

Westinghouse Electric Company LLC Hematite Decommissioning Project 3300 State Road P Festus, MO 63028 USA

U.S. Nuclear Regulatory Commission	Direct tel:	314-810-3382
ATTN: Document Control Desk	Direct fax:	636-937-6380
Director, Office of Nuclear Material Safety and	Email:	roodgj@westinghouse.com
Safeguards	Our ref:	HEM-12-2
Washington, DC 20555-0001	Date:	January 16, 2012

- Subject: Request for Additional Alternate Disposal Approval and Exemptions for Specific Hematite Decommissioning Project Waste at US Ecology Idaho (License No. SNM-00033, Docket No. 070-00036)
- Reference: 1) Westinghouse (G. F. Couture) letter to NRC Document Control Desk HEM-09-52, dated May 21, 2009, "Request for Alternate Disposal Approval and Exemptions for Specific Hematite Decommissioning Project Waste" (ADAMS Accession No. ML091480071)
 - Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-09-146, dated December 29, 2009, "Response to Request for Additional Information - Alternate Waste Disposal" (ADAMS Accession No. ML100320540)
 - Westinghouse (E. K. Hackmann) letter to NRC Document Control Desk, HEM-10-6, dated January 20, 2010, "Additional Information Concerning Alternate Waste Disposal" (ADAMS Accession No. ML100221416)
 - Westinghouse (E. K. Hackmann) letter to NRC Document Control Desk, HEM-10-38, dated March 31, 2010, "Additional Information for Alternate Waste Disposal Authorization and Exemption" (ADAMS Accession No. ML100950386)
 - 5) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-10-46, dated May 24, 2010, "Additional Information and Clarifications Concerning 10 CFR 20.2002 Alternate Waste Disposal Authorization and Exemption for Specific Hematite Decommissioning Project Waste" (ADAMS Accession No. ML101450240)
 - 6) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-11-16, dated February 18, 2011, "Revised Technical Basis for Characterization of Decommissioning Soils Waste That is Subject to the Alternate Disposal Request for U.S. Ecology Idaho, Inc" (ADAMS Accession No. ML110530155)
 - 7) USNRC (Keith I. McConnell) letter to Westinghouse (E. K. Hackmann), dated October 27, 2011, Issuance of Hematite Amendment No. 58 Approving

© 2012 Westinghouse Electric Company LLC All Rights Reserved Westinghouse Hematite Request for Alternate Disposal of Soil and Debris and Granting Exemptions to 10 CFR 30.3 and 10 CFR 70.3, (ADAMS Accession No. ML112560105)

 Humboldt Bay, Unit 3 – Request for 10 CFR 20.2002 Alternate Disposal Approval and 10 CFR 30.11 Exemption of Waste For Disposal at US Ecology Idaho (ADAMS Accession No. ML101170554)

Dear Sirs:

Pursuant to 10 CFR 20.2002, Westinghouse Electric Company LLC (Westinghouse) requests that the U.S. Nuclear Regulatory Commission (NRC) approve alternate disposal of specified low-activity radioactive materials from our Hematite Decommissioning Project (HDP), License No. SNM-0033, for certain waste containing source material, byproduct material and Special Nuclear Material (SNM). The authority of 10 CFR 20.2002, and the requested exemptions from 10 CFR 30.3 and §70.3 licensing requirements for byproduct material and SNM would allow Westinghouse to transfer the specific waste for disposal at the US Ecology Idaho, Inc. (USEI) RCRA Subtitle C disposal facility near Grand View, Idaho. Idaho is not an NRC Agreement State; however, Idaho regulations and the Grand View facility permit provide for the acceptance of this material based on the exemptions requested.

Enclosure 1 is a Safety Assessment for Additional Hematite Project Waste at USEI, which was developed in coordination with USEI. This document summarizes the characteristics of the candidate waste material; the proposed manner and conditions of disposal; the nature of the disposal environment; the nature and location of other potentially affected facilities; projected doses to members of the public during transport operations and to USEI workers during railcar receipt, unloading, transport and disposal; and assessment of the potential post-closure doses, including cumulative impacts with the Reference 1 request.

The Safety Assessment projects that the proposed alternate disposal would contribute less than 0.8 millirem per year to any individual, meeting the standard in NUREG 1757 of generally limiting alternate disposal exposures to not more than "a few millirem per year" to any member of the public. When added to the prior HDP alternate disposal request (Reference 1), the dose to any individual post closure is 2.7 millirem per year.

The attached Safety Assessment also projects that the candidate waste will be several orders of magnitude below both concentrations that would present a criticality concern and U.S. Department of Transportation criteria for fissile material.

HDP's additional request in this letter is similar to the request submitted in Reference 1, as augmented by responses to NRC requests for additional information in References 2 through 6. Reference 7 approved the Reference 1 request. This additional request is based on References 1 through 7 (as applicable).

HEM-12-2 January 16, 2012 Page 3 of 3

Two major differences exist between this additional request and the previous request: 1) The volume in this request, while essentially the same approximate value as Reference 1, is composed of a mixture of concrete/asphalt, piping, soil, and miscellaneous equipment; 2) the total quantity of radionuclides is lower (0.3 Ci of Tc-99 as compared to 1 Ci; 2 Ci of U-234 as compared to 5 Ci; 0.1 Ci of U-235 as compared to 0.2; and 0.4 Ci of U-238 as compared to 0.8 Ci).

Because this request is similar in nature to the Reference 1 request and addresses the elements in the NRC Safety Evaluation Report that accompanied Reference 7, Westinghouse requests expedited review and approval of this request by July 2012.

Please contact me at 314-810-3382, or Kevin Davis at 314-810-3348, should you have questions or need additional information.

Sincerely,

Gereld & Rord

Gerald J. Rood Interim Director, Hematite Decommissioning Project

Enclosure: 1) Safety Assessment for Additional Hematite Project Waste at USEI

cc: w/o Enclosure
J. J. Hayes, NRC/FSME/DWMEP/DURLD
J. W. Smetanka, Westinghouse
M. M. LaFranzo, NRC Region III/DNMS/MCID
L. W. Camper, NRC/FSME/DWMEP
J. E. Kennedy, NRC/FSME/DWMEP/EPPAD/LL
Chad Hyslop, US Ecology Idaho, Inc.

Enclosure 1 to HEM-12-2

Safety Assessment for Additional Hematite Project Waste at USEI

Westinghouse Electric Company LLC US Ecology Idaho, Inc.

(15 pages)

Westinghouse Electric Company LLC, Hematite Decommissioning Project

Docket No. 070-00036

Safety Assessment for Additional Hematite Project Waste at USEI Westinghouse Electric Company, LLC US Ecology Idaho, Inc.

1.	EXECUTIVE SUMMARY	. 2
2.	USEI FACILITY OPERATING HISTORY	. 2
3.	DISPOSAL FACILITY CHARACTERISTICS	3
4.	USEI WASTE ACCEPTANCE CRITERIA	3
5.	MATERIAL DESCRIPTION & SUITABILITY	4
6.	TRANSPORT AND DISPOSAL RADIOLOGICAL ASSESSMENTS	6
6.1	Dose Assessment Methodology	6
6.2	Gondola surveyor	7
6.3	Excavator operator	7
6.4	Gondola Cleanout	7
6.5	Truck Surveyor	8
6.6	Truck Driver	8
6.7	Stabilization Operator	. 8
6.8	Cell Operator	8
7.	POST-CLOSURE DOSE TO THE GENERAL PUBLIC	11
8.	CRITICALITY	13
9.	RECORDS OF TRANSFER	14
10.	REQUESTED NRC ACTIONS	15

Attachments

- 1) Characterization Data Summary in Support of Additional USEI Alternate Disposal Request, HDP-TBD-WM-906
- 2) Input Parameters, Microshield^{®1} Software 7.02, Westinghouse Electric Company LLC, (08-MSD-7.02-1424).
- 3) Case Files, Microshield® Software 7.02, Westinghouse Electric Company LLC, (08-MSD-7.02-1424).
- 4) **RESRAD** Input Parameters
- 5) RESRAD Case Files
- 6) Intruder Dose Calculations Construction Scenario
- 7) Intruder Dose Calculations Intruder Well Drilling Scenario
- 8) Intruder Dose Calculations Chronic Exposure for Intruder Well Drilling Scenario
- 9) HDP and USEI Occupational Injury and Illness Data
- 10) Nuclear Criticality Safety Assessment of the US Ecology Idaho (USEI) Site for Land Fill Disposal of Decontamination and Decommissioning Waste from the Hematite Site.

¹ MicroShield® is a registered trademark of Yale Security Inc., an ASSA ABLOY Group company

1 EXECUTIVE SUMMARY

This information and radiological safety assessment was developed in coordination with USEI's health physics staff. This document addresses the characteristics of the candidate waste material; the proposed manner and conditions of disposal; the nature of the disposal environment; the nature and location of other potentially affected facilities; projects doses to members of the public during transport operations and to USEI workers during railcar receipt, unloading, transport and disposal; and provides an assessment of the potential post-closure doses.

This Safety Assessment also demonstrates that the candidate waste will be several orders of magnitude below the U.S. Department of Transportation's criteria for fissile material and orders of magnitude below concentrations that would present a criticality concern.

The candidate waste comprises approximately 23,000 m³ of solid materials consisting of a mixture of concrete/asphalt, piping, soil, and miscellaneous equipment. Miscellaneous equipment includes ventilation equipment removed from the former process building as well as contaminated decommissioning equipment. These materials contain low concentrations of both special nuclear material (SNM) and byproduct material contaminants. A description of the waste to be disposed is included in Section 5 and includes physical and chemical properties of the waste required to conservatively assess risk under the proposed disposal conditions. Attachment 1 contains a detailed discussion of the characterization data available for the materials associated with this request. Westinghouse's proposed documentation of waste transfer is also discussed.

Projected alternate disposal would contribute approximately 0.8 mrem per year to any member of the public, well within the several mrem exposure standard set forth in NUREG 1757 for alternate disposal approvals. These findings support NRC approval of alternate disposal in accordance with 10 CFR 20.2002.

This Safety Assessment also supports an NRC concurrence that US Ecology can be exempted from byproduct material and SNM license requirements of 10 CFR 30.3 and §70.3, as allowed in §30.11 and §70.17. Such exemptions from regulation under the Atomic Energy Act for disposal purposes are consistent with the diffuse, low concentrations of contaminants in the waste and with such exemptions issued by NRC for managing equivalent or higher concentration wastes.

2 USEI FACILITY OPERATING HISTORY

USEI's operating history is described extensively in Reference 1. There have been no significant changes to USEI's operating permit, radioactive materials acceptance limits, or regulatory status since the date of Reference 1. USEI's operating history from Reference 1 is incorporated in this request by reference instead of duplication of Reference 1 (ML091480071).

Since May of 2009, USEI has received approval to dispose 200,000 cubic feet of lowactivity decommissioning waste from the Pacific Gas & Electric Humboldt Bay nuclear power plant near Eureka, California (Reference 8). In addition, NRC has approved Westinghouse to dispose approximately 23,000 m³ of HDP decommissioning waste at USEI (Reference 7). NRC held two public meetings at Rimrock High School (Grand View, ID) to provide information to the local community and solicit public comments during review of exemption requests submitted by Westinghouse. USEI remains in compliance with its operating permit and has maintained VPP "Star" status with the OSHA Voluntary Protection Program. Information on occupational illness and injuries for the past 5 years for both USEI and HDP are provided in Attachment 9.

3 DISPOSAL FACILITY CHARACTERISTICS

A description of the USEI facility and waste placement practices is found in References 1, 2, and 3. Key documents contained in these previous submittals include:

- General Description (IDAPA 58.01.05.012 & 40 CFR 270.14(B)(1)) (Reference 1).
- Hazardous Waste Facility Siting License Application for Cell 16 (Reference 2).
- USEI Radiological Sampling Air and Soil (Reference 2).
- Summary of Hydrogeologic Conditions and Groundwater Flow Model for US Ecology Idaho Facility, Grand View, Idaho (Reference 3).

The description of USEI from References 1 through 3 is incorporated in this request by reference instead of duplication of the referenced documents (ML091480071, ML100320540, ML100221416).

4 USEI WASTE ACCEPTANCE CRITERIA

USEI's waste acceptance criteria are maintained on their website, nominally at: usecology.com/downloads/grand_view_forms/USEI_WAC.pdf

Idaho rules regulating radioactive materials are maintained on their website, nominally at: adm.idaho.gov/adminrules/rules/idapa58/0110.pdf

In summary, USEI is authorized to accept low concentration SNM and byproduct material if:

- The NRC specifically exempts the material under 10 CFR 30.11 §70.17 and
- The sum of all activity within the material is less than 3,000 pCi/g, and
- IDEQ reviews and concurs with the NRC exemption and USEI Safety Assessment.

5 MATERIAL DESCRIPTION & SUITABILITY

5.1 Summary

Westinghouse estimates the volume of the excavated waste that is a candidate for disposal at USEI to be approximately 23,000 cubic meters at an average waste density of 1.5 g/cm³ (e.g., approximately 38,700 tons). The waste consists of a mixture of solid materials (e.g., concrete/asphalt, piping, soil, and miscellaneous equipment) with low levels of SNM, source material, and byproduct material, specifically uranium enriched in U-235 at levels averaging below 10 percent, elevated levels of Tc-99 and trace concentrations of Pu-239, Am-241, and Np-237. The amounts of radionuclides are shown in Table 1 below. The technical basis for the radionuclide data contained in this Table is provided in Attachment 1. Material volumes and activity values presented in Table 1 already include an uncertainty multiplier of 1.5 to account for the potential to encounter more material than estimated based on existing data.

Table 1, Expected Radionuclides in Westinghouse mematice waste							
Shipped Volume	U-234	U-235	U-238	Tc-99			
(m^3)	(Ci)	(Ci)	(Ci)	(Ci)			
22848	2.2	0.1	0.4	0.3			

Table 1, Expected Radionuclides in Westinghouse Hematite Waste
--

The average total activity concentration (sum of all nuclides and progeny) for this waste is approximately 110 pCi/g or approximately 4 percent of USEI's 3,000 pCi/g total activity concentration limit. Less than 5% of the waste from Westinghouse is expected to contain concentrations of hazardous constituents identified in 40 CFR 261.24, including tetrachloroethylene, trichloroethylene, vinyl chloride, arsenic, mercury, or lead.

5.2 Waste Characterization Plan

Detailed characterization data and an accompanying analysis is contained in Attachment 1. Based on the analysis contained in that document, additional characterization will be performed prior to shipment of soils and piping covered under this request. No further characterization will be performed on the concrete/asphalt materials as discussed in Attachment 1. Attachment 1 also identifies that no additional sampling will be performed on the specific miscellaneous equipment identified in it. Additional equipment which may be identified as candidate material for USEI, e.g., water treatment system equipment, will be surveyed by health physics personnel using existing site procedures. Such equipment will have superficial surface contamination as a result of exposure to contaminated remediation materials during the course of the project. The results of these surveys will be used to determine the associated radionuclide inventory.

5.2.1 Soils

Westinghouse will subject soils associated with this request to the same sampling plan that was detailed in Reference 6 and will use the same radiological controls and programmatic elements detailed in Reference 2. The Tc-99 soil concentrations and variability associated with this request are lower than in the Reference 7 approval. The mean Tc-99 concentration and standard deviation associated with soils considered in this request are 13 pCi/g and 36 pCi/g respectively (Attachment 1). The mean Tc-99 concentration and

standard deviation used to develop the sampling approach approved by Reference 7 are 27 pCi/g and 225 pCi/g respectively (Reference 6).

The approach used to sample soils associated with this request will be identical to that approved by Reference 7, subject to the following changes to reflect the lower quantities of Tc-99 in this request:

1. The first two rows of the contingency plan tabulation (Reference 6, Attachment 1, Section 10) are revised as follows:

Parameter	Action	How Monitored	Actions
Total Quantity of Tc-99 shipped to USEI (mean)	<u>Level</u> <u>≥0.21 Ci</u>	Running total activity (both shipped and pending shipment), based on laboratory sample results prior to shipment	 Reanalyze composite sample and/or analyze individual aliquots used to create the composite sample Resample stockpile and re- evaluate Ship material to alternate facility
95% Upper Confidence Level of the mean Tc-99 shipped to USEI (UCL(0.95))	<u>≥0.32 Ci</u>	Running confidence internal <u>(both shipped</u> <u>and pending shipment)</u> , based on laboratory sample results prior to shipment	 Reanalyze composite sample and/or analyze individual aliquots used to create the composite sample Resample stockpile and re- evaluate Ship material to alternate facility

- 2. Section 13.4 of Reference 6, Appendix A, is revised as follows
 - 13.4 If it is determined that the updated mean Tc-99 activity and 95% UCL are within established limits (i.e., mean of <u>0.21 Ci</u> and 95% UCL <u>of 0.32 Ci</u>), the material will be authorized for shipment.

5.2.2 Piping

As indicated in Attachment 1, piping from under Building 240 and 260 will be excluded from this request. Table 2, below, provides a summary of the sampling data for the remainder of the piping. Note that the samples represent concentrations in materials contained within the piping and does not consider the overall mass of the piping walls.

Parameter	Tc-99	U-234	U-235	U-238
No. Samples	10	10	10	10
Average	33	1479	57	209
Minimum	2	0	0	0
Maximum	174	6944	258	766
St. Dev.	52	2225	84	292

The sampling approach for the site piping was developed considering that a batch of piping would consist of approximately 100 m³ of material. This volume is equivalent to that of a rail car. The material in a single rail car was considered an appropriate batch of material since that is the unit of volume upon which waste management decisions are based. Accordingly, the number of samples required to ensure that the median concentration within that batch is less than the maximum observed value was determined using Visual Sampling Plan (True Average vs. Fixed Threshold, where the data is neither considered normal nor symmetrical). This analysis was performed for each of the four nuclides Tc-99, U-234, U-235, and U-238. The resultant number of samples required was 14 or one sample per 7.1 m³. This is equivalent to 1 sample per 250 ft³. Based on this analysis, HDP will collect a minimum of one sample per 250 ft³ of piping and will analyze each sample by gamma spectroscopy and for Tc-99.

6 TRANSPORT AND DISPOSAL RADIOLOGICAL ASSESSMENTS

Using multiple conservative exposure scenarios, the dose equivalent was calculated for the Maximally Exposed Individual (MEI). In all cases the MEI receives less than 1 mrem per year which is consistent with NUREG 1737's Vol.1, Rev.2, Consolidated Decommissioning Guidance - Decommissioning Guidance for Materials Licensees, Final Report, p. 15-31 criteria of a "few millirem/yr" to a member of the public. The transportation workers and workers at the USEI facility are treated as members of the public since the USEI facility is not licensed under the Atomic Energy Act.

Evaluations of both potential external and internal doses to workers are discussed below. Based on the conservatively projected length of time of exposure and proximity to waste, the MEI for transportation and disposal is a USEI excavation operator.

6.1 Dose Assessment Methodology

External dose rates were modeled for applicable source / receptor geometries using Microshield® Software, version 7.02 with the radionuclide concentrations based on Table 1, above. Microshield® Software input parameters are provided in Attachment 2. Results of these calculations are provided in Attachment 3.

In order to estimate potential internal dose during material handling, an airborne dust study was conducted for representative job categories and work locations at the rail unloading facility and disposal site. In the study, measurements were made of the workers' exposure rates to total and respirable dust. This study indicated that respirable dust levels ranged from 0.17 to 0.23 mg/m³ with an average of 0.2 mg/m³. Details of the dust study are contained in Attachment 2 to Reference 2.

Internal dose for all job functions was modeled using the maximum respirable dust loading observed, the dose conversion factors contained in Federal Guidance Report 11, and the radionuclide concentrations based on Table 1, above. The use of respiratory protection is noted in the narrative below; however, no correction is taken for the applicable protection factor.

Gondola railcars will be received at USEI's rail transfer facility (RTF). Based on the anticipated volume of material to be shipped, it is assumed that about 352 gondola cars will be received and that this volume of material will be transferred to the final disposal cell in approximately 1056 truckloads. The project is expected to ship over an 18 month timeframe. No adjustments were made for USEI's respiratory protection program.

Evaluations of both potential external and internal doses to USEI and transportation workers are discussed below. The results for USEI workers are summarized in Table 2. Even with the conservative assumptions used in this assessment, calculated doses (maximum value of 0.18 mrem) are extremely low and well within the USNRC's "few millirem" criteria for alternate disposal. The excavator operators, truck drivers, stabilization operators and cell operators at the USEI disposal facility do not share job functions.

Dose to transportation workers is presented in Section 6.9.

6.2 Gondola Railcar surveyor

Prior to being off-loaded, each gondola railcar will be surveyed. This work is shared between 8 personnel. The survey normally takes an operator 20 minutes to complete. The operator will stand approximately one meter from the gondola railcar when conducting the survey. The estimated radiation field, internal and external dose rates per gondola railcar and per surveyor are provided in Table 2. Internal dose is not assigned for this position since the waste in the gondola railcar remains covered during the survey.

6.3 Excavator operator

All unloading operations are conducted within a containment building employing a 24,000 cubic feet per minute (cfm) high efficiency particulate air (HEPA) filtration system. An excavator positioned on a bridge platform above the railcar will transfer the waste into waiting end-dump trucks. Two persons occupy the RTF during trans-loading: the excavator operator and the truck driver. Both remain in the cabs of their vehicles. The cab of each vehicle is air conditioned, with all air drawn through commercial HEPA filtration systems. The excavator operator is also equipped with respiratory protection during all active transload activities. Non-essential personnel are not permitted to enter the RTF building during waste trans-loading to minimize physical hazards.

An excavator operator removes the material from the gondola railcar and loads it into dump trucks for transport to the disposal site. It normally takes the excavator operator up to 45 minutes to unload a gondola railcar. The operator occupies a position approximately 2 meters from the material. Four excavator operators share the unloading job. The estimated radiation field, internal and external dose rates per gondola railcar and per operator are provided in Table 2.

6.4 Gondola Railcar Cleanout

After unloading, USEI personnel manually remove any residual material in each gondola railcar using shovels and brooms. The operation normally takes 10 minutes to complete. The eight personnel sharing this task stand inside an effectively empty gondola railcar. For

the purposes of dose modeling, the dose rate at 30 cm from a 1/2 inch layer of waste material is used. The estimated radiation field, internal and external dose rates per gondola railcar and per person are provided in Table 2.

6.5 Truck Surveyor

After each truck and its trailer are loaded, both are surveyed prior to driving to the disposal site. The survey usually requires five minutes to perform and the task is shared among eight personnel. The surveyor will stand an average of one meter from the exterior of the truck. The estimated radiation field and external dose rates per truck and per surveyor are provided in Table 2. Internal dose is not assigned for this position since the truck bed is covered prior to the survey step.

6.6 Truck Driver

The trip to the disposal site takes 45 minutes. The truck transport work is shared between 14 truck drivers. The estimated radiation field and external dose rates per truck and per surveyor are provided in Table 2. Internal dose is not assigned for this position since the truck bed remains covered during the survey.

6.7 Stabilization Operator

Less than 5 percent of the waste from Westinghouse is expected to contain constituents identified in 40 CFR 261.24 Tetrachloroethylene (D039), Trichloroethylene (D040), Vinyl Chloride (D043), Arsenic (D004), Mercury (D009), and Lead (D008). USEI's RCRA Part B permit allows the facility to accept this waste, treat it to meet USEPA Land Disposal Restrictions and dispose it in the facility's disposal cell. Treating the waste for hazardous metals or organics will require wetting the waste and mixing it with the appropriate reagents in a below-grade, RCRA-compliant treatment tank. All treatment activities will be conducted inside a containment building, with 50,000 cfm of negative airflow. The waste will be mixed by a stabilization operator. Six stabilization operators share this task. It normally takes the stabilization operator up to 45 minutes to perform this operation. The operator occupies a position approximately 2 meters from the material. The estimated radiation field, internal and external dose rates per gondola railcar and per operator are provided in Table 2 (based on 5 percent of the 352 gondola cars containing waste with constituents requiring stabilization).

6.8 Cell Operator

Some dose will also be accrued by the two disposal cell workers who will spread and compact the material once it has been deposited in the cell. For this exposure scenario, a dose rate from the deposited material was calculated based on the amount of material contained in one gondola railcar. Assuming 15 minutes to spread and compact each gondola railcar's contents, the total dose to each of those workers for the project was calculated. The estimated radiation field, internal and external dose rates per gondola railcar and per operator are provided in Table 2.

6.9 Transport Dose to Public

Transportation will be by gondola railcar. The contents of each gondola railcar will be entirely enclosed in form-fitting, sift-proof, and closable wrappers meeting U.S.

Department of Transportation (DOT) Industrial Type-1 Package (IP-1) requirements. The IP-1 package precludes dispersal of waste to the air or loss of material during transport.

The dose rate at 1m from a loaded gondola railcar is 0.18 μ R/hr. The dose rate at 1 foot would be 0.25 μ R/hr based on Microshield® Software calculations (Attachment 3). The maximum dose to a site worker is 190 μ R as shown in Table 2, below. In order for the dose to a bystander during transportation to exceed that of the site worker and therefore be bounding, the individual would have to spend 1007 hr at 1 meter from the gondola or 793 hr at 1 foot, which are not credible external exposure scenarios during transportation. Since the waste within the gondola railcars is contained during transport, no internal dose would be assigned to a by-stander. Information on transportation exposure times previously submitted (Response to Question 4 in Reference 4) demonstrates that the exposure times indicated above are orders of magnitude greater than the expected exposure times of less than 20 hours.

			Parameters	8	Dose (mrem/conveyance)			Individual Dose (mrem/worker)		
	No. of Workers	Minutes to perform task ¹	Distance from object (meters)	Type of conveyance modeled (count) ²	External dose rate (mrem/hr)	Internal ³	External ⁴	Internal ⁵	External ⁶	Total ⁷
Gondola surveyor	8	20	1	Gondola (352)	1.8E-04	9.3E-04	6.1E-05	NA ⁸	2.7E-03	2.7E-03
Excavator operator	4	45	2	Gondola (352)	1.4E-05	2.1E-03	1.1E-05	1.8E-01	9.4E-04	1.8E-01
Gondola Cleanout	8	10	1	Gondola (352)	2.3E-04	4.6E-04	3.8E-05	2.0E-02	1.7E-03	2.2E-02
Truck Surveyor	8	5	1	Truck (1056)	1.9E-04	2.3E-04	1.6E-05	NA ⁸	2.1E-03	2.1E-03
Truck Driver	14	45	0.6	Truck (1056)	2.2E-04	2.1E-03	1.6E-04	NA ⁸	1.2E-02	1.2E-02
Stabilization Operator	6	45	2	Gondola (18)	1.4E-05	2.1E-03	1.1E-05	6.1E-03	3.1E-05	6.1E-03
Cell Operator	2	15	1	Gondola (352)	1.8E-04	6.9E-04	4.4E-05	1.2E-01	7.8E-03	1.3E-01

Table 2, Summary of Doses to USEI Workers during Transport, Treatment and Disposal of Westinghouse Hematite Waste

1 The minutes assigned for each job function listed in Table 2 are the times estimated by knowledgeable and experienced site personnel for one person to perform each function one time.

2 Calculations based on volume of material in a gondola railcar.

3. Internal dose per conveyance calculated based on the product of the intake quantity of 0.23 mg/m3 of respirable dust, 1.2 m3/hr inhalation rate, individual radionuclide concentrations based on Table 1, dose conversion factors from FGR 11, and the handling times shown.

4 External dose per conveyance calculated based on the product of the external dose rate and handling time indicated.

5 Internal dose per individual worker calculated based on the internal dose per conveyance times the number of conveyances per year and divided by the total number of workers.

6 External dose per individual worker calculated based on the external dose per conveyance times the number of conveyances per year and divided by the total number of workers.

7 Total dose per individual worker is the sum of the internal dose per individual and external dose per individual.

8 Internal dose is not applicable for this job function because waste remains in the conveyance and is covered.

7 POST-CLOSURE DOSE TO THE GENERAL PUBLIC

7.1 Post Closure Analysis

The USEI disposal permit requires the operator to demonstrate that no person will receive a dose in excess of 15 millirem for 1,000 years after closure of the facility. The RESRAD code is used to establish post closure dose estimates. Most of the site-specific parameters are explained in the 2005 report titled "Site-specific RESRAD Water Pathway Parameters for the Contaminated Soil, Vadose Zone, and Saturated Zone" provided in Attachment 5 to Reference 2. For those parameters not described in the 2005 report, justification was provided in Reference 4. A technical basis for the long-term stability of the USEI site is also provided in Reference 4.

For purposes of its permit, USEI must demonstrate compliance with this limit where all radionuclides are assumed to be distributed homogeneously over the volume of the contaminated zone. In response to the NRC's comments in Reference 2, an additional model with more consolidated waste placement was generated for this analysis.

Westinghouse estimates that the waste material referenced in this submittal will be entirely removed and disposed of at USEI within an 18 month time period. Because Westinghouse's waste will be comingled with all other waste receipts at USEI over this time period, the consolidated placement is based on the average volume of waste received over the duration of the project. Over the past 5 years USEI has received an average of 725,000 tons of waste per year, so this analysis assumes the shipped materials from Westinghouse will be evenly distributed over 725,000 tons total waste.

In the RESRAD model, all waste is modeled as uniformly contaminated soil, rather than volumes of concrete and metal. The density of the contaminated zone is adjusted, however, to the average density of the materials received, including concrete rubble, soil, asphalt, piping and other metal debris (e.g., HEPA units and associated ductwork). The site-specific RESRAD model approved by the State of Idaho and incorporated into USEI's operating permit designates the Contaminated Zone Surface Area as 88,221 m². This area was established based on planned disposal cell construction and assumes disposal of radiological material across the entire aerial extent of the Contaminated Zone Surface Area. USEI estimates that the majority of the Hematite waste would most likely be disposed across approximately 40,468 m² based on the majority of disposal activities are occurring within two construction phases of the currently active disposal cell with a surface area of approximately 10 acres or roughly half of the cell (which is 88,221 m²).

For the purpose of the RESRAD model specific to Hematite waste, the height of the waste material in the disposal cell was calculated by dividing volume of waste disposed by the cell area. In a similar manner, the radionuclide concentration within the disposal cell was adjusted to account for dilution when mixed with non-Hematite waste. This dilution factor was determined by dividing the mass of Hematite waste by the total mass of waste received during this same time period. The only nuclide contributing to the post closure dose was determined to be Tc-99, resulting in a dose of 0.8 mrem at 247 years. The dose

contributions from Uranium 234, 235, and 238 are 1.4E-22 mrem, 5.1E-30 mrem, and 5.7E-26 mrem, respectively. Attachment 4 contains a detailed explanation of the RESRAD input parameters. Attachment 5 contains the RESRAD Case Files.

When combined with the post closure dose of 1.9 mrem associated with the previous HDP Submittal (Reference 5) the total dose from both applications is 2.7 mrem.

7.2 Intruder Construction Scenario

The intruder construction scenario performed for this request is based on the same methodology used in the prior request (Reference 4). This scenario is partly based on NUREG-0782 in which the inadvertent intruder is assumed to excavate or construct a building on a disposal site following a breakdown in institutional controls. The intruder is exposed to dust particles through the inhalation pathway, and may also be exposed to direct gamma radiation resulting from airborne particulates and from working directly in the waste-soil mixture.

For the Average Cell Concentration scenario, the waste is diluted by a factor of 0.053 to account for mixing within the USEI cell with 725,000 tons total waste. The 0.053 factor is calculated by taking the ratio of Hematite waste to total waste received (38,710 tons / 725,000 tons). For the One-Foot Layer scenario, the concentration is diluted by a factor of 0.31 (12 in/39 in) to account for USEI's practice of layering materials into pits in 1-ft layers and an assumption of 1 meter (39 in) of waste at the time of intrusion. The dose from the inhalation and from external gamma exposure is evaluated for a duration of 500 working hours, or a construction period of 3 months.

In the analysis supporting the Reference 1 request, an additional dilution factor of 0.5 was applied based on placement of non-containerized waste. This factor was not applied in the analysis performed for this request.

The intruder construction scenario performed for this request did not assume any credit for the mixing of the waste with the cover material, which ranges from 0.76 m (2.5 ft.) across the top to 6.10 m (20 ft.) down the side slopes (Reference 2). Since USEI restricts the emplacement of any radioactive waste to within 3.6 meters of the surface of the finished cap of the cell, the construction scenario could be disregarded as not being feasible. Furthermore, no credit was assumed for decay up to the intrusion event, or for waste form. The bounding dose for the construction intruder that Westinghouse calculates is 15 mrem, and assumes waste shipped at the WAC values is encountered in a one-ft layer.

Attachment 6 to this request contains the detailed assessment associated with the Intruder Construction Scenario.

7.3 Intruder Well Drilling Scenario

The inadvertent intruder analysis for this request is the same as that submitted with the prior request (Reference 4). The scenarios evaluated are based on the intruder construction scenario and the intruder well drilling scenario described in Appendix G of NUREG0782,

"Draft Environmental Impact Statement on 10 CFR Part 61 Licensing Requirements for Land Disposal of Radioactive Waste". The Pathway Dose Conversion Factors (PDCFs) applied are taken from NUREG/CR– 4370, Volume 1.

In all intruder analyses two different assumptions for the concentration shipped from Hematite to USEI were applied. The first assumption utilized average concentration values based on Table 1. The second assumed that the total sum of radionuclide material shipped is at the USEI Waste Acceptance Criteria (WAC). Two dilution scenarios were also applied for the waste that the intruder contacts. One scenario, the Average Cell Concentration scenario, assumes waste is uniformly mixed within the USEI cell. The second, the One-Foot Layer scenario, assumes the intruder contacts a one-foot layer of waste at its shipping concentration. The Average Cell Concentration scenario was not evaluated for material received at the WAC since it would not be possible for Hematite to ship all of its waste under this request at the WAC. Regardless, this excluded scenario is not bounding (based on calculations submitted in Reference 4).

Two intruder well-driller scenarios were considered by Westinghouse. One was the acute well-driller. The other was the chronic well-driller.

The acute well-driller scenario assumes that the intruder digs a well by drilling through the waste disposal cell to reach the underlying aquifer at a depth of 93.1 m. The total period of exposure is 40 hours, 8 of which occur during the drilling through the contaminated layer. Therefore, for 8 hours, the driller is exposed to undiluted drill cuttings, and for the remaining 32 hours, the driller is exposed to the cuttings diluted by the ratio (0.31/93.1 or 3.3E-3) of the 1-ft contaminated layer (0.31 m) to the total well depth of 93.1 m. This dilution ratio is multiplied by the average cell concentration or the WAC concentrations. Westinghouse calculated a dose to the acute well-driller of 2.7 mrem based upon the intruder drilling through a 1-ft layer at the WAC concentrations.

The chronic well-driller scenario assumes that the intruder spreads the exhumed drill cuttings around the residence and grows a garden in soil containing the drill cuttings. The dose to the chronic well-driller calculated by Westinghouse was 0.5 mrem/yr based upon exposure to material exhumed during well drilling through 1 foot of waste at the WAC concentration (this scenario results in the maximum concentration for the exhumed material).

Attachments 7 and 8 this request contain the detailed assessment associated with Intruder Well Drilling Scenario.

7.4 Sensitivity Analysis

A sensitivity analysis was performed to evaluate the impact of project duration and average waste concentration on the post closure dose.

Variation in project duration results in a change in the volume of non-Hematite waste that is available for mixing and subsequently impacts the waste height and dilution factor. The results of this sensitivity analysis are contained in Figure 1, below. Input factors used in the RESRAD analysis are contained in Attachment 4. As shown in this Figure, the post closure dose increases only slightly as the shipment time decreases, remaining below 1.6 mrem for a 13 week duration.

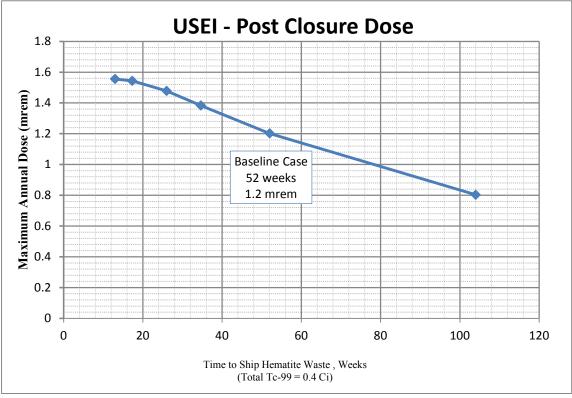


Figure 1, Sensitivity Analysis – Shipping Rate versus Post-Closure Dose.

A scenario was also evaluated in which all waste would be shipped at the USEI WAC containing Uranium at the same mixture as observed on average and containing no Tc-99. Since the Tc-99 exposure is entirely based on post closure dose and is inventory based, evaluation of shipment at higher concentration is not necessary as the exposure in the case of Tc-99 scales linearly with the total quantity of Tc-99 shipped. For the case of Uranium, increases in both worker and intruder dose would be seen. The maximally exposure on-site worker would remain the excavator operator with an annual exposure of 5.4 mrem. Post-closure intruder dose would be 2.9, 3.0, and 16 mrem for the Acute Well Driller, Chronic Well Driller, and Construction scenarios, respectively.

8 NUCLEAR CRITICALITY SAFETY

A criticality safety assessment (Attachment 10) demonstrates that the disposal of Hematite decommissioning waste at the USEI site can be safely performed. The assessment has determined that there are very large margins of safety under normal (i.e., expected) conditions and that there is considerable tolerance to abnormal conditions. Under all foreseen abnormal conditions a criticality event is considered either not credible or is precluded by controls in place at the Hematite site. This analysis applies to disposal of Hematite decommissioning wastes with a maximum average fissile nuclide concentration of $0.1g^{235}$ U/L at the USEI site. The scope of this assessment is limited to wastes with the following attributes:

- 1. Debris generated from the demolition of the remaining auxiliary buildings/structures at the Hematite site; and
- 2. Subterranean structures such as subterranean piping, underground utilities, sewage, and soil in the vicinity of the aforementioned subsurface structures; and
- 3. Concrete and asphalt removed to gain access to underground utilities, piping and contaminated soil, and the septic drain field; and
- 4. Miscellaneous items/components generated from the demolition of the former process buildings; and
- 5. Miscellaneous contaminated equipment generated during Decontamination and Decommissioning operations.

9 RECORDS OF TRANSFER

10 CFR 70.42 (d)(2) requires a written certification by the transferee that the recipient is authorized by license or registration certificate to receive the type, form, and quantity of SNM to be transferred, specifying the license or registration certificate number, issuing agency, and expiration date. Since USEI would be exempted from the 10 CFR 70.3 requirement of an NRC licensee to possess SNM, the §70.42 requirement would not apply. However, Westinghouse will maintain as an alternative written registration certificate a copy of the permit issued to USEI by the State of Idaho and NRC approval of this additional alternate disposal request for specific HDP wastes. DOE/NRC Form 741, *Nuclear Material Transaction Report*, would be used by Westinghouse to document transfers of SNM to the disposal facility. USEI will report SNM receipts using its existing account with the Nuclear Materials Management & Safeguards System.

10 REQUESTED NRC ACTIONS

For the reasons noted above, Westinghouse requests that NRC take the following actions:

- 1. Approve 10 CFR 20.2002 alternate disposal of the specific HDP waste at USEI.
- 2. Issue 10 CFR 30.11 and 10 CFR 70.17 exemptions from the 10 CFR 30.3 and §70.3 license requirements for USEI to possess byproduct material and SNM for the specific waste disposal.

Attachment 1 to Enclosure 1 to HEM-12-2

Characterization Data Summary In Support Of Additional USEI Alternate Disposal Request

(HDP-TBD-WM-906)

(62 pages)

¹MicroShield® is a registered trademark of Yale Security Inc., an ASSA ABLOY Group company

Westinghouse Non-Proprietary Class 3

© 2012 Westinghouse Electric Company LLC. All Rights Reserved

Westinghouse

Hematite Decommissioning Project

Technical Basis Document

NUMBER:	HDP-TBD-WM-906
TITLE:	Characterization Data Summary In Support Of Additional USEI Alternate Disposal Request
REVISION:	0
EFFECTIVE DATE:	See Final Approved Date Below

Approvals:

Author: Joseph S. Guido*

Owner: Joseph S. Guido*

* Electronically approved records are authenticated in the electronic document management system. This record was final approved on Jan-17-2012. (This statement was added by the EDMS system to the quality record upon its validation.)

Hematite Decommissioning Project	HDP-TBD-WM-906, Characterization Data Summary in Support of Alternate Disposal Request	P-TBD-WM-906, Characterization Data Summary in Support of Additional USEI rnate Disposal Request			
	Revision: 0	Page i			

REVISION LOG					
Revision No	Change(s)				
0					
See Cover	This is a new technical basis document.				
Page					

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support of Alternate Disposal Request	WM-906, Characterization Data Summary in Support of Additional USEI isposal Request		
Project	Revision: 0	Page 1 of 21		

1.0 PURPOSE

The purpose of this Technical Basis Document (TBD) is to document the basis that defines the radionuclide concentrations in Concrete and Asphalt Slabs, Miscellaneous Equipment, piping, and Soil.

2.0 APPLICABILITY

This document is applicable to the buildings slabs, miscellaneous equipment, piping, soil and soil-like waste generated by site decommissioning. Examples of these types of waste include:

- Slabs and subsurface footings associated with:
 - o 115, Fire/Diesel Pump House
 - o 235, West Vault
 - o 245, Pump house
 - o 252, South Vault
 - o 101, Tile Barn
 - o 120, Wood Barn
 - Sewage Treatment Shed
 - o 240, Process Building
 - o 253, Process Building
 - o 254, Process Building
 - o 255, Process Building
 - o 256, Process Building
 - 260, Process Building
 - o Limestone Building
 - Cistern Burn Pit
 - o Site Dam
 - o Head Wall
 - o Exterior (outside process building) concrete pads and sidewalks
 - o Site Asphalt
- Miscellaneous equipment such as process building HEPA units and associated ductwork
- Subsurface piping both under the process building and site wide
- Soil and soil-like waste

3.0 REFERENCES

3.1 HDP-TBD-WM-901, Scaling Factors for Radioactive Waste Associated with the Above Slab Portion of the Process Buildings

Hematite	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI		
Decommissioning	Alternate Disposal Request		
Project	Revision: 0	Page 2 of 21	

4.0 SUMMARY

This document provides the technical basis for the calculation of total volume and radionuclide activity contained in candidate materials for disposal at USEI. This material consists of approximately 2 million cubic feet of materials such as concrete, soil, asphalt, underground piping, and assorted bulk materials (such as HEPA units and associated ductwork).

The total activity and volume associated with each of these waste streams is summarized in Table 4-1, below. Note that the values in this table reflect a multiplier of 1.5 to account for uncertainty inherent in the excavation and removal of material during remediation. Exact volumes for each category are an estimate; disposal will be limited to the total volume shown below.

Material	Shipped Volume (m ³)	U-234 (Ci)	U-235 (Ci)	U-238 (Ci)	Tc-99 (Ci)	wt % U-235
Concrete / Asphalt	8249	1.4E+00	6.3E-02	2.9E-01	4.0E-02	3.3
Piping	348	1.1E-01	3.9E-03	1.2E-02	2.6E-03	5.0
Miscellaneous Equipment	39	3.0E-03	1.7E-04	5.4E-04	3.8E-05	4.5
Soil	14212	6.2E-01	3.2E-02	1.4E-01	2.1E-01	3.4
Total / weighted Average	22848	2.2E+00	9.9E-02	4.4E-01	2.5E-01	3.4

Table 4-1, Summary of material volume and concentration

5.0 VOLUME ESTIMATES – CONCRETE AND ASPHALT

The volume and weight of materials as installed associated with the structures defined above are based on visual inspection and physical measurement of the buildings.

Weight estimates for these materials were made based on the following assumptions.

- Concrete walls have an installed density of 75 pounds per cubic foot.
- Poured concrete has an installed density of 150 pounds per cubic foot.
- Asphalt has an installed density of 120 pounds per cubic foot.

The basic formula for calculating weight is:

Weight = (Installed Volume)(Installed Density)

Based on these assumptions, the weight and volume of material associated with the buildings to be demolished is summarized in Appendices A through C.

6.0 ACTIVITY ESTIMATES – BUILDING MATERIALS

Characterization of the process building slab (and outlying former process areas) was conducted between 2010 and 2011. During this time period, 21 sample cores were collected and sub sampled into top $\frac{1}{4}$ inch, next $\frac{1}{2}$ inch and remainder. Another 29

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support of Alternate Disposal Request	of Additional USEI
Project	Revision: 0	Page 3 of 21

sample locations (number 31 to 59) were collected in a second phase of sampling, aimed at bounding areas of elevated activity identified in the first round of sampling. Samples collected during the second phase were either analyzed as whole cores (locations 36 - 55), where divided into a top 3 inch and remainder (locations 31 - 35, located in the 'red room') or consisted of a top $\frac{1}{4}$ inch and next $\frac{1}{2}$ inch portion only (locations 56 - 59). The final four samples (locations 56 - 59) were collected to provide additional bounding data and were not sampled below $\frac{3}{4}$ inch based on existing information indicating that contamination was limited to the top concrete layer only (i.e., there were no cracks and/or seems evident in the sampling locations). Sample analysis included isotopic uranium, Tc-99, Am-241, Np-237, Pu-239, Ra-226, and Th-232.

Following building demolition, a second walkover survey was conducted with readings being logged via global positioning system (GPS). This final walkover survey was used to guide the interpretation of sampling results in order to determine the total activity present in the material sampled. A detailed depiction of the process building slab gamma walkover survey as well as the associated sampling data is contained in Appendix D.

6.1. **Evaluation of Trace Radionuclides**

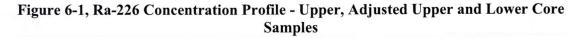
The top ¹/₄ inch from the initial 21 sampling locations and the two ¹/₄ inch samples taken beneath the concrete cap in Building 240 were analyzed for Am-241, Np-237 and Pu-239 by alpha spectroscopy (see appendix D, Table 2 for sample results). A summary of these sample results is provided in table 6-1, below.

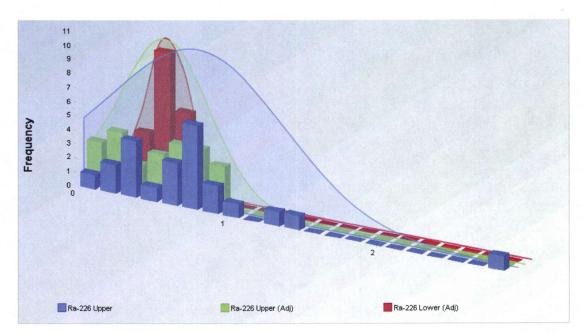
Radionuclide	Samples Analyzed	Sample Results Exceeding MDC (pCi/g)	MDC (pCi/g)	U-total (pCi/g)
Am-241	23	0	0.14 - 0.27	NA
		Location 01: 0.08	0.03	193
Np-237	23	Location 07: 0.29	0.28	4,522
		Location 17: 0.13	0.12	1,461
		Location 01: 0.11	0.10	193
Pu-239	23	Location 09: 0.03	0.03	13,851
		Location 21: 0.14	0.08	200,048

 Table 6-1, Concentration of Transuranic Nuclides in Process Building Slab Samples

As indicated in Table 6-1, above, the concentration of transuranic radionuclides is at or only slightly above the MDA of the analytical method. Considering the concentration of uranium at these sample locations (also shown in Table 6-1, above), these radionuclides are considered to be only present at trace levels and are not carried forward into subsequent inventory calculations.

6.2. Evaluation of Ra-226 in Building Materials.


The top $\frac{1}{4}$ inch and bottom portion (from $\frac{3}{4}$ inch to the bottom of the core sample) from the top $\frac{1}{4}$ inch samples were analyzed for Ra-226 (by gamma counting of radium progeny after ingrowth). Sample results are detailed in Appendix D, Table 3.

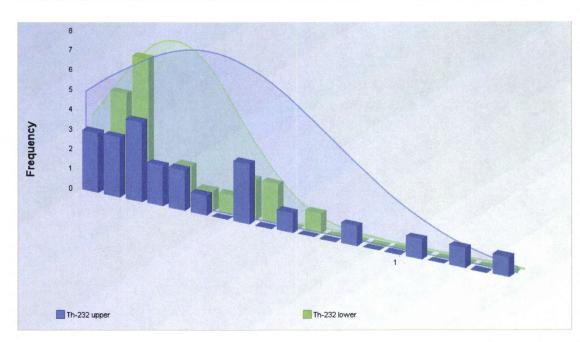

In order to evaluate the presence of Ra-226 in excess of that naturally present in building materials, the concentration within the top $\frac{1}{4}$ inch was compared to that in the bottom

Hematite	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request		
Decommissioning Project	Revision: 0	Page 4 of 21	

portion. The basis for this methodology is the observation that the majority of the sample activity identified in the sampling effort indentied penetration of between $\frac{1}{4}$ to $\frac{3}{4}$ inch.

Review of this data indicates that the Ra-226 concentration observed in the top ¹/₄ inch samples tends to fluctuate along with the corresponding U-234 concentration. The highest three Ra-226 sample results (3.1, 1.6, and 1.5 pCi/g) were obtained from locations containing the three highest U-234 concentration values (170,561, 37,544 and 36,426 pCi/g, respectively). Based on this observation, the Ra-226 concentration was adjusted by subtracting the product of the lowest observed Ra-226 to U-234 ratio (1.8 E-5) and the corresponding U-234 concentration from each Ra-226 result. The resulting concentration profile is shown in Figure 6-1, below. This figure demonstrates the similarity of the upper and lower core sample concentrations once this adjustment is performed. A detailed analysis of the two sample populations (upper and lower) is contained in Appendix E, the conclusion of which is that the upper sample population (adjusted) is less than or equal to the lower one. Since the Ra-226 contribution within the upper portion of the core samples is at least a factor of 1.8 E-5 times the corresponding U-234 concentration.

Hematite	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request		
Decommissioning Project	Revision: 0	Page 5 of 21	

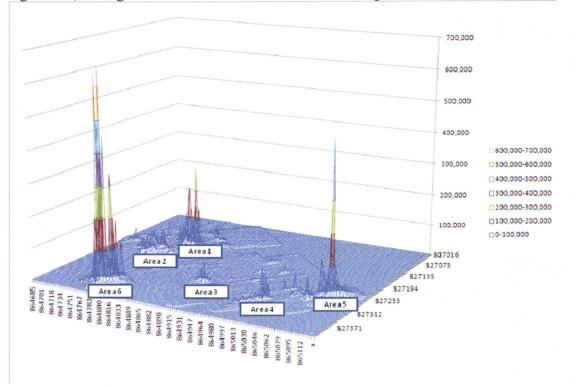

6.3. Evaluation of Th-232 in Building Materials.

The top $\frac{1}{4}$ inch and bottom portion (from $\frac{3}{4}$ inch to the bottom of the core sample) from the initial 21 sample locations were anlayzed for Th-232 by alpha spectroscopy. Sample results are detailed in Appendix D, Table 3.

The relative Th-232 concentration in the upper $\frac{1}{4}$ inch building slab samples as compared to the concentrations in the remaining core material is shown in Figure 6-2. As indicated by this figure, the top $\frac{1}{4}$ inch sample portion appears contain elevated levels of Th-232 at some locations. Th-232 concentrations in the top $\frac{1}{4}$ inch sample portions range from non-detect to 1.4 pCi/g, as compared to an upper bound of 0.75 pCi/g for the lower sample portions. The ratio of Th-232 activity to U-234 in the top $\frac{1}{4}$ inch sample portions that were greater than the MDC ranged from 4.1 E-3 to 3.7 E-6 and averaged 5.2 E-4.

Considering the concentration of uranium at these sample locations, Th-232 is considered to be only present at trace levels, and Th-232 is not carried forward into subsequent inventory calculations.

Figure 6-2, Th-232 Concentration Profile - Upper, Adjusted Upper and Lower Core Samples


6.4. Evaluation of Tc-99 and Uranium Series Concentrations in Building Materials

As indicated earlier, a detailed gamma walkover survey was performed after the completion of most of the sampling effort (albeit prior to the collection of samples at locations 56 - 59) and buildings were dismantled. A detailed map showing the gamma walkover data is contained in Appendix D, Figure 1. An earlier 100 percent walkover survey was conducted in conjunction with the first round of sampling (locations 1 - 21). However, since the process buildings were still standing, a GPS guided map of the gamma results could not be generated.

Hematite	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI		
Decommissioning	Alternate Disposal Request		
Project	Revision: 0	Page 6 of 21	

The gamma walkover data was used in the interpretation of sample results. Specifically, the gamma walkover data was used to delineate the area associated with elevated sample measurements and to separate areas of elevated activity from those that are relatively clean. Figure 6-3, below, provides a depiction of the relative magnitude of the observed gamma results. As indicated on this figure and further contained with the detailed information in Appendix D, six areas of elevated activity were identified within the slabs of the process buildings and Building 252.

Figure 6-3, Histogram of Gamma Walkover Data - Designation of Elevated Areas

Radionuclide concentrations for each of these 6 areas were determined using data from sample locations from each respective area. Appendix D, Figure 1 shows individual sample locations and delineates these six areas. The cooresponding sample data is contained in Appendix D, Tables 1-4.

The northeast portion of Area 1 and the entire Area 5 shown in Appendix D, Figure 1, will be excluded from disposal at USEI (see section 6.5, below). Samples which were collected from the northeast portion of Area 1 and Area 5 that will be excluded from disposal at USEI are not included in the following analysis for the weighted average concentration of activity in the slab since they are not representative of the concentration profile generally present in the building slabs.

• In order to account for small areas of elevated activity that are not identified as one of the six identified areas, a cumulative probability distribution was

Hematite	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI		
Decommissioning	Alternate Disposal Request		
Project	Revision: 0	Page 7 of 21	

constructed using the one square meter average readings from the remaining slab areas. As shown in Figure 6-4, below, 82 percent of the floor space outside the six identified areas exhibited a count rate less than 4400 cpm. This value (4,400 cpm) was conservatively selected to separate the slab data into two groups since it was twice the minimum average value for each one square meter.

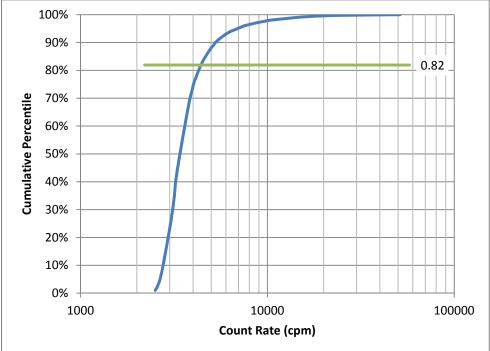


Figure 6-4, Cumulative Probability Distribution, Building Slab

• For the total slab area, a weighted average of samples collected from elevated areas (18%) and those from the general areas (82%) was used to determine the average concentration. Tables 6-2 and 6-3 provide details on the calculation of these two activity components.

Table 6-2, Determination of Average Activity in Elevated Areas^{*}

Location		Concent	ration (pCi/g)	
Location	Тс-99	U-234	U-235	U-238
1	0.1	81	3.9	8.8
4	4.0	2837	146	1010
5	1.8	1909	92	563
6	2.7	1053	58	308
7	0.2	145	6.4	47
8	15	178	6.1	24
10	0.2	1374	48	221
13	1.0	394	15	46
14	0.4	282	13	7.1
16	13	565	22	140
17	1.3	748	29	158
18	0.3	293	15	156
56	1.6	2103	90	165

Revision: 0

Page 8 of 21

Location	Concentration (pCi/g)			
Location –	Тс-99	U-234	U-235	U-238
57	3.4	1603	69	2.3
58	0.78	961	39	147
59	2.1	2687	116	423
Average	3.0	1076	48	214

*Sample locations excluded since in areas that will not be shipped to USEI: 2, 3, 20, 21 and 35.

Table 6-3, Determination of Average Activity for Remaining Slab Area that is N	ot
Included in the Six Identified Areas	

T 49	Concentration, pCi/g			
Location	Тс-99	U-234	U-235	U-238
9	0.6	585	20	78
11	-0.3	120	4.7	23
12	0.3	127	4.7	19
15	1.6	38	1.7	7
19	0.7	189	7.4	46
31	1.7	1.1	0.1	0.2
32	1.9	0.4	0.0	0.2
33	1.8	1.2	0.1	0.3
34	2.2	9.7	0.5	0.8
36	2.0	0.4	0.0	0.2
38	3.7	13	0.7	2.8
39	2.7	11	0.6	2.8
40	10.9	44	2.4	12
41	7.6	39	2.2	9.3
42	5.0	12	0.6	3.2
43	1.7	1.1	0.1	0.5
44	1.7	5.4	0.3	1.7
45	2.5	2.7	0.1	1.9
46	1.7	15	0.8	6.2
47	1.7	1.4	0.1	0.4
48	2.5	3.0	0.2	0.7
49	1.7	0.2	0.0	0.1
50	1.8	0.3	0.0	0.2
51	1.7	0.2	0.0	0.2
52	8.4	51	2.8	10
53	3.0	40	2.2	4.4
54	1.8	9.2	0.5	0.8
55	2.0	34	1.7	1.0
Average	2.7	48	1.9	8.3

In order to determine the concentration within Area 3, it was necessary to determine the average contribution from below the top ³/₄-inch section of concrete since the two samples

Hematite	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI		
Decommissioning	Alternate Disposal Request		
Project	Revision: 0	Page 9 of 21	

collected in this area were collected only in the $0 - \frac{3}{4}$ -inch range. As show in Table 6-4, below, sample results from the lower (below $\frac{3}{4}$ inch) portion from areas not associated with cracks, seams and wall joints were used to determine the contribution below $\frac{3}{4}$ inch in Area 3.

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support of Alternate Disposal Request	of Additional USEI
Project	Revision: 0	Page 10 of 21

-	Table 0-4, Determination of Average Activity below 74 men in Elevated Area 5												
Station	Sample	nple Tc-99			U-234				U-235		U-238		
ID	Mass		(pCi/g)		(pCi/g)			(pCi/g)			(pCi/g))
ID	(g)	Conc.	±2σ	MDC	Conc.	±2σ	MDC	Conc.	±2σ	MDC	Conc.	±2σ	MDC
2	1366	0.46	0.86	2.1	4.7	-	-	0.2	0.2	0.1	0.3	3.0	1.8
3	1301	2.8	1.1	2.2	4.6	-	-	0.2	0.2	0.1	3.8	3.4	1.7
5	1620	0.45	0.85	1.9	12.0	-	-	0.6	0.3	0.2	4.5	4.0	2.1
7	1250	0.041	0.79	2.1	4.7	-	-	0.3	0.1	0.1	0.9	2.8	1.6
8	1090	1.8	0.93	2.2	10.0	-	-	0.3	0.2	0.1	-0.4	9.6	2.1
9	1340	0.57	0.79	2.1	2.4	-	-	0.1	0.1	0.1	1.4	2.5	1.3
10	1780	0.073	0.83	1.9	29.0	-	-	1.6	0.4	0.1	13.2	4.0	0.6
11	1110	-0.40	0.78	2.0	39.0	-	-	2.1	0.4	0.1	13.8	4.1	0.9
12	2050	0.31	0.33	1.2	0.5	-	-	0.0	0.1	0.1	0.3	2.7	1.6
15	1190	1.6	0.39	1.2	15.0	-	-	0.8	0.2	0.1	2.9	3.0	1.5
19	3040	0.32	0.36	0.90	8.9	-	-	0.5	0.2	0.1	4.8	3.9	1.8
Μ	aximum	2.8			39			2.1			14		
	Average	0.64		4	11			0.59			4.2		

Table 6-4, Determination of Average Activity below ³/₄ inch in Elevated Area 3^{*}

* Sample Locations Excluded since in areas that will not be shipped to USEI: 1, 4, 6, 13, 14, 16, 17, 18, 20, 21

Review of concentration data in Areas 1 and 5 indicated concentrations of Tc-99 (Area 1) and Uranium (Area 5) such that a large fraction of the total radionuclide inventory would come from a small area. In each of these areas, it was determined that the 3000 pCi/g limit on average railcar radionuclide activity could be obtained from an area of such small size (less than 500 ft³) as to require operational restrictions to ensure that such a contiguous area be prevented from being placed in a single railcar. Accordingly, the northeast portion of Area 1, which consists of the 3 inch upper cap, and Area 5 will be excluded from disposal at USEI. Based on this determination, the concentration in these areas presented in this document excludes samples from these areas.

The radionuclide activity for areas outside the process building and vaults was conservatively estimated using the data presented in Table 6-4, above. Use of this data is valid based on existing gamma survey data indicating an absence of areas of elevated contamination in these materials such as those present in the process building and vaults.

Table 6-5, below provides a summary of the activity assigned to the materials discussed.

Table 6-5, Summary of Radionuclide Concentration in Building Slabs									
Location	Waste Volume	Т	c-99	U-	234	U-	235	U-238	
Location	(m^3)	pCi/g	Ci	pCi/g	Ci	pCi/g	Ci	pCi/g	Ci
Elevated Area 1 - Bldg									
240, Red Room	64	2	0.000	574	0.064	30	0.003	204	0.02
Elevated Area 2 - Bldg									
240, Green Room	56	6.1	0.001	459	0.045	23	0.002	126	0.01
Elevated Area 3 - Bldg									
254	8.8	2.6	0.000	262	0.004	12	0.000	48	0.00
Elevated Area 4 -Bldg									
266 / 260	21	4.9	0.000	295	0.011	12	0.000	51	0.00
Elevated Area 6 - Bldg									
232 (South Vault)	40	4.2	0.000	156	0.011	7.1	0.000	15	0.00

T_{-}	· f D · J' · · · · · l' J · C · ·	centration in Building Slabs
I anie 6-5 Niimmarv	ότ καπορμέμαει όρ	Centration in Rillining Slang

Hematite Decommissioning HDP-TBD-WM-906, *Characterization Data Summary in Support of Additional USEI Alternate Disposal Request*

Project

Revision: 0

Page 11 of 21

Location	Waste Volume	Т	c-99	U-	234	U-	U-235		238
Location	(m^3)	pCi/g	Ci	pCi/g	Ci	pCi/g	Ci	pCi/g	Ci
Bldg 235 (West Vault)	12	1.9	0.000	22	0.000	1.9	0.000	2.7	0.00
Total - Elevated Areas	200	3.9	0.0014	385	0.14	19	0.007	110	0.039
		_		_		_			
Balance of Process Buildings Excluding: Areas (1-4), area 1 cap, area 5 and Vaults	1152	2.7	0.0055	233	0.47	10	0.021	45	0.09
Building Total	1353	2.9	0.0069	256	0.610	11.5	0.028	55	0.13
Concrete outside process buildings	3035	2.7	0.014	48	0.26	1.94	0.010	8.3	0.04
Asphalt	1112	2.7	0.005	48	0.095	1.94	0.004	8.3	0.016
Total for Site	5499	2.7	0.026	99	0.96	4.3	0.042	19.8	0.19

6.5. **Evaluation of Characterization Data**

Data from 50 sample locations has been obtained during sampling efforts. Of these 50 samples, 33 were targeted in and around areas of elevated activity. The remaining 17 locations were dispersed throughout the remainder of the building. A GPS logged gamma walkover survey was conducted. This survey demonstrates that areas with elevated activity were sampled. This fact is clearly evident upon inspection of Figure 6-3 and Appendix D, Figure 1.

The suitability of the GPS walkover data to identifying elevated uranium activity can be seen in Figure 6-5, below, in which the gamma count rate and total uranium activity at each sample location is plotted.

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support of Alternate Disposal Request	of Additional USEI
Project	Revision: 0	Page 12 of 21

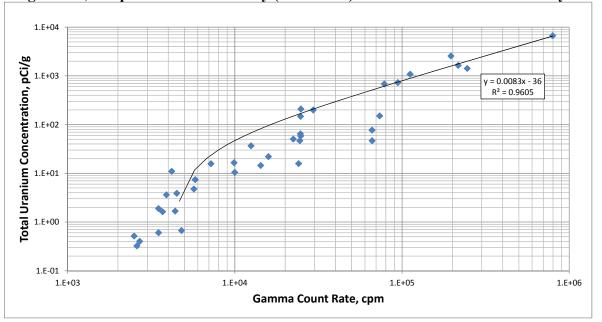


Figure 6-5, Graph of Surface Activity (count rate) versus Total Uranium Activity

The axis for the plot in Figure 6-5 was selected to indicate 0.4 pCi/g total uranium at a gamma count rate of 4400 cpm. These values were selected to represent ambient conditions based on the baseline gamma response within the building and on the total uranium activity at locations 49, 50, and 51, which are away from any area of elevated activity. Sample locations with known subsurface activity were excluded, since these are accounted for in the samples within each elevated area.

Areas in which Tc-99 was present (based on historical information) were included in the targeted sampling within Buildings 240 and 260. Specifically, Tc-99 was present in materials handled in Areas 1, 2, and 6. The concentration of Tc-99 inside and outside these areas is presented below in Table 6-6. As indicated by this tabulation, the concentration of Tc-99 within the concrete material outside of the areas with a history of Tc-99 use is negligible in comparison to that within areas with such a history. Areas with a history of Tc-99 were targeted for sampling. Outside of these areas, the variation in the Tc-99 is low by comparison such that the remaining samples provide effective characterization without the need for use of a surrogate to identify Tc-99.

Table 6-6, Comparison of Tc-99 and Total Uranium Concentrations Inside andOutside Areas with History of Tc-99

Loostion	No. of	J	Гс-99 (рС	i/g)	U	total (p	Ci/g)
Location	Samples	Min	Max	Avg	Min	Max	Avg
Inside areas with history of Tc-99 (Bldg 240 and 260)	18	0.2	2041	198	0.7	6659	1125

HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request

Hematite Decommissioning Project

Revision: 0

Page 13 of 21

Outside areas with history of Tc-99.	32	-0.3	12.6	2.4	0.3	3226	455

Exclusion of portions of the concrete in Building 240 and 260 drastically reduces the variability of Tc-99 concentration within the remaining material. These two areas combined contain 88 percent of the Tc-99 inventory within the process building yet comprise only 3 percent of the material volume. The mean Tc-99 concentration at all sample locations is 73 ± 326 (at 1 sigma). Table 6-7, below, shows a summary of sample results divided into those that fall within the areas to be excluded and those that do not. Removing the two areas mentioned above reduces the mean Tc-99 concentration to 2.5 ± 3.2 (at 1 sigma).

Table 6-7, Comparison of Tc-99 and Total Uranium Concentrations Inside andOutside Areas That Will Be Excluded from Disposal at USEI

Location	#	T	Тс-99, рСі/g		τ	U total, pCi/g		
Location	#	Min	Max	Avg	Min	Max	Avg	
Inside Areas that will be excluded from disposal	8	3.4	3663	828	12	6659	1788	
Outside Areas that will be excluded from dispoal	46	-0.3	15.4	2.5	0.3	3993	500	

Based on nature and extent of characterization data available for this material, it is concluded that the data are of sufficient quality to be used as both an estimate of the total activity present in these materials, and to serve as the basis for determining the radionuclide concentration in materials shipped. Therefore, no additional characterization is planned.

7.0 VOLUME / WEIGHT /ACTIVITY ESTIMATES – UNDERGROUND PIPING

The volume and weight of underground piping was calculated based on information on the inside and outside pipe diameter and installed pipe length obtained from engineering drawings.

Weight estimates for the underground piping was based on the assumptions listed in Tables 7-1 and 7-2, below. The data in Table 7-1 was obtained from an in-pipe inspection survey effort performed in 2010. Data on individual piping segments is presented in Appendix F. Radionuclide concentrations and inventory estimates are presented below in Table 7-3 and are based on radiological sampling data collected during the 2010 in-pipe inspection program which is summarized in Appendix G.

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support of Alternate Disposal Request	of Additional USEI
Project	Revision: 0	Page 14 of 21

Table 7-1, Piping Debris Content Expressed as Percent of Total Available Volume Diagonal Content Expressed as Percent of Total Available Volume

Bldg / Area	Assumed Fill
110	10%
230	40%
240	40%
255	40%
254	40%
253	40%
O/S	10%

Table 7-2, Material Density Used in Weight Calculations

Material	Density
Cast Iron	7.2
Debris	1.5
HDPE	1.5
PVC	1.36
RCP	2.5
RFCP	2.5
Vitrified Clay	1.5

Hematite Decommissioning Project	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request			
	Revision: 0	Page 15 of 21		

Table 7-3, Summary of Underground Piping Radionuclide Concentration and Inventory

Inventory								
Location	Wall Mass (g)	Debris Mass (g)	Total Mass (g)	Tc-99 (pCi/g)	U-234 (pCi/g)	U-235 (pCi/g)	U-238 (pCi/g)	
Building 240 Northernmost System	3.3E+06	7.1E+05	4.0E+06	6.3E+03	4.7E+04	1.6E+03	3.3E+03	
Building 240 Middle System	3.9E+06	7.8E+05	4.7E+06	6.3E+03	4.7E+04	1.6E+03	3.3E+03	
Building 240 Southernmost System	2.2E+06	3.2E+05	2.6E+06	6.3E+03	4.7E+04	1.6E+03	3.3E+03	
Building 260	2.7E+05	4.3E+04	3.1E+05	1.4E+02	5.5E+04	2.3E+03	8.2E+03	
Building 255 Northernmost Process System	2.9E+06	4.6E+05	3.4E+06	1.7E+02	6.9E+03	2.6E+02	7.7E+02	
Building 255 Southernmost Process System	3.7E+06	3.2E+05	4.0E+06	1.7E+02	6.9E+03	2.6E+02	7.7E+02	
Building 255 Sanitary Lines	1.2E+05	1.9E+05	3.1E+05	1.7E+02	6.9E+03	2.6E+02	7.7E+02	
Building 255 Sanitary and Grey Water lines	2.3E+05	6.0E+05	8.3E+05	1.7E+02	6.9E+03	2.6E+02	7.7E+02	
Building 254	1.9E+07	2.3E+06	2.1E+07	1.7E+02	6.9E+03	2.6E+02	7.7E+02	
Building 253	2.3E+05	2.3E+05	4.6E+05	1.7E+02	6.9E+03	2.6E+02	7.7E+02	
Building 253 Sanitary and Grey Water lines	1.9E+04	3.1E+04	5.0E+04	1.7E+02	6.9E+03	2.6E+02	7.7E+02	
Building 253 Storm Water Lines	4.5E+05	7.9E+05	1.2E+06	1.7E+02	6.9E+03	2.6E+02	7.7E+02	
Outside	1.9E+07	5.2E+06	2.4E+07	1.7E+02	6.9E+03	2.6E+02	7.7E+02	

7.1. **Evaluation of Characterization Data**

Activity estimates for this material are based on radiological analysis of swipe and scale/sediment samples collected during an extensive in-pipe survey effort that was conducted in 2010 to assist in quantifying the residual mass of ²³⁵U in underground piping that reside mainly beneath the former process buildings. Samples collected during these surveys were generally targeted at areas with either elevated gamma radiation

Hematite Decommissioning Project	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request			
	Revision: 0	Page 16 of 21		

measurements (as determined by a GM detector attached to a remote camera) or from areas with debris buildup. Accordingly, uranium sample results are likely to be biased in the upward direction due to the tendency to sample areas with higher photon activity. While these measurements would not be indicative of Tc-99 activity, the bias toward sample areas with debris buildup would tend to bias both uranium and Tc-99 inventory estimates in the upward direction as well.

In order investigate potential actions to reduce the uncertainty associated with the radionuclide content in the site piping, an analysis was performed comparing the radionuclide inventory associated with Buildings 240 and 260 versus the balance of the site. Tables 7-4 and 7-5 contains the summary data associate with these two datasets.

Location	Piping Volume (m ³)	Tc-99 (Ci)	U-234 (Ci)	U-235 (Ci)	U-238 (Ci)
Building 240 Northernmost System	1.7E+01	4.5E-03	3.3E-02	1.1E -03	2.3E-03
Building 240 Middle System	2.0E+01	5.0E-03	3.6E-02	1.2E-03	2.6E-03
Building 240 Southernmost System	1.1E+01	2.0E-03	1.5E-02	5.0E-04	1.0E-03
Building 260	1.3E+00	5.9E-06	2.4E-03	9.7E-05	3.5E-04
Total	4.8E+01	1.1E-02	8.7E-02	2.9E-03	6.3E-03

Table 7-4, Radionuclide Inventory for Underground Piping Buildings 240 and 260

Table 7-5, Radionuclide Inventory for Underground Piping, Excluding Buildings
240 and 260

Location	Piping Volume (m ³)	Tc-99 (Ci)	U-234 (Ci)	U-235 (Ci)	U-238 (Ci)	
Building 255 Northernmost Process System	1.4E+01	8.0E-05	3.2E-03	1.2E-04	3.5E-04	
Building 255 Southernmost Process System	1.7E+01	5.5E-05	2.2E-03	8.2E-05	2.4E-04	
Building 255 Sanitary Lines	1.3E+00	3.3E-05	1.3E-03	4.9E-05	1.5E-04	
Building 255 Sanitary and Grey Water lines	3.4E+00	1.0E-04	4.2E-03	1.6E-04	4.6E-04	
Building 254	8.8E+01	4.0E-04	1.6E-02	5.9E-04	1.7E-03	
Building 253	1.9E+00	4.0E-05	1.6E-03	6.0E-05	1.8E-04	
Building 253 Sanitary and Grey Water lines	2.1E-01	5.4E-06	2.2E-04	8.0E-06	2.4E-05	
Building 253 Storm Water Lines	5.2E+00	1.4E-04	5.5E-03	2.0E-04	6.1E-04	
Outside	1.0E+02	9.1E-04	3.6E-02	1.3E-03	4.0E-03	
Total	2.3E+02	1.8E-03	7.0E-02	2.6E-03	7.8E-03	

As indicated by these two tables, 87 percent of the Tc-99 within the site piping (based on available sample data) is contained within buildings 240 and 260 while these two

Hematite Decommissioning Project	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request				
	Revision: 0	Page 17 of 21			

locations contain only 17 percent of the volume. Additionally when all of the available sample data is pooled, the resultant mean Tc-99 concentration is 403 pCi/g with a standard deviation of 1261 pCi/g. Removal of Buildings 240 and 260 piping results in a mean concentration of 16 pCi/g with a standard deviation of 39 pCi/g.

Based on this analysis, the piping from these two areas will excluded from disposal at USEI; the location of this piping is shown on Figure 1 of Appendix G. This will result in a significant reduction in the average concentration and its associated uncertainty. Because of the limited data available for the building piping and due to the inability to perform direct measurements until the time of removal, additional characterization of this material will be performed prior to shipment. Details of the planned characterization are contained in the Additional Alternate Disposal Request associated with this TBD.

8.0 VOLUME / WEIGHT / ACTIVITY ESTIMATES – MISCELLANEOUS EQUIPMENT

During the process building demolition, HEPA units and associated ducting were categorized as: 1) materials with sufficiently low specific activity to be disposed at Bulk Survey for Release (BSFR); 2) materials that exceed the BSFR criteria but which are suitable for disposal at USEI, and 3) materials that are unacceptable for disposal at USEI. Table 8-1 provides a summary of the characterization data for each component.

Concentrations of U-234, U-238 and Tc-99 (Table 8-2) as well as other trace radionuclides (Table 7-3) were determined using scaling factors contained in HDP-TBD-WM-901, *Scaling Factors for Radioactive Waste Associated with the Above Slab Portion of the Process Buildings* (Reference 3.1), and enrichment of 4.5 percent. Use of the scaling data is justified since the scaling factors were derived from equipment equivalent to that under consideration. The HEPA units were installed and used during the period of commercial work at Hematite (post 1974) and as such were not exposed to uranium with an enrichment of greater than 4.5 percent.

Table 8-1, Summary of HEPA Unit and Associated Ducting Characterization Data –
Total U-235 and Material Dimensions

Total 0-255 and Wraterial Dimensions						
Item	Item U- 235 (grams)	Weight (lb)	volume (ft ³)			
HEPA 1 240-12	8.03	2,580	6.45E+01			
HEPA 2 240-12	7.08	2,580	6.45E+01			
HEPA 3 253-26	7.08	2,580	6.45E+01			
HEPA 7 254-35	13.88	2,580	6.45E+01			
HEPA 18 255-51	9.25	2,580	6.45E+01			
HEPA exhaust duct 240-12; y-duct at blower 240-12	1.68	450	1.13E+01			
240-4 stack duct	1.68	134	3.35E+00			
stack flange-240	1.33	450	1.13E+01			
Total	50	13,934	348			

Hematite Decommissioning Project	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request		
	Revision: 0	Page 18 of 21	

Table 8-2, Uranium and Tc-99 Concentrations in HEPA Units and Associated
Ducting

Ducting						
Item	U-234	U-235	U-238	Tc-99		
	(pCi)	(pCi)	(pCi)	(pCi)		
HEPA 1 240-12	3.2E+08	1.8E+07	5.8E+07	8.05E+06		
HEPA 2 240-12	2.8E+08	1.6E+07	5.1E+07	7.10E+06		
НЕРА З 253-26	2.8E+08	1.6E+07	5.1E+07	1.59E+06		
НЕРА 7 254-35	5.5E+08	3.1E+07	1.0E+08	2.45E+06		
HEPA 18 255-51	3.7E+08	2.0E+07	6.7E+07	1.63E+06		
hepa exhaust duct 240-12; y-duct at blower 240-12	6.7E+07	3.7E+06	1.2E+07	1.69E+06		
240-4 stack duct	6.7E+07	3.7E+06	1.2E+07	1.68E+06		
stack flange-240	5.3E+07	2.9E+06	9.6E+06	1.33E+06		
Total Activity (Ci)	2.0E-03	1.1E-04	3.6E-04	2.6E-05		

As indicated in Table 8-3, below, the contribution from these trace radionuclides is of such a low concentration relative to the associated uranium also present (2.6 E-5 to 6.7 E-4) as to be considered to be present only at trace levels and are not carried forward into subsequent inventory calculations.

Item	U-total (pCi)	Th-230 (pCi)	Th-232 (pCi)	Np-237 (pCi)
HEPA 1 240-12	4.0E+08	8.94E+04	1.04E+04	1.38E+04
HEPA 2 240-12	3.5E+08	7.88E+04	9.17E+03	1.21E+04
НЕРА 3 253-26	3.5E+08	7.88E+04	9.17E+03	1.21E+04
HEPA 7 254-35	6.8E+08	1.55E+05	1.80E+04	2.38E+04
HEPA 18 255-51	4.6E+08	1.03E+05	1.20E+04	1.59E+04
HEPA exhaust duct 240-12; y- duct at blower 240-12	8.3E+07	1.87E+04	2.18E+03	2.89E+03
240-4 stack duct	8.3E+07	1.87E+04	2.18E+03	2.88E+03
stack flange-240	6.5E+07	1.48E+04	1.72E+03	2.27E+03
Total Activity (Ci)	2.5E-03	5.6E-07	6.5E-08	8.6E-08

Table 8-3, Trace Element Concentrations in HEPA Units and Associated Ducting

8.1. **Evaluation of Characterization Data**

Activity estimates for the HEPA units that is described above are based on measurements of gamma radiation levels performed during the characterization of remaining equipment in 2008. The gamma radiation levels were subsequently interpreted using the MNCP code to determine the amount and enrichment of U-235, and the amount of total uranium in each component. The total uranium activity within the items ranged from 400 to 800 pCi/g, with the exception of one low mass item (130 lb) that showed total uranium activity at 1,800 pCi/g. It is likely that all of these materials will be shipped in a single package, and as such the average concentration of the package would be approximately 520 pCi/g, or 17 percent of the 3,000 pCi/g limit.

Hematite Decommissioning Project	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request			
	Revision: 0	Page 19 of 21		

The overall amount of Tc-99 activity was determined based on waste scaling factors derived from the laboratory analytical data obtained during the initial characterization surveys and sampling performed in 2008, and subsequently published in HDP-TBD-WM-901, *Scaling Factors for Radioactive Waste Associated with the Above Slab Portion of the Process Buildings* (Reference 3.1). The waste scaling factors for Tc-99 to U-235 described in this document are appropriate since they were based on samples obtained from the surfaces that were exposed to the same radionuclide mixture. The Tc-99 concentrations within the individual items ranged from 1.4 to 28 pCi/g; and averaged 4 pCi/g (standard deviation was 8.6pCi/g). Consistent with process history that indicated that this equipment was not directly involved in processes that would have involved Tc-99, the concentration of Tc-99 contributed only a small fraction of the total activity in the source term.

Accordingly, based on the low contribution of these materials to the total evaluated dose, it is concluded that the data are of sufficient quality to be used as both an estimate of the total activity present in these materials, and to serve as the basis for determining the radionuclide concentration in materials shipped. Therefore, no additional characterization of this miscellaneous equipment is planned.

9.0 VOLUME / WEIGHT /ACTIVITY ESTIMATES ASSOCIATED WITH SUB-SLAB SOILS

Conceptual excavation contours for soils (including limestone backfill) beneath the former process buildings are shown on Figure H-1. These contours are based on soil sample results exceeding the DCGLs or exceeding the chemical Remediation Goals (RGs), and includes a projected average excavation depth of 2 feet within the footprint of the former Process Buildings.

The soils beneath the process building slabs were initially characterized during the site remedial investigation. Additional samples were collected during the 2010 and 2011 concrete slab characterization efforts. Finally, a series of core samples available from the earlier remedial investigation report were analyzed. Analysis of these samples provided data for soils down to the 16.5 ft below the surface. Sample locations are shown on Figure H-2. Note that different symbols are used to discern samples collected immediately under the building slab (e.g., initial 6 inches), versus samples collected subsurface, and the samples collected from archived cores (e.g., 4 foot composite samples down to 16.5 ft)

This combined data was used to develop an estimate of the radionuclide concentration within the sub-slab soil that is likely to be excavated. Analytical results for samples obtained from the areas within the excavation contours shown in Figure H-1 are presented in Tables H-1through H-12 Data presented in Appendix H is summarized below in Table 9-1.

Hematite Decommissioning Project	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request				
	Revision: 0	Page 20 of 21			

Table 9-1, Concentration Summary for Soil Beneath the Process Buiding Slab									
Area	Volume Shipped	Тс-99	U-234	U-235	U-238				
	m ³	Ci	Ci	Ci	Ci				
	Excluding Beneath Building 253								
0 - 0.5 ft	1,408	0.0055	0.21	0.011	0.065				
0.5 - 5 ft	4,573	0.022	0.13	0.0064	0.018				
5 ft - 20 ft	1,684	0.00045	0.0073	0.0004	0.004				
		Under Buil	ding 253						
0 - 0.5 ft	159	0.033	0.0070	0.00037	0.0010				
0.5 - 5 ft	997	0.067	0.054	0.0030	0.0079				
5 ft - 20 ft	653	0.012	0.0040	0.0002	0.0015				
Total									
total - (0 - 20 ft)	9,474	0.14	0.41	0.022	0.10				

b

9.1. **Evaluation of Characterization Data**

A total of 94 samples were collected from the area immediately beneath the former process building to a depth of 16.5 ft. The results of these samples are shown in Table 9-2, below. Included in this group are 48 samples collected in the surface material immediately beneath the building slab. Samples taken beneath Buiding 253 were analyzed seperately from the rest of the sample data. The reason for this separation is that this area contains the majority of the Tc-99 activity within the sub-slab soil. Outside of the area immediately below Building 253, the maximum Tc-99 concentration is 30 pCi/g. The weighted average concentration in this area is 3 pCi/g. This is compared to a maximum concentration of 168 pCi/g in the area beneath Building 253 and a weighted average concentration of 43 pCi/g. The highest average concentration is found in the soils immediately below the Building 253 slab. A total of 5 samples were collected in this area (shown in Figure H-2). The sample results all fell within a concentration range of 109 pCi/g to 168 pCi/g, with a standard deviation of 30 pCi/g.

Location	Volume Shipped (m ³)	No. Samples	Min (pCi/g)	Max (pCi/g)	Arithmetic Mean (pCi/g)	Std Dev. (pCi/g)		
Excluding Beneath Building 253								
0 - 0.5 ft	1,408	43	-0.40	12	3	3		
0.5 - 5 ft	4,573	12	-0.3	30	3	9		
5 ft - 20 ft	1,684	22	-0.3	1	0.2	0.4		
		Und	er Building	253				
0 - 0.5 ft	159	5	109	168	143	30		
0.5 - 5 ft	997	5	7.50	151	47	60		
5 ft - 20 ft	653	7	5.22	28	13	8		
Total								
Total: 9,474 m^3 Total # S			# Samples:	94	Weighted Mean:	10 pCi/g		

Table 9-2, Tc-99 results summary

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request			
Project	Revision: 0	Page 21 of 21		

Taken as a single dataset, the average Tc-99 concentration is 13 pCi/g with a standard deviation of 36 pCi/g. This data was input into Visual Sample Plan \mathbb{O}^1 Software (Appendix I) to determine the number of samples required to construct a UCL95 with a width of 6.5 pCi/g. Based on this analysis, it was determined that 85 samples would have to be collected. As indicated above, there are a total of 96 samples from this area already analyzed. Although it is apparent that an appropriate sample set is available for the subslab soil, additional characterization is planned based on the inaccessibility of the material prior to remediation of the slabs. Details of the planned characterization are contained in the Additional Alternate Disposal Request associated with this TBD.

10.0 APPENDICES

Appendix A, Volume Estimates for Process Buildings Slabs

Appendix B, Volume Estimates for Concrete Not Including Process Building Slabs

Appendix C, Volume Estimates for Asphalt Surfaces

Appendix D, Process Building Slab – Sampling data and Gamma Walkover Survey (GWS)

- Appendix E, Process Building Slab –Radium 226 Data, Two Sample t-test
- Appendix F, Volume Estimates for Underground Piping

Appendix G, Radiological Sampling Results – Underground Piping

Appendix H, Sub-Slab Sample Data Summary

Appendix I, Visual Sample Plan^{©1} Software Evaluation

Software copyright (c) 2011 Battelle Memorial Institute. All rights reserved.

Hematite
Decommissioning
ProjectHDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI
Alternate Disposal RequestRevision: 0Page A-1 of 1

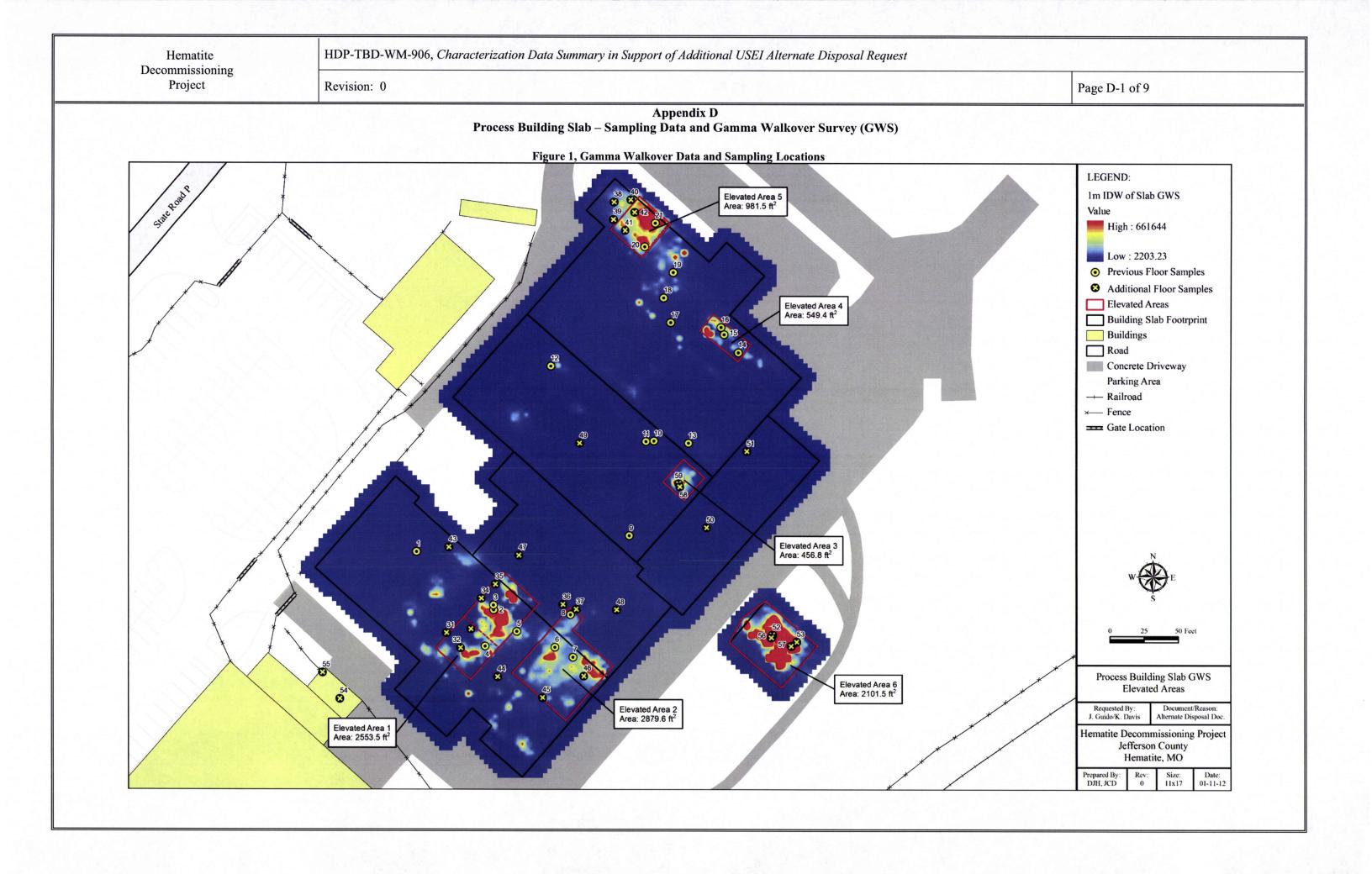
Appendix A

	-		L	W	Н	Volume	Weight	Area	
	Item	Quantity	(ft)	(ft)	(ft)	(ft ³)	(lb)	(ft^2)	
Building									
Slabs	Bldg. 240	1	60	83.08	0.5	2,492	373,860	4,985	
		1	60.16	83	0.5	2,497	374,496	4,993	
		1	40	83.08	0.75	2,492	373,860	3,323	
		1	40.5	83.16	0.5	1,684	252,599	3,368	
	Bldg. 253	1	69	131.5	0.5	4,537	680,513	9,074	
	Bldg. 254	1	83	161.25	0.5	6,692	1,003,781	13,384	
	Men And Women Locker Rooms	1	166	18	0.5	1,494	224,100	2,988	
	Bldg. 255	1	159.5	83.08	0.5	6,626	993,845	13,251	
	Bldg. 256-1 - Slab	1	70	50	0.5	1,750	262,500	3,500	
	Bldg 256-1 Thickend slab	1	27	2	1	54	8,100	54	
	Bldg. 256-2	1	81	50	0.5	2,025	303,750	4,050	
	Bldg. 256-2	1	29.6	17.5	0.42	218	32,634	518	
	Bldg. 256-2	1	37.6	31.67	0.67	798	119,675	1,191	
	Bldg. 256-2	1	36	31.67	0.67	764	114,582	1,140	
	Bldg. 256-2 Sump	1	5.5	7.5	3	124	18,563	41	
	Limestone Bldg.	1	36.5	38	0.58	804	120,669	1,387	
	Bldg. 252	1	41	50	0.5	1,025	153,750	2050	
	Bldg. 235	1	35.08	17	0.5	298	44,727	596	
Fotal Pro Slabs	cessing Buildings					36,373	5,456,002	69,893	
	cessing Buildings ailable for Disposal					35,031	5,254,627	67,833	

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request		
Project	Revision: 0	Page B-1 of 3	

	Item	Quantity	L (ft)	W (ft)	H (ft)	Volume (ft ³)	Weight (lb)
Building 240	Interior Footings	18	4.25	4.25	1	325	48,769
	piers	18	1	1	2.6	47	7,020
	Footing Base	5	83.08	1.5	1	623	93,465
	Footing	2	161.5	1.5	1	485	72,675
Bldg 253	Interior footings	1	9.5	9.5	1.75	158	23,691
	Interior footings	1	12	12	2	288	43,200
	Interior footings	1	10	10	1.75	175	26,250
	Interior footings	1	7.5	7.5	1.25	70	10,547
	Interior footings	1	9	5	1.5	68	10,125
	Interior footings	2	8	6	2	192	28,800
	Interior footings	1	9.5	9.5	1.75	158	23,691
	Interior footings	1	12	12	2	288	43,200
	Interior footings	1	10	10	1.75	175	26,250
	Interior footings	1	7.5	7.5	1.25	70	10,547
	Interior footings	2	5.5	5.5	1	61	9,075
	Interior footings	1	12	5	2	120	18,000
	Interior footings	1	8	5	1	40	6,000
	Interior footings	1	16.83	4	2	135	20,196
	Interior footings	1	7	4	1	28	4,200
	Interior footings	1	4	35	1	140	21,000
	piers	23	2	2	1.25	115	17,250
	Footin Base	1	40	3.7	0.83	123	18,426
	footing pier	1	40	1	3	120	18,000
	Footing base	1	61.5	3.7	0.8	182	27,306
	footing pier	1	61.5	3	1	185	27,675
Bldg 254	A-2 footing	1	27	6	2	324	48,600
	A-2 pier	1	2	2	1.25	5	750
	b-2 footing	1	44	6	2	528	79,200
	B-2 pier	1	2	2	1.25	5	750
	c2 footing	1	34	6	2	408	61,200
	C2 pier	1	2	2	1.25	5	750
	D2 Footing	1	6.67	9.67	2	129	19,350
	E2 footing	2	13	13	2	676	101,400
	E2 pier	2	3	4	1.25	30	4,500
	F2 footin	2	4	4	1.25	40	6,000
	G-3 footing	8	8	8	1.25	640	96,000
	G-3 pier	8	2	2	1.25	40	6,000
	H-3 footing	4	5	5	1.25	125	18,750
	H-3 pier	4	2	2	1.25	20	3,000
	I-3 footing	1	27	7	2	378	56,700
	J-3 footing	1	11	11	2	242	36,300
	J-3 footing part 2	1	2	2	1.67	7	1,002
	J-3 footing part 3	1	1.5	1.5	1.67	4	564
	K-3	1	9	9	1.5	122	18,225
	K-3 pier	1	2	2	1.25	5	750
	N/s Block Wall footing	3	161	1	1	483	72,450
	EW block wall footing	6	83	1	1	498	74,700
	EW Footing	2	83	3	1	498	74,700
	EW footing pier	2	83	2.5	1	415	62,250

Hematite Decommissioning Project	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request			
	Revision: 0	Page B-2 of 3		


Appendix B Volume Estimates for Concrete Not Including Process Building Slabs							
	Item	Quantity	L (ft)	W (ft)	H (ft)	Volume (ft ³)	Weight (lb)
	NS footing pier	1	161.25	1	2.5	403	60,469
Men and Women	The rooting pro-	-	101.20	-	2.0	.05	00,109
Locker Rooms	Footing	2	101	3.5	3.5	2,475	371,175
	footing pier	2	101	1.25	2	505	75,750
Building 255	Interior footing	10	7	7	1.25	613	91,875
8	pier	10	1.17	1.17	2.25	31	4,620
	pilaster footing	10	6	6	1	360	54,000
	Pilaster pier	10	2.5	1.75	1.42	62	9,319
	E/W footing	2	83.08	2.5	1	415	62,310
	EW piers	2	83.08	2.5	1	415	62,310
	NS footing	2	159.5	2.25	1	718	107,663
	NS footing piers	2	159.5	0.75	2.5	598	89,719
Building 256-1	Loading Dock Floor	1	46	65	0.67	2,003	300,495
	Sump location	1	65	15	0.67	653	97,988
	Dock Wall base	1	4	46	1	184	27,600
	Dock Wall base	1	47	0.83	5.83	227	34,114
	Dock Sides2	2	46	0.83	65	4,963	744,510
	Footings A-6	2	6.5	6.5	1	85	12,675
	Footing A6 pier	2	70	2	3.7	1,036	155,400
	Footing B-6	2	7.5	7.5	1	113	16,875
	Footing B-6 pier	2	50	2	2	400	60,000
	Footing C-6	1	5	7.5	1	38	5,625
	Footing C-6 pier	1	2	2	2	8	1,200
	D-6 footing	1	6.83	1.25	1	9	1,281
Building 256-2	A6 footing base	3	6.5	6.5	1	127	19,013
0	A6-pier	3	2.16	2.16	81	1,134	170,061
	B-6 Base	2	7.5	7.5	1	113	16,875
	B-6 pier	2	2	2	2	16	2,400
Building 260	Interior footings	3	8	8	1.5	288	43,200
	Interior piers	3	1.6	1.5	3.16	23	3,413
	center footings	1	35	6	3.16	664	99,540
	center piers	1	35	5	1.67	292	43,838
	s. footing	1	31	6	5.67	1,055	158,193
	pier 4 base	4	3	3	1.16	42	6,264
	pier 4 pier	4	3.67	1	1	15	2,202
	pier 3 bases	5	4	7	1.5	210	31,500
	pier 3 piers	5	1	1	2.16	11	1,620
	modified pier 3	1	7	9	1.6	101	15,120
	mod. Pier 3 pier	1	1	1	2.16	2	324
	footing	1	112	1.5	1.67	281	42,084
Limestone Building	Pier 1	4	1.16	1.16	3.16	17	2,551
	Pier 2	1	1.16	1.75	3.16	6	962
	Footing	4	5	5	1	100	15,000
	Footing	1	38	3.16	0.67	80	12,068
	Footing	1	5.5	17	0.67	63	9,397
	footing	1	5.5	15	0.67	55	8,291
	interior footing	1	14.5	1	0.67	10	1,457
	interior footing	1	14.5	1	0.67	8	1,437
	interior footing	1	22	1	0.67	15	2,211
Building 252	Footings base	2	41	2	1	164	2,211

Hematite Decommissioning Project	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request			
	Revision: 0	Page B-3 of 3		

	Item	Quantity	L (ft)	W (ft)	H (ft)	Volume (ft ³)	Weight (lb)
	footing piers	2	41	1.25	1	103	15,375
	footing base	2	50	2	1	200	30,000
	footing piers	2	50	2	1	200	30,000
Building 235	Footing Base	1	106	1	1.5	159	23,850
	Footing Pier	1	106	1	2	212	31,800
	Walls	1	106	15	0.67	1,065	79,898
	Interior walls	4	30	10	0.67	804	60,300
Septic Tank	Walls	2	24	0.5	8.5	204	30,600
-	walls	3	6	0.5	8.5	77	11,475
	Top and Bottom	2	24	6	0.5	144	21,600
Other Areas	Site Dam	1	39	4	7	1,092	163,800
	Head Wall	1	70	3	0.67	141	21,105
	Cistern Burn Pit	1	50	5	0.5	125	18,750
	Tile Barn Ramp	1	38	8	0.5	152	22,800
	Tile Barn Slab	1	124	37	2	9,176	1,376,400
	Wood Barn Footings	1	220	4	0.67	590	88,440
	Slab N of 260	1	95	54	0.5	2,565	384,750
	Tank base N of Lime	1	34	34	1	1,156	173,400
	Slab N of 255	1	79	11	0.5	435	65,175
	S of 253 basin	1	11	11	1	121	18,150
	basin s of 240	1	22	8	1	176	26,400
	Piers S of 240	2	2	5	3	60	9,000
	Office w of 240	1	41	13	1	533	79,950
	Vent room w of 240	1	28	73	1	2,044	306,600
	Side Walks	1	300	8	0.5	1,200	180,000
	230 Pad	1	250	150	0.67	25,125	3,768,750
Total Concrete or	utside except processing build	ling Slabs				79,538	11,790,538

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support Alternate Disposal Request	of Additional USEI
Project	Revision: 0	Page C-1 of 1
	Appendix C Volume Estimates for Asphalt Surfaces	

	Item	Quantity	L (ft)	W (ft)	H (ft)	Volume (ft ³)	Weight (lb)
Asphalt	Asphalt	1	52	15	0.5	390	46,800
		1	9	150	0.5	675	81,000
		1	38	10	0.5	190	22,800
	Asphalt around plant	1	1700	24	0.6	24,480	2,937,600
	Asphalt pads	1	100	100	0.6	6,000	720,000
	Cushman road	1	500	10	0.6	3,000	360,000
	L Debbie pad	1	50	50	0.5	1,250	150,000
Total Asphalt						35,985	4,318,200
	Asphalt total volume =	3.60E+04 f	ť3				
	Asphalt total Weight, lb	= 4.32E+06	lb				
	Asphalt total Weight, g	= 1.96E+09	g				

Revision: 0

Appendix D Process Building Slab – Sampling Data and Gamma Walkover Survey (GWS)

Table 1, Sample Results, Stations 1 – 21 (Tc-99, U-234, U-235, and U-238)

~				Sampl	е Туре							Radio	nuclide (Concent	ration					
n II			Resurfaced	Expansion	Identified	Representative	Sample		Tc-99			U-234			U-235			U-238		-
Station ID	Sample ID	Description	Concrete	Joint, Crack,	as a Hot	of General	Mass		(pCi/g)			(pCi/g)			(pCi/g)			(pCi/g)		Notes
Sti			Region	Seam. Near Wall	Spot	Area	(g)	Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC	1
	991-MS-100413-13-1	Concrete sample from Station # 1 - top 1/4 "					62	0.58	0.88	2.1	178	26	0.23	5.1	1.2	0.13	9.8	1.9	0.23	
1	991-MS-100413-13-2	Concrete sample from Station # 1 - middle 1/2 "] -	х	-	-	125	-0.13	0.83	1.8	176	28	0.28	6.1	1.4	0.21	8.4	1.7	0.28	
1	991-MS-100413-13-3	Concrete sample from Station # 1 - remainder of core					1160	0.068	0.84	1.9	66	-	-	3.7	0.55	0.16	8.8	3.2	0.83	
							-	0.073	-	-	81	-	-	3.9	-	-	8.8	-	-	1
	992-MS-100413-13-1	Concrete sample from Station # 2 - top 1/4 "					60	42738	2950	3.7	34384	4986	95	1255	280	61	5051	834	26	
	992-MS-100413-13-2	Concrete sample from Station # 2 - middle 1/2 "					106	4.5	1.1	2.8	15	2.7	0.097	0.29	0.20	0.097	2.5	0.70	0.19	
	992-MS-100413-13-3a	Concrete sample from Station # 2 - remainder of core A	х	-	х	-	534	0.72	0.91	2.8	9.1	-	-	0.41	0.050	0.16	11	7.0	4.3	
2	992-MS-100413-13-5	1/4 inch Subfloor wafer					85	-0.13	0.88	2.3	123	18	0.29	3.3	0.92	0.13	2.0	0.67	0.13	
2	992-MS-100413-13-6	1/2 inch Subfloor wafer					136	-0.17	0.88	1.9	1.4	0.51	0.26	0.063	0.11	0.19	0.95	0.40	0.19	
	992-MS-100413-13-3b	Concrete sample from Station # 2 - remainder of core B	-				1366	0.46	0.86	2.1	4.7	-	-	0.25	0.24	0.15	0.27	3.0	1.8	
			_				-	1122	-	-	912	-	-	33	-	-	136	-	_	1
							-	0.37	-	_	11	-	-	0.40	-	-	0.42	-	_	2
	993-MS-100413-13-1	Concrete sample from Station # 3 - top 1/4 "					59	22646	547	2.6	15232	4884	5.6	544	181	3.1	2364	764	6.7	
	993-MS-100413-13-2	Concrete sample from Station # 3 - middle 1/2 "					119	122	14	2.3	6109	2122	2.7	206	74	1.4	904	316	2.7	
	993-MS-100413-13-3a	Concrete sample from Station # 3 - remainder of core A	Х	Х	-	-	509	101	13	1.9	1183	-	-	65	2.8	0.77	265	43	9.1	
2	993-MS-100413-13-5	1/4 inch Subfloor wafer					75	19	2.9	2.0	107	16	0.27	3.8	0.98	0.23	21	3.6	0.23	
3	993-MS-100413-13-6	1/2 inch Subfloor wafer					113	2.5	1.1	1.9	4.2	0.97	0.20	0.13	0.13	0.086	1.3	0.45	0.086	
	993-MS-100413-13-3b	Concrete sample from Station # 3 - remainder of core B					1301	2.8	1.1	2.2	4.6	-	-	0.23	0.21	0.13	3.8	3.4	1.7	
			1				-	647	-	-	1030	-	-	42	-	-	179	-	-	1
			1				-	3.6	-	-	9.7	-	-	0.40	-	-	4.5	-	-	2
	997-MS-100414-13-1	Concrete sample from Station # 4 - top 1/4 "					113	18	2.6	2.2	1439	262	1.3	56	12	0.57	311	58	1.1	
	997-MS-100414-13-2	Concrete sample from Station # 4 - middle 1/2 "	1 -	х	-	-	122	5.7	0.88	0.85	4661	980	1.9	179	40	1.9	1011	215	1.9	
4	997-MS-100414-13-3	Concrete sample from Station # 4 - remainder of core					1290	2.6	0.51	1.0	2787	-	-	151	21	0.57	1071	144	2.9	
							-	4.0	-	-	2837	-	-	146	-	-	1010	-	-	1
	998-MS-100414-13-1	Concrete sample from Station # 5 - top 1/4 "					96	24	1.8	1.4	37544	6057	145	1805	471	101	11035	1947	56	
	998-MS-100414-13-2	Concrete sample from Station # 5 - middle 1/2 "		-	х	-	187	2.1	0.99	2.5	50	8.3	0.24	3.0	0.81	0.20	21	3.7	0.20	
5	998-MS-100414-13-3	Concrete sample from Station # 5 - remainder of core	-				1620	0.45	0.85	1.9	12	-	-	0.63	0.29	0.18	4.5	4.0	2.1	
							-	1.8	-	-	1909	-	-	92	-	-	563	-	-	1
	1008-MS-100415-13-1	Concrete sample from Station # 6 - top 1/4 "					66	16	1.3	1.5	20166	3281	104	1101	312	79	5896	1086	79	<u>†</u>
	1008-MS-100415-13-2	Concrete sample from Station # 6 - middle 1/2 "	1 -	х	-	-	120	2.9	1.0	2.1	1.4	0.46	0.20	0.095	0.11	0.086	0.64	0.30	0.17	+
6	1008-MS-100415-13-3	Concrete sample from Station # 6 - remainder of core	1				1080	1.9	0.91	2.1	2.2	-	-	0.12	0.19	0.11	0.93	2.9	1.6	+
			1				-	2.7	-	-	1053	-	-	58	-	-	308	-	-	1
	1000-MS-100415-13-1	Concrete sample from Station # 7 - top 1/4 "					61	1.5	0.46	0.78	3304	868	5.6	145	43	1.9	1074	286	3.6	<u>†</u>
	1000-MS-100415-13-2	Concrete sample from Station # 7 - middle 1/2 "	1 -	-	x	-	118	0.64	0.85	2.2	2.7	0.68	0.21	0.12	0.12	0.079	1.4	0.44	0.15	+
7	1000-MS-100415-13-3	Concrete sample from Station # 7 - remainder of core	1				1250	0.041	0.79	2.1	4.7	-	-	0.26	0.14	0.13	0.89	2.8	1.6	+
		•	{				_	0.15		+	145			6.4		<u> </u>	47			1

Page D-2 of 9

Revision: 0

Appendix D Process Building Slab – Sampling Data and Gamma Walkover Survey (GWS)

Table 1, Sample Results, Stations 1 – 21 (Tc-99, U-234, U-235, and U-238)

				Sampl	е Туре							Radio	nuclide	Concent	ration					
n ID			Resurfaced	Expansion		Representative	Sample		Tc-99			U-234			U-235			U-238		-
Station	Sample ID	Description	Concrete	Joint, Crack,	as a Hot	of General	Mass		(pCi/g)			(pCi/g)			(pCi/g)			(pCi/g)		Notes
St			Region	Seam. Near Wall	Spot	Area	(g)	Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC	
	999-MS-100414-13-1	Concrete sample from Station #8 - top 1/4 "					85	163	4.1	4.1	2599	463	1.7	89	18	1.1	370	68	1.1	
	999-MS-100414-13-2	Concrete sample from Station # 8- middle 1/2 "	-	-	х	-	125	34	1.5	8.2	0.73	0.31	0.19	0.029	0.058	0.080	0.29	0.19	0.15	
8	999-MS-100414-13-3	Concrete sample from Station # 8 - remainder of core					1090	1.8	0.93	2.2	10	-	-	0.31	0.21	0.12	-0.40	9.6	2.1	
							-	15	-	-	178	-	-	6.1	-	-	24	-	-	1
	1009-MS-100415-13-1	Concrete sample from Station # 9 - top 1/4 "					75	0.54	0.39	0.81	11874	2919	4.8	403	103	1.6	1574	391	1.6	
0	1009-MS-100415-13-2	Concrete sample from Station # 9 middle 1/2 "	-	х	-	Х	114	0.77	0.88	2.0	0.70	0.33	0.25	0.069	0.11	0.22	0.38	0.25	0.25	
9	1009-MS-100415-13-3	Concrete sample from Station # 9 - remainder of core					1340	0.57	0.79	2.1	2.4	-	-	0.12	0.11	0.057	1.4	2.5	1.3	
							-	0.58	-	-	585	-	-	20	-	-	78	-	-	1
	1010-MS-100415-13-1	Concrete sample from Station # 10- top 1/4 "					73	0.97	0.41	0.88	36426	5775	82	1267	346	82	5657	1056	46	
10	1010-MS-100415-13-2	Concrete sample from Station # 10- middle 1/2 "	-	-	х	-	120	1.0	0.82	1.8	1.6	0.53	0.28	0.033	0.066	0.091	0.33	0.21	0.091	
10	1010-MS-100415-13-3	Concrete sample from Station # 10 - remainder of core					1780	0.073	0.83	1.9	29	-	-	1.6	0.37	0.11	13	4.0	0.63	
							-	0.16	-	-	1374	-	-	48	-	-	221	-	-	1
	1011-MS-100415-13-1	Concrete sample from Station # 11 - top 1/4 "					73	-0.12	0.35	1.2	1523	257	1.1	50	9.9	0.39	205	36	0.61	
	1011-MS-100415-13-2	Concrete sample from Station # 11 - middle 1/2 "		-	-	х	118	0.80	0.87	2.0	8.6	1.6	0.28	0.34	0.20	0.15	1.5	0.46	0.20	
11	1011-MS-100415-13-3	Concrete sample from Station # 11 - remainder of core	4				1110	-0.40	0.78	2.0	39	-	-	2.1	0.41	0.15	14	4.1	0.87	
			-				-	-0.27	-	-	120	-	-	4.7	-	-	23	-	-	1
	1017-MS-100416-13-1	Concrete sample from Station # 12 - top 1/4 "					63	-0.11	0.34	1.3	4481	949	2.2	165	38	1.0	650	141	2.2	-
10	1017-MS-100416-13-2	Concrete sample from Station # 12 middle 1/2 "		-	-	х	120	1.1	0.84	1.7	0.60	0.29	0.17	0.032	0.062	0.086	0.19	0.16	0.20	
12	1017-MS-100416-13-3	Concrete sample from Station # 12 - remainder of core					2050	0.31	0.33	1.2	0.53	-	-	0.028	0.14	0.077	0.32	2.7	1.6	
							-	0.34	-	-	127	-	-	4.7	-	-	19	-	-	1
	1018-MS-100416-13-1	Concrete sample from Station # 13- top 1/4 "					102	3.8	0.59	0.92	2154	378	1.1	74	15	0.48	259	47	0.89	
12	1018-MS-100416-13-2	Concrete sample from Station # 13- middle 1/2 "	-	х	-	-	137	0.37	0.34	0.90	585	92	0.30	15	2.7	0.096	2.8	0.76	0.19	
15	1018-MS-100416-13-3	Concrete sample from Station # 13 - remainder of core					870	0.78	0.36	0.82	158	-	-	8.7	1.3	0.19	28	6.1	0.70	
							-	1.0	-	-	394	-	-	15	-	-	46	-	-	1
	1019-MS-100416-13-1	Concrete sample from Station # 14 - top 1/4 "					53	5.0	0.48	1.9	534	79	0.38	16	3.1	0.16	46	7.5	0.29	
1.4		Concrete sample from Station # 14 - middle 1/2 "] -	х	-	-	138	1.2	0.41	0.74	407	65	0.33	13	2.4	0.22	40	6.7	0.22	
14	1019-MS-100416-13-3	Concrete sample from Station # 14 - remainder of core					2530	0.29	0.34	0.72	270	-	-	13	1.8	0.23	4.5	3.4	1.6	
							-	0.43	-	-	282	-	-	13	-	-	7.1	-	-	1
	1025-MS-100419-13-1	Concrete sample from Station # 15 - top 1/4 "					70	2.8	0.55	0.74	495	76	0.50	18	3.6	0.45	85	14	0.50	
1.5	1025-MS-100419-13-2	Concrete sample from Station # 15 middle 1/2 "	-	-	-	х	125	1.2	0.41	0.75	0.78	0.31	0.22	0.049	0.068	0.066	0.39	0.20	0.066	
15	1025-MS-100419-13-3	Concrete sample from Station # 15 - remainder of core	4				1190	1.6	0.39	1.2	15	-	-	0.84	0.24	0.11	2.9	3.0	1.5	
			1				-	1.6	-	-	38	-	-	1.7	-	-	6.8	-	-	1
	1026-MS-100419-13-1	Concrete sample from Station # 16- top 1/4 "					104	125	6.3	2.1	10714	3817	8.5	415	155	6.8	2572	922	9.0	
16	1026-MS-100419-13-2	Concrete sample from Station # 16- middle 1/2 "] -	x	х	-	133	2.4	0.49	0.87	1.2	0.40	0.20	0.18	0.14	0.071	0.47	0.23	0.12	
10	1026-MS-100419-13-3	Concrete sample from Station # 16 - remainder of core					1750	6.7	0.91	0.86	5.0	-	-	0.23	0.16	0.078	5.8	2.9	0.77	
			1				-	13	-	-	565	-	-	22	-	-	140	-	-	1

Page D-3 of 9

Revision: 0

Appendix D Process Building Slab – Sampling Data and Gamma Walkover Survey (GWS)

Table 1, Sample Results, Stations 1 – 21 (Tc-99, U-234, U-235, and U-238)

				Sampl	е Туре							Radio	nuclide	Concenti	ration					
n ID			Resurfaced	Expansion	Identified	Representative	Sample	-	Tc-99			U-234			U-235			U-238		
Station	Sample ID	Description	Concrete	Joint, Crack, Seam. Near	as a Hot	of General	Mass (g)		(pCi/g)			(pCi/g)			(pCi/g)			(pCi/g)		Notes
St			Region	Wall	Spot	Area	(5)	Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC	
	1027-MS-100419-13-1	Concrete sample from Station # 17 - top 1/4 "					147	5.8	0.71	1.2	1125	199	1.2	39	8.6	0.47	297	54	1.4	
17	1027-MS-100419-13-2	Concrete sample from Station # 17 - middle 1/2 "	-	х	х	-	230	2.4	0.54	0.85	4494	982	4.5	172	43	1.9	841	189	1.9	
1/	1027-MS-100419-13-3	Concrete sample from Station # 17 - remainder of core					1290	0.53	0.36	0.72	37	-	-	1.9	0.41	0.14	21	5.5	1.1	
			1				-	1.3	-	-	748	-	-	29	-	-	158	-	-	1
	1028-MS-100419-13-1	Concrete sample from Station # 18 - top 1/4 "					90	1.8	0.41	1.1	629	108	1.2	23	5.4	0.42	222	39	0.42	
10	1028-MS-100419-13-2	Concrete sample from Station # 18 - middle 1/2 "	-	х	-	-	138	0.60	0.39	0.77	793	189	1.2	41	11	0.52	327	79	1.2	
18	1028-MS-100419-13-3	Concrete sample from Station # 18 - remainder of core					1100	0.094	0.35	0.84	203	-	-	11	1.6	0.25	129	20	1.4	
							-	0.26	-	-	293	-	-	15	-	-	156	-	-	1
	1031-MS-100420-13-1	Concrete sample from Station # 19- top 1/4 "					73	7.1	0.73	1.4	3925	857	3.8	142	34	2.1	797	177	2.8	
10	1031-MS-100420-13-2	Concrete sample from Station # 19- middle 1/2 "	-	-	-	х	124	7.5	1.3	0.70	2409	742	2.4	98	32	1.9	618	192	2.6	
19	1031-MS-100420-13-3	Concrete sample from Station # 19 - remainder of core	1				3040	0.32	0.36	0.90	8.9	-	-	0.47	0.24	0.099	4.8	3.9	1.8	
			1				-	0.75	-	-	189	-	-	7.4	-	-	46	-	-	1
	1032-MS-100420-13-1	Concrete sample from Station # 20 - top 1/4 "					82	643	32	2.1	1929	560	0.88	73	22	0.48	322	95	0.48	
20	1032-MS-100420-13-2	Concrete sample from Station # 20 - middle 1/2 "	-	х	-	-	120	52	6.1	0.87	3.6	0.96	0.32	0.14	0.15	0.12	1.4	0.53	0.24	
20	1032-MS-100420-13-3	Concrete sample from Station # 20 - remainder of core					2450	16	1.9	0.88	2.0	-	-	0.083	0.15	0.083	3.0	3.0	1.5	
							-	37	-	-	62	-	-	2.3	-	-	13	-	-	1
	1033-MS-100420-13-1	Concrete sample from Station # 21 - top 1/4 "					74	750	37	2.1	170561	26694	389	5692	1488	328	24175	4433	181	
21	1033-MS-100420-13-2	Concrete sample from Station # 21 - middle 1/2 "	1 -	-	х	-	124	2086	35	6.0	64	10	0.29	2.4	0.72	0.11	12	2.3	0.34	
21	1033-MS-100420-13-3	Concrete sample from Station # 21 - remainder of core	1				2400	22	1.9	1.3	773	-	-	43	6.0	0.39	209	31	2.3	
			1				-	141	-	-	5575	-	-	202	-	-	882	-	-	1

Notes: 1 - weighted average over entire core

2 - weighted average over core, excluding top 3 inches

Revision: 0

Appendix D Process Building Slab – Sampling Data and Gamma Walkover Survey (GWS)

Table 2, Sample Results, stations 1 – 21 (Am-241, Np-237, and Pu-239)

Station ID	Description		Am-241 (pCi/g)			Np-237 (pCi/g)		I	Pu-239/24((pCi/g)	0
		Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDO
1	Concrete sample from Station # 1 - top 1/4 "	0.023	0.075	0.18	<u>0.077</u>	<u>0.054</u>	<u>0.026</u>	<u>0.11</u>	<u>0.079</u>	<u>0.1</u>
2a	Concrete sample from Station # 2 - top 1/4 "	0.045	0.078	0.15	0.099	0.12	0.18	0.067	0.063	0.08
2b	Concrete sample from Station # 2 - top 1/4" Subfloor	-0.022	0.0080	0.15	0.010	0.044	0.093	-0.040	0.056	0.1
3a	Concrete sample from Station # 3 - top 1/4 "	-0.025	0.0080	0.16	0.000	0.11	0.32	0.010	0.077	0.1
3b	Concrete sample from Station # 3 - top 1/4" Subfloor	-0.023	0.037	0.18	0.027	0.040	0.066	-0.018	0.058	0.1
4	Concrete sample from Station # 4 - top 1/4 "	0.000	0.048	0.16	0.071	0.11	0.19	0.010	0.045	0.0
5	Concrete sample from Station # 5 - top 1/4 "	0.024	0.059	0.14	0.085	0.10	0.16	0.010	0.093	0.1
6	Concrete sample from Station # 6 - top 1/4 "	0.062	0.11	0.23	0.041	0.14	0.34	-0.040	0.072	0.1
7	Concrete sample from Station # 7 - top 1/4 "	-0.023	0.038	0.18	<u>0.29</u>	<u>0.21</u>	<u>0.28</u>	-0.045	0.069	0.
8	Concrete sample from Station #8 - top 1/4 "	-0.031	0.093	0.26	-0.030	0.057	0.25	0	0.059	0.
9	Concrete sample from Station # 9 - top 1/4 "	0.00	0.092	0.24	0.037	0.13	0.31	<u>0.032</u>	<u>0.036</u>	0.0
10	Concrete sample from Station # 10- top 1/4 "	0.011	0.086	0.21	0.000	0.040	0.16	0.049	0.064	0.
11	Concrete sample from Station # 11 - top 1/4 "	0.011	0.10	0.25	0.067	0.11	0.22	0.0090	0.038	0.0
12	Concrete sample from Station # 12 - top 1/4 "	0.021	0.066	0.16	0.098	0.30	0.74	-0.029	0.056	0.
13	Concrete sample from Station # 13- top 1/4 "	0.053	0.11	0.23	0.070	0.098	0.095	-0.020	0.062	0.
14	Concrete sample from Station # 14 - top 1/4 "	-0.019	0.042	0.16	0.000	0.069	0.22	0.021	0.041	0.0
15	Concrete sample from Station # 15 - top 1/4 "	0.00	0.064	0.18	0.015	0.055	0.11	-0.0070	0.030	0.0
16	Concrete sample from Station # 16- top 1/4 "	0.078	0.12	0.22	-0.028	0.038	0.21	-0.029	0.060	0.
17	Concrete sample from Station # 17 - top 1/4 "	-0.096	0.064	0.27	<u>0.13</u>	<u>0.095</u>	<u>0.12</u>	0.072	0.062	0.0
18	Concrete sample from Station # 18 - top 1/4 "	0.046	0.087	0.18	0.076	0.13	0.25	0.0090	0.054	0.
19	Concrete sample from Station # 19- top 1/4 "	-0.023	0.084	0.25	0.067	0.10	0.19	0.019	0.054	0.
20	Concrete sample from Station # 20 - top 1/4 "	0.11	0.13	0.24	0.033	0.065	0.090	0.040	0.051	0.0
21	Concrete sample from Station # 21 - top 1/4 "	0.056	0.11	0.23	0.032	0.064	0.088	<u>0.14</u>	0.082	0.0

Note: Highlighted results (underlined /bold) indicates results > MDC.

Page	D-5	of 9
	-	

Revision: 0

Appendix D Process Building Slab – Sampling Data and Gamma Walkover Survey (GWS)

			Ra-226			Th-232			U-234	
Station ID	Description		(pCi/g)			(pCi/g)			(pCi/g)	
		Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC
1	Concrete sample from Station # 1 - top 1/4 "	0.76	0.29	0.068	0.19	0.16	0.20	178	26	0.23
1	Concrete sample from Station # 1 - remainder of core	0.64	0.11	0.026	0.46	0.12	0.060	66	-	-
	Concrete sample from Station # 2 - top 1/4 "	0.95	2.0	1.2	0.068	0.095	0.092	34384	4986	95
2	Concrete sample from Station # 2 - remainder of core A	0.23	0.054	0.067	0.14	0.11	0.20	9.1	-	-
2	1/4 inch Subfloor wafer	0.42	0.26	0.11	0.51	0.27	0.21	123	18	0.29
	Concrete sample from Station # 2 - remainder of core B	0.73	0.13	0.030	0.57	0.13	0.051	4.7	-	-
	Concrete sample from Station # 3 - top 1/4 "	0.45	0.65	0.36	0.12	0.14	0.23	15232	4884	5.6
2	Concrete sample from Station # 3 - remainder of core A	0.23	0.097	0.13	0.055	0.15	0.26	1183	-	-
3	1/4 inch Subfloor wafer	0.78	0.30	0.090	0.20	0.17	0.22	107	16	0.27
	Concrete sample from Station # 3 - remainder of core B	0.59	0.094	0.031	0.38	0.11	0.10	4.6	-	-
4	Concrete sample from Station # 4 - top 1/4 "	0.69	0.30	0.12	0.39	0.23	0.088	1439	262	1.3
4	Concrete sample from Station # 4 - remainder of core	0.53	0.15	0.049	0.51	0.13	0.065	2787	-	-
5	Concrete sample from Station # 5 - top 1/4 "	1.5	0.64	0.64	0.50	0.25	0.16	37544	6057	145
5	Concrete sample from Station # 5 - remainder of core	0.73	0.12	0.034	0.75	0.14	0.067	12	-	-
(Concrete sample from Station # 6 - top 1/4 "	0.87	1.1	1.3	1.1	0.41	0.24	20166	3281	104
6	Concrete sample from Station # 6 - remainder of core	0.72	0.13	0.024	0.60	0.12	0.049	2.2	-	-
7	Concrete sample from Station # 7 - top 1/4 "	1.0	0.65	0.23	0.87	0.38	0.24	3304	868	5.6
7	Concrete sample from Station # 7 - remainder of core	0.68	0.12	0.031	0.56	0.11	0.048	4.7	-	-
0	Concrete sample from Station #8 - top 1/4 "	0.35	0.21	0.27	0.0090	0.070	0.21	2599	463	1.7
8	Concrete sample from Station # 8 - remainder of core	0.41	0.093	0.028	0.16	0.10	0.089	10	-	-
0	Concrete sample from Station # 9 - top 1/4 "	0.71	0.87	0.48	0.18	0.15	0.082	11874	2919	4.8
9	Concrete sample from Station # 9 - remainder of core	0.28	0.077	0.023	0.093	0.065	0.070	2.4	-	-
10	Concrete sample from Station # 10- top 1/4 "	1.6	0.95	0.39	0.19	0.18	0.24	36426	5775	82
10	Concrete sample from Station # 10 - remainder of core	0.38	0.096	0.025	0.11	0.065	0.073	29	-	-
1.1	Concrete sample from Station # 11 - top 1/4 "	0.33	0.29	0.16	0.24	0.21	0.28	1523	257	1.1
11	Concrete sample from Station # 11 - remainder of core	0.33	0.077	0.021	0.32	0.098	0.052	39	-	-
	Concrete sample from Station # 12 - top 1/4 "	0.20	0.25	0.68	1.4	0.50	0.10	4481	949	2.2
12	Concrete sample from Station # 12 - remainder of core	0.35	0.083	0.025	0.18	0.096	0.073	0.53	-	-
	Concrete sample from Station # 13- top 1/4 "	0.31	0.39	0.26	0.34	0.24	0.28	2154	378	1.1
13	Concrete sample from Station # 13 - remainder of core	0.47	0.10	0.025	0.15	0.078	0.068	158		-
	Concrete sample from Station # 19 - formalider of core	0.026	0.34	0.20	0.011	0.086	0.26	534	79	0.38
14	Concrete sample from Station # 14 - remainder of core	0.52	0.11	0.023	0.16	0.000	0.073	270	-	-
	Concrete sample from Station # 15 - top 1/4 "	1.1	0.31	0.023	0.10	0.11	0.073	495	- 76	0.50
15	Concrete sample from Station # 15 - top 1/4 Concrete sample from Station # 15 - remainder of core	0.61	0.31	0.14	0.22	0.18	0.23	473	70	0.30

Table 3 Sample Results stations 1 – 21 (Ra-226 Th-232 and U-234)

Page D-6 of 9

Revision: 0

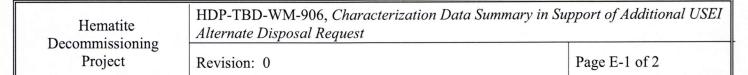
Appendix D Process Building Slab – Sampling Data and Gamma Walkover Survey (GWS)

	Table 3, Sample Resu	lts, stations 1 –	21 (Ra-22	6, Th-232,	and U-234)				
			Ra-226			Th-232			U-234	
Station ID	Description		(pCi/g)			(pCi/g)			(pCi/g)	
		Conc.	$\pm 2s$	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC
16	Concrete sample from Station # 16- top 1/4 "	0.82	0.51	0.24	1.2	0.47	0.27	10714	3817	8.5
10	Concrete sample from Station # 16 - remainder of core	0.62	0.13	0.026	0.077	0.040	0.090	5.0	-	-
17	Concrete sample from Station # 17 - top 1/4 "	0.80	0.33	0.093	0.13	0.15	0.24	1125	199	1.2
1 /	Concrete sample from Station # 17 - remainder of core	0.67	0.13	0.036	0.17	0.078	0.074	37	-	-
10	Concrete sample from Station # 18 - top 1/4 "	0.51	0.26	0.25	0.51	0.27	0.092	629	108	1.2
18	Concrete sample from Station # 18 - remainder of core	0.55	0.13	0.034	0.21	0.090	0.077	203	-	-
10	Concrete sample from Station # 19- top 1/4 "	0.85	0.42	0.15	0.30	0.24	0.27	3925	857	3.8
19	Concrete sample from Station # 19 - remainder of core	0.59	0.13	0.030	0.17	0.077	0.077	8.9	-	-
20	Concrete sample from Station # 20 - top 1/4 "	0.91	1.0	0.58	0.093	0.14	0.24	1929	560	0.88
20	Concrete sample from Station # 20 - remainder of core	0.53	0.11	0.024	0.10	0.078	0.069	2.0	-	-
21	Concrete sample from Station # 21 - top 1/4 "	3.1	0.96	1.1	0.64	0.33	0.11	170561	26694	389
21	Concrete sample from Station # 21 - remainder of core	0.53	0.13	0.034	0.30	0.11	0.057	773	-	-

Page D-7 of 9

Revision: 0

Appendix D Process Building Slab – Sampling Data and Gamma Walkover Survey (GWS)


<u> </u>					Tc-99			U-234			U-235			U-238	,	
Station ID	Sample ID	Sample Depth	Building / Room		(pCi/g)			(pCi/g)			(pCi/g)			(pCi/g)	Notes
ID				Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC	
	1855-MS-110621-9-1	0" - 3.5"		0.0	0.11	1.7	0.38			0.020	0.0019	0.0044	0.20	0.018	0.0001	
31	1869-MS-110621-9-1	3.5" - 10.5"	240-11 Red Room	0.0	0.11	1.7	1.4			0.078	0.0083	0.0044	0.21	0.020	0.0001	
				1.7			1.1			0.1			0.2			1
	1852-MS-110620-9-1a	0" - 3"		2.3	0.26	1.7	0.56			0.030	0.0042	0.0044	0.23	0.021	0.0001	
32	1868-MS-110620-9-1	3" - 11.5"	240-11 Red Room	0.0	0.032	1.7	0.38			0.020	0.0025	0.0044	0.22	0.020	0.0001	
				1.9			0.43			0.02			0.22			1
	1855-MS-110621-9-3	0" - 3"		0.0	0.18	2.0	0.92			0.050	0.0052	0.0044	0.34	0.031	0.0001	
33	1869-MS-110621-9-2	3" - 9.5"	240-11 Red Room	0.0	0.019	1.7	1.4			0.075	0.0091	0.0044	0.30	0.028	0.0001	
				1.8			1.2			0.1			0.3			1
	1855-MS-110621-9-5	0" - 3"	_	3.4	0.38	2.0	9.3			0.51	0.051	0.0040	2.2	0.20	0.0001	
34	1869-MS-110621-9-3	3" - 10.5"	240-11 Red Room	0.0	0.13	1.7	9.8			0.48	0.044	0.0040	0.26	0.024	0.0001	
		<u></u>		2.2		• •	9.7			0.5	0.00	0.0040	0.8	0.0 .	0.0001	1
	1855-MS-110621-9-6	0" - 2.5"		725	66	2.0	46			2.5	0.23	0.0040	10.0	0.95	0.0001	
35	1869-MS-110621-9-4	2.5" - 10"	240-11 Red Room	1.8	0.16	1.7	1.1			0.061	0.0063	0.0044	0.25	0.023	0.0001	
• -				183		• •	12			l			3			1
36	1856-MS-110622-9-7	0" - 6"	253-26 Ring Storage	0.0	0.15	2.0	0.39			0.021	0.0034	0.0044	0.19	0.018	0.0001	
37	1856-MS-110622-9-9	0" - 6"	253-26 Ring Storage	2.5	0.26	2.2	2.8			0.16	0.015	0.0040	0.66	0.063	0.0001	
38	1856-MS-110622-9-15	0" - 6"	260-65 UF6 Vapor	3.7	0.35	1.7	13			0.69	0.065	0.0040	2.8	0.30	0.0001	
39	1866-MS-110623-9-1	0" - 11.75"	260-65 UF6 Vapor	2.7	0.26	2.3	11			0.63	0.058	0.0040	2.8	0.27	0.0001	
40	1866-MS-110623-9-3	0" - 11.25"	260-65 UF6 Vapor	11	1.2	2.0	44			2.4	0.22	0.0040	12	1.1	0.0000	
41	1866-MS-110623-9-5	0" - 11.25"	260-65 UF6 Vapor	7.6	0.74	2.6	39			2.2	0.20	0.0040	9.3	0.89	0.0000	
42	1866-MS-110623-9-7	0" - 11.5"	260-65 UF6 Vapor	5.0	0.55	2.2	12			0.65	0.060	0.0040	3.2	0.29	0.0001	
43	1856-MS-110622-9-3	0" - 6"	240-9 Laundry	0.0	0.11	1.7	1.1			0.057	0.0066	0.0044	0.52	0.048	0.0001	
44	1852-MS-110620-9-7	0" - 5.75"	240-3 Green Room	0.0	0.12	1.7	5.4			0.30	0.027	0.0040	1.7	0.16	0.0001	
45	1852-MS-110620-9-5	0" - 7.25"	240-14 Maint Shop	0.0	0.056	2.5	2.7			0.14	0.014	0.0040	1.9	0.18	0.0001	
46	1852-MS-110620-9-3	0" - 6.5"	240-14 Maint Shop	0.0	0.047	1.7	15			0.78	0.071	0.0040	6.2	0.58	0.0001	
47	1856-MS-110622-9-5	0" - 5.7"	253-25 Ring Storage	0.0	0.10	1.7	1.4			0.080	0.0089	0.0044	0.41	0.040	0.0001	
48	1856-MS-110622-9-11	0" - 5"	253-29 Waste Prep	2.5	0.28	1.7	3.0			0.17	0.017	0.0040	0.72	0.066	0.0001	
49	1856-MS-110622-9-13	0" - 7.5"	254-33 Ceramic	0.0	0.057	1.7	0.18			0.0090	0.0016	0.0044	0.13	0.013	0.0001	
50	1867-MS-110624-9-3	0" - 5.5"	256-38 Pellet Kardex	0.0	0.050	1.8	0.32			0.017	0.0020	0.0044	0.18	0.018	0.0001	
51	1867-MS-110624-9-1	0" - 5.5"	256-64 Warehouse	0.0	0.061	1.7	0.23			0.012	0.0014	0.0044	0.16	0.015	0.0001	
52	1852-MS-110620-9-1b	0" - 7.5"	252 South Vault	8.4	0.85	1.7	51			2.8	0.26	0.0040	10	0.96	0.0000	
53	1843-MS-110617-9-1	0" - 8.5"	252 South Vault	3.0	0.31	1.7	40			2.2	0.20	0.0040	4.4	0.41	0.0000	

Revision: 0

Appendix D
Process Building Slab – Sampling Data and Gamma Walkover Survey (GWS)

Table 4, Sample Results, stations 31 – 5	9 (Tc-99, U-234, U-235, and U-238)
	· (

C4 - 4				Тс-99		U-234				U-235			Notes			
Station ID	Sample ID	Sample Depth	Building / Room		(pCi/g)		(pCi/g)		(pCi/g)			(pCi/g)				
ID				Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC	Conc.	±2s	MDC	
54	1867-MS-110624-9-5	0" - 8.25"	235 West Vault	0.0	0.052	1.8	9.2			0.50	0.048	0.0040	0.75	0.068	0.0001	
55	1867-MS-110624-9-7	0" - 7.25"	235 West Vault	0.0	0.059	2.0	34			1.7	0.15	0.0040	0.98	0.093	0.0001	
	1902-MS-110810-09-05	0 - 0.25"		1.8	0.71	1.0	2290	200	2.0	92	15	1.0	140	18	2.0	
56	1902-MS-110810-09-06	0.25" - 0.75"	South Vault	1.4	0.67	1.0	2010	180	3.0	89	19	5.0	177	26	4.0	
				1.6			2103.3			90.0			164.7			1
	1902-MS-110810-09-07	0 - 0.25"		0.89	0.79	1.3	1150	200	40	64	48	41	7.0	20	42	
57	1902-MS-110810-09-08	0.25" - 0.75"	South Vault	4.6	0.94	1.1	1830	290	60	71	54	27	0.0	7.0	22	
				3.4			1603.3			68.7			2.3			1
	1902-MS-110810-09-01	0 - 0.25"		0.14	0.69	1.2	2010	180	2.0	80	14	2.0	313	35	2.0	
58	1902-MS-110810-09-02	0.25" - 0.75"	254 (Elevated Area 3)	-0.42	0.59	1.1	437	44	2.0	18	5.8	2.1	64	11	2.0	
				0.8			961.3			38.8			147.0			1
	1902-MS-110810-09-03	0 - 0.25"		2.2	0.86	1.3	3260	280	2.0	147	21	1.0	524	53	3.0	
59	1902-MS-110810-09-04	0.25" - 0.75"	254 (Elevated Area 3)	2.0	0.80	1.2	2400	210	3.0	101	17	3.0	372	40	2.0	
				2.1			2686.7			116.3			422.7			1
			Not	es: 1 - w	eighted a	average	over entire	e core		•			-			

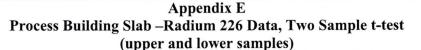
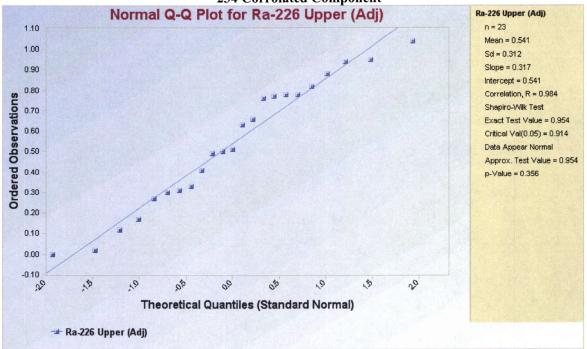
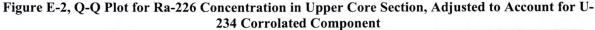
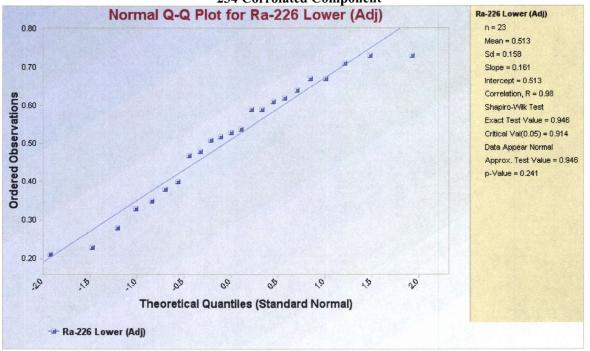





Figure E-1, Q-Q Plot for Ra-226 Concentration in Upper Core Section, Adjusted to Account for U-234 Corrolated Component

 Hematite
 HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI

 Alternate Disposal Request
 Image: Comparison of the second sec

Project

Revision: 0

Page E-2 of 2

Appendix E Process Building Slab –Radium 226 Data, Two Sample t-test (upper and lower samples)

Figure E-3, Pro-UCL Two-Sample T-Test, Ra-226 in Upper and Lower Core Segments

	t-Test Site vs Background Comparison for Full Data Sets without NDs
User Selected Options	
From File P:\hematit	e project\US Ecology\Concrete 2\characterization data\radium data.wst
Full Precision	OFF
Confidence Coefficient	95%
Substantial Difference (S)	0
Selected Null Hypothesis	Site or AOC Mean Less Than or Equal to Background Mean (Form 1)
Alternative Hypothesis	Site or AOC Mean Greater Than the Background Mean
Area of Concern Data: Ra-226 Uj	pper (Adj)
Background Data: Ra-226 Lower	(Adj)

Raw Statistics	Site	Background
Number of Valid Observations	23	23
Number of Distinct Observations	22	20
Minimum	0	0.21
Maximum	1.04	0.73
Mean	0.541	0.513
Median	0.51	0.53
SD	0.312	0.158
SE of Mean	0.065	0.033

Site vs. Background Two-S	Sample t-Test
---------------------------	---------------

H0: Mu of Site - Mu of Background <= 0

			t-Test	Critical	
Method	DF		Value	t (0.050)	P-Value
Pooled (Equal Variance)		44	0.388	1.68	0.35
Welch-Satterthwaite (Unequal		32.7	0.388	1.692	0.35
Variance)					

Pooled SD 0.247

Conclusion with Alpha = 0.050

* Student t (Pooled) Test: Do Not Reject H0, Conclude Site <= Background

* Welch-Satterthwaite Test: Do Not Reject H0, Conclude Site <= Background

Test of Equality of	Variances		
Variance of Site		0.0971	
Variance of Backgro	ound	0.0251	
Numerator DF	Denominator DF	F-Test Value	P-Value
22	22	3.87	0.002
Conclusion with Al	pha = 0.05		
* Two variances are	e not equal		

Hematite Decommissioning Project

Revision: 0

Appendix F Volume Estimates for Underground Piping

Building-	Lin	e Designation		Length	Pipe OD	Pipe ID	Pipe Material of	Volume (wall)	Volume (interior)	% Filled (debris)	Mass (wall) (g)	Mass (debris) (g)
Room	From	To/Toward	Direction	(ft)	(in)	(in)	Construction	(ft ³)	(ft ³)			
			•		•	Build	ling 230 Northernmost S	ystem			•	<u>.</u>
230	CO-231	CO-301	South	37	4.50000	4.026	PVC	0.82	3.27	40%	3.1E+04	5.6E+04
230	WC-301	CO 231 - CO301	East	5	4.50000	4.026	PVC	0.11	0.44	40%	4.2E+03	7.5E+03
230	FD-308	CO 231 - CO301	East	8	4.50000	4.026	PVC	0.18	0.71	40%	6.8E+03	1.2E+04
230	WC-303	CO 232 - CO302	West	11	4.50000	4.026	PVC	0.24	0.97	40%	9.3E+03	1.7E+04
230	CO-232	CO302	South	37	4.50000	4.026	PVC	0.82	3.27	40%	3.1E+04	5.6E+04
230	FD-304	CO 232 - CO302	East	8	4.50000	4.026	PVC	0.18	0.71	40%	6.8E+03	1.2E+04
230	FD-312	CO 232 - CO302	West	6	4.50000	4.026	PVC	0.13	0.53	40%	5.1E+03	9.0E+03
230	WC-302	CO 231 - CO301	West	7	4.50000	4.026	PVC	0.15	0.62	40%	5.9E+03	1.1E+04
230	FD-306	CO 232 - CO302	SouthWest	8	4.50000	4.026	PVC	0.18	0.71	40%	6.8E+03	1.2E+04
230	FD-307	FD-306	North	8	4.50000	4.026	PVC	0.18	0.71	40%	6.8E+03	1.2E+04
230	WC-303	CO 231 - CO301	West	11	4.50000	4.026	PVC	0.24	0.97	40%	9.3E+03	1.7E+04
230	FD-309	CO 232 - CO301	West	7	4.50000	4.026	PVC	0.15	0.62	40%	5.9E+03	1.1E+04
230	CO-301	CO-303	East	34	4.50000	4.026	PVC	0.75	3.00	40%	2.9E+04	5.1E+04
230	FD-310	CO 301 - CO303	West	11	4.50000	4.026	PVC	0.24	0.97	40%	9.3E+03	1.7E+04
230	FD-308	CO 232 - CO 302	East	8	4.50000	4.026	PVC	0.18	0.71	40%	6.8E+03	1.2E+04
230	FD-311	CO 302 - CO 303	South	8	4.50000	4.026	PVC	0.18	0.71	40%	6.8E+03	1.2E+04
230	CO-302	CO-304	East	35	4.50000	4.026	PVC	0.77	3.09	40%	3.0E+04	5.3E+04
230	CO-303	MH 05 - MH 21	SouthEast	70	4.50000	4.026	PVC	1.54	6.19	40%	5.9E+04	1.1E+05
230	CO-304	MH 04 - MH 13	SouthEast	60	4.50000	4.026	PVC	1.32	5.30	40%	5.1E+04	9.0E+04
						В	uilding 230 Middle Syste	em				
230	CO-305	MH 04 - MH 13	East	72	4.50000	4.026	PVC	1.59	6.36	40%	6.1E+04	1.1E+05
230	FD 312	CO 305	West	15	4.50000	4.026	PVC	0.33	1.33	40%	1.3E+04	2.3E+04
230	FD 313	FD 312	South	8	4.50000	4.026	PVC	0.18	0.71	40%	6.8E+03	1.2E+04
230	FD 315	CO 305	North	10	4.50000	4.026	PVC	0.22	0.88	40%	8.5E+03	1.5E+04
230	FD-316	CO-305	North	10	4.50000	4.026	PVC	0.22	0.88	40%	8.5E+03	1.5E+04
						Buildi	ng 230 Southernmost	System				
			East then	21								
230	CO-233	FD-319	SouthEast	20	4.50000	4.026	PVC	0.90	3.62	40%	3.5E+04	6.2E+04
230	FD-317	CO-233	South	1	4.00000	4	PVC	0.00	0.09	40%	0.0E+00	1.5E+03
230	FD-318	CO-233	South	4	4.50000	4.026	PVC	0.09	0.35	40%	3.4E+03	6.0E+03
230	FD-319	MH 22 - MH 01	East then	40	4.50000	4.026	PVC	2.49	9.98	40%	9.6E+04	1.7E+05
250	10-517	1 1111 22 - 1 1111 01	South	73	1.50000	1.020	1	4.٦)	7.70	TU / U	2.0L+0 1	1.712+03
						North	ernmost System Build	ing 240				

Page F-1 of 7

Hematite
Decommissioning
ProjectHDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal RequestRevision: 0

						Volume	Appendix F Estimates for Under	ground Piping			_	
Building- Room	Line From	e Designation To/Toward	Direction	Length (ft)	Pipe OD (in)	Pipe ID (in)	Pipe Material of Construction	Volume (wall) (ft ³)	Volume (interior) (ft ³)	% Filled (debris)	Mass (wall) (g)	Mass (debris) (g)
240-09	FD 203	SD-204- MH 17	North then South	4 20	5.00000	4	Cast Iron	1.18	2.09	40%	2.4E+05	3.6E+04
240-09	FD-202	FD-320	North	44	5.00000	4	Cast Iron	2.16	3.84	40%	4.4E+05	6.5E+04
240-09	FD-201	FD-202	East	2	5.00000	4	Cast Iron	0.10	0.17	40%	2.0E+04	3.0E+03
240-05	FD-320	FD-321 (CO- Lab_North)	West	50	5.00000	4	Cast Iron	2.45	4.36	40%	5.0E+05	7.4E+04
240-09	CO-306	FD-321	West	8	5.00000	4	Cast Iron	0.39	0.70	40%	8.0E+04	1.2E+04
240-07	FD-321 (Co Lab North)	CO-308	South West	35 84	5.00000	4	Cast Iron	5.84	10.38	40%	1.2E+06	1.8E+05
240-09	CO-306	FD-321	West	8	5.00000	4	Cast Iron	0.39	0.70	40%	8.0E+04	1.2E+04
240-09	FD-322	FD-321	West	3	5.00000	4	Cast Iron	0.15	0.26	40%	3.0E+04	4.4E+03
240-07	FD-326	FD-321	West	8	5.00000	4	Cast Iron	0.39	0.70	40%	8.0E+04	1.2E+04
240-07	FD-327	FD-321	West	8	5.00000	4	Cast Iron	0.39	0.70	40%	8.0E+04	1.2E+04
240-07	CO-307	MH 04 - MH-13	West North	18 46	4.50000	4	PVC	3.54	13.35	40%	1.4E+05	2.3E+05
			West		89							
240-07	CO-308	FD-321	West then North	32 6	5.00000	4	Cast Iron	1.86	3.31	40%	3.8E+05	5.6E+04
240-07	FD-325	CO-307	North	2	4.50000	4	PVC	0.05	0.17	40%	1.8E+03	3.0E+03
240-07	FD-328	CO-307	North	2	4.50000	4	PVC PVC	0.05	0.17	40%	1.8E+03	3.0E+03
240-07	FD-324	CO-307	North	2	4.50000	4	PVC	0.05	0.17	40%	1.8E+03	3.0E+03
240-07	FD-329	CO-307	West	8	4.50000	4	PVC	0.19	0.70	40%	7.1E+03	1.2E+04
	· · ·			1		Mi	iddle System Building	240			,	
240-02	Co-209	8" Process Drain	West	110	5.00000	4	Cast Iron	5.40	9.59	100%	1.1E+06	4.1E+05
240-02	PD-209	Co-209	South	6	5.00000	4	Cast Iron	0.29	0.52	40%	6.0E+04	8.9E+03
240-02	PD-208	Co-209	South	5	5.00000	4	Cast Iron	0.25	0.44	40%	5.0E+04	7.4E+03
240-02	PD-207	Co-209	North	3	5.00000	4	Cast Iron	0.15	0.26	40%	3.0E+04	4.4E+03
240-02	CO-37	Co-209	North	57	5.00000	4	Cast Iron	2.80	4.97	20%	5.7E+05	4.2E+04
240-02	PD-37	CO-37	North	5	5.00000	4	Cast Iron	0.25	0.44	40%	5.0E+04	7.4E+03
240-03	PD-336	PD-333	West	46	5.00000	4	Cast Iron	2.26	4.01	40%	4.6E+05	6.8E+04
240-03	PD-335	PD-336	North	37	5.00000	4	Cast Iron	1.82	3.23	40%	3.7E+05	5.5E+04
240-03	PD-334	PD-335	East	18	5.00000	4	Cast Iron	0.88	1.57	40%	1.8E+05	2.7E+04
240-03	PD-332	PD-333	North	38	5.00000	4	Cast Iron	1.86	3.31	40%	3.8E+05	5.6E+04
240-03	PD-333	Co-209	North	56	5.00000	4	Cast Iron	2.75	4.88	40%	5.6E+05	8.3E+04
240-02	FP-36	PD-333	West	4	5.00000	4	Cast Iron	0.20	0.35	40%	4.0E+04	5.9E+03

	Decommission Project	ung	Revision: 0								Page	F-3 of 7
						Volume	Appendix F Estimates for Underg	round Piping				
Building- Room	Lin From	e Designation To/Toward	Direction	Length (ft)	Pipe OD (in)	Pipe ID (in)	Pipe Material of Construction	Volume (wall) (ft ³)	Volume (interior) (ft ³)	% Filled (debris)	Mass (wall) (g)	Mass (debri (g)
240-03	PD-331	PD-333	West	4	5.00000	4	Cast Iron	0.20	0.35	40%	4.0E+04	5.9E+03
240-03	PD-330-1	PD-333	West	4	5.00000	4	Cast Iron	0.20	0.35	40%	4.0E+04	5.9E+03
	•		-	•		South	ernmost System Buildi	ing 240				•
240-14	CO-311 (NEMS)	8" Process Drain	West	88	5.00000	4	Cast Iron	4.32	7.68	40%	8.8E+05	1.3E+05
240-14	PD-339	CO-311	South	4	5.00000	4	Cast Iron	0.20	0.35	40%	4.0E+04	5.9E+03
240-14	PD-338	CO-311	South	4	5.00000	4	Cast Iron	0.20	0.35	40%	4.0E+04	5.9E+03
240-14	PD-41	CO-311	South	4	5.00000	4	Cast Iron	0.20	0.35	40%	4.0E+04	5.9E+03
240-14	PD-337	CO-311	North	35	5.00000	4	Cast Iron	1.72	3.05	40%	3.5E+05	5.2E+04
240-14	CO-312	PD-337	West	20	5.00000	4	Cast Iron	0.98	1.74	40%	2.0E+05	3.0E+04
240-14	CO-313	CO-311	West	31	5.00000	4	Cast Iron	1.52	2.70	40%	3.1E+05	4.6E+04
240-14	PD-44	CO-313	East	9	5.00000	4	Cast Iron	0.44	0.79	40%	9.0E+04	1.3E+04
240-14	PD-43	CO-313	West	10	5.00000	4	Cast Iron	0.49	0.87	40%	1.0E+05	1.5E+04
240-14	CO-45	CO-311	East	19	5.00000	4	Cast Iron	0.93	1.66	20%	1.9E+05	1.4E+04
255	PD-340	CO-226	South	15	N 5.00000	orthernm	ost Process System in D	Building 255	1.31	40%	1.5E+05	2.2E+04
255	PD-233	CO-226	South	15	5.00000	4	Cast Iron	0.74	1.31	40%	1.5E+05	2.2E+04
255	PD-341	CO-226	South	15	5.00000	4	Cast Iron	0.74	1.31	40%	1.5E+05	2.2E+04
255	PD-342	CO-226	South	15	5.00000	4	Cast Iron	0.74	1.31	40%	1.5E+05	2.2E+04
255	PD-226	CO-225	West	74	5.00000	4	Cast Iron	3.63	6.45	15%	7.4E+05	4.1E+04
255	Co-225	MH 15 - MH-12	South	40	5.00000	4	PVC	1.96	6.11	40%	7.6E+04	1.0E+05
			West	30								
255	PD-343	CO-225	South	10	5.00000	4	Cast Iron	0.49	0.87	40%	1.0E+05	1.5E+04
255	CO-315	CO-316	West	74	5.00000	4	Cast Iron	3.63	6.45	40%	7.4E+05	1.1E+05
255	CO-344	CO-315	North	24	5.00000	4	Cast Iron	1.18	2.09	40%	2.4E+05	3.6E+04
255	CO-345	CO-315	South	3	5.00000	4	Cast Iron	0.15	0.26	40%	3.0E+04	4.4E+03
255	PD-229 PD-228	CO-315 CO-315	North	24 2	5.00000	4	Cast Iron	1.18	2.09	40%	2.4E+05	3.6E+04
255		CO-225	South North	15	5.00000	4	Cast Iron	0.10	0.17	20%	2.0E+04	1.5E+03
255	(1) 16	00-223	norui	13			Cast Iron ost Process System in 1	0.74 Ruilding 255	1.31	40%	1.5E+05	2.2E+04
	CO-316						0.50 I I UCC33 DYSICIII III I	banang 400				
255 255	1	MH 15 - MH 12	West	100	1	4	-	<u>4</u> Q1	8 72	10%	1 0F+06	3 7E+04
255	CO-316 CO-320 PD-142	MH 15 - MH 12 CO-320	West South	100 40	5.00000		Cast Iron Cast Iron	4.91 1.96	8.72 3.49	10% 10%	1.0E+06 4.0E+05	3.7E+04 1.5E+04

-		~ -
Page	F-3	of 7

Ι	Hematite Decommission	ing	HDP-TBD-	WM-906, <i>Cl</i>	haracterizat	tion Data Si	ummary in Support of A	dditional USEI Alternate	Disposal Request			
	Project		Revision: 0								Page	F-4 of 7
						Volume	Appendix F Estimates for Underg	round Piping				
Building-	Lin	e Designation		Length	Pipe OD	Pipe ID	Pipe Material of	Volume (wall)	Volume (interior)	% Filled	Mass (wall)	Mass (debris
Room	From	To/Toward	Direction	(ft)	(in)	(in)	Construction	(ft ³)	(ft ³)	(debris)	(g)	(g)
255	PD-232	CO-320	North	8	5.00000	4	Cast Iron	0.39	0.70	10%	8.0E+04	3.0E+03
255	PD-231	CO-320	North	8	5.00000	4	Cast Iron	0.39	0.70	40%	8.0E+04	1.2E+04
255	PD-153	CO-320	South	15	5.00000	4	Cast Iron	0.74	1.31	40%	1.5E+05	2.2E+04
255	PD-152	CO-320	South	15	5.00000	4	Cast Iron	0.74	1.31	40%	1.5E+05	2.2E+04
255	CO-319	CO-320	South	30	5.00000	4	Cast Iron	1.47	2.62	40%	3.0E+05	4.4E+04
255	CO-230	CO-320	North	41	5.00000	4	Cast Iron	2.01	3.58	25%	4.1E+05	3.8E+04
255	CO-317	CO-318	West	64	5.00000	4	Cast Iron	3.14	5.58	40%	6.4E+05	9.5E+04
255	PD-345	CO-317	North	3	5.00000	4	Cast Iron	0.15	0.26	40%	3.0E+04	4.4E+03
255	PD-346	CO-317	North	3	5.00000	4	Cast Iron	0.15	0.26	40%	3.0E+04	4.4E+03
255	PD-230	CO-317	North	3	5.00000	4	Cast Iron	0.15	0.26	40%	3.0E+04	4.4E+03
						Sani	itary Lines in Building	255				
			North	9		<u> </u>	ſ					
255	FD-120	MH 10 - FD224	East	15	4.50000	4	PVC	1.71	6.45	40%	6.6E+04	1.1E+05
			North	50								
255	FD-121	FD-120	North	5	4.50000	4	PVC	0.12	0.44	40%	4.5E+03	7.4E+03
255	FD-122	FD-120	south	4	4.50000	4	PVC	0.09	0.35	40%	3.6E+03	5.9E+03
255	FD-123	FD-120	South	4	4.50000	4	PVC	0.09	0.35	40%	3.6E+03	5.9E+03
255	FD-124	FD-120	North	8	4.50000	4	PVC	0.19	0.70	40%	7.1E+03	1.2E+04
255	CO-220	FD-120	North	34	4.50000	4	PVC	0.79	2.97	40%	3.0E+04	5.0E+04
					S	anitary and	l Grey Water lines in I	Building 255				
			North	10								
255	FD-224	MH-10	NorthWest	24	4.50000	4	PVC	1.95	7.33	40%	7.5E+04	1.2E+05
			West	50	-						,	
255	FD-348	FD-224	North	10	4.50000	4	PVC	0.23	0.87	40%	8.9E+03	1.5E+04
			West	10			1.40	0.25	0.07	1070	0.911+05	1.512+01
255	Co-222	MH-11	North	39	4.50000	4	PVC	1.60	6.02	40%	6.2E+04	1.0E+05
200			West	20			1 + 0		0.02		0.22 01	1.02 00
255	FD-347	FD-224	SouthWest	8	4.50000	4	PVC	0.19	0.70	40%	7.1E+03	1.2E+04
255	FD-349	FD-224	East	12	4.50000	4	PVC	0.28	1.05	40%	1.1E+04	1.8E+04
	/		East	25				0.20	1.05	1070	1.112 - 07	1.01.104
255	Co-221	MH-11	North	33	4.50000	4	PVC	1.34	5.06	40%	5.2E+04	8.6E+04
255	FD-350	FD-221	East	12	4.50000	4	PVC	0.28	1.05	40%	1.1E+04	1.8E+04
			•			<u>. </u>	Building 260		- i		-	

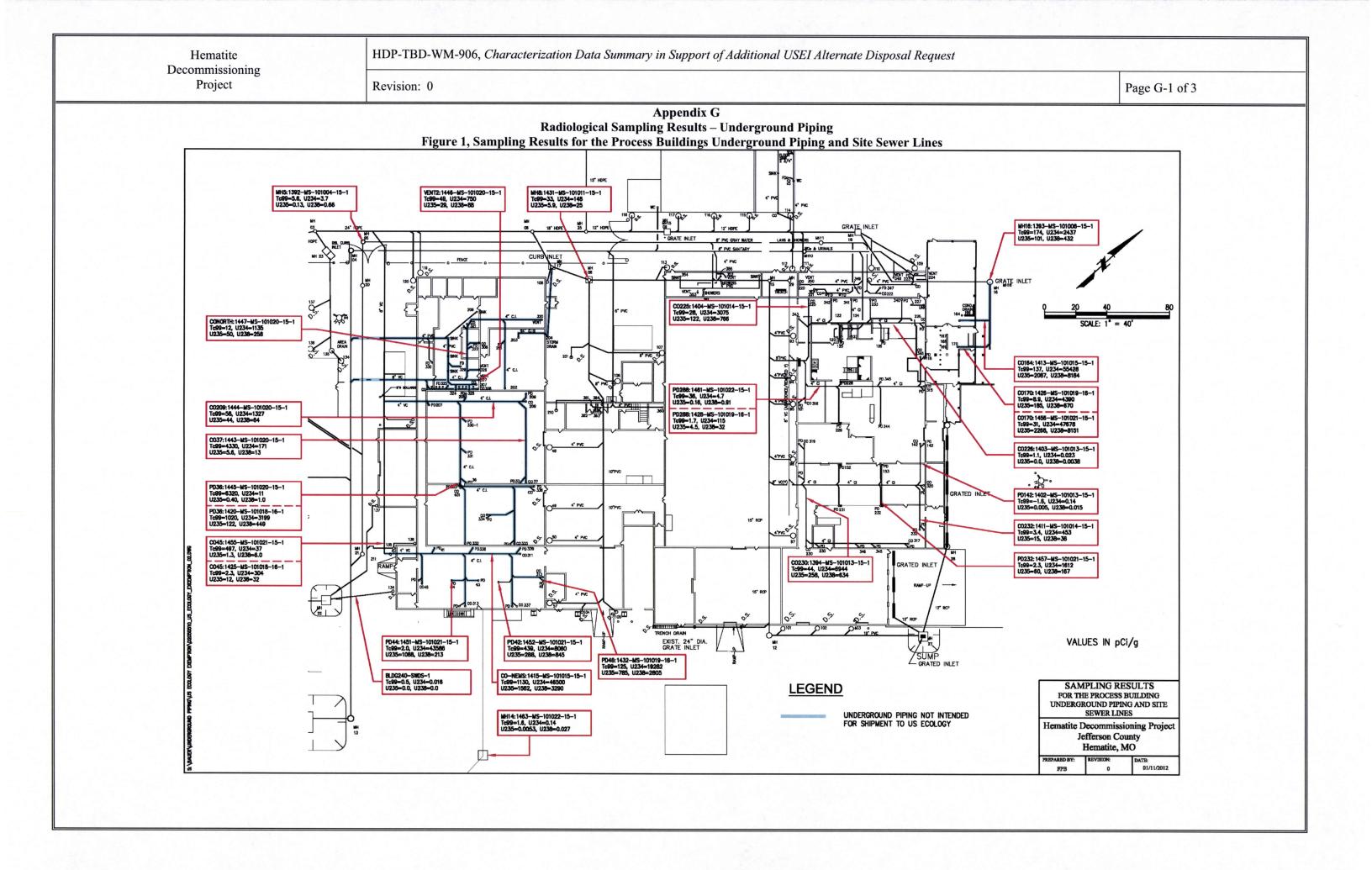
Page	F-4	of	7
i ugo	1 1	O1	'

1	Decommissior Project	iiiig	Revision: 0								Page	F-5 of 7
						Volume	Appendix F Estimates for Undergr	ound Piping				
Building- Room	Lin From	e Designation To/Toward	Direction	Length (ft)	Pipe OD (in)	Pipe ID (in)	Pipe Material of Construction	Volume (wall) (ft ³)	Volume (interior) (ft ³)	% Filled (debris)	Mass (wall) (g)	Mass (debris) (g)
			East	20								
2260	PD-170	MH-16	North	43	4.50000	4	PVC	1.46	5.50	5%	5.6E+04	1.2E+04
255	PD-164	MH-16	East	21	5.00000	4	Cast Iron	1.03	1.83	40%	2.1E+05	3.1E+04
							Building 254					
254	FD-354	MH-11 -MH-05	South East	8 20 20	4.5	4	PVC	1.34	5.06	40%	5.2E+04	8.6E+04
254	FD-351	FD-354	North North	30 6	4.5	4	PVC	0.14	0.52	40%	5.4E+03	8.9E+03
240-07	FD-355	FD-354	South West	8 33	- 5	4	PVC	2.01	3.58	40%	7.7E+04	6.1E+04
254	FD-356	FD-354	North	6	4.5	4	PVC	0.14	0.52	40%	5.4E+03	8.9E+03
254	FD-353	FD-354	North East North	8 12 20	4.5	4	PVC	0.93	3.49	40%	3.6E+04	5.9E+04
254	352	FD-353	West	8	4.5	4	PVC	0.19	0.70	40%	7.1E+03	1.2E+04
254-256	MH-12	MH15	North	225	19.75	15	RCP	202.46	275.98	5%	1.4E+07	5.9E+05
254-256	DS-97	MH15	West	14	19.75	15	RCP	12.60	17.17	40%	8.9E+05	2.9E+05
254-256	DS-96	MH15	West	14	19.75	15	RCP	12.60	17.17	40%	8.9E+05	2.9E+05
254-256	DS-95	MH15	West	14	19.75	15	RCP	12.60	17.17	40%	8.9E+05	2.9E+05
254-256	DS-94	MH15	West	14	19.75	15	RCP	12.60	17.17	40%	8.9E+05	2.9E+05
254-256	DS-93	MH15	West	14	19.75	15	RCP	12.60	17.17	40%	8.9E+05	2.9E+05
			-	-			Building 253					
253	FD-360	MH10-MH 05	West North	30 100	4.5000	4	PVC	3.01	11.34	40%	1.2E+05	1.9E+05
253	MH-08	MH-15	East	114	4.5000	4	PVC	2.64	9.94	5%	1.0E+05	2.1E+04
253	DS-113	MH-15 - MH 08	North	12	4.5000	4						
200	00110	1711 1 <i>2</i> - 1711 00	1101111	12			PVC	0.28	1.05	40%	1.1E+04	1.8E+04
			1		_	- -	d Grey Water lines in B	_	-1			1
253	FD-361	FD-360	East	15	4.5000	4	PVC	0.35	1.31	40%	1.3E+04	2.2E+04
253	FD-362	FD-361	North	2	4.5000	4	PVC	0.05	0.17	40%	1.8E+03	3.0E+03
253	FD-363	FD-361	North	2	4.5000	4	PVC	0.05	0.17	40%	1.8E+03	3.0E+03
253	FD-364	FD-361	South	2	4.5000	4	PVC	0.05	0.17	40%	1.8E+03	3.0E+03

Hematite Decommissioning Project

Revision: 0

						Volume	Appendix F Estimates for Under	ground Piping				
Building- Room	Line From	e Designation To/Toward	Direction	Length (ft)	Pipe OD (in)	Pipe ID (in)	Pipe Material of Construction	Volume (wall) (ft ³)	Volume (interior) (ft ³)	% Filled (debris)	Mass (wall) (g)	Mass (debris) (g)
	1 1			L	1	Stori	n Water Lines Buildi	ng 253			I	I
253	DS-57	MH08-MH 15	East North	35 209	4.5000	4	PVC	5.65	21.28	40%	2.2E+05	3.6E+05
253	DS-105	DS-57 - MH 08	West	10	4.5000	4	PVC	0.23	0.87	40%	8.9E+03	1.5E+04
253	DS-50	DS-57 - MH 08	East	35	4.5000	4	PVC	0.81	3.05	40%	3.1E+04	5.2E+04
253	DS-49	DS-57 - MH 08	East	35	4.5000	4	PVC	0.81	3.05	40%	3.1E+04	5.2E+04
253	DS-48	DS-57 - MH 08	East	35	4.5000	4	PVC	0.81	3.05	40%	3.1E+04	5.2E+04
253	DS-210	DS-57 - MH 08	East	37	4.5000	4	PVC	0.86	3.23	40%	3.3E+04	5.5E+04
253	DS-106	DS-57 - MH 08	West	18	8.6250	8	PVC	1.02	6.28	40%	3.9E+04	1.1E+05
253	DS-107	DS-57 - MH 08	West	48	4.5000	4	PVC	1.11	4.19	40%	4.3E+04	7.1E+04
253	DS-WH	DS-57 - MH 08	West	18	4.5000	4	PVC	0.42	1.57	40%	1.6E+04	2.7E+04
			•			· · · · ·	Outside		· · · · ·			
N/A	MH-40	MH-27	South	150	16.50000	12	RFCP	104.87	117.75	10%	7.4E+06	5.0E+05
N/A	LD Dock	MH-27	South	75	16.5	12	RFCP	52.44	58.88	10%	3.7E+06	2.5E+05
N/A	MH-27	MH-12	West	95	12	10.75	HDPE	14.73	59.85	10%	6.3E+05	2.5E+05
N/A	DS-103	DS-57 - MH 08	South	5	4.5000	4	PVC	0.12	0.44	10%	4.5E+03	1.9E+03
N/A	DS-104	DS-57 - MH 08	South	5	4.5000	4	PVC	0.12	0.44	10%	4.5E+03	1.9E+03
N/A	DS-105	DS-57 - MH 08	South	5	4.5000	4	PVC	0.12	0.44	10%	4.5E+03	1.9E+03
N/A	Storm Grate	MH-12	East	75	12	10.75	HDPE	11.63	47.25	10%	4.9E+05	2.0E+05
N/A	Mh-10	MH-04	East	292	8.625	7.981	HDPE	17.02	101.39	10%	7.2E+05	4.3E+05
N/A	Mh-11	MH-05	East	296	8.625	7.981	HDPE	17.26	102.78	10%	7.3E+05	4.4E+05
N/A	Mh-04	MH-13	South	296	8.625	7.981	HDPE	17.26	102.78	10%	7.3E+05	4.4E+05
N/A	Mh-05	MH-04 MH-13	South	170	8.625	7.981	HDPE	9.91	59.03	10%	4.2E+05	2.5E+05
N/A	Mh-31	CO-311	South	180	8.625	7.981	HDPE	10.49	62.50	10%	4.5E+05	2.7E+05
N/A	Mh-18	MH-09	West	122	12.75	12	HDPE	12.35	95.77	10%	5.2E+05	4.1E+05
N/A	DS-109	MH 09- MH 18	North	34	4.5000	4	PVC	0.79	2.97	10%	3.0E+04	1.3E+04
N/A	DS-110	MH 09- MH 18	North	28	4.5000	4	PVC	0.65	2.44	10%	2.5E+04	1.0E+04
N/A	DS-111	MH 09- MH 18	North	25	4.5000	4	PVC	0.58	2.18	10%	2.2E+04	9.3E+03
N/A	DS-112	MH 09- MH 18	North	25	4.5000	4	PVC	0.58	2.18	10%	2.2E+04	9.3E+03
N/A	DS-114	MH 09- MH 18	South	12	4.5000	4	PVC	0.28	1.05	10%	1.1E+04	4.4E+03
N/A	DS-115	MH 09- MH 18	South	12	4.5000	4	PVC	0.28	1.05	10%	1.1E+04	4.4E+03
N/A	DS-116	MH 09- MH 18	South	12	4.5000	4	PVC	0.28	1.05	10%	1.1E+04	4.4E+03
N/A	DS-117	MH 09- MH 18	South	12	4.5000	4	PVC	0.28	1.05	10%	1.1E+04	4.4E+03
N/A	DS-118	MH 09- MH 18	South	12	4.5000	4	PVC	0.28	1.05	10%	1.1E+04	4.4E+03


Page	F-6	of	7
i age	1-0	01	/

 Hematite
 HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request

 Decommissioning
 Project

 Revision: 0

						Volume	Appendix F e Estimates for Underg	ground Piping				
Building- Room	Lin From	e Designation To/Toward	Direction	Length (ft)	Pipe OD (in)	Pipe ID (in)	Pipe Material of Construction	Volume (wall) (ft ³)	Volume (interior) (ft ³)	% Filled (debris)	Mass (wall) (g)	Mass (debris) (g)
N/A	Mh-25	MH-07	North	72	8.625	7.981	HDPE	4.20	25.00	10%	1.8E+05	1.1E+05
N/A	MH-07	MH-19	North	80	8.625	7.981	HDPE	4.66	27.78	10%	2.0E+05	1.2E+05
N/A	Mh-25	MH-03	East	173	8.625	7.981	HDPE	10.09	60.07	10%	4.3E+05	2.6E+05
N/A	Mh-03	Outfall	South	314	8.625	7.981	HDPE	18.31	109.03	10%	7.8E+05	4.6E+05
N/A	Mh-03	DS-134	South	87	4.5000	4	HDPE	2.02	7.59	10%	8.6E+04	3.2E+04
N/A	DS-136	MH-22 - MH DS	West	14	4.5000	4	PVC	0.32	1.22	10%	1.2E+04	5.2E+03
N/A	DS-137	MH-22 - MH DS	South	14	4.5000	4	PVC	0.32	1.22	5%	1.2E+04	2.6E+03
N/A	DS-124	MH-03 - MH 02	North	18	4.5000	4	PVC	0.42	1.57	10%	1.6E+04	6.7E+03
N/A	DS-121	MH-03 - MH 02	South	14	4.5000	4	PVC	0.32	1.22	10%	1.2E+04	5.2E+03
N/A	DS-123	MH-03 - MH 02	South	12	4.5000	4	PVC	0.28	1.05	10%	1.1E+04	4.4E+03
N/A	DS-125	MH-03 - MH 02	South	10	4.5000	4	PVC	0.23	0.87	10%	8.9E+03	3.7E+03
N/A	DS-126	MH-03 - MH 02	South	11	4.5000	4	PVC	0.25	0.96	10%	9.8E+03	4.1E+03
		MH06	West	25								
N/A	MH-17	MH08	North	24	4.50000	4	PVC	2.15	8.11	5%	8.3E+04	1.7E+04
		240 laundry room	West	44	1							
N/A	DS-137	MH-17	South	8	4.5000	4	PVC	0.19	0.70	10%	7.1E+03	3.0E+03
N/A	MH-22	MH-01	East	150	8.625	7.981	HDPE	8.74	52.09	10%	3.7E+05	2.2E+05
N/A	DS-133	MH-01 - MH-22	South	8	4.5000	4	PVC	0.19	0.70	10%	7.1E+03	3.0E+03
N/A	DS-	MH-01 - MH-22	South	8	4.5000	4	PVC	0.19	0.70	10%	7.1E+03	3.0E+03
N/A	DS-	MH-01 - MH-22	South	8	4.5000	4	PVC	0.19	0.70	10%	7.1E+03	3.0E+03
N/A	DS-	MH-01 - MH-22	South	30	4.5000	4	PVC	0.70	2.62	10%	2.7E+04	1.1E+04
N/A	DS-	MH-01 - MH-22	South	11	4.5000	4	PVC	0.25	0.96	10%	9.8E+03	4.1E+03
N/A	DS-	MH-01 - MH-22	South	8	4.5000	4	PVC	0.19	0.70	10%	7.1E+03	3.0E+03
N/A	DS-	MH-01 - MH-22	South	8	4.5000	4	PVC	0.19	0.70	10%	7.1E+03	3.0E+03
N/A	Mh-01	MH-02	North	233	8.625	7.981	HDPE	13.58	80.91	10%	5.8E+05	3.4E+05
N/A	Mh-02	MH-31	North	69	8.625	7.981	HDPE	4.02	23.96	10%	1.7E+05	1.0E+05
							Building 110					
110	FD-300	MH04-MH10	South	81	4.50000	4.026	PVC	1.78	7.16	10%	6.9E+04	3.0E+04
110	FD-301	FD-300	East	8	4.5	4.026	PVC	0.18	0.71	10%	6.8E+03	3.0E+03
110	FD-302	FD-300	East	8	4.5	4.026	PVC	0.18	0.71	10%	6.8E+03	3.0E+03
110	FD-303	CO-300	South	40	4.5	4.026	PVC	0.88	3.53	10%	3.4E+04	1.5E+04
110	CO-300	FD-300	SouthEast	12	4.5	4.026	PVC	0.26	1.06	10%	1.0E+04	4.5E+03
110	WC-300	MH04-MH10	South	30	4.5	4.026	PVC	0.66	2.65	10%	2.5E+04	1.1E+04

Hematite Decommissioning Project

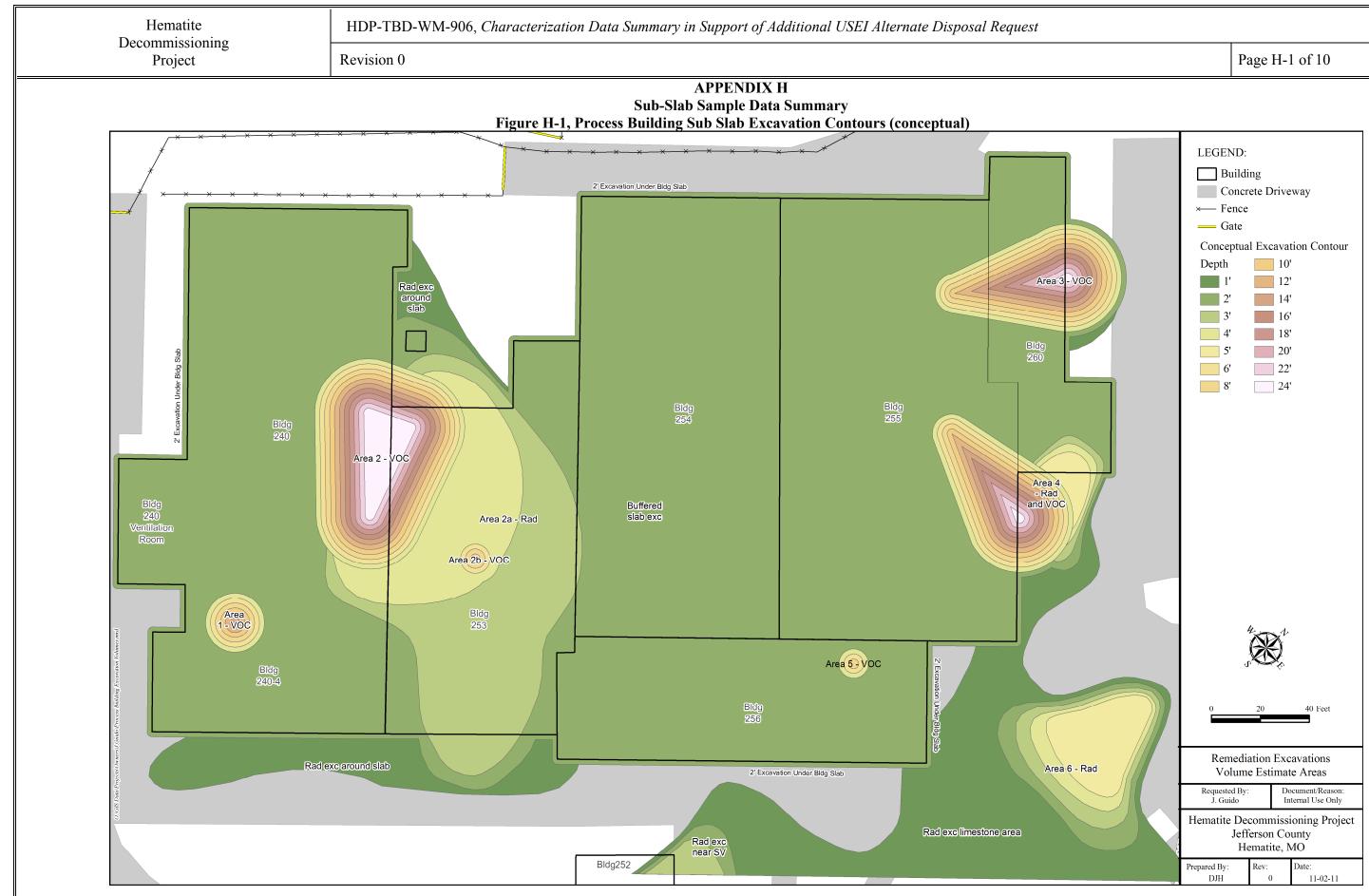
Revision: 0

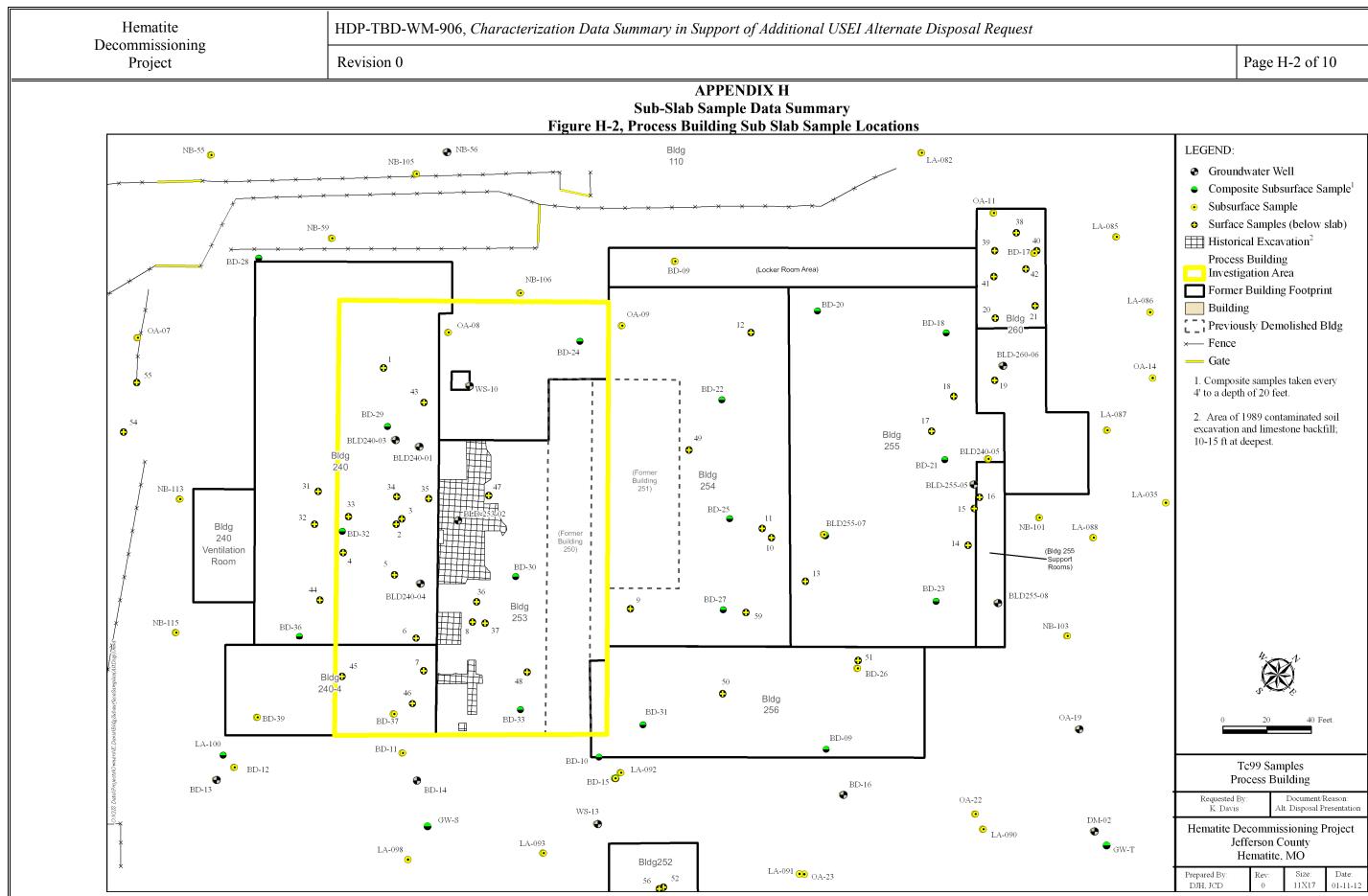
Appendix G Radiological Sampling Results – Underground Piping

								Table 1			•			•		
Bldg-Rm	Location ID	Direction	Distance	UNITS		Tc-99	_		U-234			U-235			U-238	
Diug-Kill		Direction	(ft)	UNITS	Value	Error	MDC	Value	Error	MDC	Value	Error	MDC	Value	Error	MDC
Building 240											-					
240-11	PD-36	-	-	pCi/g	1.0E+03	8.7E+01	1.0E+00	3.2E+03	-	1.9E+00	1.2E+02	-	2.7E-03	4.5E+02	-	4.0E-04
240-11	CO-37	north	57	pCi/g	4.3E+03	3.7E+02	6.0E+00	1.7E+02	-	2.2E-03	5.6E+00	-	6.9E-05	1.3E+01	-	9.9E-06
240-11	CO-209	west	23	pCi/g	5.8E+01	5.1E+00	4.0E-01	1.3E+03	-	1.9E-01	4.4E+01	-	6.7E-03	6.4E+01	-	9.9E-03
240-11	PD-36	N/A	N/A	pCi/g	6.3E+03	5.4E+02	8.0E+00	1.1E+01	-	2.2E-03	4.0E-01	-	2.7E-06	1.0E+00	-	4.0E-07
240-14	CO-NEMS	west	to 8	pCi/g	1.1E+03	9.6E+01	1.0E+00	4.7E+04	-	9.3E-01	1.6E+03	-	1.4E-02	3.3E+03	-	4.0E-03
240-14	CO-45	-	7	pCi/g	2.3E+00	3.8E-01	3.9E-01	3.0E+02	-	1.9E-01	1.2E+01	-	2.7E-04	3.2E+01	-	4.0E-05
240-14	PD-46	N/A	N/A	pCi/g	1.3E+02	1.1E+01	5.0E-01	1.9E+04	-	1.9E-01	7.9E+02	-	6.7E-03	2.8E+03	-	9.9E-03
240-14	PD-44	N/A	N/A	pCi/g	2.0E+00	3.7E-01	4.0E-01	4.4E+04	-	4.7E+00	1.1E+03	-	6.8E-02	2.1E+02	-	9.9E-03
240-14	PD-42	N/A	N/A	pCi/g	4.4E+02	3.7E+01	6.0E-01	8.1E+03	-	1.9E-01	2.9E+02	-	6.7E-03	8.4E+02	-	9.9E-03
240-14	CO-45	north	to 7	pCi/g	5.0E+02	4.2E+01	2.0E+00	3.7E+01	-	2.2E-03	1.3E+00	-	6.9E-05	6.0E+00	-	9.9E-06
240-7	Vent 2 Lab	N/A	N/A	pCi/g	4.9E+01	4.3E+00	4.0E-01	7.5E+02	-	1.9E-01	2.9E+01	-	6.7E-03	8.8E+01	-	9.9E-03
240-7	CO-Lab-North	south	to 43	pCi/g	1.2E+01	1.2E+00	4.0E-01	1.1E+03	-	1.9E-01	5.0E+01	-	6.7E-03	2.6E+02	-	9.9E-03
				Average	1.2E+03			1.0E+04			3.3E+02			6.7E+02		
				Min	2.0E+00			4.7E+04			1.6E+03			3.3E+03		
				Max	6.3E+03			1.1E+01			4.0E-01			1.0E+00		
Building 255																
255-47	CO-225	South	to-32	pCi/g	2.8E+01	2.6E+00	5.0E-01	3.1E+03	-	4.7E+00	1.2E+02	-	6.7E-03	7.7E+02	-	9.9E-04
255-53	PD-228	-	13	pCi/g	1.7E+00	3.5E-01	4.0E-01	1.1E+02	-	1.9E-01	4.5E+00	-	2.7E-04	3.2E+01	-	9.9E-03
255-53	PD-228	west	to 12	pCi/g	3.6E+01	3.1E+00	8.0E-01	4.7E+00	-	2.2E-03	1.6E-01	-	2.7E-06	9.1E-01	-	4.0E-07
255-56	CO-230	north	to 35	pCi/g	4.4E+01	3.9E+00	5.0E-01	6.9E+03	-	1.9E+00	2.6E+02	-	2.7E-03	6.3E+02	-	4.0E-04
255-59	PD-232	north	to 12	pCi/g	2.3E+00	4.1E-01	4.2E-01	1.6E+03	-	1.9E-01	6.0E+01	-	6.7E-03	1.7E+02	-	9.9E-03
255-61	CO-232	north	30	pCi/g	3.4E+00	5.4E-01	5.4E-01	4.5E+02	-	1.9E-01	1.5E+01	-	2.7E-04	3.6E+01	-	4.0E-05
		·		Average	1.9E+01			2.0E+03			7.7E+01			2.7E+02		
				Min	1.7E+00			4.7E+00			1.6E-01			9.1E-01		
				Max	4.4E+01			6.9E+03			2.6E+02			7.7E+02		
				IVIAX	4.4E+01			0.92+05			2.01102			7.7E+02		
Building 260	1															

Dunuing 20	0															
260-65	CO-164	east	to 12	pCi/g	1.4E+02	1.2E+01	5.0E-01	5.5E+04	-	4.7E+01	2.1E+03	-	6.8E-02	8.2E+03	-	9.9E-03
260-66	CO-170	-	-	pCi/g	8.9E+00	9.4E-01	4.2E-01	4.4E+03	-	1.9E-01	1.9E+02	-	6.7E-03	6.7E+02	-	9.9E-03
260-66	CO-170	N/A	N/A	pCi/g	3.1E+01	2.8E+00	4.0E-01	4.8E+04	-	4.7E+00	2.3E+03	-	6.8E-02	8.2E+03	-	9.9E-03
-	-	-	-	Average	5.9E+01	-		3.6E+04	-		1.5E+03			5.7E+03		
				Min	8.9E+00			4.4E+03			1.9E+02			6.7E+02		
				Max	1.4E+02			5.5E+04			2.3E+03			8.2E+03		

Page G-2 of 3


Hematite Decommissioning Project


Revision: 0

Appendix G Radiological Sampling Results – Underground Piping

ocation ID							ble 1 (contin	ucuj							
Bldg-Rm Location ID	Direction	Distance	UNITS		Tc-99			U-234			U-235			U-238	
	Direction	(ft)	UNITS	Value	Error	MDC	Value	Error	MDC	Value	Error	MDC	Value	Error	MDC
uilding															
MH-5	east	190	pCi/g	5.6E+00	7.0E-01	5.2E-01	3.7E+00	-	1.9E-01	1.3E-01	-	2.7E-04	6.6E-01	-	4.0E-05
MH-16	south	47	pCi/g	1.7E+02	1.5E+01	5.0E-01	2.4E+03	-	1.9E+00	1.0E+02	-	2.7E-03	4.3E+02	-	4.0E-04
MH-8	east	120	pCi/g	3.3E+01	3.0E+00	4.0E-01	1.5E+02	-	1.9E-01	5.9E+00	-	2.7E-04	2.5E+01	-	4.0E-05
MH-14	northeast	120	pCi/g	1.6E+00	6.2E-01	9.7E-01	1.4E-01	-	2.2E-04	5.3E-03	-	2.7E-07	2.7E-02	-	4.0E-08
_	-		Average	5.4E+01	-		6.5E+02			2.7E+01			1.1E+02		
			Min	1.6E+00			1.4E-01			5.3E-03			2.7E-02		
			Max	1.7E+02			2.4E+03			1.0E+02			4.3E+02		
N	МН-5 ИН-16 МН-8	MH-5 east MH-16 south MH-8 east	MH-5 east 190 MH-16 south 47 MH-8 east 120	MH-5 east 190 pCi/g MH-16 south 47 pCi/g MH-8 east 120 pCi/g MH-14 northeast 120 pCi/g Average Min	MH-5 east 190 pCi/g 5.6E+00 MH-16 south 47 pCi/g 1.7E+02 MH-8 east 120 pCi/g 3.3E+01 MH-14 northeast 120 pCi/g 1.6E+00 Average 5.4E+01 Min 1.6E+00	MH-5 east 190 pCi/g 5.6E+00 7.0E-01 MH-16 south 47 pCi/g 1.7E+02 1.5E+01 MH-8 east 120 pCi/g 3.3E+01 3.0E+00 MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 Average 5.4E+01 Min 1.6E+00 1.6E+00	MH-5 east 190 pCi/g 5.6E+00 7.0E-01 5.2E-01 MH-16 south 47 pCi/g 1.7E+02 1.5E+01 5.0E-01 MH-8 east 120 pCi/g 3.3E+01 3.0E+00 4.0E-01 MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 9.7E-01 Average 5.4E+01 Min 1.6E+00 6.2E-01 9.7E-01	Iding MH-5 east 190 pCi/g 5.6E+00 7.0E-01 5.2E-01 3.7E+00 MH-16 south 47 pCi/g 1.7E+02 1.5E+01 5.0E-01 2.4E+03 MH-8 east 120 pCi/g 3.3E+01 3.0E+00 4.0E-01 1.5E+02 MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 9.7E-01 1.4E-01 Average 5.4E+01 6.5E+02 Min 1.6E+00 1.4E-01 1.4E-01	Iding MH-5 east 190 pCi/g 5.6E+00 7.0E-01 5.2E-01 3.7E+00 - MH-16 south 47 pCi/g 1.7E+02 1.5E+01 5.0E-01 2.4E+03 - MH-8 east 120 pCi/g 3.3E+01 3.0E+00 4.0E-01 1.5E+02 - MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 9.7E-01 1.4E-01 - Average 5.4E+01 6.5E+02 Min 1.6E+00 1.4E-01 -	Iding MH-5 east 190 pCi/g 5.6E+00 7.0E-01 5.2E-01 3.7E+00 - 1.9E-01 MH-16 south 47 pCi/g 1.7E+02 1.5E+01 5.0E-01 2.4E+03 - 1.9E+00 MH-8 east 120 pCi/g 3.3E+01 3.0E+00 4.0E-01 1.5E+02 - 1.9E-01 MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 9.7E-01 1.4E-01 - 2.2E-04 Min Min	Iding MH-5 east 190 pCi/g 5.6E+00 7.0E-01 5.2E-01 3.7E+00 - 1.9E-01 1.3E-01 MH-16 south 47 pCi/g 1.7E+02 1.5E+01 5.0E-01 2.4E+03 - 1.9E+00 1.0E+02 MH-8 east 120 pCi/g 3.3E+01 3.0E+00 4.0E-01 1.5E+02 - 1.9E+01 5.9E+00 MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 9.7E-01 1.4E-01 - 2.2E-04 5.3E-03 Average 5.4E+01 6.5E+02 2.7E+01 Min 1.6E+00 1.4E-01 - 2.7E+01	Iding MH-5 east 190 pCi/g 5.6E+00 7.0E-01 5.2E-01 3.7E+00 - 1.9E-01 1.3E-01 - MH-16 south 47 pCi/g 1.7E+02 1.5E+01 5.0E-01 2.4E+03 - 1.9E+00 1.0E+02 - MH-8 east 120 pCi/g 3.3E+01 3.0E+00 4.0E-01 1.5E+02 - 1.9E+01 5.9E+00 - MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 9.7E-01 1.4E-01 - 2.2E-04 5.3E-03 - Average 5.4E+01 6.5E+02 2.7E+01 Min 1.6E+00 1.4E-01 - 2.7E+01 5.3E-03 -	Iding MH-5 east 190 pCi/g 5.6E+00 7.0E-01 5.2E-01 3.7E+00 - 1.9E-01 1.3E-01 - 2.7E-04 MH-16 south 47 pCi/g 1.7E+02 1.5E+01 5.0E-01 2.4E+03 - 1.9E+00 1.0E+02 - 2.7E-03 MH-8 east 120 pCi/g 3.3E+01 3.0E+00 4.0E-01 1.5E+02 - 1.9E-01 5.9E+00 - 2.7E-04 MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 9.7E-01 1.4E-01 - 2.2E-04 5.3E-03 - 2.7E-07 Min 1.6E+00 1.4E-01 1.4E-01 - 2.7E+01 S.3E+01 6.5E+02 2.7E+01 Min 1.6E+00 1.4E-01 5.3E-03 - 2.7E+01	Iding MH-5 east 190 pCi/g 5.6E+00 7.0E-01 5.2E-01 3.7E+00 - 1.9E-01 1.3E-01 - 2.7E-04 6.6E-01 MH-16 south 47 pCi/g 1.7E+02 1.5E+01 5.0E-01 2.4E+03 - 1.9E+00 1.0E+02 - 2.7E-03 4.3E+02 MH-8 east 120 pCi/g 3.3E+01 3.0E+00 4.0E-01 1.5E+02 - 1.9E-01 5.9E+00 - 2.7E-04 2.5E+01 MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 9.7E-01 1.4E-01 - 2.2E-04 5.3E-03 - 2.7E-07 2.7E-02 MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 9.7E-01 1.4E-01 - 2.2E-04 5.3E-03 - 2.7E-07 2.7E-02 Min 1.6E+00 1.4E-01 5.3E-03 2.7E+01 1.1E+02 Min 1.6E+00 1.4E-01	Iding MH-5 east 190 pCi/g 5.6E+00 7.0E-01 5.2E-01 3.7E+00 - 1.9E-01 1.3E-01 - 2.7E-04 6.6E-01 - MH-16 south 47 pCi/g 1.7E+02 1.5E+01 5.0E-01 2.4E+03 - 1.9E+00 1.0E+02 - 2.7E-03 4.3E+02 - MH-8 east 120 pCi/g 3.3E+01 3.0E+00 4.0E-01 1.5E+02 - 1.9E-01 5.9E+00 - 2.7E-04 2.5E+01 - MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 9.7E-01 1.4E-01 - 2.2E-04 5.3E-03 - 2.7E-07 2.7E-02 - MH-14 northeast 120 pCi/g 1.6E+00 6.2E-01 9.7E-01 1.4E-01 - 2.2E-04 5.3E-03 - 2.7E-07 2.7E-02 - Min 1.6E+00 1.4E-01 1.4E-01 5.3E-03 2.7E+01 1.1E+02 2.7E-02 Min 1.6E+00 1.4E-01 5.3E-03 2.7E-02 2

Page G-3 of 3

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary i USEI Alternate Disposal Request	n Support of Additional
Project	Revision 0	Page H-3 of 10

APPENDIX H Sub-Slab Sample Data Summary

Table H-1, Surface CSM Data Summary - Beneath Bldg. 253

	Tc-99 pCi/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
Count	5	6	6	6
Count <mda< th=""><th>0</th><th>0</th><th>1</th><th>0</th></mda<>	0	0	1	0
Minimum, pCi/g	109	10	1	3
Maximum, pCi/g	168	99	5	7
Average, pCi/g	143	31	2	4
st dev	30	34	2	2

Table H-2, Surface CSM - (Bldg. 253) Sample Data

Sample ID	Тс-99 рСі/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
Location #08	112	15.5	0.84	6.6
Location #36	160	18.1	0.99	5.1
Location #37	166	98.9	5.0	3.5
Location #36	160	18.1	18.1	5.1
Location #47	109	9.5	0.52	2.9
Location #48	168	19.1	1.1	5.6
BLD253-02-Fill	-	21.9	1.2	2.6

Table H-3, Surface CSM Data Summary - Excluding Bldg. 253

	Tc-99 pCi/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
Count	43	48	48	48
Count <mda< td=""><td>13</td><td>0</td><td>5</td><td>5</td></mda<>	13	0	5	5
Minimum, pCi/g	-0.40	0.28	0.02	0.09
Maximum, pCi/g	12	1842	100	685
Average, pCi/g	3	105	5.4	32
st dev	3	284	15	104

Table H-4, Surface CSM- (Excluding Bldg. 253) Sample Data

Sample ID	Tc-99 pCi/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
BD-19-0.5-SL	0.0	3.0	0.2	0.6
BD-24-0.5-SL	0.8	8.6	0.4	2.0
BD-28-0.5-SL	0.7	12.7	0.4	2.0
BLD240-01-Fill	-	106.9	5.9	17.0
BLD240-03-Fill	-	324.3	17.9	71.0
BLD240-04-Fill	-	12.7	0.7	2.6
BLD255-05-Fill	-	3.2	0.2	1.7
BLD260-06-Fill	-	60.7	3.3	16.4
Location #01	-0.40	28.1	1.5	2.8
Location #02	-0.13	2.6	0.049	0.56
Location #03	12	1842.1	100	685
Location #04	-0.18	426.7	23	178
Location #05	1.3	490.5	27	173
Location #06	0.71	6.1	0.31	0.23
Location #07	0.27	1.1	0.059	0.31
Location #09	0.12	8.9	0.49	1.1
Location #11	0.85	0.8	0.038	0.75
Location #12	0	3.0	0.16	1.6
Location #13	0.97	320.8	18	72
Location #14	0.54	408.2	20	11
Location #15	2.1	79.9	4.3	30
Location #16	2.3	103.6	5.5	55

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request		
Project	Revision 0	Page H-5 of 10	

Table H-4, Surface CSM- (Excluding Bldg. 253) Sample Data

Sampla ID	Тс-99	U-234	U-235	U-238
Sample ID	pCi/g	pCi/g	pCi/g	pCi/g
Location #17	0.23	3.5	0.18	2.3
Location #18	0.31	78.4	4.1	46
Location #19	10	26.6	1.4	13
Location #20	5.2	235.7	13	74
Location #21	11	85.2	4.7	28
Location #31	1.8	0.4	0.020	0.15
Location #32	1.9	0.4	0.020	0.25
Location #33	2.0	0.4	0.022	0.093
Location #34	1.7	3.3	0.18	0.33
Location #35	8.8	52.8	2.4	0.71
Location #38	2.0	2.7	0.15	0.62
Location #39	2.6	4.3	0.24	1.3
Location #40	10	56.1	3.1	14
Location #41	3.9	39.6	2.2	10.0
Location #42	10.0	13.8	0.76	3.1
Location #43	2.0	0.5	0.027	0.19
Location #44	1.7	3.2	0.18	0.90
Location #45	1.9	1.2	0.063	0.51
Location #46	2.0	0.4	0.023	0.27
Location #49	2.0	0.3	0.015	0.12
Location #50	2.2	137.7	6.0	1.5
Location #51	1.8	2.9	0.16	0.53
Location #52	3.9	11.2	0.62	1.7
Location #53	2.1	8.6	0.47	1.3
Location #54	2.2	0.4	0.019	0.30
Location #55	2.2	0.6	0.033	0.29
BLD253-02-01	28.7	16.3	0.9	3.7
BLD255-08-01	30.2	250.8	13.4	17.3
BLD260-06-01	25.2	17.8	0.8	5.0

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request		
Project	Revision 0	Page H-6 of 10	

Table H-5, Root CSM Data Summary – Beneath Bldg. 253

	Tc-99 pCi/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
Count	5	6	6	6
Count <mda< td=""><td>0</td><td>0</td><td>2</td><td>0</td></mda<>	0	0	2	0
Minimum, pCi/g	8	1	0.1	2
Maximum, pCi/g	151	172	8	11
Average, pCi/g	47	37	2	6
st dev	60	66	3	4

Table H-6, Root CSM - (Bldg. 253) Sample Data

Sample ID	Тс-99 рСі/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
BD-30-2.5-SL	151.0	16.1	0.7	3.3
BD-30-4.5-SL	20.2	10.0	2.6	10.4
BD-33-2.5-SL	47.3	8.7	0.4	2.4
BD-33-4.5-SL	7.8	1.4	0.1	2.1
BLD253-02-01	-	16.3	0.9	3.7
BLD253-02-04	7.5	172.0	7.7	11.1

Table H-7, Root CSM Data Summary - Excluding Bldg. 253 Tc-99 **U-234 U-235 U-238** pCi/g pCi/g pCi/g pCi/g Count 12 20 20 20 0/9 8 Count < MDA 7 11 -0.3 0.6 -0.4 -0.4 Minimum

251

20

56

30

3

9

Maximum

Average

st dev

13

1

3

17

3

4

Table H-8, Root CSM - (Excluding Bldg. 253) Sample Data

Sample ID	Tc-99 pCi/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
BD-17-2.5-SL	5.0	69.0	3.2	11.8
BD-17-4.5-SL	-0.2	2.4	0.1	1.3
BD-18-2.5-SL	-0.1	0.6	0.0	0.6
BD-18-4.5-SL	-0.3	2.2	0.1	0.4
BD-21-2.5-SL	-0.1	3.1	0.1	0.7
BD-21-4.5-SL	0.3	0.7	0.1	0.7
BD-26-2.5-SL	1.9	1.2	0.1	0.7
BD-26-4.5-SL	1.6	0.8	0.0	0.8
BD-29-2.5-SL	1.3	12.2	0.5	2.6
BD-29-4.5-SL	0.0	2.9	0.2	0.7
BD-36-4.5-SL	-0.2	16.4	0.7	1.8
BLD240-01-01	-	2.3	0.1	1.1
BLD240-04-02	-	0.7	0.0	1.7
BLD240-04-04	-	5.4	0.3	0.9
BLD240-05-01	-	1.4	-0.1	1.4
BLD240-05-02	-	1.6	-0.4	1.6
BLD255-07-02	-	1.3	0.1	1.7
BLD255-08-01	30.2	250.8	13.4	17.3
BLD260-06-01	-	17.8	0.8	5.0
BLD260-06-03	-	2.2	0.1	0.6

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request		
Project	Revision 0	Page H-8 of 10	

Table H-9, Deep CSM Data Summary - Excluding Bldg. 253

	Tc-99 pCi/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
Count	7	9	9	9
Count <mda< td=""><td>0</td><td>0</td><td>9</td><td>8</td></mda<>	0	0	9	8
Minimum, pCi/g	5	1	-0.1	1
Maximum, pCi/g	28	7	0	2
Average, pCi/g	13	4	0.2	2
st dev	8	2	0.1	0.3

Sample ID	Tc-99 pCi/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
BD-30-16.5-SL	14.4	3.31	0.18	1.2
BD-30-20.5-SL	8.12	4.78	0.26	1.74
BD-30-8.5-SL	5.22	1.10	-0.13	1.1
BD-30-9-SL	-	3.90	0.21	1.6
BD-33-12.5-SL	-	3.22	0.17	1.7
BD-33-12-SL	15.4	3.36	0.18	1.5
BD-33-16.5-SL	27.5	7.44	0.41	1.78
BD-33-20.5-SL	15.4	5.86	0.32	1.9
BD-33-8.5-SL	5.61	4.92	0.27	1.4

Table H-10, Deep CSM - (Bldg. 253) Sample Data

Table H-11, Deep CSM Data Summary - Excluding Bldg. 253

	Tc-99 pCi/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
Count	22	31	31	31
Count <mda< td=""><td>19</td><td>0</td><td>30</td><td>30.0</td></mda<>	19	0	30	30.0
Minimum	-0.3	0.1	-0.09	0.000
Maximum	1	7	0	3
Average	0	3	0.1	1
st dev	0.4	2	0.1	1

Table H-12, Deep CSM - (Excluding Bldg. 253) Sample Data

Sample ID	Тс-99 рСі/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
BD-17-12.5-SL	0.09	3.91	0.21	1.7
BD-17-16.5-SL	-0.31	2.62	0.14	1.2
BD-17-20.5-SL	-0.3	1.10	-0.09	1.1
BD-17-8.5-SL	-	2.54	0.14	0.4
BD-17-8-SL	0.3	4.79	0.26	1.8
BD-18-12.5-SL	-0.2	3.09	0.17	0.84
BD-18-16-SL	-0.17	5.16	0.28	1.9
BD-18-20.5-SL	-0.14	1.63	0.05	0
BD-18-8.5-SL	-	0.71	0.01	1.0
BD-18-8-SL	0.03	2.16	0.1	2.5
BD-21-12-SL	0.21	3.56	0.18	2.7
BD-21-16.5-SL	0.21	2.40	0.13	0.9
BD-21-20.5-SL	0.16	1.77	0.08	2.24
BD-21-8.5-SL	0.45	1.24	0.06	1.2
BD-21-9-SL	-	5.04	0.27	2.3
BD-26-12-SL	0.31	0.14	0.003	1.9
BD-26-16.5-SL	-0.22	2.05	0.11	0.9
BD-26-20-SL	0.36	2.95	0.16	1.1
BD-26-7.5-SL	-	1.22	0.05	2.0
BD-29-12.5-SL	0.87	1.18	0.04	2.7
BD-29-16.5-SL	0.99	5.62	0.31	1.3
BD-29-20.5-SL	1.13	5.58	0.3	2.4

Hematite Decommissioning	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request		
Project	Revision 0	Page H-10 of 10	

Table H-12, Deep CSM - (Excluding Bldg. 253) Sample Data

Sample ID	Tc-99 pCi/g	U-234 pCi/g	U-235 pCi/g	U-238 pCi/g
BD-29-8.5-SL	-	4.39	0.22	1.0
BD-29-8-SL	0.26	2.00	0.1	1.6
BD-36-12.5-SL	-	1.38	0.07	1.0
BD-36-12-SL	-0.06	2.49	0.13	1.46
BD-36-16.5-SL	0.31	1.70	-0.09	1.7
BD-36-8-SL	-0.25	3.66	0.2	1.2
BLD240-01-09	-	4.17	0.23	0.9
BLD255-07-15	-	6.70	0.37	1.1
BLD255-08-08	-	6.18	0.34	0.9

APPENDIX I

Visual Sample Plan[©] Software Evaluation

VSP© Software Sample Design Report for Calculating a One-Sided Confidence Interval for the Population Mean Using Simple Random Sampling

Summary

This report summarizes the sampling design used, associated statistical assumptions, as well as general guidelines for conducting post-sampling data analysis. Sampling plan components presented here include how many sampling locations to choose and where within the sampling area to collect those samples. The type of medium to sample (i.e., soil, groundwater, etc.) and how to analyze the samples (in-situ, fixed laboratory, etc.) are addressed in other sections of the sampling plan.

SUMMARY OF SAMPLING DESIGNPrimary Objective of DesignConstruct a Confidence Interval on the
True MeanType of Sampling DesignParametricSample Placement (Location) in the FieldSimple random samplingFormula for calculating number of sampling
locationsConfidence Limits using Student's t-
distributionCalculated total number of samples85

The following table summarizes the sampling design developed.

Primary Sampling Objective

The primary purpose of sampling at this site is to construct a confidence interval on the true population mean value. After the samples are collected and analyzed, the resulting sample values can be used to construct a one-sided confidence interval. Once the confidence interval is computed (which will be an upper threshold), you can have the specified confidence that the true population mean is less than the upper threshold.

Selected Sampling Approach

A parametric random sampling approach was used to determine the number of samples and to specify sampling locations. A parametric formula was chosen because the conceptual model and historical information (e.g., historical data from this site or a very similar site) indicate that parametric assumptions are true. These assumptions will be examined in post-sampling data analysis.

Both parametric and non-parametric equations rely on assumptions about the population. Typically, however, non-parametric equations require fewer assumptions and allow for more uncertainty about the statistical distribution of values at the site. The trade-off is that if the parametric assumptions are valid, the required number of samples is usually less than if a nonparametric equation was used.

Locating the sample points randomly provides data that are separated by many distances, whereas systematic samples are all equidistant apart. Therefore, random sampling provides more information about the spatial structure of the potential contamination than systematic sampling

Hematite Decommissioning Project	HDP-TBD-WM-906, Characterization Data Summary in Support of Additional USEI Alternate Disposal Request		
	Revision 0	Page I-2 of 3	

APPENDIX I

Visual Sample Plan[©] Software Evaluation

does. As with systematic sampling, random sampling also provides information regarding the mean value, but there is the possibility that areas of the site will not be represented with the same frequency as if uniform grid sampling were performed

Number of Total Samples: Calculation Equation and Inputs

The equation used to calculate the number of samples is based on a confidence interval calculation using the Student's t-distribution. The formula used to calculate the number of samples is:

$$n = \left[\frac{t_{1-\alpha,df}S_{total}}{d}\right]^2$$

where

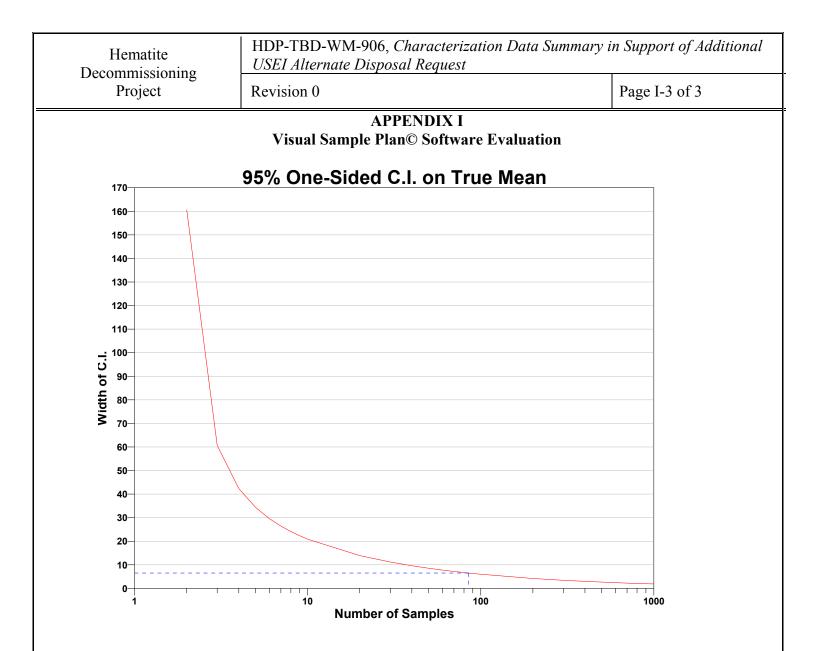
n is the recommended minimum sample size for the study area,

 S_{total} is the estimated standard deviation due to both sampling and analytical variability,

 α is the maximum acceptable probability that the true mean will not lie in the confidence interval (the confidence level is 1- α),

d is the width of the confidence interval,

 $t_{1-\alpha,df}$ is the value of the Student's t-distribution with df=n-1 degrees of freedom such that the proportion of the distribution less than t_1 . is $1-\alpha$.


Because *n* appears on both sides of the equation (on the right side it appears in the degrees of freedom of the t-statistic), the equation must be solved iteratively. VSP $^{\odot}$ Software does this automatically using the iteration scheme in Gilbert (1987, pg. 32).

The values of these inputs that result in the calculated number of sampling locations are:

Analyta n		Parameter			
Analyte	n	S	d	α	t _{1-α,df}
Analyte 1	85	36	6.5	5%	1.66388 ^a

This value is automatically calculated by VSP $\mbox{\sc Software}$ based upon the user defined value of α

The following figure is a graph representing the relationship between the width of the confidence interval and the number of samples. The blue dashed line illustrates the specified maximum desirable confidence interval width. Where this dashed line intersects the red curve is the number of samples calculated by VSP[©] Software.

Attachment 2 to Enclosure 1 to HEM-12-2

Input Parameters, Microshield^{®1} Software 7.02 Westinghouse Electric Company LLC (08-MSD-7.02-1424) (1 page)

	Concer	ntration ³
Radionuclide ²	pCi/g	μCi/cm ³
U-234	66	9.5E-05
U-238	12	1.9E-05
Pa-234 ⁴		3.1E-08
Pa-234m ⁴		1.9E-05
Th-234 ⁴		1.9E-05
U-235	2.8	4.3E-06
Th-231 ⁵		4.3E-06

Input Data Assessed Concentrations¹

1 Unit concentrations were used to derive (mrem) / (μ Ci/cm³) values which were in turn multiplied by the listed concentration values to arrive at exposure estimates.

2 Tc-99 not assess as it has no gamma emissions

3 Conversion from pCi/g to μ Ci/cm³ was based on the weighted average density of the materials as shipped

4 Pa-234, Pa-234m, and Th-234 are U-238 progeny.

5 Th-231 is a U-235 progeny.

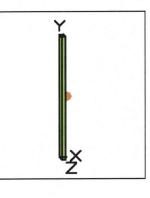
Case Summary Data^a

Job Category	Geometry		Dose facto R/hr / µCi/o		
Job Category	Geometry	U-234	U-235	U-238	
Gondola Surveyor	1 meter from gondola (9 ft x 4 ft x 60 ft), centerline – side, 5/16 inch iron shield	3.0E-03	2.2E+01	4.4E+00	
Excavator Operator	2 meter from gondola (9 ft x 4 ft x 60 ft) centerline – top, 1 inch iron shield)	1.0E-05	5.6E-01	6.1E-01	
Truck Surveyor	1 meter from truck bed (8 ft x 15 ft x 5 ft), centerline – front, 0.25 inch aluminum shield	7.8E-03	2.5E+01	4.0E+00	
Truck Driver	2 feet from truck bed (8 ft x 15 ft x 5 ft), centerline – front, 0.25 inch aluminum shield	9.1E-03	2.9E+01	4.6E+00	
Cell Operator	1 meter from slab source (1m x 2 m x 35 m) with 0.6 cm iron shield	3.6E-03	2.3E+01	4.1E+00	
Gondola Cleanout	1 foot from an infinite plane source of 0.5 inch thickness.	2.3E-01	3.1E+01	3.8E+00	
Transportatio n Worker	1 foot from gondola (9 ft x 4 ft x 60 ft), centerline – side, 5/16 inch iron shield	3.4E-03	2.7E+01	5.9E+00	
Stabilization Operator	Same as Excavator Operator				

a – Microshield® Software case files are contained in Exhibits A

¹MicroShield® is a registered trademark of Yale Security Inc., an ASSA ABLOY Group company

Attachment 3 to HEM-12-2


Case Files, Microshield®¹ Software 7.02 Westinghouse Electric Company LLC (08-MSD-7.02-1424)

(36 pages)

¹MicroShield® is a registered trademark of Yale Security Inc., an ASSA ABLOY Group company

We		croShield 7.02 c Company (08-MSD-7.02	2-1424)		
Date	By		Checked		
Filename	e	Run Date	Run Time	Duration	
CellSurface_U234_co	ncrete 2.ms7	January 8, 2012	2:50:51 AM	00:00:00	
	I	Project Info			
Case Title		Case 1			
Description		Case 1			
Geometry		13 - Rectangula	r Volume		

			Source Dime	nsions		
	Length 100.0 cm (3 ft 3.4 in)					
	Width		200.0	cm (6 ft 6.'	7 in)	
	Height		3.5e+3 c	em (114 ft 1	0.0 in)	
Dose Points						
A	A X Y				Z	
#1	200.6 cm (6 :	ft 7.0 in)	1.8e+3 cm (57	' ft 5.0 in)	100.0 0	cm (3 ft 3.4 in)
			Shields			
	Shield N	D	imension	Mate	rial	Density
	Source $7.00e+07 \text{ cm}^3$		Conc	rete	1.54	
	Shield 1 .6 cm		Iro	n	7.86	
Air Gap			Ai	r	0.00122	

Source Input: Grouping Method - Actual Photon Energies						
Nuclide	Ci	Bq	μCi/cm ³	Bq/cm ³		
Pa-234						
Pa-234m						
Th-231						
Th-234						
U-234	7.0002e+001	2.5901e+012	1.0000e+000	3.7000e+004		
U-235						
U-238						

Buildup: The material reference is Source Integration Parameters	
X Direction	10
Y Direction	20
Z Direction	20

Results						
Energy (MeV)	Activity (Photons/sec)	Fluence Rate MeV/cm ² /sec No Buildup		Exposure Rate mR/hr No Buildup	Exposure Rate mR/hr With Buildup	
0.013	2.720e+11	4.366e-126	1.484e-23	5.874e-127	1.996e-24	
0.0532	3.056e+09	1.650e-04	8.343e-04	3.925e-07	1.984e-06	
0.1214	1.037e+09	3.569e-01	2.275e+00	5.590e-04	3.563e-03	
Totals	2.761e+11	3.571e-01	2.275e+00	5.594e-04	3.565e-03	

	Westinghou	MicroShield se Electric Compa		02-1424)			
Da	te	By		Checked			
	Filename		Run Date Run Time Durat				
CellSurf	ace_U235_concrete	2.ms7 Jan	January 8, 2012 2:53:18 AM 00:00:0				
		Project In	fo				
Case	eTitle		Case 1				
Desc	ription		Case 1				
	metry		13 - Rectangula	r Volume			
	a			7	~ 1년 동네		
Lonoth		imensions					
Length Width		0.0 cm (3 ft 3.4 in) 0.0 cm (6 ft 6.7 in)		- Y			
Height		+3 cm (114 ft 10.0 in)	2)	-l i			
Ineight			1)	-			
	Dose	Points		-			
A X	0.501.) 10.10	Y	Z				
#1 200.6 cm (6	ft 7.0 in) 1.8e+3 cm	n (57 ft 5.0 m) 100.0) cm (3 ft 3.4 m)			
		elds] · · · ·			
Shield N	Dimension	Material	Density		l <u>y</u>		
Source	7.00e+07 cm ³		1.54		Ż		
Shield 1	.6 cm	Iron	7.86	-			
Air Gap		Air	0.00122				
	Source Inp	ut: Grouping Meth Number of Gro Lower Energy Cu Photons < 0.015: Library: G	ups: 25 toff: 0.015 Included				
Nuclide	Ci	Bq	μCi/o	cm ³	Bq/cm ³		
Pa-234							
Pa-234m							
Th-231	7.0002e+001	2.5901e+012	1.00006	e+000 3.7	/000e+004		
Th-234							
U-234 U-235	7.0002e+001	2.5901e+012	1.0000¢	1000 2.5	7000e+004		
	/ [[[]]/e+[][]]	/ 7901e+01 /					

Buildup: The material reference is Sou Integration Parameters	rce
X Direction	10
Y Direction	20
Z Direction	20
Results	

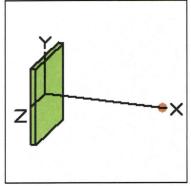
Energy (MeV)	Activity (Photons/sec)	MeV/cm ² /sec		mR/hr	Exposure Rate mR/hr With Buildup
0.015	2.639e+12	4.887e-125	1.660e-22	4.192e-126	1.424e-23
0.03	3.795e+11	3.869e-17	7.832e-17	3.835e-19	7.762e-19
0.06	1.231e+10	8.409e-03	4.934e-02	1.670e-05	9.801e-05
0.08	3.038e+11	8.776e+00	6.040e+01	1.389e-02	9.558e-02
0.1	2.707e+11	3.826e+01	2.605e+02	5.854e-02	3.985e-01
0.15	4.034e+11	2.749e+02	1.596e+03	4.526e-01	2.629e+00
0.2	1.598e+12	2.157e+03	1.103e+04	3.806e+00	1.947e+01
Totals	5.607e+12	2.478e+03	1.295e+04	4.331e+00	2.259e+01

West		roShield 7.02 Company (08-MSD-7.	02-1424)		
Date	By		Checked		
Filename	•	Run Date	Run Time	Duration	
CellSurface_U238_co	ncrete 2.ms7	January 8, 2012 2:54:51 AM 00		00:00:00	
	P	roject Info			
Case Title		Case 1			
Description		Case 1			
Geometry		13 - Rectangular Volume			

		Source Dime	nsions			
Length		100.0	cm (3 ft 3.	4 in)		
Width		200.0	cm (6 ft 6.	7 in)		l Y
Height		3.5e+3 cr	m (114 ft)	10.0 in)		
		Dose Poir	its			
A X		Y			Ζ	
#1 200.6 cm (6	ft 7.0 in)	1.8e+3 cm (57	' ft 5.0 in)	100.0 0	cm (3 ft 3.4 in)	
		Shields				
Shield N	D	imension	Mate	erial	Density	
Source	7.0	$0e+07 \text{ cm}^{3}$	Conc	rete	1.54	l ź
Shield 1		.6 cm	Irc	n	7.86	
Air Gap			A	r	0.00122	

Source Input: Grouping Method - Standard Indices Number of Groups: 25 Lower Energy Cutoff: 0.015 Photons < 0.015: Included Library: Grove						
Nuclide	Ci	Bq	μCi/cm ³	Bq/cm ³		
Pa-234	1.1200e-001	4.1441e+009	1.6000e-003	5.9200e+001		
Pa-234m	7.0002e+001	2.5901e+012	1.0000e+000	3.7000e+004		
Th-231						
Th-234	7.0002e+001	2.5901e+012	1.0000e+000	3.7000e+004		
U-234						
U-235						
U-238	7.0002e+001	2.5901e+012	1.0000e+000	3.7000e+004		

Buildup: The material reference is S Integration Parameters	Source
X Direction	10
Y Direction	20
Z Direction	20
Results	


Energy (MeV)	Activity (Photons/sec)	MeV/cm ² /sec		mR/hr	Exposure Rate mR/hr With Buildup
0.015	4.942e+11	9.153e-126	3.110e-23	7.851e-127	2.668e-24
0.04	5.072e+06	7.536e-12	2.405e-11	3.333e-14	1.064e-13
0.06	1.014e+11	6.927e-02	4.064e-01	1.376e-04	8.073e-04
0.08	3.682e+09	1.064e-01	7.320e-01	1.683e-04	1.158e-03
0.1	1.590e+11	2.247e+01	1.530e+02	3.438e-02	2.340e-01
0.15	1.307e+09	8.903e-01	5.170e+00	1.466e-03	8.514e-03
0.2	8.741e+08	1.179e+00	6.033e+00	2.082e-03	1.065e-02
0.3	3.010e+08	8.735e-01	3.738e+00	1.657e-03	7.090e-03
0.4	2.545e+08	1.213e+00	4.567e+00	2.363e-03	8.899e-03
0.5	3.779e+08	2.624e+00	8.958e+00	5.150e-03	1.758e-02
0.6	1.544e+09	1.455e+01	4.577e+01	2.839e-02	8.934e-02
0.8	8.599e+09	1.312e+02	3.656e+02	2.495e-01	6.954e-01
1.0	2.749e+10	6.101e+02	1.558e+03	1.125e+00	2.871e+00
1.5	5.799e+08	2.543e+01	5.608e+01	4.279e-02	9.436e-02
2.0	7.482e+07	5.269e+00	1.067e+01	8.148e-03	1.651e-02
Totals	7.997e+11	8.159e+02	2.219e+03	1.501e+00	4.056e+00

	Westi	nghouse			d 7.02 any (08-MSD	-7.02-	-1424)		
Date By			By	Checked					
gondola c	Filenan leanout U23		te 2.ms7		Run DateRun TimJanuary 8, 20122:56:48 Al				
				oject l					
(Case Title			ojecti		Case	2		
Description					Case				
	Geometry				16 -	Infini	ite Slab		
	C	D:							
Thicknes		e Dimens	1.27 cm (0.5 in)					
THICKNES			· · · · · · · · · · · · · · · · · · ·	0.5 m)			Ya		
		ose Point			7				
A 31.27 cm (\mathbf{Y}	0.0	Z cm (0.0 in)				
+1 31.27 cm ((0.0 in)	0.0	$\sin\left(0.0\mathrm{m}\right)$	7		•×	
		Shields				12			
Shield N	Dimensi		Materia		Density				
Source Air Gap	Infinite	; 	Concrete	9	1.54 0.00122				
All Gap			All		0.00122				
		input: Gr			d - Actual Ph	oton l			
Nuclide			μCi/cr	n ³			Bq/cm	3	
Pa-234									
Pa-234r Th-231									
Th-231 Th-234									
U-234			1.0000e+	-000			3.7000e+	004	
U-235			1.00000	000			5.700001		
U-238									
		Buildup	The mat	erial	reference is S	ource			
		zanaup.			rameters	Juice			
				Result					
					Fluence Rat	te Ex	posure Rate	Exposure Rat	
Energy (MeV)	Activity (Ph	otons/sec			MeV/cm ² /se	c	mR/hr	mR/hr	
			No Bu		With Buildu		o Buildup	With Buildup	
0.013	3.886e		1.653		1.675e+00	_	2.224e-01	2.253e-01	
0.0532	4.366e		1.624		1.628e+00		3.863e-03	3.872e-03	
0.1214	1.482e		1.928		1.928e+00		3.020e-03	3.019e-03	
Totals	3.945e	+03	5.205	e+00	5.231e+00		2.293e-01	2.322e-01	

Westin		hield 7.02 mpany (08-MSD-7.02	2-1424)	
Date	By	С	hecked	
Filenam	e	Run Date	Run Time	Duration
gondola_cleanout_U235	concrete 2.ms7	January 8, 2012	2:57:26 AM	00:00:00

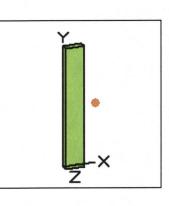
Project Info				
Case Title	Case 2			
Description	Case 2			
Geometry	16 - Infinite Slab			

		Sourc	e Din	nensions		
	Thickne	ess		1.27 cm (0.5 i	n)
		Do	ose Po	oints		
A	A X		Y			Ζ
#1	⁴ 1 31.27 cm (1 ft 0.3 in)		0.0 cm (0.0 in)		0.0 cm (0.0 in)	
			Shiel	ds		
5	Shield N Dimension		n	Material		Density
	Source	Infinite	Infinite		Concrete	
	Air Gap			Air		0.00122

Source Input: Grouping Method - Standard Indices Number of Groups: 25 Lower Energy Cutoff: 0.015 Photons < 0.015: Included Library: Grove				
Nuclide	μCi/cm ³	Bq/cm ³		
Pa-234	•			
Pa-234m				
Th-231	1.0000e+000	3.7000e+004		
Th-234				
U-234				
U-235	1.0000e+000	3.7000e+004		
U-238				

Buildup: The material reference is Source Integration Parameters

	Results							
Energy (MeV)	Activity (Photons/sec)	MeV/cm ² /sec			Exposure Rate mR/hr With Buildup			
0.015	3.769e+04	1.938e+01	1.964e+01	1.662e+00	1.685e+00			
0.03	5.421e+03	4.413e+01	5.083e+01	4.374e-01	5.037e-01			
0.06	1.758e+02	8.469e+00	1.434e+01	1.682e-02	2.847e-02			


0.08	4.340e+03	3.323e+02	6.032e+02	5.259e-01	9.546e-01
0.1	3.867e+03	4.021e+02	8.345e+02	6.151e-01	1.277e+00
0.15	5.762e+03	9.893e+02	2.316e+03	1.629e+00	3.814e+00
0.2	2.283e+04	5.509e+03	1.291e+04	9.723e+00	2.278e+01
Totals	8.009e+04	7.305e+03	1.675e+04	1.461e+01	3.104e+01

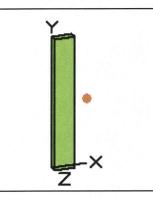
	Wes	tinghouse H	MicroS Electric Co			7 .02-14 2	24)	
Da	te	В	У	Checked				
gondola	Filena cleanout U2		e 2.ms7		Run Date uary 8, 201		Run Time :57:50 AN	
			Proie	ect Info				
	Case Title				(Case 2		
]	Description				(Case 2		
	Geometry				16 - I	nfinite	Slab	
	Sou	rce Dimens	ions					
Thickne	SS	1	.27 cm (0.5	in)				
	1	Dose Points						
	X	Y		Z				
1 31.27 cm	(1 ft 0.3 in)	0.0 cm	(0.0 in)	0.0 cm (0	0.0 in)			
		Shields				zl		+×
Shield N	Dimens		Material	De	nsity			
Source	Infini		Concrete		.47			
Air Gap	1111111		Air	_	0122			
	Sou	rce Input:				d Indic	es	
			Number of wer Energ					
			hotons < 0.					
		-		y: Grov				
Nuclid	le		μCi/cm ³				Bq/cm	3
Pa-23-	4		1.6000e-00	3		5.9200e+001		001
Pa-234	m		1.0000e+00	00			3.7000e+	004
Th-23								
Th-23			1.0000e+00	00			3.7000e+	004
U-234								
U-23			1 0000 100				2 7000	004
U-238	3		1.0000e+00	00			3.7000e+	004
		-	The mater			urce		
]	Integration	ı Param	eters	_		
				sults				
			Fluence F	Rate Flu	ence Rate			Exposure Rat
nergy (MeV)	Activity (P	hotons/sec)	Fluence F MeV/cm ²	Rate Flu /sec Me	V/cm ² /sec	m	R/hr	mR/hr
			Fluence F MeV/cm ² No Build	Rate Flu /sec Me lup Wit	V/cm²/sec th Buildup	m No E	R/hr Buildup	mR/hr With Buildu
0.015	7.060)e+03	Fluence F MeV/cm ² No Build 3.630e+	RateFlu/secMelupWit003.	V/cm ² /sec th Buildup 679e+00	m No E 3.11	R/hr Buildup 14e-01	mR/hr With Buildu 3.155e-01
nergy (MeV) 0.015 0.04 0.06	7.060		Fluence F MeV/cm ² No Build	RateFlu/secMeupWit003.031	V/cm²/sec th Buildup	m No E 3.11 6.30	R/hr Buildup	mR/hr With Buildu

Totals	1.142e+04	1.150e+03	1.947e+03	2.366e+00	3.772e+00
2.0	1.069e+00	3.872e+00	5.078e+00	5.987e-03	7.853e-03
1.5	8.285e+00	2.139e+01	2.967e+01	3.599e-02	4.992e-02
1.0	3.927e+02	6.275e+02	9.774e+02	1.157e+00	1.802e+00
0.8	1.228e+02	1.508e+02	2.510e+02	2.868e-01	4.773e-01
0.6	2.206e+01	1.929e+01	3.537e+01	3.765e-02	6.904e-02
0.5	5.398e+00	3.810e+00	7.394e+00	7.479e-03	1.451e-02
0.4	3.635e+00	1.974e+00	4.080e+00	3.847e-03	7.949e-03
0.3	4.299e+00	1.667e+00	3.703e+00	3.163e-03	7.023e-03
0.2	1.249e+01	3.013e+00	7.059e+00	5.318e-03	1.246e-02
0.15	1.866e+01	3.205e+00	7.502e+00	5.277e-03	1.235e-02
0.1	2.271e+03	2.361e+02	4.901e+02	3.613e-01	7.497e-01
0.08	5.260e+01	4.027e+00	7.310e+00	6.373e-03	1.157e-02

V	MicroShi Vestinghouse Electric Com		24)		
Date	By	By Checked			
Fil	ename	Run Date	Run Time	Duration	
gondola_excavation_	op_U234_concrete2.ms7	January 8, 2012	3:13:46 AM	00:00:00	
	Project	t Info			
Case Title		Case 1			
Description		Case 1			
Geometry		13 - Rectangular Vol	ume		

	Source	Dimen	sions			
Length	÷	274.32 cm (9 ft)				
Width		12	21.92 cm (4 ft	:)		
Height		1.8e+3 cm (60 ft)				
Dose Points						
Α	A X		Y		Ζ	
#1 476.86 cm	#1 476.86 cm (15 ft 7.7 in)		914.4 cm (30 ft)		60.96 cm (2 ft)	
	5	Shields				
Shield N	Dimensio	n	Materia		Density	
Source	6.12e+07 cm ³		Concrete		1.54	
Shield 1	2.54 cm		Iron		7.86	
Air Gap		8	Air		0.00122	

Source Input: Grouping Method - Actual Photon Energies							
Nuclide	Ci	Bq	μCi/cm ³	Bq/cm ³			
Pa-234							
Pa-234m							
Th-231							
Th-234							
U-234	6.1164e+001	2.2631e+012	1.0000e+000	3.7000e+004			
U-235							
U-238							


Buildup: The material reference is Shield 1 Integration Parameters				
X Direction	20			
Y Direction	20			
Z Direction	20			

	Results							
Energy (MeV)	Activity (Photons/sec)	Fluence Rate MeV/cm ² /sec No Buildup	Fluence Rate MeV/cm ² /sec With Buildup	Exposure Rate mR/hr No Buildup	Exposure Rate mR/hr With Buildup			
0.013	2.377e+11	0.000e+00	9.094e-24	0.000e+00	1.223e-24			
0.0532	2.670e+09	1.659e-15	2.404e-15	3.945e-18	5.718e-18			
0.1214	9.065e+08	2.271e-03	6.525e-03	3.556e-06	1.022e-05			
Totals	2.413e+11	2.271e-03	6.525e-03	3.556e-06	1.022e-05			

Date	By	Che	cked	
Filen	ame	Run Date	Run Time	Duration
gondola_excavation_op	dola_excavation_op_U235_concrete2.ms7		3:12:14 AM	00:00:01
	Project	: Info		
Case Title		Case 1		
Description		Case 1		
Geometry		13 - Rectangular Volume		

	Length 274.32 cm (9 ft)					
	Width 121.92 cm (4 ft)					
	Height	1.8e+3 cm (60 ft)				
Dose Points						
Α	X		Y	Ζ		
#1	476.86 cm (15 ft 7	7.7 in)	914.4 cm (30 ft)	60.96 cm (2 ft)		
Shields						

Shields					
Shield N	nield N Dimension Material		Density		
Source	6.12e+07 cm ³	Concrete	1.54		
Shield 1	2.54 cm	Iron	7.86		
Air Gap		Air	0.00122		

Lower Energy Cutoff: 0.015 Photons < 0.015: Included Library: Grove						
Nuclide	Ci	Bq	μCi/cm ³	Bq/cm ³		
Pa-234						
Pa-234m						
Th-231	6.1164e+001	2.2631e+012	1.0000e+000	3.7000e+004		
Th-234						
U-234						
U-235	6.1164e+001	2.2631e+012	1.0000e+000	3.7000e+004		
U-238						
	Buildup	: The material refere Integration Param				
	Х	I Direction		20		

	integration i arameters	
X Direction		20
	20	
Z Direction		20
	Results	

Energy (MeV)	Activity (Photons/sec)	MeV/cm ² /sec		mR/hr	Exposure Rate mR/hr With Buildup
0.015	2.306e+12	0.000e+00	1.018e-22	0.000e+00	8.730e-24
0.03	3.316e+11	4.339e-70	3.159e-23	4.300e-72	3.131e-25
0.06	1.075e+10	6.476e-11	1.020e-10	1.286e-13	2.026e-13
0.08	2.655e+11	4.930e-04	9.840e-04	7.802e-07	1.557e-06
0.1	2.365e+11	5.300e-02	1.295e-01	8.109e-05	1.981e-04
0.15	3.524e+11	4.577e+00	1.558e+01	7.536e-03	2.565e-02
0.2	1.397e+12	7.300e+01	3.053e+02	1.288e-01	5.388e-01
Totals	4.899e+12	7.763e+01	3.210e+02	1.365e-01	5.646e-01