## PMSTPCOL PEmails

From:
Sent:
To:
Cc:
Subject:
Attachments:

Tai, Tom
Tuesday, December 20, 2011 3:06 PM
Chakrabarti, Samir; Chakravorty, Manas
STPCOL
FW: Transmittal of Letter U7-C-NINA-NRC-110148
U7-C-NINA-NRC-110148.pdf

Samir, Manas,
Attached for your review is NINA's latest RAI response (hopefully final) addressing section cuts.
Regards
Tom Tai
DNRL/NRO
(301) 415-8484

Tom.Tai@NRC.GOV

From: Elton, Loree [mailto:leelton@STPEGS.COM]
Sent: Monday, December 19, 2011 5:07 PM
To: Casto, Chuck; Wunder, George; Eudy, Michael; Foster, Rocky; Joseph, Stacy; Tai, Tom
Subject: Transmittal of Letter U7-C-NINA-NRC-110148
Please find attached a courtesy copy of letter number U7-C-NINA-NRC-110148, which provides a supplemental response to NRC staff question 03.07.01-29 included in the Request for Additional Information (RAI) letter number 378 related to the Combined License Application (COLA) Part 2, Tier 2, Section 3.7 and a revised response to NRC Staff question included in RAI 03.07.02-32 letter number 381 related to the COLA Part 2, Tier 2, Section 3.7.

The official version of this correspondence will be placed in the mail. Please call John Price at 972-754-8221 if you have any questions concerning this letter.

## Loree Elton

Licensing, STP 3 \& 4
leelton@stpegs.com
361-972-4644

Hearing Identifier: SouthTexas34Public_EX Email Number: 3240

Mail Envelope Properties (0A64B42AAA8FD4418CE1EB5240A6FED160D846DB85)
Subject: FW: Transmittal of Letter U7-C-NINA-NRC-110148
Sent Date: $\quad$ 12/20/2011 3:06:00 PM
Received Date: $\quad$ 12/20/2011 3:06:04 PM
From: Tai, Tom

Created By: Tom.Tai@nrc.gov

## Recipients:

"STPCOL" [STP.COL@nrc.gov](mailto:STP.COL@nrc.gov)
Tracking Status: None
"Chakrabarti, Samir" [Samir.Chakrabarti@nrc.gov](mailto:Samir.Chakrabarti@nrc.gov)
Tracking Status: None
"Chakravorty, Manas" [Manas.Chakravorty@nrc.gov](mailto:Manas.Chakravorty@nrc.gov)
Tracking Status: None
Post Office: HQCLSTR02.nrc.gov

| Files | Size | Date \& Time |
| :--- | :--- | :--- |
| MESSAGE | 1177 | 12/20/2011 3:06:04 PM |
| U7-C-NINA-NRC-110148.pdf |  | 1125096 |

## Options

Priority:
Return Notification:
Standard
Reply Requested:
Sensitivity:
No
No
Expiration Date:
Recipients Received:

Nuclear Innovation North America LLC 4000 Avenue F, Suite A Bay City, Texas 77414

December 19, 2011
U7-C-NINA-NRC-110148
U. S. Nuclear Regulatory Commission

Attention: Document Control Desk
One White Flint North
11555 Rockville Pike
Rockville MD 20852-2738

South Texas Project

Units 3 and 4
Docket Nos. 52-012 and 52-013
Revised Response to Request for Additional Information
Attachment 1 provides a supplemental response to NRC staff question 03.07.01-29 included in the Request for Additional Information (RAI) letter number 378 related to the Combined License Application (COLA) Part 2, Tier 2, Section 3.7. During the audit of September 27-30, 2011, the NRC Staff requested that Nuclear Innovation North America LLC (NINA) provide additional information to support the review of the COLA pertaining to the Benchmark and Mesh Refinement studies performed for the Ultimate Heat Sink/Reactor Service Water Pump House.

Attachment 2 provides a revised response to NRC Staff question included in RAI 03.07.02-32 letter number 381 related to the COLA Part 2, Tier 2, Section 3.7. During the audit of September 27-30, 2011 and subsequent phone conversations, the NRC Staff requested that NINA provide additional information to support the review of the COLA pertaining to Seismic II/I Interactions.

This submittal completes the actions requested by the NRC Staff.
Where there are COLA markups, they will be made at the first routine COLA update following NRC acceptance of the RAI response.

There are no commitments in this letter.
If you have any questions regarding these responses, please contact me at (361) 972-7136 or Bill Mookhoek at (361) 972-7274.

I declare under penalty of perjury that the foregoing is true and correct.
Executed on $12 / 19 / 10$

jep
Attachments:

1. RAI 03.07.01-29, Supplement 2
2. RAI 03.07.02-32, Revision 1

| cc: w/o attachment except* <br> (paper copy) |  |
| :--- | :--- |
| (electronic copy) |  |
| Director, Office of New Reactors |  |
| U. S. Nuclear Regulatory Commission <br> One White Flint North | *George F. Wunder |
| 11555 Rockville Pike | *Tom Tai |
| Rockville, MD 20852-2738 | Charles Casto |
| Regional Administrator, Region IV | U. S. Nuclear Regulatory Commission |
| U. S. Nuclear Regulatory Commission | Jamey Seely |
| 1600 E. Lamar Blvd | Nuclear Innovation North America |
| Arlington, TX 76011-4511 |  |
|  | Peter G. Nemeth |
| Kathy C. Perkins, RN, MBA | Crain, Caton and James, P.C. |
| Assistant Commissioner | Richard Peña |
| Division for Regulatory Services | Kevin Pollo |
| Texas Department of State Health Services | L. D. Blaylock |
| P. O. Box 149347 | CPS Energy |
| Austin, Texas 78714-9347 |  |
| Alice Hamilton Rogers, P.E. |  |
| Inspection Unit Manager |  |
| Texas Department of State Health Services |  |
| P. O. Box 149347 |  |
| Austin, Texas 78714-9347 |  |
| *Steven P. Frantz, Esquire |  |
| A. H. Gutterman, Esquire |  |
| Morgan, Lewis \& Bockius LLP |  |
| 1111 Pennsylvania Ave. NW |  |
| Washington D.C. 20004 |  |
| *Tom Tai |  |
| Two White Flint North |  |
| 11545 Rockville Pike |  |
| Rockville, MD 20852 |  |

## RAI 03.07.01-29, Supplement 2

## QUESTION:

The Defense Nuclear Facilities Safety Board (DNFSB) has identified a technical issue in SASSI that when subtraction method is used to analyze embedded structures, the results may be non-conservative. Because the subtraction method has been used for the STP Units $3 \& 4$ SSI/SSSI analyses, NINA is requested to demonstrate the acceptability of the subtraction method and the results, or provide a plan and schedule to ensure that the SSCs are designed to meet the requirements of GDC 2. Therefore, the applicant is requested to address the following:

1. For all STP Units $3 \& 4$ Seismic Category I structures, compare the In-Structure Response Spectra (ISRS), structural loads, and any other design response quantities developed by using the subtraction method with those using the direct method or modified subtraction method and evaluate the differences.
2. Demonstrate and justify that the differences identified in Item 1 either have no impact on the design of Seismic Category I structures, or revise the design to address the differences.
3. If the modified subtraction method is used to validate the subtraction method, provide a validation program for the modified subtraction method.
4. Provide FSAR mark-up, if any, in the response to document actions taken to address the resolution of the DNFSB's issues with SASSI versions used by STP Units 3\&4 analyses.

The staff needs this information to ensure that the STP design basis loads and ISRS will envelop the corresponding ISRS generated from either the direct method or the modified subtraction method.

## SUPPLEMENTAL RESPONSE:

The Supplement 1, Revision 1 response to this RAI was submitted with Nuclear Innovation North America LLC (NINA) letter U7-C-NINA-NRC-110143, dated November 28, 2011. This second supplement provides the results of Benchmark and Mesh Refinement studies for the Ultimate Heat Sink (UHS)/Reactor Service Water (RSW) Pump House section cut forces that were discussed in Section D.1.4 of the Supplement 1, Revision 1 response.

When addressing the adequacy of the walls and slabs of the UHS/RSW Pump House for the cumulative effect of change in the maximum accelerations due to use of Modified Subtraction Method (MSM) of analysis, for 19 section cuts of the UHS/RSW Pump House, the percent (\%) difference in the soil structure interaction (SSI) forces from Subtraction Method (SM) and MSM analyses were determined and compared to the available margin in the section cut forces due to use of conservative equivalent static method. In order to provide additional confidence in section cut forces obtained from the SSI analysis, two additional confirmatory studies as described below were performed.

## Benchmark Study:

The purpose of the benchmark study was to show that the section cut forces from the SSI analysis using SASSI2000 program were accurate or conservative. As noted in the Supplement 1, Revision 1 response, in order to benchmark the calculation of section cut forces from SASSI2000, a dynamic analysis performed in SASSI2000 was repeated using the SAP2000 program with an identical input and nearly identical model. The structural mesh of the models were identical to the so-called coarse mesh (also referred to as original mesh) model used for the SSI analysis of the UHS/RSW Pump House. The SAP2000 model was run as fixed base. Since fixed base is not an option for SASSI2000, fixed base analysis in SASSI2000 was simulated by modifying the SSI model as follows:

- The soil under the UHS basin, from bottom of the UHS basin mudmat down to the bottom of the RSW Pump House mudmat, was replaced with concrete using massless solid elements, see Figure 03.07.01-29 S2.1. In order to avoid fixing the RSW Pump House south wall, as shown in Figure 03.07.01-29 S2.2 the massless concrete elements were not connected to the RSW Pump House south wall.
- The grade elevation was set at the bottom of the RSW Pump House mudmat.
- The soil properties below the grade (i.e. bottom of Pump House) were modified to represent a rigid base through the use of high shear wave velocity of $20000 \mathrm{ft} / \mathrm{sec}$.

The SAP2000 model was identical to the SASSI2000 model that is shown in Figure 03.07.01-29
S2.1 except for the absence of the below grade soil. Nodes identified as the interaction nodes in the SASSI2000 analysis were fixed in the SAP2000 model. The SAP2000 analysis was performed as a linear modal time history analysis utilizing Ritz modal analysis considering 1000 modes. The input ground motions were the site-specific Safe Shutdown Earthquake (SSE), the results from the three seismic excitations were combined using square root of the sum of the squares (SRSS), and only the full basin case was considered.

Table 03.07.01-29 S2.1 provides the comparison of the section cut forces for the 19 section cuts from the SASSI2000 and SAP2000 fixed base analyses. Based on this comparison, the following are noted:

1. In great majority of cases (88 out of 95 force components), the SASSI2000 results are higher than the corresponding SAP2000 results. In these cases, for large force components, the SASSI2000 results are within $15 \%$ of those from SAP2000. For relatively small force components, in some cases the percentage difference is higher.
2. For 7 out of the 95 force components, the SAP2000 results are higher. For 5 of these 7 cases the SASSI2000 results are within $6 \%$ of the SAP2000 results. For the remaining two cases (namely out-of-plane moments for Sections 68 and 70), the difference of $15 \%$ and $24 \%$ are for relatively small moments of 273 kip- ft and 114 kip-ft, respectively.

It should be noted that although every attempt is made to make the SASSI2000 and SAP2000 models identical, the models are not quite identical due to presence of below grade soil in the SASSI2000 model. Also note that the SASSI2000 analysis is based on frequency domain analysis
and the SAP2000 analysis is based on linear modal time history analysis. Due to these differences, minor differences between the results from the two analyses are expected with higher percentage differences for the force components with relatively low values. Considering this and the comparison results discussed above, it is concluded the section cut forces from the SASSI2000 analysis are conservative and reliable.

## Mesh Refinement Study:

The MSM analysis of the UHS/RSW Pump House was performed using the original mesh (also called coarse mesh) that was used in the SM analysis. To examine the impact of mesh refinement on the SSI section cut forces, the fixed base SSI model described in the benchmark study (see Figures 03.07.01-29 S2.1 and 03.07.01-29 S2.2) was refined to best approximate the more refined mesh used in the SAP2000 design model using the equivalent static method. The SSI fixed base model with the refined mesh is shown in Figures 03.07.01-29 S2.3 and 03.07.01-29 S2.4.

The fixed base SSI models with the original mesh and refined mesh were both analyzed for the site-specific SSE ground motions considering both the full and empty basin cases and the results from the three seismic excitations were combined using SRSS to determine section cut forces along the 19 section cuts. Tables 03.07.01-29 S2.2 and 03.07.01-29 S 2.3 provide comparison of the section cut forces for the full and empty basin cases, respectively. These comparisons show that in majority of the cases the section cut forces from the two meshes are with $\pm 10 \%$, however there are some cases with higher percent (\%) differences.

In order to account for the difference in the section cut forces due to use of refined SSI mesh, the percent (\%) difference in the SSI section cut forces from the MSM analysis were increased by the percent (\%) difference in the section cut forces due to use of refined mesh to obtain the total increase in the section cut forces due to use of MSM prior to comparing them to the available margins in the design section cut forces due to use of conservative equivalent static method. Tables 03.07.01-29 S2.4 and 03.07.01-29 S2.5 provide the results of this comparison for the full and empty basin cases, respectively. Note that in these comparisons, no credit was taken for any reduction in the section cut forces due to use of MSM analysis and/or refined mesh. Also note that Tables 03.07.01-29 S2.4 and 03.07.01-29 S2.5 of this supplemental response supersede Tables 03.07.01-29 S1.16 and 03.07.01-29 S1.17 provided in Supplement 1, Revision 1 of this response.

Based on the comparisons presented in Tables 03.07.01-29 S2.4 and 03.07.01-29 S2.5, the following are concluded:

- In the majority of the cases, the individual force components from the Modified Subtraction Method of analysis along a section cut are lower than the respective force components from the Subtraction Method of analysis.
- With the exception of one case (discussed in the following bullet), for all those cases where an individual force component from the Modified Subtraction Method of analysis along a
section cut exceeds the corresponding force from the Subtraction Method of analysis, the increase is bounded by the available margin in the design forces due to use of conservative equivalent static method.
- For section cut 61 of the full basin case, the percent (\%) increase in the in-plane moment is $58.3 \%$. This exceeds the $57 \%$ available margin in the design in-plane moment. This difference of $1.3 \%$ is of no consequence for the following reasons:

1. This deficit is only applicable to the in-plane moment. For the remaining force components (i.e. axial force, in-plane shear, out-of-plane shear, and out-of-plane moment), the Modified Subtraction Method yields lower force components.
2. The design of wall reinforcement is a function of four force components, namely axial force, in-plane shear, in-plane moment, and out-of-plane moment. The minimum margins for the axial force, in-plane shear and out-of-plane moment used for the design are $60 \%, 124 \%$, and $134 \%$, respectively.
3. The available margins noted in these tables are conservative because they are only based on the applied loads and do not consider any additional margin based on provided reinforcement vs. calculated required reinforcement. Generally, provided reinforcement is about 5 to $10 \%$ more than the calculated required reinforcement.

Table 03.07.01-29 S2.6 provides one additional comparison for the UHS/RSW Pump House full basin case for which the benchmark study was performed. This comparison is similar to the comparison in Table 03.07.01-29 S2.4 except the section cut forces are further modified by an additional factor to reflect the results of benchmark study. Where the SAP2000 results were higher than the SASSI2000, the section cut forces are increased by the percentage difference. The results of this comparison are similar to those shown in Table 03.07.01-29 S2.4 and the above observations noted for Tables 03.07.01-29 S2.4 and 03.07.01-29 S2.5 remain unchanged.

Based on the above and the evaluation results for the UHS basin beams and columns discussed in Section D.1.4 of the Supplement 1, Revision 1 response, all of the UHS/RSW Pump House basin beams, basin columns, wall panels and slabs that were designed based on the SSI analysis results using the Subtraction Method of analysis are adequate for the resulting forces due to use of the Modified Subtraction Method of analysis.

No COLA revisions are required as a result of this response.
Table 03．07．01－29 S2．1：Comparison of Section Cut Forces from SASSI2000 and SAP2000－Benchmark Study （UHS／RSW Pump House with Full Basin，Simulated Fixed Base Condition）

|  |  |  | 高 <br> $\stackrel{\text { 号 }}{\text { 弚 }}$ <br> 高 <br>  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 高 <br>  <br> ذ＇ <br>  |  <br>  <br>  <br>  <br>  <br>  |
|  | \％Change（SASSI2000／SAP2000） |  |  |  <br>  <br>  <br>  <br>  |
|  |  |  |  |  |

RAI 03.07.01-29, Supplement 2
U7-C-NINA-NRC-110148
Attachment 1
Page 6 of 14
Table 03.07.01-29 S2.2: Comparison of SASSI2000 Section Cut Forces - Refined Mesh Study

|  |  |  |  |  <br>  <br>  <br>  <br>  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  <br>  <br>  <br>  <br>  <br>  <br>  |
|  |  |  |  |  <br>  <br>  <br>  <br>  |
|  |  |  |  |  |

RAI 03.07.01-29, Supplement 2


|  |  |  | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | $\begin{gathered} \circ \\ \stackrel{o}{q} \\ \hline \end{gathered}$ | $\stackrel{\circ}{\infty} \underset{\sim}{\circ}$ | 呙 | $\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{0}{6} \end{aligned}$ | $\begin{gathered} \circ \\ \stackrel{0}{e} \\ \stackrel{e}{2} \end{gathered}$ | $\stackrel{\circ}{\infty}$ | $\begin{aligned} & \circ \\ & \stackrel{\circ}{i} \end{aligned}$ | $\stackrel{\circ}{\stackrel{i}{\tilde{0}}} \mid$ | $\stackrel{0}{\dot{\vdots}}$ | $\stackrel{0}{i}$ | $\stackrel{\circ}{\infty}$ | $\stackrel{\aleph}{\circ}$ | $\stackrel{\substack{\mathrm{C}}}{\stackrel{c}{0}}$ | $\stackrel{\circ}{\circ}$ | $\left.\begin{aligned} & 0 \\ & \stackrel{0}{\mathrm{~N}} \end{aligned} \right\rvert\,$ | $\begin{aligned} & \circ \\ & \stackrel{0}{\circ} \end{aligned}$ | ＋ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\stackrel{-}{-}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\sim}{i}$ | $\stackrel{7}{+}$ | $\bigcirc$ | ¢ | $\bigcirc$ | $\stackrel{\sim}{\sim}$ | $\bigcirc$ | $\stackrel{9}{6}$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\square}{-}$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\sim}{i}$ | ¢ | $\stackrel{\text { M }}{\sim}$ | ¢ |
|  |  |  <br>  <br>  | $\stackrel{\substack{0 \\-\\ \hline}}{ }$ | $\stackrel{N}{0}$ | $\stackrel{\infty}{0}$ | $\stackrel{寸}{\substack{~}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{0}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\underset{\sim}{\mathrm{N}}}{\underset{\sim}{2}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{6}$ | $\stackrel{8}{\circ}$ | $\stackrel{8}{8}$ | $\stackrel{\stackrel{\circ}{\mathrm{O}}}{\underset{\sim}{2}}$ | $\stackrel{\hat{o}}{\stackrel{\circ}{c}}$ | $\stackrel{\text { N}}{\stackrel{+}{+}}$ |  |
|  |  |  <br>  <br>  | $\stackrel{O}{0}$ | $\stackrel{\circ}{0}$ | $\begin{array}{\|c} \hline 8 \\ - \end{array}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{8}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{8}{8}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\square}$ | $\stackrel{\mathrm{N}}{\stackrel{\mathrm{O}}{+}}$ | $\stackrel{8}{\circ}$ | $\stackrel{8}{8}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\square}$ |  |
|  |  |  | $\stackrel{\circ}{\stackrel{\circ}{0}}$ | $\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \end{aligned}$ | $\stackrel{\circ}{\circ} \mid$ | $\stackrel{\circ}{\stackrel{m}{7}}$ | $\stackrel{0}{\dot{N}}$ | $\stackrel{\circ}{ふ}$ | $\stackrel{0}{i}$ | $\stackrel{\circ}{\dot{\sim}} \mid$ | $\begin{array}{\|c\|} \hline 0 \\ \dot{\circ} \end{array}$ | $\stackrel{\circ}{\dot{\circ}}$ | $\stackrel{\circ}{9}$ | $\stackrel{\stackrel{\mathrm{c}}{\mathrm{c}}}{\stackrel{1}{2}}$ | $\stackrel{\circ}{\stackrel{\circ}{\infty}} \stackrel{\substack{0}}{ }$ | $\begin{aligned} & 0 \\ & 0 \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{\circ}{寸} \end{aligned}$ | $\stackrel{O}{\stackrel{O}{\mathrm{f}}}$ | $\begin{gathered} 0 \\ \hat{\infty} \\ \hat{i} \end{gathered}$ | ＋ |  |
|  |  |  | $\bigcirc$ | 「 | $\bigcirc$ | \％ | $\hat{\hat{N}}$ | へ－ | $\stackrel{N}{\mathscr{O}}$ | $\bigcirc$ | ～ | $\underset{\sim}{\infty}$ | $\stackrel{\sim}{\text { ¢ }}$ | $\stackrel{O}{\square}$ | $\stackrel{\circ}{\dot{N}}$ | $\stackrel{0}{0}$ | $\stackrel{\text { íd }}{ }$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\sim}{\sim}$ | $\bigcirc$ |
|  |  |  <br>  <br>  | $\stackrel{\circ}{\circ}$ |  | $\stackrel{\circ}{\circ}$ | $\stackrel{\hat{o}}{\substack{0}}$ | $\stackrel{\circ}{6}$ | $\stackrel{\hat{0}}{\stackrel{M}{C}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\underset{\sim}{\infty}}{\underset{\sim}{f}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{7}$ | $\stackrel{\circ}{+}$ | $\stackrel{8}{6}$ | $\underset{\substack{\text { O}\\}}{ }$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{6}$ |  |
|  |  |  <br>  <br>  | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{-6}$ | $\stackrel{8}{8}$ | $\stackrel{0}{\circ}$ | $\stackrel{N}{\hat{N}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\stackrel{N}{N}}{\stackrel{\sim}{6}}$ | $\stackrel{8}{8}$ | $\underset{\sim}{\tilde{o}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{0}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\stackrel{\circ}{\underset{~}{2}}}{ }$ | $\stackrel{\curvearrowleft}{\underset{~}{c}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{8}{\square}$ | $\stackrel{0}{6}$ |  |
| EMPTY BASIN CONDITION |  | ISS＇s＾u¢！ | $\stackrel{0}{\bar{\circ}}$ | $\stackrel{\circ}{\dot{\alpha}} \mid$ | $\stackrel{0}{i} \mid$ | $\stackrel{0}{\dot{W}} \underset{\substack{0}}{ }$ | $\begin{aligned} & \circ \\ & \stackrel{i}{0} \\ & 0 \end{aligned}$ | $\begin{array}{\|c\|} \stackrel{0}{\dot{j}} \end{array}$ | $\stackrel{\circ}{\dot{~}}$ | $\begin{aligned} & \stackrel{0}{m} \\ & \underset{c}{\mid} \end{aligned}$ | $\begin{array}{r} \circ \\ \stackrel{0}{d} \\ \hline \end{array}$ | $\stackrel{\circ}{\mathrm{j}}$ | $\stackrel{0}{\infty}$ | $\stackrel{\stackrel{i}{0}}{\stackrel{0}{0}}$ | $\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline \end{array}$ | $\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \stackrel{N}{N} \end{aligned}$ | $\begin{aligned} & 0 \\ & \frac{0}{6} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \stackrel{\rightharpoonup}{\grave{y}} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | $$ |  |
|  |  |  | $\bigcirc$ | $\stackrel{\infty}{+}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\stackrel{\infty}{\sim}$ | $\bigcirc$ | へ | $\bigcirc$ | $\overline{\mathrm{i}}$ | $\stackrel{\circ}{+}$ | $\bigcirc$ | $\bigcirc$ | $\underset{\sim}{\dot{N}} \mid$ | $\bigcirc$ | $\stackrel{\text { ヘ }}{\sim}$ | $\bigcirc$ |
|  |  |  <br>  <br>  | $\stackrel{8}{-}$ | $\stackrel{\circ}{\circ}$ | $\begin{array}{\|c} \hline \stackrel{\rightharpoonup}{-} \\ - \end{array}$ | $\stackrel{\circ}{0}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\infty}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\hat{0}}{\substack{-}}$ | $\begin{aligned} & \circ \\ & \hline- \\ & \hline \end{aligned}$ | $\stackrel{\bar{y}}{\stackrel{\rightharpoonup}{c}}$ | $\stackrel{\circ}{\dot{\circ}} \underset{\stackrel{1}{\mid}}{ }$ | $\stackrel{8}{8}$ | $\stackrel{\circ}{\circ}$ | $\underset{\sim}{\underset{\sim}{2}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{N}{N}$ |  |
|  |  |  <br>  <br>  | $\stackrel{\circ}{\circ}$ | $\stackrel{\infty}{\stackrel{\infty}{\vdots}}$ | $\begin{array}{\|c} \hline \stackrel{\rightharpoonup}{+} \\ - \end{array}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\begin{array}{\|} \hline 8 \\ \hline \end{array}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{8}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |  |
|  | $\left\|\begin{array}{c} \frac{c}{0} \\ \stackrel{0}{i} \\ \dot{c} \end{array}\right\|$ |  | $\stackrel{0}{\mathrm{~N}}$ | $\stackrel{0}{\circ}$ | $\stackrel{0}{n}$ | $\stackrel{\mathrm{i}}{\mathrm{~N}} \mid$ | $\stackrel{c}{⿳ 亠 丷 ⿵ 冂 ⿱ 八 乂 寸 ~}$ | $\mid$ | $\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$ | $\begin{array}{\|c\|} \hline 0 \\ \dot{8} \end{array}$ | $\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & \dot{~} \\ & \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ \dot{\infty} \end{array}$ | $\stackrel{0}{\dot{\alpha}}$ | $\begin{aligned} & 0 \\ & \stackrel{Q}{\circ} \end{aligned}$ | $\stackrel{\circ}{\dot{N}}$ | $\stackrel{0}{\mathrm{C}}$ | $\begin{aligned} & \circ \\ & \dot{q} \end{aligned}$ | $\stackrel{\circ}{\dot{\circ}}$ | $\stackrel{\circ}{\stackrel{\circ}{\sim}}$ | ¢ |
|  |  |  | ${ }_{\substack{0}}$ | خָ | $\stackrel{\infty}{+}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\square}{\square}$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\mathrm{m}}{\sim}$ | $\bigcirc$ | $\stackrel{\bullet}{+}$ | $\stackrel{\circ}{\circ}$ | $\bigcirc$ | $\stackrel{\circ}{\circ}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\square}{\circ}$ |
|  |  |  <br>  <br>  | $\stackrel{\hat{\circ}}{\stackrel{\circ}{C}}$ | $\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{ }$ | $\stackrel{\infty}{\stackrel{\infty}{C}} \stackrel{+}{\mid}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\begin{array}{\|c} \hline-6 \\ - \end{array}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\infty}{0}$ | $\begin{aligned} & \circ \\ & \hline \\ & \hline \end{aligned}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{6}$ | $\stackrel{\circ}{8}$ | $\begin{aligned} & \circ \\ & \hline \\ & \hline \end{aligned}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\square}$ |  |
|  |  |  <br>  <br>  | $\stackrel{\circ}{\circ}$ | $\begin{array}{\|c} \hline-6 \\ - \end{array}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{-}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{0}{\vdots}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\begin{array}{r} \circ \\ \hline 8 \\ \hline \end{array}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{0}{0}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\square}$ |  |
|  |  |  | $\begin{gathered} \stackrel{\sim}{\dot{N}} \end{gathered}$ | $\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & \dot{\circ} \end{aligned}$ | $\stackrel{\circ}{\dot{\circ}}$ | $\stackrel{\circ}{\infty} \mid$ | $\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{1}{2} \end{aligned}$ | $\stackrel{\circ}{6}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\dot{~}} \\ & \mid \end{aligned}$ | $\begin{array}{\|c\|} \hline 8 \\ 8 \end{array}$ | $\left\lvert\, \begin{gathered} 0 \\ \stackrel{0}{c} \\ \stackrel{n}{2} \end{gathered}\right.$ | $\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{ }$ | $\begin{gathered} 0 \\ \dot{d} \\ \dot{d} \end{gathered}$ | $\stackrel{\Gamma}{\mathrm{m}}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\stackrel{\circ}{6}$ | $\begin{aligned} & 0 \\ & \stackrel{0}{\circ} \end{aligned}$ | $\begin{gathered} \stackrel{\circ}{6} \\ \stackrel{6}{6} \end{gathered}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{-}{-}$ |
|  |  |  | $\bigcirc$ | $\stackrel{\sim}{N}$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\sim}{\text { c }}$ | $\bigcirc$ | $\stackrel{\sim}{\mathrm{N}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\sim}{\mathrm{i}}$ | $\bigcirc$ | ㅅ． | N | $\stackrel{\square}{-}$ | $\stackrel{\text { ¢ }}{+}$ | $\stackrel{\circ}{\circ}$ | $\hat{O}$ | $\stackrel{-}{-}$ | $\bigcirc$ | $\bigcirc$ |
|  |  |  <br>  <br>  | $\stackrel{8}{\circ}$ | $\stackrel{\infty}{\vdots}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{-}$ | $\stackrel{\circ}{+}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{0}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |  | $\stackrel{\underset{\Delta}{\mathrm{g}}}{\stackrel{1}{2}}$ | $\stackrel{\square}{\square}$ |  | $\stackrel{\circ}{8}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |  |
|  |  |  <br>  <br>  | $\stackrel{\circ}{\circ}$ | $\underset{\sim}{\underset{O}{+}}$ | $\begin{array}{\|c} \hline \stackrel{O}{+} \\ - \end{array}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\sim}{0}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\text { N}}{\substack{\text { a }}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{0}{0}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\text { Nor }}{\substack{\text {－} \\- \\ \hline}}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\square}$ |  | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\circ}$ |
|  |  |  | $\stackrel{\stackrel{t}{0}}{\stackrel{1}{>}}$ | $\stackrel{\stackrel{\rightharpoonup}{0}}{>}$ | $\stackrel{\stackrel{1}{0}}{\gg}$ | $\stackrel{\stackrel{\rightharpoonup}{0}}{>}$ | $\begin{array}{\|} \stackrel{N}{\hat{N}} \\ \stackrel{\rightharpoonup}{\mathrm{a}} \end{array}$ | $\stackrel{\stackrel{4}{0}}{\gg}$ | $\begin{aligned} & \stackrel{N}{\grave{L}} \\ & \stackrel{\rightharpoonup}{\mathbf{a}} \end{aligned}$ | $\stackrel{\stackrel{⿺}{0}}{\stackrel{1}{>}}$ | $\begin{array}{\|l\|} \hline N \\ \vdots \\ \vdots \\ \text { I } \end{array}$ | $\stackrel{\stackrel{t}{0}}{\stackrel{1}{2}}$ | $\begin{aligned} & \stackrel{N}{\mathbf{0}} \\ & \stackrel{0}{\mathbf{1}} \end{aligned}$ | $\stackrel{\stackrel{t}{5}}{8}$ | $\begin{array}{r} \text { N } \\ \stackrel{\rightharpoonup}{\mathbf{1}} \end{array}$ | $\stackrel{\stackrel{L}{5}}{\stackrel{1}{5}}$ | $\begin{aligned} & \stackrel{N}{\mathbf{0}} \\ & \stackrel{i}{1} \end{aligned}$ | $\stackrel{\stackrel{\rightharpoonup}{0}}{\gg}$ | － | $\stackrel{\stackrel{5}{5}}{>}$ | 늘 |
|  |  |  |  | $\text { Cooling Tower NS Wall Panel } 3$ |  | Basin North Wall Panel 5 |  |  | Basin South Wall Panel 5 |  |  | Basin East Buttress 1 | $\text { Basin East Buttress } 1$ |  |  |  |  |  |  |  |  |
|  |  | 䔍 | 号 | $\%$ | is | $\stackrel{\circ}{\circ}$ | 앙 | 8 | $\bar{\square}$ | § | ¢ | ¢ | $\stackrel{6}{6}$ | ® | $\stackrel{\text { ¢ }}{ }$ | ® | 8 | ？ | 「 | N | ～ |

RAI 03.07.01-29, Supplement 2



Figure 03.07.01-29 S2.1: Isometric View of the Fixed Base SSI Model of UHS/RSW Pump House - Using Original SSI Mesh


Figure 03.07.01-29 S2.2: Detail of Connectivity Near Stiff Concrete Fill and RSW Pump House (Fixed Base SSI Model of UHS/RSW Pump House - Using Original SSI Mesh)


Figure 03.07.01-29 S2.3: Isometric View of the Fixed Base SSI Model of UHS/RSW Pump House - Using Refined SSI Mesh


Figure 03.07.01-29 S2.4: Detail of Connectivity Near Stiff Concrete Fill and RSW Pump House (Fixed Base SSI Model of UHS/RSW Pump House - Using Refined SSI Mesh)

## RAI 03.07.02-32, Revision 1

## QUESTION:

RAI for Interaction of Non-Seismic Category I Structures, Systems and Components with Seismic Category I Structures, Systems and Components

In FSAR Section 3.7.2.8, the applicant stated that the non-category I structures that can interact with seismic category I structures include the turbine building (TB), radwaste building (RWB), service building (SB), control building annex (CBA), and the stack on reactor building roof. The applicant also provided the seismic input motions for design of the above five non-category I structures and included the sliding and overturning factors of safety under site-specific SSE for TB, RWB, SB, and CBA. The applicant further stated that for each non-category I structure, either: (1) it is determined that the collapse of the non-category I structure will not cause the noncategory I structure to strike a category I structure; or (2) the non-category I structure will be analyzed and designed to prevent its failure under SSE conditions in a manner such that the margin of safety of the structure is equivalent to that of seismic category I structures. The above description for analysis and design of non-category I structures included in the FSAR only states the guidance provided in SRP 3.7.2 for analysis and design of these structures, and does not provide any information for review by the staff if analysis and design of these structures meet the guidance provided in SRP 3.7.2. Further, the FSAR does not clearly describe how seismic demand and restoring forces were determined for calculation of sliding and overturning factors of safety. Therefore, in order for the staff to conclude that there is no potential for any unacceptable interaction between non-category I structures and seismic category I structures during an SSE, and to address the COL action stated in Section 3.7.5.4 of ABWR DCD, the applicant is requested to provide the following information, and update the FSAR, as necessary:

1. Clearly describe in the FSAR the criterion used to determine that collapse of a non-category I structure will not cause the non-category I structure to strike a category I structure. Also, clarify in the FSAR that non-category I structures that are not identified in the FSAR as structures that can interact with category I structures, meet this criterion.
2. Describe in the FSAR the analysis and design of each non-category I structure that can interact with category I structures, to demonstrate that it is analyzed and designed to prevent its failure under SSE conditions in a manner such that the margin of safety of the structure is equivalent to that of seismic category I structures. Also, include site-specific ITAAC for each structure to confirm that the as-built structure is analyzed and designed as described in the FSAR.
3. For each non-category I structure, describe in the FSAR the stability evaluation procedure including how seismic demand and restoring forces for stability evaluation are determined.

## REVISED RESPONSE:

The original response to this RAI was submitted with NINA letter U7-C-NINA-NRC-110114, dated August 30, 2011. This revised response is being submitted based on discussions with NRC during the audit performed during the week of September 26, 2011, and further discussions with NRC during the weekly telecons. The revisions to the original response are marked by revision bars.

This response also includes the response to the following requests by the NRC staff on the December 7, 2011 weekly phone call:

- Provide seismic input motions figures for II/I evaluation of all structures requiring seismic II/I evaluation.
- In COLA Section 3.8, provide a pointer for Diesel Generator Fuel Oil Tunnels (DGFOT) details in Section 3H.7.
- Revise COLA Table 3.4-1 to include Diesel Generator Fuel Oil Storage Vaults (DGFOSV).

1. A specific criterion will be added in the COLA Part 2, Tier 2 Section 3.7.2.8 that if the above grade height of the non-Category I structure is less than the shortest horizontal distance between the non-Category I structure and the closest Category I structure, collapse of the non-Category I structure will not cause the non-Category I structure to strike a Category I structure. The COLA will also be revised to reflect that non-Category I structures that are not identified in the FSAR as structures that can interact with Category I structures, meet this criterion.
2. The analysis and design of non-Category I structures that can interact with Category I structures, except for the stack on the Reactor Building roof, are included in the COLA markup provided for Sections 3.7.2.8 and 3.7.3.16 in RAI 03.07.02-13 Supplement 3, submitted with NINA Letter U7-C-NINA-NRC-110103, dated July 27, 2011. Some additional information has been added in the mark-up to COLA Section 3.7.2.8 included in the Enclosure to complete the information requested in this RAI. The following provides additional details for design of such structures:

- For the overall design, the procedures described in the International Building Code (IBC-2006) seismic design criteria will be followed. Considering the location of STP $3 \& 4$, the following seismic parameters are applicable:
- Occupancy Category IV
- Importance Factor of 1.5
- Seismic Design Category A
- The design of the lateral load resisting systems which prevent interaction between non-Category I and Category I structures will meet the following; in addition to meeting the IBC requirements:
- The lateral load resisting system shall be capable of resisting the entire lateral load assuming that all components of the non-Category I structure, with the exception of siding which may come off during a tornado event, will remain intact during the extreme environmental loading.
- The lateral load resisting system shall be designed to remain elastic under the extreme environmental loads shown in COLA Table 3H.9-1 using the same loads, load combinations and design codes as those for the adjacent Category I structure.
- For dual systems (i.e. shear walls with braced steel frame), one of the two systems must be designed to be capable of carrying the entire load.
- The exterior wall of the non-Category I structure that is adjacent to the Category I structure shall be capable of resisting SSE loads using the same loads, load combinations and design codes as those for the adjacent Category I structure. This criterion is also applicable to the elements of the non-Category I structure which meet the following two conditions:

1. The element is located within a story height of the exterior wall
2. The element may come in contact with the exterior wall upon its failure under SSE loads.

The lateral load resisting system discussed above, depending on the structure type, may consist of some or all of the following:

- Shear walls
- Horizontal bracing members and their connections
- Vertical bracing members and their connections
- Diaphragm floors
- Beams and their connections required for transfer of lateral loads at each floor to vertical bracing or shear walls
- Foundation

The design of the stack on the Reactor Building roof is covered under the certified design of the Reactor Building.

COLA Table 3H.9-1 is revised as shown in the Enclosure to further clarify II/I evaluations. Also, new site-specific ITAAC Tables 3.0-21 through 3.0-24 are included in the enclosed COLA mark-up for confirmation that as-built non-Category I structures are analyzed and designed as described in the FSAR
3. The stability evaluation procedure, including how seismic demand and restoring forces for stability evaluation are determined, is also described in the COLA mark-up provided for Sections 3.7.2.8 and 3.7.3.16 in RAI 03.07.02-13 Supplement 3, submitted with NINA Letter U7-C-NINA-NRC-110103, dated July 27, 2011.
4. Seismic Input Motion Figures for II/I Evaluations

See revised COLA Section 3.7.3.16 and new COLA Figures 3.7-47 through 3.7-55 provided in the Enclosure.
5. Pointer in COLA Section 3.8 for DGFOT

See the Enclosure for revision of COLA Section 3.8.4.
6. Inclusion of DGFOSV in COLA Table 3.4-1

See the Enclosure for the revised COLA Table 3.4-1 which includes DGFOSV.
Enclosure 1 provides the COLA mark-up. For ready reference, included in this mark-up is the mark-up provided to Sections 3.7.2.8 and 3.7.3.16 in response to RAI 03.07.02-13 Supplement 3, submitted with NINA Letter U7-C-NINA-NRC-110103, dated July 27, 2011. The mark-up included in the Enclosure 1 supersedes the mark-up for Section 3.7.2.8 provided in this earlier RAI response.

## Enclosure 1

### 3.7.2.8 Interaction of Non-Seismic Category I Structures, Systems and Components with Seismic Category I Structures, Systems and Components

The Category I structures and their physical proximity to nearby non-Category I structures are shown in Figure 3.7-40. None of the non-Category I structures proposed as part of STP Units 3 and 4 is intended to meet Criterion (2) of DCD Section 3.7.2.8. Rather, for each non-Category I structure, either: (1) it is determined that the collapse of the non-Category I structure will not cause the non-Category I structure to strike a Category I structure ; or (2) the non-Category I structure will be analyzed and designed to prevent its failure under SSE conditions in a manner such that the margin of safety of the structure is equivalent to that of Seismic Category I structures. Criterion (1) is met if the above-grade height of the non-Category I structure is less than the shortest horizontal distance between the non-Category I structure and the closest Category I structure. Based on this criterion, Anon-Category I structures that can interact with Seismic Category I structures include the Turbine Building (TB), Radwaste Building (RWB), Service Building (SB), Control Building Annex (CBA) and the stack on the Reactor Building roof. Other non-Category I structures shown in Figure 3.7-40 meet Criterion (1). Table 3H.6-14 provides sliding and overturning factors of safety under site-specific SSE for TB, RWB, SB, and CBA.

The seismic input motions for the IIII design of the five non-seismic 6 Category I structures noted above, except for the stack on the Reactor Building roof, are described in the following. The design of the stack on the Reactor Building roof is covered by the certified design of the Reactor Building.

- TB: 0.3 g Regulatory Guide 1.60 spectra.
- RWB: as described in Sections 3.7.3.16 and 3H.3.5.3 and shown in Figures 3.7-

4041 through 3.7-4243.

- SB: as described in Section 3.7.3.16.0.3g Regulatory Guide 1.60 spectra.
- CBA: as described in Section 3.7.3.16 and shown in Figures 3.7-38 and 3.7-39.

> Stack on the Reactor Building roof: seismic loading at its location, resulting from the SSE analysis of the Reactor Building.
> The overall design of non-Category I structures is based on IBC-2006. However, the lateral load resisting system is designed to remain elastic under the extreme environmental loads shown in Table 3H.9-1 using the same loads, load combinations and design codes (i.e. ACI 349 and AISC N690) as those for the adjacent Category I structure. Also, see Section 3.7.3-16 for additional details.

The seismic input motions for II/I stability evaluations of TB, RWB, SB, and CBA are described in more detail in the following:

[^0]The restoring forces and moments for sliding and overturning stability evaluations of TB, RWB, SB, and CBA are in accordance with the methodology outlined in Figure 3H.3-52.

Seismic demands along each orthogonal direction for stability evaluation of TB, RWB, and SB are determined using response spectrum analysis of a fixed base stick model representing each of these structures. The input motions for these response spectrum analyses are as described above. The base shears and moments from these response spectrum analyses are adjusted manually to account for the additional shears and moments due to basemat excitation which are calculated considering zero period acceleration (ZPA) of the input motions. The three orthogonal seismic demands of each structure are combined using the $100 \%-40 \%-40 \%$ rule as outlined in Regulatory Guide 1.92, Revision 2.

Seismic demands along each orthogonal direction for stability evaluation of the CBA are calculated using manual calculation where the CBA is idealized as a single degree of freedom structure. The three orthogonal seismic demands are combined using the 100\%-40\%-40\% rule as outlined in Regulatory Guide 1.92, Revision 2.

Table 3H.6-14 provides sliding and overturning factors of safety under site-specific SSE for TB, RWB, SB, and CBA.

### 3.7.3.16 Analysis Procedure for Non-Seismic Structures in Lieu of Dynamic Analysis

STD DEP 1.8-1
For overall the design of non-seismic Category I structures, the procedures described in the Uniform Building Code (UBC) International Building Code (IBC) seismic design criteria shall be followed. Considering the location of STP 3 \& 4, the following seismic parameters are applicable:

- Occupancy Category IV
- Importance Factor of 1.5
- Seismic Design Category A

Where a structure is required to be designed to withstand a SSE, the design of the lateral load resisting system consisting of structural elements required for transfer of lateral loads to the foundation (i.e. shear walls, horizontal bracing members and their connections, vertical bracing members and their connections, diaphragm floors, beams and their connections required for transfer of lateral loads at each floor to vertical bracing or shear walls and the foundation) shall meet the following-limitations apply:, in addition to meeting the IBC requirements:
(1) The seismic zone shall be "Zone 3". The seismic acceleration shall be per Table 3H.9-1 the SSE ground acceleration.
(2) The lateral load resisting system shall remain elastic. structure shall be elassified as "Essential Facility"; thereby using appropriate importance factors for wind and soismic.
(3) For dual systems (i.e., shear wall with braced steel frame), one of the two systems must be designed to be capable of carrying all of the seismic or wind loading without collapse. No credit will be given for the other for resisting lateral loads.
(4) The design codes shall be the same as those for the adjacent Category I structure
(5) The lateral load resisting system shall be capable of resisting the entire lateral load assuming that all components of the non-Category I structure, with the exception of siding which may come off during a tornado event, will remain intact during the extreme environmental loading.
(6) The exterior wall of the non-Category I structure that is adjacent to the Category I structure shall be capable of resisting SSE loads using the same loads, load combinations and design codes as those for the adjacent Category I structure. This criterion is also applicable to the elements of the non-Category I structure which meet the following two conditions:

- The element is located within a story height of the exterior wall.
- The element may come in contact with the exterior wall upon its failure under SSE loads.

For the Control Building Annex (CBA) II/I design, the SSE input at the foundation level (Figures $3.7-38 \mathrm{a}, 3.7-38 \mathrm{~b}$ and $3.7-39$ ) is the envelope of 0.3 g RG 1.60 response spectra and the induced acceleration response spectra due to site specific SSE that is determined from an SSI analysis which accounts for the impact of the nearby Control Building (CB). In this SSI analysis, five interaction nodes at the depth corresponding to the bottom elevation of the CBA foundation are added to the three dimensional SSI model of the CB. These five interaction nodes correspond to the four corners and the center of the CBA foundation. The average response of these five interaction nodes is enveloped with the 0.3 g RG 1.60 spectra to determine the SSE input at the CBA foundation level.

For the stability evaluation of the CBA, the SSE input (see Figures 3.7-47 through 3.7-49) is the envelope of the average response of the five interaction nodes from the site-specific SSI analysis described above and the site specific SSE.

For the Radwaste Building (RWB) II/I design, the SSE input (see Figures 3.7-41 through 3.7-43)-at the foundation level is the envelope of 0.3 g RG 1.60 response spectrum and the induced acceleration response spectrum due to site-specific SSE that is determined from an SSI analysis which accounts for the impact of the nearby

Reactor Building (RB). In this SSI analysis, five interaction nodes at the depthground surface corresponding to the bottom elevation of the RWB foundation are added to the three dimensional SSI model of the RB. These five interaction nodes correspond to the four corners and the center of the RWB foundation. The average response of these five interaction nodes is enveloped with the 0.3 g RG 1.60 spectra to determine the SSE input at the foundation level.

For the stability evaluation of the RWB, the SSE input (see Figures 3.7-44 through $3.7-46$ ) is the envelope of the average response of the five interaction nodes from the site-specific SSI analysis described above and the site specific SSE.

For the Service Building (SB) IIII design, the SSE input (see Figures 3.7-50 through $3.7-52$ ) is the envelope of 0.3 g RG 1.60 response spectrum and the induced acceleration response spectrum due to site-specific SSE that is determined from an SSI analysis which accounts for the impact of the nearby CB Building. In this SSI analysis, five interaction nodes at the ground surface are added to the three dimensional SSI model of the CB. These five interaction nodes correspond to the four corners and the center of the SB foundation. The average response of these five interaction nodes is enveloped with the 0.3 g RG 1.60 spectra to determine the SSE input at the foundation level.

For the stability evaluation of the SB, the SSE input (see Figures 3.7-53 through $3.7-55$ ) is the envelope of the average response of the five interaction nodes from the site-specific SSI analysis described above and the site specific SSE.

### 3.8.4 Other Seismic Category I Structures

STD DEP T1 2.15-1
STD DEP 12.3-3
Other Seismic Category I structures which constitute the ABWR Standard Plant are the Reactor Building, and Control Building, and Diesel Generator Fuel Oil Tunnels. Radwasto Building substructure. Figure 1.2-1 shows the spatial relationship of these buildings. The only other non-Category I structures which could interact with in close proximity to these structures isare the Radwaste Building, Service Building, Control Building Annex, the stack on the Reactor Building roof, and the Turbine Building. \# isThese structures, except the stack, are structurally separated from the other ABWR Standard Plant buildings. The analysis and design of these non-Category I structures are described in Sections 3.7.2.8 and 3.7.3.16.

Details of the Diesel Generator Fuel Oil Tunnels are provided in Section 3H. 7

## 3H.5.5 Structural Analysis Report For The Radwaste Building (Including Radwaste Tunnels) and The Turbine Building

STD DEP 1.8-1
STD DEP T1 2.15-1
The RW/B (including Radwaste Tunnels) and $T / B$ isare not classified as a-Seismic Category 1 structures. Howovor, the buildings The T/B isare designed such that damage to safety-related functions does not occur under seismic loads corresponding to the safe shutdown earthquake (SSE) ground acceleration. The RW/B (including Radwaste Tunnels) is designed per Regulatory Guide 1.143.

For material properties and dimensions, assess compliance of the as-built structure with design requirements in Section 3.7.3.16, Table 3.2-1 and the International Building Code (IBC)Uniform Building Codo (UBC) for the Turbine Building and Regulatory Guide 1.143 for the Radwaste Building (including Radwaste Tunnels). and in the Table 3.2-1 and paragraph 3.7.3.16.

Construction deviations and design changes will be assessed to determine appropriate disposition.

This disposition will be accepted "as-is," provided the following acceptance criteria are met:

- The structural design meets the acceptance criteria and load combinations of Section 3.7.3.16 and the UBG IBC code for the Turbine Building and Regulatory Guide 1.143 for the Radwaste Building (including Radwaste Tunnels).

The RW/B (including Radwaste Tunnels) and $T / B$ isare not classified as a Seismic Category 1 structures. However, the buildings isare designed such that damage to safoty-rolated functions does not occur undor seismic loads corresponding to the safe shutdown earthquake (SSE) ground acceleration.

### 3.0 Site-Specific ITAAC

- Main Turbine System
- Turbine Building- Seismic IIII Interaction
- Service Building-Seismic IIII Interaction
- Radwaste Building- Seismic II/I Interaction
- Control Building Annex- Seismic II/I Interaction

Table 3.0-21 Turbine Building- Seismic II/I Interaction

| Design Requirement | Inspections, Tests, Analyses | Acceptance Criteria |
| :---: | :---: | :---: |
| The lateral load resisting system in the Turbine Building is designed to remain elastic under the extreme environmental loads to prevent the Building from impacting the adjacent Control Building. The extreme environmental loads include (a) the SSE, tornado wind, and tornado missile parameters described in Tier 1, Table 5.0; and (b) the loads associated with the breach of the Main Cooling Reservoir Embankment | a. A structural analysis will be performed to confirm that the lateral load resisting system of the Turbine Building, as designed and constructed, meets the Design Requirements. | a. A structural analysis report exists which concludes that the lateral load resisting system of the Turbine Building, as designed and constructed, meets the Design Requirements. |
|  | b. Inspection of as-built Turbine Building will be performed to confirm that the configuration is $\qquad$ | b. As-built configuration is consistent with the design. |

Table 3.0-22 Service Building-Seismic II/I Interaction

| Design Requirement | Inspections, Tests, Analyses | Acceptance Criteria |
| :---: | :---: | :---: |
| The lateral load resisting system in the Service Building is designed to remain elastic under the extreme environmental loads to prevent the Building from impacting the adjacent Reactor and Control Buildings. The extreme environmental loads include (a) the SSE, tornado wind, and tornado missile parameters described in Tier 1, Table 5.0; and (b) the loads associated with the breach of the Main Cooling Reservoir Embankment. | a. A structural analysis will be performed to confirm that the lateral load resisting system of the Service Building, as designed and constructed, meets the Design Requirements. | a. A structural analysis report exists which concludes that the lateral load resisting system of the Service Building, as designed and constructed, meets the Design Requirements |
|  | b. Inspection of as-built Service Building will be performed to confirm that the configuration is $\qquad$ | b. As-built configuration is consistent with the design. |

Table 3.0-23 Radwaste Building- Seismic II/I Interaction

| Design Requirement | Inspections, Tests, Analyses | Acceptance Criteria |
| :---: | :---: | :---: |
| The lateral load resisting system in the Radwaste Building is designed to remain elastic under the extreme environmental loads to prevent the Building from impacting the adjacent Reactor Building. The extreme environmental loads include (a) the SSE, tornado wind, and tornado missile parameters described in Tier 1, Table 5.0; and (b) the loads associated with the breach of the Main Cooling Reservoir Embankment. | a. A structural analysis will be performed to confirm that the lateral load resisting system of the Radwaste Building, as designed and constructed, meets the Design Requirements | a. A structural analysis report exists which concludes that the lateral load resisting system of the Radwaste Building, as designed and constructed, meets the Design Requirements |
|  | b. Inspection of as-built Radwaste Building will be performed to confirm that the configuration is $\qquad$ | b. As-built configuration is consistent with the design. |

Table 3.0-24 Control Building Annex- Seismic IIII Interaction

| Design Requirement | Inspections, Tests, Analyses | Acceptance Criteria |
| :---: | :---: | :---: |
| The lateral load resisting system in the Control Building Annex is designed to remain elastic under the extreme environmental loads to prevent the Building from impacting the adjacent Control Building. The extreme environmental loads include (a) the SSE, tornado wind, and tornado missile parameters described in Tier 1, Table 5.0; and (b) the loads associated with the breach of the Main Cooling Reservoir Embankment | a. A structural analysis will be performed to confirm that the lateral load resisting system of the Control Building Annex, as designed and constructed, meets the Design Requirements | a. A structural analysis report exists which concludes that the lateral load resisting system of the Control Building Annex, as designed and constructed, meets the Design Requirements |
|  | b. Inspection of as-built Control Building Annex will be performed to confirm that the configuration is consistent with the design. | b. As-built configuration is consistent with the design. |

Fable 3.0-25 Stack on the Reactor Building Roof-Seismic IIII Interaction
RAI 03.07.02-32, Revision 1

| Structure | Reactor Building | Service Building | Control Building | Radwaste Building | Turbine Building | Ultimate Heat Sink/RSW Pump House (Note 8) | Diesel <br> Generator <br> Fuel Oil <br> Storage Vaults |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Design Flood Level (mm) | $\begin{aligned} & 11,695 \underline{12,192} \\ & \mathrm{~mm}(\underline{40.0} \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & 11,695-10058 \\ & \mathrm{~mm}(33 \mathrm{ft}) \\ & \text { (Note 7) } \end{aligned}$ | $\begin{aligned} & 11,695 \underline{12,192} \\ & \mathrm{~mm}(\underline{40.0} \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & 11,69510058 \\ & \mathrm{~mm}(33 \mathrm{ft}) \\ & \text { (Note 7) } \end{aligned}$ | $\begin{aligned} & 11,69510058 \\ & \mathrm{~mm}(33 \mathrm{ft}) \\ & (\text { Note } 7) \end{aligned}$ | $\frac{12,192}{(40.0 \mathrm{ft})}$ | $\begin{aligned} & 12,192 \mathrm{~mm} \\ & (40.0 \mathrm{ft}) \end{aligned}$ |
| Design Ground Water Level (mm) | $\begin{array}{\|l\|} \hline 11,390 \\ 9,753 \mathrm{~mm}(32 \\ \mathrm{ft}) \\ \hline \end{array}$ | $\begin{aligned} & 11,3909,753 \\ & \mathrm{~mm}(32 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & 11,3909,753 \\ & \mathrm{~mm}(32 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & 11,3909,753 \\ & \mathrm{~mm}(32 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & 11,3909,753 \\ & \mathrm{~mm}(32 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & 8,534 \mathrm{~mm} \\ & (28.0 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & 8,534 \mathrm{~mm} \\ & (28.0 \mathrm{ft}) \end{aligned}$ |
| Reference Plant Grade (mm) | $\begin{aligned} & \text { 12,000 10,363 } \\ & \mathrm{mm}(34 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & \text { 12,000 10,363 } \\ & \mathrm{mm}(34 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & \text { 12,000 10,363 } \\ & \mathrm{mm}(34 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & \text { 12,000 10,363 } \\ & \mathrm{mm}(34 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & \text { 12,000 10,363 } \\ & \mathrm{mm}(34 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & 10,363 \mathrm{~mm}(34 \\ & \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & 10,363 \mathrm{~mm}(34 \\ & \mathrm{ft}) \end{aligned}$ |
| Top of Base Slab (mm) | $\begin{aligned} & -8,200-9,837 \\ & \mathrm{~mm}(-32.27 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & -2,150 \& 3,500 \\ & -3,787 \mathrm{~mm}(- \\ & 12.42 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & -8,200-9,837 \\ & \mathrm{~mm}(-32.27 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & -1,500-3,353 \\ & \mathrm{~mm}(-11 \mathrm{ft}) \end{aligned}$ | $\begin{aligned} & 5,300-4,840 \\ & \mathrm{~mm}(-15.88 \mathrm{ft}) \end{aligned}$ | $4,267 \mathrm{~mm}$ (UHS), -5,486 mm (RSW Pump House) (14 ft, UHS) (18 ft , RSW Pump House) | -914 mm (-3 ft) |
| Actual Plant Grade (mm) | 12,000 Varies between 9,753 $\mathrm{mm}(32 \mathrm{ft})$ and $10,973 \mathrm{~mm}$ ( 36 ft) | 12,000 Varies between 9,753 $\mathrm{mm}(32 \mathrm{ft})$ and $10,973 \mathrm{~mm}$ ( 36 ft) | 12,000 Varies between 9,753 $\mathrm{mm}(32 \mathrm{ft})$ and 10,973 mm (36 ft) | 12,000 Varies between 9,753 $\mathrm{mm}(32 \mathrm{ft})$ and $10,973 \mathrm{~mm}(36$ ft) | 12,000 Varies between 9,753 $\mathrm{mm}(32 \mathrm{ft})$ and 10,973 mm (36 <br> ft) | Varies between 9,753 $\mathrm{mm}(32 \mathrm{ft})$ and 10,973 mm (36 ft) | Varies <br> between 9,753 <br> $\mathrm{mm}(32 \mathrm{ft})$ and <br> $10,973 \mathrm{~mm}(36$ <br> ft) |
| Building Height (mm) | 49,700 | 22,200 | 22,200 | 28,000 | 54,300 |  |  |
| Penetrations Below Design Flood Level (Notes 1 through 4) | $\begin{aligned} & \text { Refer to Table } \\ & 6.2-9 \end{aligned}$ | None | RCW, RSW and miscellaneous lines, and electrical penetrations | None, except radwaste piping | Radwaste piping | RSW piping and electric cables | Fuel oil transfer piping |

RAI 03.07.02-32, Revision 1
U7-C-NINA-NRC-110148
Attachment 2 Page 19 of 33
Table 3.4-1 Structures, Penetrations, and Access Openings Designed for Flood Protection (Note 9) (Continued)

| Structure | Reactor Building | Service Building | Control Building | Radwaste Building | Turbine Building | Ultimate Heat Sink/RSW Pump House (Note 8) | Diesel Generator Fuel Oil Storage Vaults |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Access Openings Below Design Flood Level (Notes 5 and 6) | Access ways to outside and from S/B and C/B (Fig. 1.2-4 through 1.2-8) @-4,800 mm | Access ways from R/B, <br> C/B and T/B. <br> (Fig. 1.2- <br> 17 through <br> 1.2-20) @ <br> 3,500 mm, (Fig. <br> 1.2 <br> 18) <br> Area-access <br> ways from <br> C/B@-2,150 <br> mm, <br> $3,500 \mathrm{~mm}$, and <br> 7,900 <br> mm (Fig. 1.2- <br> 19) <br> Area access <br> way from <br> T/B@ <br> 3,500 mm (Fig. <br> 1.2-24) | Hx aroa accoss from S/B@ $-2,150 \mathrm{~mm}$, (Fig. $1.2-15)$ <br> Area access from <br> S/B@3,500 <br> foe <br> Fig. 1.2-18 <br> Area access <br> way <br> fromS/B@ <br> 7,900 <br> mm, (See Fig. <br> 1.2- <br> 15) <br> Access ways to <br> outside, S/B, R/B, and RW/B (See Fig 1.2-17 through 1.2-20) | None | Access ways from S/B @ $5,300 \mathrm{~mm}$, (Fig 1.2-18) | None | Access room door |

1 Watertight penetrations will be provided for all Reactor, and-Control, Turbine and Radwaste Buildings penetrations that are below grade in flood level.
2 The safety-related and non-safety-related tunnels prevent the lines running through them from being exposed to outside ground flooding. 3 Penetrations below design flood level will be sealed against any hydrostatic head resulting from the design basis flood, or from a moderate energy pipe failure in the tunnel or inside a connecting building.
4 Waterproof sealant applied to the building exterior walls below flood level will also be extended a minimum of 150 mm along the penetration
RAI 03.07.02-32, Revision 1

[^1] U7-C-NINA-NRC-110148
Attachment 2
Page 20 of 33
surfaces.
5 Watertight doors (bulkhead
RAI 03.07.02-32, Revision 1 U7-C-NINA-NRC-110148
Attachment 2

| Fable-31+8-Extreme Environmental Design Parameters for Seismic Analysis, Design, Stability Evaluation and Seismic Category II/I Design |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Structure | Selmicic Anolyis |  |  |  |  | Structure Desion |  |  |  | Stoblit |  |  |  |  | Design for II/I (opplicable to the design of laterol lood resisting system) |  |  |  |
|  | Inout Morion | Soll Tree |  | Wout Motion | Soll Tree | Selemic | Tomodo | Temonoto Musiles | Flos | Sesmic | Tom | Tornodo Missiles | Floration | Coeff. of Priction tor Waterproofing <br> bpone | Selomic | Teomedo | Tormodo missiles | Flood |
| Diesel Generator <br> Fuel OAI Tunnels <br> (DGFOT) |  |  | 4\% for all SSI analysis cases | $\begin{gathered} \text { Sire-Specific } \\ \text { sse } \end{gathered}$ | Stre-Spectic |  | $\begin{gathered} \text { DCD Tornode } \\ \text { Wind Parameters } \\ \text { (As described Tin Toble } 5.0 \\ \text { of DCD/Tier 1) } \end{gathered}$ |  | Flood EL. $40^{\prime}$ MSL, Water Density $63.85 \mathrm{lb} / \mathrm{ft} 3$ (obove grade) <br> - Drog Effect 44 psf (above grade) <br> - Impoct of Flooting Debris per COLA Section 3.4 .2 <br> - Wind Generated Wove Action per COLA Figure 3.4-1 <br> (only hydrodynamic portion) | $\begin{array}{\|c\|} \text { Ampitied } \\ \text { Site-Specific } \\ \text { SSE } \end{array}$ | $\begin{aligned} & \text { Site-Specitic Tornado } \\ & \text { Wind Peremeters } \\ & \text { (Regegio II. RG } 1.76 \text { Rev. 1) } \end{aligned}$ |  |  | Stre-spectic | NA | N/ | NA | N4 |
| UHS/RSW Pump House | $\begin{gathered} \text { Site-Specific } \\ \text { SSE } \end{gathered}$ | Ste-Spectic | $\underbrace{\text { coses }}_{\text {4\% for all Sst ondyris }}$ | $\left\lvert\, \begin{gathered} \text { Site-Specific } \\ \text { SSE } \end{gathered}\right.$ | Ste.Spectic | Stre-spectic sse | Site-Specific Tornado Wind Poreneters (Region II, R6 1.76 Rev. 1) | Site-Specific Tornode Missile Spectrun for Region II as shown in Toble 2of RG 170 Rev. 1 | Flood E1. $40^{\prime}$ MSL. Water Density $63.85 \mathrm{lb} / \mathrm{fr}^{3}$ (above grade) <br> - Drag Effect 44 psf (obove grode) <br> - Impoct of Floating Debris per COLA Section 3.4 .2 <br> - Wind Generated Wave Action per COLA Figure 3.4-1 <br> (only hydrodynamic portion) | $\begin{array}{\|c\|} \hline \text { Site-Specific } \\ \text { SSE } \end{array}$ |  | Site-Specific Tornodo Missie Spectrum for Regien II as shom in Toble 2 of RG .176 Rev. 1 |  | Sine-spectic | N4 | N4 | NA | NA |
| $\underbrace{\text { Tumels }}_{\text {RSW Piphe }}$ | $\begin{aligned} & \text { Amplified }{ }^{(1)} \\ & \text { Site-Speceific } \\ & \text { SSE } \end{aligned}$ | Ste.Spectic |  | $\begin{gathered} \text { Site-Specific } \\ \text { SSE } \end{gathered}$ | Sre-Spectic | $\begin{array}{\|c\|} \text { Amplified } \\ \text { Site-Specific SSE } \\ \text { (See Note 4) } \end{array}$ | Site. Specific Tornoto Wind Peraneter (regoon II, Re 1.70 Rev. 1) $\|$ |  | Flood EI. $40^{\prime} \mathrm{MSL}$. Water Density $63.85 \mathrm{lb} / \mathrm{ft}^{3}$ (above grade) <br> . Drag Effect 44 psf (above grade) <br> - Impact of Floating Debris per COLA Section 3.4 .2 <br> - Wind Generated Wove Action per COLA Figure 3.4-1 <br> (only hydrodynamic portion) | $\begin{aligned} & \text { Amplifiteded } \\ & \text { Site- ppecific } \\ & \text { SSE } \end{aligned}$ |  | Site-Specific Tormodo Missie Spectroum for Resien II as shom in Toble 2 of RG .176 Rev, 1 |  | Stre-spectic | N* | NA | N4 | NA |
| $\begin{aligned} & \text { Diesel Genceroter } \\ & \text { Fuel Oin storgege } \\ & \text { vouir } \\ & \text { (OGFOSV) } \end{aligned}$ |  | Ste-Spectic | $\begin{gathered} \text { 4\% for all SSI analysis } \\ \text { cases } \end{gathered}$ | $\begin{array}{\|c\|} \text { Site-Specific } \\ \text { SSE } \end{array}$ | Stre-Spectic |  | Site-Specific Tornodo Wind Parameters (Regegio II. R6 1.76 Rev. 1) | Site-Specific Tornodo Missile SSectum tor Revion II as shomn in Toble 2of R. 1.76 Rev. .1 | Flood EI. $40^{\prime}$ MSL, Water Density $63.85 \mathrm{lb} / \mathrm{ft}^{2}$ (above grode) <br> - Drog Effect 44 psf (above grade) <br> - Impoct of Flooting Debris per COLA Section 3.4.2 <br> - Wind Generated Wove Action per COLA Figure 3.4-1 <br> (only hydrodynamic portion) | $\begin{aligned} & \text { Amplifited } \\ & \text { Site-specific } \\ & \text { SSE } \end{aligned}$ |  | Site-Specific Tormodo Missile Spectrum for Region II as show in Toble 2 of RG 1.76 Rev. 1 |  | Stre-spectice | NA | NA | Na | N4 |
| $\begin{gathered} \text { Rodmaste Euilding } \\ (\text { RWB }) \end{gathered}$ | N4 | Na | NA | $\begin{array}{\|c\|} \text { Site-Specific } \\ \text { SSE } \end{array}$ | Sree-Spectic |  | $\begin{gathered} \text { Ree Toble e of RG LLA3 } \\ \text { Rev. } 2 \text { tor } \\ \text { RW. Ito Clasification } \end{gathered}$ |  | Flood EI. 33' MSL RW-IIb Classification |  | $\begin{array}{\|c\|} \hline \text { Site-Specific Tornode } \\ \text { Wind Poremeters } \\ \text { (Region II. RG } 1.76 \text { ReV. } 1) \end{array}$ | Site-Specific Tomode Missile Spectrum for Region II as shomn in Toble 2 of RG 1.70 Rev. 1 Table 2 of RG ITO Rev | Flood EL, $40^{\prime}$ MSL Water Density 63.85 $\mathrm{lb} / \mathrm{ft}^{3}$ (above grade) | Stre-Specific |  | DCD Tornodo Wind Poreneters (As described in Toble 5.0 of oco/Tier 1) | $\left\lvert\, \begin{gathered} \text { DCD Misssie } \\ \text { Spectrum } 1 \text { as } \\ \text { defined in Table } 5.0 \\ \text { of DCD/Tier 1 } \end{gathered}\right.$ | Flood EI. $40^{\prime}$ MSL. Weter Densify $63.85 \mathrm{lb} / \mathrm{ft}^{3}$ (above grade) <br> - Drag Effect 44 psf (above grade) <br> - Impoct of Floating Debris per COLA Section 3.4 .2 <br> - Wind Generated Wave Action per COLA Figure 3.4-1 <br> (only hydrodynamic portion) |
| Control Bldg. Annex (CBA) | Na | Nn | N^ | Nn | NA | tec 2000 | NA | NA | NA | $\begin{aligned} & \text { Ampilitied } \\ & \text { Site-specific } \\ & \text { SSE } \end{aligned}$ | Site-Specific Tornode Wind Poremerers (Region II, RG 1.76 Rev. 1$)$ | Site-Specific Tornodo Missie Spectroun for Region II as show in Toble 2 of RG 1.76 Rev. : |  | Stre-spectic |  |  |  | Flood EL. $40^{\prime}$ MSL. Water Density $63.85 \mathrm{lb} / \mathrm{ft}^{3}$ (abeve grade) <br> - Drag Effect 44 psf (above grade) <br> - Impoct of Floating Debris per COLA Section 3.4.2 <br> - Wind Generated Wave Action per COLA Figure 3.4-1 (only hydrodynamic portion) |
| $\begin{aligned} & \text { Turbine Building } \\ & \text { (TB) } \end{aligned}$ | NA | NA | NA | na | NA | rec 2006 | NA | NA | Na | $\begin{gathered} \text { Site-Specific } \\ \text { SSE } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Site-Specific Tornade } \\ \text { Wind Porameters } \\ \text { (Region II, RG } 1.76 \text { Rev. } 1) \end{array}$ |  |  | Site-specticic | 0.39 RG 160 SSE | DCD Ternodo Wind Peremeters (As described in Toble 50.0 of DCD Tier 1 ) | $\begin{gathered} D C D \text { Missile } \\ \text { Spectrum 1os } \\ \text { defined in Tatbe } 5.0 \\ \text { of DCD/Tier : } \end{gathered}$ | Flood EI. $40^{\prime}$ MSL. Water Density $63.85 \mathrm{lb} / \mathrm{ft}^{3}$ (above grode) <br> - Drag Effect 44 psf (above grade) <br> - Impact of Floating Debris per COLA Section 3.4.2 <br> - Wind Generated Wove Action per COLA Figure 3.4-1 <br> (only hydrodynamic portion) |
| $\begin{aligned} & \text { Service Auilding } \\ & \text { (SB) } \end{aligned}$ | N/ | NA | NA | Na | NA | rec 2006 | NA | N/ | N4 | $\begin{aligned} & \text { Amplified } \text { d }^{(1)} \\ & \text { Site-Specific } \\ & \text { SSE } \end{aligned}$ | $\begin{array}{\|c\|} \text { Site-Specatic Tornade } \\ \text { Wind Parameters } \\ \text { (Region II. RG } 1.76 \text { Rev. } 1) \end{array}$ | $\begin{aligned} & \text { Site-Specific Tornodo } \\ & \text { Misise Spectrum for } \\ & \text { Regien II ses shown in } \\ & \text { Toble } 2 \text { of } \mathrm{RG} .176 \text { Rev, } 1 \end{aligned}$ |  | Stre-spectic |  | $\begin{aligned} & \text { DCD Tornodo } \\ & \text { Wind Parameters } \\ & \text { (As described in } \\ & \text { Toble } 5.0 \text { of } \\ & \text { DCO/Tier 1) } \end{aligned}$ |  | Flood EL. $40^{\prime}$ MSL. Water Density $63.85 \mathrm{lb} / \mathrm{ft}^{\prime}$ (above grode) <br> - Brag Effect 44 pef (nbove gmada) <br> - Impoct of Floating Debris per COLA Section 3.4.2 <br> - Wind Generated Wave Action per COLA Figure 3.4-1 <br> (only hydrodynamic portion) |

Table 3H.9-1 Extreme Environmental Design Parameters for Seismic Analysis,
Design, Stability Evaluation and Seismic Category II/I Design

Frequency (Hz)
Figure 3.7-38a Horizontal (N-S) Control Building Annex Input Motion for II/I Design (7\% Damping)
(8) ио!ңеләәәээヲ
RAI 03.07.02-32, Revision 1
U7-C-NINA-NRC-110148
Attachment 2
Page 23 of 33

Figure 3.7-38b Horizontal (E-W) Control Building Annex Input Motion for II/I Design Mat Foundation Response
U7-C-NINA-NRC-110148
Attachment 2
Page 24 of 33

Figure 3.7-39 Vertical Control Building Annex Input Motion for II/I Design Mat Foundation Response Spectrum (7\% Damping)
RAI 03.07.02-32, Revision 1

U7-C-NINA-NRC-110148
Attachment 2
Page 30 of 33

RAI 03.07.02-32, Revision 1

Figure 3.7-53: Service Building North-South Input Motion for Stability Evaluations (7\% Damping)
RAI 03.07.02-32, Revision 1

RAI 03.07.02-32, Revision 1



[^0]:    - TB: site-specific SSE
    - RWB: as described in Sections 3.7.3.16 and 3H.3.5.3 and shown in Figures 3.7-44 through 3.7-46
    - SB: as described in Section 3.7.3.16
    - CBA: as described in Section 3.7.3.16

[^1]:    5 Warfacestigh that are below grade design flood level

    6 The figure shown best depicts the indicated access.
    7 The Turbine Building and Service Building shall also meet the flood design requirements of ASCE 7-05. The Radwaste Building shall also
    
    5 Watertight doors (bulkhead type) are provided at all Reactor, and Control Building, and Diesel Generator Fuel Oil Storage Vault access ways
     ll

