured rock)	1
		Multiplier to define cross section of transition region (region between buffer and far field)	1
		Enable degradation of the backfill (diffusive barrier)	Checked
		Minimum time of initial backfill failure (year)	1.e6
		Maximum time of initial backfill failure (year)	1.e6
Test Configuration:		Minimum expected lifetime of backfill (year)	1.e6
		Maximum expected lifetime of backfill (year)	1.e6
		Minimum fraction of backfill cracked	1
		Maximum fraction of backfill cracked	1
	Far Field	Far Field Leg One\Transport length (km)	33
	Dashboard	Far Field Leg One\Effective Porosity Reduction Factor	1
		Far Field Leg Two\ Transport length (km)	33.3
		Far Field Leg Two\ Effective Porosity Reduction Factor	1
		Far Field Leg Three\ Effective Porosity Reduction Factor	1
		Far Field Leg Three\ Transport length (km)	33.3
	Biosphere Dashboard	Capture Fraction	1
Result Parameters:	None required.		

Success Criteria:

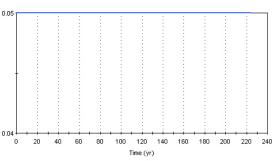
Criteria: The model result mode should be entered upon completion of the model run with no GoldSim or system errors exhibited.

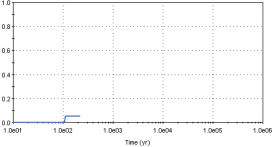

Run completed with no errors, and all displays were generated.

Disposition:

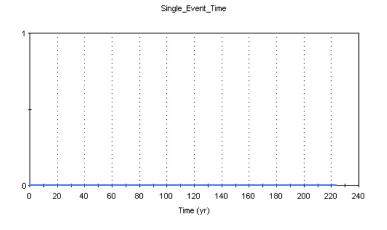
Criterion 1: PASS

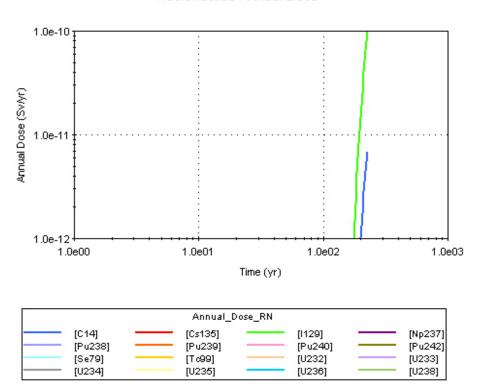
Test ID:	DE01		
Test Title:	Radionuclide Dose for Single Event Reference	ence Case	
Analyst:	Ron Janetzke		
Date:	March 9, 2011		
Test Environment:	ZALBY, GoldSim 10.11		
SOAR Version:	Beta 8.4		
Run Directory:	D:\RonJ-\SOAR\V8 4\DE01		
Test Objective:		ovides meaningful results as plots and tables of the fracti	on of waste package
rest objective.	failures, the breach area fraction, and the		on of waste paokage
Assumptions:		illion years is satisfactory to test the operation of the disr	runtive event model
Test Configuration:	Simulation Settings	Deterministic Simulation	On
rest comgutation.	Cirridiation Cettings	Element Mean Values	On
		Number of realizations	1
			95
		Number of timesteps	
	Dechboord Wests Deckore	Simulation time	224 yr
	Dashboard Waste Package	Disable general corrosion	Checked
	Dashboard Disruptive Events	Type of disruptive event	None
Result Parameters:	\Results\G_Fraction_WP_Failed_LC		
	\Results\G_Fraction_WP_Failed_Disruptiv		
	\Results\G_Fraction_WPs_Failed		
	\Results\LC_FractionBreached_Result		
	\Results\G_WP_BreachFraction_Disruptiv	e	
	\Results\WP_Breach_Fraction_Result		
		e_Events\Single_Event_Probability_SM\Single_Event_Ti	me_Result
	\Results\G_Annual_Dose_RN		• · · · ·
Success Criteria:	•	y ran and produced quantities for the waste package fail	ure traction, breach
	fraction, and biosphere radionuclide dose,	in plots and tables.	


Run completed with no errors with the following displays generated.



1.0e04 1.0e05 1.0e06


Waste Package Failure Fraction From **Disruptive Events**


Waste Package Breach Fraction From **Localized Corrosion**

Waste Package Breach Fraction Implemented

Radionuclide Annual Dose

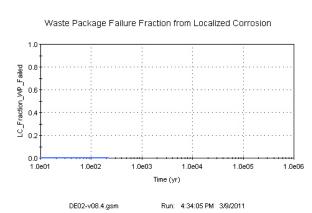
DE01-v08.4.gsm

Run: 3:37:46 PM 3/9/2011

Disposition:

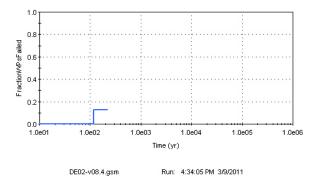
Criterion 1: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	fraction of WP failed and breach	ual dose is similar to the radionuclide dose for a similar	
Assumptions: Test Configuration:	Simulation Settings	Deterministic Simulation	On
rest configuration.	Cindation Cettings	Element Mean Values Number of realizations Number of timesteps Simulation time	On 1 95 224 yr
	Dashboard Waste Package Dashboard Disruptive Events	Disable general corrosion Disable localized corrosion Type of disruptive event Event probability	Checked Checked Single Failure Event 1.0
		Minimum fraction of waste packages damaged	0.125
		Maximum fraction of waste packages damaged	0.125
		Minimum damage area per waste package	0.05
		Maximum damage area per waste package	0.05
Result Parameters:	\Results\G_Fraction_WP_Failed \Results\G_Fraction_WP_Failed \Results\G_Fraction_WPs_Failed \Results\LC_FractionBreached_ \Results\G_WP_BreachFraction_ \Results\WP_Breach_Fraction_ \Disposal_System\Model_Inputs \Results\G_Annual_Dose_RN	d_Disruptiv ed _Result n_Disruptive	le_Event_Time_Result

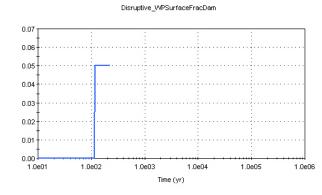

SOAR Verification Test Report (continued)

Success Criteria:

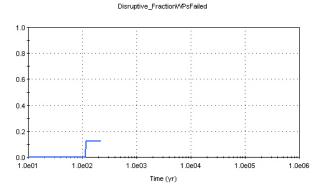
(1) The "Waste Package Failure Fraction from Localized Corrosion" plot should show no failures.


- (2) The "Waste Package Failure Fraction from Disruptive Events" plot should show a 0.125 failure fraction at the failure time.
- (3) The "Waste Package Failure Fraction Implemented" plot should show a 0.125 failure fraction at the failure time.
- (4) The "Waste Package Breach Fraction from Localized Corrosion" plot should show no breach area.
- (5) The "Waste Package Breach Fraction from Disruptive Events" plot should show a 0.05 breach area fraction at the failure time.
- (6) The "Waste Package Breach Fraction Implemented" plot should show a 0.05 breach area fraction at the failure time.
- (7) The "Single Disruptive Event Time" plot should show a failure time of about 112 years.
- (8) The "Radionuclide Dose" plot should match the radionuclide Dose plot from test DE01.

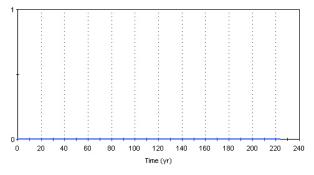
Run completed with no errors with the following displays generated.



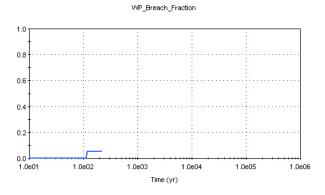
Waste Package Failure Fraction From Localized Corrosion


Waste Package Failure Fraction from GC and LC

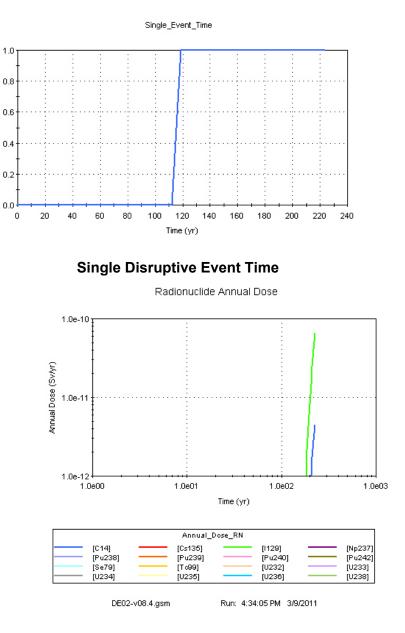
Waste Package Failure Fraction Implemented



Waste Package Breach Fraction From Disruptive Events



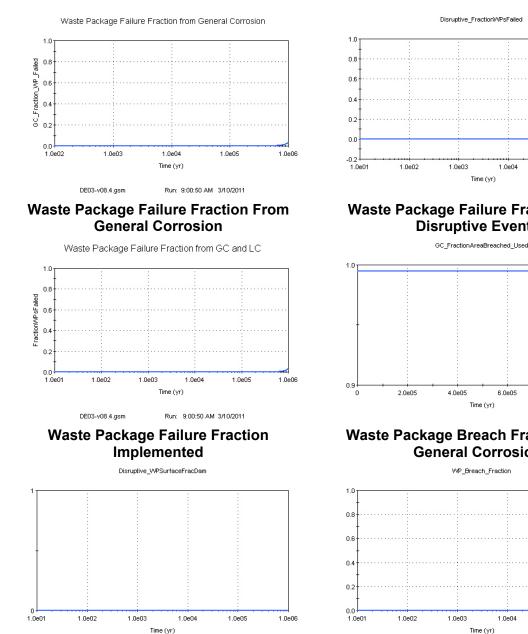
Waste Package Failure Fraction From Disruptive Events


LC_FractionAreaBreached_Used

Waste Package Breach Fraction From Localized Corrosion

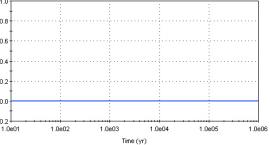
Waste Package Breach Fraction Implemented

Radionuclide Annual Dose

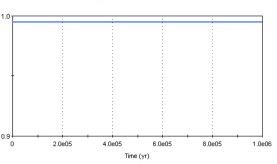

Disruptive event time was set to match LC from test DE01. GoldSim results of test DE02 are Disruption_FractionWPsFailed = 0.0 at timestep 112.4 years and Disruption_FractionWPsFailed = 0.125 at 118.6 years (approximately 120 years). The resolution of the timesteps does not allow the plots to show "step function" graphs.

Disposition:

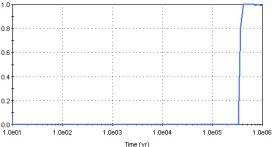
(1) Criterion 1: PASS	(5)	Criterion 5:	PASS
(2) Criterion 2: PASS	(6)	Criterion 6:	PASS
(3) Criterion 3: PASS	(7)	Criterion 7:	PASS
(4) Criterion 4: PASS	(8)	Criterion 8:	PASS


Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	failures, the breach area fraction,	ly and provides meaningful results as plots and tables of the	e fraction of waste package		
Assumptions:	None				
Test Configuration:	Simulation Settings	Deterministic Simulation	On		
		Element Mean Values	On		
		Number of realizations	1		
		Number of timesteps	95		
		Simulation time	1.0e6 yr		
	Dashboard Waste Package	Breach area computation method	Weighted Average		
		Disable localized corrosion	Checked		
	Dashboard Disruptive Events	Type of disruptive event	None		
Result Parameters:	\Results\G_Fraction_WP_Failed_GC				
	\Results\G_Fraction_WP_Failed_Disruptiv				
	\Results\G_Fraction_WPs_Failed				
	\Results\GC_FractionBreached_Result				
	\Results\G_WP_BreachFraction_Disruptive				
	\Results\WP_Breach_Fraction_Result				
	\Disposal_System\Model_Inputs\Disruptive_Events\Multiple_Event_Probability_SM\Multiple_Event_Time_				
	Result				
	\Results\G_Annual_Dose_RN				
Success Criteria:	The test is passed if the model successfully ran and produced quantities for the waste package failure fraction, breach fraction, and biosphere radionuclide dose, in plots and tables.				

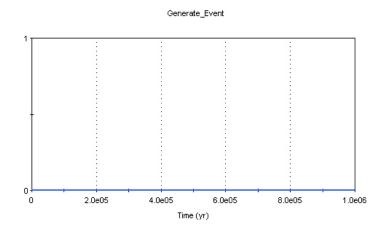
Run completed with no errors with the following displays generated.



Disruptive_FractionWPsFailed

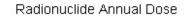


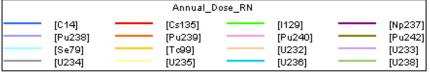
Waste Package Failure Fraction From **Disruptive Events**



Waste Package Breach Fraction From **General Corrosion**

WP_Breach_Fraction




Waste Package Breach Fraction Implemented

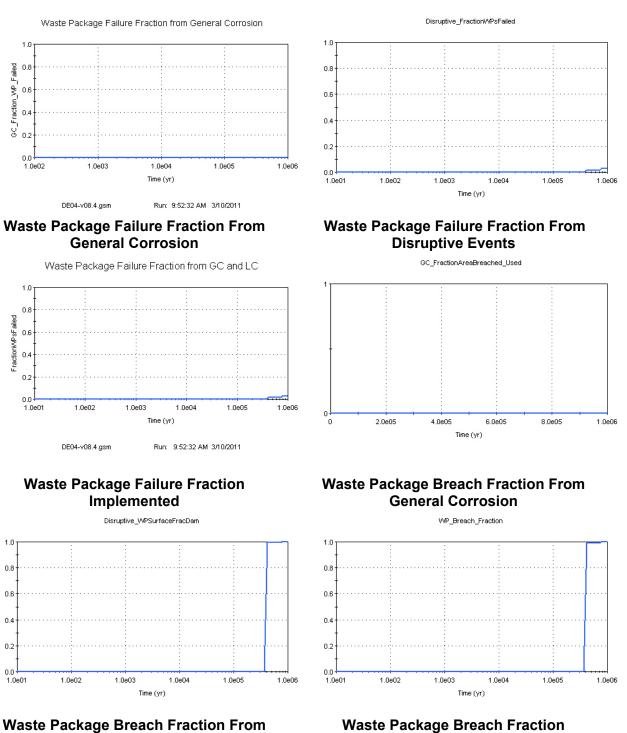
1.0e-06 1.0e-07 Annual Dose (Sv/yr) 1.0e-08 1.0e-09 1.0e-10 1.0e-11 1.0e-12 1.0e00 1.0e01 1.0e02 1.0e03 1.0e04 1.0e05 1.0e06 Time (yr)

DE03-v08.4.gsm

Run: 9:00:50 AM 3/10/2011

Radionuclide Annual Dose

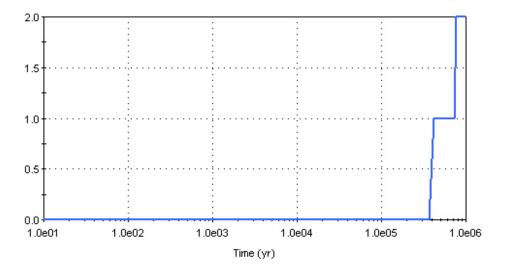
Disposition:


(1) Criterion 1: PASS

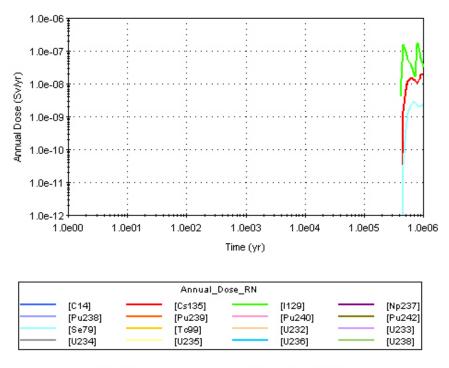
SOAR Verification Test Report					
Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective:	DE04 Radionuclide Dose for Multiple Disruptive Events Ron Janetzke March 10, 2011 ZALBY, GoldSim 10.11 Beta 8.4 D:\RonJ-\SOAR\V8_4\DE04 Verify that the radionuclide annual dose is similar to the radionuclide dose for a similar nondisruptive case relative to				
	fraction of WP failed and bread	h area fraction.			
Assumptions: Test Configuration:	None Simulation Settings	Deterministic Simulation Element Mean Values Number of realizations Number of timesteps Simulation time	On On 1 95		
	Dashboard Waste Package Dashboard Disruptive Events	Breach area computation method Disable localized corrosion Disable general corrosion Type of disruptive event Damage Fraction	1.0e6 yr Weighted Average Checked Checked Multiple Failure Events 0.015 (for all recurrence rates)		
		Damage Area	0.995 (for all recurrence rates)		
Result Parameters:	\Results\G_Fraction_WP_Failed_GC \Results\G_Fraction_WP_Failed_Disruptiv \Results\G_Fraction_WPs_Failed \Results\GC_FractionBreached_Result \Results\G_WP_BreachFraction_Disruptive \Results\WP_Breach_Fraction_Result \Disposal_System\Model_Inputs\Disruptive_Events\Multiple_Event_Probability_SM\Multiple_Event_Time_ Results\G_Annual_Dose_RN				

SOAR Verification Test Report (continued)

- (1) The "Waste Package Failure Fraction from General Corrosion" plot should show no failures.
- (2) The "Waste Package Failure Fraction from Disruptive Events" plot should show a 0.015 failure fraction for multiple failure times.
- (3) The "Waste Package Failure Fraction Implemented" plot should show a 0.015 failure fraction for multiple failure times.
- (4) The "Waste Package Breach Fraction from General Corrosion" plot should show no breach area.
- (5) The "Waste Package Breach Fraction from Disruptive Events" plot should show a 0.995 breach area fraction for multiple failure times.
- (6) The "Waste Package Breach Fraction Implemented" plot should show a 0.995 breach area fraction for multiple failure times.
- (7) The "Multiple Disruptive Event Time" plot should show an initial failure time of about 370,000 years.
- (8) The "Radionuclide Dose" plot should match the radionuclide Dose plot from test DE03.


Run completed with no errors with the following displays generated.

Disruptive Events



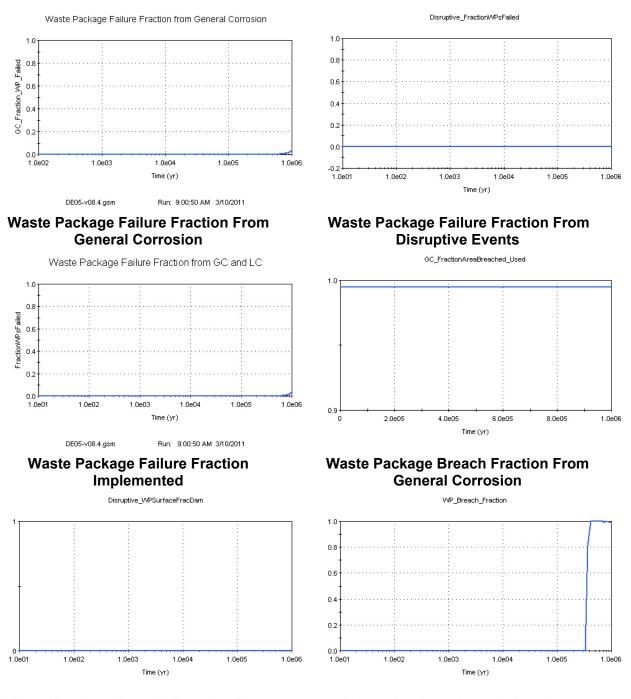
Cumulative Number of Multiple Disruptive Events

The dose is slightly higher at initial release times due to the slightly higher WP failure fraction around 370,000 years. The initiation time is satisfactory, as are the final dose values at the end of the simulation, and compares favorably with the DE03 reference case.

Radionuclide Annual Dose

DE04-v08.4.gsm

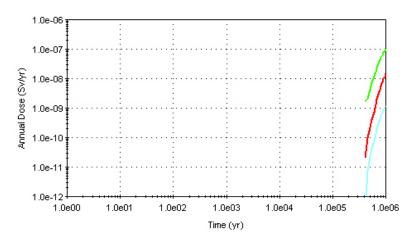
Run: 9:52:32 AM 3/10/2011


Radionuclide Annual Dose

Disposition:

- (1) Criterion 1: PASS
- (2) Criterion 2: PASS
- (3) Criterion 3: PASS
- (4) Criterion 4: PASS
- (5) Criterion 5: PASS
- (6) Criterion 6: PASS
- (7) Criterion 7: PASS
- (8) Criterion 8: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	DE05 Radionuclide Dose for WP Failure Ra Ron Janetzke March 21, 2011 ZALBY, GoldSim 10.11 Beta 8.4 D:\RonJ-\SOAR\V8_4\DE05 Verify that the model runs properly an failures, the breach area fraction, and None	nd provides meaningful results as plots a	nd tables of the fraction of waste package		
Test Configuration:	Simulation Settings	Deterministic Simulation	On		
·····j······j······		Element Mean Values	On		
		Number of realizations	1		
		Number of timesteps	95		
		Simulation time	1.0e6 yr		
	Dashboard Waste Package	Breach area computation method	Weighted Average		
		Disable localized corrosion	Checked		
	Dashboard Disruptive Events	Type of disruptive event	None		
Result Parameters:	\Results\G_Fraction_WP_Failed_GC				
	\Results\G_Fraction_WP_Failed_Disruptiv				
	\Results\G_Fraction_WPs_Failed				
	\Results\GC_FractionBreached_Result				
	\Results\G_WP_BreachFraction_Disruptive				
	\Results\WP_Breach_Fraction_Resu	lt			
Success Criteria:	\Results\G_Annual_Dose_RN	esfully rap and produced quantities for th	o wasto packago failuro fraction, broach		
Success Criteria.	fraction, and biosphere radionuclide of	essfully ran and produced quantities for th dose, in plots and tables.	e waste package failure fraction, breach		


The run completed with no errors with the following displays generated.

Waste Package Breach Fraction Implemented

Annual_Dose_RN						
[C14]		[Cs135]		[1129]		[Np237]
[Pu238]		[Pu239]		[Pu240]		[Pu242]
[Se79]		[Tc99]		[U232]		[U233]
[U234]		[U235]		[U236]		[U238]

DE05-v08.4.gsm

Run: 9:00:50 AM 3/10/2011

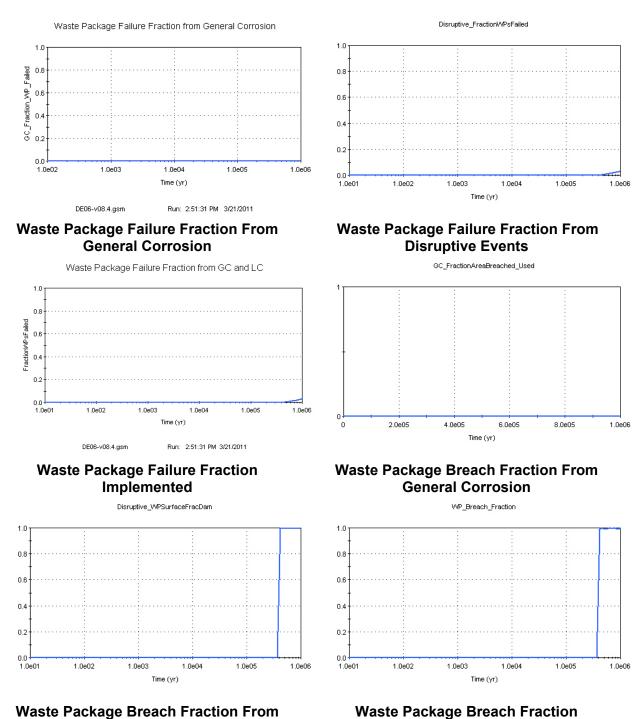
Radionuclide Annual Dose

Disposition:

(1) Criterion 1: PASS

Test ID: Test Title: Analyst: Date: Test Environment: SOAR Version: Run Directory: Test Objective: Assumptions:	DE06 Radionuclide Dose for WP Failure Rate Disruptive Event Ron Janetzke March 21, 2011 ZALBY, GoldSim 10.11 Beta 8.4 D:\RonJ-\SOAR\V8_4\DE06 Verify that the radionuclide annual dose is similar to the radionuclide dose for a similar nondisruptive case relative to fraction of WP failed and breach area fraction. None				
Test Configuration:	Simulation Settings	Deterministic Simulation Element Mean Values Number of realizations Number of timesteps Simulation time	On On 1 95 1.0e6 yr		
	Dashboard Waste Package Dashboard Disruptive Events	Breach area computation method Disable localized corrosion Disable general corrosion Type of disruptive event Start time of waste package failure (year)	Weighted Average Checked Checked Waste Package Failure Rate 370000		
		End time of waste package failure (year)	1.0ed6		
		Minimum waste package failure rate (waste packages per year) Maximum waste package failure rate (waste packages per year) Minimum waste package breach fraction	0.0004 0.00066 0.995		
		Maximum waste package breach fraction	0.995		
Result Parameters:	\Results\G_Fraction_WP_Failed_GC \Results\G_Fraction_WP_Failed_Disruptiv \Results\G_Fraction_WPs_Failed \Results\GC_FractionBreached_Result \Results\G_WP_BreachFraction_Disruptive \Results\WP_Breach_Fraction_Result \Results\G_Annual_Dose_RN				

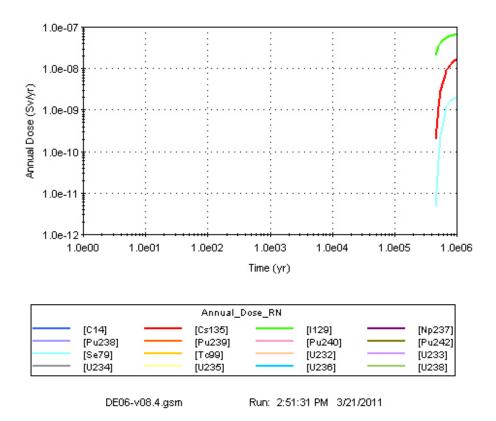
SOAR Verification Test Report (continued)


Success Criteria:

(1) The "Waste Package Failure Fraction from General Corrosion" plot should show no failures.

- (2) The "Waste Package Failure Fraction from Disruptive Events" plot should be 0 until 370,000 and rise to 0.03 at 10.e6 years.
- (3) The "Waste Package Failure Fraction Implemented" plot should be 0 until 370,000 and rise to 0.03 at 10.e6 years.
- (4) The "Waste Package Breach Fraction from General Corrosion" plot should show no breach area.
- (5) The "Waste Package Breach Fraction from Disruptive Events" plot should show a 0.995 breach area fraction after 370000 years.
- (6) The "Waste Package Breach Fraction Implemented" plot should show a 0.995 breach area fraction after 370,000 years.
- (7) The Failure Fraction curves will not match exactly because the control parameters for the WP failure disruptive event do not provide controls at a sufficient level. However, the start time of failures and the final fraction failed can be controlled somewhat, and they should be within a factor of 2 relative to test DE05. The "Radionuclide Dose" plots should be within +/- an order of magnitude relative to test DE05, because an exact match is not possible with the different failure curves generated by the different tests.

Results:


The run completed with no errors with the following displays generated.

Disruptive Events

Implemented

Radionuclide Annual Dose

Radionuclide Annual Dose

Disposition:

- (1) Criterion 1: PASS
- (2) Criterion 2: PASS
- (3) Criterion 3: PASS
- (4) Criterion 4: PASS
- (5) Criterion 5: PASS
- (6) Criterion 6: PASS
 - (7) Criterion 7: PASS

4 SOAR MODEL RUNS

In this chapter, a library of results is compiled to show trends arising from the variation of one parameter at a time. The objective is to show the dose response to changes in inputs controlled from the dashboard. Each run included 150 Monte Carlo realizations. The runs were grouped in simulation sets. Each simulation set is a family of runs with a single parameter varying discretely over a broad range. The results are presented in summary reports for each simulation. Each summary report describes the objective of the simulation and the changed parameters, and it includes dose versus time plots. In all of the runs, except Simulation 7, the waste package was assumed to fail instantaneously. Doses for I-129 and Np-237 are included to exhibit representative results for fission products and actinides. No interpretation of the results is provided. Table 4-1 summarizes the simulations included in this chapter and the parameter varied for each simulation.

Table 4-1. Summary of the Simulations Including the Primary Input Evaluated inEach Simulation		
Simulation	Description	Primary Input Evaluated
1	Waste Form Degradation Rate	Degradation rate multiplier
2	Initial Enrichment	Initial U-235 enrichment (%)
3	Burnup	Burnup value (GWd/MTU)
4	Alternative Waste Forms	Radionuclide inventory of spent nuclear fuel, spent mixed-oxide fuel, high-level waste (glass), and high-level waste (ceramic)
5	High-Level Waste Loading	Waste form loading factor (%)
6	Mass Per Waste Package	Total disposed mass per waste package (grams)
7	Waste Package General Corrosion Rate	General corrosion rate of waste package material
8	Waste Package Breach Area	General corrosion breach area fraction
9	Buffer Integrity	Time of initial backfill failure (year) and fraction of backfill cracked
10	Waste Package Water Volume	Water volume inside the waste package (cubic meters)
11	Hydraulic Conductivity	Hydraulic gradient (sediments and porous rock only)
12	Redox	Geologic media for all three far field legs to "unconsolidated sediments," "fractured rock," and "porous rock" in an oxidizing environment and in a reducing environment
13	Disturbed Zone Characteristics	Enable radionuclide sorption in the transition region between the buffer and the far field

To define the Base Scenario, the SOAR Version 1.0.02 default settings are used except for the following Input Control changes. These changes are for all 13 simulations except as otherwise noted.

- Run each simulation for 150 realizations, and save histories for 150 realizations.
- Set "Minimum waste package failure rate (waste packages per year)" equal to 0.999e6, "Maximum waste package failure rate (waste packages per year)" equal to 1e6, "End time of waste package failure (year)" equal to 1.01, and "Type of disruptive event" as "Waste package failure rate" to simulate instant waste package failure.
- Activate "Bypass the backfill (diffusive barrier)."
- Set all 2010 inventories equal to zero.

Simulation 1: Waste Form Degradation Rate

Objective:	Show the effect on dose of varying degradation rate for spent nuclear fuel in both oxidizing and reducing environments.
Test Environment:	GoldSim_Player_10.5SP1
SOAR Version:	1.0.02
Input Control Changes:	 Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel equal to 100,000 MT.
	 Set "degradation rate multiplier" equal to 1e-2, 1e-4, 1e-6, and 1e-8 (and others as needed) in separate simulations.
	 Set the Redox condition as "Oxidizing" and "Reducing" for far-field Legs 1, 2, and 3 in separate simulations.
Results:	Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237.

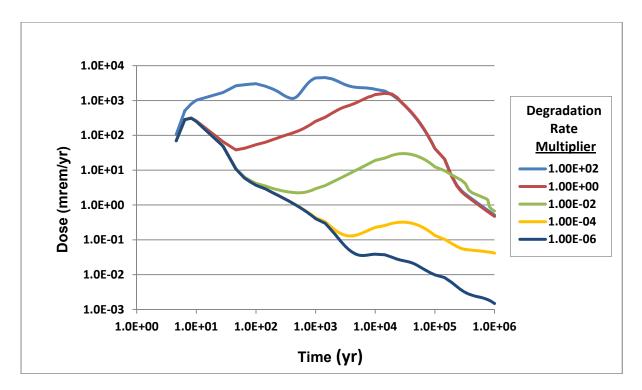


Figure 4-1. Total Dose for Simulation 1: Waste Form Degradation Rate—Oxidizing

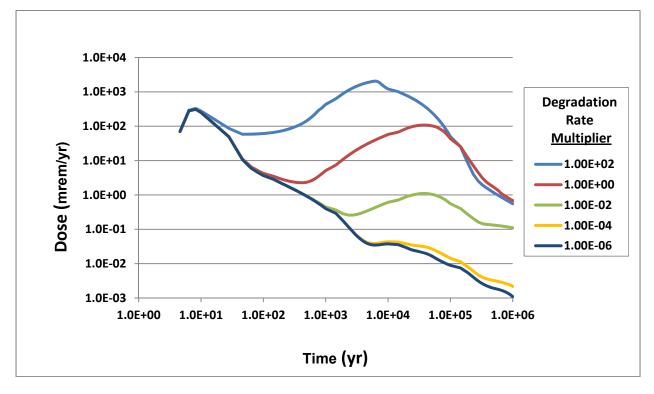


Figure 4-2. Total Dose for Simulation 1: Waste Form Degradation Rate—Reducing

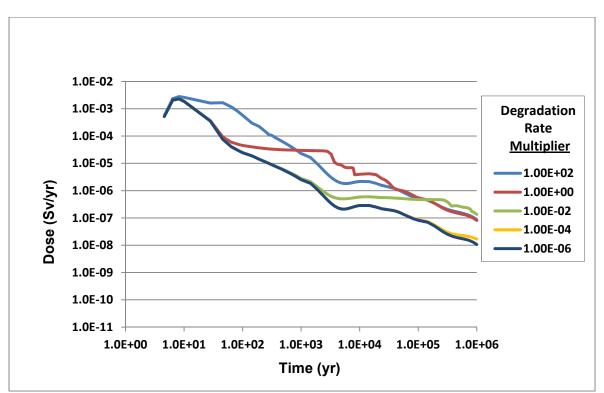


Figure 4-3. I-129 Dose for Simulation 1: Waste Form Degradation Rate—Oxidizing

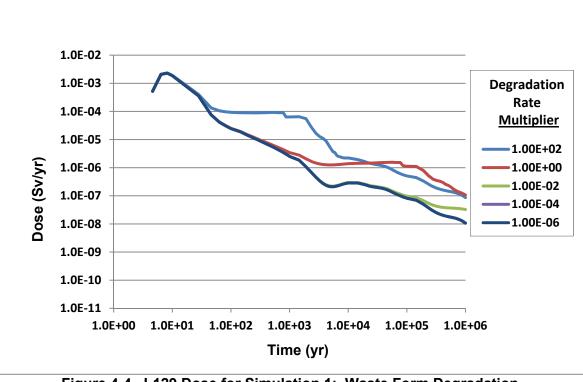


Figure 4-4. I-129 Dose for Simulation 1: Waste Form Degradation Rate—Reducing

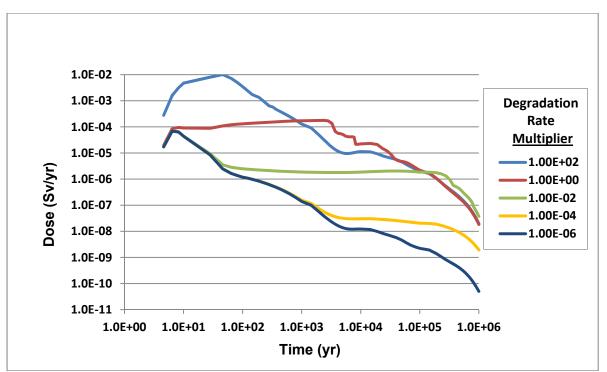


Figure 4-5. Tc-99 Dose for Simulation 1: Waste Form Degradation Rate—Oxidizing

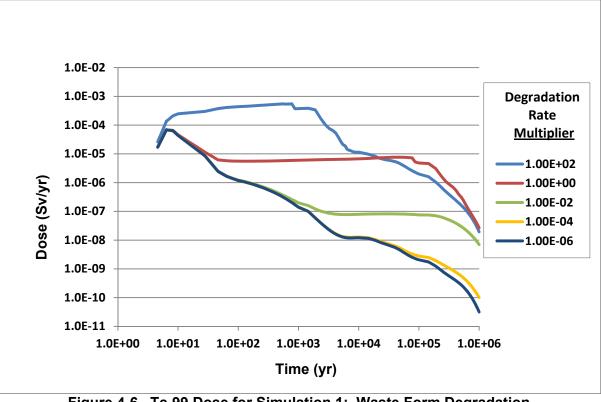


Figure 4-6. Tc-99 Dose for Simulation 1: Waste Form Degradation Rate—Reducing

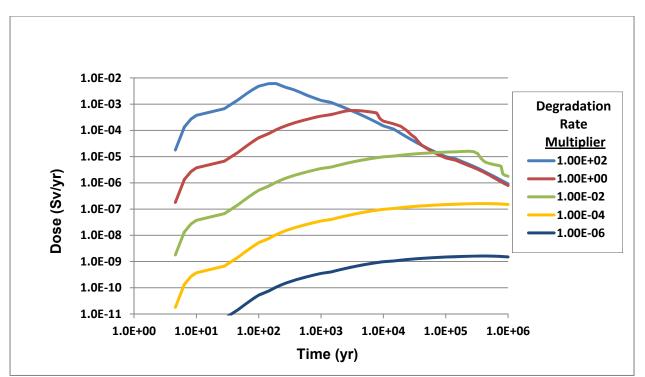


Figure 4-7. Np-237 Dose for Simulation 1: Waste Form Degradation Rate—Oxidizing

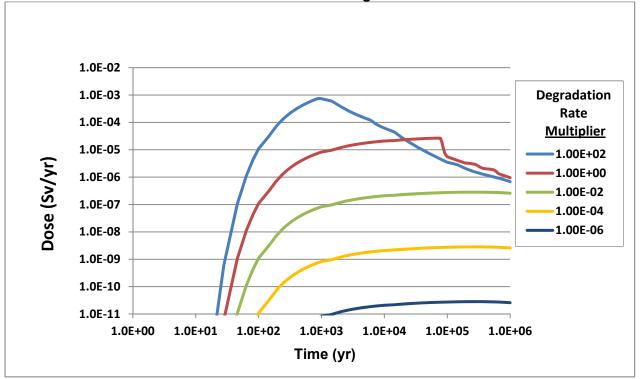


Figure 4-8. Np-237 Dose for Simulation 1: Waste Form Degradation Rate—Reducing

Simulation 2: Initial Enrichment

Objective:	Show the effect on dose of varying the U-235 enrichment for spent nuclear fuel in both oxidizing and reducing environments.
Test Environment:	GoldSim_Player_10.5SP1
SOAR Version:	1.0.02
Input Control Changes:	 Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel equal to 100,000 MT.
	 Set "Initial U235 Enrichment (percent)" equal to 2, 4, and 6 in separate simulations.
	 Set the Redox condition as "Oxidizing" and "Reducing" for far-field Legs 1, 2, and 3 in separate simulations.
Results:	Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237.

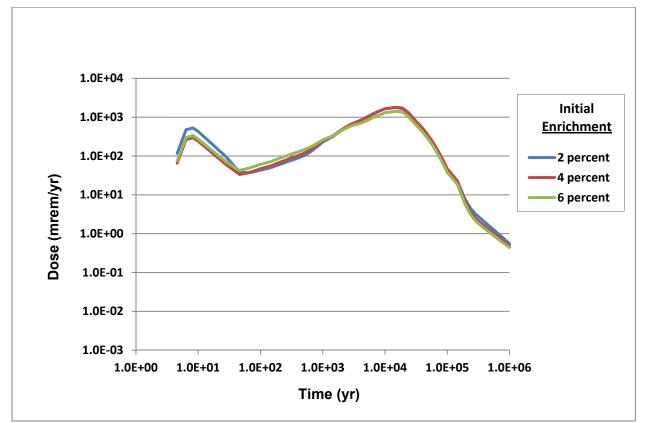


Figure 4-9. Total Dose for Simulation 2: Initial Enrichment—Oxidizing

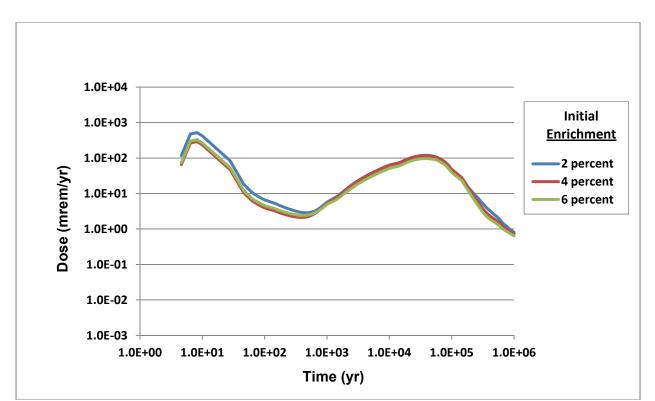


Figure 4-10. Total Dose for Simulation 2: Initial Enrichment—Reducing

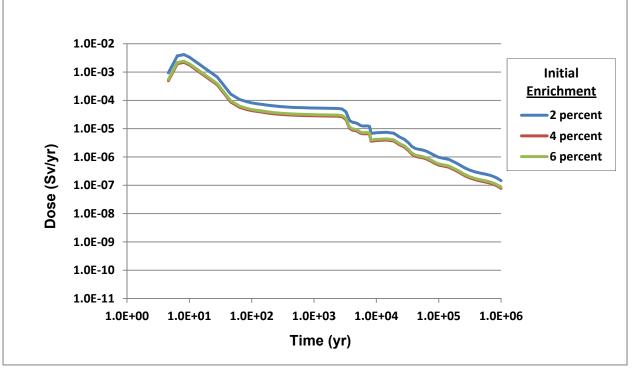


Figure 4-11. I-129 Dose for Simulation 2: Initial Enrichment—Oxidizing



Figure 4-12. I-129 Dose for Simulation 2: Initial Enrichment—Reducing

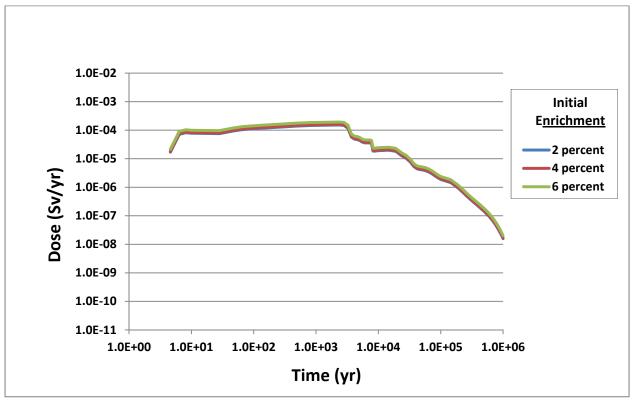


Figure 4-13. Tc-99 Dose for Simulation 2: Initial Enrichment—Oxidizing

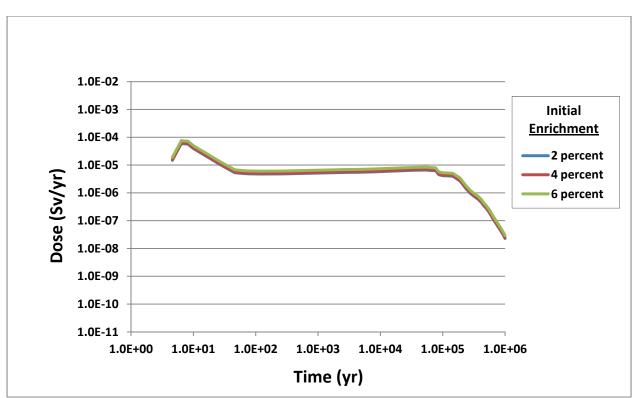


Figure 4-14. Tc-99 Dose for Simulation 2: Initial Enrichment—Reducing

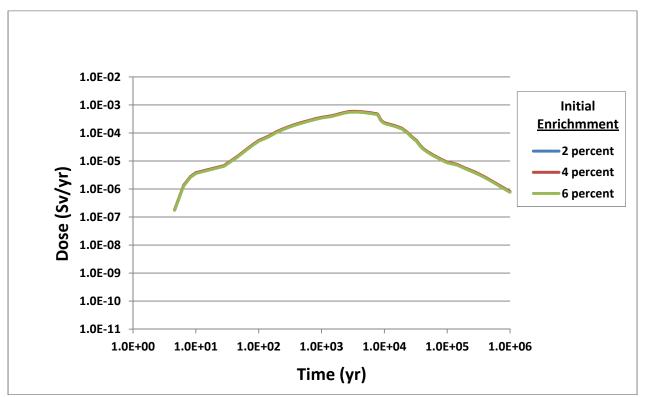


Figure 4-15. Np-237 Dose for Simulation 2: Initial Enrichment—Oxidizing

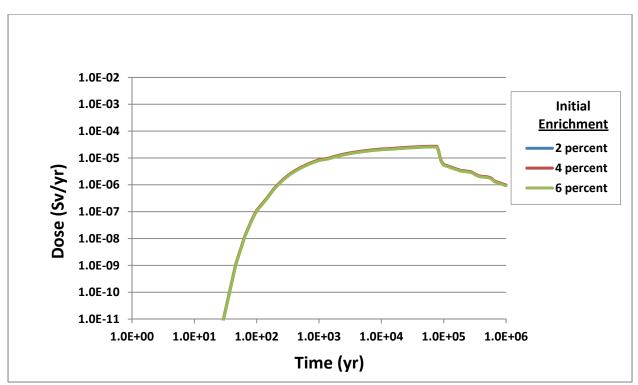


Figure 4-16. Np-237 Dose for Simulation 2: Initial Enrichment—Reducing

Simulation 3: Burnup	
Objective:	Show the effect on dose of varying the burnup for spent nuclear fuel in both oxidizing and reducing environments.
Test Environment:	GoldSim_Player_10.5SP1
SOAR Version:	1.0.02
Input Control Changes:	 Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel equal to 100,000 MT.
	 Set "Burnup value (GWd/MTU)" equal to 25 and 40 in separate simulations.
	 Set the Redox condition as "Oxidizing" and "Reducing" for far-field Legs 1, 2, and 3 in separate simulations.
Results:	Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237.

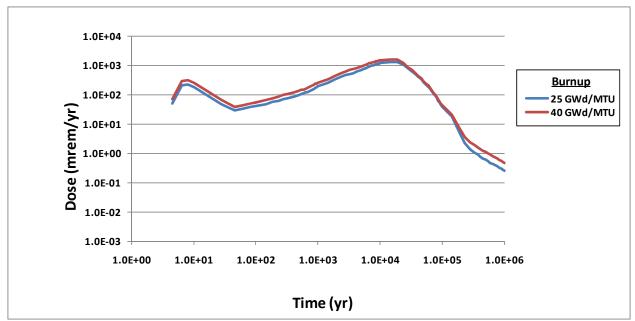


Figure 4-17. Total Dose for Simulation 3: Burnup—Oxidizing

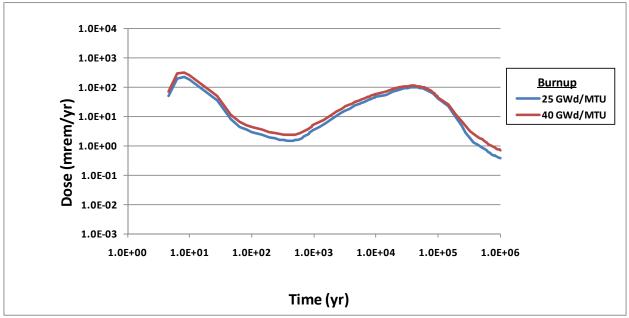


Figure 4-18. Total Dose for Simulation 3: Burnup—Reducing

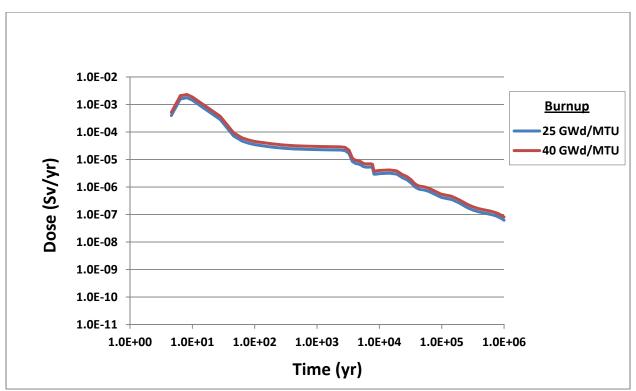


Figure 4-19. I-129 Dose for Simulation 3: Burnup—Oxidizing

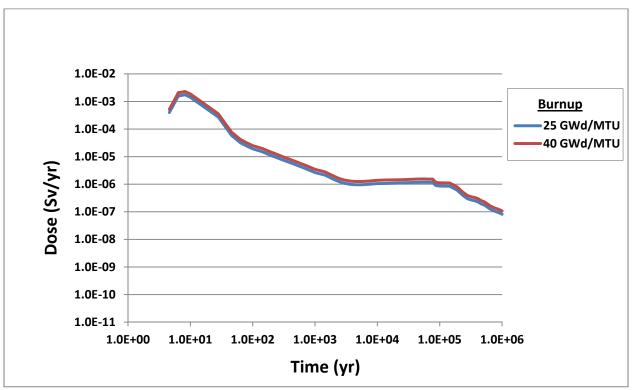


Figure 4-20. I-129 Dose for Simulation 3: Burnup—Reducing

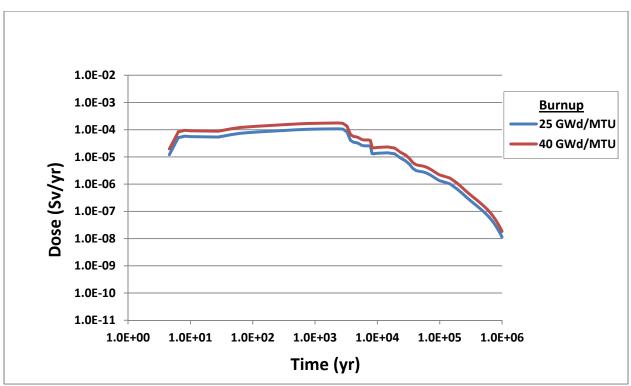


Figure 4-21. Tc-99 Dose for Simulation 3: Burnup—Oxidizing

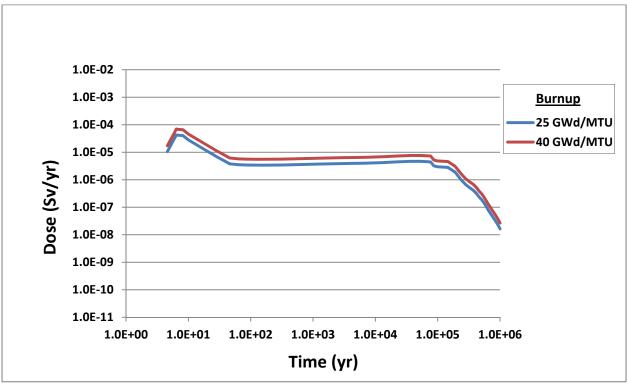


Figure 4-22. Tc-99 Dose for Simulation 3: Burnup—Reducing

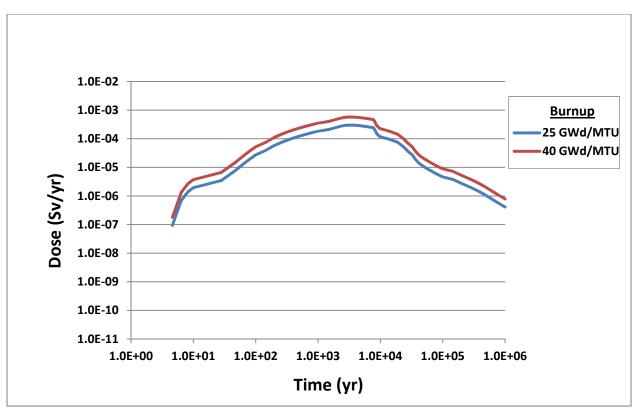


Figure 4-23. Np-237 Dose for Simulation 3: Burnup—Oxidizing

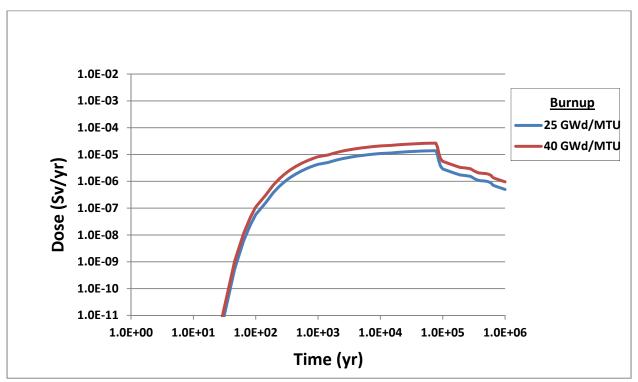
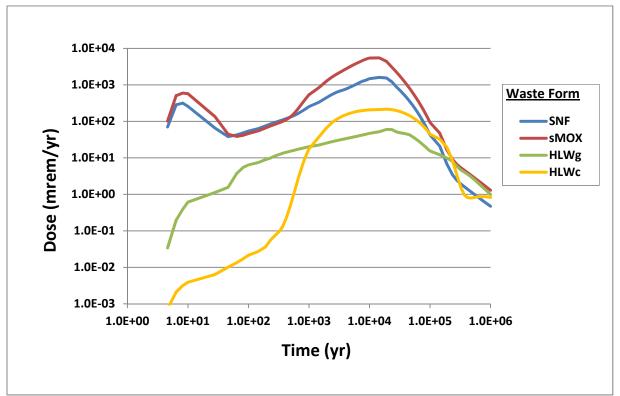
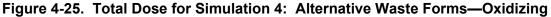


Figure 4-24. Np-237 Dose for Simulation 3: Burnup—Reducing

Simulation 4: Alternative Waste Forms


Objective: Show the effect on dose of the waste form type [i.e., spent nuclear fuel, spent mixed-oxide fuel, high-level waste (glass), and high-level waste (ceramic)] in both oxidizing and reducing environments.


Test Environment: GoldSim_Player_10.5SP1

SOAR Version: 1.0.02

- Input Control Changes: Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel, spent mixed-oxide fuel, high-level waste (glass), and high-level waste (ceramic) equal to 100,000 MT in separate simulations.
 - Set the Redox condition as "Oxidizing" and "Reducing" for far-field Legs 1, 2, and 3 in separate simulations.

Results: Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237.

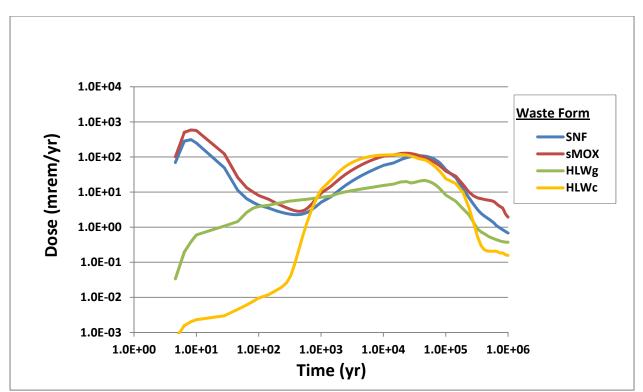


Figure 4-26. Total Dose for Simulation 4: Alternative Waste Forms—Reducing

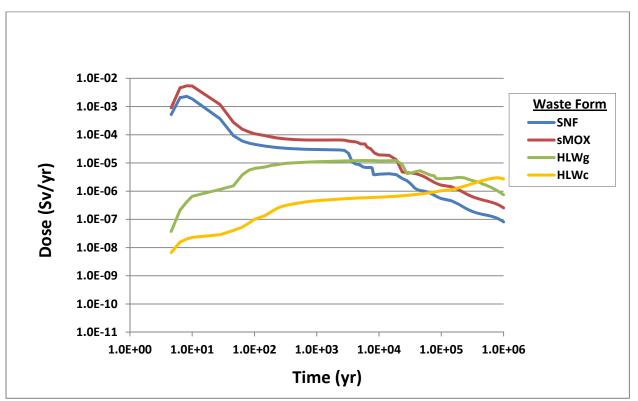


Figure 4-27. I-129 Dose for Simulation 4: Alternative Waste Forms—Oxidizing

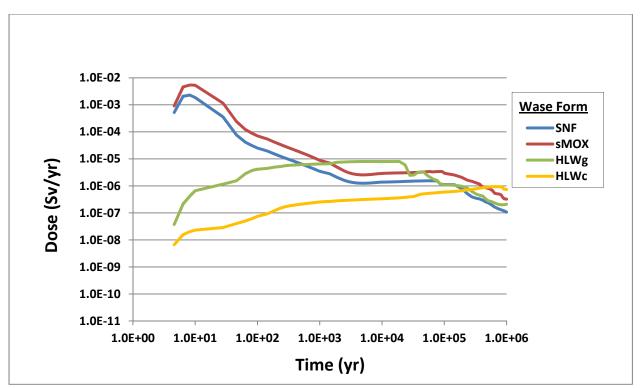


Figure 4-28. I-129 Dose for Simulation 4: Alternative Waste Forms—Reducing

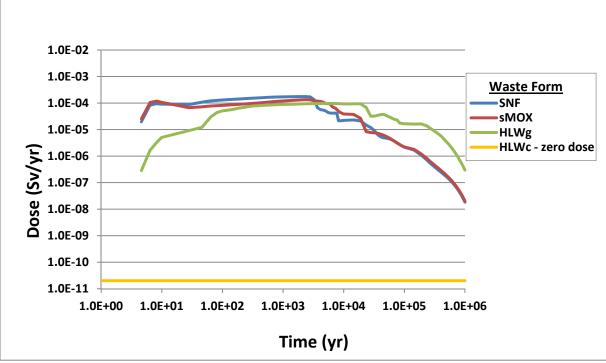


Figure 4-29. Tc-99 Dose for Simulation 4: Alternative Waste Forms—Oxidizing

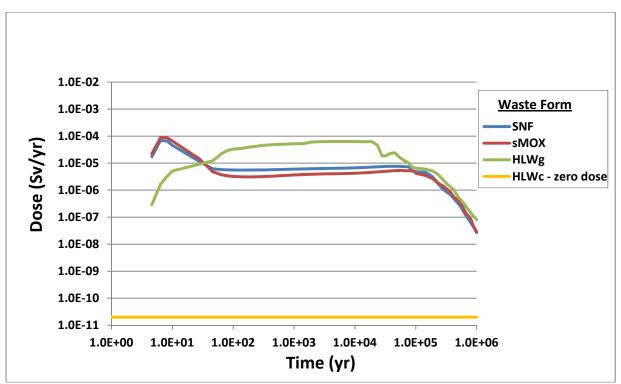


Figure 4-30. Tc-99 Dose for Simulation 4: Alternative Waste Forms—Reducing

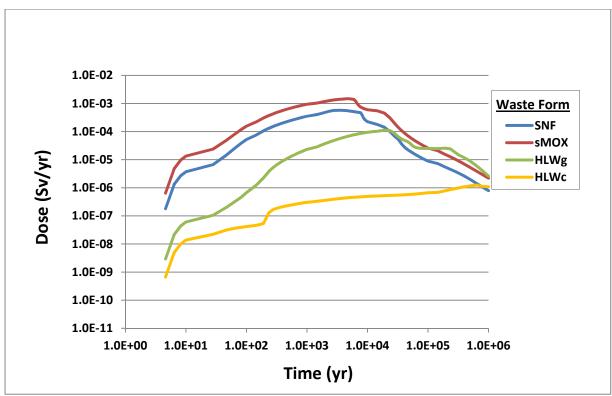


Figure 4-31. Np-237 Dose for Simulation 4: Alternative Waste Forms—Oxidizing

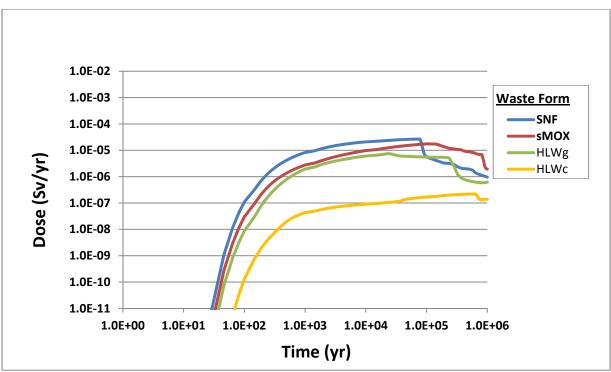


Figure 4-32. Np-237 Dose for Simulation 4: Alternative Waste Forms—Reducing

Objective:	Show the effect on dose of varying the high-level waste loading (glass and ceramic) in an oxidizing environment.
Test Environment:	GoldSim_Player_10.5SP1
SOAR Version:	1.0.02
Input Control Changes:	 Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for high-level waste (glass) and high-level waste (ceramic) equal to 100,000 MT in separate simulations.
	 Set "Waste form loading factor (percent)" equal to 1, 5, 10, 25, 50, and 100 (and others as needed) in separate simulations.
	 Set the Redox condition as "Oxidizing" for far-field Legs 1, 2, and 3.
Results:	Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237.

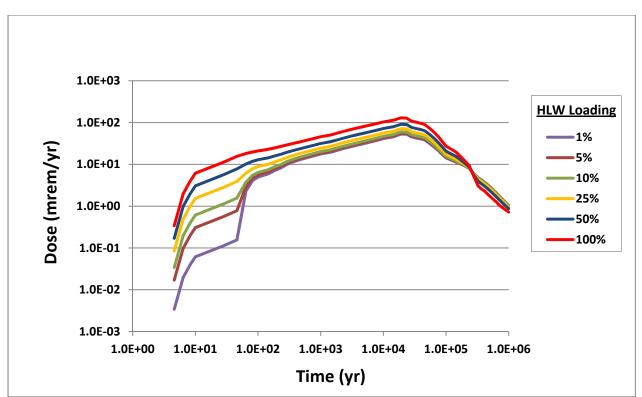


Figure 4-33. Total Dose for Simulation 5: High-Level Waste (Glass) Loading—Oxidizing

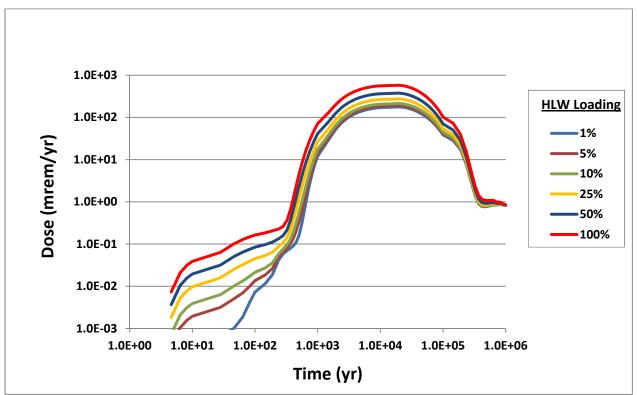


Figure 4-34. Total Dose for Simulation 5: High-Level Waste (Ceramic) Loading—Oxidizing

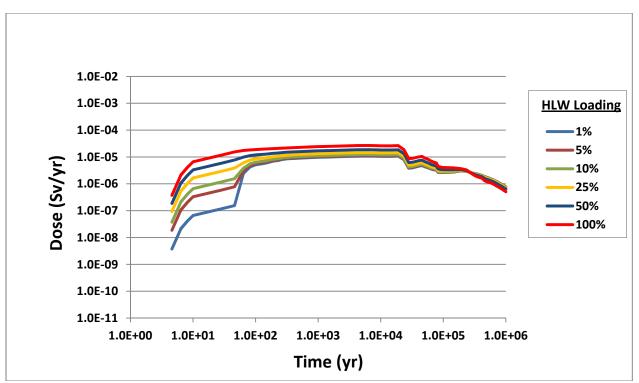


Figure 4-35. I-129 Dose for Simulation 5: High-Level Waste (Glass) Loading—Oxidizing

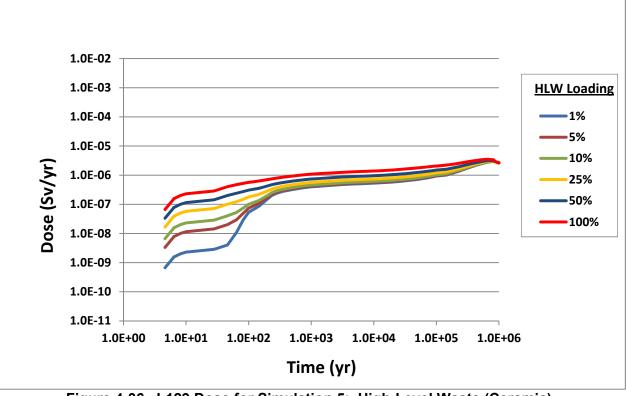


Figure 4-36. I-129 Dose for Simulation 5: High-Level Waste (Ceramic) Loading—Oxidizing

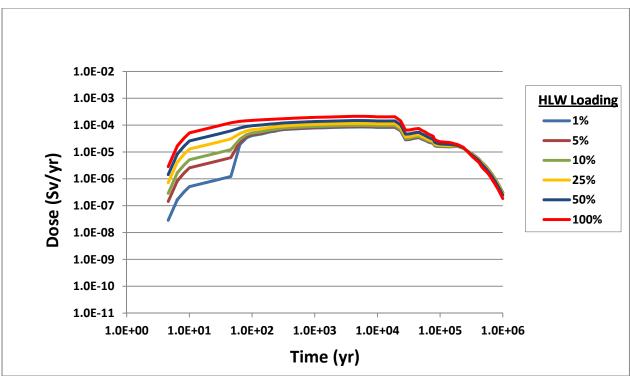
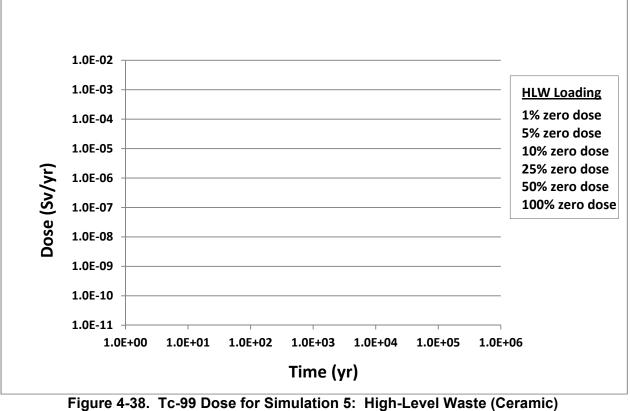



Figure 4-37. Tc-99 Dose for Simulation 5: High-Level Waste (Glass) Loading—Oxidizing

Loading—Oxidizing

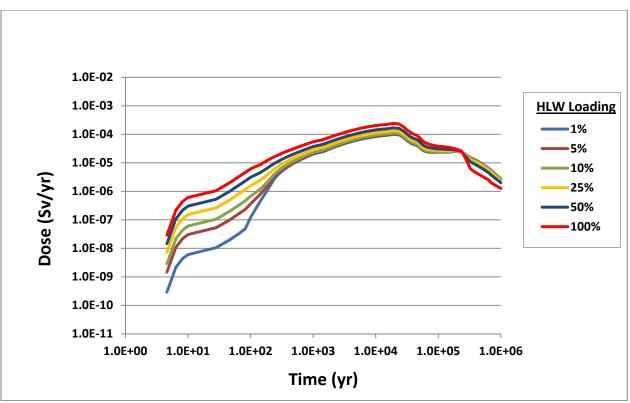


Figure 4-39. Np-237 Dose for Simulation 5: High-Level Waste (Glass) Loading—Oxidizing

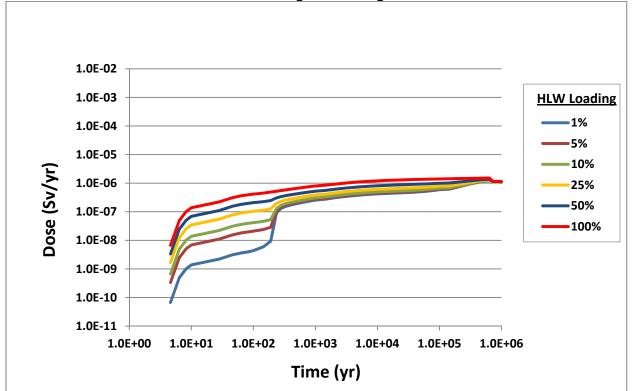


Figure 4-40. Np-237 Dose for Simulation 5: High-Level Waste (Ceramic) Loading—Oxidizing

Simulation 6: Mass Per Waste Package

Objective: Show the effect on dose of varying the total mass disposed for high-level waste (glass and ceramic) per waste package in an oxidizing environment.

Test Environment: GoldSim_Player_10.5SP1

SOAR Version: 1.0.02

- Input Control Changes: Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for high-level waste (glass) and high-level waste (ceramic) equal to 100,000 MT in separate simulations.
 - Set "Total Disposed Mass per Waste Package (grams)" equal to 100, 1,000, 10,000, and 100,000 (and others as needed) in separate simulations.
 - Set the Redox condition as "Oxidizing" for far-field Legs 1, 2, and 3.

Results: Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237.

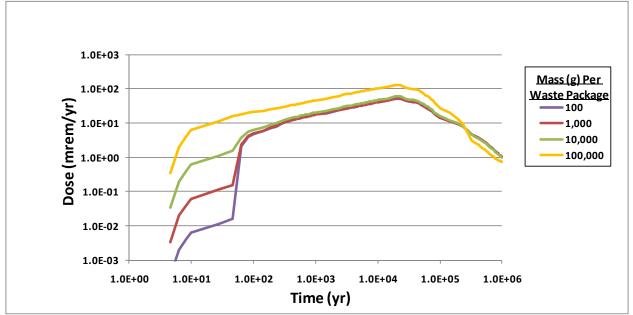


Figure 4-41. Total Dose for Simulation 6: High-Level Waste (Glass) Mass Per Waste Package—Oxidizing

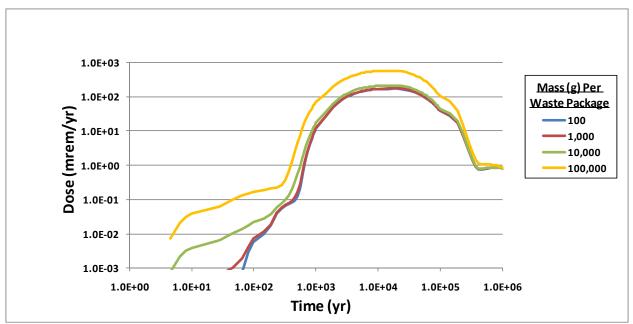


Figure 4-42. Total Dose for Simulation 6: High-Level Waste (Ceramic) Mass Per Waste Package—Oxidizing

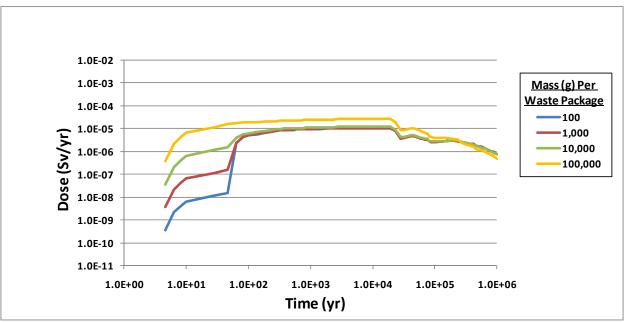


Figure 4-43. I-129 Dose for Simulation 6: High-Level Waste (Glass) Mass Per Waste Package—Oxidizing

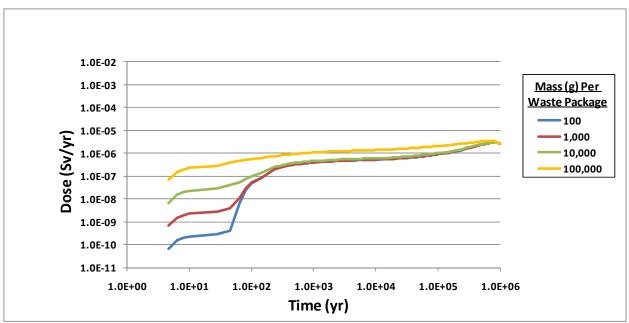


Figure 4-44. I-129 Dose for Simulation 6: High-Level Waste (Ceramic) Mass Per Waste Package—Oxidizing

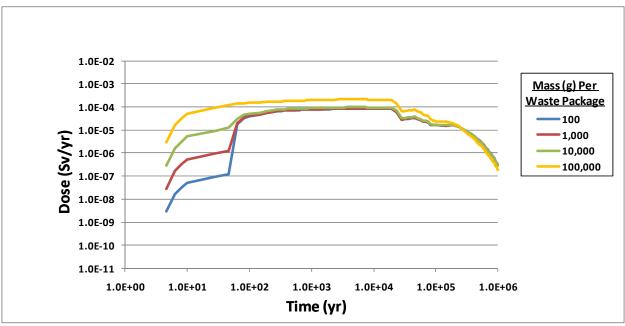


Figure 4-45. Tc-99 Dose for Simulation 6: High-Level Waste (Glass) Mass Per Waste Package—Oxidizing

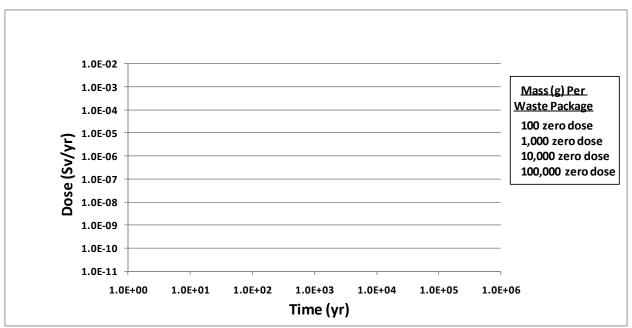


Figure 4-46. Tc-99 Dose for Simulation 6: High-Level Waste (Ceramic) Mass Per Waste Package—Oxidizing

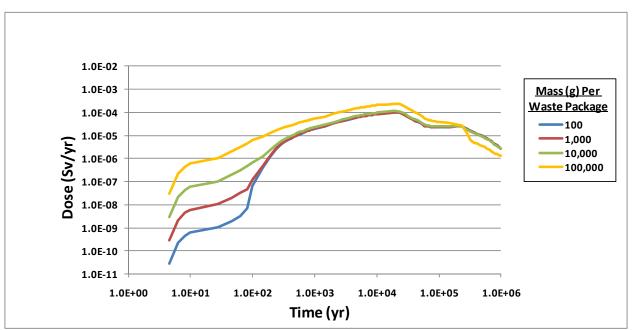


Figure 4-47. Np-237 Dose for Simulation 6: High-Level Waste (Glass) Mass Per Waste Package—Oxidizing

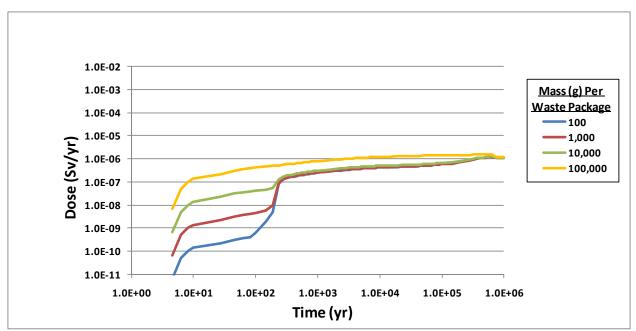
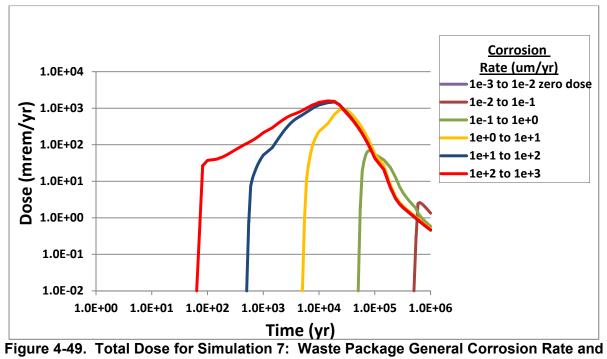



Figure 4-48. Np-237 Dose for Simulation 6: High-Level Waste (Ceramic) Mass Per Waste Package—Oxidizing

Simulation 7: Waste Package General Corrosion Rate

Objective:	Show the effect on dose of varying the general corrosion rate in an oxidizing environment.
Test Environment:	GoldSim_Player_10.5SP1
SOAR Version:	1.0.02
	(This is a special version of the code that is not available to the user. It provides for the direct input of general corrosion rates on the dashboard to enable early failure of the waste package by corrosion.)
Input Control Changes:	 Modified dashboard to allow a user-defined material for the waste package. The user can define the bounds of the corrosion rate distribution in the modified dashboard.
	 Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel equal to 100,000 MT.
	 Set "Waste package material" as "User defined," "Distribution of general corrosion rates" as "Uniform," and "Scale of distribution of general corrosion rates" as "Linear."

	 Set "User-defined low bound GC (μm/yr)" and "User-defined high bound GC (μm/yr)" as 1e-3 to 1e-2, 1e-2 to 1e-1, 1e-1 to 1e0, 1e0 to 1e1, 1e1 to 1e2, and 1e2 to 1e3 μm/yr, respectively, in separate simulations.
	 Set the Redox condition as "Oxidizing" for far-field Legs 1, 2, and 3.
	 Activate "Check to define waste package thickness (default values used if unchecked)" and set "Waste package thickness (cm): (only used if above is checked)" equal to 5 cm.
	 Set "Type of disruptive event" as "None."
Results:	Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237.

5-cm Waste Package Thickness—Oxidizing

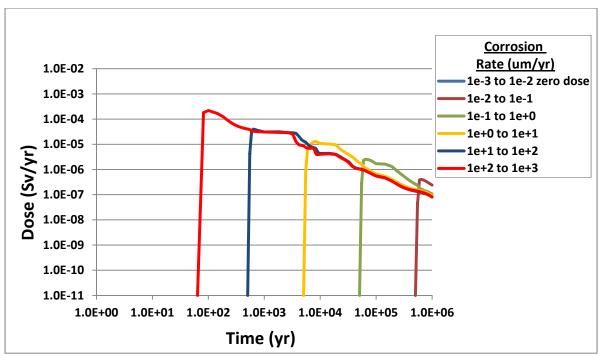


Figure 4-50. I-129 Dose for Simulation 7: Waste Package General Corrosion Rate and 5-cm Waste Package Thickness—Oxidizing

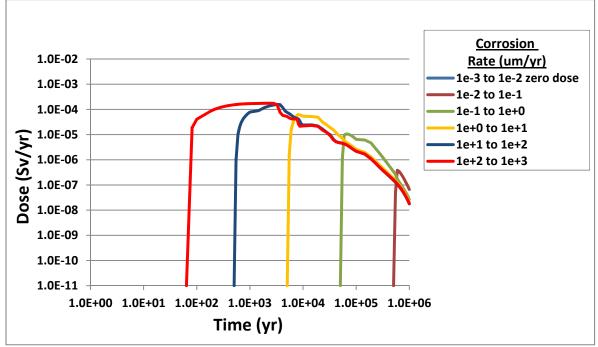


Figure 4-51. Tc-99 Dose for Simulation 7: Waste Package General Corrosion Rate and 5-cm Waste Package Thickness—Oxidizing



Figure 4-52. Np-237 Dose for Simulation 7: Waste Package General Corrosion Rate and 5-cm Waste Package Thickness—Oxidizing

Simulation 8: Waste Package Breach Area

Objective:	Show the effect on dose of varying the waste package breach area in an oxidizing environment.
Test Environment:	GoldSim_Player_10.5SP1
SOAR Version:	1.0.02
	(This is a special version of the code that is not available to the user. It provides for the direct input of general corrosion rates on the dashboard to enable early waste package failure by corrosion.)
Input Control Changes:	 Modified dashboard to allow a user-defined material for the waste package. The user can define the bounds of the corrosion rate distribution in the modified dashboard.
	 Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel equal to 100,000 MT.
	 Set "Minimum general corrosion breach area fraction" and "Maximum general corrosion breach area fraction" equal to 1e-2 to 1.01e-2, 1e-4 to 1.01e-4, and 1e-6 to 1.01e-6, respectively, in separate simulations.

Set the Redox condition as "Oxidizing" for far-field Legs 1, 2, and 3.
 Set "User-defined low bound GC (um/yr)" and "User- defined high bound GC (um/yr)" equal to .999e6 and 1e6.
 Set "Type of disruptive event" as "none."
 Deactivate "Bypass the backfill (diffusive barrier)."
 Results: Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237.

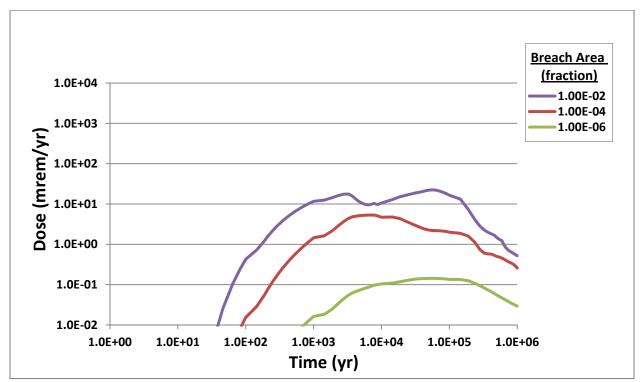


Figure 4-53. Total Dose for Simulation 8: Waste Package Breach Area With General Corrosion Rate 1e6 um/yr and Not Bypassing the Backfill—Oxidizing

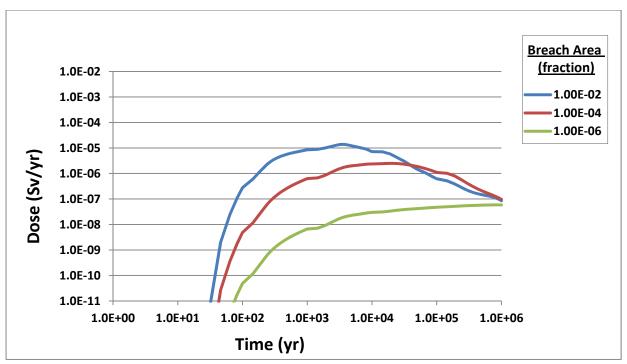


Figure 4-54. I-129 Dose for Simulation 8: Waste Package Breach Area With General Corrosion Rate 1e6 um/yr and Not Bypassing the Backfill—Oxidizing

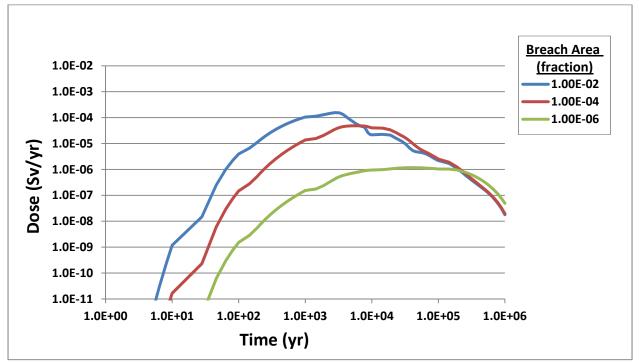


Figure 4-55. Tc-99 Dose for Simulation 8: Waste Package Breach Area With General Corrosion Rate 1e6 um/yr and Not Bypassing the Backfill—Oxidizing

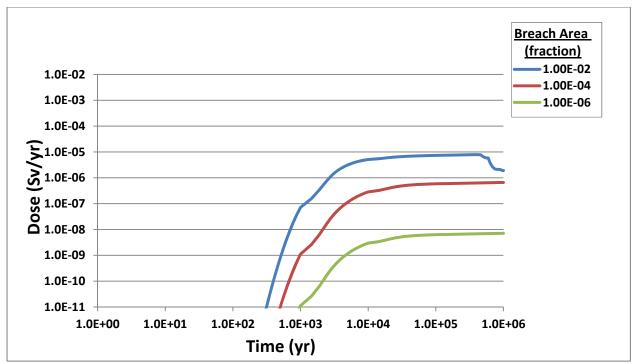


Figure 4-56. Np-237 Dose for Simulation 8: Waste Package Breach Area With General Corrosion Rate 1e6 um/yr and Not Bypassing the Backfill—Oxidizing

Simulation 9: Buffer Integrity

Objective:	For spent nuclear fuel in an oxidizing environment, show the effect on dose of (i) the percentage of buffer degradation when the expected lifetime of the backfill is fixed at 1 year and (ii) the expected lifetime of the backfill when the percentage of buffer degradation is fixed at 50 percent.
Test Environment:	GoldSim_Player_10.5SP1
SOAR Version:	1.0.02
Input Control Changes:	For varying fraction of backfill cracked,
	 Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel equal to 100,000 MT.
	 Deactivate "Bypass the backfill (diffusive barrier)," and activate "Enable degradation of the backfill (diffusive barrier)."
	 Set "Minimum time of initial backfill failure (year)" and "Maximum time of initial backfill failure (year)" equal to 1 and 1.1 year, respectively.

- Set "Minimum expected lifetime of backfill (year)" and "Maximum expected lifetime of backfill (year)" equal to 1 and 1.1 year, respectively.
- Set "Minimum fraction of backfill cracked" equal to 0.0, 0.0001, 0.001, 0.01, 0.1, and 0.99 in separate simulations with corresponding "Maximum fraction of backfill cracked" set equal to 0.0000001, 0.000101, 0.00101, 0.0101, 0.101, and 1.
- Set the Redox condition as "Oxidizing" for far-field Legs 1, 2, and 3.

For varying backfill lifetime,

- Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel equal to 100,000 MT.
- Deactivate "Bypass the backfill (diffusive barrier)," and activate "Enable degradation of the backfill (diffusive barrier)."
- Set "Minimum time of initial backfill failure (year)" and "Maximum time of initial backfill failure (year)" equal to 1 and 1.1 year, respectively.
- Set "Minimum expected lifetime of backfill (year)" and "Maximum expected lifetime of backfill (year)" equal to 1e0 to 1.01e0, 1e1 to 1.01e1, 1e2 to 1.01e2, 1e3 to 1.01e3, 1e4 to 1.01e4, 1e5 to 1.01e5, and 0.99e6 to 1.0e6 years, respectively, in separate simulations.
- Set "Minimum fraction of backfill cracked" and "Maximum fraction of backfill cracked" equal to 0.5e0 to 0.501e0.
- Set the Redox condition as "Oxidizing" for far-field Legs 1, 2, and 3.
- Results: Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237.

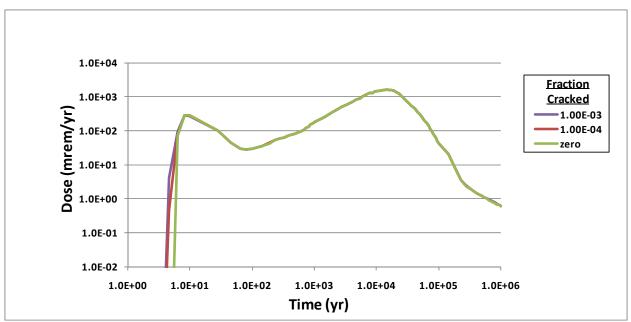


Figure 4-57. Total Dose for Simulation 9: Buffer Integrity With Varying Fraction Backfill Cracked—Oxidizing

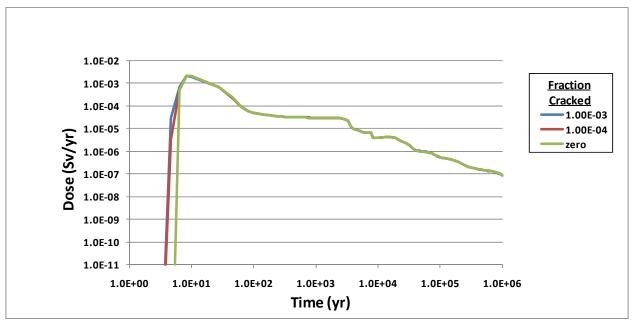


Figure 4-58. I-129 Dose for Simulation 9: Buffer Integrity With Varying Fraction Backfill Cracked—Oxidizing

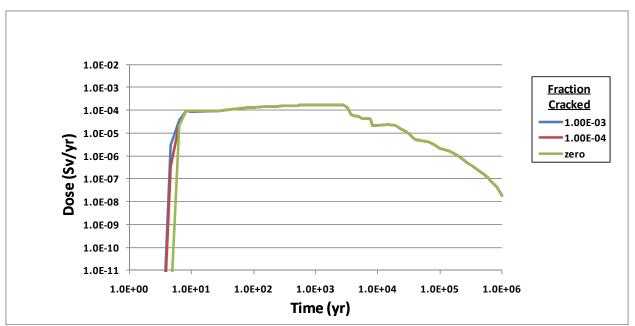


Figure 4-59. Tc-99 Dose for Simulation 9: Buffer Integrity With Varying Fraction Backfill Cracked—Oxidizing

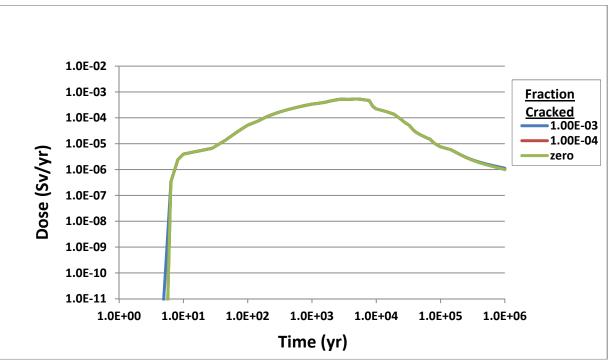


Figure 4-60. Np-237 Dose for Simulation 9: Buffer Integrity With Varying Fraction Backfill Cracked—Oxidizing

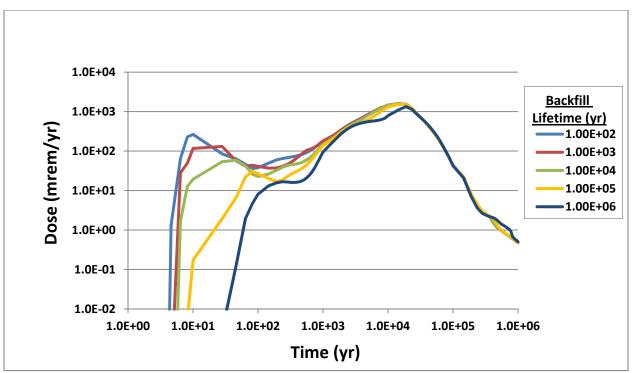


Figure 4-61. Total Dose for Simulation 9: Buffer Integrity With Varying Backfill Lifetime—Oxidizing

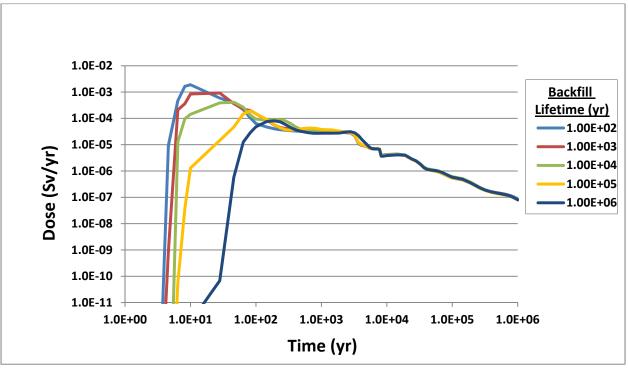


Figure 4-62. I-129 Dose for Simulation 9: Buffer Integrity With Varying Backfill Lifetime—Oxidizing

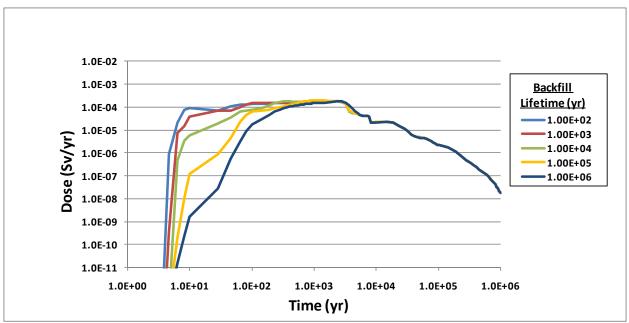


Figure 4-63. Tc-99 Dose for Simulation 9: Buffer Integrity With Varying Backfill Lifetime—Oxidizing

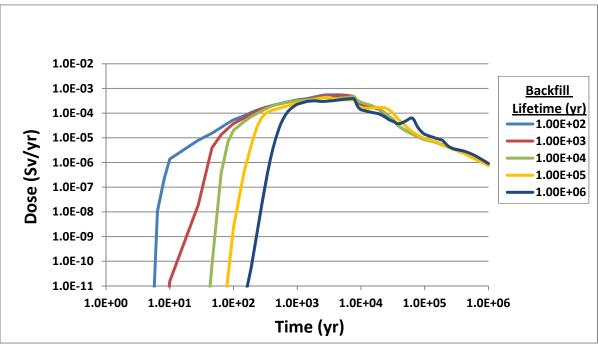


Figure 4-64. Np-237 Dose for Simulation 9: Buffer Integrity With Varying Backfill Lifetime—Oxidizing

Simulation 10: Waste Package Water Volume

Objective: Show the effect on dose of varying the volume of water inside the waste package in an oxidizing environment.

Test Environment: GoldSim_Player_10.5SP1

SOAR Version: 1.0.02a

- Input Control Changes: Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel equal to 100,000 MT.
 - Set "Water volume inside the waste package (cubic meters)" equal to 0.01, 0.1, 1.0, and 10 m³ in separate simulations.
 - Set the Redox condition as "Oxidizing" for far-field Legs 1, 2, and 3.

Results: Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237.

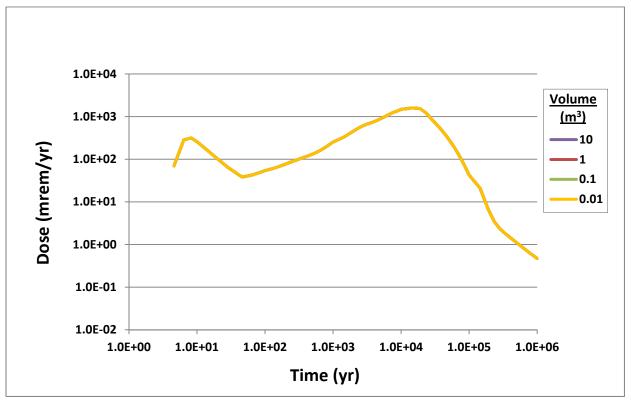


Figure 4-65. Total Dose for Simulation 10: Waste Package Water Volume—Oxidizing

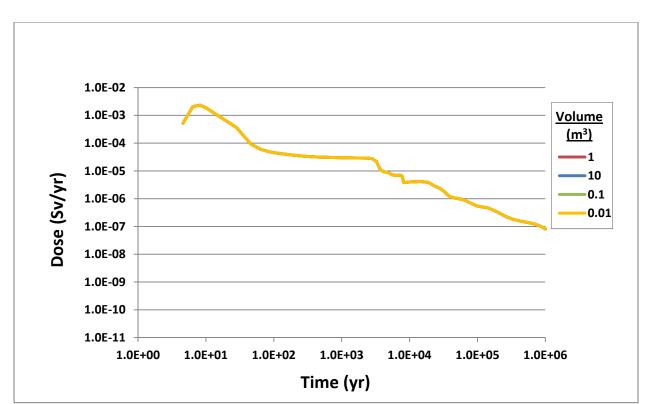
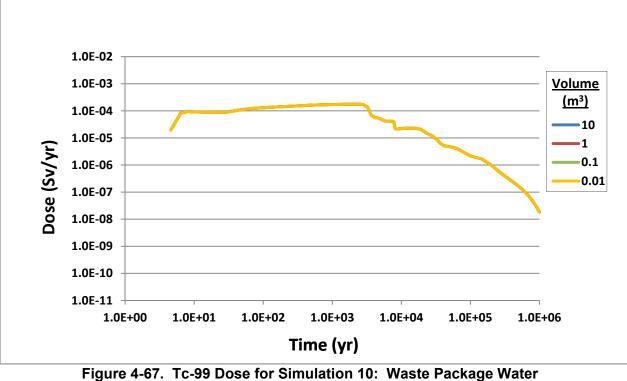



Figure 4-66. I-129 Dose for Simulation 10: Waste Package Water Volume—Oxidizing

Volume—Oxidizing

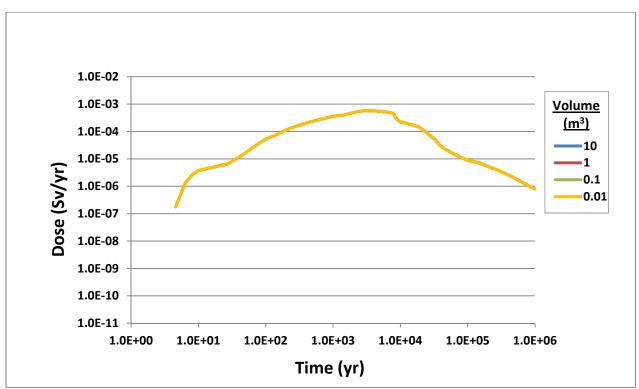


Figure 4-68. Np-237 Dose for Simulation 10: Waste Package Water Volume—Oxidizing

Simulation 11:	Hydraulic Gradient
----------------	--------------------

Objective:	Show the effect on dose of varying the hydraulic gradient in the far field with fractured rock and porous rock in an oxidizing environment.
Test Environment:	GoldSim_Player_10.5SP1
SOAR Version:	1.0.02a
Input Control Changes:	 Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel equal to 100,000 MT.
	 Set "Hydraulic gradient (sediments and porous rock only)" equal to 1, 1e-2, 1e-4, 1e-6, and 1e-8, as needed, for far-field Legs 1, 2, and 3 in separate simulations.
	 Set "Geologic media" as "Fractured Rock" and "Porous Rock" for far field Legs 1, 2, and 3 in separate simulations.
	 Set the Redox condition as "Oxidizing" for far-field Legs 1, 2, and 3.
Results:	Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237.

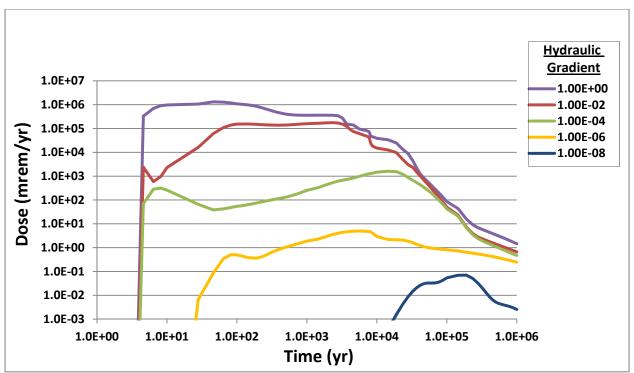


Figure 4-69. Total Dose for Simulation 11: Hydraulic Gradient With Fractured Rock—Oxidizing

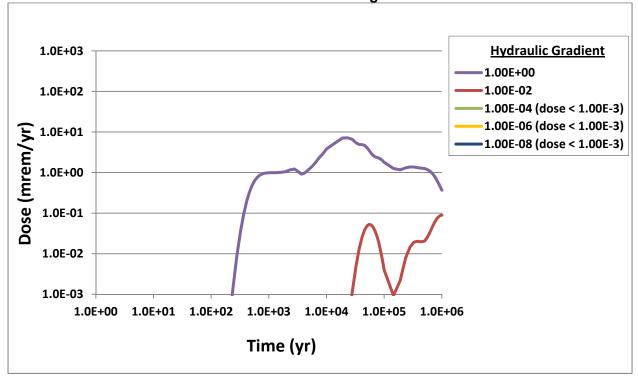
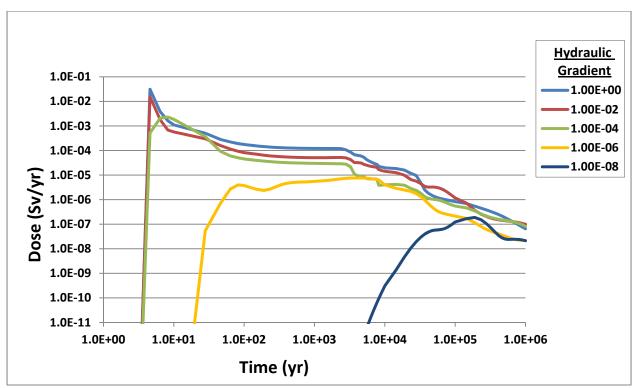
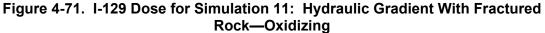
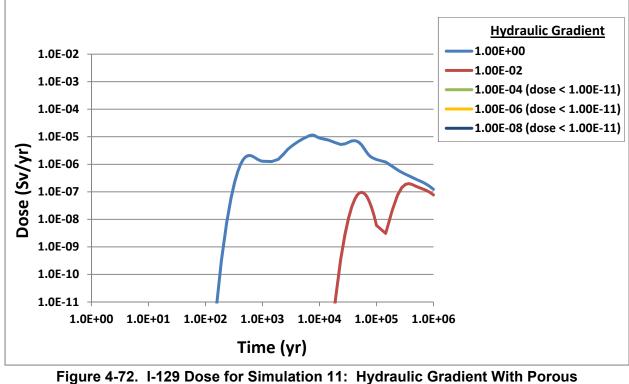





Figure 4-70. Total Dose for Simulation 11: Hydraulic Gradient With Porous Rock—Oxidizing

Rock—Oxidizing

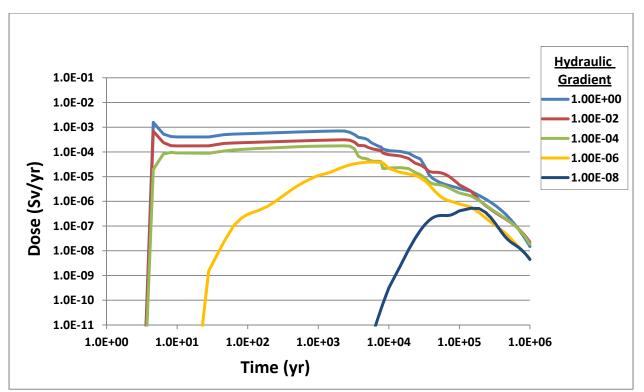


Figure 4-73. Tc-99 Dose for Simulation 11: Hydraulic Gradient with Fractured Rock—Oxidizing

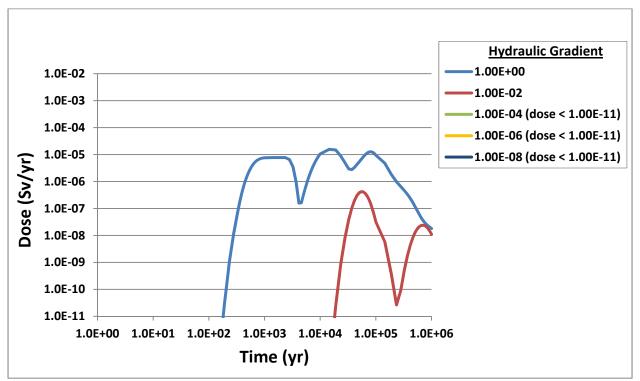


Figure 4-74. Tc-99 Dose for Simulation 11: Hydraulic Gradient With Porous Rock—Oxidizing

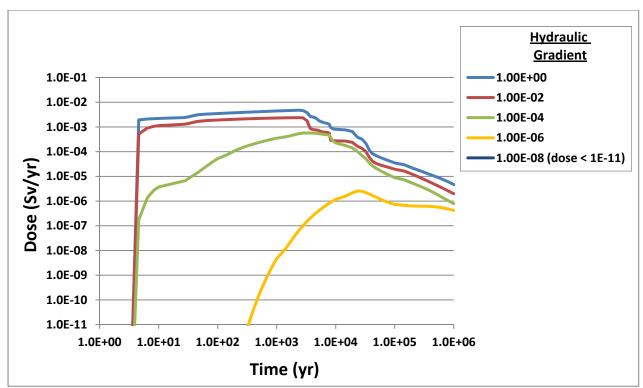


Figure 4-75. Np-237 Dose for Simulation 11: Hydraulic Gradient With Fractured Rock—Oxidizing

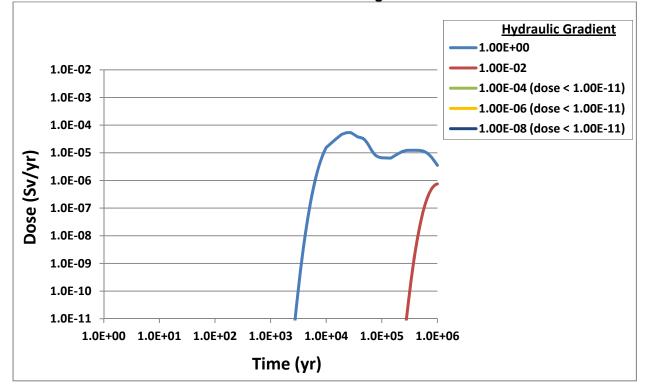


Figure 4-76. Np-237 Dose for Simulation 11: Hydraulic Gradient With Porous Rock—Oxidizing

Simulation 12: Redox	
Objective:	Show the effect on dose of unconsolidated sediments, fractured rock, and porous rock in an oxidizing environment and in a reducing environment.
Test Environment:	GoldSim_Player_10.5SP1
SOAR Version:	1.0.02
Input Control Changes:	 Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel equal to 100,000 MT.
	 Set Geologic Media for all three far-field legs to "Unconsolidated Sediments," "Fractured Rock," and "Porous rock" in separate simulations.
	 Set the Redox condition as "Oxidizing" and "Reducing" for far-field Legs 1, 2, and 3 in separate simulations.
Results:	Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and

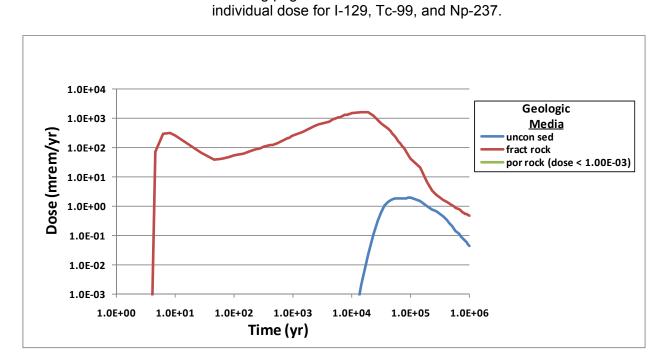


Figure 4-77. Total Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured Rock, and Porous Rock—Oxidizing

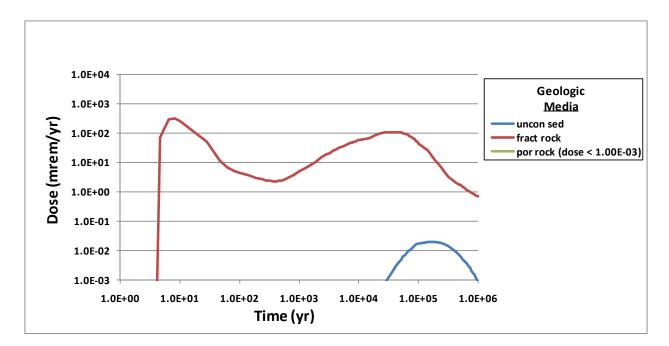


Figure 4-78. Total Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured Rock, and Porous Rock—Reducing

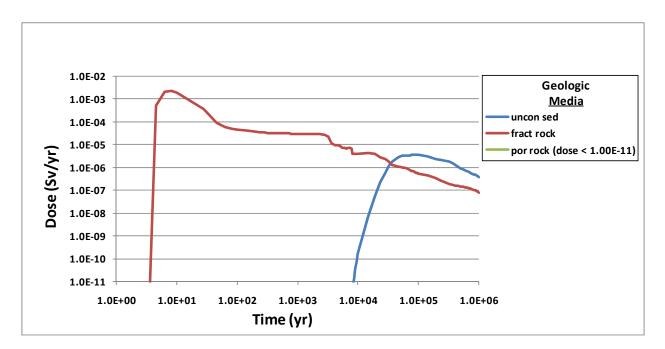


Figure 4-79. I-129 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured Rock, and Porous Rock—Oxidizing

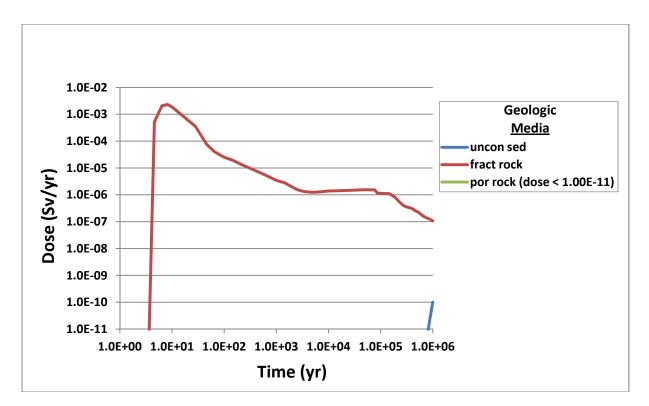


Figure 4-80. I-129 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured Rock, and Porous Rock—Reducing

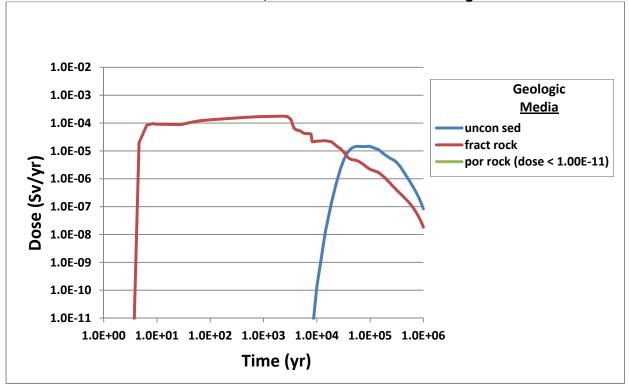


Figure 4-81. Tc-99 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured Rock, and Porous Rock—Oxidizing

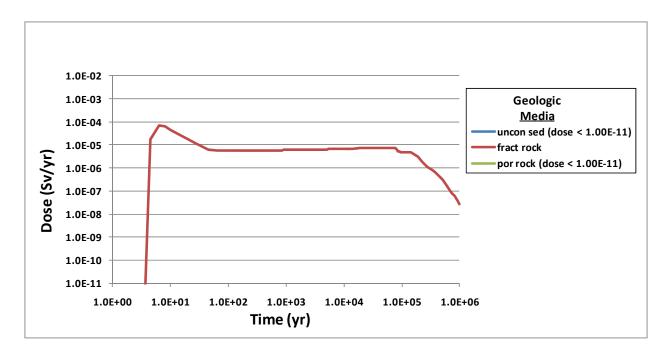


Figure 4-82. Tc-99 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured Rock, and Porous Rock—Reducing

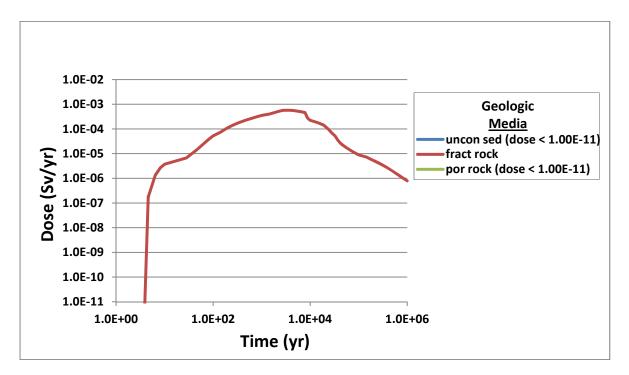
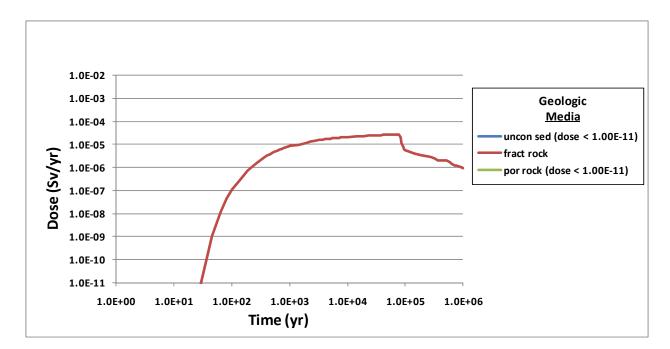



Figure 4-83. Np-237 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured Rock, and Porous Rock—Oxidizing

Figure 4-84. Np-237 Dose for Simulation 12: Redox in Unconsolidated Sediments, Fractured Rock, and Porous Rock—Reducing

Simulation 13: Disturbed Zone Characteristics

Objective:	Show the effect on dose of radionuclide sorption in the transition
	region between the buffer and the far field in an oxidizing
	environment and in a reducing environment.

- Test Environment: GoldSim_Player_10.5SP1
- SOAR Version: 1.0.02
- Input Control Changes: Set "Additional Radionuclide Inventory (Total Waste Mass in Metric Tons)" for spent nuclear fuel equal to 100,000 MT.
 - Activate and deactivate "Enable radionuclide sorption in the transition region between the buffer and the far field" in separate simulations.
 - Set the Redox condition as "Oxidizing" and "Reducing" for far-field Legs 1, 2, and 3 in separate simulations.
- Results: Simulations were performed, and results are provided on the following pages. Plots include time histories of total dose and individual dose for I-129, Tc-99, and Np-237. As a general note, "active" curves are hidden below the "inactive" curves and are better visible under higher magnification.

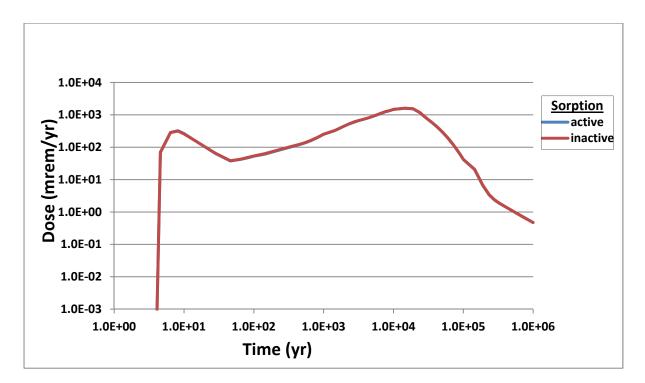


Figure 4-85. Total Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Oxidizing

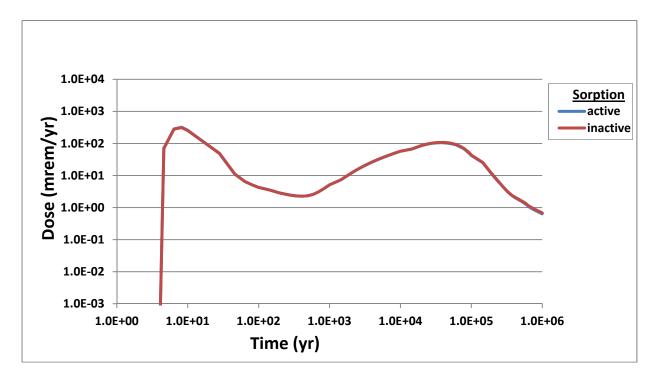


Figure 4-86. Total Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Reducing

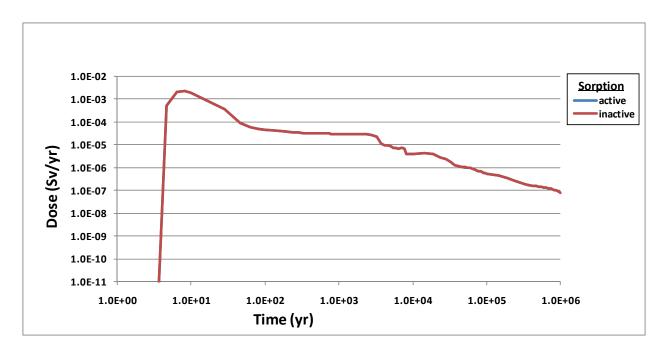


Figure 4-87. I-129 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Oxidizing

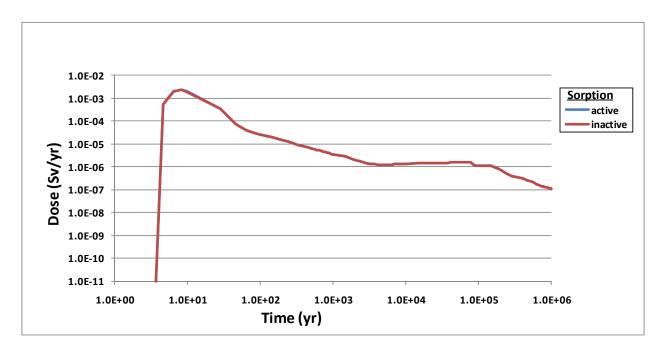


Figure 4-88. I-129 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Reducing

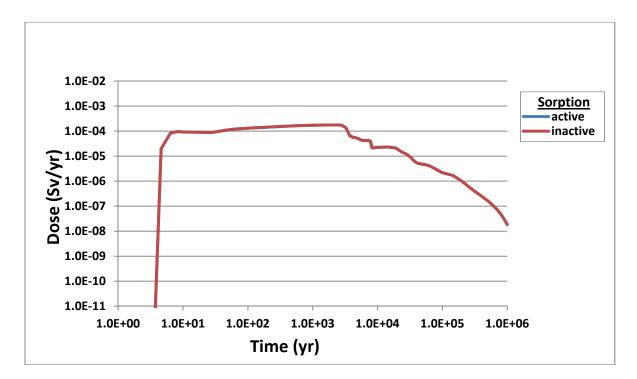


Figure 4-89. Tc-99 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Oxidizing

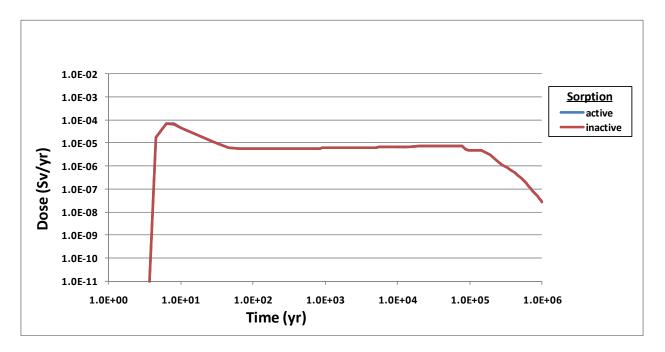


Figure 4-90. Tc-99 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Reducing

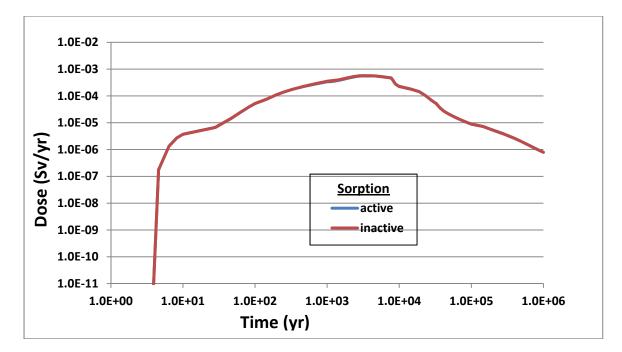


Figure 4-91. Np-237 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Oxidizing

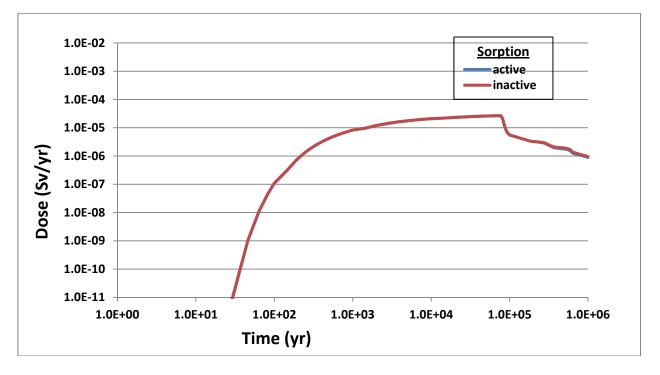


Figure 4-92. Np-237 Dose for Simulation 13: Disturbed Zone Characteristics With and Without Sorption in the Transition Region—Reducing

5 COMPARISON TO LITERATURE RESULTS

This chapter presents the results from benchmarking of the **S**coping of **Q**ptions and **A**nalyzing **R**isk (SOAR) model (Markley, et al., 2011) against system-level assessments of two geologic repository programs for which data and results were readily available in the literature: (i) the Japanese repository system as described in Japan Nuclear Cycle Development Institute (JNC, 2000) and (ii) a Swedish repository system as described in Svensk Kärnbränslehantering AB (SKB, 2011). Benchmarking involved adjusting the SOAR model and the associated parameters, as needed, to simulate these systems as described in the cited literature. Only selected cases and selected model outputs were considered, for which input data were readily available, and for which it was considered that SOAR could be minimally modified to emulate particular outputs. The objective of the comparison exercise was not to accurately reproduce results reported in the literature, but to produce comparable trends and magnitudes in release rates and dose estimates. Details on the simulated system and the SOAR model changes are provided in the subsections.

5.1 Simulation of Engineered Barrier System Release Rates of Japanese Geologic Disposal System

Objective

The test objective was to simulate engineered barrier system (EBS) release rates for the Japanese geologic disposal system as defined in JNC (2000) using SOAR and appropriate input parameter and minor model modifications. JNC (2000, Figure 5.3.5-5) reports release rates away from the buffer material per waste package (in units of Bq/yr) as a function of time. Release rates from the buffer material computed with a modified version of SOAR were compared to these JNC data.

System Description

The engineered barrier system described in JNC (2000) includes a glass waste form, enclosed in a cylindrical waste package, surrounded by bentonite buffer material (a cylindrical annulus 0.7 m thick). The rate of glass waste dissolution (in units of mass/units of time) was assumed constant. The time for the glass waste mass (405 kg in a waste package) to fully degrade was computed as 65,225 years after failure of the waste package. The JNC model considered radionuclide dissolution from the vitrified high-level waste (HLW), diffusive transport through buffer material, radionuclide ingrowth and decay, and solubility constraints in the buffer material (JNC, 2000). The terminus of the buffer material was modeled as a boundary with a constant outgoing flow (0.001 m³/yr per waste package) and no diffusive mass exchange. The JNC report defined release rates from the EBS as the release leaving the buffer material. JNC considered stable isotopes in the EBS transport model. Stable isotopes could reduce the rate of release of radioactive isotopes, due to shared solubility constraints.

SOAR Model Changes

The EBS system modeled in SOAR is similar to the JNC (2000) model. The SOAR model also considers a constant waste form dissolution rate (in units of mass/time) and diffusive transport through the buffer material. To simulate the JNC system, diffusion in the transition region (region between the buffer material and the nearest fracture) was disabled by making the diffusion coefficient zero in that region. The outgoing flow in the last mixing cell for the buffer material was set to 0.001 m³/yr. The inventory per waste package was adjusted to match

inventories specified in JNC (2000, Table 5.3.1-2). Inventories of the radionuclides tracked in SOAR but not in the JNC model were set to 0. The JNC model assumes all waste packages fail simultaneously at 1,000 years after disposal. In the modified SOAR model, it was assumed that all waste packages fail 1 year after the emplacement. This was accomplished by making the following selections in the Disruptive Events dashboard:

- Disable localized corrosion
- Disable general corrosion
- Type of disruptive event: Waste Package Failure Rate
- Start time of waste package failure (year): 1
- End time of waste package failure (year): 10⁶
- Minimum waste package breach fraction: 0.99999
- Maximum waste package breach fraction: 1

SOAR results in Figures 5-1 through 5-5 were shifted in time by 999 years to be directly comparable to the JNC results.

In the Waste Form dashboard, the total inventory of radionuclides in the form of HLW glass in the SOAR model was set to 220 MT. The total mass of all other waste forms was set to 0. The Total Disposed Mass per Waste Package (grams) (HLW) was set equal to 5,500 grams. Note that this is the mass of the tracked radionuclides in SOAR and does not include any glass substrate mass. These selections give a total number of waste packages of 40,000 (consistent with JNC, 2000). The Reference Case (JNC, 2000) assumes approximately 65,000 years for the vitrified waste to completely degrade. In the SOAR model, it was assumed that the vitrified waste completely degrades after 65,225 years, and this was used as an input in the model reflecting a fractional release for the glass waste form equal to 1.53×10^{-5} yr⁻¹ in the GoldSim element named DegRate_HLW_Glass.

Backfill elemental solubilities, elemental distribution coefficients, effective diffusion coefficients, and groundwater flow rate through the excavated disturbed zone were defined in JNC (2000, Table 5.3.5-1). The following changes were made to the Near Field dashboard:

- Disable degradation of the backfill (diffusive barrier)
- Transport length (m): 0.7 m
- Transport cross section (m²): 10.22 m²

The transport length of 0.7 m and the transport cross section of 10.22 m² are consistent with the dimensions in JNC (2000, Figure 5.3.1-1), in the sense that the buffer volume in the JNC and SOAR descriptions is the same. To facilitate the location of parameter changes to the model file, new GoldSim elements with the prefix H12_ were inserted into the model file (e.g., H12_Flow, H12_GlassSurface, H12_BF_CrossSection, H12_BF_Length, H12_BF_Volume, H12_Buffer_Kd, H12_Solubility, H12_Diff_BFtoFrac, H12_DissRate). Because results from the reference case in JNC (2000) are deterministic, the Simulation Settings dashboard in the SOAR model was set to one simulation using element mean values. For consistency with the H12 JNC model, the duration of the SOAR simulation was set to 10 million years. An additional GoldSim element was inserted to compute release rates per waste package (total release rate divided by the number of waste packages) in units of Bq/yr.

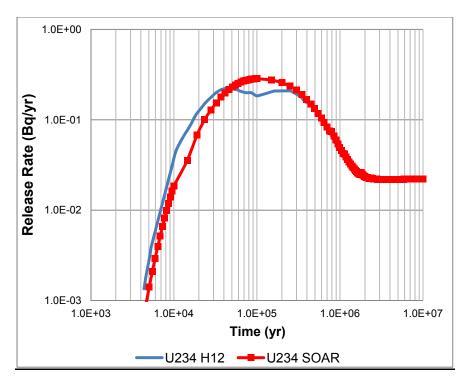


Figure 5-1. Comparison Between JNC and SOAR Models for U-234 Release Rates

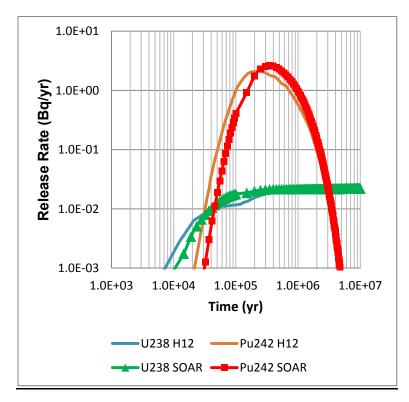


Figure 5-2. Comparison Between JNC and SOAR Models for U-238 and Pu-242 Release Rates

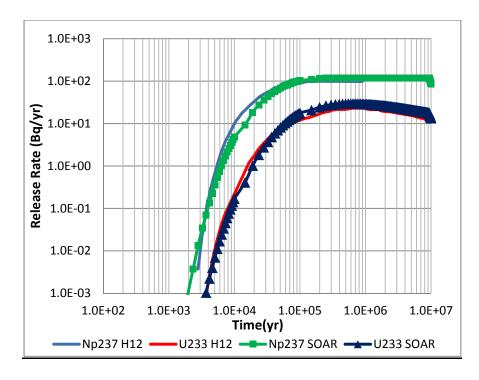


Figure 5-3. Comparison Between JNC and SOAR Models for Np-237 and U-233 Release Rates



Figure 5-4. Comparison Between JNC and SOAR Models for U-236 and Pu-240 Release Rates

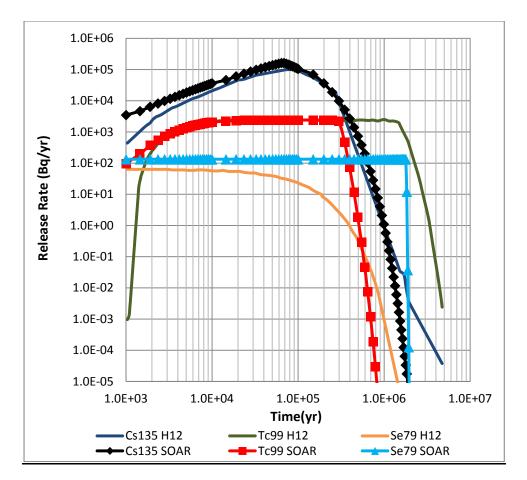


Figure 5-5. Comparison Between JNC and SOAR Models for Cs-135, Tc-99 and Se-79 Release Rates

Results

The release rates for the following radionuclides were compared; Se-79, Tc-99, Cs-135, U-233, U-234, U-235, U-236, U-238, Np-237, Pu-240, and Pu-242. The release rates, in Bg/yr units, for these radionuclides are illustrated in Figures 5-1 through 5-5. Release rates of the SOAR model satisfactorily agree with data from JNC (2000, Figure 5.3.5-5) for most of radionuclides considered in the comparison. The highest release rate is that of Cs-135, which is a relatively long-lived and highly soluble radionuclide. The SOAR and JNC models assumed infinite solubility for Cs-135, and Figure 5-5 shows similar trends and release magnitudes. The largest discrepancy in the results is in the Se-79 releases (Figure 5-5), because (i) the half-lives used for this radionuclide were different [2.9 × 10⁵ years in SOAR (De Canniere, et al., 2010) versus 6.5×10^4 years in the JNC model] and (ii) the JNC model considered the presence of a stable isotope of selenium in the waste form, which limits the Se-79 release. Such a stable isotope is not considered in the species tracked by SOAR. Actinide (uranium, neptunium, and plutonium) release rates compare well in the two models, Figures 5-1 through 5-4. In the case of uranium and plutonium releases, there is agreement between the models even if the number of isotopes modeled is different, which is somewhat surprising. For example, SOAR considers six isotopes of uranium while the JNC model considers five and SOAR considers four isotopes of plutonium while JCN considers five. Isotopes of an element share a single solubility; thus, releases of an element's isotopes are correlated. Because the SOAR and JNC models track a different number of radionuclides, one would expect the results to be different. However, but the

differences are minor, except for the Pu-240 release (Figure 5-4). The differences are also explained by the finite difference discretization of the diffusive buffer material pathway, the cylindrical geometry in the JNC model for the buffer material transport versus the one-dimensional description in the SOAR model, and timestepping.

5.2 Simulation of Dose Associated With Engineered Barrier System Release Rates of Swedish Geologic Disposal System

Objective

The objective of the second benchmarking exercise was to simulate EBS release rates and doses for the Swedish geologic disposal system, as defined in SKB (2010a,b, 2011). These documents present calculations for a spent nuclear fuel repository at Forsmark, Sweden. The exercise was to simulate releases and determine dose using SOAR and appropriate input parameters for deterministic and probabilistic calculations with minor model modifications. SKB (2010a, Figures 5-1 and 5-2) reports dose (in units of μ SV/yr) as a function of time. Dose computed by SOAR was compared to SKB results for selected radionuclides, including Se-79, Tc-99, I-129, Np-237, Pu-239, and Pu-242.

System Description

The SKB engineered barrier system and the geologic disposal system modeled in SOAR have common components, including waste form inventories and releases, transport in a buffer surrounding the canister, and transport in the near field, far field, and biosphere. The scenario selected for comparison is described in SKB (2010a, Sections 5.2.1 and 5.2.2). This scenario considers failure of 1 canister at 100,000 years from shear load. In this scenario, there is no retention in the geosphere, and hence the release calculated for the near field (i.e., release rates away from the buffer material) is the same as that for the far field (at the geosphere–biosphere interface). To model this scenario with SOAR, only input data were changed in SOAR (as described in the next section) and no changes to the computation model were needed.

SOAR Data Changes

To represent SKB's model for the benchmarking study, data corresponding to the scenario described in SKB (2010a, Sections 5.2.1 and 5.2.2) were used to modify the default dataset in the SOAR dashboard and the associated database. SOAR models were not modified for this analysis. Table 5-1 lists the changes to waste form, waste package, far-field parameters, databases, and simulation settings.

<u>Results</u>

Two simulation cases considered for comparison include (i) a deterministic case with median values for parameters with distributions and (ii) a probabilistic case with 100 realizations. In both cases, the modeled scenario was 1 canister failure at 100,000 years with no retention in the near field or far field. As mentioned previously, the radionuclides evaluated in this benchmark exercise were Se-79, Tc-99, I-129, Np-237, Pu-239, and Pu-242, which were the common radionuclides in SKB (2010a) and in SOAR.

Dose results in units of μ SV/yr are presented in Figure 5-6 for the deterministic case and in Figure 5-7 for the probabilistic case. Each graph compares dose results from SKB (2010a) and

Table 5-1. SOAR Dashboard Data and Database Changes for Modeling the Swedish Disposal System Scenario		
SOAR Parameter Name and Units	Parameter Value	Source
	SOAR Dashboard Data: Waste Form	•
2010 SNF Radionuclide Inventory (metric tons)	1.08×10^4	SKB (2010b, Table 3-3); all other inventories zeroed out
Total Disposed SNF Mass per Waste Package (grams)	1.77×10^{6}	SKB (2010b, Table 3-3); all other inventories zeroed out
Degradation Rate Multiplier	6.00 × 10 ⁻²	Multiplier used in SOAR to give mean value of the probability distribution in SKB (2011, p. 661): dissolution rate; triangular distribution; 1×10^{-8} (minimum), 1×10^{-7} (mode), 1×10^{-6} (maximum)
Length of Aging Prior to Disposal (years)	37	SKB (2010c, Table 6-3)
	SOAR Dashboard Data: Waste Package	
Waste Package Material	Copper	SKB (2011)
	SOAR Dashboard Data: Simulation Setting	js
Number of Realizations	100	Set for probabilistic case; deterministic case uses 50 th quantile
Timesteps	5 timesteps per each of the time ranges (e.g., 0–1 yr, 1–10 yr, 10–100 yr) and 200 timesteps for the period between 1e+5 and 1e+6 yr	Set so timesteps smaller (i.e., 450 years) following waste package failure at 100,000 years
	SOAR Dashboard Data: Disruptive Events	5
Type of Disruptive Event	Waste Package Failure Rate	Only disruptive failure is considered
Start Time of Waste Package Failure (year)	99,999	Sets failure time at 100,000 years
End Time of Waste Package Failure (year)	100,000	Sets failure time at 100,000 years
Minimum Waste Package Failure Rate (Waste Packages per Year)	1	Sets 1 waste failure
Maximum Waste Package Failure Rate (Waste Packages per Year)	1	Sets 1 waste failure
Minimum Waste Package Breach Fraction	1	Set so all waste package inventory is available for release
Disable Localized Corrosion	Checked	Only disruptive failure is considered
Disable General Corrosion	Checked	Only disruptive failure is considered

Table 5-1. SOAR Dashboard Data and Database Changes for Modeling the Swedish Disposal System Scenario (continued)					
	SOAR Dashboard Data: Near Field				
Multiplier To Define Cross Section of Transition Region (RegionField)	1.3	SKB (2010a, Table G-6)			
Transport Length (m)	0.25	SKB (2010a, Section G.5)			
Transport Cross Section (m ²)	2.186	SKB (2010a, Table G-6)			
	SOAR Dashboard Data: Far Field	•			
Transport Length (km)	0.001	SKB (2010a, Section 5.2.1), there is no retention in the geosphere, Legs 1, 2, and 3			
Effective Porosity Reduction Factor	0.01	SKB (2010a, Section 5.2.1), there is no retention in the geosphere, Legs 1, 2, and 3			
Hydraulic Gradient (Sediments and Porous Rock Only)	1	SKB (2010a, Section 5.2.1), there is no retention in the geosphere, Legs 1, 2, and 3			
	SOAR Database				
UnboundFraction_SNF_Cs13 5	0	Set Unbound Fraction to zero			
UnboundFraction_SNF_I129	0	Set Unbound Fraction to zero			
UnboundFraction_SNF_Se79	0	Set Unbound Fraction to zero			
UnboundFraction_SNF_TC99	0	Set Unbound Fraction to zero			
UnboundFraction_SNF_C14	0	Set Unbound Fraction to zero			
SNF_Inventory_2010_default	$\begin{array}{ccccc} & C-14: & 3.09 \times 10^3, \mbox{ Cs-135:} & 5.54 \times 10^6, \\ & I-129: & 2.13 \times 10^6, \mbox{ Np-237:} & 6.82 \times 10^6, \\ & Pu-238: & 2.11 \times 10^6, \mbox{ Pu-239:} & 6.13 \times 10^7, \\ & Pu-240: & 3.02 \times 10^7, \mbox{ Pu-242:} & 7.69 \times 10^6, \\ & Se-79: & 6.57 \times 10^4, \mbox{ Tc-99:} & 1.08 \times 10^7, \\ & U-232: & 5.76 \times 10^{-2}, \mbox{ U-233:} & 1.36 \times 10^2, \\ & U-234: & 2.6 \times 10^6, \mbox{ U-235:} & 8.26 \times 10^7, \\ & U-236: & 5.63 \times 10^7, \mbox{ U-238:} & 1.05 \times 10^{10} \end{array}$	SKB (2010b, Table 3-3), Radionuclide Inventories			
WaterFlowToBiosphere (ac-ft/yr)	8.10 × 10 ⁻⁴	SKB (2010a, Figure G-7)			
Water_Consumption_Rate (L/yr)	1.00 × 10 ³	Setting the same as WaterFlowToBiosphere parameter value			
Ingestion_Dose_Coefficient	$ \begin{array}{ccccc} \text{C-14:} & 5.44 \times 10^{-12}, \text{ Cs-135:} & 3.96 \times 10^{-14}, \\ \text{I-129:} & 6.46 \times 10^{-10}, \text{ Np-237:} & 4.83 \times 10^{-11}, \\ \text{Pu-238:} & 1.78 \times 10^{-12} \text{ (Scaled using Pu-239)}, \\ \text{Pu-239:} & 1.94 \times 10^{-12}, \text{Pu-240:} & 1.88 \times 10^{-12}, \\ \text{Pu-242:} & 1.89 \times 10^{-12}, \text{Se-79:} & 1.21 \times 10^{-9}, \\ \text{Tc-99:} & 8.98 \times 10^{-13}, \text{U-232:} & 1.62 \times 10^{-11}, \\ \text{(Scaled using U-233), U-233:} & 2.5 \times 10^{-12}, \\ \text{U-234:} & 3.62 \times 10^{-12}, \text{U-235:} & 2.76 \times 10^{-12}, \\ \text{U-236:} & 1.85 \times 10^{-12}, \text{U-238:} & 1.85 \times 10^{-12} \end{array} \right) $	SKB (2010b, Table 7-13) and SKB (2010a, Table 3-7, Basic LDF)			

SOAR simulations for one radionuclide of interest at a time. Both figures use the same scale to get a perspective on the relative contribution from radionuclide toward overall (i.e., total) dose.

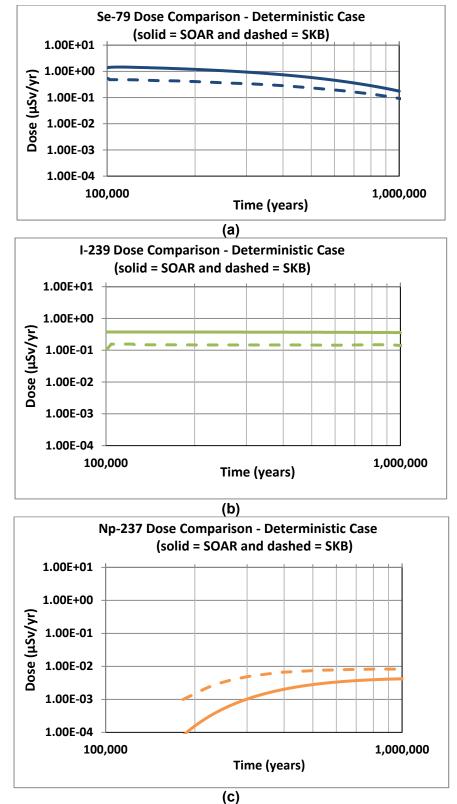
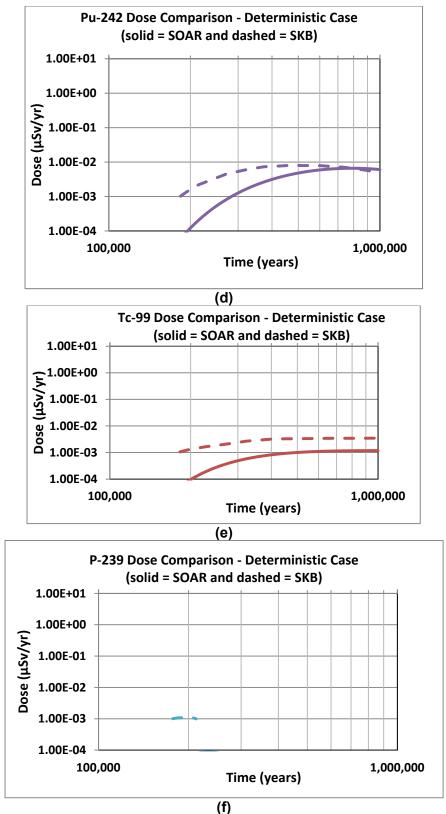
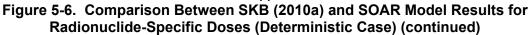
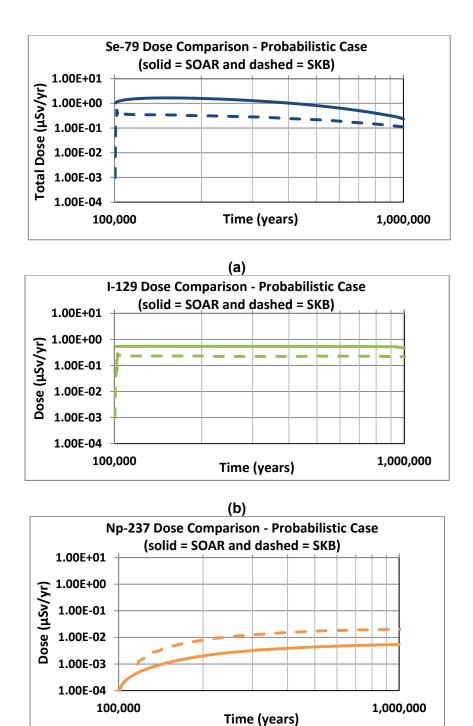
For the deterministic case in Figure 5-6, Se-79 and I-129 dose estimates from SOAR are greater than SKB's estimates by less than an order of magnitude. The Np-237 dose estimate

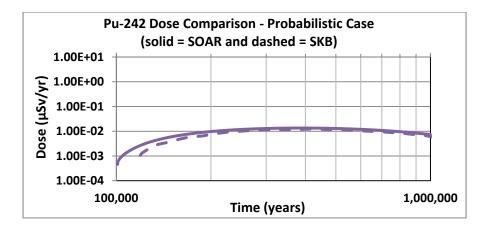
from SOAR was less than SKB's dose estimate by less than an order of magnitude. Pu-242, Tc-99, and Pu-242 dose estimates from SOAR are slightly greater than the corresponding estimates from SKB (2010a) until about 300,000 years; after 300,000 years, the SOAR and SKB (2010a) doses are essentially identical.

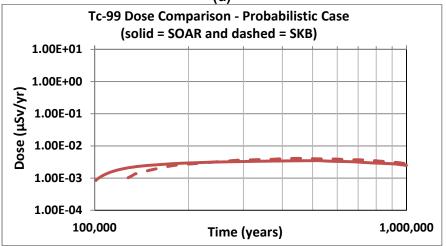
In the probabilistic case, the Se-79 and I-129 dose estimates from SOAR are greater than SKB's dose estimates by less than an order of magnitude (see Figure 5-7a and b). The Np-237, Pu-242, and Tc-99 doses (see Figure 5-7c, d, and e) estimated by SOAR are less than SKB's corresponding estimates by less than an order of magnitude. For Pu-239, the maximum dose calculated by SOAR (Figure 5-7f) is approximately $10^{-4} \mu$ SV/yr compared to SKB's corresponding dose estimate of $10^{-3} \mu$ SV/yr, which corresponds to the lower limit of values shown in SKB (2010a, Figure 5-1). Note that $10^{-3} \mu$ SV/yr represents the lower limit (cutoff value) below which SKB (2010a) does not present any dose values in Figure 5-1.

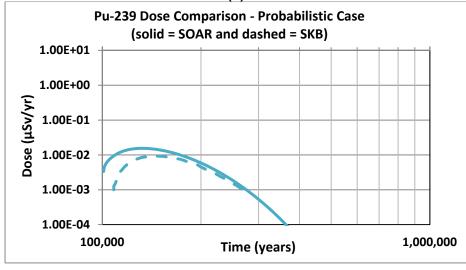
For the probabilistic case, the dose estimates from SOAR for the three radionuclides (Np-237, Pu-242, and Tc-99) are essentially identical to SKB's estimates, whereas all other dose results in the deterministic and probabilistic cases exhibit a difference between SKB and SOAR doses of at most one order of magnitude.

The differences in SOAR and SKB doses appear to be related to input data sets. The details of data used in the SKB analysis were not readily available. Other than the figures, only general descriptions of the scenarios modeled were available in this report. To the extent possible, all data were made consistent in SOAR with the SKB data by modifying dashboard data or the SOAR database; however, it was not possible to verify consistency for all data sets. The differences between the SOAR and SKB results are most likely attributable to the following data: dose conversion factors, radionuclide inventory, and gap fraction inventory. However, a more in-depth study would be needed to confirm this. Each of these is qualitatively described in SKB reports, although specific values used in each scenario are not described. For example, the SKB reports present inventories for a number of different canisters and also describe an inventory of an average canister, but the inventory of the canister used in this benchmark exercise SKB (2010a, Sections 5.2.1 and 5.2.2) is not specified.


Figure 5-6. Comparison Between SKB (2010a) and SOAR Model Results for Radionuclide-Specific Doses (Deterministic Case)




(c) Figure 5-7. Comparison Between SKB (2010a) and SOAR Model Results for Radionuclide-Specific Doses (Probabilistic Case)

(e)

(f)

Figure 5-7. Comparison Between SKB (2010a) and SOAR Model Results for Radionuclide-Specific Doses (Probabilistic Case) (continued)

6 **REFERENCES**

De Canniere, P., A. Maes, S. Williams, C. Bruggeman, T. Beauwens, N. Maes, and M. Cowper. "Behaviour of Selenium in Boom Clay." SCK CEN ref: CO 90 01 1467.01 RP.W&D.037-NIROND ref: CCHO2004/00/00 DS251-A44/2.1. External Report of the Belgian Nuclear Research Centre, SCK CEN-ER-120. Mol, Belgium: SCK•CEN. May 2010.

JNC. (Japan Nuclear Cycle Development Institute). "H12: Project To Establish the Scientific and Technical Basis for HLW Disposal in Japan. Supporting Report 3: Safety Assessment of the Geological Disposal System." Ibaraki, Japan: Japan Nuclear Cycle Development Institute. April 2000.

Markley, C., O. Pensado, J.-P. Gwo, J. Winterle, T. Ahn, R. Benke, T. Cao, H. Gonzalez, A. Gray, X. He, R. Janetzke, H. Jung, G. Oberson, P. Shukla, T. Sippel, S. Stothoff, and L. Tipton. "SOAR: A Model for Scoping of Options and Analyzing Risk: Version 1.0, User Guide." ML112440119. San Antonio, Texas: Center for Nuclear Waste Regulatory Analyses. 2011.

NRC (U.S. Nuclear Regulatory Commission). "Plan for Integrating Spent Nuclear Fuel Regulatory Activities." ML1012410380. Washington, DC: NRC. 2010a.

_____. "Performance Assessment: A Model for Scoping of Options and Analyzing Risk, Beta Version (β-SOAR) User Guide." ML102160622. Washington, DC: NRC and San Antonio, Texas: Center for Nuclear Waste Regulatory Analyses. September 2010b.

SKB (Svensk Kärnbränslehantering AB). "Long-Term Safety for the Final Repository for Spent Nuclear Fuel at Forsmark." Vol. 1: Main Report of the SR-Site Project. SKB TR–11–01. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Company. March 2011.

SKB. "Radionuclide Transport Report for the Safety Assessment SR-Site." SKB TR–10–50. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Company. December 2010a.

SKB. "Data Report for the Safety Assessment SR-Site." SKB TR–10–52. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Company. December 2010b.

SKB. "Spent Nuclear Fuel for Disposal in the KBS-3 Repository." SKB TR–10–13. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Company. 2010c.