

December 21, 2011

PG&E Letter DCL-11-136

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 James R. Becker Site Vice President Diablo Canyon Power Plant Mail Code 104/6 P. O. Box 56 Avila Beach, CA 93424

805.545.3462 Internal: 691.3462 Fax: 805.545.6445

10 CFR 54.21(b)

Docket No. 50-275, OL-DPR-80 Docket No. 50-323, OL-DPR-82 Diablo Canyon Units 1 and 2 <u>10 CFR 54.21(b) Annual Update to the DCPP License Renewal Application and</u> License Renewal Application Amendment Number 45

Dear Commissioners and Staff:

By letter dated November 23, 2009, Pacific Gas and Electric Company (PG&E) submitted an application to the U.S. Nuclear Regulatory Commission (NRC) for the renewal of Facility Operating Licenses DPR-80 and DPR-82, for Diablo Canyon Power Plant (DCPP) Units 1 and 2, respectively. The application included the license renewal application (LRA), and Applicant's Environmental Report – Operating License Renewal Stage. As required by 10 CFR 54.21(b), each year following submittal of the LRA, an amendment to the LRA must be submitted that identifies any change to the current licensing basis (CLB) that materially affects the contents of the LRA, including the Final Safety Analysis Report (FSAR) supplement.

Enclosure 1 identifies DCPP LRA changes that are being made to reflect CLB that materially affect the LRA. Enclosure 2 contains the affected LRA pages with changes shown as electronic mark-ups (deletions crossed out and insertions italicized). The LRA update covers the period from October 1, 2010, through September 30, 2011. As a reviewer aid, all pages of the Appendix B aging management program section are provided, including unchanged pages, when there is a change on any of the pages in that section.

Changes to existing commitments are contained in the changes to LRA Table A4-1 in Enclosure 2.

If you have any questions regarding this response, please contact Mr. Terence L. Grebel, License Renewal Project Manager, at (805) 545-4160.

A member of the STARS (Strategic Teaming and Resource Sharing) Alliance Callaway • Comanche Peak • Diablo Canyon • Palo Verde • San Onofre • South Texas Project • Wolf Creek

I declare under penalty of perjury that the foregoing is true and correct.

Executed on December 21, 2011.

Sincerely,

James R. Becker Site Vice President

jwh/50412026

Enclosures

cc: Diablo Distribution

cc/enc: Elmo E. Collins, NRC Region IV Regional Administrator Nathanial B. Ferrer, NRC Project Manager, License Renewal Michael S. Peck, NRC Senior Resident Inspector Alan B. Wang, NRC Licensing Project Manager

A member of the STARS (Strategic Teaming and Resource Sharing) Alliance Callaway • Comanche Peak • Diablo Canyon • Palo Verde • San Onofre • South Texas Project • Wolf Creek

Enclosure 1 PG&E Letter DCL-11-136 Page 1 of 2

DCPP License Renewal Application (LRA) Changes Reflected in the Annual LRA Update Amendment 45

Affected LRA Section	Reason for Change
Table 3.3.2-8	Completed. PG&E replaced the carbon steel with stainless steel
Table A4-1, #23	clad Centrifugal Charging Pump (CCP) 2-2 pump casings in the
Section 3.3.2.2.14	chemical and volume control system with a completely stainless
	steel pump casing.
Table A4-1, #71	Completed. The intake structure has been returned to (a)(2)
	status.
Section A1.15	Updated to reflect the revised date for withdrawal of Unit 1
Section B2.1.15	Capsule B as approved in NRC letter dated October 29, 2010
	(ML103010159).
Table 3.3.2-7	Updated to remove External Surfaces Monitoring Program for
	regulators and solenoid valves containing copper alloy (> 15%
	Zinc). (Reference PG&E Letter DCL-10-130, dated October 12,
	2010)
Table A4-1, #31	Completed. The Unit 2 gap repair work has been completed.
Table A4-1, #35	Completed. The procedure acceptance criteria to specifically
	preclude repositioning a tube more than once without capping or
	replacing has been revised. This precludes repositioning a tube
	having chrome plated surfaces from the chrome being moved out
	of the areas of known wear.
Table A4-1, #62	Completed. The Unit 2 diesel generator starting air and
	turbocharger air compressors have been upgraded.
Section 4.2.1	Pressurized Thermal Shock analyses results are updated to
Table 4.2-1	reflect WCAP-17315-NP and WCAP-17299-NP.
Table 4.2-2	LRA Table A4-1, Item 24 is deleted.
Table 4.2-3	
Section 4.2.2	
Table 4.2-4	
Table 4.2-5	
Section 4.2.3	
Table 4.2-6	
Table 4.2-7	
Section 4.9	
Section A3.1.2	
Table A4-1, #24	
Section 3.2.2.1.1	Updated to reflect the re-evaluation of cast iron and gray cast iron
Table 3.2.2-1	components based on lessons learned from a license renewal
Table 3.2.2-4	inspection at a different nuclear power plant. Also, added
Section 3.3.2.1.3	applicable aging management programs for components for
Section 3.3.2.1.4	which there are multiple aging effects.
Section 3.3.2.1.5	
Section 3.3.2.1.7	
Section 3.3.2.1.8	· ·
Section 3.3.2.1.11	
Section 3.3.2.1.12	
Section 3.3.2.1.13	

Enclosure 1 PG&E Letter DCL-11-136 Page 2 of 2

Affected LRA Section	Reason for Change
Section 3.3.2.1.14	
Section 3.3.2.1.16	1
Section 3.3.2.1.17	
Section 3.3.2.1.18	
Section 3.3.2.1.19	
Table 3.3.2-3	
Table 3.3.2-4	
Table 3.3.2-5	
Table 3.3.2-7	
Table 3.3.2-8	
Table 3.3.2-11	
Table 3.3.2-12	
Table 3.3.2-13	
Table 3.3.2-14)
Table 3.3.2-16	
Table 3.3.2-17	
Table 3.3.2-18	
Table 3.3.2-19	
Section 3.4.2.1.1	
Section 3.4.2.1.2	
Section 3.4.2.1.4	
Table 3.4.2-1	
Table 3.4.2-2	
Table 3.4.2-4	
Table 2.3.1-2	Updated to reflect plant modifications (review of equipment
Table 2.3.2-3	changes).
Table 2.3.3-4	
Table 2.3.3-7	
Table 2.4-1	
Table 3.1.2-2	
Section 3.2.2.1.3	
Table 3.2.2-3	
Table 3.3.2-4	
Table 3.3.2-7	
Table 3.5.2-1	、 <i>,</i>
Table 3.3.2-4	Updated to reflect abandonment of equipment associated with
Table 3.3.2-5	the boric acid evaporator subsystem.
Table 3.3.2-8	
Table 3.3.2-17	
Table 3.3.2-18	
Table 3.4.2-2	

· .

Enclosure 2 PG&E Letter DCL-11-136 Page 1 of 98

LRA Amendment 45
Affected LRA Sections,
Tables, and Figures
Table 2.3.1-2
Table 2.3.2-3
Table 2.3.3-4 Table 2.3.3-7
Table 2.4-1
Table 3.1.2-2
Section 3.2.2.1.1
Table 3.2.2-1
Table 3.2.2-3
Table 3.2.2-4
Section 3.3.2.1.3
Section 3 3 2 1 4
Section 3.3.2.1.5
Section 3.3.2.1.7
Section 3.3.2.1.7 Section 3.3.2.1.8
Section 3.3.2.1.11
Section 3.3.2.1.12
Section 3.3.2.1.13
Section 3.3.2.1.14
Section 3.3.2.1.16
Section 3.3.2.1.17
Section 3.3.2.1.18
Section 3.3.2.1.19 Section 3.3.2.2.14
Table 3.3.2-3
Table 3.3.2-4
Table 3.3.2-4
Table 3.3.2-7
Table 3.3.2-8
Table 3.3.2-11
Table 3.3.2-12
Table 3.3.2-13
Table 3.3.2-14
Table 3 3 2-16
Table 3.3.2-17
Table 3.3.2-17 Table 3.3.2-18
Table 3.3.2-19
Section 3.4.2.1.1
Section 3.4.2.1.2
Section 3.4.2.1.4
Table 3.4.2-1
Table 3.4.2-2

7

٦

Enclosure 2 PG&E Letter DCL-11-136 Page 2 of 98

-1

LRA Amendment 45

Affected LRA Sections, Tables, and Figures

Table 3.4.2-4
Table 3.5.2-1
Section 4.2.1
Table 4.2-1
Table 4.2-2
Table 4.2-3
Section 4.2.2
Table 4.2-4
Table 4.2-5
Section 4.2.3
Table 4.2-6
Table 4.2-7
Section 4.9
Section A1.15
Section A3.1.2
Table A4-1, #23, 24, 31, 35, 62,
71
Section B2.1.15

Enclosure 2 PG&E Letter DCL-11-136 Page 3 of 98

Section 2.3 SCOPING AND SCREENING RESULTS: MECHANICAL SYSTEMS

Component Type	Intended Function
Filter	Leakage Boundary (spatial)
	Structural Integrity (attached)

Table 2.3.1-2 Reactor Coolant System

Enclosure 2 PG&E Letter DCL-11-136 Page 4 of 98

Section 2.3 SCOPING AND SCREENING RESULTS: MECHANICAL SYSTEMS

Component Type	Intended Function			
Indicator	Leakage Boundary (spatial) Structural Integrity (attached)			

Table 2.3.2-3 Residual Heat Removal System

Enclosure 2 PG&E Letter DCL-11-136 Page 5 of 98

Section 2.3 SCOPING AND SCREENING RESULTS: MECHANICAL SYSTEMS

Component Type	Intended Function Leakage Boundary (spatial) Pressure Boundary		
Tubing			
	Structural Integrity (attached)		

Table 2.3.3-4 Component Cooling Water System

Enclosure 2 PG&E Letter DCL-11-136 Page 6 of 98

Section 2.3 SCOPING AND SCREENING RESULTS: MECHANICAL SYSTEMS

	Component Type	Intended Function				
Drifice		Pressure Boun Throttle	dary	in the second		
	90 100					
	·					

Table 2.3.3-7Compressed Air System

Enclosure 2 PG&E Letter DCL-11-136 Page 7 of 98

Section 2.4 SCOPING AND SCREENING RESULTS: STRUCTURES

Component Type	Intended Function			
Hatch	Shelter, Protection Structural Support			
Structural Steel	Missile Barrier			

Table 2.4-1 Containment Building

Enclosure 2 PG&E Letter DCL-11-136 Page 8 of 98

Section 3.1 AGING MANAGEMENT OF REACTOR VESSEL, INTERNALS, AND REACTOR COOLANT SYSTEM

 Table 3.1.2-2
 Reactor Vessel, Internals, and Reactor Coolant System – Summary of Aging Management Evaluation – Reactor Coolant System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Filter	LBS, SIA	Stainless Steel	Demineralized Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	V.C-4	3.2.1.03	C
Filter	LBS, SIA	Stainless Steel	Plant Indoor Air (Ext)	None	None	IV.E-2	3.1.1.86	A

Enclosure 2 PG&E Letter DCL-11-136 Page 9 of 98 Section 3.2 AGING MANAGEMENT OF ENGINEERED SAFETY FEATURES

3.2.2.1.1 Safety Injection System

Materials

The materials of construction for the safety injection system component types are:

- Cast Iron
- Cast Iron (Gray Cast Iron)

Enclosure 2 PG&E Letter DCL-11-136 Page 10 of 98 Section 3.2 AGING MANAGEMENT OF ENGINEERED SAFETY FEATURES

3.2.2.1.3 Residual Heat Removal System

Materials

The materials of construction for the residual heat removal system component types are:

Glass

Enclosure 2 PG&E Letter DCL-11-136 Page 11 of 98

Section 3.2 AGING MANAGEMENT OF ENGINEERED SAFETY FEATURES

Component Type	Intended Function		Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item		Notes
Filter		Cast Iron (Gray Cast Iron)	Lubricating Oil (Int)	Loss of material	Lubricating Oil Analysis (B2.1.23) and One-Time Inspection (B2.1.16)	V.D1-28	3.2.1.16	В
Filter		Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	V.E-7	3.2.1.31	В

Table 3.2.2-1 Engineered Safety Features – Summary of Aging Management Evaluation – Safety Injection System

Enclosure 2 PG&E Letter DCL-11-136 Page 12 of 98

LBS, SIA

LBS, SIA

LBS, SIA

LBS, SIA

Glass

Steel

Steel

Stainless

Stainless

Stainless Steel

Section 3.2 AGING MANAGEMENT OF ENGINEERED SAFETY FEATURES

V.F-9

V.F-13

V.D1-30

V.D1-31

3.2.1.52

3.2.1.57

3.2.1.49

3.2.1.48

A

A

E, 3

E, 3

Table 3.2.2-3	8 Engin Syste		ty Features – Su	mmary of Aging	Management Evaluat	ion – Resid	dual Heat Re	emoval
Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Indicator	LBS, SIA	Glass	Borated Water Leakage (Ext)	None	None	None	None	Н, 5

Loss of material

None

None

Water Chemistry

Water Chemistry

(B2.1.2) and One-Time

(B2.1.2) and One-Time

Inspection (B2.1.16)

Inspection (B2.1.16)

None

None

Cracking

Treated Borated

Borated Water

Leakage (Ext)

Treated Borated

Treated Borated

Water (Int)

Water (Int)

Water (Int)

TILODOD

Notes for Table 3.2.2-3:

Plant Specific Notes:

5

Indicator

Indicator

Indicator

Indicator

There are no aging effects associated with glass with borated water leakage. This non-NUREG-1801 Revision 1 line is based upon NUREG-1801 Revision 2 line VII.J.AP-96.

Enclosure 2 PG&E Letter DCL-11-136 Page 13 of 98

Section 3.2 AGING MANAGEMENT OF ENGINEERED SAFETY FEATURES

Component Type	Intended Function	2. THE VERY STATE OF A DESCRIPTION	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Heat Exchanger (Containment Purge)	HT, PB	Cast Iron (Gray Cast Iron)	Secondary Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.F-28	3.4.1.03	A
Tubing	LBS, PB, SIA	Stainless Steel	Closed Cycle Cooling Water (Int)	Loss of material	Closed-Cycle Cooling Water System (B2.1.10)	VII.C2-10	3.3.1.50	В
Tubing	LBS, PB, SIA	Stainless Steel	Plant Indoor Air (Ext)	None	None	VII.J-15	3.3.1.94	A
Valve	РВ	Cast Iron (Gray Cast Iron)	Ventilation Atmosphere (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.F3-3	3.3.1.72	D, 9

Table 3.2.2-4 Engineered S	fety Features – Summary of	ging Management Evaluation –	Containment HVAC System
----------------------------	----------------------------	------------------------------	-------------------------

Plant Specific Notes: 9 The operate

The operating temperature for these components is above dew point. Condensation can occur but rarely. Components surfaces are normally dry.

Enclosure 2 PG&E Letter DCL-11-136 Page 14 of 98 Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.3 Saltwater and Chlorination System

Materials

The materials of construction for the saltwater and chlorination system component types are:

- Cast Iron
- Cast Iron (Gray Cast Iron)

Enclosure 2 PG&E Letter DCL-11-136 Page 15 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.4 Component Cooling Water System

Materials

The materials of construction for the component cooling water system component types are:

Cast Iron

Enclosure 2 PG&E Letter DCL-11-136 Page 16 of 98 Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.5 Makeup Water System

Materials

The materials of construction for the makeup water system component types are:

Cast Iron

Enclosure 2 PG&E Letter DCL-11-136 Page 17 of 98 Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.7 Compressed Air System

Materials

The materials of construction for the compressed air system component types are:

- Cast Iron
- Cast Iron (Gray Cast Iron)

Enclosure 2 PG&E Letter DCL-11-136 Page 18 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.8 Chemical and Volume Control System

Materials

The materials of construction for the chemical and volume control system component types are:

- Cast Iron
- Cast Iron (Gray Cast Iron)

Enclosure 2 PG&E Letter DCL-11-136 Page 19 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.11 Auxiliary Building HVAC System

Materials

The materials of construction for the auxiliary building HVAC system component types are:

Cast Iron

Cast Iron (Gray Cast Iron)

Enclosure 2 PG&E Letter DCL-11-136 Page 20 of 98 Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.12 Fire Protection System

Materials

The materials of construction for the fire protection system component types are:

Cast Iron

Enclosure 2 PG&E Letter DCL-11-136 Page 21 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.13 Diesel Generator Fuel Oil System

Materials

The materials of construction for the diesel generator fuel oil system component types are:

- Cast Iron
- Ductile Iron

Enclosure 2 PG&E Letter DCL-11-136 Page 22 of 98 Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.14 Diesel Generator System

Materials

The materials of construction for the diesel generator system component types are:

- Cast Iron
- Cast Iron (Gray Cast Iron)

Aging Management Programs

The following aging management programs manage the aging effects for the diesel generator system component types:

• Selective Leaching of Materials (B2.1.17)

Enclosure 2 PG&E Letter DCL-11-136 Page 23 of 98 Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.16 Gaseous Radwaste System

Materials

The materials of construction for the gaseous radwaste system component types are:

Cast Iron

Cast Iron (Gray Cast Iron)

Enclosure 2 PG&E Letter DCL-11-136 Page 24 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.17 Liquid Radwaste System

Materials

The materials of construction for the liquid radwaste system component types are:

Cast Iron

Cast Iron (Gray Cast Iron)

Enclosure 2 PG&E Letter DCL-11-136 Page 25 of 98 Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.18 Miscellaneous Systems In-Scope ONLY based on Criterion 10 CFR 54.4(a)(2) *

Materials

The materials of construction for the miscellaneous systems in scope ONLY based on Criterion 10 CFR 54.4(a)(2) component types are:

Cast Iron

Enclosure 2 PG&E Letter DCL-11-136 Page 26 of 98 Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.1.19 Oily Water and Turbine Sump System

Materials

The materials of construction for the oily water and turbine sump system component types are:

Cast Iron

• Cast Iron (Gray Cast Iron)

Aging Management Programs

The following aging management programs manage the aging effects for the oily water and turbine sump system component types:

• Selective Leaching of Materials (B2.1.17)

Enclosure 2 PG&E Letter DCL-11-136 Page 27 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

3.3.2.2.14 Loss of Material due to Cladding Breach

The Water Chemistry program (B2.1.2) and the One-Time Inspection program (B2.1.16) manage loss of material due to cladding breach for steel clad with stainless steel pump casings exposed to treated borated water. The one-time inspection includes each of the affected components and will address the full internal cladding surface exposed to treated borated water.

NRC Information Notice 80-38 and Information Notice 94-63 address loss of material due to cladding breach for CVCS pumps fabricated of steel with stainless steel cladding. DCPP identifies pumps CCP 1-1 and CCP 2-2 as fabricated of steel with stainless steel cladding. NRC Information Notice 80-38 advises that the condition presents a "potential source of degradation over long term operations" and recommends a "non-destructive examination of this pump type." Information Notice 94-63 provides additional information about the condition described based on the analysis of industry operating experience and concludes that "corrosion of the base metal due to cladding cracks is usually relatively easy to identify through visual inspection". The One-Time Inspection program (B2.1.16) provides a non-destructive visual examination consistent with the guidance of Information Notice 80-38 and 94-63.

Prior to the period of extended operation, DCPP will replace the current carbon steelwith stainless steel clad CCP 2-2 pump casings with a completely stainless steel pumpcasings.During the Unit 1 and Unit 2 sixteenth refueling outages, PG&E replaced the CCP 1-1 and CCP 2-2 carbon steel pump casings with completely stainless steel casings, respectively. Enclosure 2 PG&E Letter DCL-11-136 Page 28 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Table 3.3.2-3	Auxiliary Systems	– Summary of Aging	Management Evaluation	– Saltwater and Chlorination System
---------------	-------------------	--------------------	-----------------------	-------------------------------------

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Piping	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	B
Piping	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Open-Cycle Cooling Water System (B2.1.9)	VII.C1-19	3.3.1.76	A
Piping	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C1-11	3.3.1.85	A
Pump	LBS	Cast Iron (Gray Cast Iron)	Demineralized Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.G-16	3.3.1.85	A
Pump	LBS	Cast Iron (Gray Cast Iron)	Demineralized Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.B1-11	3.4.1.04	A
Pump	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Strainer	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Strainer	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Open-Cycle Cooling Water System (B2.1.9)	VII.C1-19	3.3.1.76	A
Strainer	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C1-11	3.3.1.85	A
Valve	PB	Cast Iron (Gray Cast Iron)	Atmosphere/ Weather (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-9	3.3.1.58	B

Enclosure 2 PG&E Letter DCL-11-136 Page 29 of 98

 Table 3.3.2-3
 Auxiliary Systems – Summary of Aging Management Evaluation – Saltwater and Chlorination System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Valve	LBS	Cast Iron (Gray Cast Iron)	Demineralized Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.G-16	3.3.1.85	A
Valve	LBS	Cast Iron (Gray Cast Iron)	Demineralized Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.B1-11	3.4.1.04	A
Valve	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Valve	<i>LBS</i> , PB	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Open-Cycle Cooling Water System (B2.1.9)	VII.C1-19	3.3.1.76	A
Valve	LBS, PB	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C1-11	3.3.1.85	A
Valve	PB	Copper Alloy (Aluminum > 8%)	Raw Water (Int)	Loss of material	Open-Cycle Cooling Water System (B2.1.9)	VII.C1-9	3.3.1.81	A

Enclosure 2 PG&E Letter DCL-11-136 Page 30 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Piping	PB	Carbon Steel	Atmosphere/ Weather (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.1.9	3.3.1.58	E, 4
Piping	PB	Carbon Steel	Closed Cycle Cooling Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C2-14	3.3.1.47	E, 5
Regulators	PB	Cast Iron	Dry Gas (Int)	None	None	VII.J-23	3.3.1.97	A
Regulators	PB	Cast Iron	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	₿
Regulators	PB	Cast Iron	Atmosphere/ Weather (Ext)	Loss of Material	External Surfaces Monitoring Program (B2.1.20)	VII.I-9	3.3.1.58	₽
Valve	PB	Carbon Steel	Closed Cycle Cooling Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C2-14	3.3.1.47	E, 5
Valve	PB	Stainless Steel	Closed Cycle Cooling Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C2-10	3.3.1.50	E, 5

Notes for Table 3.3.2-4:

Plant Specific Notes:4Closed Cooling Water piping with internal environment of atmosphere/weather.

Enclosure 2 PG&E Letter DCL-11-136 Page 31 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

5 Components are associated with the boric acid evaporator subsystem which is abandoned-in-place. Thus, aging of the components will be managed by the Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components aging management program.

Enclosure 2 PG&E Letter DCL-11-136 Page 32 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Table 3.3.2-5 A	uxiliary Systems –	Summary of Aging	Management Evaluation –	Makeup Water System
-----------------	--------------------	------------------	-------------------------	---------------------

Component Type	Intended Function		Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Piping	LBS	Stainless Steel	Demineralized Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.E-29	3.4.1.16	E, 6
Pump	PB	Cast Iron (Gray Cast Iron)	Demineralized Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.E-34	3.4.1.04	A
Valve	PB	Cast Iron (Gray Cast Iron)	Atmosphere/ Weather (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-9	3.3.1.58	В
Valve	PB	Cast Iron (Gray Cast Iron)	Buried (Ext)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.G-15	3.3.1.85	A
Valve	PB	Cast Iron (Gray Cast Iron)	Buried (Ext)	Loss of Material	Buried Piping and Tanks Inspection (B2.1.18)	VII.G-25	3.3.1.19	В
Valve	LBS, PB	Cast Iron (Gray Cast Iron)	Demineralized Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.E-34	3.4.1.04	A
Valve	LBS	Cast Iron	Plant Indoor Air (Ext)	Loss of material	External Surfaces- Monitoring Program- (B2.1.20)	VII.I-8	3.3.1.58	₿
Valve	LBS	Cast Iron	Potable Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping- and Ducting- Components (B2.1.22)	None	None	G
Valve	PB	Cast Iron	Raw Water (Int)	Loss of material	Fire Water System (B2.1.13)	VII.G-24	3.3.1.68	₿

Enclosure 2 PG&E Letter DCL-11-136 Page 33 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Table 3.3.2-5 Auxiliary Systems – Summary of Aging Management Evaluation – Makeup Water System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Valve	LBS	Cast Iron (Gray Cast Iron)	Potable Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	None	None	G
Valve	LBS	Cast Iron (Gray Cast Iron)	Potable Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	None	None	G
Valve	LBS	Stainless Steel	Demineralized Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.E-29	3.4.1.16	E, 6

Notes for Table 3.3.2-5:

Plant Specific Notes:

6 Components are associated with the boric acid evaporator subsystem which is abandoned-in-place. Thus, aging of the components will be managed by the Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components aging management program.

Enclosure 2 PG&E Letter DCL-11-136 Page 34 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Table 3.3.2-7 Auxiliary Systems – Summary of Aging Management Evaluation – Compressed Air System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Filter	FIL, PB	Stainless Steel	Atmosphere/ Weather (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	None	None	G
Filter	FIL, PB	Stainless Steel	Dry Gas (Int)	None	None	VII.J-19	3.3.1.97	A
Orifice	PB, TH	Stainless Steel	Plant Indoor Air (Ext)	None	None	VII.J-15	3.3.1.94	A
Orifice	PB, TH	Stainless Steel	Plant Indoor Air (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.D-4	3.3.1.54	E, 3
Regulators	PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.D-3	3.3.1.57	В
Regulators	PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.D-2	3.3.1.53	E, 3
Regulators	PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	None	None	G, 4
Regulators	PB	Copper Alloy	Atmosphere/ Weather (Ext)	Loss of material	External Surfaces- Monitoring Program- (B2.1.20)	None	None	G
Regulators	PB	Copper Alloy (> 15% Zinc)	Plant Indoor Air (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.G-9	3.3.1.28	E, 3

Enclosure 2 PG&E Letter DCL-11-136 Page 35 of 98

Table 3.3.2-7 Auxiliary Systems – Summary of Aging Management Evaluation – Compressed Air System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Solenoid Valve	₽₿	Copper Alloy (> 15% Zinc)	Atmosphere/ Weather (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	None	None	G
Solenoid Valve	PB	Copper Alloy (> 15% Zinc)	Plant Indoor Air (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.G-9	3.3.1.28	E, 3

Notes for Table 3.3.2-7:

Plant Specific Notes: 4

Gray Cast Iron SSCs with surfaces exposed to Ventilation Atmosphere (Internal) or Plant Indoor Air (Internal) are subject to wetting due to condensation and thus are subject to loss of material due to selective leaching.

Enclosure 2 PG&E Letter DCL-11-136 Page 36 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Demineralizer	LBS	Stainless Steel	Demineralized Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry- (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.E-29	3.4.1.16	AE, 9
Evaporator	LBS	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22Water Chemistry (B2.1.2) and One-Time- Inspection (B2.1.16)	VII.E1-17	3.3.1.91	E, 5 9
Evaporator	LBS	Stainless Steel	Treated Borated Water (Int)	Cracking	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VII.E1-20	3.3.1.90	E, 5
Filter	LBS	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.E1-17	3.3.1.91	<i>E</i> , 9
Flow Element	LBS, SIA	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.E1-17	3.3.1.91	<i>E</i> , 9
Heat Exchanger (Boric Acid Evaporator/ Condenser)	LBS, SIA, SS	Carbon Steel	Closed Cycle Cooling Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Closed Cycle Cooling- Water System (B2.1.10)	VII.E1-6	3.3.1.48	E, 9 B
Heat Exchanger (Boric Acid Evaporator/ Condenser)	LBS, SS	Carbon Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.E-34	3.4.1.04	E, 9

Enclosure 2 PG&E Letter DCL-11-136 Page 37 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Heat Exchanger- (Boric Acid- Evaporator/- Condenser)	LBS, SS	Carbon Steel	Steam (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.B1-8	3.4.1.37	E, 5
Heat Exchanger (Boric Acid Evaporator/ Condenser)	LBS, SS	Stainless Steel	Closed Cycle Cooling Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Closed Cycle Cooling- Water System (B2.1.10)	VII.C2-10	3.3.1.50	E, 9Ð
Heat Exchanger (Boric Acid Evaporator/ Condenser)	LBS, SS	Stainless Steel	Secondary Water (Ext)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry- (B2.1.2) and One-Time- Inspection (B2.1.16)	VIII.E-29	3.4.1.16	<i>E</i> , 9 C
Heat- Exchanger- (Boric Acid- Evaporator/- Condenser)	LBS, SS	Stainless- Steel	Secondary- Water (Ext)	Cracking	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.E-30	3.4.1.14	e
Heat Exchanger (Boric Acid Distillate)	LBS, SS	Stainless Steel	Closed Cycle Cooling Water (Ext)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Closed-Cycle Cooling- Water System (B2.1.10)	VII.C2-10	3.3.1.50	E, 9Ð
Heat Exchanger (Boric Acid Distillate)	LBS, SIA, SS	Stainless Steel	Closed Cycle Cooling Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Closed-Cycle Cooling- Water System (B2.1.10)	VII.C2-10	3.3.1.50	<i>E</i> , 9 D

Enclosure 2 PG&E Letter DCL-11-136 Page 38 of 98

Table 3.3.2-8 Auxiliary S	Systems – Summary	of Aging Management Evaluation –	 Chemical and Volume Contro 	I System
---------------------------	-------------------	----------------------------------	--	----------

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Heat Exchanger (Boric Acid Distillate)	LBS, SS	Stainless Steel	Demineralized Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.E-29	3.4.1.16	E, 9 C
Heat Exchanger (Boric Acid Evaporator)	LBS	Stainless Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.E-29	3.4.1.16	E, 9
Heat- Exchanger- (Boric Acid- Evaporator)	LBS	Stainless- Steel	Steam (Int)	Cracking	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.B1-2	3.4.1.39	E, 5
Heat- Exchanger- (Boric Acid- Evaporator)	LBS	Stainless- Steel	Steam (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.B1-3	3.4.1.37	E, 5
Heat- Exchanger- (Boric Acid- Evaporator)	LBS	Stainless- Steel	Treated Borated Water (Ext)	Cracking	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VII.E1-5	3.3.1.08	E, 5
Heat Exchanger (Boric Acid Evaporator)	LBS	Stainless Steel	Treated Borated Water (Ext)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry- (B2.1.2) and One-Time- Inspection (B2.1.16)	VII.E1-17	3.3.1.91	E, 5 9
Heat- Exchanger- (Boric Acid- Evaporator)	LBS, SIA, SS	Stainless- Steel	Treated Borated- Water (Int)	Cracking	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VII.E1-5	3.3.1.08	E

Enclosure 2 PG&E Letter DCL-11-136 Page 39 of 98

Table 3.3.2-8 Auxiliary Systems – Summar	y of Aging Management Evaluation –	- Chemical and Volume Control System
--	------------------------------------	--------------------------------------

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Heat Exchanger (Boric Acid Evaporator)	LBS, SIA, SS	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry- (B2.1.2) and One-Time- Inspection (B2.1.16)	VII.E1-17	3.3.1.91	E, 5 9
Heat Exchanger (Boric Acid Feed)	LBS	Stainless Steel	Secondary Water (Ext)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry- (B2.1.2) and One-Time- Inspection (B2.1.16)	VIII.E-29	3.4.1.16	E, 9 C
Heat- Exchanger- (Boric Acid- Feed)	LBS	Stainless- Steel	Secondary Water (Ext)	Cracking	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.E-30	3.4.1.14	e
Heat Exchanger (Boric Acid Feed)	LBS	Stainless Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.E-29	3.4.1.16	E, 9
Heat Exchanger (Boric Acid Feed)	LBS	Stainless- Steel	Steam (Int)	Cracking	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.B1-2	3.4.1.39	E, 5
Heat- Exchanger- (Boric Acid- Feed)	LBS	Stainless- Steel	Steam (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.B1-3	3.4.1.37	E, 5
Heat- Exchanger- (Boric Acid- Feed)	LBS	Stainless Steel	Treated Borated- Water (Int)	Cracking	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	¥II.E1-5	3.3.1.08	E

Enclosure 2 PG&E Letter DCL-11-136 Page 40 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Heat Exchanger (Boric Acid Feed)	LBS	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry- (B2.1.2) and One-Time Inspection (B2.1.16)	VII.E1-17	3.3.1.91	E, 5 9
Heat Exchanger (Boric Acid Vent)	LBS, SIA, SS	Carbon Steel	Closed Cycle Cooling Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Closed Cycle Cooling- Water System (B2.1.10)	VII.E1-6	3.3.1.48	Е, 9В
Heat Exchanger (Boric Acid Vent)	LBS, SS	Carbon Steel	Demineralized Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry- (B2.1.2) and One-Time- Inspection (B2.1.16)	VIII.E-37	3.4.1.03	E, 9A
Heat Exchanger (Boric Acid Vent)	LBS, SS	Stainless Steel	Closed Cycle Cooling Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Closed-Cycle Cooling- Water System (B2.1.10)	VII.C2-10	3.3.1.50	E, 9 D
Heat Exchanger (Boric Acid Vent)	LBS, SS	Stainless Steel	Secondary Water (Ext)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry- (B2.1.2) and One-Time- Inspection (B2.1.16)	VIII.E-29	3.4.1.16	E, 9 C
Heat- Exchanger- (Boric Acid- Vent)	LBS, SS	Stainless- Steel	Secondary- Water (Ext)	Cracking	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.E-30	3.4.1.14	e

Enclosure 2 PG&E Letter DCL-11-136 Page 41 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Piping	LBS, SIA	Stainless Steel	Demineralized Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.E-29	3.4.1.16	<i>E</i> , 9
Piping	LBS, SIA	Stainless Steel	Sodium Hydroxide (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	None	None	G, 9
Piping	LBS, PB, SIA	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.E1-17	3.3.1.91	E, 9
Pump	LBS, PB, SIA	Carbon Steel with Stainless Steel Cladding	Borated Water Leakage (Ext)	Loss of material	Boric Acid Corrosion (B2.1.4)	VII.E1-1	3.3.1.89	A
Pump	LBS	Carbon Steel with Stainless Steel Cladding	Demineralized Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry (B2.1.2) and One-Time- Inspection (B2.1.16)	VIII.E-29	3.4.1.16	<i>E, 9</i> A
Pump	PB	Carbon Steel with Stainless Steel Cladding	Treated Borated- Water (Int)	Cracking	Water Chemistry (B2.1.2) and One Time Inspection (B2.1.16)	VII.E1-7	3.3.1.09	E
Pump	LBS, PB, SIA	Carbon Steel with Stainless Steel Cladding	Treated Borated Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VII.E1-17	3.3.1.91	E, 5

Enclosure 2 PG&E Letter DCL-11-136 Page 42 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Pump	₽₿	Carbon- Steel with- Stainless- Steel- Cladding	Treated Borated- Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VII.E1-21	3.3.1.35	E
Pump	LBS	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.E1-17	3.3.1.91	<i>E</i> , 9
Sight Gauge	LBS, SIA	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.E1-17	3.3.1.91	E, 9
Tank	LBS	Stainless Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.E-29	3.4.1.16	E, 9
Tank	LBS	Stainless Steel	Steam (Int)	Cracking	Water Chemistry (B2.1.2) and One Time Inspection (B2.1.16)	VIII.B1-2	3.4.1.39	E, 5
Tank	LBS	Stainless Steel	Steam (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.B1-3	3.4.1.37	E, 5
Tank	LBS	Stainless Steel Cast Austenitic	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry- (B2.1.2) and One-Time- Inspection (B2.1.16)	VII.E1-17	3.3.1.91	E, 5 9
Trap	LBS	Carbon Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.E-34	3.4.1.04	E, 9
Trap	LBS	Carbon Steel	Steam (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.B1-8	3.4.1.37	E, 5
Valve	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8 ,	3.3.1.58	В

Enclosure 2 PG&E Letter DCL-11-136 Page 43 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Valve	LBS	Cast Iron (Gray Cast Iron)	Ventilation Atmosphere (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	V.A-19	3.2.1.32	В
Valve	LBS	Cast Iron (Gray Cast Iron)	Ventilation Atmosphere (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	None	None	G, 8
Valve	LBS, PB, SIA	Stainless Steel	Demineralized Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.E-29	3.4.1.16	E, 9
Valve	LBS, SIA	Stainless Steel	Sodium Hydroxide (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	None	None	G, 9
Valve	LBS, PB, SIA	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.E1-17	3.3.1.91	<i>E</i> , 9
Valve	LBS, SIA	Stainless Steel Cast Austenitic	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.E1-17	3.3.1.91	E, 9
Vessel	LBS	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16) Water- Chemistry (B2.1.2) and One- Time Inspection (B2.1.16)	VII.E1-17	3.3.1.91	E, 5 9

Notes for Table 3.3.2-8:

Plant Specific Notes:

Enclosure 2 PG&E Letter DCL-11-136 Page 44 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

- 8 Gray Cast Iron SSCs with surfaces exposed to Ventilation Atmosphere (Internal) or Plant Indoor Air (Internal) are subject to wetting due to condensation and thus are subject to loss of material due to selective leaching.
- 9 Components are associated with the boric acid evaporator subsystem which is abandoned-in-place. Thus, aging of the components will be managed by the Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components aging management program.

Enclosure 2 PG&E Letter DCL-11-136 Page 45 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Damper	PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.F2-2	3.3.1.56	В
Damper	PB	Cast Iron (Gray Cast Iron)	Ventilation Atmosphere (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.F2-3	3.3.1.72	B
Damper	PB	Cast Iron (Gray Cast Iron)	Ventilation Atmosphere (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	None	None	G, 5
Pump	LBS	Carbon Steel	Closed Cycle Cooling Water (Int)	Loss of material	Closed-Cycle Cooling Water System (B2.1.10)	VII.F2-18	3.3.1.47	В
Pump	LBS	Carbon Steel	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Pump	LBS	Cast Iron (Gray Cast Iron)	Closed Cycle Cooling Water (Int)	Loss of material	Closed-Cycle Cooling Water System (B2.1.10)	VII.F2-18	3.3.1.47	В
Pump	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Pump	LBS	Cast Iron (Gray Cast Iron)	Closed Cycle Cooling Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C2-8	3.3.1.85	A
Valve	LBS	Copper Alloy (> 15% Zinc)	Closed Cycle Cooling Water (Int)	Loss of material	Closed-Cycle Cooling Water System (B2.1.10)	VII.F2-13	3.3.1.51	B
Valve	LBS	Copper Alloy (> 15% Zinc)	Demineralized Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.A-5	3.4.1.15	A

Table 3.3.2-11 Auxiliary Systems – Summary of Aging Management Evaluation – Auxiliary Building HVAC System

Enclosure 2 PG&E Letter DCL-11-136 Page 46 of 98

Table 3.3.2-11 Auxiliary Systems – Summary of Aging Management Evaluation – Auxiliary Building HVAC System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Valve		Copper Alloy (> 15% Zinc)			Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	None	None	G

Notes for Table 3.3.2-11:

Plant Specific Notes:

5 Gray Cast Iron SSCs with surfaces exposed to Ventilation Atmosphere (Internal) or Plant Indoor Air (Internal) are subject to wetting due to condensation and thus are subject to loss of material due to selective leaching.

Enclosure 2 PG&E Letter DCL-11-136 Page 47 of 98

Table 3.3.2-12	Auxiliary Systems -	 Summary of Aging 	Management Evaluatio	n – Fire Protection System
----------------	---------------------	--------------------------------------	----------------------	----------------------------

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Hydrant	PB	Cast Iron Carbon Steel	Buried (Ext)	Loss of material	Buried Piping and Tanks Inspection (B2.1.18)	VII.G-25	3.3.1.19	В
Hydrant	PB	Cast Iron Carbon Steel	Raw Water (Int)	Loss of material	Fire Water System (B2.1.13)	VII.G-24	3.3.1.68	В
Piping	PB	Cast Iron (Gray Cast Iron)	Buried (Ext)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.G-15	3.3.1.85	A
Piping	PB	Cast Iron (Gray Cast Iron)	Buried (Ext)	Loss of material	Buried Piping and Tanks Inspection (B2.1.18)	VII.G-25	3.3.1.19	В
Piping	PB	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.G-14	3.3.1.85	A
Piping	PB	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Fire Water System (B2.1.13)	VII.G-24	3.3.1.68	В
Pump	PB, SS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Pump	PB, SS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.G-14	3.3.1.85	A
Pump	PB, SS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Fire Water System (B2.1.13)	VII.G-24	3.3.1.68	В
Strainer	PB	Cast Iron	Plant Indoor Air (Ext)	Loss of Material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	B
Strainer	PB	Cast Iron	Raw Water (Int)	Loss of Material	Fire Water System (B2.1.13)	VII.G-24	3.3.1.68	₿
Valve	PB	Cast Iron	Atmosphere/- Weather (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-9	3.3.1.58	B

Enclosure 2 PG&E Letter DCL-11-136 Page 48 of 98

Table 3.3.2-12	Auxiliary Systems	 Summary of Aging 	Management Evaluation	 Fire Protection System
----------------	-------------------	--------------------------------------	-----------------------	--

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Valve	PB	Cast Iron	Buried (Ext)	Loss of material	Buried Piping and Tanks- Inspection (B2.1.18)	VII.G-25	3.3.1.19	₿
Valve	PB	Cast Iron	Plant Indoor Air- (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.G-23	3.3.1.71	₽
Valve	PB	Cast Iron	Raw Water (Int)	Loss of material	Fire Water System (B2.1.13)	VII.G-24	3.3.1.68	₽
Valve	PB	Cast Iron	Dry Gas (Int)	None	None	VII.J-23	3.3.1.97	A
Valve	PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.G-23	3.3.1.71	В
Valve	PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	None	None	G, 4

Notes for Table 3.3.2-12:

Plant Specific Notes:

4

Gray Cast Iron SSCs with surfaces exposed to Ventilation Atmosphere (Internal) or Plant Indoor Air (Internal) are subject to wetting due to condensation and thus are subject to loss of material due to selective leaching.

Enclosure 2 PG&E Letter DCL-11-136 Page 49 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Pump	PB	Cast- IronDuctile Iron	Fuel Oil (Int)	Loss of material	Fuel Oil Chemistry (B2.1.14) and One-Time Inspection (B2.1.16)	VII.H1-10	3.3.1.20	В
Pump	PB	Cast- IronDuctile Iron	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Valve	PB	Cast Iron	Fuel Oil (Ext)	Loss of material	Fuel Oil Chemistry (B2.1.14)- and One-Time Inspection (B2.1.16)	VII.H1-10	3.3.1.20	B
Valve	PB	Cast Iron	Fuel Oil (Int)	Loss of material	Fuel Oil Chemistry (B2.1.14)- and One-Time Inspection- (B2.1.16)	VII.H1-10	3.3.1.20	₿

Enclosure 2 PG&E Letter DCL-11-136 Page 50 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Table 3.3.2-14 Auxiliary Systems – Summary of Aging Management Evaluation – Diesel Generator System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Compressor	SIA	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Compressor	SIA	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.G-34	3.4.1.30	D
Compressor	SIA	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	None	None	G, 3
Pump	PB	Cast Iron (Gray Cast Iron)	Closed Cycle Cooling Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C2-8	3.3.1.85	A
Pump	PB	Cast Iron (Gray Cast Iron)	Closed Cycle Cooling Water (Int)	Loss of material	Closed-Cycle Cooling Water System (B2.1.10)	VII.H2-23	3.3.1.47	В
Pump	LBS, PB, SIA	Cast Iron (Gray Cast Iron)	Fuel Oil (Int)	Loss of material	Fuel Oil Chemistry (B2.1.14) and One-Time Inspection (B2.1.16)	VII.H2-24	3.3.1.20	В
Pump	LBS, PB	Cast Iron (Gray Cast Iron)	Lubricating Oil (Int)	Loss of material	Lubricating Oil Analysis (B2.1.23) and One-Time Inspection (B2.1.16)	VII.H2-20	3.3.1.14	В
Pump	LBS, PB, SIA	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Sight Gauge	PB	Carbon Steel	Fuel Oil (Int)	Loss of material	Fuel Oil Chemistry (B2.1.14) and One-Time Inspection (B2.1.16)	VII.H2-24	3.3.1.20	В
Sight Gauge	PB	Carbon Steel	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В

Enclosure 2 PG&E Letter DCL-11-136 Page 51 of 98

Table 3.3.2-14 Auxilia	ry Systems – Summar	ry of Aging Management Ev	valuation – Diesel Generator	System
------------------------	---------------------	---------------------------	------------------------------	--------

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Sight Gauge	PB	Cast Iron (Gray Cast Iron)	Fuel Oil (Int)	Loss of material	Fuel Oil Chemistry (B2.1.14) and One-Time Inspection (B2.1.16)	VII.H2-24	3.3.1.20	В
Sight Gauge	PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Valve	PB	Cast Iron (Gray Cast Iron)	Closed Cycle Cooling Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C2-8	3.3.1.85	A
Valve	PB	Cast Iron (Gray Cast Iron)	Closed Cycle Cooling Water (Int)	Loss of material	Closed-Cycle Cooling Water System (B2.1.10)	VII.H2-23	3.3.1.47	В
Valve	PB	Cast Iron	Fuel Oil (Int)	Loss of material	Fuel Oil Chemistry (B2.1.14) and One-Time Inspection (B2.1.16)	VII.H2-2 4	3.3.1.20	₿
Valve	PB	Cast Iron (Gray Cast Iron)	Lubricating Oil (Int)	Loss of material	Lubricating Oil Analysis (B2.1.23) and One-Time Inspection (B2.1.16)	VII.H2-20	3.3.1.14	В
Valve	PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Valve	PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.H2-21	3.3.1.71	В
Valve	PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	None	None	G, 3

Enclosure 2 PG&E Letter DCL-11-136 Page 52 of 98 Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Notes for Table 3.3.2-14:

Plant Specific Notes: 3 Gray Cast Iro

Gray Cast Iron SSCs with surfaces exposed to Ventilation Atmosphere (Internal) or Plant Indoor Air (Internal) are subject to wetting due to condensation and thus are subject to loss of material due to selective leaching.

Enclosure 2 PG&E Letter DCL-11-136 Page 53 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Table 3.3.2-16 Auxiliary Systems – Summary of Aging Management Evaluation – Gaseous Radwaste System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Compressor	LBS, SS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Compressor	LBS, SS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.G-23	3.3.1.71	В
Compressor	LBS, SS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	None	None	G, 6
Compressor	LBS, SS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C1-11	3.3.1.85	A
Compressor	LBS, SS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C1-19	3.3.1.76	E, 3
Valve	LBS	Copper Alloy (> 15% Zinc)	Plant Indoor Air (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.G-9	3.3.1.28	E, 5
Valve	LBS, SS	Copper Alloy (> 15% Zinc)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C1-9	3.3.1.81	E, 3

Enclosure 2 PG&E Letter DCL-11-136 Page 54 of 98 Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Notes for Table 3.3.2-16:

Plant Specific Notes:

- NUREG-1801, Section XI.M24, Compressed Air Monitoring applies to monitoring of the piping and components associated with the air compressors and dryers. Air compressor and dryer piping and components are not in scope for DCPP. In scope piping and components are associated with containment penetrations and air/nitrogen gas piping and components for backup operation of valves. Therefore NUREG-1801, Section XI.M24 is not considered applicable to DCPP and different aging management programs are specified for the in scope piping and components.
 Gray Cast Iron SSCs with surfaces exposed to Ventilation Atmosphere (Internal) or Plant Indoor Air (Internal) are subject to wetting due to
 - Gray Cast Iron SSCs with surfaces exposed to Ventilation Atmosphere (Internal) or Plant Indoor Air (Internal) are subject to wetting due to condensation and thus are subject to loss of material due to selective leaching.

Enclosure 2 PG&E Letter DCL-11-136 Page 55 of 98

Table 3.3.2-17 Auxiliary Systems – Summary of Aging Management Evaluation – Liquid Radwaste System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Piping	LBS		Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C1-19	3.3.1.76	E, 8
Piping	LBS	Stainless Steel	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C1-15	3.3.1.79	E, 8
Sample Cooler	LBS, SIA	Copper Alloy (> 15% Zinc)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C1-9	3.3.1.81	E, 3
Strainer	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Strainer	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C1-11	3.3.1.85	A
Strainer	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C1-19	3.3.1.76	E, 2
Trap	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Trap	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C1-11	3.3.1.85	A

Enclosure 2 PG&E Letter DCL-11-136 Page 56 of 98

Table 3.3.2-17 Auxiliary Systems – Summary of Aging Management Evaluation – Li
--

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Trap	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C1-19	3.3.1.76	E, 2
Valve	LBS, PB, SIA	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Valve	LBS, SIA	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C1-11	3.3.1.85	A
Valve	LBS, PB, SIA	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C1-19	3.3.1.76	E, 2
Valve	LBS	Copper Alloy (> 15% Zinc)	Demineralized Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.F-15	3.4.1.15	A
Valve	LBS	Stainless Steel	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C1-15	3.3.1.79	E, 8

Notes for Table 3.3.2-17:

Plant Specific Notes: 8 Components

Components are associated with the boric acid evaporator subsystem which is abandoned-in-place. Thus, aging of the components will be managed by the Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components aging management program.

Enclosure 2 PG&E Letter DCL-11-136 Page 57 of 98

 Table 3.3.2-18
 Auxiliary Systems – Summary of Aging Management Evaluation – Miscellaneous Systems in scope

 ONLY for Criterion 10 CFR 54.4(a)(2)

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Piping	LBS	Carbon Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.C-7	3.4.1.04	E, 7
Piping	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Piping	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.G-23	3.3.1.71	В
Piping	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	None	None	G, 6
Piping	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C1-11	3.3.1.85	A
Piping	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C1-19	3.3.1.76	E, 5

Enclosure 2 PG&E Letter DCL-11-136 Page 58 of 98

 Table 3.3.2-18
 Auxiliary Systems – Summary of Aging Management Evaluation – Miscellaneous Systems in scope

 ONLY for Criterion 10 CFR 54.4(a)(2)

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Piping	LBS	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water- Chemistry (B2.1.2) and- One-Time Inspection- (B2.1.16)	VII.E1-17	3.3.1.91	E, 47
Piping .	LBS	Stainless- Steel	Treated Borated- Water (Int)	Cracking	Water Chemistry (B2.1.2) and One-Time- Inspection (B2.1.16)	VII.E1-20	3.3.1.90	E, 4
Pump	LBS	Cast Iron	Closed Cycle Cooling Water (Int)	Loss of material	Closed-Cycle Cooling- Water System (B2.1.10)	VII.C2-14	3.3.1.47	₿
Pump	LBS	Cast Iron	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	₿
Strainer	LBS	Cast Iron (Gray Cast Iron)	Closed Cycle Cooling Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C2-8	3.3.1.85	A
Strainer	LBS	Cast Iron (Gray Cast Iron)	Closed Cycle Cooling Water (Int)	Loss of material	Closed-Cycle Cooling Water System (B2.1.10)	VII.C2-14	3.3.1.47	В
Strainer	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.1-8	3.3.1.58	В
Valve	LBS	Cast Iron	Closed Cycle Cooling Water (Int)	Loss of material	Closed-Cycle Cooling Water System (B2.1.10)	VII.C2-14	3.3.1.47	₿
Valve	LBS	Cast Iron	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	₽

Enclosure 2 PG&E Letter DCL-11-136 Page 59 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

 Table 3.3.2-18
 Auxiliary Systems – Summary of Aging Management Evaluation – Miscellaneous Systems in scope

 ONLY for Criterion 10 CFR 54.4(a)(2)

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Valve	LBS	Stainless Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.D1-4	3.4.1.16	E, 7
Valve	LBS	Stainless Steel	Treated Borated Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Water- Chemistry (B2.1.2) and- One-Time Inspection- (B2.1.16)	VII.E1-17	3.3.1.91	E, 47
Valve	LBS	Stainless- Steel	Treated Borated Water (Int)	Cracking	Water Chemistry (B2.1.2) and One-Time- Inspection (B2.1.16)	VII.E1-20	3.3.1.90	<mark>€, 4</mark>

Notes for Table 3.3.2-18:

Plant Specific Notes:

6

7

Gray Cast Iron SSCs with surfaces exposed to Ventilation Atmosphere (Internal) or Plant Indoor Air (Internal) are subject to wetting due to condensation and thus are subject to loss of material due to selective leaching.

Components are associated with the boric acid evaporator subsystem which is abandoned-in-place. Thus, aging of the components will be managed by the Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components aging management program.

Enclosure 2 PG&E Letter DCL-11-136 Page 60 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

Table 3.3.2-19 Auxiliary Systems – Summary of Aging Management Evaluation – Oily Water and Turbine Sump System	Table 3.3.2-19	Auxiliary Systems -	 Summary of Aging M 	lanagement Evaluation – Oi	ly Water and Turbine Sump Syste
--	----------------	---------------------	--	----------------------------	---------------------------------

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Piping	PB	Cast Iron (Gray Cast Iron)	Encased in Concrete (Ext)	None	None	VII.J-21	3.3.1.96	A
Piping	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Piping	LBS, PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.G-23	3.3.1.71	B
Piping	LBS, PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	None	None	G, 3
Piping	LBS, PB	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C1-11	3.3.1.85	A
Piping	LBS, PB	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VII.C1-19	3.3.1.76	E, 2
Pump	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VII.I-8	3.3.1.58	В
Pump	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VII.C1-11	3.3.1.85	A

Enclosure 2 PG&E Letter DCL-11-136 Page 61 of 98

Section 3.3 AGING MANAGEMENT OF AUXILIARY SYSTEMS

 Table 3.3.2-19
 Auxiliary Systems – Summary of Aging Management Evaluation – Oily Water and Turbine Sump System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Pump	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting	VII.C1-19	3.3.1.76	E, 2
		i di sela			Components (B2.1.22)			

Notes for Table 3.3.2-19:

Plant Specific Notes:

3 Gray Cast Iron SSCs with surfaces exposed to Ventilation Atmosphere (Internal) or Plant Indoor Air (Internal) are subject to wetting due to condensation and thus are subject to loss of material due to selective leaching.

Enclosure 2 PG&E Letter DCL-11-136 Page 62 of 98 Section 3.4 AGING MANAGEMENT OF STEAM AND POWER CONVERSION SYSTEM

3.4.2.1.1 Turbine Steam Supply System

Materials

The materials of construction for the turbine steam supply system component types are:

Cast Iron

Cast Iron (Gray Cast Iron)

Aging Management Programs

The following aging management programs manage the aging effects for the turbine steam supply system component types:

• Selective Leaching of Materials (B2.1.17)

Enclosure 2 PG&E Letter DCL-11-136 Page 63 of 98

Section 3.4 AGING MANAGEMENT OF STEAM AND POWER CONVERSION SYSTEM

3.4.2.1.2 Auxiliary Steam System

Materials

The materials of construction for the auxiliary steam system component types are:

Cast Iron

Enclosure 2 PG&E Letter DCL-11-136 Page 64 of 98 Section 3.4 AGING MANAGEMENT OF STEAM AND POWER CONVERSION SYSTEM

3.4.2.1.4 Condensate System

Materials

The materials of construction for the condensate system component types are:

Cast Iron

Cast Iron (Gray Cast Iron)

Aging Management Programs

The following aging management programs manage the aging effects for the condensate system component types:

• Selective Leaching of Materials (B2.1.17)

Enclosure 2 PG&E Letter DCL-11-136 Page 65 of 98

Section 3.4 AGING MANAGEMENT OF STEAM AND POWER CONVERSION SYSTEM

 Table 3.4.2-1
 Steam and Power Conversion System – Summary of Aging Management Evaluation – Turbine Steam

 Supply System

Component Type	Intended Function	(a) a substantial data and a substan	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Valve	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VIII.H-7	3.4.1.28	В
Valve	LBS	Cast Iron (Gray Cast Iron)	Secondary Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VIII.A-8	3.4.1.36	A
Valve	LBS	Cast Iron (Gray Cast Iron)	Secondary Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.D1-8	3.4.1.04	A

Enclosure 2 PG&E Letter DCL-11-136 Page 66 of 98

Section 3.4 AGING MANAGEMENT OF STEAM AND POWER CONVERSION SYSTEM

 Table 3.4.2-2
 Steam and Power Conversion System – Summary of Aging Management Evaluation – Auxiliary Steam

 System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Heat Exchanger (Aux Steam Drain Rec Vent Cond)	LBS, SIA, SS	Carbon Steel	Closed Cycle Cooling Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Closed-Cycle Cooling Water System (B2.1.10)	VIII.G-5	3.4.1.24	₿ <i>Е</i> , 8
Heat Exchanger (Aux Steam Drain Rec Vent Cond)	LBS, SIA, SS	Carbon Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.B1-11	3.4.1.04	E, 8
Heat Exchanger (Aux Steam Drain Rec Vent Cond)	LBS, SIA, SS	Carbon Steel		Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping- and Ducting Components- (B2.1.22)Water- Chemistry (B2.1.2) and One-Time Inspection- (B2.1.16)	VIII.B1-8	3.4.1.37	E, 68
Piping	LBS	Carbon Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.B1-11	3.4.1.04	E, 8

Enclosure 2 PG&E Letter DCL-11-136 Page 66 of 98

Section 3.4 AGING MANAGEMENT OF STEAM AND POWER CONVERSION SYSTEM

Table 3.4.2-2 Steam and Power Conversion System – Summary of Aging Management Evaluation – Auxiliary Steam System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Heat Exchanger (Aux Steam Drain Rec Vent Cond)	LBS, SIA, SS	Carbon Steel	Closed Cycle Cooling Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)Closed-Cycle Cooling Water System (B2.1.10)	VIII.G-5	3.4.1.24	₿ <i>Е,</i> 8
Heat Exchanger (Aux Steam Drain Rec Vent Cond)	LBS, SIA, SS	Carbon Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.B1-11	3.4.1.04	E, 8
Heat Exchanger (Aux Steam Drain Rec Vent Cond)	LBS, SIA, SS	Carbon Steel	Steam (Int)	Loss of material	Inspection of Internal Surfaces in- Miscellaneous Piping- and Ducting- Components- (B2.1.22)Water- Chemistry (B2.1.2) and- One-Time Inspection- (B2.1.16)	VIII.B1-8	3.4.1.37	E, 68
Piping	LBS	Carbon Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.B1-11	3.4.1.04	E, 8 -

Enclosure 2 PG&E Letter DCL-11-136 Page 67 of 98

Section 3.4 AGING MANAGEMENT OF STEAM AND POWER CONVERSION SYSTEM

 Table 3.4.2-2
 Steam and Power Conversion System – Summary of Aging Management Evaluation – Auxiliary Steam

 System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Piping	LBS	Stainless Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.B1-4	3.4.1.16	E, 8
Pump	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VIII.H-7	3.4.1.28	В
Pump	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VIII.G-24	3.4.1.36	A
Pump	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.G-36	3.4.1.08	E
Strainer	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VIII.H-7	3.4.1.28	В
Strainer	LBS	Cast Iron (Gray Cast Iron)	Steam (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.B1-8	3.4.1.37	E, 6
Strainer	LBS	Cast Iron (Gray Cast Iron)	Steam (Int)	Wall thinning	Flow-Accelerated Corrosion (B2.1.6)	VIII.B1-9	3.4.1.29	В
Strainer	LBS	Carbon Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.B1-11	3.4.1.04	E, 8

Enclosure 2 PG&E Letter DCL-11-136 Page 68 of 98

Section 3.4 AGING MANAGEMENT OF STEAM AND POWER CONVERSION SYSTEM

Table 3.4.2-2 Steam and Power Conversion System – Summary of Aging Management Evaluation – Auxiliary Steam System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Strainer	LBS	-	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.B1-11	3.4.1.04	E, 8
Tank	LBS		Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.G-41	3.4.1.06	E, 8
Trap	LBS	Carbon Steel	Steam (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.B1-8	3.4.1.37	E, 8
Valve	LBS	Carbon Steel	Secondary Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.B1-11	3.4.1.04	E, 8
Valve	LBS	Cast Iron	Plant Indoor Air- (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VIII.H-7	3.4.1.28	B
Valve	LBS	Cast Iron	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in- Miscellaneous Piping- and Ducting- Components (B2.1.22)	VIII.G-36	3.4.1.08	E
Valve	LBS	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VIII.H- 7None	3.4.1.28Non e	BG

Enclosure 2 PG&E Letter DCL-11-136 Page 69 of 98

Section 3.4 AGING MANAGEMENT OF STEAM AND POWER CONVERSION SYSTEM

Table 3.4.2-2 Steam and Power Conversion System – Summary of Aging Management Evaluation – Auxiliary Steam System

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Valve	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VIII.G-24	3.4.1.36	A
Valve	LBS	Cast Iron (Gray Cast Iron)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.G-36	3.4.1.08	Ε
Valve	LBS	Cast Iron (Gray Cast Iron)	Secondary Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.B1-11	3.4.1.04	A
Valve	LBS	Copper Alloy (> 15% Zinc)	Raw Water (Int)	Loss of material	Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components (B2.1.22)	VIII.A-4	3.4.1.32	E, 5
Valve	LBS	Copper Alloy (Aluminum > 8%)	Raw Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VIII.A-6	3.4.1.35	A

Notes for Table 3.4.2-2:

Plant Specific Notes: 8 Components

Components are associated with the boric acid evaporator subsystem which is abandoned-in-place. Thus, aging of the components will be managed by the Inspection of Internal Surfaces in Miscellaneous Piping and Ducting Components aging management program.

Enclosure 2 PG&E Letter DCL-11-136 Page 70 of 98

Section 3.4 AGING MANAGEMENT OF STEAM AND POWER CONVERSION SYSTEM

Table 3.4.2-4	Steam and Power Conversion System – Summary of Aging Management Evaluation – Condensate
	Sustam

Component Type	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Valve	LBS, PB	Cast Iron (Gray Cast Iron)	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VIII.H-7	3.4.1.28	В
Valve	LBS, PB	Cast Iron (Gray Cast Iron)	Secondary Water (Int)	Loss of material	Selective Leaching of Materials (B2.1.17)	VIII.E-23	3.4.1.36	A
Valve	LBS, PB	Cast Iron (Gray Cast Iron)	Secondary Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.E-34	3.4.1.04	A
Valve	PB	Cast Iron (Gray Cast Iron)	Secondary Water (Int)	Wall thinning	Flow-Accelerated Corrosion (B2.1.6)	VIII.E-35	3.4.1.29	В
Valve	LBS	Cast Iron (Gray Cast Iron)	Steam (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.A-16	3.4.1.02	A
Valve	PB	Ductile Iron	Plant Indoor Air (Ext)	Loss of material	External Surfaces Monitoring Program (B2.1.20)	VIII.H-7	3.4.1.28	В
Valve	PB	Ductile Iron	Secondary Water (Int)	Loss of material	Water Chemistry (B2.1.2) and One-Time Inspection (B2.1.16)	VIII.E-34	3.4.1.04	A

Enclosure 2 PG&E Letter DCL-11-136 Page 71 of 98 Section 3.5 AGING MANAGEMENT OF CONTAINMENTS, STRUCTURES AND COMPONENT SUPPORTS

 Table 3.5.2-1
 Containments, Structures, and Component Supports – Summary of Aging Management Evaluation

 Containment Building

Component Type	Intended Function	Environment	Aging Effect Requiring Management	Aging Management Program	NUREG- 1801 Vol. 2 Item	Table 1 Item	Notes
Hatch	SH, SS	 Plant Indoor Air (Structural) (Ext)	None	None	VII.J-15	3.3.1.94	С
Structural Steel	MB, SS	Plant Indoor Air (Structural) (Ext)	Loss of material	Structures Monitoring Program (B2.1.32)	III.A4-5	3.5.1.25	A

Enclosure 2 PG&E Letter DCL-11-136 Page 72 of 98

4.2.1 Neutron Fluence Values

Summary Description

Loss of fracture toughness is an aging effect caused by the neutron embrittlement aging mechanism that results from prolonged exposure to neutron radiation. This process results in increased tensile strength and hardness of the material with reduced toughness. The rate of neutron exposure is defined as neutron flux, and the cumulative degree of exposure over time is defined as neutron fluence. As neutron embrittlement progresses, the toughness/temperature curve shifts down (lower fracture toughness as indicated by Charpy upper-shelf energy or $C_V USE$), and the curve shifts to the right (brittle/ductile transition temperature increases). Neutron fluence projections are made in order to estimate the effect on these reactor vessel material properties (Section 4.2.2 and Section 4.2.3), and to determine if additional reactor vessel materials will be exposed to fluence greater than 1 x 10¹⁷ n/cm² (E>1.0 MeV) as a result of license renewal (extended beltline).

Analysis

Unit 1

The last capsule withdrawn and tested from Unit 1 was Capsule V at the end-of-cycle (EOC) 11. At that point, Unit 1 had operated for 14.27 EFPY. This capsule had a lead factor of 2.26 resulting in an exposure equivalent to 32.25 EFPY of operation. The results were documented in WCAP-15958 [Reference 2].

This exposure is less than that expected at EOLE. In PG&E Letter DCL-08-021, PG&E requested a change to the withdrawal date of Unit 1 Capsule B from 20.7 EFPY to 21.9 EFPY in order to capture enough fluence data for EOLE. The change was approved by the NRC in a Safety Evaluation dated September 24, 2008, *Diablo Canyon Nuclear Power Plant, Unit No. 1 – Approval of Proposed Reactor Vessel Material Surveillance Capsule Withdrawal Schedule (TAC No. MD8371)* [Reference 2].

During the scheduled Unit 1 Sixteenth Refueling Outage (1R16), refueling personnel were not able to remove the Capsule B access plug on the reactor core barrel flange. In PG&E Letter DCL-10-141, dated October 25, 2010, PG&E requested a change to the withdrawal date of Unit 1 Capsule B from 21.9 EFPY to 23.2 EFPY. The change was approved by the NRC in a Safety Evaluation dated October 29, 2010, *Diablo Canyon Nuclear Power Plant, Unit No. 1 – Approval of Proposed Reactor Vessel Material Surveillance Program Withdrawal Schedule (TAC No. ME4924)* [Reference 38].

Unit 2

The last remaining capsule withdrawn and tested from Unit 2 was Capsule V at EOC 9. At that point, Unit 2 had operated for 11.49 EFPY. This capsule had a lead factor of 4.58 resulting in an exposure equivalent to 52.62 EFPY of operation. This exposure is

Enclosure 2 PG&E Letter DCL-11-136 Page 73 of 98

comparable to the predicted EOLE exposure of 54 EFPY, i.e., within the 20 percent limit specified as the acceptance criteria in Regulatory Guide 1.190. The results were documented in WCAP-15423 [Reference 3].

Both Units

Based on the guidance specified in Regulatory Guide 1.190, a neutron fluence assessment of the beltline and extended beltline regions was performed results of the Capsule V analyses provided by Westinghouse in WCAP-15958-17299-NP [Reference 240], for Units 1 and 2, through EOLE.Cycles 1-11 and WCAP-15782 [Reference 17], for Unit 2 Cycles 1-10, t The peak calculated fast neutron fluence values at the pressure vessel clad/base metal interface inner surface of the DCPP reactor vessels are shown in Table 4.2-1 and Table 4.2-2 for Units 1 and 2, respectively. These fluence data tabulations include fuel cycle specific power distributions exposures through the end of Cycle 11-16 for Units 1 and 2, (Unit 1) and Cycle 10 (Unit 2) as well as fluence projections at several intervals out to 54 EFPY.

The fluence values were projected using ENDF-B/VI cross sections, and the Capsule V analyses meet the requirements of Regulatory Guide 1.190, *Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence*.

The calculations account for a Unit 1 core power uprate from 3338 MWt to 3411 MWt at the onset of Cycle 11. Fluence projections beyond the end of Cycle 146 on Units 1 and Cycle 10 on Unit-2 are based on the assumption that the spatial core power distributions are defined by the average of Unit 1-Cycles 5-1113-15 for Units 1 and 2. and Unit 2-Cycles 5-10. Power distributions for Cycles 1-4 on both Units are not included since they are not representative of the very low leakage core loading patterns now being used.

For license renewal, Westinghouse performed additional calculations to define which materials in the DCPP pressure vessels, other than beltline materials, are projected to exceed the threshold neutron fluence of 1×10^{17} n/cm² at 54 EFPY (extended beltline materials). The results of these calculations are documented in *WCAP-17299-NP* [Reference 40], for Units 1 and 2, through EOLE.LTR-REA-09-90, Neutron Fluence-Evaluation for the Diablo Canyon Units 1 and 2 Reactor Pressure Vessel Extended Beltline Materials [Reference 37]. For both units, although the nozzle shell course and the associated nozzle shell to intermediate shell weld are projected to exceed the 1×10^{17} n/cm² threshold, the nozzles themselves as well as the nozzle to nozzle shell welds remain below the 1×10^{17} n/cm² threshold through 54 EFPY. Likewise, the lower shell to lower head weld remains below 1×10^{17} n/cm² through 54 EFPY for both units. The extended beltline material for both Units includes the upper shell plates, associated longitudinal welds, and the upper shell to intermediate shell circumferential weld.

Table 4.2-3 shows the EOLE fluence values for all beltline and extended beltline materials for both Units 1 and 2.

As discussed in Section B2.1.15, both units currently use ex-vessel monitoring dosimetry.

Enclosure 2 PG&E Letter DCL-11-136 Page 74 of 98

Disposition: Revision, 10 CFR 54.21(c)(1)(ii); and Aging Management, 10 CFR 54.21(c)(1)(iii)

Revision

The fluence projections were revised to quantify expected fluence at the end of the period of extended operation in accordance with 10 CFR 54.21(c)(1)(ii).

Aging Management

Neutron fluence will be monitored and its effects managed for the period of extended operation by the DCPP Reactor Vessel Surveillance program, which is summarized in Section B2.1.15. The validity of these parameters and the analyses that depend upon them will therefore be managed to the end of the period of extended operation in accordance with 10 CFR 54.21(c)(1)(iii).

Section 4 TIME-LIMITED AGING ANALYSES

Enclosure 2 PG&E Letter DCL-11-136 Page 75 of 98

Quala	Cumulative Irradiation	Neutron Fluence (E>1.0 MeV) [n/cm ²]					
Cycle	Time (EFPY)	0°	15°	30°	45°		
11 16	14.27 21.77	2.19 3.22 E+18	3.52 5.08 E+18	4 .39 6.31 E+18	6.07 8.63 E+18		
Projection	16.00	2.44 E+18	3.91 E+18	4.86 E+18	6.68 E+18		
Projection	24.00	3.59 E+18	5.81 E+18	7.12 E+18	9.62 E+18		
Projection	32.00	4.75 4.63 E+18	7.71 7.26 E+18	9.39 9.05 E+18	1.26 1.23 E+19		
Projection	40.00	5.91 E+18	9.61 E+18	1.17 E+19	1.55 E+19		
Projection	48.00	7.07 6.85 E+18	1.15	1.39	1.84		
Projection	54.00	7.94 7.68 E+18	1.29 1.19 E+19	1.56 1.49 E+19	2.06 2.02 E+19		

Table 4.2-1 Unit 1 Maximum Calculated Fluence (E>1.0 MeV)

	Table 4.2-2	Unit 2 Maximum	Calculated Fluence	(E>1.0 MeV)
--	-------------	----------------	--------------------	-------------

Quala	Cumulative Irradiation	Neutron Fluence (E>1.0 MeV) [n/cm ²]				
Cycle	Time (EFPY)	0°	15°	30°	45°	
1016	12.88 21.85	3.26 5.24 E+18	4 .93 7.91 E+18	4 .92 7.98 E+18	5.79 9.42 E+18	
Projection	16.00	4.01 E+18	6.04 E+18	6.03 E+18	7.11 E+18	
Projection	24.00	5.93 E+18	8.89 E+18	8.90 E+18	1.05 E+19	
Projection	32.00	7.86 7.51 E+18	1.18	1.18 1.14 E+19	1.39 1.34 E+19	
Projection	40.00	9.79 E+18	1.46 E+19	1.46 E+19	1.73 E+19	
Projection	48.00	1.17	1.75	1.75	2.06 1.96 E+19	
Projection	54.00	1.32 1.24 E+19	1.96	1.96	2.32 2.19 E+19	

Enclosure 2 PG&E Letter DCL-11-136 Page 76 of 98

Section 4 TIME-LIMITED AGING ANALYSES

Unit 1	
Material	Fluence [n/cm ²]
Upper Shell Plate ^(a)	991
B4105-1	2.863.41 E+17
B4105-2	2.863.41 E+17
B4105-3	2.863.41 E+17
Intermediate Shell Plate	ana ang ang ang ang ang ang ang ang ang
B4106-1	2.062.02 E+19
B4106-2	2.062.02 E+19
B4106-3	2.062.02 E+19
Lower Shell Plate	
B4107-1	2.042.01 E+19
B4107-2	2.042.01 E+19
B4107-3	2.042.01 E+19
Upper Shell Long. Welds ^(a)	
1-442 A	2.162.45 E+17
1-442 B	1.271.49 E+17
1-442 C	2.573.06 E+17
Upper Shell to Intermed. Sh	ell Weld ^(a)
8-442	2.863.41 E+17
Intermed. Shell Long. Welds	3
2-442 A *	1.561.49 E+19
2-442 B	1.561.49 E+19
2-442 C	7.957.68 E+18
Intermed. Shell to Lower Sh	ell Weld
9-442	2.042.01 E+19

Table 4.2-3 EFPY)	Units 1 and 2 Calcula	ated Fluenc	e (E>1.0 MeV) Values at EOLE (54
	itera ver en internationaliteration de la constant de la constant de la constant de la constant de la constant Anno 1999 - En constant de la constan		

Uni	it 2
Material	Fluence [n/cm ²]
Upper Shell Plate ^(a)	
B5453-1	5.206.77 E+17
B5453-3	5.206.77 E+17
B5011-1R	5.206.77 E+17
Intermediate Shell Plat	e
B5454-1	2.32<mark>2.25</mark> E+19
B5454-2	2.322.25 E+19
B5454-3	2.322.25 E+19
Lower Shell Plate	
B5455-1	2.302.22 E+19
B5455-2	2.302.22 E+19
B5455-3	2.302.22 E+19
Upper Shell Long. Wel	ds ^(a)
1-201 A	5.106.33 E+17
1-201 B	4.826.29 E+17
1-201 C	3.93 5.14 E+17
Upper Shell to Interme	d. Shell Weld ^(a)
8-201	5.206.77 E+17
Intermed. Shell Long. V	Velds
2-201 A	1.32 1.24 E+19
2-201 B	1.59 1.53 E+19
2-201 C	1.351.30 E+19
Intermed. Shell to Lowe	er Shell Weld
9-201	2.302.22 E+19

Enclosure 2 PG&E Letter DCL-11-136 Page 77 of 98

Section 4 TIME-LIMITED AGING ANALYSES

Unit	1	Unit 2		
Material	Fluence [n/cm ²]	Material	Fluence [n/cm ²]	
Lower Shell Long. Welds		Lower Shell Long. Welds		
3-442 A	1.281.19 E+19	3-201 A	1.331.28 E+19	
3-442 B	1.281.19 E+19	3-201 B	1.31 1.23 E+19	
3-442 C	2.042.01 E+19	3-201 C	1.57 1.51 E+19	

Section 4 TIME-LIMITED AGING ANALYSES

Enclosure 2 PG&E Letter DCL-11-136 Page 78 of 98

4.2.2 Pressurized Thermal Shock

Summary Description

10 CFR 50.61(b)(1) provides requirements for protection against pressurized thermal shock (PTS) events for pressurized water reactors. Licensees are required to perform an updated assessment of the projected values of reference temperature whenever a significant change occurs in projected values of the adjusted reference temperature for pressurized thermal shock (RT_{PTS}), or upon request for a change in the expiration date for the operation of the facility.

Irradiation by high energy neutrons raises the value of RT_{NDT} for the reactor vessel. The initial RT_{NDT} is determined through testing of unirradiated material specimens. The shift in reference temperature, ΔRT_{NDT} , is the difference in the 30 ft-lb index temperatures from the average Charpy curves measured before and after irradiation. Regulatory Guide 1.99 defines the calculation methods for ΔRT_{NDT} (and end-of-life C_V USE). RT_{PTS} is defined as the RT_{NDT} value evaluated at the end of life fluence at the clad/base metal interface for each of the vessel beltline materials. 10 CFR 50.61(c) provides two methods for determining RT_{PTS}. These methods are also described as Positions 1 and 2 in Regulatory Guide 1.99. Position 1 applies for material that does not have credible surveillance data available and Position 2 is used for material that does have two or more credible surveillance data sets available. The criteria for credible data are also provided in Regulatory Guide 1.99. The adjusted reference temperatures are calculated for both Positions 1 and 2 by following the guidance in Regulatory Guide 1.99 (Sections 1.1 and 2.1, respectively), using the copper and nickel content of DCPP reactor vessel materials, and the EOLE fluence projections. 10 CFR 50.61(b)(2) establishes screening criteria for RT_{PTS} as 270°F for plates, forgings, and axial welds and 300°F for circumferential welds. If the RT_{PTS} does not exceed the PTS screening criteria, then only the reactor pressure vessel is relied on to demonstrate compliance with 10 CFR 50.61, the PTS rule.

Analysis

PG&E's original response to the issuance of the PTS rule, 10 CFR 50.61, indicated that the projected RT_{PTS} for both units do not exceed the PTS screening criteria, 270°F, and 300°F, based on 32 EFPY.

Since Cycle 1, several actions taken by PG&E have resulted in changes to input parameters used to calculate RT_{PTS}. Fluence projections for both units were reduced following Cycle 1 as a result of fuel management changes to lower-leakage core designs. Also, copper and nickel content for the Unit 1 beltline longitudinal welds have been updated to reflect chemical analyses performed for the evaluation of surveillance

Enclosure 2 PG&E Letter DCL-11-136 Page 79 of 98 Section 4 TIME-LIMITED AGING ANALYSES

capsules. 10 CFR 50.61 was revised in June 1991, which changed the method used to calculate RT_{PTS}.

The most recent coupon examination results for both units show that the increase in RT_{NDT} in plate and weld materials are bounded by that predicted by Regulatory Guide 1.99 Revision 2 for Units 1 and 2. The results demonstrate that the DCPP reactor vessel material ages consistent with Regulatory Guide 1.99 predictions, and provide a conservative means to satisfy the requirement of 10 CFR 50.61; thus providing assurance of the reactor vessel integrity.

Unit 1

The data from the most recently withdrawn surveillance capsule, Capsule V, were not deemed credible [Reference 2,- Appendix D]. Using Regulatory Guide 1.99 Position 1.1methods, RT_{PTS} values were generated for beltline and extended beltline region materials of the Unit 1 reactor vessel for EOLE fluence values. The RT_{PTS} values for the Unit 1 materials are provided in Table 4.2-4. The projected RT_{PTS} values for EOLE didnot meet the 10 CFR 50.61 screening criteria in all cases. The calculation [Reference 1439] indicates the limiting weld material for Unit 1 is lower shell longitudinal (axial) weld 3-442C with a projected EOLE RT_{PTS} value of 280.443°F, using Position 2.1. Lower-shell longitudinal weld 3-442C will satisfy the PTS screening criteria until approximately 43 EFPY. All other materials meet the 10 CFR 50.61 screening criteria. The limiting plate material on Unit 1 is the lower shell plate B4107-1 with a projected EOLE RT_{PTS} value of 156-2°F, using Position 1.1 [Reference 39].

The Unit 1 reactor vessel fluence will continue to be monitored in accordance with 10 CFR 50.61 as part of the DCPP Reactor Vessel Surveillance program (B2.1.15) to ensure that the reactor vessel material does not violate the PTS criteria.

In 2009, the NRC approved the Final Rule 10 CFR 50.61a, Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events [Reference 15]. The revised rule amended its regulations to provide updated fracture toughness requirements based on updated analysis methods for protection against PTS events for PWR pressure vessels. It is anticipated that DCPP Unit 1 will meet these revised requirements through EOLE.

PG&E will implement the revised PTS (10 CFR 50.61a) rule at least three years prior to exceeding the PTS screening criterion of 10 CFR 50.61. In the event that the provisions of 10 CFR 50.61a cannot be met, PG&E will implement alternate options, such as flux reduction, as provided in 10 CFR 50.61.

The extended beltline materials were also evaluated. The results (Table 4.2-4) confirm the materials will not become limiting.

Enclosure 2 PG&E Letter DCL-11-136 Page 80 of 98

Section 4 TIME-LIMITED AGING ANALYSES

Unit 2

The data from the most recently withdrawn surveillance capsule, Capsule V, was deemed credible [Reference 3, Appendix D]. RT_{PTS} values were generated for beltline and extended beltline region materials of the Unit 2 reactor vessel for fluence values at EOLE. The RT_{PTS} values for the Unit 2 materials are provided in Table 4.2-5. The projected RT_{PTS} values for EOLE meet the 10 CFR 50.61 screening criteria. The calculation [Reference 1439] indicates that the limiting weld material for Unit 2 is intermediate shell longitudinal (axial) weld 2-201B with a projected EOLE RT_{PTS} value of 244.2207°F using Regulatory Guide 1.99 Position 12.1. The limiting plate material on Unit 2 is the intermediate shell plate B5454-2 with a projected EOLE RT_{PTS} value of 223.2°F.

The extended beltline materials were also evaluated. The results (Table 4.2-5) confirm the materials will not become limiting.

Disposition: Revision, 10 CFR 54.21(c)(1)(ii); and Aging Management, 10 CFR 54.21(c)(1)(iii)

Unit 1 – Aging ManagementRevision

The RT_{PTS} was projected to the end of the period of extended operation in accordance with 10 CFR 54.21(c)(1)(ii). RT_{PTS} remains within acceptable values for the period of extended operation. The Unit 1 reactor vessel fluence will continue to be monitored as part of the DCPP Reactor Vessel Surveillance program (B2.1.15) and its effects will be adequately managed to the end of the period of extended operation in accordance with 10 CFR 54.21(c)(1)(iii).

Unit 2 - Revision

The RT_{PTS} was projected to the end of the period of extended operation in accordance with 10 CFR 54.21(c)(1)(ii). RT_{PTS} remains within acceptable values for the period of extended operation.

Enclosure 2 PG&E Letter DCL-11-136 Page 81 of 98

Section 4 TIME-LIMITED AGING ANALYSES

Table 4.2-4	DCPP	Unit 1	Vessel R	RTPTS at 54	EFPY ⁽¹⁾
-------------	------	--------	----------	-------------	---------------------

Material	Description		Sourc eR.G 1.99,		Chemical Composition Chemistry		Initial	EOLE Fluence	Fluence		Margin	RT _{PTS}	Screening	Extend
Location	Heat No.	Туре	Rev.2 Positi on	Cu Wt%	Ni Wt%	Factors °F	RT _{NDT} °F	10 ¹⁹ n/cm ² E>1.0 MeV	Factor	<i>RT_{NDT}</i> °F	°F	°F	Criteria °F	Beltline Region
Upper Shell Plate B4105-1	C2624	A 533B	1.1 Ref 14	0.120	0.56	82.2	28	0.02860.03 41	0.2136 0. 2365	17.6 19. 4	38.3 39. 2	83.8 87	≤270	Yes
Upper Shell Plate B4105-2	C2624-2	A 533B	1.1 Ref -14	0.120	0.57	82.4	9	0.02860.03 41	0.21360. 2365	17.6 19. 5	38.3 39. 2	64.9 68	≤270	Yes
Upper Shell Plate B4105-3	C2608- 2B	A 533B	1.1 Ref -14	0.140	0.56	98.2	14	0.02860.03 41	0.2136 0. 2365	21.023 . 2	39.941 . 2	74.9 78	≤270	Yes
Intermediate Shell Plate B4106-1	C2884-1	A 533B	1.1 Ref -14	0.125	0.53	85.3	-10	2.06 2.02	1.1968 1. 1917	102.1 1 01.7	34	126 .1	≤270	No
Intermediate Shell Plate B4106-2	C2854-2	A 533B	1.1 Ref -14	0.12	0.50	81	-3	2.062.02	1.1968 1. 1917	96.9 96. 5	34	127.9 1 28	≤270	No
Intermediate Shell Plate B4106-3	C2793-1	A 533B	1.1 Ref .14	0.086	0.476	55.2	30	2.06 2.02	1.1968 1. 1917	66.165 . 8	48.1	144 .1	≤270	No
→Using non- credible surveillance data	C2793-1	A 533B	2.1	0.086	0.476	37.4	30	2.02	1.1917	44.6	48.1	123	≤270	No
Lower Shell Plate B4107-1	C3121-1	A 533B	1.1 Ref -14	0.13	0.56	89.8	15	2.042.01	1.1943 1. 1904	107.2 1 06.9	34	156 .2	≤270	No
Lower Shell Plate B4107-2	C3131-2	A 533B	1.1 Ref -14	0.12	0.56	82.2	20	2.042.01	1.1943 1. 1904	98.2 97. 9	34	152 .2	≤270	No
Lower Shell Plate B4107-3	C3131-1	A 533B	1.1 Ref -14	0.12	0.52	81.4	-22	2.042.01	1.1943 1. 1904	97.2 96. 9	34	109 .2	≤270	No
Upper Shell Long. Weld 1-442 A	27204 / 12008	Linde 1092	1.1 Ref .14	0.190	0.970	215.7	-20	0.0216 0.02 45	0.18040 . 1948	38.942	38.942 . 0	57.864	≤270	Yes
Upper Shell Long. Weld 1-442 B	27204 / 12008	Linde 1092	1.1 Ref -14	0.190	0.970	215.7	-20	0.0127 0.01 49	0.12870 . 1428	27.830 . 8	27.830 . 8	35.5 42	≤270	Yes
Upper Shell Long. Weld 1-442 C	27204 / 12008	Linde 1092	1.1 Ref -14	0.190	0.970	215.7	-20	0.02570.03 06	0.20040 . 2222	4 <u>3.2</u> 47. 9	4 <u>3.2</u> 47. 9	66.576	≤270	Yes
Upper Shell to Intermediate Shell Circumferential Weld 8-442	13253	Linde 1092	<mark>1.1Ref</mark> 14	0.25	0.730	197.5	-56	0.0286 0.03 41	0.2136 0. 2365	4 <u>2.2</u> 46. 7	54.2 57. 8	40.448	≤300	Yes

Enclosure 2 PG&E Letter DCL-11-136 Page 82 of 98

Section 4 TIME-LIMITED AGING ANALYSES

Table 4.2-4 DCPP Unit 1 Vessel RT _{PTS} at 54 EFPY ⁽¹⁾	Table 4.2-4	DCPP	Unit 1	Vessel	RTPTS at	54 EFPY()
--	-------------	------	--------	--------	----------	-----------

Heat No. 27204 27204	Type Linde 1092	1.99, Rev.2 Positi on 1.1 Ref	Cu Wt%	Ni Wt%	Factors °F	RT _{NDT} °F	Fluence 10 ¹⁹ n/cm ²	Fluence Factor	RT _{NDT}	Margin °F	RT _{PTS} °F	Criteria	ed Beltline
	1092						E>1.0 MeV		°F			°F	Region
07004		. 14	0.203	1.018	226.8	-56	1.56 1.49	1.1229 1. 1104	254.7 2 51.8	65.5	264.2 2 61	≤270	No
27204	Linde 1092	2.1	0.203	1.018	214.1	-56	1.49	1.1104	237.7	44.0	226	≤270	No
27204	Linde 1092	1.1Ref -14	0.203	1.018	226.8	-56	0.7950.768	0.93560 . 9259	212.2 2 10.0	65.5	221.72 20	≤270	No
27204	Linde 1092	2.1	0.203	1.018	214.1	-56	0.768	0.9259	198.2	44.0	186	≤270	No
27204	Linde 1092	1.1 Ref -14	0.203	1.018	226.8	-56	1.281.19	1.0687 1. 0485	242.42 37.8	65.5	251.92 47	≤270	No
27204	Linde 1092	2.1	0.203	1.018	214.1	-56	1.19	1.0485	224.5	44.0	213	≤270	No
27204	Linde 1092	1.1 Ref -14	0.203	1.018	226.8	-56	2.042.01	1.1943 1. 1904	270.9 2 70.0	65.5	280.42 80	≤270	No
27204	Linde 1092	2.1	0.203	1.018	214.1	-56	2.01	1.1904	254.9	44.0	243	≤270	No
21935	Linde 1092	<mark>1.1Ref</mark> 14	0.183	0.704	172.2	-56	2.04 2.01	1.1943 1. 1904	205.72 05.0	65.5	215 .2	≤300	No
	11 12 14 11 12 14	.1					e il		80 (E)	al ar	99	in in in in it. An ann an a	
	27204 27204 27204 27204 27204 27204 21935	27204 Linde 1092 21035 Linde	27204 Linde 1092 1.1Ref -14 27204 Linde 1092 2.1 27204 Linde 1092 1.1Ref -14 27204 Linde 1092 2.1 27204 Linde 1092 2.1 27204 Linde 1092 2.1 27204 Linde 1092 2.1 27204 Linde 1092 1.1Ref -14 27204 Linde 1092 2.1 21935 Linde 1092 1.1Ref -14	27204 Linde 1092 1.1Ref -14 0.203 27204 Linde 1092 2.1 0.203 27204 Linde 1092 1.1Ref -14 0.203 27204 Linde 1092 2.1 0.203 27204 Linde 1092 2.1 0.203 27204 Linde 1092 2.1 0.203 27204 Linde 1092 -14 0.203 27204 Linde 1092 2.1 0.203 21935 Linde 1092 1.1Ref -14 0.183	27204 Linde 1092 1.1Ref .14 0.203 1.018 27204 Linde 1092 2.1 0.203 1.018 21935 Linde 1092 1.1Ref .14 0.183 0.704	27204Linde 1092 $1.1Ref$ -14 0.203 1.018 226.8 27204 Linde 1092 2.1 0.203 1.018 214.1 27204 Linde 1092 $1.1Ref$ -14 0.203 1.018 226.8 27204 Linde 1092 2.1 0.203 1.018 214.1 21935 Linde 1092 $1.1Ref$ -14 0.183 0.704 172.2	27204Linde 1092 $1.1Ref-140.2031.018226.8-5627204Linde10922.10.2031.018214.1-5627204Linde10921.1Ref-140.2031.018226.8-5627204Linde10922.10.2031.018214.1-5627204Linde10921.1Ref-140.2031.018214.1-5627204Linde10921.1Ref-140.2031.018226.8-5627204Linde10922.10.2031.018214.1-5627204Linde10922.10.2031.018214.1-5627204Linde10921.1Ref-140.1830.704172.2-56$	27204Linde 1092 $1.1Ref-140.2031.018226.8-560.7950.76827204Linde10922.10.2031.018214.1-560.76827204Linde10921.1Ref-140.2031.018226.8-561.281.1927204Linde10922.10.2031.018214.1-561.1927204Linde10921.1Ref-140.2031.018226.8-562.042.0127204Linde10921.1Ref-140.2031.018226.8-562.042.0127204Linde10921.1Ref-140.2031.018214.1-562.042.0127204Linde10922.10.2031.018214.1-562.0127204Linde10921.1Ref-140.1830.704172.2-562.042.01$	27204Linde 1092 $1.1Ref-140.2031.018226.8-560.7950.7680.93560.925927204Linde10922.10.2031.018214.1-560.7680.925927204Linde10921.1Ref-140.2031.018226.8-561.281.191.06871.048527204Linde10922.10.2031.018214.1-561.191.048527204Linde10922.10.2031.018226.8-562.042.011.19431.190427204Linde10921.1Ref-140.2031.018226.8-562.042.011.19431.190427204Linde10922.10.2031.018214.1-562.011.190427204Linde10922.10.2031.018214.1-562.011.190421935Linde10921.1Ref-140.1830.704172.2-562.042.011.19431.1904$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Enclosure 2 PG&E Letter DCL-11-136 Page 83 of 98

Section 4 TIME-LIMITED AGING ANALYSES

Material	Description	١	R.G 1.99,			Chemistry	nemistry Initial Factors RT _{NDT}	Fluence	Fluence		Margin	RT _{PTS}	Screening	Extend ed
Location	Heat No.	Туре	Rev.2 Position Source	Cu Wt%	Ni Wt%	°F	°F	10 ¹⁹ n/cm ² E >1.0MeV	Factor	°F	°F	°F	Criteria °F	Beltline Region
Upper Shell Plate B5453-1	C5162-1	A 533B	1.1 Ref. 14	0.110	0.600	74	28	0.05200.06 77	0.2990 0. 3434	22.1 25. 4	22.1 25. 4	72.2 79	≤270	Yes
Upper Shell Plate B5453-3	C5162-2	A 533B	1.1 Ref. 14	0.110	0.600	74	5	0.0520 0.06 77	0.2990 0. 3434	22.1 25. 4	40.642. 4	67.7 73	≤270	Yes
Upper Shell Plate B5011-1R	C4377-1	A 533B	1.1 Ref. 14	0.110	0.650	74.8	0	0.05200.06 77	0.2990 0. 3434	22.4 25. 7	40.742. 6	63.1 68	≤270	Yes
Intermediate Shell Plate B5454-1	C5161-1	A 533B	1.1 Ref. 14	0.140	0.650	98.6101.3	52	2.32 2.25	1.2274 1. 2196	121.0 1 23.5	1734	190.0 2 10	≤270	No
→Using credible surveillance data	C5161-1	A 533B	2.1	0.140	0.650	105.7	52	2.25	1.2196	128.9	17	198	≤270	No
Intermediate Shell Plate B5454-2	C5168-2	A 533B	1.1 Ref. 14	0.14	0.59	99.6	67	2.32 2.25	1.2274 1. 2196	122.2 1 21.5	34	223.22 22	≤270	No
Intermediate Shell Plate B5454-3	C5161-2	A 533B	1.1 Ref. 14	0.15	0.62	110.5	33	2.322.25	1.2274 1. 2196	135.6 1 34.8	34	202 .6	≤270	No
Lower Shell Plate B5455-1	C5175-1	A 533B	1.1 Ref. 14	0.14	0.56	98.2	-15	2.302.22	1.2252 1. 2161	120.3 1 19.4	34	139.3 1 38	≤270	No
Lower Shell Plate B5455-2	C5175-2	A 533B	1.1 Ref. 14	0.14	0.56	98.2	0	2.302.22	1.2252 1. 2161	120.3 1 19.4	34	154.3 1 53	≤270	No
Lower Shell Plate B5455-3	C5176-1	A 533B	1.1 Ref. 14	0.1	0.62	65.2	15	2.302.22	1.2252 1. 2161	79.9 79. 3	34	128 <mark>.9</mark>	≤270	No
Upper Shell Long. Weld 1-201 A	21935 / 12008	Linde 1092	1.1 Ref. 14	0.220	0.870	211.2	-50	0.05100.06 33	0.2959 0. 3317	62.5 70. 1	56.0	68.5 76	≤270	Yes
→Using credible surveillance data	21935 / 12008	Linde 1092	2.1	0.220	0.870	204.6	-50	0.0633	0.3317	67.9	28	46	≤270	Yes
Upper Shell Long. Weld 1-201 B	21935 / 12008	Linde 1092	1.1 Ref 14	0.220	0.870	211.2	-50	0.0482 0.06 29	0.2870 0. 3306	60.6 69. 8	56.0	66.6 76	≤270	Yes

Table 4.2-5 DCPP Unit 2 Vessel RT_{PTS} at 54 EFPY⁽¹⁾

Enclosure 2 PG&E Letter DCL-11-136 Page 84 of 98

Section 4 TIME-LIMITED AGING ANALYSES

Material	latorial Description		Chemical Composition		Chemistry Factors	Initial	Fluence	Fluence		Margin	RTPTS	Screening	Extend ed	
Location	Heat No.	Туре	Rev.2 Position Source	Cu Wt%	Ni Wt%	°F	RT _{NDT} °F	10 ¹⁹ n/cm ² E >1.0MeV	Factor	°F	°F	°F	Criteria °F	Beltline Region
→Using credible surveillance data	21935 / 12008	Linde 1092	2.1	0.220	0.870	204.6	-50	0.0629	0.3306	67.6	28	46	≤270	Yes
Upper Shell Long. Weld 1-201 C	21935 / 12008	Linde 1092	1.1 Ref. 14	0.220	0.870	211.2	-50	0.0393 0.05 14	0.25640 . 2971	54.1 62. 7	54.156	58.369	≤270	Yes
→Using credible surveillance data	21935 / 12008	Linde 1092	2.1	0.220	0.870	204.6	-50	0.0514	0.2971	60.8	28	39	≤270	Yes
Upper Shell to Intermediate Shell Circumferential Weld 8-201	21935	Linde 1092	1.1 Ref. 14	0.183	0.704	172.2	-56	0.0520 0.06 77	0.2990 0. 3434	51.559 . 1	61.7 65. 5	57.2 69	≤300	Yes
Intermediate Shell Long. Weld 2-201A	2193 <mark>5</mark> / 12008	Linde 1092	1.1 Ref. 14	0.22	0.87	211.2	-50	1.32 1.24	1.0772 1. 0599	227.52 23.9	56	233.52 30	≤270	No
→Using credible surveillance data	21935 / 12008	Linde 1092	2.1	0.22	0.87	204.6	-50	1.24	1.0599	216.9	28	195	≤270	No
Intermediate Shell Long. Weld 2-201B	2193 <mark>5</mark> / 12008	Linde 1092	1.1 Ref. 14	0.22	0.87	211.2	-50	1.58 1.53	1.1281 1. 1176	238.2 2 36.0	56	244.22 42	≤270	No
→Using credible surveillance data	21935 / 12008	Linde 1092	2.1	0.22	0.87	204.6	-50	1.53	1.1176	228.7	28	207	≤270	No
Intermediate Shell Long. Weld 2-201C	2193 <mark>5</mark> / 12008	Linde 1092	1.1 Ref. 14	0.22	0.87	211.2	-50	1.35 1.30	1.08341 . 0730	228.8 2 26.6	56	234.82 33	≤270	No
→Using credible surveillance data	21935 / 12008	Linde 1092	2.1	0.22	0.87	204.6	-50	1.30	1.0730	219.5	28	198	≤270	No
Lower Shell Long. Weld 3- 201A	33A277	Linde 124	1.1 Ref. 14	0.258	0.165	126.3	-56	1.331.28	1.0793 1. 0687	136.3 1 35.0	65.5	145.8 1 44	≤270	No
→Using credible surveillance data	33A277	Linde 124	2.1	0.258	0.165	115.9	-56	1.28	1.0687	123.9	44.0	112	≤270	No

Table 4.2-5 DCPP Unit 2 Vessel RT_{PTS} at 54 EFPY⁽⁾

Enclosure 2 PG&E Letter DCL-11-136 Page 85 of 98

Section 4 TIME-LIMITED AGING ANALYSES

Extend

ed

Beltline

Region

No

No

No

No

No

10010 1.2 0	0011	Offic 2 1	0000110	i PIS ut		. .								
Material	Descriptior	1	R.G 1.99,		e entipe entitett		Chemistry Initial		Fluence		Margin	RT _{PTS}	Screening	
Location	Heat No.	Туре	Rev.2 Position Source	Cu Wt%	Ni Wt%	Factors °F	°F	10 ¹⁹ n/cm ² E >1.0MeV	Factor	°F	°F	°F	Criteria °F	
Lower Shell Long. Weld 3- 201B	33A277	Linde 124	1.1 Ref. 14	0.258	0.165	126.3	-56	1.3 11.23	1.0751 1. 0577	135.8 1 33.6	65.5	145.31 43	≤270	
→Using credible surveillance data	33A277	Linde 124	2.1	0.258	0.165	115.9	-56	1.23	1.0577	122.6	44.0	111	≤270	ĺ
Lower Shell Long. Weld 3- 201C	33A277	Linde 124	1.1Ref 14	0.258	0.165	126.3	-56	1.57 1.51	1.1246 1. 1141	142.0 1 40.7	65.5	151.61 50	≤270	-
→Using credible surveillance data	33A277	Linde 124	2.1	0.258	0.165	115.9	-56	1.51	1.1141	129.1	44.0	117	≤270	
Intermediate to Lower Shell Circumferential	10120	Linde 0091	1.1Ref 14	0.046	0.082	34	-56	2.302.22	1.2252 1. 2161	41.741. 3	53.853 . 5	39 .4	≤300	

Table 4.2-5 DCPP Unit 2 Vessel RTPTS at 54 EFPY⁽¹⁾

Notes:

Weld 9-201

(i) Reference 39, WCAP-17315-NP

Enclosure 2 PG&E Letter DCL-11-136 Page 86 of 98 Section 4 TIME-LIMITED AGING ANALYSES

4.2.3 Charpy Upper-Shelf Energy

Summary Description

Per Regulatory Guide 1.99, Radiation Embrittlement of Reactor Vessel Materials, the Charpy upper-shelf energy (C_V USE) is assumed to decrease as a function of fluence and copper content. Figure 2 of the guide determines this magnitude of decrease when surveillance data is not used (Position 1.2). In addition, if surveillance data is to be used (Position 2.2), the decrease in upper shelf energy may be obtained by plotting the plant surveillance data on Figure 2 of the guide and fitting the data with a line drawn parallel to the existing lines as the upper bound of all the data. This line can then be used in preference to the existing line. The C_V USE can be predicted using the corresponding 1/4T fluence projection, the copper content of the beltline materials, and the results of the capsules tested to date using Figure 2 of the guide.

10 CFR 50, Appendix G requires that the reactor vessel beltline materials must have a C_V USE of no less than 75 ft-lb initially, and must maintain C_V USE throughout the life of the vessel of no less than 50 ft-lb unless it is demonstrated in a manner approved by the Director, Office of Nuclear Reactor Regulation, that lower values of C_V USE will provide margins of safety against fracture equivalent to those required by ASME Section XI, Appendix G (10 CFR 50, Appendix G, Section IV.A.1.a).

Analysis

The most recent coupon examination results for both units show that the decline in C_V USE in plate and weld materials are bounded by that originally predicted by Regulatory Guide 1.99, Revision 2. Thus the results demonstrate that the DCPP reactor vessel material ages consistently with Regulatory Guide 1.99 predictions and provides a conservative means to satisfy the requirements of 10 CFR 50, Appendix G. This provides assurance of the reactor vessel integrity.

Unit 1

In accordance with Regulatory Guide 1.99, the C_V USE data from Unit 1 surveillance Capsule V were determined not to be credible and were, therefore, not included in the EOLE C_V USE projections.

The C_V USE values were projected to 54 EFPY of operation using Regulatory Guide 1.99 Position 1.2. The EOLE C_V USE values for the Unit 1 beltline and extended beltline materials are provided in Table 4.2-6. The limiting value was <u>58.558.2</u> ft-lbf for lower shell longitudinal weld 3-442C.

Enclosure 2 PG&E Letter DCL-11-136 Page 87 of 98 Section 4 TIME-LIMITED AGING ANALYSES

The extended beltline materials were also evaluated to confirm they will not decrease below the 10 CFR 50, Appendix G criterion of 50 ft-lbf.

Unit 2

In accordance with Regulatory Guide 1.99, the C_V USE data from Unit 2 surveillance Capsule V were deemed credible for intermediate shell plate B5454-1.

The C_V USE values were projected to 54 EFPY of operation using Regulatory Guide 1.99 Position 1.2. The EOLE C_V USE values for the Unit 2 beltline and extended beltline materials are provided in Table 4.2-7. The limiting value was 53.7 ft-lbf for lower shell longitudinal weld 3-201C.

The extended beltline materials were also evaluated to confirm they will not decrease below the 10 CFR 50, Appendix G criterion of 50 ft-lbf.

Disposition: Revision, 10 CFR 54.21(c)(1)(ii)

The C_V USE values were re-evaluated with projections to the end of the period of extended operation in accordance with 10 CFR 54.21(c)(1)(ii). The re-evaluations demonstrated that the C_V USE in the limiting material of each unit will remain above the 10 CFR 50 Appendix G acceptance criterion of 50 ft-lbf for the period of extended operation.

Enclosure 2 PG&E Letter DCL-11-136 Page 88 of 98

Section 4 TIME-LIMITED AGING ANALYSES

Material Descrip	otion	12	Cu	Unirradiated	EOL ¼T Fluence	% Drop in C _v	Projected	EOL C _v USE Acceptance
Reactor Vessel Beltline Region Location	Heat Number	Туре	wt%	C _V USE ft-lbf	10 ¹⁹ n/cm ² (E>1 MeV)	USE	C _v USE ft-lbf	Criterion ft-lbf
Intermediate Shell Plate B4106-1	C2884-1	A 533B	0.125	116	1.20 <mark>4</mark>	22 23	90.089 .3	≥50
Intermediate Shell Plate B4106-2	C2854-2	A 533B	0.12	114	1.204	22	89.088.9	≥50
Intermediate Shell Plate B4106-3	C2793-1	A 533B	0.086	77	1.204	1820	62.8 61.6	≥50
→Using surveillance data	C2793-1	A 533B	0.086	77	1.204	7.2 ⁽ⁱⁱ⁾	71.5	≥50
Lower Shell Plate B4107-1	C3121-1	A 533B	0.13	110	1.19 <mark>8</mark>	23	84.8<mark>84</mark>.7	≥50
Lower Shell Plate B4107-2	C3131-2	A 533B	0.12	103	1.19 <mark>8</mark>	22	80.580.3	≥50
Lower Shell Plate B4107-3	C3131-1	A 533B	0.12	116	1.19 <mark>8</mark>	22	90.690 .5	≥50
Intermediate Shell Long. Welds 2-442A, B	27204	Linde 1092	0.203	91	0.908 0.888	34	60.5 60.1	≥50
→Using surveillance data	27204	Linde 1092	0.203	91	0.888	33 ⁽ⁱⁱ⁾	61.0	≥50
Intermediate Shell Long. Weld 2-442C	27204	Linde 1092	0.203	91	0.4630.458	29	64.964.6	≥50
→Using surveillance data	27204	Linde 1092	0.203	91	0.458	28.5 ⁽ⁱⁱ⁾	65.1	≥50
Lower Shell Long. Welds 3-442A, B	27204	Linde 1092	0.203	91	0.745 0.709	32	61.8 61.9	≥50
→Using surveillance data	27204	Linde 1092	0.203	91	0.709	31 ⁽ⁱⁱ⁾	62.8	≥50
Lower Shell Long. Weld 3-442C	27204	Linde 1092	0.203	91	1.19 <mark>8</mark>	36	58.5 58.2	≥50
→Using surveillance data	27204	Linde 1092	0.203	91	1.198	35 ⁽ⁱⁱ⁾	59.2	≥50

Table 4.2-6 DCPP Unit 1 Reactor Vessel Material C_V USE at EOLE⁽¹⁾

Enclosure 2 PG&E Letter DCL-11-136 Page 89 of 98

Section 4 TIME-LIMITED AGING ANALYSES

ption		Cu	Unirradiated	EOL ¼T Fluence	% Drop in C _v	Projected	Acceptance	
Heat Number	Туре	wt%	ft-lbf	10 ¹⁹ n/cm ² (E>1 MeV)	USE	ft-lbf	Criterion ft-lbf	
21935	Linde 1092	0.183	109	1.19 <mark>8</mark>	34	72.4 71.9	≥50	
C2624	A 533B	0.120	80	0.017 0.020	8. <mark>6</mark>	73 .6 <mark>73</mark> .1	≥50	
C2624-2	A 533B	0.120	74	0.017 0.020	8. <mark>6</mark>	68.1 67.6	≥50	
C2608-2B	A 533B	0.140	81	0.017 0.020	9. 4	73.9 73.4	≥50	
27204/12008	Linde 1092	0.190	86	0.0130.015	1214	75.7 74.0	≥50	
27204/12008	Linde 1092	0.190	86	0.007 0.009	1114	76.9 74.0	≥50	
27204/12008	Linde 1092	0.190	86	0.015 0.018	1314	75.2 74.0	≥50	
13253	Linde 1092	0.250	111	0.0170.020	15 17	94.1<mark>9</mark>2.1	≥50	
	Heat Number 21935 C2624 C2624-2 C2608-2B 27204/12008 27204/12008	Heat Number Type 21935 Linde 1092 C2624 A 533B C2624-2 A 533B C2608-2B A 533B 27204/12008 Linde 1092 27204/12008 Linde 1092 27204/12008 Linde 1092	Heat Number Type Cu wt% 21935 Linde 1092 0.183 C2624 A 533B 0.120 C26624-2 A 533B 0.120 C2608-2B A 533B 0.140 27204/12008 Linde 1092 0.190 27204/12008 Linde 1092 0.190 27204/12008 Linde 1092 0.190	Heat Number Type Cu wt% Cv USE ft-lbf 21935 Linde 1092 0.183 109 C2624 A 533B 0.120 80 C2624-2 A 533B 0.120 74 C2608-2B A 533B 0.140 81 27204/12008 Linde 1092 0.190 86 27204/12008 Linde 1092 0.190 86	Heat Number Type Cu wt% Unirradiated C_v USE ft-lbf Fluence 10^{19} n/cm ² (E>1 MeV) 21935 Linde 1092 0.183 109 1.198 C2624 A 533B 0.120 80 $0.0170.020$ C2624-2 A 533B 0.120 74 $0.0170.020$ C2608-2B A 533B 0.140 81 $0.0170.020$ 27204/12008 Linde 1092 0.190 86 $0.0070.009$ 27204/12008 Linde 1092 0.190 86 $0.0070.009$ 27204/12008 Linde 1092 0.190 86 $0.0070.009$	ptionCu wt%Unirradiated C_v USE ft-lbfFluence 10^{19} n/cm2 (E>1 MeV)% Drop in C_v USE21935Linde 10920.1831091.19834C2624A 533B0.12080 $0.0470.020$ 8.6C2624-2A 533B0.12074 $0.0470.020$ 8.6C2608-2BA 533B0.14081 $0.0470.020$ 9.427204/12008Linde 10920.19086 $0.0430.015$ 1214 27204/12008Linde 10920.19086 $0.0450.018$ 1314	Projected Number Type Cu wt% Unirradiated Cv USE ft-lbf Fluence 10 ¹⁹ n/cm ² (E>1 MeV) % Drop in Cv USE Projected Cv USE ft-lbf 21935 Linde 1092 0.183 109 1.198 34 72.471.9 C2624 A 533B 0.120 80 0.0170.020 8.6 73.673.1 C2624-2 A 533B 0.120 74 0.0170.020 8.6 68.167.6 C2608-2B A 533B 0.140 81 0.0170.020 9.4 73.973.4 27204/12008 Linde 1092 0.190 86 0.0070.009 1114 76.974.0 27204/12008 Linde 1092 0.190 86 0.0150.018 1314 75.274.0	

Table 4.2-6 DCPP Unit 1 Reactor Vessel Material C_V USE at EOLE⁽¹⁾

(i) Per the guidance of 10 CFR 50.61 and Position 1.2 unless otherwise noted.
 (ii) Percentage USE decrease is based on Position 2.2 of Regulatory Guide 1.99, Revision 2.

Enclosure 2 PG&E Letter DCL-11-136 Page 90 of 98

Section 4 TIME-LIMITED AGING ANALYSES

Material Description Reactor Vessel Beltline Region Heat			Cu	Unirradiated	EOL ¼T Fluence	% Drop in C _v	Projected	EOL C _v USE Acceptance
Reactor Vessel Beltline Region Location	Heat Number	Туре	wt%	C _V USE ft-lbf	10 ¹⁹ n/cm ² (E>1 MeV)	USE	C _V USE ft-lbf	Criterion ft-lbf
Intermediate Shell Plate B5454-1	C5161-1	A 533B	0.14	91	1.35 1.341	25	68.5 68.3	≥50
→Using surveillance data	C5161-1	A 533B	0.14	91	1.341	22(11)	71.0	≥50
Intermediate Shell Plate B5454-2	C5168-2	A 533B	0.14	99	1.35 1.341	25	74.6 74.3	≥50
Intermediate Shell Plate B5454-3	C5161-2	A 533B	0.15	90	1.35 1.341	26	66.8 66.6	≥50
Lower Shell Plate B5455-1	C5175-1	A 533B	0.14	112	1.34 1.323	25	84.4 84.0	≥50
Lower Shell Plate B5455-2	C5175-2	A 533B	0.14	122	1.3 41.323	25	92.091.5	≥50
Lower Shell Plate B5455-3	C5176-1	A 533B	0.1	100	1.341.323	2021	79.6 79.0	≥50
Intermediate Shell Long. Weld 2- 201A	2193 <mark>5</mark> /12008	Linde 1092	0.22	118	0.768 0.739	38 34	73.6 77.9	≥50
→Using surveillance data	21935/12008	Linde 1092	0.22	118	0.739	37.5 ⁽ⁱⁱ⁾	73.8	≥50
Intermediate Shell Long. Weld 2- 201B	2193 <mark>5</mark> /12008	Linde 1092	0.22	118	0.925 0.912	39 36	71.6 75.5	≥50
→Using surveillance data	21935/12008	Linde 1092	0.22	118	0.912	39.5 ⁽ⁱⁱ⁾	71.4	≥50
Intermediate Shell Long. Weld 2- 201C	2193 <mark>5</mark> /12008	Linde 1092	0.22	118	0.785 0.775	3835	73.3 76.7	≥50
→Using surveillance data	21935/12008	Linde 1092	0.22	118	0.775	38 ⁽ⁱⁱ⁾	73.2	≥50
Lower Shell Long. Weld 3-201A	33A277	Linde 124	0.258	88	0.7740 .763	38	55.054 .6	≥50
Lower Shell Long. Weld 3-201B	33A277	Linde 124	0.258	88	0.762 0.733	3738	55.154.6	≥50
Lower Shell Long. Weld 3-201C	33A277	Linde 124	0.258	88	0.913 0.900	39	53.7	≥50
Intermediate Shell to Lower Shell Circumferential Weld 9-201	10120	Linde 0091	0.046	125	1 .3 41.323	20 21	100.1 98.8	≥50

Table 4.2-7 DCPP Unit 2 Reactor Vessel Material C_V USE at EOLE⁽¹⁾

Enclosure 2 PG&E Letter DCL-11-136 Page 91 of 98

Section 4 TIME-LIMITED AGING ANALYSES

Material Des	cription	الله ومعميلة المترم المستنية ال التركيمية المتركية التركيمية المتركية ال	Cu	Unirradiated	EOL ¼T Fluence	% Drop in C _v	Projected	EOL C _v USE Acceptance
Reactor Vessel Beltline Region Location	Heat Number	Туре	wt%	C _v USE ft-lbf	10 ¹⁹ n/cm ² (E>1 MeV)	USE	C _v USE ft-lbf	Criterion ft-lbf
Upper Shell Plate B5453-1	C5162-1	A 533B	0.110	82	0.0300.040	9. 4	74.874.3	≥50
Upper Shell Plate B5453-3	C5162-2	A 533B	0.110	86.5	0.0300.040	9. 4	78.9 78.4	≥50
Upper Shell Plate B5011-1R	C4377-1	A 533B	0.110	72	0.0300.040	9. 4	65.765 .2	≥50
Upper Shell Long. Weld 1-201A	21935/12008	Linde 1092	0.220	118	0.0300.038	18	96.996 .8	≥50
→Using surveillance data	21935/12008	Linde 1092	0.220	118	0.038	20 ⁽ⁱⁱ⁾	94.4	≥50
Upper Shell Long. Weld 1-201B	21935/12008	Linde 1092	0.220	118	0.028 0.037	18	97.296 .8	≥50
→Using surveillance data	21935/12008	Linde 1092	0.220	118	0.037	20 ⁽ⁱⁱ⁾	94.4	≥50
Upper Shell Long. Weld 1-201C	21935/12008	Linde 1092	0.220	118	0.0230.031	17	98.1 97.9	≥50
→Using surveillance data	21935/12008	Linde 1092	0.220	118	0.031	19 ⁽ⁱⁱ⁾	95.6	≥50
Upper Shell to Intermediate Shell Weld 8-201	21935	Linde 1092	0.183	109	0.030 0.040	14 16	83.3 91.6	≥50

Table 4.2-7 DCPP Unit 2 Reactor Vessel Material C_V USE at EOLE⁽¹⁾

(i) Per the guidance of 10 CFR 50.61 and Position 1.2 unless otherwise noted.
 (ii) Percentage USE decrease is based on Position 2.2 of Regulatory Guide 1.99, Revision 2.

Enclosure 2 PG&E Letter DCL-11-136 Page 92 of 98

Section 4 TIME-LIMITED AGING ANALYSES

4.9 REFERENCES

- 39. Westinghouse Report WCAP-17315-NP. Diablo Canyon Units 1 and 2 Pressurized Thermal Shock and Upper-Shelf Energy Evaluations. Rev. 0. July 2011. Westinghouse Non-Proprietary Class 3.
- 40. Westinghouse Report WCAP-17299-NP. Fast Neutron Fluence Update for Diablo Canyon Unit 1 and Unit 2 Pressure Vessels. Rev. 0. February 2011. Westinghouse Non-Proprietary Class 3.

Enclosure 2 PG&E Letter DCL-11-136 Page 93 of 98

A1.15 Reactor Vessel Surveillance

The Reactor Vessel Surveillance program manages loss of fracture toughness due to neutron embrittlement in reactor materials exposed to neutron fluence exceeding 1.0E¹⁷ n/cm2 (E>1.0 MeV). The program is consistent with ASTM E 185-70 and ASTM E 185-73 for Units 1 and 2, respectively. Capsules are periodically removed during the course of plant operating life. Neutron embrittlement is evaluated through surveillance capsule testing and evaluation, ex-vessel neutron fluence calculations, and monitoring of reactor vessel neutron fluence. The testing program and reporting conform to requirements of 10 CFR 50 Appendix H, *Reactor Vessel Material Surveillance Program Requirements*. Data resulting from the program is used to:

- Determine pressure-temperature limits, minimum temperature requirements, and end-of-life Charpy upper-shelf energy (C_V USE) in accordance with the requirements of 10 CFR 50 Appendix G, *Fracture Toughness Requirements*; and,
- Determine end-of-life RT_{PTS} values in accordance with 10 CFR 50.61, Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock.

The Reactor Vessel Surveillance program provides guidance for removal and testing or storage of material specimen capsules. All capsules that have been withdrawn and tested were stored.

For Unit 1, the last capsule is expected to be withdrawn during the current operatingterm1R17 refueling outage after it has accumulated a fluence equivalent to 660 years of operation. The remaining four standby capsules have low lead factors, will remain inside the vessel throughout the vessel lifetime, and will be available for future testing.

There are no capsules remaining in the Unit 2 vessel. All capsules were removed because high lead factors produced exposures comparable to the fluences expected at the end of the period of extended operation.

DCPP Units 1 and 2 currently use ex-vessel monitoring dosimetry, which consists of four gradient chains with activation foils outside the reactor vessel, which will be used to monitor the neutron fluence environment within the beltline region.

Enclosure 2 PG&E Letter DCL-11-136 Page 94 of 98

A3.1.2 Pressurized Thermal Shock

The most recent coupon examination results for both units show that the increase in RT_{NDT} in plate and weld materials are bounded by that predicted by Regulatory Guide 1.99, *Radiation Embrittlement of Reactor Vessel Materials*, Revision 2 for Units 1 and 2. The results demonstrate that the DCPP reactor vessel material ages consistently with Regulatory Guide 1.99 predictions, and provides a conservative means to satisfy the requirement of 10 CFR 50.61; thus providing assurance of the reactor vessel integrity.

Unit 1

Using Regulatory Guide 1.99 Position 2.1 and 1.1 methods, RT_{PTS} values were generated for beltline and extended beltline region materials, the upper shell plates and associated welds, of the Unit 1 reactor vessel for EOLE fluence values. The projected RT_{PTS} values for EOLE did not-meet the 10 CFR 50.61 screening criteria for beltline and extended beltline materials. The Unit 1 RT_{PTS} was projected to the end of the period of extended operation in accordance with 10 CFR 54.21(c)(1)(ii). RT_{PTS} remains within acceptable values through the period of extended operation.

The Unit 1 reactor vessel fluence will continue to be monitored as part of the DCPP Reactor Vessel Surveillance program, described in Section A1.15 and therefore will be managed to the end of the period of extended operation in accordance with 10 CFR 54.21(c)(1)(iii).

Unit 2

The RT_{PTS} values generated for beltline and extended beltline region materials, the upper shell plates and associated welds, of the Unit 2 reactor vessel for fluence values at EOLE meet the 10 CFR 50.61 screening criteria. The Unit 2 RT_{PTS} was projected to the end of the period of extended operation in accordance with 10 CFR 54.21(c)(1)(ii). RT_{PTS} remains within acceptable values for the period of extended operation.

Enclosure 2 PG&E Letter DCL-11-136 Page 95 of 98

Appendix A Final Safety Analysis Report Supplement

Table A4-1	License	Renewal	Commitments
	21001100	1 tonon an	oommininomio

Item #	Commitment	LRA Section	Implementation Schedule
23	DCPP will replace the current carbon steel with stainless steel clad CCP 2-2 pump casing in the CVCS with a completely stainless steel pump casing.Completed	3.3.2.2.14	Prior to the period of extended- operationCompleted
24	PG&E will implement the revised PTS rule (10 CFR 50.61a). In the event that the provisions of 10 CFR 50.61(a) cannot be met, PG&E will implement alternate options, such as flux reduction, as provided in 10 CFR 50.61. <i>Deleted</i>	4 .2.2 A3.1.2	At least 3 years prior to exceeding the PTS screening criterion of 10 CFR 50.61.Delete d
31	The Unit 2 gap repair work will be completed prior to the period of extended operation. <i>Completed</i>	B2.1.27	Prior to the period- of extended- operation.Complet ed
35	DCPP will revise the test procedure acceptance criteria to specifically preclude repositioning a tube more than once without capping or replacing. This will preclude repositioning a tube having chrome plated surfaces from the chrome being moved out of the areas of known-wear.Completed	B2.1.21	Prior to the period- of extended- operation.Complet ed
62	Implementation for all Unit 2 Diesel Generator Starting Air and Turbocharger Air Compressor upgrades is planned for April, 2011.Completed	н	Prior to the period- of extended- operationComplete d
71	The Intake Structure will be returned to (a)(2) status prior to the period of extended operation. The Intake Structure is currently scheduled to be returned to (a)(2) status by the end of 2011Completed	B2.1.32	Prior to the period of extended operationCompleted

Enclosure 2 PG&E Letter DCL-11-136 Page 96 of 98

B2.1.15 Reactor Vessel Surveillance

Program Description

The Reactor Vessel Surveillance program manages loss of fracture toughness due to neutron embrittlement in reactor materials exposed to neutron fluence exceeding 1.0E¹⁷ n/cm² (E>1.0 MeV). The program is consistent with ASTM E 185-70 and ASTM E 185-73 for Units 1 and 2, respectively. Capsules are periodically removed during the course of plant operating life. Neutron embrittlement is evaluated through surveillance capsule testing and evaluation, ex-vessel neutron fluence calculations, and monitoring of reactor vessel neutron fluence. The testing program and reporting conform to requirements of 10 CFR 50 Appendix H, *Reactor Vessel Material Surveillance Program Requirements*. Data resulting from the program is used to:

- Determine pressure-temperature limits, minimum temperature requirements, and end-of-life Charpy upper-shelf energy (C_V USE) in accordance with the requirements of 10 CFR 50 Appendix G, *Fracture Toughness Requirements*; and,
- Determine end-of-life RT_{PTS} values in accordance with 10 CFR 50.61, *Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock.*

The Reactor Vessel Surveillance program provides guidance for removal and testing or storage of material specimen capsules. All capsules that have been withdrawn and tested were stored.

For Unit 1, the last capsule is expected to be withdrawn during the <u>current operating</u>term1R17 refueling outage after it has accumulated a fluence equivalent to 660 years of operation. The remaining four standby capsules have low lead factors, will remain inside the vessel throughout the vessel lifetime, and will be available for future testing.

There are no capsules remaining in the Unit 2 vessel. All capsules were removed because high lead factors produced exposures comparable to the fluence expected at the end of the period of extended operation.

DCPP Units 1 and 2 currently use ex-vessel monitoring dosimetry, which consists of four gradient chains with activation foils outside the reactor vessel, which will be used to monitor the neutron fluence environment within the beltline region.

NUREG-1801 Consistency

The Reactor Vessel Surveillance program is an existing program that is consistent with NUREG-1801, Section XI.M31, Reactor Vessel Surveillance.

Enclosure 2 PG&E Letter DCL-11-136 Page 97 of 98

Exceptions to NUREG-1801

None

Enhancements

None

Operating Experience

Reactor Vessel Surveillance program experience at DCPP is evaluated and monitored to maintain an effective program. This is accomplished by promptly identifying and documenting (using the Corrective Action Program) any conditions or events that could compromise the program. In addition, industry operating experience provides input to ensure that the program is maintained. The DCPP operating experience findings for this program identified no unique plant specific operating experience; therefore DCPP operating experience is consistent with NUREG-1801.

The Reactor Vessel Surveillance program has provided materials data and dosimetry for the monitoring of irradiation embrittlement since plant startup. The use of this program has been reviewed and approved by the NRC during the period of current operation. Surveillance capsules have been withdrawn during the period of current operation, and the data from these surveillance capsules have been used to verify and predict the performance of DCPP reactor vessel beltline materials with respect to neutron embrittlement. Calculations have been performed as required to project the reference temperature for pressurized thermal shock (RT_{PTS}) and Charpy upper-shelf energy (C_V USE) values to the end-of-license-extended (EOLE). DCPP pressure-temperature limit curves are valid up to a stated vessel fluence limit, and must be revised prior to operating beyond that limit.

Neutron Fluence

The last capsule withdrawn and tested from Unit 1 was Capsule V at the end-of-cycle (EOC) 11, which yielded an exposure less than that expected at EOLE. Capsule B will be withdrawn at 23.2 EFPY in order to capture enough fluence data for EOLE. The last capsule withdrawn and tested from Unit 2 was Capsule V at EOC 9, which yielded an exposure comparable to that expected at EOLE. The EOLE fluence projections include the use of lower-leakage cores and the Unit 1 power uprate.

Pressurized Thermal Shock

All of the beltline and extended beltline materials in the Diablo Canyon Units 1 and 2 reactor vessels are projected to remain below the PTS screening criteria values of 270°F, for axially oriented welds and plates / forgings, and 300°F, for circumferentially oriented welds (per 10 CFR 50.61), through EOL (32 EFPY) and EOLE (54 EFPY). The projected Unit 1 RT_{PTS} values did not meet the 10 CFR 50.61 screening criteria for beltline and extended beltline materials. The Unit 2 RT_{PTS} was projected to the end of

Enclosure 2 PG&E Letter DCL-11-136 Page 98 of 98

Appendix B AGING MANAGEMENT PROGRAMS

the period of extended operation. The Unit 1 reactor vessel fluence will continue to bemonitored as part of the Reactor Vessel Surveillance program.

Charpy Upper-Shelf Energy

The most recent coupon examination results for both units demonstrate that the DCPP reactor vessel material ages consistently with Regulatory Guide 1.99 predictions and provides a conservative means to satisfy the requirements of 10 CFR 50, Appendix G. The C_V USE values were revised with projections to the end of the period of extended operation.

The Reactor Vessel Surveillance program operating experience information provides objective evidence to support the conclusion that the effects of aging will be adequately managed so that the component intended functions will be maintained during the period of extended operation.

Conclusion

Continued implementation of the Reactor Vessel Surveillance program provides reasonable assurance that the aging effects will be managed so that the systems and components within the scope of this program will continue to perform their intended functions consistent with the current licensing basis for the period of extended operation.