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ABSTRACT

This report describes a new seismic source characterization (SSC) model for the Central and
Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central
and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard
Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore
National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is
to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis
Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent
the center, body, and range of technically defensible interpretations of the available data, models,
and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic
source characterization and ground motion characterization. These two components are used to
calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report
provides a new seismic source model.

Results and Findings

The product of this report is a regional CEUS SSC model. This model includes consideration of
an updated database, full assessment and incorporation of uncertainties, and the range of diverse
technical interpretations from the larger technical community. The SSC model will be widely
applicable to the entire CEUS, so this project uses a ground motion model that includes generic
variations to allow for a range of representative site conditions (deep soil, shallow soil, hard
rock). Hazard and sensitivity calculations were conducted at seven test sites representative of
different CEUS hazard environments.

Challenges and Objectives

The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and
who wish to use an updated SSC model. This model is based on a comprehensive and traceable
process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for
Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model
will be used to assess the present-day composite distribution for seismic sources along with their
characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use
in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined
Operating License Applications (COLAS).

Applications, Values, and Use

Development of a regional CEUS seismic source model will provide value to those who (1) have
submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2)
will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues
resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs
to meet design and periodic review requirements for current and future nuclear facilities. This
work replaces a previous study performed approximately 25 years ago. Since that study was
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completed, substantial work has been done to improve the understanding of seismic sources and
their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable
basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of
delays in new plant licensing due to more conservative interpretations in the existing and future
literature.

Perspective

The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE),
and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this
purpose was composed of distinguished subject matter experts from industry, government, and
academia. The resulting model is unique, and because this project has solicited input from the
present-day larger technical community, it is not likely that there will be a need for significant
revision for a number of years. See also Sponsors’ Perspective for more details.

Approach

The goal of this project was to implement the CEUS SSC work plan for developing a regional
CEUS SSC model. The work plan, formulated by the project manager and a technical integration
team, consists of a series of tasks designed to meet the project objectives. This report was
reviewed by a participatory peer review panel (PPRP), sponsor reviewers, the NRC, the U.S.
Geological Survey, and other stakeholders. Comments from the PPRP and other reviewers were
considered when preparing the report. The SSC model was completed at the end of 2011.

Keywords

Probabilistic seismic hazard analysis (PSHA)
Seismic source characterization (SSC)
Seismic source characterization model
Central and Eastern United States (CEUS)
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Figure E-61 Portion of dendrocalibration curve illustrating conversion of radiocarbon age
to calibrated date in calendar years. In example, 2-sigma radiocarbon age of 2,280—
2,520 BP is converted to calibrated date of 770-380 BC (from Tuttle, 1999)...............

Figure E-62 Empirical relation developed between A horizon thickness of sand blows
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Figure E-63 Diagram illustrating earthquake chronology for New Madrid seismic zone for
past 5,500 years based on dating and correlation of liquefaction features at sites
(listed at top) across region from north to south. Vertical bars represent age
estimates of individual sand blows, and horizontal bars represent event times of
138 yr BP (AD 1811-1812); 500 yr BP £ 150 yr; 1,050 yr BP + 100 yr; and 4,300 yr
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Figure E-64 Diagram illustrating earthquake chronology for New Madrid seismic zone for
past 2,000 years, similar to upper portion of diagram shown in Figure E-63. As in
Figure E-63, vertical bars represent age estimates of individual sand blows, and
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Project derived two possible uncertainty ranges for timing of paleoearthquakes,
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February (F) main shocks and large aftershocks taken from several sources;
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