

TRACE V5.0 USER'S MANUAL

Volume 1: Input Specification

Division of Risk Assessment and Special Projects
Office of Nuclear Regulatory Research
U. S. Nuclear Regulatory Commission

Washington, DC 20555-0001

This page intentionally left blank

Acknowledgements

Many individuals have contributed to the NRC code consolidation effort and to this manual, in particular. In a project of this magnitude and complexity, and given the long histories of the NRC predecessor codes and their associated manuals (from which this manual has evolved), it is rather difficult to sort out and keep track of each and every individual contribution of authorship. Rather than attempt to cite individual contributors to this particular manual (and run the risk of excluding somebody, either past or present), we simply acknowledge all known contributors to the TRACE code development and assessment project, in general.

Nuclear Regulatory Commission (NRC): Stephen Bajorek, Mirela Gavrilas, Chester Gingrich, James Han, Kevin Hogan, Joseph Kelly, William Krotiuk, Norman Lauben, Shanlai Lu, Christopher Murray, Frank Odar, Gene Rhee, Michael Rubin, Simon Smith, Joseph Staudenmeier, Jennifer Uhle, Weidong Wang, Kent Welter, James Han, Veronica Klein, William Burton, James Danna, John Jolicoeur, Sudhamay Basu, Imtiaz Madni, Shawn Marshall, Alex Velazquez, Prasad Kadambi, Dave Bessette, Margaret Bennet, Michael Salay, Andrew Ireland, William Macon, Farouk Eltawila

Advanced Systems Technology and Management (AdSTM): Yue Guan, David Ebert, Duke Du, Tong Fang, Weidong He, Millan Straka, Don Palmrose

Applied Programming Technologies (APT): Ken Jones

Applied Research Laboratory/Penn State (ARL/PSU): John Mahaffy, Mario Trujillo, Michal Jelinek, Matt Lazor, Brian Hansell, Justin Watson, Michael Meholic

Information System Laboratories (ISL): Birol Aktas, Colleen Amoruso, Doug Barber, Mark Bolander, Dave Caraher, Claudio Delfino, Don Fletcher, Dave Larson, Scott Lucas, Glen Mortensen, Vesselin Palazov, Daniel Prelewicz, Rex Shumway, Randy Tompot, Dean Wang, Jay Spore

Los Alamos National Laboratory (LANL): Brent Boyack, Skip Dearing, Joseph Durkee, Jay Elson, Paul Giguere, Russell Johns, James Lime, Ju-Chuan Lin, David Pimentel

Purdue University: Tom Downar, Matt Miller, Jun Gan, Han Joo, Yunlin Xu, Tomasz Kozlowski, Doek Jung Lee

Universidad Politecnica de Madrid: Roberto Herrero

Korean Nuclear Fuel Co: Jae Hoon Jeong
Korean Institute of Nuclear Safety: Chang Wook Huh, Ahn Dong Shin

Table of Contents

Preface $x i$
Overview of TRACE xi
TRACE Characteristics xiii
Variable-Dimensional Fluid Dynamics xiii
Non-homogeneous, Non-equilibrium Modeling xiii
Flow-Regime-Dependent Constitutive Equation Package xiii
Comprehensive Heat Transfer Capability xiii
Component and Functional Modularity xiv
Physical Phenomena Considered xiv
Restrictions on Use xv
Intended Audience xvi
Organization of This Manual xvi
Nomenclature xvi
Reporting Code Errors xvii
Conventions Used in This Manual xvii
1: Execution Details. 1
General Concepts 1
Getting Started 3
Running TRACE - The Finer Details 4
Command Line Options 6
Dump/Restart Capability 8
Steady-State vs Transient Execution 10
Running Legacy TRAC-P Input Files 10
Running Legacy TRAC-B Input Files 11
Running Legacy RELAP5 Input Files 12
Running with IAPWS-IF97 (RELAP5) Steam Tables 12
Running TRACE from SNAP 13
Multi-Task Mode of Operation 13
Preparation of Input for Multiple TRACE Processes 14
Description of Contributing Processes 15
Running the Multi-Task Job 16
2: Input and Output Files 19
Input File 19
Restart File 20
Output File 20
Dump File 20
Graphics File 21
Input Echo File. 21
Message File 21
Run-time Statistics File 22
Difference File 22
Labeled Echo File 22
Heat Structure Conversion Files 23
Extract File. 23
Stop File 23
View Factors File 23
Steam Table Properties File 24
Parallel TaskList File 24
Parallel Error File 24
3: XTV Graphics 29
Visualization Tools 29
AcGrace 29
SNAP 38
AVScript 38
Description of Graphics Variables 38
Global Variable Graphics 39
Signal-Variable, Control-Block, and Trip-Signal Graphics 40
Component Graphics 41
Heat Structure, Power and Radiation Component Graphics 58
4: Troubleshooting Input Models. 65
Dealing with Input Processing Errors 65
Dealing with Initialization Errors 67
Dealing with Simulation Run-time Errors 68
Reviewing Error Messages 69
Diagnostic Checklist Assistance 71
Timestep Control 72
Using Interactive Debugging Tools 74
5: Input File Format. 75
Comments 76
Namelist Format 77
LOAD Format 78
6: Input File Specification 81
Input Data Organization 81
Main Data 81
Countercurrent Flow Limitation Data 82
Material Property Data 82
Hydraulic-Path, Steady-State (HPSS) Initialization Data 82
Constrained Steady-State Controller Data 83
Control System Data 83
General Table Data 84
Component Data 85
Timestep Data 86
Main Data 87
Countercurrent Flow Limitation Data 121
Material Property Data 123
Built-in Materials 123
User Defined Materials 123
Hydraulic-Path Steady-State Initialization Data 131
Steady-State Controller Data 135
Signal Variable Data 139
User-Defined Units Data 157
Control Block Data 163
Trip Data 217
Trip-Defining Variables Cards 217
Trip-Signal-Expression Signal Cards 223
Trip-Controlled-Trip Signal Cards 226
Trip Setpoint-Factor Table Cards 227
Trip-Initiated Restart-Dump and Problem-Termination Cards 228
Trip-Initiated Timestep Data Cards 228
General Table Data 231
General Table Array Card. 233
BREAK Component Data. 243
BREAK Table Array Cards. 250
CHAN Component Data 253
CHAN Array Cards. 261
Advanced BWR Fuel Input. 271
Water Rod Variables 273
CHAN Grid Spacer Input 276
CONTAN Component Data 277
CONTAN Array Data 278
EXTERIOR Component Data 291
FILL Component Data 293
FILL Array Cards. 302
FLPOWER Component Data. 307
FLPOWER Array Cards 309
HEATR Component Data 311
HEATR Array Cards 323
Primary Side Array Cards 323
Side Arm Array Cards 329
HTSTR Component Data 335
HTSTR Array Cards. 340
Inner Surface Boundary Condition: 341
Outer Surface Boundary Condition: 345
Additional Array Data 349
Sample Input using HTSTR, POWER, and RADENC 353
REPEAT-HTSTR Component Data 359
HTSTR Array Cards 359
JETP Component Data. 369
JETP Array Cards 381
Primary Side Array Cards 381
Side Arm Array Cards 386
PIPE Component Data 391
PIPE Array Cards 400
PLENUM Component Data 407
PLENUM Array Cards. 408
POWER Component Data 411
POWER Array Cards 426
PRIZER Component Data 435
PRIZER Array Cards. 437
PUMP Component Data 443
PUMP Curve Cards 457
PUMP Array Cards 459
RADENC Component Data 465
RADENC Array Cards 466
SEPD Component Data 469
SEPD Array Cards 482
Primary Side Array Cards 482
Side Arm Array Cards 487
Separator Array Data 493
TEE Component Data. 495
TEE Array Cards 506
Primary Side Array Cards 506
Side Arm Array Cards 511
TURB Component Data 517
TURB Array Cards 521
Primary Side Array Cards 521
Side-Tube Array Cards 524
VALVE Component Data 529
VALVE Array Cards 546
Valve Tables 550
VESSEL Component Data 555
VESSEL Geometry Cards 559
VESSEL Vent Valve Data: 561
VESSEL Vent-Valve Flow-Loss Resistance Table 562
VESSEL Spacer Grid Elevation Cards: 562
VESSEL Gravity Card: 563
VESSEL Source-Connection Cards: 564
VESSEL Level Cards: 564
VESSEL Level Repeat Card 569
End-of-Component Input Card 571
Timestep Data 573
End-of-Input End Flag Card 574
A: Deprecated Functionality 575
ROD or SLAB Components 575
Multipass Control Parameter Evaluation 610
Namelist Options 611
Main Card Variables 612
B: Error Messages 615

Preface

Advanced computing plays a critical role in the design, licensing and operation of nuclear power plants. The modern nuclear reactor system operates at a level of sophistication whereby human reasoning and simple theoretical models are simply not capable of bringing to light full understanding of a system's response to some proposed perturbation, and yet, there is an inherent need to acquire such understanding. Over the last 30 years or so, there has been a concerted effort on the part of the power utilities, the U. S. Nuclear Regulatory Commission (USNRC), and foreign organizations to develop advanced computational tools for simulating reactor system behavior during real and hypothetical transient scenarios. The lessons learned from simulations carried out with these tools help form the basis for decisions made concerning plant design, operation, and safety.

The TRAC/RELAP Advanced Computational Engine (TRACE - formerly called TRAC-M) is the latest in a series of advanced, best-estimate reactor systems codes developed by the U.S. Nuclear Regulatory Commission for analyzing transient and steady-state neutronic-thermal-hydraulic behavior in light water reactors. It is the product of a long term effort to combine the capabilities of the NRC's four main systems codes (TRAC-P, TRAC-B, RELAP5 and RAMONA) into one modernized computational tool..

This manual is one of three documents that comprise the basic TRACE documentation set. The other two are the Theory Manual and Developmental Assessment Manual.

Overview of TRACE

TRACE has been designed to perform best-estimate analyses of loss-of-coolant accidents (LOCAs), operational transients, and other accident scenarios in pressurized light-water reactors (PWRs) and boiling light-water reactors (BWRs). It can also model phenomena occuring in experimental facilities designed to simulate transients in reactor systems. Models used include multidimensional two-phase flow, nonequilibrium thermo-dynamics, generalized heat transfer, reflood, level tracking, and reactor kinetics. Automatic steady-state and dump/restart capabilities are also provided.

The partial differential equations that describe two-phase flow and heat transfer are solved using finite volume numerical methods. The heat-transfer equations are evaluated using a semi-implicit
time-differencing technique. The fluid-dynamics equations in the spatial one-dimensional (1D), and three-dimensional (3D) components use, by default, a multi-step time-differencing procedure that allows the material Courant-limit condition to be exceeded. A more straightforward semiimplicit time-differencing method is also available, should the user demand it. The finitedifference equations for hydrodynamic phenomena form a system of coupled, nonlinear equations that are solved by the Newton-Raphson iteration method. The resulting linearized equations are solved by direct matrix inversion. For the 1D network matrix, this is done by a direct full-matrix solver; for the multiple-vessel matrix, this is done by the capacitance-matrix method using a direct banded-matrix solver.

TRACE takes a component-based approach to modeling a reactor system. Each physical piece of equipment in a flow loop can be represented as some type of component, and each component can be further nodalized into some number of physical volumes (also called cells) over which the fluid, conduction, and kinetics equations are averaged. The number of reactor components in the problem and the manner in which they are coupled is arbitrary. There is no built-in limit for the number of components or volumes that can be modeled; the size of a problem is theoretically only limited by the available computer memory. Reactor hydraulic components in TRACE include PIPEs, PLENUMs, PRIZERs (pressurizers), CHANs (BWR fuel channels), PUMPs, JETPs (jet pumps), SEPDs (separators), TEEs, TURBs (turbines), HEATRs (feedwater heaters), CONTANs (containment), VALVEs, and VESSELs (with associated internals). HTSTR (heat structure) and REPEAT-HTSTR components modeling fuel elements or heated walls in the reactor system are available to compute two-dimensional conduction and surface-convection heat transfer in Cartesian or cylindrical geometries. POWER components are available as a means for delivering energy to the fluid via the HTSTR or hydraulic component walls. FLPOWER (fluid power) components are capable of delivering energy directly to the fluid (such as might happen in waste transmutation facilities). RADENC (radiation enclosures) components may be used to simulate radiation heat transfer between multiple arbitrary surfaces. FILL and BREAK components are used to apply the desired coolant-flow and pressure boundary conditions, respectively, in the reactor system to perform steady-state and transient calculations. EXTERIOR components are available to facilitate the development of input models designed to exploit TRACE's parallel execution features.

The code's computer execution time is highly problem dependent and is a function of the total number of mesh cells, the maximum allowable timestep size, and the rate of change of the neutronic and thermal-hydraulic phenomena being evaluated. The stability-enhancing two-step (SETS) numerics in hydraulic components allows the material Courant limit to be exceeded. This allows very large time steps to be used in slow transients. This, in turn, can lead to significant speedups in simulations (one or two orders of magnitude) of slow-developing accidents and operational transients.

While we do not wish to overstate the performance of the numerical techniques incorporated in TRACE, we believe that the current schemes demonstrate exceptional stability and robustness that will serve adequately in codes like TRACE for years to come. However, the models and correlations in the code can have a significant impact on the speed of a calculation; they can (and frequently do) affect adversely the time-step size and the number of iterations used. Because of the impact on the speed of the calculation and because the models and correlations greatly affect
the accuracy of the results, the area of model/correlation development may result in significant improvements in the overall code performance.

TRACE Characteristics

Some distinguishing characteristics of the code are summarized below.

Multi-Dimensional Fluid Dynamics

A 3D ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) Cartesian- and/or ($\mathrm{r}, \theta, \mathrm{z}$) cylindrical-geometry flow calculation can be simulated within the reactor vessel or other other reactor components where 3D phenomena take place. All 3D components, such as Reactor Water Storage Tank, where 3D phenomena are modeled, are named VESSEL although they may not have any relationship with the reactor vessel. Flows within a coolant loop are usually modeled in one dimension using PIPE and TEE components. The combination of 1 D and 3 D components allows an accurate modeling of complex flow networks as well as local multidimensional flows. This is important in determining emergency core coolant (ECC) downcomer penetration during blowdown, refill, and reflood periods of a LOCA. The mathematical framework exists to directly treat multidimensional plenum- and coreflow effects, and upper-plenum pool formation and core penetration during reflood.

Non-homogeneous, Non-equilibrium Modeling

A full two-fluid (six-equation) hydrodynamic model evaluates gas-liquid flow, thereby allowing important phenomena such as countercurrent flow to be simulated explicitly. A stratified-flow regime has been added to the 1D hydrodynamics; a seventh field equation (mass balance) describes a noncondensable gas field; and an eighth field equation tracks dissolved solute in the liquid field that can plated out on surfaces when solubility in the liquid is exceeded.

Flow-Regime-Dependent Constitutive Equation Package

The thermal-hydraulic equations describe the transfer of mass, energy, and momentum between the steam-liquid phases and the interaction of these phases with heat flow from the modeled structures. Because these interactions are dependent on the flow topology, a flow-regimedependent constitutive-equation package has been incorporated into the code. Assessment calculations performed to date indicate that many flow conditions can be calculated accurately with this package.

Comprehensive Heat Transfer Capability

TRACE can perform detailed heat-transfer analyses of the vessel and the loop components. Included is a $2 \mathrm{D}(\mathrm{r}, \mathrm{z})$ treatment of conduction heat transfer within metal structures. Heat conduction with dynamic fine-mesh rezoning during reflood simulates the heat transfer characteristics of quench fronts. Heat transfer from the fuel rods and other structures is calculated using flow-regime-dependent heat transfer coefficients (HTC) obtained from a generalized boiling curve based on a combination of local conditions and history effects. Inner- and/or outersurface convection heat-transfer and a tabular or point-reactor kinetics with reactivity feedback volumetric power source can be modeled. One-dimensional or three-dimensional reactor kinetics capabilities are possible through coupling with the Purdue Advanced Reactor Core Simulator (PARCS) program.

Component and Functional Modularity

The TRACE code is completely modular by component. The components in a calculation are specified through input data; available components allow the user to model virtually any PWR or BWR design or experimental configuration. Thus, TRACE has great versatility in its range of applications. This feature also allows component modules to be improved, modified, or added without disturbing the remainder of the code. TRACE component modules currently include BREAKs, FILLs, CHANs, CONTANs, EXTERIORs, FLPOWERs, HEATRs, HTSTRs, JETPs, POWERs, PIPEs, PLENUMs, PRIZERs, PUMPs, RADENCs, REPEAT-HTSTRs, SEPDs, TEEs, TURBs, VALVEs, and VESSELs with associated internals (downcomer, lower plenum, reactor core, and upper plenum).

The TRACE program is also modular by function; that is, the major aspects of the calculations are performed in separate modules. For example, the basic 1D hydrodynamics solution algorithm, the wall-temperature field solution algorithm, heat transfer coefficient (HTC) selection, and other functions are performed in separate sets of routines that can be accessed by all component modules. This modularity allows the code to be upgraded readily with minimal effort and minimal potential for error as improved correlations and test information become available.

Physical Phenomena Considered

As part of the detailed modeling in TRACE, the code can simulate physical phenomena that are important in large-break and small-break LOCA analyses, such as:

1) ECC downcomer penetration and bypass, including the effects of countercurrent flow and hot walls;
2) lower-plenum refill with entrainment and phase-separation effects;
3) bottom-reflood and falling-film quench fronts;
4) multidimensional flow patterns in the reactor-core and plenum regions;
5) pool formation and countercurrent flow at the upper-core support-plate (UCSP) region;
6) pool formation in the upper plenum;
7) steam binding;
8) water level tracking,
9) average-rod and hot-rod cladding-temperature histories;
10) alternate ECC injection systems, including hot-leg and upper-head injection;
11) direct injection of subcooled ECC water, without artificial mixing zones;
12) critical flow (choking);
13) liquid carryover during reflood;
14) metal-water reaction;
15) water-hammer pack and stretch effects;
16) wall friction losses;
17) horizontally stratified flow, including reflux cooling,
18) gas or liquid separator modeling;
19) noncondensable-gas effects on evaporation and condensation;
20) dissolved-solute tracking in liquid flow;
21) reactivity-feedback effects on reactor-core power kinetics;
22) two-phase bottom, side, and top offtake flow of a tee side channel; and reversible and irreversible form-loss flow effects on the pressure distribution

Limitations on Use

As a general rule, computational codes like TRACE are really only applicable within their assessment range. TRACE has been qualified to analyze the ESBWR design as well as conventional PWR and BWR large and small break LOCAs (excluding B\&W designs). At this point, assessment has not been officially performed for BWR stability analysis, or other operational transients.

The TRACE code is not appropriate for modeling situations in which transfer of momentum plays an important role at a localized level. For example, TRACE makes no attempt to capture, in detail, the fluid dynamics in a pipe branch or plenum, or flows in which the radial velocity profile across the pipe is not flat.

The TRACE code is not appropriate for transients in which there are large changing asymmetries in the reactor-core power such as would occur in a control-rod-ejection transient unless it is used in conjunction with the PARCS spatial kinetics module. In TRACE, neutronics are evaluated on a core-wide basis by a point-reactor kinetics model with reactivity feedback, and the spatially local neutronic response associated with the ejection of a single control rod cannot be modeled.

The typical system model cannot be applied directly to those transients in which one expects to observe thermal stratification of the liquid phase in the 1D components. The VESSEL component can resolve the thermal stratification of liquid only within the modeling of its multidimensional noding when horizontal stratification is not perfect.

TRACE is incapable of modeling circulation patterns within a large open region, regardless of the choice of mesh size.

TRACE does not evaluate the stress/strain effect of temperature gradients in structures. The effect of fuel-rod gas-gap closure due to thermal expansion or material swelling is not modeled explicitly. TRACE can be useful as a support to other, more detailed, analysis tools in resolving questions such as pressurized thermal shock.

The TRACE field equations are derived such that viscous heating terms within the fluid is generally ignored. A special model is, however, available within the PUMP component to account for direct heating of fluid by the pump rotor.

Approximations in the wall and interface heat flux terms prevent accurate calculations of such phenomena as collapse of a steam bubble blocking natural circulation through a B\&W candycane, or of the details of steam condensation at the water surface in an AP1000 core makeup tank.

Intended Audience

This manual has been written to reflect the needs of the those who desire to develop TRACE input models and run simulations with those models. It is written for both novice and advanced TRACE users, alike. While we have attempted to present the information in this manual as plainly as possible, we cannot guarantee that we have succeeded. If you find some section or blurb of text to be particularly difficult to understand, please make sure this information is commnunicated back to the development team so the issue can be rectified. Suggestions and actual rewritten text will be shamelessly accepted

Organization of This Manual

This manual is Volume 1 in a two-volume set. It is designed to present the actual input format and information needed to be able to actually run the code and interpret its output. Volume 2 is designed to 1) serve as a learning tool for understanding general modeling techniques, 2) present
the conceptual model behind each component type and key subsystem, and 3) present specific user guidelines for each component type, model or major code feature.

Topics of discussion addressed in this manual include the overall input format and structure, how to actually run the code, the various input files TRACE expects and output files TRACE writes information to, the graphics information, and any functionality that has become deprecated as a result of the code consolidation process.

Reporting Code Errors

It is vitally important that the USNRC receive feedback from the TRACE user community. To that end, we have established a support website at http://www.nrccodes.com. It contains the TRACEZilla bug tracking system, latest documentation, a list of the updates currently waiting to be integrated into the main development trunk (called the HoldingBin), and the recent build history showing what changes have been made, when, and by whom. Access to the TRACEspecific areas of the site are password-protected. Details for obtaining access are provided on the public portion of the site.

Conventions Used in This Manual

In general. items appearing in this manual use the Times New Roman font. Sometimes, text is given a special appearance to set it apart from the regular text. Here's how they look (colored text will, of course, not appear colored when printed in black and white)

ALL CAPS

Used for TRACE component names and input variable names

BOLD RED, ALL CAPS

Used for TRACE variable identifiers in the component card tables (column 2)

Bold Italic

Used for chapter and section headings

Bold Blue

Used for TRACE card titles, note headings, table headings, cross references
Plain Red
Used for XTV graphics variable names

Bold

Used for filenames, pathnames, table titles, headings for some tables, and AcGrace dialog box names

Italic
Used for references to a website URL and AcGrace menu items

Fixed Width Courier
Used to indicate user input, command lines, file listings, or otherwise, any text that you would see or type on the screen

Note - This icon represents a Note. It is used to emphasize various informational messages that might be of interest to the reader.

Warning - This icon represents a Warning. It is used to emphazize important information that you need to be aware of while you are working with TRACE.

Tip - This icon represents a Tip. It is used to dispense bits of wisdom that might be of particular interest to the reader.

For brevity, when we refer to filenames that TRACE either takes as input or outputs, we will generally refer to it using its default internal hardwired name (as opposed to the prefix naming convention to which you will be introduced in the following chapters). So for example, references to the TRACE input file name would use tracin; references to the output file would use trcout, etc.

In the individual component description sections (see Chapter 6), in the card titles for each card, the formatting convention expected for each of the input parameters is provided using standard Fortran field specification identifiers. The identifiers A, I and E refer to alphanumeric, integer number and real (floating point) number entries, respectively. Numbers appearing after those identifiers refer to the field length while numbers appearing before those identifiers indicate multiple entries of the field. For example, a data field specification of "5I14" indicates five fields of 14 characters each, containing integer numbers; a data field specification of "2E14.4" indicates two real numbers of, at most, 14 characters each, with 4 characters reserved for the exponential notation portion of the string (E-01, for example)

1

Execution Details

General Concepts

TRACE is a general thermal-hydraulics computational modeling system for nuclear power systems and other two-phase flow loop apparatus or experimental rigs. In layman's terms, it is simply an executable program that a person can run on a computer to simulate what goes on inside a nuclear power plant during normal and/or off-normal conditions. The person running the code (i.e. the user - that's you) is responsible for creating a virtual mock-up of the reactor system in the form of geometry information (volumes, lengths, areas, etc), fluid state information (pressures, temperatures, etc), lookup tables, control system information, and numerical flags or triggers that tell the code what to do, when, and how to do it. The user collects all this information into a computer file and supplies it as input to the TRACE program when it is executed. We refer to these files by a number of different names, such as, "input decks", "input files", "input models", or sometimes, just "models".

From a user's perspective, there are three major phases in a full TRACE calculation - input processing, initialization, and the solution itself. Figure 1-1 visually illustrates this process. Input processing is the first stage of a calculation. At this point, TRACE reads in your input model and checks to make sure that the data is properly formatted and that all the information required for the calculation is actually present. Once your model has passed input processing, it is initialized to ready it for the transient solution procedure. During initialization, the code performs the necessary bookkeeping functions to ensure that data is managed properly during the actual solution. It also checks your input data to make sure that all initial \& boundary conditions are self-consistent (for example, the initial velocities at a component's output face are checked to make sure they are identical to the initial velocities of the adjoining component's inlet).

Once all the input data has been processed, and the calculation has been initialized, the code proceeds to the actual solution procedure. The solution is advanced forward in time in small increments (called timesteps). The run ends when any one of the following three conditions are met - the user-specified transient end time is reached, a steady-state is declared (only during steady-state runs), or some fatal error in the calculation takes place.

Figure. 1-1. Phases of a TRACE calculation

TRACE supports both serial and parallel execution. You can think of serial execution as being defined by a single TRACE input-output process running on a single computer chip. This is how TRACE and other codes of its ilk have traditionally been run over the past thirty-five or so years. Parallel execution, insofar as TRACE is concerned, is defined by two or more input-output processes executing at the same time and coupled together by sharing information back and forth between the processes. These separate processes can take the form of 1) TRACE running in parallel with other TRACE processes, or 2) TRACE running in tandem with one or more other codes. In other words, it can do coarse-grained multi-tasking. TRACE specifically does not support more fine-grained parallel methodologies like threading or High-Performance Fortran (HPF) in which individual lines of code are tuned to run across multiple processors. It is, however, possible to run on shared-memory computers and the code will attempt to make use of the shared memory buffer if one is available (rather than always moving data through the networking stack, which can be slow), but you are always limited by the coarse-grained nature of the methodology.

An example of a multi-task mode of operation might be the TRACE simulation of a 200% double-ended cold leg break in a full-sized power plant coupled with a CONTAIN calculation of the behavior in the containment. During this mode of operation parameters such as mass and enthalpy are fed into the CONTAIN calculation from TRACE and pressure and temperature are returned to the TRACE calculation from CONTAIN.

Getting Started

Performing a calculation with TRACE on a single processor is a pretty simple affair. By itself, TRACE is really designed to be run from a command line. When run in this mode, all calculations are performed from a single working directory. The process can be broken down into the following steps:

- Install TRACE on your computer. Instructions are included on the TRACE distribution CD-ROM. Keep track of the directory location where the executable is stored.
- Open a command window if you are running Microsoft Windows or X-Windows. On a Windows PC, you can either use the DOS command prompt that comes pre-installed with the operating system (OS), or you can install the Cygwin package (a free UNIX emulation environment) and use the bash shell program that comes with it. On a UNIX/Linux workstation running X-Windows, just start an X-terminal.
- Create or otherwise determine a location on your hard drive where you want to store the input and output files for the simulation you plan to run - this will become your working directory
- Change to that working directory (using the "cd" command)
- Copy the input file(s) that you wish to run into this working directory. This, of course, assumes that you already have an existing input file you wish to run. If you don't, then you need to create one. That is what this manual is designed to help you do.
- Rename or copy your input file to the name tracin if it is not already called that
- Run TRACE. You do this by simply typing the full path to the TRACE command name at the command prompt and hitting a return keystroke.

A typical command session illustrating this process might look like this:

```
~>pwd
/home/caretaker
~>mkdir TRACE_Simulation
~>cd TRACE_Simulation
~/TRACE_Simulation>cp /d/work/advcode/Test/MasterList/w4loopn.inp .
~/TRACE_Simulation>cp w4loopn.inp tracin
~/TRACE_Simulation>/d/work/advcode/v4155/Debug/v4155.exe > screen_output
~/TRACE Simulation>ls
total 9\overline{641}
-rw-r--r-- 1 caretake None 45121 Feb 25 09:27 screen output
-rwxr-xr-x 1 caretake None 84728 Feb 25 09:26 tracin`
-rwxr-xr-x 1 caretake None 1081344 Feb 25 09:27 trcdmp*
-rwxr-xr-x 1 caretake None 122312 Feb 25 09:27 trcinp*
-rwxr-xr-x 1 caretake None 75627 Feb 25 09:27 trcmsg*
-rwxr-xr-x 1 caretake None 2698815 Feb 25 09:27 trcout*
```

```
-rwxr-xr-x 1 caretake None 5548036 Feb 25 09:27 trcxtv*
-rwxr-xr-x 1 caretake None 84728 Feb 25 09:25 w4loopn.inp*
```

As you can see, once TRACE has been run, it creates a series of output files. They contain all the information necessary to analyze the simulation and/or debug problems that may have occured during the course of the run. The tracin file is, of course, the plant or facility input-data model. There are five standard output files that you will generally need to work with - tremsg, trcout, trcdmp, trextv and trcinp. The tremsg, trcout, and trcinp files only contain ascii text so they may be reviewed with any kind of text editor or word processor. The trcinp file is an unannotated echo of the input model. It is usually only useful if there is some error in the input model and you need to track it down. The remaining output files, trextv and trcdmp, are binary files and cannot be reviewed with a text editor.

File tremsg contains information mostly of a diagnostic nature. The level of detail that is contained in tremsg can be controlled in part by the user. File trcout contains results of a calculation in the form of "large and short edits", which are written at user-specified intervals (via the time-domain input described in Chapter 6).

Most of the day-to-day analysis of TRACE's results is done via the graphics binary-format file trcxtv, which is used as input to the separate post-processing software AcGrace. Edit intervals to file trextv are specified via the time-domain input in the input-data file. A complete list of the data written to file trextv is given in Chapter 3. File tredmp is also written at user-specified intervals as a calculation proceeds. It contains data-dumps that can be used to initialize subsequent restart runs (there will be more on that later).

The input file, tracin, and the output files tremsg, trcout, trextv, and trcinp can be in either SI or English units. The trcdmp file is always SI units.

There are many other optional output files that may get generated during a run; they will not be discussed here. All files that TRACE uses for input and output are explained in greater depth in Chapter 2.

Running TRACE - The Finer Details

The normal way that codes like TRACE are typically run is to perform the simulation on a single processor. Figure 1-2 illustrates a typical workflow for such a simulation. It depicts the two basic types of runs that may be performed - a base calculation and a restart calculation. Also shown are some of the output files generated during the calculation process. The figure identifies input files for performing a base calculation, output files from that calculation, inputs and outputs for subsequent restart calculations, and depicts the post-processing phase for producing graphics. The input and output file names that are shown conform to the default naming conventions built into the code.

Figure. 1-2. Lifecycle of a TRACE Simulation.
TRACE is a console application. In other words, it is meant to be executed from the command line. Given this, one way to execute TRACE, is to copy the TRACE input file to a file named tracin. Then, at the command prompt, the name of the TRACE executable (for instance trace.exe) is entered followed by a return keystroke. For example, for an input file called testing, you would copy it to traci and then enter the following:

```
> trace.exe
```

The code executes the problem tracin and outputs the files listed in Figure 1-2. Generally, you should first look at the message and output file (tremsg and trout) in a text editor to first determine whether the simulation ran to completion. Assuming that it did, a good way to analyze the results is then to read the graphics file (trextv) into AcGrace and plot the necessary parameters that will help you to understand what is happening in the facility.

Tip - You do have the option of overriding the default file names that are built into TRACE with your own using the "--prefix" (or "-p") command line options (see Table 1-2 in the section Command Line Options below). In a nutshell, you supply a string that denotes the base name of the input file and TRACE will establish a new naming convention that uses that base name plus a set of pre-defined file extensions for each file type. In particular, TRACE expects that the input file shall have a ".ind" extension. Table $\mathbf{1 - 1}$ shows the file extensions used for the input and output files shown in Figure $\mathbf{1 - 2}$. Use of this feature will allow you to establish a workflow in which you won't have to manually copy your input decks to traci before each run. It also allows you to launch multiple simulations at the same time from within the same working directory.

Table 1-1. File extensions for some common TRACE input and output files.

Default Naming Convention	Prefix Naming Convention	Comment
tracin	test.inp	Input file. Required
trcrst	test.rst	Restart dump file. Required for restart
tremsg	test.msg	Standard Messages Output
trcout	test.out	Standard Edit Output
trcdmp	test.dmp	Standard Dump Output
trcxtv	test.xtv	Standard Graphics Output
trcinp	test.echo	Standard echo of stripped down input with line numbers

Command Line Options

TRACE understands a wide range of command line options. These options and their descriptions are listed in Table 1-2. You can also use the "--help" option from the command line itself to get a full list of the available options. We generally recommend that you rely on them as much as possible because they give you greater flexibility in maintaining your input and output files as well as greater control over code behavior.

Table 1-2. TRACE command line argument options and their description.

Argument	Description
$-?$, or --help	Print this help message
-v, --version	Print out the version number for the code.
$-\mathrm{x},--\mathrm{nocpu}$	Set NAMELIST variable CPUFLG to 1; suppress output of CPU times and other run dependent parameters. Note that this command line option overrides the NAMELIST option.
-t, --cpu	Set NAMELIST variable CPUFLG to 0; output CPU times and other run dependent parameters. Note that this command line option overrides the NAMELIST option and the presence of the nocpu file in the working directory

Table 1-2. TRACE command line argument options and their description. (Continued)

Argument	Description
--dif	Set NAMELIST variable TRCDIF to 1; create a tredif file containing parameters useful for determining when code changes affect code results. Note that this command line option overrides the NAMELIST option TRCDIF
--nodif	Set NAMELIST variable TRCDIF to 0; suppress output trcdif file containing parameters useful for determining when code changes affect code results. Note that this command line option overrides the NAMELIST option TRCDIF
-g, --snapon, --gui	Flag to take place of .snapon file in current working directory. This argument indicates that the SNAP runtime control module initiated this run and is waiting to communicate with TRAC.
	Warning - You should not use this flag directly - it is designed to be used only by SNAP when it starts a TRACE run.
-c, --ce, -isCompEngine	Function as if the executable is the computational engine only. This reads input from the TPR formatted trerst file as the sole source of input; the tracin file is bypassed. RELAP5 decks from SNAP are converted this way.
-i, --ip, --isInputRun	Function as if TRACE is an input processor only. This reads the tracin file, performs input checking and conversion as necessary, generates a dump file and stops.
--useTpr	Forces TRACE to create a dump file in TPR format (trctpr replaces trcdmp).
-b, --bell	Causes an audible bell to sound with each warning or error message that is written to the standard output.
-d TIMESTEPSIZE, --dtstrt TIMESTEPSIZE	Set NAMELIST variable DTSTRT to TIMESTEPSIZE. This will force the initial time step size to be TIMESTEPSIZE as long as TIMESTEPSIZE is between the minimum and maximums for the current time step domain. Note that TIMESTEPSIZE must be in fixed point notation (e.g. 0.03) and the value will override an entry for the NAMELIST variable DTSTRT in the input (tracin) file.

Table 1-2. TRACE command line argument options and their description. (Continued)

Argument	Description
-p PREFIX, --prefix PREFIX	Don't use the default built-in naming convention for input and output files. Instead, all filenames will follow the pattern PREFIX.<extension> where the specific value for <extension> is set by TRACE and unique for each input or output file type. Refer to Table 2-1 for a full list of the file extensions that TRACE will use for each file type. Filename prefixes should be limited to a maximum of 35 characters.
--runStats	Forces TRACE to create a file (trcstats) containing basic information on execution of the program (cpu time, number of time steps, etc.)
--norand	Turn off any random control blocks that might exist in the input deck. This makes their output values constant from run to run, to facilitate the generation null comparisons during verification testing
--significantd	Turns on the significant difference logic. This is a developer-only option that should not be used under normal circumstances. It allows the developer to write some extra parameters to a file in an effort to determine whether changes in results from one code version to the next are "significant".

Dump/Restart Capability

As Figure 1-2 attempts to show, it is possible for a new calculation to pick up from where some previous calculation left off. This is generally referred to as "restarting the calculation". Let's discuss this feature in more depth.

During any given simulation, TRACE automatically generates a dump file (trcdmp, by default) which contains snapshots of the state of the model at various time points. Any one of these snapshots, called a data-dump, may be used to initialize all or part of the model for subsequent calculations. The times when dumps are generated are determined by several criteria:

- A zero-time data dump is automatically generated at the start of the run. You can generally think of this dump as being generated at the end of the initialization stage. Specifically, it is generated part way through the solution of the first timestep after all the necessary parameters for a successful restart have been calculated, but users should generally not need to be concerned with this nuance.
- A data-dump is automatically generated at the end of the steady-state or transient calculation.
- Data-dumps are generated at regular intervals based upon a user-supplied dump frequency. This time interval is given by the DMPINT variable on the timestep data
cards. A data dump will be generated whenever this time interval has elapsed since the last data dump.
- A data dump also may be initiated by the user with one or more designated trips (see Chapter 6, Trip Data). At the time the status of any of those trips is set to "ON", a dump is appended to the end of the dump file. This permits the restart of a problem when a tripsignal monitored particular event of interest occurs.

All data dumps are added sequentially to the end of the dump file. The solution results written to the dump file are always in metric SI units.

A restart calculation requires two input files - a restart-dump file (or simply "restart file", for short) and a normal input file. The restart file is nothing more than the dump file for the calculation that you want to restart from. To use the dump file to initialize a subsequent calculation, the file must be copied or renamed from trcdmp to trcrst (or test.dmp to test.rst, if you are using the "--prefix" command line option). The input file is just a stripped-down version of the original input file. The general idea is that it should only contain information that is new or has changed from your original model. Be aware, however, that there is some information, like the main data cards, that must appear in every input file, regardless of whether it is a restart run or not.

The specific data that gets retrieved from the restart-dump file depends upon the information that has been provided by the input file. Any component not defined in the input file is initialized from the restart file. Also, any signal variable, control block, and trip with an ID number that has not already been defined by the input file will be initialized with its defined state from the data dump.

[^0]Because the restart file will undoubtedly contain more than one block of dump information for the system, you will need to choose which specific block of information you want to actually restart from. You do this by figuring out the timestep number of that specific data-dump and set that value for the DSTEP variable (Word 1 on Main-Data Card 6) in your input file. The message (tremsg) and output (trcout) files from the previous run can be searched for the phrase "restart dump" to show all output messages of the problem times and timestep numbers when data dumps were generated during the calculation. Since you will normally be interested in choosing the very last data-dump, TRACE allows some shorthand here - if the timestep number that you specify is negative, TRACE will read in the final data-dump and overwrite that negative DSTEP value with the timestep number taken from that data-dump.

Steady-State vs Transient Execution

TRACE may be executed in either steady-state or transient mode. In terms of the numerical scheme employed, there is nothing inherently different between the two modes. A steady-state run simply has some extra intelligence designed to detect whether the rate of change of various parameters throughout the model is essentially zero (within some user-specified tolerance), and if so, it ends the run. Additionally, steady-state input models are generally not allowed to perform actions that would explicitly lead to changes in the time-derivative terms in the basic equations.

TRACE determines whether or not an acceptable steady-state solution has been evaluated in a two-step process. First, TRACE determines every fifth timestep the maximum fractional change per second of seven key parameters (total pressure, liquid and steam velocities, steam volume fraction, liquid and steam temperatures, and noncondensable-gas pressure) over the entire hydraulic-system model. Then TRACE requires that all seven maximum rate-of-change values be less than or equal to a user-specified convergence criterion (EPSS) for steady-state convergence to be satisfied. This test feature also is provided in transient calculations that evaluate an asymptotic steady-state solution by the NAMELIST variable ISSCVT as described in Chapter 6.

If steady-state conditions cannot be attained within the period of time selected by the user; i.e., calculations do not converge and/or the results are not satisfactory, the calculation may have to be restarted. You might also consider just re-running the entire calculation from time zero with a larger end time if the amount of wasted wall-clock time is not considerable. Once an acceptable steady-state solution is obtained, a transient calculation can be initiated from the last steady-state calculation's dump file. The input file for the transient calculation contains those changes (relative to the steady-state model) that will initiate the desired transient behavior. This can include such modifications as new trip actions, new or modified control-system behavior, new components (for example, the addition of a BREAK component), or the modification of existing components to achieve some off-normal component action (e.g. valve opening/closing, pump coastdown, reactor scram, etc).

This describes the most typical use of TRACE. Sometimes performing a steady-state run is not necessary, and a transient run can be the first run. In this case, the input file will contain all transient information and the restart process is not necessary.

Running Legacy TRAC-P Input Files

If the input file has been created for a code version earlier than version 3.840 (TRACE was called TRAC-M at that time), the input deck may contain ROD/SLAB heat structure components. In Version 3.840, ROD/SLAB heat structure components were eliminated and replaced by HTSTR and POWER components. Fortunately, a mechanism is in place which will allow a user to convert input decks that contain the old ROD/SLAB components to input decks that use the new HTSTR and POWER components. First and foremost, it should be mentioned that it is not strictly necessary to actually convert the old ROD/SLAB components into new HTSTR and POWER components. The code will execute if fed an input deck containing old ROD/SLAB components.

TRACE is able to convert these heat structures on the fly. The disadvantage to this is that the user will generally find it very difficult to correlate the old heat structures as seen in the input deck with the heat structure information provided in the output file as well as the descriptions provided in the input \& theory manuals. Also, SNAP is not able to directly read in input decks that use the old ROD/SLAB format.

The recommended course of action is to convert the original input decks themselves, rather than maintain the old formats. This is a relatively painless process. All that is needed is to simply create an empty file called newhsinput in the current working directory (i.e. the directory from which the code is executed) and then run the code with the input deck you would like to convert.. On a UNIX system the following command:

```
> touch newhsinput
```

will accomplish this. If the "--prefix" command line option is used, then the code will expect the filename to be <prefix>.nhs rather than newhsinput. TRACE will recognize the existence of this file and convert the old input deck containing ROD/SLAB heat structure components to an equivalent new deck with HTSTR and POWER components. The new input deck is written back out to newhsinput (or <prefix>.nhs). In addition to newhsinput, a second file called sigvarinp (or <prefix>.svi) is created to show the user which signal variables may have been modified in response to changes made to the heat structures they reference. In order to run TRACE, simply replace the old input deck with newhsinput (or <prefix>.nhs), remembering to actually remove newhsinput so the code does not attempt a second conversion run on the newly converted input deck.

Another area of concern to the user when attempting to execute old input decks relates to the signal variable input in the control system. Because there are so many different possibilities for specifying the signal variable input, input checking in TRACE has been severely strengthened over that of the original TRAC-P logic. One of the traits of the TRAC-P signal-variable capability was the flexibility afforded the user when specifying the input. This flexibility, unfortunately, carried with it the likely possibility of masking input errors without the user ever realizing that they exist. Such errors could be in the form of simple typos as well as a more fundamental lack of understanding.of how the signal capability should work. The TRACE input scheme has sought to rectify these problems by placing more stringent requirements on the user to specify consistent, meaningful input, without actually changing in any significant way the meaning of the input parameters. As such, there may be some instances where input decks will require small modifications to the signal variable input in order to allow them to execute. TRACE will generate error messages that contain the necessary amount of detail to allow the user to manually correct any such input found to be incorrect.

Running Legacy TRAC-B Input Files

TRACE is able to read and execute native TRAC-B models. They are treated exactly like native TRACE or TRAC-P models in terms of naming convention. You should, however, beware that TRACE is not able to perform the same level of diagnostic checks on the input data that TRAC-B
would have performed. For that reason, it is imperative that you first make sure that your native TRAC-B model actually run in TRAC-B before attempting to run it with TRACE.

The following are issues the user should be prepared to deal with when attempting to run legacy TRAC-B decks with TRACE:

- The meaning of the CPOWR array has been redefined. In TRAC-B, it is possible for the first rod group to be given a relative power of 0.0 , indicating that it is a water rod. In TRACE, there is a requirement that the first rod group must not be a water rod. As such, it will be necessary to restructure any TRAC-B decks in which the first value of the CPOWR array is set to 0.0.
- While TRAC-B supports the ability to model a SEPD component as just a dryer with no actual separator section (i.e. swirl vanes) (NDRYR >0 and NSEPS $=0$), TRACE does not currently allow this configuration.

Running Legacy RELAP5 Input Files

TRACE has the capability to convert and run most RELAP5 models. We must stress that this capability is still very much under development; it should be considered experimental and not yet ready for production use. Executing a RELAP5 model with TRACE is a three-step process. If you are a brave soul and would like to test the waters, the process you must follow is outlined as follows:

- Import your native ascii RELAP5 model into SNAP
- Export a RELAP5 TPR file
- Execute TRACE using the "--useTPR" and "--isCompEngine" command line options.

The following are issues the user should be prepared to deal with when attempting to run legacy RELAP5 decks with TRACE:

- need to add a list of the issues

Running with IAPWS-IF97 (RELAP5) Steam Tables

TRACE has two different steam table formulations that the user may choose from when performing a simulation. By default, TRACE relies on legacy built-in curve-fit formulations that were used in TRAC-PF1. Users also have the option to run TRACE in a mode that relies on an interpolation scheme based on the 1997 International Association for the Properties of Water and Steam (IAPWS) Industrial Formulation (IF97) standard. It is essentially the same method as that used in RELAP5 (although the possibility for minor differences exists due to bug fixes/ improvements that may have made it into one code but not the other). This is accomplished by setting the NAMELIST variable USE_IAPWS_ST = .TRUE.

In terms of code execution details, when USE_IAPWS_ST = .TRUE., the user has the option of either supplying an external steam table binary file generated according to the IAPWS-IF97 standard ${ }^{1}$ or simply letting TRACE default to using built-in steam table data (extracted from the external IAPWS steam table file and hardcoded into the executable). TRACE follows a cascading series of steps that determines how it will get its steam table properties. If the "--prefix" command line argument is used, the code will first search for a file called "<prefix>.h2o". This file is equivalent to the tpfh2onew file that all RELAP5 users should be used to using. If the code fails to find it, or if the "--prefix" option is not used, then it will look for a file called treh2o. If the code, in turn, fails to find this file, then it will try to open tpfh2onew. If it then fails to find that file, then the code will finally default to using the hardcoded IAPWS steam table data. Without the "--prefix" option, the code will first start looking for trch2o and proceed through the same cascading set of steps. In all cases, the steam table binary file is expected to be in the same directory as the TRACE input file (i.e. the current working directory). This scheme preserves the legacy RELAP5 workflow as well as the ability to test out different versions of the IAPWS standard without needing to rebuild the entire code.

It should be noted that while the tpfh2onew data file (or its equivalents) has, in general, more digits of numerical precision than the hardcoded IAPWS steam tables, from an engineering standpoint, the level of accuracy you get from the hardcoded IAPWS steam tables is essentially the same as that of the external data files.

Running TRACE from SNAP

For a complete description of this execution mode, please consult the SNAP User's Guide.

Multi-Task Mode of Operation

The multi-task (parallel) features of TRACE are provided through the Exterior Communications Interface (ECI). Users of this capability are strongly encouraged to study the documentation and examples directly associated with the ECI (examples are in the HTML-based ECI training material on the TRACE release CD). One mode of multi-task simulation involves splitting a standard single (serial) process TRACE input deck into two or more input decks that can be used to spread the work across more than one TRACE process. This is a way to cut runtime of a large plant simulation. Another mode involves extension of capabilities by tightly coupling other programs such as CONTAIN to the system simulation. This section focuses on actions needed to use more than one TRACE task in a multi-task calculation.

Options are scheduled for SNAP that will largely automate the creation of input and execution of multi-task jobs. This section describes the steps necessary to manually split standard input into an equivalent set of multiple input decks. It also describes the additional input file (taskList) used to

[^1]specify the configuration of the multi-task job. Because input features supporting multi-task simulations are new to TRACE, users starting from archival input decks for RELAP5 or TRAC-B must use SNAP to convert them to native TRACE input before splitting the input model.

Preparation of Input for Multiple TRACE Processes

The first step in splitting an input model is to understand your target parallel computer. There is no advantage in creating more TRACE calculations than the number of CPU's on your computer (or computer cluster). Another related consideration is parallel efficiency. You should consider a study of TRACE's parallel efficiency on your computer. For the majority of configurations at the moment, the incremental increase in speed associated with splitting a system simulation into more than four parts is probably not worth your effort. For computers linked by a standard Ethernet, expect relatively poor parallel performance.

The second step is to understand your system nodalization, and look for ways to split the system that balance the computational load between processors. If your modeled system has a mixture of 1 D and 3D components, you should run some simple timing studies to determine the ratio of computational times required by these volumes. We've found enough variation in the ratio of 3D to 1 D cost per cell per step between computers and compilers, that it is not worth giving specific guidelines here. In most circumstances the relative computational cost for heat conduction nodes is low enough that heat structures should simply be placed on the same processor as one of the fluid components with which they exchange heat. However, if large numbers of heat structures are associated with one fluid component, timing studies may be justified to determine the value of allocating some or all of these heat structures to their own processor.

Once you have selected the basic distribution of components between separate TRACE calculations, the next step is to clearly note connection paths for flow of fluid and/or heat between the separate processes. For example assume that "PIPE 1" is in one of the new input decks and "PIPE 2" is in another. If fluid can flow from one to the other, you need to add an EXTERIOR component (see Chapter 6) to each of the new decks to mark the component missing from the other side of that flow connection. The input deck containing a full description of "PIPE 1" will contain the component "EXTERIOR 2" to note that a component connected to "PIPE 1" exists in some other process. The input deck containing a full description of "PIPE 2" will contain the component "EXTERIOR 1" to note that a component connected to "PIPE 2" exists in some other process. A similar procedure exists if a heat structure and fluid component exchange heat, but are calculated by different tasks.

Use of EXTERIOR components has one other level of complexity. One task in the multi-task calculation must be designated as "central". It will have the responsibility of sorting out the task to task fluid flow path topology. As a result, the input for that task must include an EXTERIOR component corresponding every real component in every other task's input that has a flow junction to a different computational task. If "PIPE 1" and "PIPE 2" in the example above are contained in two non-central (satellite) tasks, then the central task must have input for components "EXTERIOR 1" and "EXTERIOR 2", containing information indicating that the two components share a flow junction.

Construction or adaptation of control systems for multi-task simulations should be done with care. It is a good idea to configure input decks so control block clusters that span processes are placed in the input for the central process. This will limit the potential for unpredictable consequences when evaluation of a string of interdependent control blocks is spread across several processes. Any signal variables used as input to control blocks should be defined within the process containing that control block. Access to signal variables that are defined in other processes does not function properly in the current code release. However, a signal variable defined in one task may request information from a component that is evaluated in another task. Transfer of that information will be automatically scheduled during the initialization of the calculation.

Description of Contributing Processes

A clear definition is required for all tasks contributing to a system simulation, and for the location of execution and input information for those tasks. This is done in a file named taskList. The file consists of pairs of task descriptor lines and any number of blank or comment (starts with \# or !) lines. The first line in a task descriptor pair contains an arbitrary but unique name for the task, a path to the program used for this task, and, if appropriate, any command line arguments for the program. The second line in the task descriptor pair contains the name of the host on which the program will be executed, and the working directory for the job. The first active line pair in taskList describes the central process. A sample taskList file is shown below.

```
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\# HERE IS THE INFO FOR TASK \#1
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\# taskname program name arguments
    trac 1 D:\work\code\v31181\Debug\tracx.exe
\# Hostname Working Directory
    mowgli.psu.edu D:\work\code\exterior\example1
\#\# \#\# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \# \#
\# HERE IS THE INFO FOR TASK \#2
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\# taskname program name arguments
    output D:\work\code\exterior\getvars\Debug\getvars.exe
\# Hostname Working Directory
    mowgli.psu.edu D:\work\code\exterior\getvars
\#
```


TaskList Descriptor Card Pairs

Fields in the taskList file are defined as follows:

Card Number	TaskName	ProgName	Arguments
1 (Program information)	Arbitrary name uniquely identifying the task in the multitask system simulation.	Full path name of the executable used for this task.	Any command line arguments used by the program (For TRACE, see Table 1-2).
	MachName	WorkDir	
(Execution Environment)	Network name for the machine used to run this task.	Name of the working directory for this task. Input files must already exist in this directory. All output will be placed in this directory.	

One important restriction in the current ECI is that all machines listed in a given taskList file must have the same flavor of operating system. All must be running a Microsoft Windows system, or all must be running a Unix or Linux system. If you are running Unix/Linux on a mixture of hardware having different internal representations of numbers, you need to rebuild your computer code with a definition added in CIpcInclude.h of "\#define XDRtest" (CIpcInclude.h is a header file in the "tracc" library). If all values of MachName are the same, reflecting a shared memory parallel computer, you should consider rebuilding TRACE with "\#define SOCKETS" replaced by "\#define SHARED" (also in CIpcInclude.h). This will typically cut message passing overhead by at least a factor of two.

Running the Multi-Task Job

The first step in running a multi-task job is to be certain that the input files for each task are located in the working directory listed for that task in the taskList file. The taskList file itself must be located in the directory from which the central process is started.

The next step is to be certain that the driver program (named "ParallelDriver") for the ECI is running on every machine listed in the taskList file. The driver program functions as a daemon for sending messages back and forth, much like the pvmd daemon used in PVM. This program stays alive after each use, unless cancelled by a "Ctrl-C" keypress. However, as currently configured, the driver only supports one ECI job at a time on a given processor. This restriction will be relaxed in later releases. Eventually, the current driver program will be replaced by equivalent functionality in the SNAP Execution Monitor.

The final step is to start your central process (first process in the taskList file). Normally this would be started in the first working directory listed in the taskList file. However, you can start the process in any working directory as long as the taskList file resides in that directory. Once it has read the taskList file, the central process switches to it's designated working directory, and transmits the contents of taskList to all driver programs. The drivers start all remaining tasks for
the simulation on the correct machines, then go into an idle state. Communications between tasks from that point forward is automated, and governed by each task's need for missing information.

Each TRACE task creates it's own set of output files. However, the edit and dump intervals are controlled by the central process and synchronized by the ECI. If a restart is required, the dump file must be copied to a restart file (e.g. trcdmp $=>$ trcrst), and an appropriate restart input file must replace the original input file in every working directory.

2

Input and Output Files

For console applications like TRACE (i.e. those that you run from a command line), interaction between the user and the application generally takes place through the use of computer files. The user is responsible for supplying as input to the program one or more files that contain all the data necessary to perform a simulation. TRACE is responsible for performing that simulation and saving all the relevant information that it generates into one or more output files so that it may be analyzed by the user. The purpose of this section is to introduce you to all the various input and output files that TRACE expects from the user or creates on its own during the course of a calculation. See Table 2-1 for a concise reference.

There are two distinct file naming conventions you can use when working with TRACE input and output files. By default, the code has its own hardwired naming scheme for all files that it processes. These default names are given in column 3 of Table 2-1. Unless you do something to tell TRACE otherwise, this is the scheme that it will use. Alternatively, you can override this default naming scheme when invoking TRACE from the command line. Using the --prefix command line option, you are able to establish a common base name that all files created or readin by TRACE will share. The individual file types are differentiated by a unique file extension (hardwired into the code). For example, if TRACE were invoked from the command line like this:

```
> trace.exe --prefix test
```

then the code would expect to take as input a file called test.inp. It would create a series of output files like test.out, test.msg, test.xtv, etc. Column 4 in Table 2-1 provides a listing of the exact file extensions used by TRACE, assuming a common run name called "test"

Input File

The tracin (test.inp) file specifies the problem input data for a calculation and is a required input file for all TRACE calculations. For a new calculation this file contains all of the model input data. For a restart calculation this file contains input only for the model features which the user desires to change at the problem restart time. Data for the remaining model features are obtained from the restart file (described below) at a restart edit specified by the user.

Restart File

The trerst (test.rst) file contains data from a prior calculation from which a restart run is to be made. This TRACE input file is only required for restart calculations. Typically this file is created by copying the dump file (described below) from the prior run and renaming it to trerst (test.rst). The times at which restart calculations may be made correspond to the restart edit times requested by the user in the preceding calculation. Note that the restart file is never modified as a result of executing a restart calculation. Also, note that the dump file produced by a restart calculation only includes data covering the period of the restart calculation and not the period of the prior calculation before the restart time.

Output File

The trcout (test.out) file contains output data representing "snapshots" of the calculation variables at specific times during the calculation. Short and large edits are produced during the calculation at frequencies requested by the user on the time-step data cards. The edits include values for the calculation variables (such as pressures, temperatures and control block data). This file also contains an echo of the problem input and some, but not all, warning and error messages. For the initial calculation, the initial condition of the thermal-hydraulic system model is that specified in the input file. For subsequent restart calculations, the initial condition is that obtained from the restart file (the dump file from the previous calculation) with an overlaid modification of selected control parameters and components from the input file.

A short edit is a half-page display. The initial line outputs the current problem time, timestep size, and timestep number and the number of iterations required to converge the last outer iteration. This is followed by the maximum convective power difference, the component and its location limiting the current timestep size, the minimum, average, and maximum number of outer iterations since the last short edit, the number of timesteps that each component was the last to converge its outer-iteration solution, and the current-calculation and accumulated-calculation's CPU execution times. This information conveys how well the numerical solution is doing and where in the model the solution convergence is most limited and the timestep size controlled.

Dump File

TRACE generates a dump file called trcdmp (test.dmp) that contains snapshots of the solution state of the model. These snapshots are output at user-specified time intervals (using the timestep data cards or special trips designed to force a dump snapshot to be taken at a specific point) during the course of a calculation. Any one of these snapshots, called a restart data dump, may be used to initialize all or part of the system model for subsequent restart calculations from its data-dump edit time. This file is typically copied and renamed to the restart file (see above). That file is then it is used as the input file containing restart edit data required for subsequent restart problems. The
solution results output to the dump file are always in metric SI units. The file contains unformatted binary data that and, as such, is not intended to be visually examined.

The file tretpr has the same functionality as trcdmp. It is intended to be platform-independent such that a TPR file generated under one operating system (e.g. Windows) can be read on another (e.g. Linux). The command line argument "--usetpr" (see Table 1-2) causes the code to generate the trctpr file instead of trcdmp. The TPR file may also be used as a means for importing a TRACE model into SNAP.

Graphics File

The trextv (test.xtv) file contains calculation output in a format that can be directly used by the graphics-analysis tool AcGrace (see Chapter 3 for more information). The file consists of header information in text format and a series of graphics data edits in binary format. The edit frequency can be controlled by the user from the input file. The data in this file can be output in either SI units or English units. Plot axis labels for dependent variables are provided in the corresponding units.

Input Echo File

The trcinp (test.echo) file is an echo of the input-data file with out comments. It contains the problem input rearranged into a standard TRACE format and only includes the input data that is actually used by the code. All comment cards are removed. At the end of each card read, two pieces of information are listed: the format the data should be entered in for that card [i.e. integer (i) or real (r)] and the number of the card as it lies in the input-data file. This file can provide some help in diagnosing the sources of input errors relating to data entry fields and format. For example, some error messages refer to the card number to reference the place of input error in the input-data file. The numbered cards in the echo file makes it easy to find the error in the tracin file.

Message File

The tremsg (test.msg) file contains condensed output on the behavior of the numerical calculation and warning error messages that are produced during input processing, initialization, and the computational sequence. In other words, it documents the progress of the calculation and any numerical difficulties that were encountered. Solution results output to the message file are in SI units.

Run-time Statistics File

The trestats (test.stats) contains some very basic statistics on a run such as CPU time, total number of time steps, and mean time step size. The CPU time in this file only reflects cost of time advancement through a transient, and does not include time associated with input processing and initialization of the calculation. This CPU time is printed even if the "--nocpu" command line argument is selected or the NAMELIST variable CPUFLG is 1 . Each line of this ASCII file begins with a number. Next is an equals sign, followed by a descriptive name associated with the value at the beginning of the line. The remainder of the line contains a simple description of this run statistic.

Difference File

The trcdif (test.dif) file is an output file containing a history of the inner and outer iteration and time step parameter data during the calculation. The values that are printed are in full numerical precision. This file is of limited value to the TRACE user. The purpose of this file is to assist the code developer in helping to identify from one code version to the next, whether a code modification has perturbed the calculation in a way that was not intended. The values printed to the output file are not printed with sufficient precision to guarantee that an unintended perturbation will cause a non-null comparision for a particular input deck between two consecutive code versions. It can sometimes take several hundred timesteps for an error to propagate into the output file. The tredif file allows the developer to identify the exact point (timestep) where two runs might have diverged. This file is created by using the command line argument "--dif" (see Table 1-2) or setting the NAMELIST variable TRCDIF to 1 (see MainData Card 4).

Labeled Echo File

The inlab (test.lab) file is an optional (i.e. user-requested) output file that contains the same input data as the trcinp (test.echo) file but in a free format with all the TRACE variables names provided within asterisk-delimited comments. The comment labels for scalar variables are on a comment line above the line containing their values. The comment labels for the array variables are asterisk-delimited in a left-justified nine-column field on each line having load-format data. Existing user-defined comments in the tracin file are not preserved in the inlab file, however. You will need to transfer them over manually should you so desire.

In essence, the labeled echo file becomes a new "cleaned up" version of the input file when it is renamed tracin (test.inp). This provides a convenient way for the user to clean up the appearance of an input file for better readability of the input data.

By default, the input-data parameter values are in written to this file in SI units, but the user has the ability to override this and request that they be written, instead, in English units. This provides a convenient way for the units of the input data to be changed conveniently from metric SI to English or from English to metric SI. The tracin-file units are metric SI or English depending upon NAMELIST variable IOINP being 0 (default) or 1 ; the inlab-file units are metric SI or English depending upon NAMELIST variable IOLAB being 0 (default) or 1, respectively.

Heat Structure Conversion Files

The newhsInput (test.nhs) and sigvarinp (test.svi) files are optional output files that are generated when a heat structure conversion run is attempted. To initiate this process, the user must first create an empty newhsInput (test.nhs) file in the current working directory. When TRACE finds this file, it will attempt to convert all old ROD/SLAB components to the new HTSTR and POWER components, and write the resulting input file back out to newhsInput. The sigvarinp (test.svi) file contains information pertaining to any signal variables whose input was modified to reference the new heat structure or power components.

Extract File

The trcext (test.extr) file is an optional output file that is generated when a TRAC-B extract run is attempted. At this point, this functionality is only partially enabled so its use is not recommended.

Stop File

The StopCode file is used a means for terminating execution of a code run prematurely, but do so in a graceful way. As such, the output, dump, and graphics files are left in a usable state. Each timestep, TRACE checks for the existence of this file. If it is found, then the run is terminated (and StopCode is deleted), otherwise, execution proceeds.

View Factors File

The $\operatorname{trcgvf} \mathbf{x x x x}$ (test.gvf_xxxx) files are a set of output files that contain the calculated grouped view factors and path lengths for each CHAN component. One file is created for each CHAN component. The "_xxxx" suffix denotes the specific ID number of a single CHAN component in the input deck. Once the grouped view factors and path lengths have been determined for a given code run, they can be inserted back into the input deck so that the code does not need to recalculate them for each code run. This is important because for CHANs that contain square and/or water cross water rods, the view factors are calculated using a cpu-intensive ray tracing
methodology, that requires at least 100,000 randomly selected rays for each rod surface to determine view factors with an acceptable level of accuracy. Experience has shown that such calculations can take on the order of several CPU minutes. For really accurate view factors, approximately $1,000,000$ rays are needed. Such a calculation may take several CPU hours to complete (for just the view factors alone).

Steam Table Properties File

The $\boldsymbol{t r c h} 20$ (test.h2o) file contains the IAPWS steam table data and can be used as an input file to supercede the built-in water property interpolation data when the steam table NAMELIST option is engaged (USE_IAPWS_ST = .TRUE.). If the "--prefix" command line argument is used, the code will first search for test.h2o. If the code fails to find it, then it will look for a file called trch2o. If the code, in turn, fails to find this file, then it will try to open tpfh2onew. If it then fails to find that file, then the code will use IAPWS steam table data that has been stripped from the tpfh2onew/trch2o file and hardcoded straight into the executable. Without the --prefix option, the code will first start looking for trch2o and proceed through the same cascading set of steps. The ability to make the steam table file conform to the prefix of the actual input file is useful in situations where multiple code runs are launched from the same directory. Otherwise, multiple TRACE processes will compete for the same file, causing errors (at least under Windows).

If USE_IAPWS_ST = .FALSE. (the default), then none of the above applies - the code will use built-in legacy water property curve fits.

Parallel TaskList File

As explained in Chapter 1, TRACE can be executed in parallel with itself or with other codes. In these situations, a clear definition of all the tasks contributing to a system simulation is required, as well as the location of all input files and working directory where execution is to take place. This is done in a file named taskList. There is no equivalent prefix naming convention option for this file.

Parallel Error File

The central.err file contains error messages that may be produced during a parallel run. The messages that appear here will generally be related to problems in the data flow and/or handshaking that takes place between separate processes. There is no equivalent prefix naming convention option for this file. This file is only produced if TRACE is the central process of the simulation.

Table 2-1. Summary of TRACE Input and Output Files.

File Type	File Content or Function	Default Naming Convention	Prefix Naming Convention	File Contents, Comments
Input	Calculation Input File	tracin	test.inp	Problem input deck.
Input	RestartData Input File	trerst	test.rst	Only used for restart problems. Contains data from which the calculation is initiated. Generally created by copying the trcdmp (test.dmp) file from the prior run and renaming the copied file trerst (test.rst).
Input	Terminates code execution gracefully	StopCode	StopCode	The existence of this file will cause TRACE to terminate the run prematurely, but do so in a graceful way
Input	Steam table data file	$\operatorname{trch} 20$	test.h2o	This file contains steam table data that conforms to the IAPWS-IF97 standard. TRACE looks for this file when NAMELIST option USE_IAPWS_ST = .TRUE.. If it isn't found, then TRACE will use its own built-in IAPWS steam table data.
Input	parallel task setup information	taskList	N/A	Contains bookkeeping information for managing a parallel simulation (task, working directory location, input file names, etc). This file is only required when running TRACE in multi-task mode.
Output	Calculation Printed Output File	trcout	test.out	Contains the TRACE small and large edit output information at intervals requested by the user on the timestep data cards.
Output	Restart Data Output File	trcdmp	test.dmp	Contains the TRACE restart edit data at intervals requested by the user on the time-step data cards.

Table 2-1. Summary of TRACE Input and Output Files.

File Type	File Content or Function	Default Naming Convention	Prefix Naming Convention	File Contents, Comments
Output	Plot Data Output File	trextv	test.xtv	Contains the TRACE calculation plot edit data at intervals requested by the user on the time-step data cards. This file is directly read and used by the AcGrace plotting routine. (File is also usable with the XMGR5 plotting routine).
Output	Input Echo File	trcinp	test.echo	Contains the problem input modified to appear in a standard format which only includes the data that is actually used by the code.
Output	Warning and Error Message File	tremsg	test.msg	Contains various diagnostic warning and error messages from both the input processing and execution stages of a calculation. Note that not all warning and messages are contained in this file; some may be written only to the trcout (test.out) and trcinp (test.echo) files.
Output	Reformatted Input File	inlab	test.lab	Contains a reformatted version of the problem input. Only input data actually used in the calculation and a standard-format comment structure are included.
Output	Converted heat structures	newHSInput	test.nhs	Problem input deck containing heat structures converted from old into new format
Output	Converted signal variables	sigvarinp	test.svi	List of signal variables modified during the heat structure conversion process
Output	Extract Information	trcext	test.extr	Contains a problem input deck using state data extracted from the dump file.

Table 2-1. Summary of TRACE Input and Output Files.

File Type	File Content or Function	Default Naming Convention	Prefix Naming Convention	File Contents, Comments
Output	Run time statistics	trestats	test.stats	The existence of this file will cause TRACE to terminate the run prematurely, but do so in a graceful way
Output	Null testing statistics (full precision)	trcdif	test.dif	This file contains some global solution parameters in full precision to aid the developer when performing null testing from one code version to the next.
Output	Calculated view factors	trcgvf_xxxx	test.gvf_xxxx	Contains the calculated, ray-traced view factors that the user can merge back into the original input deck (replacing the CHAN mrod array). One file is written out for each CHAN component. The "_xxxx" suffix denotes the ID number of the CHAN component to which the view factors apply.
Output	Central process error messages	central.err	N/A	This file is only produced during a parallel simulation. It contains error messages produced by the central process concerning data flow \& handshaking between processes

XTV Graphics

At the request of the user, TRACE will create a binary graphics file that contains essentially all of the parameters a user might find useful while analyzing the results of a simulation. By default, this file is named trcxtv. If the prefix file naming conventions are used (see Chapter 1), then the filename conforms to the following pattern: $<$ prefix $>$.xtv.

Being a binary formatted file, the graphics file is generally not readable by mere humans. In other words, it is not simply possible to open the file up in your favorite text editor or spreadsheet and start selecting or manipulating fields or columns of numbers to be plotted. Instead, the file is formatted using a special format, called the XTV (X-TRAC-View) format, that organizes and compresses the data in a way that minimizes the file storage requirements (i.e. how much disk space it consumes). The result of this, though, is that special visualization tools are required in order to be able to read from and write to files of this type.

Visualization Tools

There are currently three ways to visualize TRACE results - using AcGrace, SNAP, or AVScript ${ }^{1}$. While each tool defines its own distinct workflow for working with, and manipulating, the TRACE graphics information, they are all built upon the same underlying visualization technology.

AcGrace

At present, AcGrace is the main workhorse for performing graphical analysis of TRACE results.
 data". AcGrace is a customized version of the popular Grace plotting software, developed specifically for use with NRC analysis codes, NRC Databank files, and SNAP, and to provide an easier means of performing calculations using data from these files.

[^2]
Installing and Running AcGrace

Before a plot of a TRACE variable can be performed, AcGrace must, of course, be installed on your computer system. In addition to being included on the TRACE distribution media, the latest version of the software, as well as any installation instructions, can always be obtained from the AcGrace website: http://www.acgracehome.com.
Note - In order to be able to run AcGrace under Windows NT/XP/2000/9*/ME, you need to make
sure that some kind of X Server is installed and running on your computer. An excellent free X
Server is distributed as part of the Cygwin package. See http://www.cygwin.com for all the details
related to downloading, installing, and configuring Cygwin and all its constituent software packages
(including the .xorg X server) for your computer.

Using AcGrace

Assuming that you have run TRACE (which has generated a graphics file) and AcGrace is up and running, the next step would naturally be to generate some plots. To do that, you first need to read in the trextv graphics file.

To read in a TRACE graphics file:

1) Choose File $>$ Read $>$ TRAC Data... from the menu bar.
2) Make sure the "XTV File Type" button is selected.
3) Type the full path and name of the graphics file in the entry box at the botton of the dialog box.
4) Click OK.

This will bring up the Edit TRAC data dialog box shown in Figure 3-1. It is the means by which you are able to select which data channels you want to plot and the mesh locations to which they correspond. The exact variables that are available for you to plot depend upon the various options and input parameters that you enable/disable as part of your TRACE input model.

Warning - Some users have reported problems, noting that the size of the AcGrace dialog boxes are too big for the screen, causing some of the buttons and other widgets to be pushed off-screen, becoming unreachable with the mouse cursor. This has been observed to happen to some people who use lower screen resolutions. Until this issue can be resolved programmatically, one way to fix the problem is to increase your screen resolution to 1280×1024. If you are unwilling to change your resolution, there is second, more complicated, temporary fix that may also bring relief under certain circumstances. It involves making changes to the .Xdefaults or .Xresources file. Rather than explain that procedure here, please contact the TRACE development team for the necessary instructions.

Figure. 3-1. AcGrace Screenshot: Edit TRAC Data Dialog Box. When viewing this figure on-screen, you may need to zoom-in in order to achieve an acceptable level of resolution.

In the upper selection area of the dialog box, a list of components and associated component number is presented. The identifiers conform to the convention: "comp-ccc" (e.g. htstr-996) where "ccc" refers to the component number. In some cases, TRACE may spawn its own internal sub-components that you can think of, in some sense, as "belonging to", or being "children of" some parent component that is part of the input deck. In these situations, the component ID conforms to the convention "comp-ccesss", where "ccc" refers to the parent component number and "sss" refers to the spawned sequence number (set by TRACE). Selecting a particular component will present the list of plot-able variables in the lower inset consistent with those shown in Table 3-3 through Table 3-29.

Table 3-1 provides the key for understanding the component and mesh indices used for the TRACE data channels in AcGrace. Note that for spawned components, the variable name "varcce" would be replaced by "var-ccesss".

Table 3-1. AcGrace Indices for Plotting Component Data

Component Type	Dimension	Variable	cce	iii	jij	kkk
Hydraulic	0D	var-ccc	comp. \#			
	$1 \mathrm{D}$ Cell-Centered	var-ccciii	comp. \#	cell index		
	$1 \mathrm{D}$ Face-Centered	var-ccciii	comp. \#	face index		
	2D	var-ccciiijjj	comp. \#	axial index	radial index	
	3D	var-ccciiijjjkkk	comp. \#	axial index	radial index	theta index
Heat Struct. Slabs	0D	var-ccc	comp. \#			
	1D	var-ccciii	comp. \#	axial index of cell		
Heat Struct. Rods	0D	var-ccciii	comp. \#	rod subcomponent number		
	1D	var-ccciiijjj	comp. \#	rod subcomponent number	axial index	
	2D	var-ccciiijjjkkk	comp. \#	rod subcomponent number	axial index	radial index

An elevation value may be supplied for heat structure slab and rod variables that contain an axial index. This will be used to calculate the value of the variable at a fixed elevation (the one specified by the user) as TRACE performs coarse/fine re-nodalization of the model. In order to do so, the first axial elevation should be selected and then the elevation value should be specified in the AcGrace window dialog box. When running AcGrace in batch mode, the elevation may be specified by adding @elev to the end of the variable name, such as "var-ccc001kkk@1.0".

Improving responsiveness

One of the perpetual sources of frustration for users is how quickly AcGrace is able to generate plots once the XTV file has been loaded and the desired data channels have been selected.

Responsiveness is generally a function of two things: the amount of data that is in the graphics file and the method by which that data is stored. There are three techniques that you can use to control these two factors:

- Demultiplex the file. This changes the way the data is stored internally in the XTV file. By default, most timestep-marching codes like TRACE write their data to files in discrete chunks grouped by timestep (i.e. one chunk containing all relevant variables for each timestep). By spreading the data for each data channel out like this, it makes it very slow for a tool like AcGrace to process. That is because the software has to load and unload lots of information into memory (a notoriously slow operation in computer space) as it attempts to locate and retrieve the data to be plotted. By demultiplex'ing the data, you end up reorganizing the data in the file so it is grouped by data channel rather than timeslice. This puts the all data for each channel next to each other, making it very fast and easy for AcGrace to locate.

Ok, so by now you are probably thinking - "How do I demultiplex my data?" Well, fortunately, AcGrace is distributed with a demultiplex'ing tool called $\mathbf{x t v} \mathbf{2 d m x}$. It is located in the same directory as the acgrace executable itself. Details concerning its usage can be found in the AcGrace documentation, or you can type "xtv2dmx.exe -h" at the command line to get a list of options.

Once you have demultiplexed the data, you open it up in AcGrace like you would a regular XTV file except that you must change the file type to "Demux" rather than "XTV" in the "Read TRAC" dialog box.

- Adjust the graphics interval in the input deck. This changes the rate at which information is written to the XTV file, leading to an overall smaller file size and thus making it easier for AcGrace to parse.
- Adjust the GRAPHLEVEL NAMELIST option in the input deck to a lower level of verbosity (i.e. "limited" or "minimal"). Doing so decreases the total number of data channels written to the graphics file, leading to an overall smaller file size and thus making it easier for AcGrace to parse. It also makes it easier for the user to scroll through and find the right data channels to plot in the dialog box shown in Figure 3-1.

Performing calculations across entire data channels

AcGrace allows you to perform many different sorts of mathematical transformations to the data sets that you have plotted on-screen. As a TRACE analyst, one such transformation that you inevitably will need to perform on a regular basis will be to add/subtract/multiply/divide two (or more) entire data sets. A good example of this might be the need to plot $\Delta \mathrm{p}$ (pressure difference) across the core.

Let's illustrate how you can accomplish this within AcGrace. We will make the assumption that you have already plotted two pressure traces - one at the bottom of the core and one at the top of the core. Figure 3-2 illustrates this condition. Given this, the steps to create a plot of $\Delta \mathrm{p}$ are

Figure. 3-2. AcGrace Screenshot: Pressure traces at top and bottom of the core. When viewing this figure on-screen, you may need to zoom-in in order to achieve an acceptable level of resolution.

1) From the main menu bar, choose Data $>$ Transformations $>$ Evaluate Expression... to bring up the evaluateExpression popup dialog box (shown in Figure 3-3(a)).
2) Select one of the sets shown in the "Source" area of the dialog box. AcGrace uses the notation "S\#" as an ID number for each data set and "G\#" to indicate which graphics file a data set belongs to. So "GO.SO" indicates the first data set for the first XTV file that was read in (as you can see, the count starts with 0 , not 1).
3) Type the expression to subtract the two data sets in the Formala area. In this case, the expression is

$$
s 2 \cdot y=s 0 \cdot y-s 1 \cdot y
$$

This means that you would like to subtract the y-axis values for data set 1 from the y axis values of data set 0 , and will assign them to the y-axis values of data set 2 (which does not yet exist - it will be created automatically). This method assumes that there is a one-to-one correspondence between the y-values in each set and that the x-axis values for each set are identical. You normally shouldn't need to worry about this because it will always be true for data channels retrieved directly from the XTV file. For those situations where this is not necessarily true, you will need to use AcGrace's interpolation functions (Data $>$ Transformations $>$ Interpolation/splines...) to precondition your data so that this condition is met.

(a)

(b)

Figure. 3-3. AcGrace Screenshot: (a) evaluateExpression pop-up dialog box; (b) Data set properties pop-up dialog box. When viewing this figure on-screen, you may need to zoom-in in order to achieve an acceptable level of resolution.
4) When typing in expressions, it may be necessary to determine which data set corresponds to each data trace that you see on the screen, so that you can perform the mathematical operations in the correct algebraic order. In this instance, click on the Edit > Data Sets... menu entry to open the Grace: Data set properties dialog box shown in Figure 3-3(b). The Min and Max values that are displayed for each selected set should tell you which set is which.
5) Click Apply in the evaluateExpression dialog box. This will put the newly calculated data set on your plot. You may need to click the Autoscale button to bring it into view.
6) You can adjust the line color and legend text of the new data set by clicking on Plot $>$ Set Appearance... to bring up the Grace: Set Appearance dialog box and adjusting the relevant items there.

Figure. 3-4. AcGrace Screenshot: Completed plot with pressure differential shown. When viewing this figure on-screen, you may need to zoom-in in order to achieve an acceptable level of resolution.
7) Figure 3-4 shows the completed plot. It has both the original sets plus the newly created set on the plot canvas. If you like, you can remove the original data sets from the plot by clicking the Edit > Set Operations... menu item to bring up the Grace: Set Operations dialog box, then selecting the sets you wish to remove, then right-clicking on those sets and then selecting "Kill"

For further information on the subject of performing transformations on data, please consult section 4.5 of the AcGrace User Guide, and section 7.1 of the AcGrace tutorial.

Generating axial plots

In the course of performing an analysis, it is often useful to generate plots of, say, void fraction or temperature, along the axial length of a component. Unfortunately, there is no really easy way to accomplish this in AcGrace. In general, the user must rely on a manual procedure comprised of the following steps:

1) Using the Grace: TRAC Data dialog box, plot the parameter of interest for each of the axial nodes that will be part of your axial plot.
2) From the menu, choose Data $>$ Export $>A S C I I . .$. to open up the Grace: Write sets dialog box
3) In the "Write set(s)" area, select all the sets of data that you wish to export. Choose a file name and location in the box at the bottom, and click OK. This will write a text file that contains the actual $x-y$ data pairs for each data set, one after the other.
4) Open up this text file of exported data in your favorite text editor. For the time of interest, manually pick out the y-values for each data set. If the specific time value that you are interested in is not one of the actual x-values that appear, you will need to interpolate the data yourself.
5) Construct a new data file with the axial heights in the x-column and the axial parameter values you just extracted in the y-column.
6) Import your new data file back into AcGrace. To do this, choose the Data $>$ Import $>$ $A S C I I .$. menu item to open up the Grace: Read sets dialog box, type the path \& name of your axial plot data file in the text box at the bottom and click OK.

Luckily, all is not lost. AVScript does provide a more automated way of generating axial plots but it is still left up to you to manually identify each of the axial locations of the nodes that you wish to plot, as well as the specific transient time for which the axial information is to be plotted. AVScript will handle all the other steps like extracting the data at the correct nodes, interpolating between time points, and actually generating the plots. For further instructions on how to do this, please consult the AVScript User's Guide.

SNAP

SNAP is also able to assist the TRACE analyst in the area of visualization of a model. It's capabilities are very similar to that of the old Nuclear Plant Analyzer (NPA) and XTV programs. Please consult the SNAP User's Guide for a full description of these capabilities and how to use them.

AVScript

The Automated Validation Script (AVScript) software is the third tool that the TRACE analyst possesses for generating plots from TRACE. Rather than being a tool that parses and manipulates the XTV graphics file directly, AVScript can be thought of as a preprocessor to AcGrace, allowing the analyst to automate a series of code runs and the creation of any plots that he or she might wish to look at.

Given the level of automation this tool provides, AVScript offers great potential for dramatically improving an analyst's productivity. It allows the analyst to establish, up-front, what cases he or she wishes to run, what figures should be generated, and what format those figures should be stored in. This way, as an input deck is developed or some sort of analysis is performed, an entire body of knowledge concerning the performance of the input model can be built up gradually, allowing the analyst to focus on the real engineering and not the manual process of re-creating plots with each new code run.

For further information concerning the installation and use of this software, we refer the reader to the AVScript User's Guide.

Description of Graphics Variables

This section provides a detailed list of all the graphics variables available to the TRACE user for plotting. The variables have been sub-categorized and alphabetized for ease of reference. We have provided definitions, and as appropriate, the corresponding SI and English units.

The graphics facility in TRACE is structured to allow a user to dump information to the XTV file at one of three levels of verbosity. The user specifies which level he or she wants using the 'graphLevel' NAMELIST option. Table 3-2 summarizes the available options. The default level is 'limited'. This feature was added to TRACE to give the user some means of controlling the overall size of the graphics file while still maintaining the ability to look at some of the more arcane parameters if the need should arise. The level to which each graphics variable belongs is provided in Table 3-3 through Table 3-29.

Table 3-2. Graphics level options that the user may select in input

graphLevel	Description
minimal	This option implies that only a very minimal set of parameters are dumped to the XTV graphics file. Specifically, only the control system parameters and a few global parameters are dumped.
limited	This option implies that only the most commonly used graphics variables or those thought to be genuinely useful during a typical analysis are written to the XTV file. For example, this level includes (but is not necessarilty limited to) such quantities as pressure, temperature, void fraction, density, mass flow rate, velocity, core-averaged quantities, etc. This option is the default.
full	All available graphics variables are actually written to the XTV file.

Global Variable Graphics

The global variables apply to the overall calculation as opposed to specific components or cells within a component. Table 3-3 lists the global XTV graphics variables.

Table 3-3. Global Graphics Variables

Variable	Dimension	Level	Description
cputot	1	minimal	Total CPU time (s) since time 0.0 s in the calculation. delt
dprmax	1	minimal	Timestep size (s). Maximum fractional pressure change over the current timestep (parameter used in the timestep-control logic). Maximum liquid-temperature change (K, $\left.{ }^{\circ} \mathrm{F}\right)$
dtlmax	1	full	over the current timestep (parameter used in the timestep-control logic). Maximum HTSTR-component ROD or SLAB element wall temperature change (K, $\left.{ }^{\circ} \mathrm{F}\right)$ over the current timestep.
dtrmax	1	full	Maximum saturation temperature change (K, dtvmax
full	$\left.{ }^{\circ} \mathrm{F}\right)$ over the current timestep. Maximum vapor-temperature change (K, $\left.{ }^{\circ} \mathrm{F}\right)$ over the current timestep (parameter used in the timestep-control logic).		
tnstep	1	minimal	Total number of timesteps since time 0.0 s in the calculation.

Signal-Variable, Control-Block, and Trip-Signal Graphics

All signal variables, control blocks, and trip signals specified through input from the input-data file tracin and restart-data file trerst are written to the trextv file in order of increasing magnitude of their ID numbers. The quantities written to the graphics file are:

1) the parameter value of each signal variable at the current timestep along with a figure label having its signal-variable ID number, parameter title, and units of the signal-variable parameter,
2) the output-parameter value from each control block at the current timestep along with a figure label of its control-block ID number and the units of the control-block output parameter, and
3) the trip signal from each trip at the current timestep along with a figure label of its trip ID number and the units of the trip signal.

For TRACE to output control-block output-signal and trip-signal units to the control-block and trip-signal figure labels, the user must specify those units through input by units-name labels. This is done when one or more of the NAMELIST variables I/O-units flags IOGRF, IOINP, IOLAB, and IOOUT has a value of 1 to specify English units. Users desiring all input and output in SI units with control-block output-signal and trip-signal graphics labels with SI units should input NAMELIST variables IOLAB $=1$ while leaving INLAB $=0$ (default value). Inputting INLAB = 3 would output a comment-labeled input-data file inlab in English units. Table 3-4 lists the XTV graphics variables for the control system.

Table 3-4. Signal-Variable, Control-Block, and Trip-Signal Graphics

Variable	Dimension	Level	Description
SV	1	minimal	Signal-variable data (although the dimension of each is 1, there are ntsv of them and each has its own units-name label). Cb
ts	minimal	of each is 1, there are ntcb of them and each has its own units-name label based on the user- defined units-name label of cbxmin and cbxmax).	
ts	minimal	Trip-signal data (although the dimension of each is 1, there are ntrp of them and each has its own units-name label based on the user- defined units name label of setpt $(\mathrm{i}), \mathrm{i}=1$ to 2 or 4)	

Users familiar with the internal TRACE data structure, can use type 3 signal variables to significantly expand on the state information (described below) that is automatically dumped to the graphics file. All significant fluid state and component information is available via internal
pointer association with any variable named in the type 3 signal variable input. For the time being, we specifically do not publish the entire list of available variables this way for two reasons:

- It is a dangerous practice for a user to attempt to reference an internal code variable which, on the surface, looks like it might contain the value you think you want, but actually, due to nuances of the numerical scheme, represents a quantity that is not what you think.
- There is no real point in publishing a list of variable names because the code is changing rapidly enough at this point that the list would quickly become out of date, serving as a source of frustration rather than a help. Once the rate of change in the source base levels out, we will revisit this issue.

Component Graphics

The following subsections describe the component-related XTV graphics variables offered by TRACE.

General One-Dimensional Hydraulic-Component Graphics

Table 3-5 lists the XTV graphics variables that are common to all the 1D hydraulic components. For the HEATR, JETP, SEPD TEE and TURB components, the dimension of cell-centered variables includes space for a phantom cell between the main-tube and side-tube cells. This accounts for the fact that there are more interfaces than cells and side-tube values are stored after main-tube values. In some cases, the outputting of parameter values depends on user-specified options in the TRACE input-data tracin file that cause those parameters to be evaluated.

Table 3-5. General 1D Component Graphics

Variable	Dimension	Level	Description
alpE	ncellt ${ }^{\text {a }}$	full	Prevailing void fraction at a cell edge used in the field equations only when there is a phaseseparation interface upstream or downstream will always be 0.0 or 1.0 . (-).
alpn	ncellt	limited	Cell gas volume fractions (-).
alven	ncellt	full	Cell liquid-side interfacial heat-transfer coefficients (W/K, Btu/(hr $\left.{ }^{\circ} \mathrm{F}\right)$) [HTC * interfacial area].
alvn	ncellt	full	Cell-flashing interfacial heat-transfer coefficients (W/K, Btu/(hr $\left.{ }^{\circ} \mathrm{F}\right)$) [HTC * interfacial area].
am	ncellt	limited	Cell noncondensable-gas masses ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$) .

Table 3-5. General 1D Component Graphics (Continued)

Variable	Dimension	Level	Description
chtan	ncellt	full	Cell noncondensable-gas interfacial heattransfer coefficients (W/K, Btu/(hr $\left.{ }^{\circ} \mathrm{F}\right)$) [HTC * interfacial area].
chtin	ncellt	full	Cell gas-side interfacial heat-transfer coefficients (W/K, Btu/(hr $\left.{ }^{\circ} \mathrm{F}\right)$) [HTC * interfacial area].
cifn	ncellt+1	full	Interface interfacial-drag coefficients $\left(\mathrm{kg} / \mathrm{m}^{4}\right.$, $1 b_{m} / \mathrm{ft}^{4}$).
concn	ncellt	full	Cell dissolved-solute concentration ratio [kg (solute) $/ \mathrm{kg}$ (liquid), lb_{m} (solute) $/$ lb_{m} (liquid)].
el	ncellt	limited	liquid internal energy (J / kg, Btu/ $/ \mathrm{b}_{\mathrm{m}}$)
ev	ncellt	limited	gas internal energy ($\mathrm{J} / \mathrm{kg}, \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$)
elm	ncellt	full	Liquid mechanical energy per unit $\operatorname{mass}\left(\mathrm{m}^{2} / \mathrm{s}^{2}\right.$, $\mathrm{ft}^{2} / \mathrm{s}^{2}$)
evm	ncellt	full	Gas mechanical energy per unit mass $\left(\mathrm{m}^{2} / \mathrm{s}^{2}\right.$, $\mathrm{ft}^{2} / \mathrm{s}^{2}$)
fa	ncellt+1	limited	Cell edge flow areas ($\left.\mathrm{m}^{2}, \mathrm{ft}^{2}\right)$.
gamn	ncellt	full	Mass phase change rate ($\mathrm{kg} /\left(\mathrm{m}^{3} \mathrm{~s}\right), \mathrm{lb}_{\mathrm{m}} /\left(\mathrm{ft}^{3} \mathrm{~s}\right)$).
hgam	ncellt	full	Cell subcooled boiling heat flux (W/m², Btu/ ($\mathrm{hr} \mathrm{ft}^{2}$)).
pan	ncellt	limited	Cell noncondensable-gas partial pressures (Pa , psia).
phiL	ncellt+1	full	Distance to phase separation interface (m, ft).
pn	ncellt	limited	Cell total pressures (Pa, psia).
regnm	ncellt+1	limited	Interface flow-regime numbers.
rlmf	ncellt+1	limited	Liquid mass flow ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$)
rmvm	ncellt+1	limited	Interface fluid mass flows ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$).
roan	ncellt	limited	Cell noncondensable-gas densities $\left(\mathrm{kg} / \mathrm{m}^{3}\right.$, $\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$).
roln	ncellt	limited	Cell liquid densities ($\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$).
rom	ncellt	limited	Cell mixture densities ($\left.\mathrm{kg} / \mathrm{m}^{3}, 1 \mathrm{~b}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$.
rovn	ncellt	limited	Cell gas densities ($\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$) .

Table 3-5. General 1D Component Graphics (Continued)

Variable	Dimension	Level	Description
rvmf	ncellt+1	limited	Gas mass flow (kg/s, $\mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$)
Sn	ncellt	limited	Cell plated-solute mass/fluid volume $\left(\mathrm{kg} / \mathrm{m}^{3}\right.$, $\mathrm{lb}_{\mathrm{m}} / \mathrm{ff}^{3}$).
$t \ln$	ncellt	limited	Cell liquid temperatures ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
tsat	ncellt	limited	Cell saturation temperatures $\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)$ based on the total pressures.
tssn	ncellt	limited	Cell saturation temperatures $\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)$ based on the steam partial pressures.
tvn	ncellt	limited	Cell gas temperatures ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
vln	ncellt+1	limited	Interface liquid velocities ($\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}$).
vol	ncellt	limited	Cell volumes ($\mathrm{m}^{3}, \mathrm{ft}^{3}$).
volM	ncellt	full	Volume of sub-region between the interface and the lower bound cell boundary $\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)$.
volP	ncellt	full	Volume of sub-region between the interface and the upper bound cell boundary $\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)$.
vvn	ncellt+1	limited	Interface gas velocities ($\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}$).
wfl	ncellt+1	full	Interface friction factors (-).
$\mathrm{xg}<$ name>	ncellt	limited	Mass fraction for gas trace species "name" (-).
xl<name>	ncellt	limited	Mass fraction for liquid trace species "name" (-).

a. ncellt=ncells for non-TEE based components. ncellt includes the side arm and phantom cell for TEEs.

BREAK Component Graphics.

Table 3-6 lists the XTV graphics variables that are output for all BREAK components.

Table 3-6. BREAK Component Graphics

Variable	Dimension	Level	Description
alpn	1	limited	BREAK-cell gas volume fraction $(-)$.
bsa	1	limited	Time-integrated noncondensable-gas mass flow $\left(\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}\right)$.
bsmass	1	limited	Time-integrated mass flow $\left(\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}\right)$ into the BREAK cell.
bxa	1	limited	Noncondensable-gas mass flow $\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)$. bxmass
	1	limited	Mass flow $\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)$ into the BREAK cell.

Table 3-6. BREAK Component Graphics (Continued)

Variable	Dimension	Level	Description
conen	1	limited	BREAK-cell dissolved-solute concentration ratio $\left[\mathrm{kg}\right.$ (solute) $/ \mathrm{kg}$ (liquid), lb_{m} (solute)/ lb_{m} (liquid)].
enth	1	limited	BREAK-cell fluid enthalpy ($\mathrm{J} / \mathrm{kg}, \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$).
pan	1	limited	BREAK-cell noncondensable-gas partial pressure ($\mathrm{Pa}, \mathrm{psia}$).
pn	1	limited	BREAK-cell total pressure ($\mathrm{Pa}, \mathrm{psia}$).
tln	1	limited	BREAK-cell liquid temperature ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
tvn	1	limited	BREAK-cell gas temperature ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
vol	1	limited	BREAK-cell volume ($\left.\mathrm{m}^{3}, \mathrm{ft}^{3}\right)$.
m<species>	1	limited	mass of trace species out the BREAK ($\mathrm{lb}_{\mathrm{m}}, \mathrm{kg}$)
mfr<species>	1	limited	mass fraction of trace species out the BREAK (-)

CHAN Component Graphics

In addition to the variables output for the 1D components (listed in Table 3-5), the same XTV graphics variables which are output for the PIPE component are output for all CHAN components. For convenience, this list of additional XTV variables is shown below in Table 3-7.

Table 3-7. CHAN Component Graphics

Variable	Dimension	Level	Description
cpow	1	full	Power (W, Btu/hr) from direct heat to the fluid.

CONTAN Component Graphics

Table 3-8 thorough Table 3-12 list the XTV graphics variables that are output for the CONTAN component.

Table 3-8. CONTAN Component Graphics for Each Compartment

Variable	Dimension	Level	Description
apool	ncompt	limited	Pool surface area $\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)$.
cl	ncompt	full	Liquid conductivity $\left(\mathrm{W} /(\mathrm{m} \mathrm{K}), \mathrm{Btu} /\left(\mathrm{ft}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right)$.
cpl	ncompt	full	Liquid specific heat $\left(\mathrm{J} /(\mathrm{kg} \mathrm{K}), \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{F}\right)\right)$.
cpv	ncompt	full	Vapor specific heat $\left(\mathrm{J} /(\mathrm{kg} \mathrm{K}), \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{F}\right)\right)$.

Table 3-8. CONTAN Component Graphics for Each Compartment (Continued)

Variable	Dimension	Level	Description
cV	ncompt	full	Vapor conductivity (W/(m K), Btu/(ft $\left.{ }^{\circ} \mathrm{F} \mathrm{hr}\right)$).
d	ncompt	limited	Pool depth (m, ft).
dpdt	ncompt	full	Pressure change rate ($\mathrm{Pa} / \mathrm{s}, \mathrm{psi} / \mathrm{s}$).
droldt	ncompt	full	Liquid density change rate $\left(\mathrm{kg} /\left(\mathrm{m}^{3} \mathrm{~s}\right), \mathrm{lb}_{\mathrm{m}} /\left(\mathrm{ft}^{3}\right.\right.$ hr)).
drovdt	ncompt	full	Steam density change rate $\left(\mathrm{kg} /\left(\mathrm{m}^{3} \mathrm{~s}\right), \mathrm{lb}_{\mathrm{m}} /\left(\mathrm{ft}^{3}\right.\right.$ hr)).
ea	ncompt	limited	Air specific internal energy (J, Btu).
el	ncompt	limited	Liquid specific internal energy (J, Btu).
ev	ncompt	limited	Vapor specific internal energy (J, Btu).
hfgp	ncompt	full	Latent heat ($\mathrm{J} / \mathrm{kg}, \mathrm{Btu} / \mathrm{lbm}_{\mathrm{m}}$).
hlmfr	ncompt	full	Liquid phase mass change ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$) .
htmfr	ncompt	full	Gas phase mass change ($\mathrm{kg}, \mathrm{lb} \mathrm{l}_{\mathrm{m}}$).
p	ncompt	limited	Compartment pressure ($\mathrm{Pa}, \mathrm{pisa}$).
pa	ncompt	limited	Air partial pressure (Pa, pisa).
rma	ncompt	limited	Air mass (kg, lb_{m}).
rml	ncompt	limited	Liquid mass ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$).
rms	ncompt	limited	Steam mass (kg, lb_{m}).
rmdota	ncompt	full	Air mass change rate ($\mathrm{kg} / \mathrm{s}, 1 \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) .
rmdotl	ncompt	full	Liquid mass change rate ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) .
rmdots	ncompt	full	Steam mass change rate ($\mathrm{kg} / \mathrm{s}, 1 \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) .
roa	ncompt	limited	Air density ($\left.\mathrm{kg} / \mathrm{m}^{3}, 1 \mathrm{~b}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$.
rol	ncompt	limited	Liquid density ($\left.\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$.
rov	ncompt	limited	Vapor density ($\left.\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$.
sig	ncompt	full	Surface tension ($\left.\mathrm{N} / \mathrm{m}, \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}\right)$.
tl	ncompt	limited	Liquid temperature ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
tsatp	ncompt	limited	Saturate temperature of total pressure ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
tsats	ncompt	limited	Saturate temperature of partial pressure (K, ${ }^{\circ} \mathrm{F}$).
tv	ncompt	limited	Gas temperature ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
udotl	ncompt	full	Liquid energy change rate ($\mathrm{W}, \mathrm{Btu} / \mathrm{hr}$).
udotv	ncompt	full	Gas energy change rate ($\mathrm{W}, \mathrm{Btu} / \mathrm{hr}$).
ul	ncompt	limited	Liquid phase internal energy (J, Btu).

Table 3-8. CONTAN Component Graphics for Each Compartment (Continued)

Variable	Dimension	Level	Description
uv	ncompt	limited	Gas phase internal energy $(\mathrm{J}, \mathrm{Btu})$.
visl	ncompt	full	Liquid viscosity $\left(\mathrm{kg} /(\mathrm{m} \mathrm{s} \mathrm{s}), \mathrm{lb}_{\mathrm{m}} /(\mathrm{ft} \mathrm{hr})\right)$.
visv	ncompt	full	Vapor viscosity $\left(\mathrm{kg} /(\mathrm{m} \mathrm{s}), \mathrm{lb}_{\mathrm{m}} /(\mathrm{ft} \mathrm{hr})\right)$.

Table 3-9. CONTAN Component Graphics for Each Cooler

Variable	Dimension	Level	Description
htc	ncool	limited	Heat transfer coefficient times area (W/K, Btu/ $\left.\left({ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right)$.
qcl	ncool	limited	Cumulated heat removal (W, Btu/hr) qcld

Table 3-10. CONTAN Component Graphics for Each Passive Junction

Variable	Dimension	Level	Description
rmdap	njct	limited	Air flow rate $\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)$.
rmdlp	njct	limited	Liquid flow rate $(\mathrm{kg} / \mathrm{s}, \mathrm{lb} \mathrm{b}) . \mathrm{hr})$.
rmdot	njct	limited	Total flow rate $\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)$.
rmdsp	njct	limited	Steam flow rate $\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)$.

Table 3-11. CONTAN Component Graphics for Each Forced Junction

Variable	Dimension	Level	Description
rmdaf	njctf	limited	Air flow rate $\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)$.
rmdlf	njctf	limited	Liquid flow rate $\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)$.
rmdsf	njctf	limited	Steam flow rate $\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)$.

Table 3-12. CONTAN Component Graphics for Each Liquid Source or Sink

Variable	Dimension	Level	Description
enflo	njuncts	limited	Energy flow rate $(\mathrm{W}, \mathrm{Btu} / \mathrm{hr})$.
enss	njuncts	limited	Cumulated Energy $(\mathrm{J}, \mathrm{Btu})$.
rmain	njuncts	limited	Cumulated air mass $\left(\mathrm{kg}, \mathrm{lb} \mathrm{m}_{\mathrm{m}}\right)$.
rmdas	njuncts	limited	Air flow rate $\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb} \mathrm{b}_{\mathrm{m}} / \mathrm{hr}\right)$.
rmdls	njuncts	limited	Liquid flow rate $(\mathrm{kg} / \mathrm{s}, \mathrm{lb} \mathrm{m} / \mathrm{hr})$.
rmdsin	njuncts	limited	Cumulated steam mass $\left(\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}\right)$.
rmdss	njuncts	limited	Steam flow rate $(\mathrm{kg} / \mathrm{s}, \mathrm{lb} \mathrm{m} / \mathrm{hr})$.
rmlin	njuncts	limited	Cumulated liquid mass $\left(\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}\right)$.

FILL Component Graphics.

Table 3-13 lists the XTV graphics variables that are output for all FILL components.
Table 3-13. FILL Component Graphics

Variable	Dimension	Level	Description
alpn	1	limited	FILL-cell gas volume fraction (-).
conen	1	limited	FILL-cell dissolved-solute concentration ratio [kg (solute) $/ \mathrm{kg}$ (liquid), lb_{m} (solute) $/$ lb_{m} (liquid)].
enth	1	limited	FILL-cell fluid enthalpy ($\mathrm{J} / \mathrm{kg}, \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}$).
fxmass	1	limited	Mass flow ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) out of the FILL cell.
pan	1	limited	FILL-cell noncondensable-gas partial pressure (Pa, psia).
pn	1	limited	FILL-cell total pressure (Pa , psia).
tln	1	limited	FILL-cell liquid temperature ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
tvn	1	limited	FILL-cell gas temperature ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
$v \ln$	1	limited	FILL-interface liquid velocity ($\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}$).
vol	1	limited	FILL-cell volume ($\mathrm{m}^{3}, \mathrm{ft}^{3}$).
vvn	1	limited	FILL-interface gas velocity (m / s, ft/s).
m<species>	1	limited	mass of trace species into the FILL ($\mathrm{lb}_{\mathrm{m}}, \mathrm{kg}$)
mfr<species>	1	limited	mass fraction of trace species into the FILL (-)

HEATR Component Graphics

In addition to the variables output for the 1D components (listed in Table 3-5), Table 3-14 lists the XTV graphics variables that are output for all HEATR components.

Table 3-14. HEATR Component Graphics

Variable	Dimension	Level	Description
liqlev	1	limited	Shell liquid level (m). powr1
powr2	1	full	Heater power (W, Btu/hr) to the main-tube fluid.
	1	full	Heater power (W, Btu/hr) to the side-tube fluid.

JETP Component Graphics

In addition to the variables output for the 1D components (listed in Table 3-5), Table 3-15 lists the XTV graphics variables that are output for all JETP components.

Table 3-15. JETP Component Graphics

Variable	Dimension	Level	Description
etapp	1	full	Jet pump application efficiency (-).
eteff	1	full	Jet pump effective efficiency (-).
mr	1	limited	Jet pump flow ratio (-).
nrapp	1	limited	Jet pump application head ratio (-).
nreff	1	full	Jet pump effective head ratio (-).
powr1	1	full	Jet pump power (W, Btu/hr) to the main-tube fluid.
powr2	1	full	Jet pump power (W, Btu/hr) to the side-tube fluid.

PIPE Component Graphics

In addition to the variables output for the 1D components (listed in Table 3-5), Table 3-16 lists the XTV graphics variables that are output for all PIPE components.

Table 3-16. PIPE Component Graphics

Variable	Dimension	Level	Description
cpow	1	full	Power $(\mathrm{W}, \mathrm{Btu} / \mathrm{hr})$ deposited directly in the fluid.
qfout	1	limited	Liquid volume discharged $\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)$ at the exit (interface ncells +1$)$ when the accumulator flag iacc >0.
z	1	full	Volumetric fluid flow $\left(\mathrm{m}^{3} / \mathrm{s}, \mathrm{gpm}\right)$ at the exit (interface ncells +1$)$ when the accumulator flag iacc >0. Water level $(\mathrm{m}, \mathrm{ft})$ in the PIPE component (assumes the component is vertically oriented with cell 1 at the top) when the accumulator flag iacc >0.

PLENUM Component Graphics

Table 3-17 lists the XTV graphics variables that are output for all PLENUM components

Table 3-17. PLENUM Component Graphics

Variable	Dimension	Level	Description
alpn	1	limited	Cell gas volume fraction $(-)$.
am	1	limited	Cell noncondensable-gas mass $\left(\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}\right)$.
concn	1	limited	Cell dissolved-solute concentration ratio $\left[\mathrm{kg}(\right.$ solute $) / \mathrm{kg}($ liquid $), \mathrm{lb}_{\mathrm{m}}($ solute $) /$
gamn	ncellt	full	$\mathrm{lb}_{\mathrm{m}}($ liquid $\left.)\right]$. Mass phase change rate $\left.\left(\mathrm{kg} /\left(\mathrm{m}^{3} \mathrm{~s}\right), \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3} \mathrm{~s}\right)\right)$. pan
	1	limited	Cell noncondensable-gas partial pressure $(\mathrm{Pa}$, psia $).$
pn	1	limited	Cell total pressure $($ Pa, psia $)$.
roan	1	limited	Cell noncondensable-gas density $\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} /\right.$
roln	1	limited	$\left.\mathrm{ft}^{3}\right)$. Cell liquid density $\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$.

Table 3-17. PLENUM Component Graphics (Continued)

Variable	Dimension	Level	Description
rom	1	limited	Cell mixture density $\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$.
rovn	1	limited	Cell gas density $\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$.
sn	1	limited	Cell plated-solute mass/fluid volume $\left(\mathrm{kg} / \mathrm{m}^{3}\right.$,
tl	1	limited	$\left.\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$. Cell liquid temperature $\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)$. tsat
tvn	1	limited	Cell saturation temperature $\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)$ based on the total pressure.
vol	1	limited	Cell gas temperature $\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)$. tvi

PRIZER (Pressurizer) Component Graphics

In addition to the variables output for the 1D components (listed in Table 3-5), Table 3-18 lists the XTV graphics variables that are output for all PRIZER components.

Table 3-18. PRIZER Component Graphics

Variable	Dimension	Level	Description
flow	1	full	Volumetric flow $\left(\mathrm{m}^{3} / \mathrm{s}, \mathrm{gpm}\right)$ at the exit (interface ncells +1$)$ of the PRIZER.
qin	1	full	Heater/sprayer power $(\mathrm{W}, \mathrm{Btu} / \mathrm{hr})$. qout
z	1	limited	Liquid volume discharged $\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)$ at the exit (interface ncells +1$)$ of the PRIZER.

PUMP Component Graphics

In addition to the variables output for the 1D components (listed in Table 3-5), Table 3-19 lists the XTV graphics variables that are output for all PUMP components.

Table 3-19. PUMP Component Graphics

Variable	Dimension	Level	Description
alpha	1	full	Gas volume fraction donored across the second (pump-impeller) interface (weighted 10% new, 90% old).
delp	1	full	PUMP ΔP (Pa, psia) across the second (pump-impeller) interface (pressure of cell 2 minus pressure of cell 1).
flow	1	full	Volumetric fluid flow ($\mathrm{m}^{3} / \mathrm{s}$, gpm) donored across the second (pump-impeller) interface.
head	1	limited	PUMP head ($\mathrm{Pa} \mathrm{m}^{3} / \mathrm{kg}$ or $\mathrm{m}^{2} / \mathrm{s}^{2}$ or $\mathrm{N} \mathrm{m} / \mathrm{kg}, \mathrm{lb}_{\mathrm{f}}$ $\mathrm{ft} / \mathrm{b}_{\mathrm{m}}$) from the homologous curves and twophase degradation multiplier.
mflow	1	limited	Fluid mass flow ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) across the second (pump-impeller) interface.
omegan	1	limited	Pump-impeller rotational speed ($\mathrm{rad} / \mathrm{s}, \mathrm{rpm}$).
rho	1	full	Fluid mixture density $\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$ donored across the second (pump-impeller) interface.
smom	1	full	Momentum source ($\mathrm{Pa}, \mathrm{psia}$) applied at the second (pump-impeller) interface based on the PUMP head.
torque	1	full	PUMP hydraulic torque ($\mathrm{Pa} \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{f}} \mathrm{ft}$) from the homologous curves and two-phase degradation multiplier.

SEPD Component Graphics

In addition to the variables output for the 1D components (listed in Table 3-5), Table 3-20 lists the XTV graphics variables that are output for all SEPD components.

Table 3-20. SEPD Component Graphics

Variable	Dimension	Level	Description
powr1	1	full	Heater power (W, Btu/hr) to the main-tube fluid.
powr2	1	full	Heater power (W, Btu/hr) to the side-tube fluid.
xci	1	limited	Separator inlet quality (-).
xco	1	limited	Liquid carryover quality (-). When the dryer model is activated, xco represents the flow quality after the dryers, not the separator carryover.
xcu	1	limited	Vapor carryunder quality (-).
veldis	1	full	discharge HEM velocity (m / s, ft/s)
vlev	1	full	separator interface velocity ($\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}$)
dpss	1	full	separator pressure drop according the GE separator model ($\mathrm{Pa}, \mathrm{psia}$). This $\Delta \mathrm{p}$ is not actually enforced across the SEPD component. It is there just as a reference for the user when no data is available for the pressure drop across the separators. In that case, the user may want to adjust the sepd kloss to obtain the codeindicated pressure drop, dpss.
wlev	1	full	water level outside the separator (m, ft)
dAlp	1	full	separator void error (-)
isSepSep	1	full	flag to indicate whether the separator is actually separating (on a timestep by timestep basis) (-)

TEE Component Graphics

In addition to the variables output for the 1D components (listed in Table 3-5), Table 3-21 lists the XTV graphics variables that are output for all TEE components.

Table 3-21. TEE Component Graphics

Variable	Dimension	Level	Description
powr1	1	full	Heater power (W, Btu/hr) to the main-tube fluid.
powr2	1	full	Heater power (W, Btu/hr) to the side-tube fluid.

TURB Component Graphics

In addition to the variables output for the 1D components (listed in Table 3-5), Table 3-22 lists the XTV graphics variables that are output for all TURB components.

Table 3-22. TURB Component Graphics

Variable	Dimension	Level	Description
omegt	1	limited	Rotor angular speed (rad/s, rpm).
powr1	1	full	Heater power (W, Btu/hr) to the main-tube fluid.
powr2	1	full	Heater power (W, Btu/hr) to the side-tube fluid.
torqt	1	limited	Sum of rotor torques $\left(\mathrm{Pa} \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{f}} \mathrm{ft}\right.$.

VALVE Component Graphics

In addition to the variables output for the 1D components (listed in Table 3-5), Table 3-23 lists the XTV graphics variables that are output for all VALVE components.

Table 3-23. VALVE Component Graphics

Variable	Dimension	Level	Description
area	1	limited	Adjustable valve-interface flow area $\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)$.

VESSEL (Three-Dimensional) Component Graphics

Table 3-24 lists the XTV graphics variables that are output for all VESSEL components. Like the 1D variables, interface variables have one more value than cell variables on the face axis. For example vlnz, the z direction liquid velocity, has NRSX*NTSX*(NASX+1) values. The VESSEL variables output to graphics are very much dependent on the options selected and parameters set in the VESSEL input-data, in NAMELIST, and in other general options. The following abbreviations are used for dimensions in this section:

- ncells $=$ NRSX $*$ NTSX $*$ NASX (values at every cell)
- xrfaces $=(\text { NRSX }+1)^{*}$ NTSX*NASX (values at each x / r face)
- ytfaces $=$ NRSX $*(N T S X+1) *$ NASX (values at each y / q face $)$
- zfaces $=$ NRSX * NTSX $^{*}(N A S X+1)($ values at each z face $)$

Table 3-24. VESSEL Component Graphics

Variable	Dimension	Level	Description
alpA	ncells	full	Cell gas volume fraction above a water level (-). [for 3D level tracking]
alpB	ncells	full	Cell gas volume fraction below a water level (-). [for 3D level tracking]
alpn	ncells	limited	Cell gas volume fractions (-).
alpxrE	ncells	full	Cell edge gas volume fraction in xr-direction (-). [for 3D level tracking]
alpytE	ncells	full	Cell edge gas volume fraction in yt-direction (-). [for 3D level tracking]
alpzE	ncells	full	Cell edge gas volume fraction in z-direction (-). [for 3D level tracking]
alven	ncells	full	Cell liquid-side interfacial heat-transfer coefficients (W/K, Btu/(${ }^{\circ} \mathrm{F} \mathrm{hr}$)) [area folded in].
alvn	ncells	full	Cell flashing interfacial heat-transfer coefficients (W/K, Btu/($\left.{ }^{\circ} \mathrm{F} \mathrm{hr}\right)$) [area folded in].
am	ncells	limited	Cell noncondensable-gas masses ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$).
chtan	ncells	full	Cell noncondensable-gas interfacial heat-transfer coefficients (W/K, Btu/($\left.{ }^{\circ} \mathrm{F} \mathrm{hr}\right)$) [area folded in].
chtin	ncells	full	Cell vapor-side interfacial heat-transfer coefficients (W/K, Btu/($\left.{ }^{\circ} \mathrm{F} \mathrm{hr}\right)$) [area folded in].
cimfr	1	limited	Reactor-core inlet mass flow ($\mathrm{kg} / \mathrm{s}, 1 \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$).
cimfrl	1	limited	Reactor-core inlet liquid mass flow ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$).

Table 3-24. VESSEL Component Graphics (Continued)

Variable	Dimension	Level	Description
cimfrv	1	limited	Reactor-core inlet gas mass flow (kg/s, $\mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$).
cixr	ncells	full	Radial or x-direction interfacial-drag coefficients $\left(\mathrm{kg} / \mathrm{m}^{4}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{4}\right)$.
ciyt	ncells	full	Azimuthal or y-direction interfacial-drag coefficients $\left(\mathrm{kg} / \mathrm{m}^{4}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{4}\right)$.
ciz	ncells	full	Axial interfacial-drag coefficients $\left(\mathrm{kg} / \mathrm{m}^{4}, \mathrm{lb}_{\mathrm{m}} /\right.$ ft^{4}).
comfr	1	limited	Reactor-core region outlet mass flow $\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} /\right.$ hr).
comfrl	1	limited	Reactor-core outlet liquid mass flow $\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} /\right.$ hr).
comfrv	1	limited	Reactor-core outlet gas mass flow ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$).
concn	ncells	limited	Cell dissolved-solute concentration ratio [kg (solute) $/ \mathrm{kg}$ (liquid), lb_{m} (solute) $/ \mathrm{lb}_{\mathrm{m}}$ (liquid) $]$.
corelq	1	limited	Reactor-core liquid volume fraction (-).
dcflow	1	limited	Downcomer mass flow ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) (sums the axial flow out of the downcomer at level IDCL).
dclqvl	1	limited	Downcomer liquid volume fraction.
el	ncellt	limited	liquid internal energy
ev	ncellt	limited	gas internal energy
gamn	ncells	full	Vapor (steam) generation rate (kg/m $\left.{ }^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$.
hgam	ncells	full	Cell subcooled boiling heat flux (W/m², Btu/(ft ${ }^{2}$ hr)).
mmflxr	ncells	limited	Radial mass flow rate ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$).
mmflyt	ncells	limited	Theta mass flow rate ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$).
mmflz	ncells	limited	Z-direction mass flow rate ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) .
pan	ncells	limited	Cell noncondensable-gas partial pressures (Pa , psia).
pcore	1	limited	Reactor-core volume-averaged pressure (Pa , psia).
pdc	1	limited	Downcomer volume-averaged total pressure (Pa , psia).
phiL	ncells	full	Distance to phase separation interface (m, ft). [for 3D level tracking]

Table 3-24. VESSEL Component Graphics (Continued)

Variable	Dimension	Level	Description
plp	1	limited	Lower-plenum volume-averaged total pressure ($\mathrm{Pa}, \mathrm{psia}$).
pn	ncells	limited	Cell total pressures ($\mathrm{Pa}, \mathrm{psia}$).
pup	1	limited	Upper-plenum volume-averaged total pressure (Pa, psia).
qhstot	1	limited	Total HTSTR-component heat transfer (W, Btu/ hr) to the fluid of the VESSEL component.
qsl	ncells	full	HTSTR-component heat transfer (W, Btu/hr) to the fluid in each VESSEL cell.
roan	ncells	limited	Cell noncondensable-gas densities $\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}}\right.$ / ft^{3}).
roln	ncells	limited	Cell liquid densities $\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$.
rom	ncells	limited	Cell mixture densities ($\left.\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$.
rovn	ncells	limited	Cell gas densities ($\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$).
Sn	ncells	limited	Cell plated-solute mass/fluid volume $\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}}\right.$ / ft^{3}).
tcilmf	1	limited	Time-integrated reactor-core inlet liquid mass flow ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$).
tcivmf	1	limited	Time integrated reactor-core inlet gas mass flow $\left(\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}\right)$.
tcolmf	1	limited	Time integrated reactor-core outlet liquid mass flow ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$).
tcore	1	limited	Reactor-core mass-averaged liquid temperature $\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right) .$
tcovmf	1	limited	Time integrated reactor-core outlet gas mass flow $\left(\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}\right)$.
tdc	1	limited	Downcomer mass-averaged liquid temperature (K, ${ }^{\circ} \mathrm{F}$).
tln	ncells	limited	Cell liquid temperatures ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
tlp	1	limited	Lower-plenum mass-averaged liquid temperature (K, ${ }^{\circ}$).
tscore	1	limited	Reactor-core average saturation temperature (K , ${ }^{\circ} \mathrm{F}$) based on the reactor-core volume-averaged total pressure.

Table 3-24. VESSEL Component Graphics (Continued)

Variable	Dimension	Level	Description
tsdc	1	limited	Downcomer average saturation temperature (K, ${ }^{\circ}$ F) based on the downcomer volume-averaged total pressure.
tslp	1	limited	Lower-plenum average saturation temperature (K, ${ }^{\circ} \mathrm{F}$) based on the lower-plenum volume-averaged total pressure.
tsn	ncells	limited	Saturation temperatures ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
tsup	1	limited	Upper-plenum average saturation temperature (K , ${ }^{\circ} \mathrm{F}$) based on the upper-plenum volume-averaged total pressure.
tup	1	limited	Upper-plenum mass-averaged liquid temperature (K, ${ }^{\circ}$).
tvn	ncells	limited	Cell gas temperatures ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
tw	ncells		Effective wall temperature ($\mathrm{K},{ }^{\circ} \mathrm{F}$).
vcore	1	limited	Reactor-core liquid mass ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$).
vdclq	1	limited	Downcomer liquid mass ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$) .
vLev	ncells		Level velocity (m / s, ft/s). [for 3D level tracking]
vlnxr	xrfaces	limited	Liquid radial or x -direction velocities (m / s, ft / s).
vlnyt	ytfaces	limited	Liquid azimuthal or y -direction velocities ($\mathrm{m} / \mathrm{s}, \mathrm{ft} /$ s).
vlnz	zfaces	limited	Liquid axial velocities ($\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}$).
vlpliq	1	limited	Lower-plenum liquid volume fraction.
vlplm	1	limited	Lower-plenum liquid mass ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$)
vlplq	1	limited	Liquid mass below downcomer ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$) .
vlqmss	1	limited	VESSEL-component liquid mass ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$) .
vmfrl	ncells	limited	Liquid mass flows ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) [NAMELIST variable $\operatorname{IMFR}=1]$.
vmfrlxr	ncells	limited	Liquid mass flows in the radial or x -direction ($\mathrm{kg} /$ $\left.\mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)$.
vmfrlyt	ncells	limited	Liquid mass flows in the theta or y-direction (kg/ $\left.\mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)$.
vmfrlz	zfaces	limited	Liquid mass flows in the axial or z-direction (kg/ $\mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) [NAMELIST variable IMFR = 3].
vmfrv	ncells	limited	Gas mass flows ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) [NAMELIST variable $\operatorname{IMFR}=1$].

Table 3-24. VESSEL Component Graphics (Continued)

Variable	Dimension	Level	Description
vmfrvxr	ncells	limited	Gas mass flows in the radial or x -direction (kg/s, $\left.\mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)$.
vmfrvyt	ncells	limited	Gas mass flows in the theta or y -direction $(\mathrm{kg} / \mathrm{s}$, $\mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$).
vmfrvz	zfaces	limited	Gas mass flows in the axial or z-direction (kg / s, $\mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) [NAMELIST variable IMFR $=3$].
vol	ncells	limited	Cell fluid volumes ($\left.\mathrm{m}^{3}, \mathrm{ft}^{3}\right)$.
volM	ncells	full	Volume of sub-region between the interface and the lower bound cell boundary $\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)$. [for 3D level tracking]
volP	ncells	full	Volume of sub-region between the interface and the upper bound cell boundary $\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)$. [for 3D level tracking]
vsflow	1	limited	Fluid mass flow ($\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$) summed over all VESSEL-component source-connection junctions.
vupliq	1	limited	Upper-plenum liquid volume fraction.
vuplm	1	limited	Upper-plenum liquid mass ($\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}$) .
vvnxr	xrfaces	limited	Gas radial or x -direction velocities ($\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}$).
vvnyt	ytfaces	limited	Gas azimuthal or y -direction velocities ($\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}$).
vvnz	zfaces	limited	Gas axial velocities (m/s, ft/s).
$\mathrm{xg}<$ name>	ncells	limited	Mass fraction for gas trace species "name" (-).
xl<name>	ncells	limited	Mass fraction for liquid trace species "name" (-).

Heat Structure, Power and Radiation Component Graphics

The following subsections describe the XTV graphics variables for the Heat Structure (HTSTR), Power (POWER and FLPOWER), and radiation (RADENC) components.

HTSTR Component Graphics

The XTV graphics variables that are output for all HTSTR (heat structure) components are listed below in two tables. Table 3-25 lists all variables associated with "HTSTR" component names, and Table 3-26 lists all variables associated with "HTSTRC" component names. It is important to note that due to the existence of the fine mesh renodalization logic which can add and remove
node rows each timestep, there is no guarantee for some graphics variables (any dimensioned as nzmax) that the axial elevations will remain constant. Unfortunately, this can make creating axial plots somewhat difficult. Axial plots of the temperature distribution along the inner and outer surfaces (the most commonly needed capability) can be obtained using the the tsurfi and tsurfo variables. Each node row corresponds to fixed elevations in the heat structure.

In cases where a 1D component is set to calculate wall heat transfer (i.e. NODES >0), the code will internally spawn heat structures to represent the wall. These heat structures will manifest themselves with separate channel id's that conform to the following convention:

- htstr-cccccsss \& htstrc-cccccsss - "ccccc" denotes the ID number of the parent 1D component for which the heat structure is spawned (leading 0's are stripped off). "sss" denotes the spawned heat structure number.

Another thing to remember is that, for a given heat structure, if the variable NHOT is greater than 0 , the code will internally spawn NHOT separate heat structures to represent the supplemental heat structures. This will lead to more than one set of HTSTR \& HTSTRC channels per HTSTR component. The naming scheme in this situation conforms to the following convention:

- htstr-ccccc \& htstrc-ccccc - corresponds to the average heat structure. ccccc is the component number (leading 0's are stripped off)
- htstr-cccccsss \& htstrc-cccccsss - corresponds to the supplemental heat structures. "ccccc" is the component number (leading 0 's are stripped off). "sss" denotes the supplemental heat structure number.

For example, let's say you have a HTSTR component with an ID $=130$ and NHOT $=2$. When browsing the channel ID's in ACGrace (see Figure 3-1), you will see 3 sets of channel id's for HTSTR 130. The channel id's that correspond to this component will be

- htstr-130 - corresponds to information for the average heat structure
- htstr-130001 - corresponds to information for the first supplemental rod
- htstr-130002 - corresponds to information for the second supplemental rod
- htstrc-130 - corresponds to information for the average heat structure
- htstrc-130001 - corresponds to information for the first supplemental heat structure
- htstrc-130002 - corresponds to information for the second supplemental heat structure

Table 3-25. HTSTR Component Graphics

Variable	Dimension	Level	Description
powli	nzhtstr	full	Inner-surface heat transfer to the liquid (W, Btu/
		$\mathrm{hr})$.	

Table 3-25. HTSTR Component Graphics (Continued)

Variable	Dimension	Level	Description
powlo	nzhtstr	full	Outer-surface heat transfer to the liquid (W, Btu/ hr).
powvi	nzhtstr	full	Inner-surface heat transfer to the gas (W, Btu/ hr).
powvo	nzhtstr	full	Outer-surface heat transfer to the gas (W, Btu/ hr).
qppi	nzhtstr	limited	Inner-surface wall heat flux (W/m², Btu/(ft ${ }^{2}$ hr)).
qppo	nzhtstr	limited	Outer-surface wall heat flux (W/m ${ }^{2}, \mathrm{Btu} /\left(\mathrm{ft}^{2}\right.$ hr)).
qradi	nzhtstr	full	Inner-surface radiation flux ($\mathrm{W} / \mathrm{m}^{2}, \mathrm{Btu} /\left(\mathrm{ft}^{2} \mathrm{hr}\right)$).
qrado	nzhtstr	full	Outer-surface radiation flux (W/m², Btu/(ft^{2} hr)).
rdzN	nzhtstr	full	Node row heights for coarse mesh nodes (m, ft). Coarse mesh nodes are those that were input by the user (as opposed to those added by the fine mesh rezoning model)
rdznPerm	nzPermFM	limited	Node row heights that correspond to the permanent fine mesh heat structure nodes (m, ft)
tpowi	1	limited	Total power across the inner surface of the heatstructure component. (W, Btu/hr).
tpowo	1	limited	Total power across the outer surface of the heatstructure component. (W, Btu/hr).
tramax	1	limited	Maximum temperature ($\mathrm{K},{ }^{\circ} \mathrm{F}$) of the average powered heat structures
trhmax	1	limited	Maximum temperature ($\mathrm{K},{ }^{\circ} \mathrm{F}$) of the supplemental heat structures
tsurfi	nzPermFM	limited	Inner surface temperature of all coarse and permanent fine mesh nodes (when the fine mesh option is selected). This becomes the centerline temperature in a rod. The uppermost and lowermost values correspond to the top and bottom edge of the heat structure
tsurfo	nzPermFM	limited	Outer surface temperature of all coarse and permanent fine mesh nodes (when the fine mesh option is selected). The uppermost and lowermost values correspond to the top and bottom edge of the heat structure
bottomQF	1	limited	Lower quench front location (m, ft)

Table 3-25. HTSTR Component Graphics (Continued)

Variable	Dimension	Level	Description
topQF	1	limited	Upper quench front location $(\mathrm{m}, \mathrm{ft})$

$$
n z \operatorname{PermFM}=\sum_{i=1}^{n z h t s t r} N F A X_{i}+2
$$

where $N F A X_{i}=N F A X_{i}+1$ if $N F A X_{i}$ is an even-valued integer.

Table 3-26. HTSTRC Component Graphics

Variable	Dimension	Level	Description
cepwni	1	full	Inner-surface heat-transfer difference (W, Btu/hr).
cepwno	1	full	Outer-surface heat-transfer difference (W, Btu/hr).
hrfli	nzmax	full	Liquid heat-transfer coefficient (W/(m $\left.{ }^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}\right.$ $\left.{ }^{\circ} \mathrm{F} \mathrm{hr}\right)$) for the inner surface of the heat structure.
hrflo	nzmax	full	Liquid heat-transfer coefficient (W/(m $\left.{ }^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}\right.$ $\left.{ }^{\circ} \mathrm{F} \mathrm{hr}\right)$) for the outer surface of the heat structure.
hrfvi	nzmax	full	Gas heat-transfer coefficient ($\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right.$ $\mathrm{hr})$) for the inner surface of the heat structure.
hrfvo	nzmax	full	Gas heat-transfer coefficient ($\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right.$ hr)) for the outer surface of the heat structure.
ihtfi	nzmax	full	Heat-transfer regime numbers for the inner surface of the heat structure.
ihtfo	nzmax	full	Heat-transfer regime numbers for the outer surface of the heat structure.
rftn	nodes* nzmax	full	heat structure fine mesh node temperatures $\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)$. If the fine mesh option is engaged, then axial elevations of all node rows is not guaranteed to be a constant.
tcefni	1	limited	Inner-surface total heat transfer to the fluid (J, Btu).
tcefno	1	limited	Outer-surface total heat transfer to the fluid (J, Btu).
twani	1	full	Inner-surface absolute error in the heat transfer to the fluid (J, Btu).

Table 3-26. HTSTRC Component Graphics (Continued)

Variable	Dimension	Level	Description
twano	1	full	Outer-surface absolute error in the heat transfer to the fluid (J, Btu).
tweni	1	full	Inner-surface effective error in the heat transfer to the fluid (J, Btu).
tweno	1	full	Outer-surface effective error in the heat transfer to the fluid (J, Btu).
zht	nzmax	full	Axial positions (m, ft) of the rows of nodes in the heat structure. Due to the possibility of the moving fine mesh renodalization logic being engaged, the values in this channel may change from timestep to timestep.

POWER Component Graphics

Table 3-27 lists the XTV graphics variables that are output for all POWER components.

Table 3-27. POWER Component Graphics

Variable	Dimension	Level	Description
aldelk	1	limited	Gas volume-fraction delta $\mathrm{K}_{\text {eff }}(-)$
alreac	1	limited	Gas volume-fraction reactivity (-).
dbdelk	1	limited	Solute based delta $\mathrm{K}_{\text {eff }}(-)$
dbreac	1	limited	Dissolved- and plated-solute reactivity (-).
mcpre	1	limited	Minimum critical power ratio (-).
powModerChan	1	limited	Direct heating power to the CHAN coolant (W, $\mathrm{Btu} / \mathrm{hr}$).
powModerTot	1	limited	Total direct heating power to the moderator (W, Btu/hr).
powModerVess	1	limited	Direct heating power to the VESSEL bypass (W, Btu/hr).
powWaterRod	1	limited	Direct heating power to the ABWR water rods (W, Btu/hr).
pgdelk	1	limited	Programmed delta Keff (-)
pgreac	1	limited	Programmed reactivity (-).
rmckn	1	limited	Reactor multiplication constant $\operatorname{Keff}(-)$.
rpower	1	limited	Reactor power (W, Btu/hr).

Table 3-27. POWER Component Graphics (Continued)

Variable	Dimension	Level	Description
tcdelk	1	limited	Coolant-temperature delta $\operatorname{Keff}(-)$
tcreac	1	limited	Coolant-temperature reactivity (-).
tfdelk	1	limited	Fuel temperature delta Keff $(-)$.
tfreac	1	limited	Fuel-temperature reactivity $(-)$. tramax
trhmax	1	limited	Maximum temperature $\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)$ of the average power ROD or SLAB elements. Maximum temperature $\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)$ of the supplemental ROD or SLAB elements.

FLPOWER Component Graphics

Table 3-28 lists the XTV graphics variables that are output for all FLPOWER (fluid power) components.

Table 3-28. FLPOWER Component Graphics

Variable	Dimension	Level	Description
powb	1	limited	Beam fluid power (W, Btu/hr).
powd	1	limited	Decay fluid power (W, Btu/hr).

RADENC Component Graphics

Table 3-29 lists the XTV graphics variables that are output for all RADENC (radiation enclosure) components.

Table 3-29. RADENC Component Graphics

Variable	Dimension	Level	Description
qrad	nzLevel*nHS	limited	Radiation heat transfer enclosure heat flux (W/ S
		$\left.\mathrm{m}^{2}, \mathrm{Btu} /\left(\mathrm{ft}^{2} \mathrm{hr}\right)\right)$.	

4

Troubleshooting Input Models

The purpose of this section is to introduce you to various features and techniques for debugging an input model. In other words, this chapter describes what to do if TRACE aborts the calculation through some sort of execution error.

As discussed in Chapter 1, General Concepts, there are three main phases in a TRACE calculation that a user must be aware of - input processing, initialization, and the simulation itself. This is an important detail because the errors produced in each phase each require a different troubleshooting approach.

Error messages are generally reported in three places: the terminal (or if you are running TRACE from SNAP, the SNAP console window), the message file, and the output file. There are some exceptions to this rule, especially in terms of reporting programming errors. The user should know that, at this point, TRACE's error reporting is still crude in the sense that many of the error messages generated can be quite cryptic, or even non-existent. The TRACE development does have plans to work on this aspect of the code.

Dealing with Input Processing Errors

In general, input model development with TRACE is an iterative process. You may need to run the code several times with your input model (correcting errors as you go) before TRACE is able to successfully read your entire input model. This is especially true if you are creating an input model from scratch or are making large-scale changes to an existing model. TRACE checks the input data as it is being read in and tries to catch as many errors as possible in each pass, reporting them to you all at once.

There are both benefits and drawbacks to this approach. On the one hand, by reporting as many errors as it can all at once, TRACE allows the user to identify and fix multiple errors at once, eliminating unnecessary iteration with respect to running the code. Historically, this was extremely important because computational time was expensive and the turnaround time for a
single calculation (even those that might fail during input processing) was on the order of days. Imagine the cost and length of time involved in creating an input model if the code were only to report one error at a time!

The drawback is that some of the messages that get reported can be very misleading, especially if you happen to be a novice user. What can happen is that the first error identified in an input model may actually cause the code to diagnose data that is further down as being erroneous, when, in fact, it is not. It is simply inconsistent with respect to the data that is first reported as being erroneous. Well, in many cases, the first error message that you usually see is actually the very last error reported. This inevitably leads to a great deal of confusion and wasted time as you try to understand and fix a problem that does not really exist.

For this reason, we recommend, especially for beginners, that you focus only on the first error message that TRACE produces and forget about all the rest. Once you have fixed that error, rerun the code and see what new errors are produced. As you gain more experience, you will inevitably learn which errors are the result of prior erroroneous input and which errors are real flaws, allowing you to iterate to an an error free model more quickly. Locating the first error message from a run involves searching forward from the start of the output or message file for one of the two following strings: 'warning' or 'fatal'.

Insofar as the internals of TRACE are concerned, input processing is a two-stage process. First, the input file passes through a "pre-input" step, at which point a new version of the input deck called the input echo file (see Chapter 2 for a complete description) is created. The data checking functions performed during this phase are designed to catch errors like typos (like an "o" instead of zero, or " 1 " instead of one), the presence of invalid characters (like tabs), missing characters, numbers that are too long, and other general formatting issues - in other words, errors that involve the mechanics of specifying text or numbers, not those having to do with the correctness of the value itself or whether its presence is consistent given the values on other cards in the file. If you see error messages that begin with the string " *PreInp* ", then you know that TRACE is currently in this phase of input processing. A real easy way to figure out what is going wrong is to open up the input echo file. It will normally point you directly to the character that is causing TRACE to have problems reading your model. Just search forward from the top of the file for the string "*ERROR" (starting in column 75) to identify the offending line. Currently, the writing of warning messages stops after 50 cards have been detected to be in error, although input processing does continue.

Once the model has passed the pre-input stage, the code moves on to the second stage of input processing. At this point, the newly created input echo file is opened up and all the data values are actually read in and loaded into memory. Throughout this process, the input deck is checked to make sure all the required cards and variables are present and that their values are correctly specified (at least, insofar as TRACE is able to determine "correctness"). When handling these types of errors, TRACE will generally identify the line number where the error occurs. The exception to this is when an error is discovered on an array data card (i.e. those lines that use the LOAD format (see Chapter 5 for an explanation of what this means). In that case, TRACE identifies the card number of the array data being processed rather than the actual line number. Determining the array and its component requires searching the output file for the word
"warning". If the output file shows the code stopped while processing data input in 'LOAD' format, look for errors on the input line below the last 'good' line printed before the stop occurred. An example list of common input errors with their corresponding TRACE message and an explanation is presented in Appendix B.

One error to watch out for when specifying NAMELIST data is the presence of a NAMELIST option that TRACE does not understand. If you specify a NAMELIST variable that TRACE is not able (or no longer able) to read, the code will ignore all other NAMELIST variables that come after it. In some cases, the code might run just fine even without the NAMELIST options you think you specified, making you think everything is well, when, in fact, it is not. In other cases, the fact that some NAMELIST options are missing will cause the code to fail outright. These failures will be very difficult to fix because it will seem as though all the needed data has been provided correctly, but, in fact, as far as TRACE is concerned, it hasn't. This can be a source of severe frustration for users.

In situations where there are no errors detected but input-processing difficulties are suspected, it is suggested that the user inspect the input echo file where faulty records may be apparent. Another highly recommended technique if you have an error that you just cannot seem to locate or fix, is to try importing the input file into SNAP. In general, SNAP has its own input diagnostics that are, in many cases, superior to TRACE's own diagnostics.

Dealing with Initialization Errors

Errors produced during the initialization phase of a code run are usually the result of fundamental inconsistencies in the boundary conditions. If an initialization error occurs, you can generally assume that the formatting of the input file is correct and the data is complete (because it got through input processing), but some data is not consistent with other data elsewhere in the model.

If a data inconsistency is found, TRACE will write out a message identifying the inconsistency. For example, providing different flow areas (outside a very small tolerance) at the same interface junction between two hydraulic components will lead to an error message of the type just described. An example list of common initialization errors with their corresponding TRACE message and an explanation is presented in Appendix B. Before one of these abbreviated messages is written out, TRACE generally outputs more detailed information with values of the variables that were tested and found at fault. Generally, this information along with the explanation of the abbreviated-description message is very useful in determining the cause of the error. For example the error message:
chbd Junction boundary error detected
tells the user there is a problem with junction input boundary conditions and the error was detected in subroutine chbd ${ }^{1}$.

Dealing with Simulation Run-time Errors

Run-time errors are those that occur after the input deck has been read in and the calculation has been initialized. They are among the hardest and most difficult to track down because they may require a full understanding of the phenomenology inherent to the transient being simulated as well as a good working knowledge of understanding in such areas as reactor thermal-hydraulics, fluid dynamics, two-phase flow and heat transfer, and/or reactor kinetics.

Run-time errors generally manifest themselves as numerical solution difficulties. Errors in this class may include iteration convergence failures, repeated reductions in the timestep until it cannot be reduced anymore, waterpacking failures, choked flow errors, etc. They may not actually cause the calculation to abort, but instead will cause the calculation to grind down to a very small timestep, taking a very large amount of CPU time to complete and generating large message and output files as numerous error messages are repeatedly written each timestep. In extreme instances, the code will abort.

In many instances, the occurance of numerical solution difficulties is an indication that you have provided initial or boundary conditions that are not physical or are chainging too rapidly or that your geometric model is incorrect. As such, an appropriate change in the model may eliminate the numerical difficulty in a repeat calculation. For example, closing a valve in 0.2 s , rather than a more realistic 2.0 s , can cause numerical solution difficulties while a slower closing rate does not.

In some cases, the messages may indicate problems with the code itself, especially if the model is attempting to predict behavior outside the code's assessed range of applicability. When that happens, the best you can do is 1) report the problem to the code development team, 2) determine exactly what phenomenology is most important to simulate accurately, 3) decide whether the code is able to adequately reproduce that phenomena even in the face of other predictive weaknesses, and 4) if it is, live with the results.

The sections below will attempt to discuss various specific techniques you can use in an effort to understand what is going wrong with your model.

Check your model

We begin by emphasizing the first step - check your model! You need ensure that the values TRACE uses are the values you intended. There is a straightforward way to accomplish this. You can provide TRACE with a calculation end time of TEND $=0.0 \mathrm{~s}$ temporarily (see the timestep

1. The TRACE development team recognizes that the practice of providing the subroutine name in error messages that are meant to be read and understood by the code user is not really all that helpful, and can, in fact, impede your understanding of what is going wrong. We hope to eliminate this practice from the code in the future and improve the overall level of understandability of all error messages produced by the code. The only time we feel this practice is OK is when programming errors are produced because those are really only meant to be understood by actual programmers.
data description). TRACE will read and process your input model and provide an output echo of the input data to the output file before ending the calculation. Carefully checking the echoed output against your input data will eliminate the possibility that TRACE is reading different values from what you intended, ultimately reducing the time and effort required to obtain a successful calculation. Making the comparison with values from your working notes as well as the input file also will catch errors in going from your working notes to the typed input data in your input file.

Reviewing Error Messages

If you have checked the veracity of your data, and all seems to be OK and error messages are still being generated, you will need to read them and try to understand their cause. Even if they don't abort the calculation, they may indicate the need for a modeling change or for more restrictive timestep data. If they do cause the calculation to abort, you will have no choice but to resolve the error causing the abort. We are aware that the error messages are brief, but TRACE usually outputs more information to the message file in the form of actual values of various parameters that will be useful in diagnosing the error.

Generally speaking, TRACE will report, not only, the type of error, but also the location. The type of message and the output values of the affected parameters define the condition. The location of the difficulty may tell you something about the model at that location that causes the numerical solution to have such difficulty. These messages are written to both the message file and the terminal.

Reviewing the Message File

We cannot overemphasize the importance of carefully reviewing the message file. This file contains a summary of the behavior of the numerical solution and diagnostic information generated when TRACE encounters calculation difficulties. In some cases, a review of the message file will provide all the information needed to identify the difficulty. In other cases, you may need to review the thermal-hydraulic solution details in the output file and use your understanding of the calculated physical phenomena to provide the information you'll need for the debugging process.

The primary function of the message file is to provide condensed output on the behavior of the numerical calculation and to provide warning messages produced by various computational modules within TRACE. This documents the progress of the calculation and any numerical difficulties that were encountered. If TRACE terminates because of some numerical difficulty, the message file will have output information that describes that difficulty. Although the message file only contains numerical-status information and warning messages, it can grow to be very large if TRACE happens to encounter numerical-solution difficulty over an extended period of time. Usually the first few hundred lines of warning messages provide useful information as to the cause of any numerical difficulty. Solution results are always in SI units.

Understanding a calculation and diagnosing its warning error messages requires both a micro and macro examination process. In other words, you need to be cognizant not only of the local phenomena happening near the region where the message file is reporting problems, but you must also be aware of the specific features of your plant or facility model and the phenomena that TRACE is calculating in a much more broad sense. Even knowing all this, the information in the message file can be difficult to interpret. The diagnostic messages that appear in the message file were originally developed to provide guidance to advanced TRACE users. Although some effort has been expended to make the diagnostic messages more easily understood by the beginning or intermediate user, the development team recognizes that the learning curve is still high in this area. Future improvements to TRACE will involve providing more and better information about numerical difficulties and in plainer english.

If you are to understand the diagnostic messages appearing in the message file, you must be aware of the concept of "phantom cells" in TEE-based components (i.e. those that have a main-tube and a side-tube). TRACE evaluates and stores information at both the cell-center and the cell-edge. For simple 1D components like a PIPE, if you count the number of cells and edges, there will always be one more edge than cell (excluding any side junctions - they don't count for this analysis). For TEE-based components2, however, if you count the number of cells and edges, you quickly realize that there are actually two more edges than cells. Well, during the original development of TRAC-P many years ago, this seeming inconsistency posed a problem for the code development team in terms of how they stored data in the computer's memory that could be generally applicable to all component types in the code. They introduced the concept of a "ghost cell" or "phantom cell" into the way information for TEE-based components is stored inside the computer. By artificially adding a some extra memory storage for a phantom cell, they were able to make the computer memory layout for TEE-based components look exactly like the memory layout for components with only one mesh segment. This phantom cell is sandwiched between the last cell of the main-tube and the first cell of the side-tube.

The net effect of all this is that diagnostic messages that refer to a specific cell or interface in a TEE-based component do not take the phantom cell into account. It is left up to the user to do the translation. For example, consider a TEE with five cells in the main tube and four cells in the side tube. A diagnostic error message referring to cell 7 of a cell-centered variable such as pressure is referring to the first cell in the side-tube (cell $7-5$ main-tube cells -1 phantom cell $=$ side-tube cell 1). A diagnostic error message referring to cell-edge 7 of some variable (like velocity) is referring to the edge that joins the side-tube to the main-tube (cell-edge $7-6$ main-tube cell edges $=$ side-tube cell-edge 1).

Right about now, you are probably thinking "What do I care about how the computer stores data in memory? I am a user, not a developer. I shouldn't have to worry about such things." Yes, you are correct. The original developers were simply not considering the effect this might have on new users 30 years into the future. The current development team has simply not yet had the chance to remove this artifact of the past.

Reviewing the Output file

The primary purpose of the output file is to provide a detailed record of the calculation results. Using the timestep data cards (see Chapter 6, Timestep Data), the user is able to control the frequencies with which short and large edits are generated, respectively.

A short edit is a half-page display. The initial line outputs the current problem time, timestep size, and timestep number and the number of iterations required to converge the last outer iteration. This is followed by the maximum convective power difference, the mesh location (component and cell/edge \#) limiting the current timestep size, the minimum, average, and maximum number of outer iterations since the last short edit, the number of timesteps that each component was the last to converge its outer-iteration solution, and the current-calculation and accumulatedcalculation's CPU execution times. This information conveys how well the numerical solution is doing and where in the model the solution convergence is most limited and the timestep size controlled.

Each large edit provides a "snapshot" of the modeled system's thermal-hydraulic solution at a given point in time. For even modestly sized systems with less than a dozen large edits, the output file can be large. You are cautioned to be judicious in your selection of the large-edit time-interval frequency. The large-edit output is useful because each snapshot can be analyzed for the detailed spatial behavior of the solution and for diagnostic purposes. However, we have found that transient phenomena are best captured and understood by plotting the solution data vs. problem time obtained from the graphics file.

The solution results written to the output file can be in either SI or English units depending upon the value specified for the NAMELIST variable IOOUT (Main-Data Card 4).

Diagnostic Checklist Assistance

Diagnostic information can be generated by setting selected NAMELIST (refer to Main-Data Card 4) variable parameters in the input data. The parameters are listed below with a brief description of their reset values.

$$
\begin{aligned}
& \text { IDIAG }= \begin{array}{l}
2,3, \text { or } 4 \text { requests that detailed diagnostic output be pr2ovided (2 gives } \\
\\
\\
\text { flow reversal diagnostics; } 3 \text { gives flow reversal and steam and gas volume } \\
\text { fraction temporal change diagnostics; } 4 \text { gives flow reversal, steam volume } \\
\text { fraction temporal change, and out-of-bounds steam and gas volume } \\
\text { fraction reiteration diagnostics). If the error messages relate to two-phase } \\
\text { conditions, use options } 3 \text { or 4; otherwise, use option } 2 .
\end{array} \\
& \text { NSPL = }=\begin{array}{l}
\text { beginning timestep number at which a large edit is written to the output file } \\
\text { every timestep. }
\end{array} \\
& \text { NSPU = } \begin{array}{l}
\text { ending timestep number at which a large edit is written to the output file } \\
\text { every timestep. }
\end{array}
\end{aligned}
$$

NSDL = | beginning timestep number at which short edit and pressure change to total |
| :--- |
| pressure and the difference between basic and stabilizer macroscopic |
| densities diagnostics are written to the output file and steam and gas |
| volume fraction temporal change diagnostic (when IDIAG $=3$ or 4) are |
| output to the message file each timestep. |

NSDU = | ending timestep number at which short edit and pressure change to total |
| :--- |
| pressure and the difference between basic and stabilizer macroscopic |
| densities diagnostic are written to the output file and steam and gas volume |
| fraction temporal change diagnostic (when IDIAG $=3$ or 4) are output to |
| the message file each timestep. |

NSEND = \quad timestep number at which the TRACE calculation ends.

Note that the timestep numbers referred to above correspond to the timestep numbers in the error messages written to the message file. The timestep number is incremented at the completion of each timestep calculation just before the newly calculated solution state is written to the output file. You are urged to use the additional IDIAG >2 diagnostic printouts only as a last resort. You are given control over the beginning and ending timesteps because the output generated can be extremely large. You determine the timesteps to specify by reviewing the message file from the previous run to determine the timestep number at which the difficulty first occurred. Usually only a few timesteps of diagnostic information is useful for debugging.

Timestep Control

The TRACE development team has attempted to provide a sophisticated internally-evaluated timestep-size control algorithm. However, it is likely that TRACE will experience numericalsolution difficulties when the minimum or maximum timestep size specified by the user is too large, a rapid-transient event occurs at such a timestep size, the numerical solution fails to converge, and TRACE fails to recover by reducing the timestep size before the maximum userspecified iteration-limit number is reached. This difficulty usually is experienced during transient calculations when a rapid transient event (component action, phenomena, etc.) is initiated, but it can also occur at the start of a steady-state calculation when the timestep size is too large for a poor initial solution estimate. If you specify a large minimum or maximum timestep size and the code aborts on a maximum-number-of-iterations failure, make the minimum timestep size (DTMIN) or maximum timestep size (DTMAX) smaller (by a factor of 0.1 to 0.01) and repeat the calculation (using a recent data-dump restart if a significant calculative effort has already been spent). In general, on any initial run, you should always plot the timestep size (DELT graphics variable) vs. time. In regions where the time step size is jumping up and down, pick a time step size that represents the mean step size (a line up the middle of the fluctuations), and use that as the maximum time step size.

You should also watch out to make sure that the maximum timestep for one set of timestep cards is not smaller than the minimum timestep for a subsequent set of cards. Otherwise, the code will have no way to reduce the timestep any further as it transitions from using the first set of timestep cards to using the second, resulting in an immediate code failure.

To provide for continued improvement of TRACE, all developers and users need to report poor performance in the code beyond failures to match test data. You should watch for and report any of the following:

- Time steps below $1.0 \mathrm{e}-5$ seconds
- Prolonged use of time steps below $1.0 \mathrm{e}-4$ seconds
- Excessive failure messages in the message file
- Unexpectedly long execution times
- Any halt in code execution due to an error condition

When reporting the problem, please provide the following:

- The message file and the last time step edit in trcout before the problem
- All input files used to get to the point of the performance degradation or failure
- A restart dump two time steps before the difficulty with an input that picks up that dump and reproduces the problem.

If you cannot reproduce the execution problem from a restart, report that also because the code should provide exact restarts. If it isn't, the development team needs to know about it.

Dealing with Programming Errors

Programming errors are errors that occur because the programmer made a mistake. While the development team tries to write bug-free code, if you use TRACE long enough, you will inevitably encounter errors of this nature. The fact that you experience an error of this type means there is an outright bug in the code and as such, it needs to be reported as soon as possible. We never expect that you should have to fix an error like this on your own. In the final analysis, it may happen that an error of this type is, in fact, triggered by an error in the input model, but even under those circumstances, the code should generate an input processing error, not a programming error. Either way, the code needs to be fixed.

A programming error may manifest itself in one of two ways - either as a code abort generated directly by TRACE, or as a code abort generated by the compiler or operating system. Either way, the messages that get generated are only sent to the screen - not to the message or output files.

Errors that fall into the first category are produced in situations where the TRACE programmer took specific steps to guard against unknown situations or prevent invalid operations from taking place. An example might be an error message that gets generated to protect the code from dividing by zero or looping past the end of some array. They generally look like this:

```
** <subroutine_name> Programming Error ** - some string of text
```

where <subroutine_name> refers to the Fortran subroutine where the error was generated. This detail can be disregarded by the user. The important thing to note is that when errors of this nature occur, they should be immediately reported to the TRACE code development team since they are indicative of something happening that the programmers did not expect.

Errors that fall into the second category generally include segmentation faults, array bounds errors, access violations, math errors, uninitialized variables, floating point overflow and/or underflow, core dumps and bus errors. They usually occur because some computer memory becomes corrupted as a result of sloppy programming or an invalid mathematical operation takes place (like division by zero or infinity). The specific error messages written in these situations are very much dependent on the specific Fortran compiler and platform used to build TRACE. In many cases, specific compiler options need to be built into the TRACE executable in order for meaningful messages to be produced when one of these types of errors occurs.

Using Interactive Debugging Tools

For completeness, it is worth discussing the use of interactive debuggers as a tool for debugging input models. Given that debuggers are normally software programs used by programmers, we need to stress that we do not expect that users should have to go to such lengths to debug an input model. However, we do want to make the user aware that such tools do exist and can actually be very useful in tracking down problems for which there seems to be no logical explanation.

Two such tools are the Compaq Visual Fortran (CVF) debugger for Windows, and DBX, a source level symbolic debugging tool under UNIX, that can be used either during TRACE execution or after a TRACE error abort. When using any debugger to execute TRACE, you may stop TRACE at any location during its execution, examine the contents of computer memory and the values of parameters, and change the coding or parameter values. UNIX debuggers like DBX are specific to the computer being used.

Input File Format

This chapter describes the various formats and the methodologies used for specifying data values in your input file. In terms of nomenclature, you will see references throughout this chapter and indeed, this entire manual - to the term "card". It is normally meant to refer to a group of input parameters that comprise one or more lines of actual data in your input deck. From a historical perspective, the term is derived from the usage of punch cards as a means of creating and storing an input model, before the advent of modern computer terminals and disk-based storage.

Generally speaking, input data can be specified either in a fixed-format way or a free-format way. The term fixed-format implies that numerical values must lie in specific columns. Free-format input, on the other hand, does not have these restrictions. You have much more flexibility in terms of where, on any given line, a data value can be placed. In addition to the obvious convenience of not having to count columns, free-format input also allows you greater flexibility in using comments to document your input data. TRACE also provides better error-checking capabilities with this scheme of input. The use of free- or fixed-format input is controlled by the first line of the input file (see Main-Data Card 1 in Chapter 6).

The fixed-format method for entering input data is very old and practically speaking, is never used in modern TRACE input files. The only time you might see this style of formatting used would be in old TRAC-P input models dating back to the late 1970's or early 1980's. For this reason, rules and conventions regarding the use of fixed-format input will not be presented here. Users interested in reading more about this method of data entry should consult an old TRAC-P input manual.

There are typically five types of data that you will encounter in a TRACE input file: comment cards, title cards, NAMELIST data, scalar variables, and array variables. Each of these categories has its own specific rules regarding how the data is formatted in an input file.

The term "scalar variable" refers to single-valued parameters that typically are used to control global aspects of a specific component or the entire model. They may be integers, strings, or realvalued numbers. For example, the input which specifies that the number of cells (NCELLS) for a PIPE component is a scalar entry. Scalar variables are normally grouped into card sets with five parameters per card (although this need not always be the case). The presence of specific card sets in an input deck is governed by the rules established in Chapter 6.

The rules that govern the formatting of scalar variables are pretty simple. All data values must be delimited by, at least, one blank space and all data values are limited to a maximum width of 14 characters. If the code is expecting to read an integer value, then that value should be an integer. If the code is expecting to read a real number, then that value should be a real-number.

The term "array variable" refers to lists of numbers used to provide boundary conditions, initial conditions, or other state information on a cell-by-cell (or edge-by-edge) basis. It may also refer to such information as table-value pairs, lists of component identifiers, and any other data that must be input as a list of values. Array cards are specified using the LOAD formating convention. The rules that govern this formatting scheme are provided in the section LOAD Format later in this chapter. An example of array data would the input which provides the lengths (DX) for the cells in a PIPE.

In general, the following rules are established regarding how an input file is formatted:

- All cards (and variables on those cards) must be kept in the same order as specified in Chapter 6.
- Data may start in column 1 except for NAMELIST data, which starts in column 2.
- Lines of input may be up to 80 columns long.
- Input cards are limited to a maximum of five data fields per line.
- A LOAD-formatted data value must be 11 characters or less. A non-LOAD formatted data value must be 14 characters or less.
- All data that are not read in according to the LOAD format must be delimited by at least one blank space. Data in LOAD format may be blank delimited; delimited by any of the LOAD control characters $\mathbf{e}, \mathbf{f}, \mathbf{i}, \mathbf{m}, \mathbf{r}, \mathbf{s}$; or delimited by the two-digit repeat count.
- Integer 0 or real 0.0 should be entered explicitly. Strictly speaking, this is only true if a data value on some card of interest is to be followed by a non-zero value. If the last value (or several values) on a particular card are all zero, you can technically leave it blank TRACE will fill it with 0 or 0.0). However, we highly recommended that you always specify a value for each and every variable that is required.
- Tab characters anywhere in an input file are forbidden

Comments

Input files may be annotated with user comments. These comments must be delimited by asterisks $(* s)$ in unbroken strings of any length. The first line of the input file is an exception to this requirement - it cannot be a comment. Comments and their delimiters are equivalent to blank columns in a data field. When an input record has an odd number of comment delimiters (where $*, * *, * * *, * * * *$, etc., are all considered to be a single delimiter), everything on the record to the right of the last delimiter is considered a comment. The code will attempt to read input data after even-numbered comment delimiters and before odd-numbered comment delimiters. Entire records may be comments, for example, by making the first nonblank character an asterisk and
not inserting any more comment delimiters on the line. Comments may appear anywhere in the input-data file except:

- before Main-Data Card 1,
- after Main-Data Card 2 and before the problem title cards,
- within the NAMELIST variable defining records (see additional comments on NAMELIST input below).

Title Cards

The problem title cards immediately following Main-Data Card 2 are written to the input echo file exactly as they are read: asterisks, blank cards, and all. Blank and comment cards may appear between the first two main-data cards and immediately after the problem title cards but not within the problem title cards following Main-Data Card 2 without their being considered title cards.

Component descriptions of individual components (the CTITLE information) are written to the input echo file, left justified, starting in column 43. Asterisk strings in component descriptions are treated as comment delimiters.

Namelist Format

The NAMELIST capability is an extremely useful feature of Fortran that can be used to load values directly into variables named within the program. TRACE uses this feature as a means of setting global parameters and flags that govern overall behavior of the code during the run. The exact global parameters and flags that are controlled by NAMELIST variable input are described in Chapter 6.

At present, all NAMELIST input must adhere to the following rules:

- hollerith constants are not allowed. If you don't know what a hollerith constant is, then you don't need to worry about it.
- the first column of all physical records is ignored (the terminating dollar "\$" or ampersand " $\&$ " sign can appear in any column except the first column).
- there must be no embedded blanks in the string \$INOPTS or \&INOPTS where INOPTS is the NAMELIST group name, the initial "\$" or "\&" must appear in column 2, and there must be at least one trailing blank after \$INOPTS or \& INOPTS.
- asterisk-delimited user comments are not allowed to be interspersed among NAMELIST data cards, although blank lines are allowed.

For example, the following five cards might be used to input data for the TRACE NAMELIST group INOPTS (described in Chapter 6).

```
    1 2 3 4 5
123456789012345678901234356789012345678901234567890123456 . . .
^$INOPTS^IELV=1,^^IKFAC^=^1,
^^^ISTOPT=2,
^ALP=0.,VL=0.,VV=0.,TL=550.,TV=550.0,
^^P=1.55E+07,PA=0.0,QPPP=0.,TW=5.5E2,HSTN=550.,
^$END
```


LOAD Format

TRACE uses a special user-friendly format called LOAD to read most array variables. The arrays may be read in floating point or integer format with up to five values per line. Array input is aided by the use of symbols: $\mathrm{f}, \mathrm{i}, \mathrm{m}, \mathrm{r}, \mathrm{s}$, and e. They are described in Table 5-1. The first four symbols aid in repeating input data. f, i, m, and r are followed by two digits which specify the repeat count. The s symbol is used at the end of the line to indicate "skip" to the next line to finish array input. The e symbol must be used to terminate array input. Comments can be added to the line after the e or s symbol starting with an asterisk followed by text (for example; s * comment). In free-format input-data files, cards with an asterisk in column 1 are ignored and may be used for spacers or for comments. On data cards, the "* comment *" method may be used to embed comments among the variables.

Table 5-1. Operation symbol description.

Operation Symbol	
	An empty space: i.e.; r 2 is the same as r2 or r02.
e	End of the data array (must be followed by at least one blank column).
f	Fill the array starting at current element index with the data constant.
i	Interpolate between the following data constant and the succeeding data constant with nn intervening values with the same difference ${ }^{\mathrm{a}}$.
m	Multiple repeat. Repeat the data constant $10 \times$ nn times.
r	Repeat the data constant nn times.
s	Skip to the next card (line).

a. nn denotes the one or two digit integer that follows the operation symbol.

Some restrictions in the use of the LOAD format are:

- the end of data for an array must be signaled by an "e",
- over filling or partial filling of an array is not allowed,
- integer interpolation is not allowed,
- the control characters are case-sensitive (i.e. you can't use E),
- data is restricted to five values per card, and
- data for different arrays must be on different card records (i.e. different lines)
- All numeric input data are limited to a maximum of 11 characters (that includes the decimal point and any exponential notation).

The following are examples of the use of the operations listed above to fill an array of dimension 11 with data.

EXAMPLE 1. Fill an integer array with a value of 61.
f 61 e
EXAMPLE 2. Use of the repeat operation to fill an array eleven long with a value of 1.2345.
r11 1.2345 e

EXAMPLE 3. Use of the skip operation to fill an array eleven long.
$\begin{array}{llll}\mathbf{r} & 15 & 16 & \mathbf{s}\end{array}$
$\begin{array}{llllll}\mathbf{r} 05 & 17 & 18 & 19 & 20 & \mathbf{e}\end{array}$
EXAMPLE 4. Use of the multiple repeat operation to fill an array eleven long.
m01 $1.556 \mathrm{e}-2 \quad 0.0156 \mathrm{e}$
EXAMPLE 5. Use of the interpolation operation to get the values $1.0,2.0,3.0, \ldots, 11.0$.
i $91.0 \quad 11.0$ e

6

Input File Specification

This chapter describes how to actually construct an input file for TRACE.

Input Data Organization

The data in an input file is divided into eleven major sections which must appear in the following order:

1) Main Data,
2) Countercurrent Flow Limitation Data,
3) Material Properties Data,
4) Hydraulic-Path, Steady-State Initialization Data,
5) Constrained Steady-State (CSS) Controller Data,
6) Signal Variable Data,
7) Control Block Data,
8) Trip Data,
9) General Table Data
10) Component Data,
11) Timestep Data.

Main Data

The main-data information block contains general parameters that control global aspects of a simulation. This includes such information as title cards (for problem identification and QA purposes) NAMELIST variables, dump-restart flags, transient/steady-state flags, problem-size, problem-convergence criteria, and component identification numbers. This data block must always present in an input file. It is generally considered good practice to provide title cards
(Main-Data Card 3) that identify the plant or facility, the data base used to prepare the input-data model, any important limitations or assumptions inherent to the model, and in the case of followon analyses, what changes have been made to the input-data and the reason for making them. While the NAMELIST data cards (Main-Data Card 4) are considered optional, they generally appear in most input files where a few of the NAMELIST variables are defined with values that differ from their default values (for example, the choked-flow model option variable ICFLOW could be input with the value 2 to change its default value of 1).

Countercurrent Flow Limitation Data

A special model exists in TRACE to allow the user to apply correlations for countercurrent flow limitation (CCFL) at specific locations. The user supplies the correlation constants and the locations where the CCFL model is to be evaluated. The correlation data along with the CCFL option flag array must be present in the input file for calculations where countercurrent flow limitations are applied. The CCFL array, containing the locations where the CCFL calculation is applied in a hydraulic component, is saved in the restart dump file; therefore, those components do not need to be included in the input file for a restart calculation.

Generally, this data block is not input unless the TRACE user expects countercurrent flow (liquid flow down and gas flow up) in a vertical flow channel and has a data correlation that defines that flow relationship. This correlation model constrains the phasic flow relationship accordingly at user-selected mesh-cell interfaces rather than having TRACE evaluate this flow condition directly based on a detailed flow-geometry model. This input-data block is specified when NCCFL >0 (Word 5 on Main-Data Card 9).

Material Property Data

By default, TRACE has its own set of built-in material properties that you may use as you build an input model. These built-in material types are listed in Table 6-1. They should be appropriate for most applications. If all you do is rely on these built-in properties, then you do not need to include this data block in your input file. However, if you think that the built-in material properties are inadequate for the modelling task at hand, this data block gives you the option of supplying your own. To do that you must set the NMAT >0 (Word 4 on Main-Data Card 2) and include this data block in your input file. All new material ID numbers must be >50. If you do decide to include your own material property data, then please be aware that these properties must be included in the input file for all restarts because they are not written to the dump file.

Hydraulic-Path, Steady-State (HPSS) Initialization Data

Hydraulic-path, steady-state initialization data provide the user with a convenient way to input phasic temperature and velocity distribution solution estimates for a steady-state calculation. The known or estimated thermal-hydraulic condition and a major heat source or sink are specified at a location in each 1D flow-channel hydraulic path of the hydraulic-system model. At the beginning
of the initialization stage of the calculation, TRACE uses this information to initialize the phasic temperatures and velocities throughout the system model in all hydraulic components for both single- and two-phase conditions. This data block is input for steady-state calculations when the TRACE user desires a better initial solution estimate for the phasic temperatures and velocities throughout the modeled system than are defined by the component data. This better initial solution estimate generally halves the calculative effort to converge to the steady-state solution. This input-data block is specified when STDYST $=3$ or 4 (Word 1 on Main-Data Card 7).

Constrained Steady-State Controller Data

When STDYST $=2$ or 4 (Word 1 on Main-Data Card 7), a CSS calculation is performed using NCONTR ≥ 1 (Word 4 on Main-Data Card 9) controllers that are specified by CSS controller data. These controllers are internally programmed proportional-integral (PI) controllers that adjust specific adjustable component parameters to achieve desired steady-state values for specific monitored parameters. Transient-calculation control procedures for some of these component actions are specified in the component input data; however, these CSS controllers override those procedures and control their parameter actions during the CSS calculation.

Control System Data

This data specifies modeled-system parameters and logic procedures used to control the simulated operation of the system model. The control procedure is modeled by signal variables NTSV >0, control blocks NTCB >0, and/or trips NTRP >0 (Word 1, Word 2 and Word 4 on Main-Data Card 10). Almost all TRACE input-data models use one or more of these control parameters. To simulate a control procedure effectively, you will need to know how to use signal variables, control blocks, and trips. We emphasize that you will need a detailed knowledge of how the plant operates to model its control procedure. You also will need to understand how to translate this operational behavior into a control model defined by signal variables, control blocks, and trips and their associated evaluation procedure.

Signal Variable Data

Signal variables, which access the values of parameters in the modeled system, are needed by most TRACE control procedures. They are the input signals to the control system's control blocks, trips, and component actions. In other words, they provide feedback from the thermalhydraulic system model to the control procedure. Further information about the definition and usage of signal variables is provided in Signal Variable Data.

Control Block Data

Control blocks, which evaluate functions operating on input signals to determine an output signal (for example, the ADD function adds two input signals to define the sum output signal), are used
in many but not all TRACE calculations. This is a very useful feature because the user can model through input data a network of coupled control blocks that simulate the logic of a control system of any complexity. Because of this capability, TRACE can be used solely to evaluate a network of coupled control blocks that simulate a control system with no interest in a simple hydrauliccomponent system model that must be input. Further information about the usage of control blocks is provided in Control Block Data.

Trip Data

Trips, which are ON/OFF switch controllers for the signal logic of control blocks and for when component actions are evaluated, are used in many but not all TRACE calculations. Trips are generally the most direct way of initiating component, operator, and abnormal actions. The trip's ON/OFF set status is defined based on the value of the trip signal lying within a subrange labeled with a set status. Setpoint values define the boundary limits of those subranges so that when the trip signal crosses a setpoint value, the trip's set status, after a user-specified delay time, changes to the set status of the new subrange where in the trip signal now lies. There are three types of trips based on how their trip signal is defined: by a signal variable or control block, by a trip-signal-expression, or by a trip-controlled-trip. The most common is a trip signal defined by a signal variable or control block. A trip-signal-expression trip signal is a simple arithmetic expression based on one or more signal-variable or control-block input signals (the equivalent of a simple control-block network). A trip-controlled-trip trip signal is the combined set status values of two or more trips (where OFF has a 0.0 value and ON has a -1.0 value for $\mathrm{ON}_{\text {reverse }}$ and +1.0 value for $\mathrm{ON}_{\text {forward }}$). The combining operator is addition for a coincidence trip (where the trip is set ON or OFF when the set status of M of N trips are ON) and is multiplication for a blocking trip (where the trip is set ON or OFF when all N trips are ON or any one trip is OFF). Trip setpoints are constant or vary if set-point-factor-table cards are input. Generally, setpoints are constant in value. Trip-initiated restart-dump and problem-termination cards can be used to generate data dumps when any one of a number of trips is set ON and, if desired, can terminate the calculation as well. Trip-initiated timestep data cards let the user apply a set of special timestep data for a problem time interval after one of the controlling trips is set ON. Guidelines and examples of trip-modeling techniques are provided in Volume 2.

General Table Data

This data block must be input if the NAMELIST input NUMGENTBL is greater than 0 . A general table consists of a number of $x-y$ data points. For each general table a control block/signal variable id is defined that will provide the x independent value that will be used to evaluate the table. Given an x independent value a general table will return a y dependent result that can be used during the TRACE calculation. Available general tables are:

- Power vs Time
- Heat Flux vs Time
- Heat Transfer Coefficient (HTC) vs Time
- HTC vs Surface Temperature
- Temperature vs Time
- Reactivity vs Time
- Normalized Area vs Stem Position
- Signal Variable/Control Block vs Temperature
- Signal Variable/Control block vs HTC
- Signal Variable/Control Block vs Heat Flux.

Component Data

The component-data block is the main body of the input-data file. This block contains a detailed description of every hydraulic and heat-transfer component in the system model unless the calculation is reinitiated from a restart-data dump. For restart calculations, this block contains only additional or modified components. The remainder of the component data are obtained from the restart input file. There is a component-data block in every unless all the component data are to be obtained from the restart file and only an "END" card is specified.

The components are assembled one following another in the component-data section of the input file. You will probably find it convenient to order your input-data blocks for each component in some logical fashion (usually in the order of increasing component numbers so that a component can be found easily). TRACE will arrange the components in another order for computational and output purposes. That order will depend on the order in which thermal-hydraulic loops are processed by TRACE. The component order you choose is for your convenience in finding component data in the input file.

NCOMP (Word 3 on Main-Data Card 7) or fewer sets of component-data cards are input. The sets may be input in any order. The component input is concluded with an "END" card. If fewer than NCOMP sets are input, TRACE will make the assumption that it should read the remaining components from the restart dump file. If the run is not actually a restart run, if the dump file cannot be found, or if the missing components cannot be located, then an error will be produced.

The format of each set depends on the component type. All velocities are positive in the direction of ascending cell number. Most of the array data variables should be input using the LOAD format described in Chapter 5. All tables that are entered as pairs of numbers (x,y) must be supplied in ascending order of the x independent variable.

Each hydrodynamic component requires a junction number for each of its connecting points. A junction is the connection point between two components. A PIPE requires two junction numbers, one for each end. A unique junction number must be assigned to each connecting point (unless a dead-end has been specified, in which case the junction ID is set to 0) and referenced by both components to be connected. For example, if two PIPEs are joined, then the junction numbers of the connecting end of each pipe must be the same. No component may "wrap around" and
connect to itself and no junction may have only one component connected to it, unless the junction number is specified as zero (indicating a dead-end). Boundary-conditions can be applied to any given string of connected mesh segments (that are not in a loop) using the BREAK or FILL components. In the input description, the asterisk $\left({ }^{*}\right)$ indicates units of the defined variable and the hyphen (-) indicates a dimensionless quantity.

Timestep Data

The timestep-data block specifies maximum and minimum timestep sizes, edit frequencies, and the end of the problem for specified time intervals. There is also a parameter to control the timestep size to conserve convection heat-transfer energy between heat structures and hydraulic components. This data block is always present in the tracin file.

Main Data

The main-data parameters are listed below in the order in which they are entered. This data block always must be supplied at the start of the tracin file.

Main-Data Card 1. (Free format)
Note: The first card of the tracin file serves as the FREE-format ON-OFF switch, indicating whether the cards that follow are in FREE format. It must be included and must contain the string FREE if all of the input variables are not placed correctly in fields 14 spaces wide. This card is in free format; up to 80 columns may be used; the control string/s and documentation may appear anywhere on the card.

Description

FREE format

Main-Data Card 2. (Format 5I14) NUMTCR, IEOS, INOPT, NMAT, ID2O

Variable	Description
NUMTCR	Number of title cards to be read (NUMTCR $\geq 1)$.
IEOS	Steam/noncondensable gas option. $0=$ gas phase treated as a steam and noncondensable gas mixture throughout the modeled system (the default); $1=$gas phase treated as noncondensable gas throughout the modeled system. Evaporation and condensation are inhibited. INOPT This is a legacy option used in older code versions to assist in testing and verifying the code numerics. Its use is no longer encouraged and, in fact, can cause problems in some circumstances. Specification for including or excluding NAMELIST group INOPTS input data after the title cards. $0=$ NAMELIST group INOPTS input data omitted after the title cards (the default); $1=$ NAMELIST group INOPTS input data inserted after the title cards (see Main-Data Card 4). $-1=$ NAMELIST group INOPTS input data is obtained from the restart file

Main-Data Card 2. (Format 5I14) NUMTCR, IEOS, INOPT, NMAT, ID2O (Continued)

Variable	Description
NMAT	Number of new different materials identified by user (not built-in materials in TRACE) for which material properties will be input. The default value is 0 . If this parameter is set to -1 during a restart, then the material properties will be read in from the dump file. A value of -1 during a non-restart will produce an error.
ID2O	Heavy water flag. $0=\mathrm{H}_{2} \mathrm{O}$ (the default); $1=\mathrm{D}_{2} \mathrm{O}$.

Main-Data Card 3. (Format 20A4) ACH

Note:NUMTCR (Word 1 on Main-Data Main-Data Card 2) Cards are input. A minimum of one card is required.	
Variable	Description
ACH	Problem title information.

Main-Data Card 4 lists the available NAMELIST variables if the variable INOPT $=1$ (Word 3 on Main-Data Card 2). In this case, one or more of the NAMELIST variables described below may be specified with their variable name = value. The format of these data is not checked during preprocessing of FREE format data. Therefore, its data should be entered carefully to avoid fatal input errors. The data are entered in columns 2-80 on one or more cards, beginning with \$INOPTS in columns 2 to 8, and are terminated with a "\$END" or "\$end" string. The "\$" may be replaced by an " $\boldsymbol{\&}$ ". A more detailed description of the format for NAMELIST input data is provided in Chapter 5 and in a FORTRAN manual. The following variables are included in the NAMELIST group INOPTS, and one or more of them are included in the NAMELIST data when INOPT $=1$ (Word 2 on Main-Data Card 2). Variables omitted from the specified data retain their default value

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT $=1$ (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
ALP	0.0 To 1.0	Default value for gas volume fractions (-) (real format). Used when ISTOPT $=1$ or 2.	10^{20}

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
Note: C1RC1 and C2RC1 are not under user control and have hardwired values of 2.0 and 1.0 respectively they are relaxation constants in the equation: $\text { relaxation }=e^{C 2 R C \times \log (C 1 R C)}$			
C1RC2	>0.0	Choking relaxation constant 1 for set 2.	2.0
C2RC2	>0.0	Choking relaxation constant 2 for set 2.	1.0
C1RC3	>0.0	Choking relaxation constant 1 for set 3 .	2.0
C2RC3	>0.0	Choking relaxation constant 2 for set 3.	1.0
C1RC4	>0.0	Choking relaxation constant 1 for set 4.	2.0
C2RC4	>0.0	Choking relaxation constant 2 for set 4.	1.0
C1RC5	>0.0	Choking relaxation constant 1 for set 5.	2.0
C2RC5	>0.0	Choking relaxation constant 2 for set 5.	1.0
CCIF	$\begin{aligned} & >0.0 \mathrm{~kg} / \mathrm{m}^{4} \\ & \left(>0.0 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{4}\right) \end{aligned}$	Constant two-phase flow interfacial drag coefficient $\left(\mathrm{kg} / \mathrm{m}^{4}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{4}\right)$ if NIFSH $=1$ (real format).	$\begin{aligned} & 10^{4} \mathrm{~kg} / \\ & \mathrm{m}^{4} \\ & (1.90 \times 1 \\ & 0^{2} \\ & \left.\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{4}\right) \end{aligned}$
CFZ3	>0.0	Default value for 3D loss coefficients (real format). Used when ISTOPT $=1$ or 2 .	10^{20}
CHFMULT	>0.0	Multiplier to CHF (real format). By default, this value is 1.0 .. This option should only be used by developers. It is intended to provide a means to lock the deyout point for some assessments in order to be able to assess the post-CHF heat transfer regime.	1.0
Note: CHM11 and CHM21 are not under user control and have hardwired values of 1.0 .			

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
CHM12, CHM22	>0.0	Subcooled and two-phase multipliers, respectively, for choked-flow multiplier set 2 (real format).	1.0
CHM13, CHM23	>0.0	Subcooled and two-phase multipliers, respectively, for choked-flow multiplier set 3 (real format).	1.0
CHM14, CHM24	>0.0	Subcooled and two-phase multipliers, respectively, for choked-flow multiplier set 4 (real format).	1.0
CHM15, CHM25	> 0.0	Subcooled and two-phase multipliers, respectively, for choked-flow multiplier set 5 (real format).	1.0
CPUFLG	0 or 1	Option for eliminating CPU times from being output to files tremsg, trcout, and the terminal so that file comparisons of output files between different TRACE versions will not include the CPU-time differences that will inevitably occur.. $\begin{aligned} & 0=\text { no } \\ & 1=\text { yes. } \end{aligned}$	0
DTSTRT	$\begin{aligned} & -1.0 \text { or } \\ & >0.0 \mathrm{~s} \end{aligned}$	Initial timestep size/s (real format) when DTSTRT >0.0.	-1.0
FDFHL	0.0 to 1.0	Multiplier used on the ForslundRohsenow film-boiling correlation in standard blowdown heat transfer. A value of 1.0 is fully on while 0.0 is fully off.	1.0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
FLUIDS(8)	"He", "he", "Na", "na", "Air", "air", "PbBi", "pbbi", "H2O", "h2o", "D2O", "d2o", "STH2O", or "sth2o"	List of working fluids that will appear in the TRACE model. If there is no input for the FLUIDS array, then the normal equation of state input selection logic for TRACE (in other words, use the ID2O NAMELIST option to control the working fluid) is used. If there is any input for the FLUIDS array, then ID2O input is ignored. If there is more than one input for the FLUIDS array, then additional input must be provided for each hydro component in the model specifying which EOS package will be used for that component. Such input is described in each hydro component's input description	blank
GRAPHLEVEL	"minimal", "limited", "full"	This option allows a user to control the level of verbosity with which information is dumped to the XTV graphics file. "minimal" implies that only the control system parameters and a few global parameters are dumped. "limited" implies that only the most commonly used graphics variables or those thought to be genuinely useful during a typical analysis are written to the XTV file. For example, this level includes (but is not necessarilty limited to) such quantities as pressure, temperature, void fraction, mass flow rate, core-averaged quantities, etc. "full" implies that all possible graphics variables are written to the graphics file. See Chapter 3 for a complete description of the variables in each category	"limited
HD3	$\begin{aligned} & \geq 0.0 \mathrm{~m} \\ & (\geq 0.0 \mathrm{ft}) \end{aligned}$	Default value for 3D hydraulic diameters ($\mathrm{m}, \mathrm{ft)} \mathrm{(real} \mathrm{format)}$. $=1$ or 2 .	$\begin{aligned} & 10^{20} \mathrm{~m} \\ & (3.28 \times \\ & \left.10^{20} \mathrm{ft}\right) \end{aligned}$

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
HSTN	$\begin{aligned} & >0.0 \mathrm{~K} \\ & (>-4.5967 \\ & \left.\times 10^{2}{ }^{\circ} \mathrm{F}\right) \end{aligned}$	Default value for HTSTR temperatures (K, ${ }^{\circ}$ F) (real format) in 3D components. Used when ISTOPT $=1$ or 2 .	$\begin{aligned} & 10^{20} \mathrm{~K} \\ & (1.8 \times \\ & \left.10^{20} \mathrm{~F}\right) \end{aligned}$
HTCWL	$>0.0 \mathrm{~W} /\left(\mathrm{m}^{2}\right.$ K) $[>0.0 \mathrm{Btu} /$ $\left.\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{Fhr}\right)\right]$	Constant wall to liquid heat-transfer coefficient [W/(m2 K), Btu/($\left.\left.\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]$ (real format) if ICONHT $=1$.	10.0 $\mathrm{W} /\left(\mathrm{m}^{2}\right.$ K) [1.76 Btu/ $\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right.$ hr)]
HTCWV	$\begin{aligned} & >0.0 \mathrm{~W} /\left(\mathrm{m}^{2}\right. \\ & \mathrm{K})[>0.0 \mathrm{Btu} / \\ & \left.\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right] \end{aligned}$	Constant wall to vapor heat-transfer coefficient [W/($\left.\left.\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{Fhr}\right)\right]$ (real format) if ICONHT $=1$.	10.0 $\mathrm{W} /\left(\mathrm{m}^{2}\right.$ K) [1.76 Btu/ $\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right.$ hr)]
IADDED	≥ 0	Option that adds a numerical-solution status-parameter message to the tremsg and TTY files. The status parameters are written every IADDEDth timestep.	0
IAMBWR	FALSE or TRUE	This NAMELIST variable is to be used if a BWR-style reactor vessel is to be modeled using the VESSEL component. .FALSE. $=$ do not set vessel area at the core inlet to zero .TRUE. $=$ set vessel area to zero at the core inlet. (This NAMELIST variable is to be used if a vessel component is modeled).	.FALSE.

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
IBLAUS	0 or 1	Apply the Blasius interfacial drag correlation in the lower plenum and downcomer of VESSEL components. This option is no longer recommended for use and will be removed in a future code version. $\begin{aligned} & 0=\text { no } ; \\ & 1=\text { yes } . \end{aligned}$	0
ICDELT	0 or 1	Option that overrides the evaluation of DELT at the beginning of an initial calculation by defining DELT $=$ DTMIN when $\operatorname{ICDELT}=0$. ICDELT $=1$ forces DELT to be evaluated.	0
ICFLOW	0,1 or 2	Choked-flow model option. $0=$ model turned off; $1=$ model using default multipliers is turned on only at component junctions connected to a BREAK; $2=$ model using optional multipliers (NAMELIST variables CHM12, CHM22; CHM13, CHM23; CHM14, CHM24; and CHM15, CHM25) is turned on at celledges indicated in the component input. (Note that this option requires additional array data for all one-dimensional hydrodynamic components.)	1
ICONHT	0 or 1	Heat-transfer option. $\begin{aligned} 0= & \text { normal heat-transfer } \\ & \text { calculation; } \\ 1= & \text { constant heat-transfer } \\ & \text { coefficients. } \end{aligned}$	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT $=1$ (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
IDIAG	$0,1,2,3$ or 4	This option is intended to generate additional information primarily for the code developer rather than the analyst. 0 = standard output; $1=$ additional variables, including the stabilizer velocities, are output as part of the large edits written to the trcout file; $2=$ information from IDIAG $=1$ plus diagnostics about reiterations due to flow reversals are output to the tremsg file for every timestep; $3=$ information from IDIAG $=1$ and 2 plus diagnostics about the temporal changes in gas volume fraction are output to the tremsg file. Note: The timestep interval during which additional information for this option (IDIAG $=3$) is output is defined by NAMELIST variables NSDL and NSDU. $4=$ information from IDIAG $=1$, 2 , and 3 plus diagnostics about reiterations due to out-of-bounds gas volume fraction predictions are output to the tremsg file for every timestep. Note: The use of IDIAG >0 will approximately double the size of the trcout file; the use of IDIAG >1 will greatly increase the size of the tremsg file.	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
IDIAGS	0 or 1	Option to select the additional variables written in a large edit to file trcout for 1D hydraulic components when NAMELIST variable IDIAG >0. $0=$ liquid and gas mass flows; $1=$ ARLN and ARVN stabilizersolution parameters replace the liquid and gas mass flows.	0
IELV	0 or 1	Option that determines whether gravity (GRAV) terms or cell-centered elevations (ELEV) in meters are to be input in the component data. When this option is selected, ELEV (dimensioned NCELLS) or cell-centered elevations should be input for GRAV array data cards in all components. In addition, a BREAK elevation BELV (BREAK component Card Number 7), a FILL elevation FELV (FILL component Card Number 6), and a Vessel elevation shift SHELV (VESSEL component Card Number 7) are required. $0=$ gravity terms must be input (default); $1=$ cell-centered elevations must be input. Note: The value of IELV must not be changed when performing a restart calculation.	0
IFLCOND	0 or 1	Fluid conduction flag. $\begin{aligned} 0= & \text { no fluid conduction in this } \\ & \text { model. } \\ 1= & \text { fluid conduction model is on. } . \end{aligned}$	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
IGAS	$\begin{aligned} & 1,2,3,4,5,6, \\ & 7,12,13,14, \\ & 15,16, \text { or } 17 \end{aligned}$	Noncondensible-gas type option. 1 = air; 2 = hydrogen; 3 = helium (ideal gas); 4 = argon; $5=$ nitrogen; 6 = xenon; 7 = kryton; 12-17 = a mixture of non-condensible-gases. If IGAS >11, then the number of noncondensible gases in the mixture is determined by IGAS-10. In that case the NCGSPECIES namelist parameter must be provided to indicate what specific gases comprise the mixture. In addition, gas trace species mass fractions must be included for each hydro component in the model.	1
IGEOM3	0 or 1	Option that determines, for all 3D vessel components, whether the mesh-cell interface flow areas between the downcomer and the inside of the vessel are to be set to zero. $0=$ areas to be set to zero; $1=$ the user enters the values of the flow-area fractions used.	0
IH2SRC	≥ 0	Option that sets the hydrogen source flag. If this parameter is nonzero, the hydrogen source flags, IGAS $=2$ and NOAIR $=0$ are set internally by TRACE .	0
IHOR	$0,1,2$ or 3	Wall-drag form option. $0=$ uses dispersed drag only; 1 = uses stratified drag in one dimension if conditions are met; $2=$ always uses stratified drag; 3 = turns off head gradient force.	1

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	$\begin{gathered} \text { Default } \\ \text { Value } \end{gathered}$
IKFAC	0 or 1	Option that defines whether additive loss coefficients (FRIC) or K factors are to be input in the component data. When this option is selected, K factors (dimensioned NCELLS+1) replace the FRIC array input cards in all components. To input K factors that depend on flow direction, include the NFRC1 or NFRC3 options. $0=$ additive loss coefficients will be input; $1=\mathrm{K}$ factors will be input. Note: The value of IKFAC must not be changed when performing a restart calculation.	0
IMFR	1 or 3	Option that sends the VESSELcomponent phasic mass flows to the trextv file. 1 = sends no phasic mass flows; $3=$ sends the phasic mass flows in the theta, radial, and axial directions.	1
INLAB	0 or 3	Option that creates, during input-data processing, a new input-data file in free format named INLAB. All input-data values from file tracin are echoed to INLAB along with their variable names as comments contained between asterisks. $0=$ file INLAB is not created; $3=$ file INLAB is created.	0
INVAN	0 or 3	Option that selects either the $\mathrm{T}_{\mathrm{CHF}}$ or $\mathrm{T}_{\mathrm{SAT}}$ values for the inverted annular switch. $0=\mathrm{T}_{\mathrm{CHF}}$ value is selected (all code assessment was performed with this option); $3=\mathrm{T}_{\mathrm{SAT}}$ value is selected.	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
IOFFTK	0 or 1	Option that selects TEE component offtake model. $0=$ model off; $1=$ model on.	0
IOGRF	$-1,0,1$	SI/English units flag for writing graphics data to file trcxtv. $-1=$ do not output graphics data; $0=$ SI units; $1=$ English units	0
IOINP	0 or 1	SI/English units flag for reading input data from file tracin. $0=$ SI units; $1=$ English units.	0
IOLAB	0 or 1	SI/English units flag for writing comment- labeled input data to file INLAB. $0=$ SI units; $1=$ English units.	0
IOOUT	0 or 1	SI/English units flag for echoing input and restart data, writing short and large edits to file trcout, and writing calculative information to file tremsg and the terminal. $0=$ SI units; $1=$ English units.	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
IPOWR	$-1,0$ or 1	Option that controls core-power initialization at its steady-state level during a steady-state calculation. See the Appendix on TRACE's control procedure in the TRACE Theory Manual for additional details. $-1=$ turn on the core steady-state power at time TPOWR; $0=$ turn on the core steady-state power at time based on builtin logic or at time TPOWR, whichever occurs first (the built-in logic checks that the fractional change in the coolant velocity per second is ≤ 0.1 in all hydraulic cells at the bottom of the core that are coupled to powered heat structures; $1=$ turn on the core steady-state power at the beginning of the steady-state calculation.	0
IRESET	0 or 1	Option to re-initialize the energy error to zero at the start of a restart calculation. $\begin{aligned} 0= & \text { no (allow the energy error to } \\ & \text { accumulate from the } \\ & \text { previous calculation) } ; \\ 1= & \text { yes. } \end{aligned}$	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
ISOLCN	0 or 1	Solubility-parameters option. [Solubility parameters characterize the dissolved material that is followed by the solute tracker when ISOLUT $=1$ (Word 3 on Main-Data Card 9).] $0=$ use of default parameters for linear fit to solubility of orthoboric acid as a function of liquid temperature (default condition); 1 = input parameters for linear fit to solubility of solute as a function of liquid temperature. See SolubilityParameters Card before Main-Data Main-Data Card 5. Note: No input solubility parameters are saved on the dump/restart file; thus, these parameters must be input for each restart.	0
ISSCVT	0 or 1	Option for evaluating the EPSS (Word 2 on Main-Data Card 8) steady-state convergence test in a TRANSI = 1 (Word 2 on Main-Data Card 7) transient calculation. $\begin{aligned} & 0=\text { no } \\ & 1=\text { yes. } \end{aligned}$	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
ISTOPT	0,1 or 2	Option that allows the user to input only once default values for certain parameters that are used to initialize data arrays for hydraulic components. The default parameter values also are input through the NAMELIST group INOPTS. The NAMELIST variables that can be assigned default values are ALP, CFZ3, HD3, HSTN, P, PA, QPPP,VL, VV, TL, TV, and TW. When ISTOPT $=1$ or 2 , the values of these variables are used to fill the corresponding arrays in all hydraulic components except PRIZERs and VALVEs. This option can be used for both steady-state and transient calculations. $0=\mathrm{off}$ 1 = Those component arrays (excluding PRIZER and VALVE), for which default values are included in the NAMELIST data, are filled with the default value. All cards that would contain data for the defaulted arrays must be omitted from the inputdata file; 2 = Those component arrays (excluding PRIZER and VALVE), for which default values are included in the NAMELIST data, are filled with the default value. Cards containing data for the defaulted arrays must remain in the input-data file but are overridden by the default value.	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
ITDMR	0 or 1	Option for activating coupled neutronics/ TH code calculation. When ITDMR $=0$ (default) the core heat source is calculated by TRACE point kinetics. When ITDMR $=1$ the core heat source is calculated by the spatial kinetics code.	0
ITHD	0 or 1	Option for inputting heat-transfer diameters through variables HDRI and HDRO (Words 4 and 5 on Card Number 4) for HTSTR components. When ITHD $=$ 0 , the mesh-cell hydraulic diameters are used for the heat-transfer diameters. $\begin{aligned} & 0=\text { no } ; \\ & 1=\text { yes. } \end{aligned}$ HDRI and HDRO input as zero, will be estimated from the hydraulic diameters for the fluid components connected to the HS inner or outer surface, respectively. Note: The value of ITHD must not be changed when performing a restart calculation.	0
ITMRP	0 or 1	Option for activating additional diagnostics printing when TDMR is activated (ITDMR $=1$). When ITMRP $=0$ (default) the print option is off. When ITMRP = 1 the print option is on (only possible when ITDMR = 1).	0
ITRACE	0 or 1	Trace species in this problem $\begin{aligned} & 1=\text { yes; } \\ & 0=\text { no. } \end{aligned}$	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
IUNLAB	≥ 0 and	Option for inputting user-defined units- name labels required for defining the units of control block or trip-signal-expression parameters. $0=$ no; $>0=$ yes.	0
		The magnitude of this parameter indicates the exact number of user-defined units labels the user intends to provide later on in the input deck Note: User-defined units-name label data is not written to the trcdmp file and not read from the trcrst file, so the user needs to input the user-defined units-name label data to the tracin file for all (initial and	
IUNOUT	0 or 1	Option for writing SI/English units to file trcout.	1

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description Value	
LBDRAG	.TRUE. or .FALSE	Option for adjusting the interfacial drag model that gets used in VESSEL components. When LBDRAG is true, the code sets the interfacial drag coefficient, Ci, in the axial direction for vertically stratified flow to that for annular flow. This improves UPTF assessment calculations and should give a better prediction of ECCS bypass during PWR LBLOCAs. This option should not be used in SBLOCA calculations or other situations with slowly moving levels. When LBDRAG is FALSE (the default), interfacial drag in vertically stratified flow is kept artificially high to overcome numerically-driven oscillations caused by the way the VAV term in the momentum equation is formulated. Users should note that this option is a temporary fix; the LBDRAG = .TRUE. drag will be the default when the underlying problem with the VAV term is fixed in the future.	
MHTLO			
MHTLI	0 or 1 1	Option for input specifying wall-to-liquid heat-transfer multiplicative design factors for the inner surface of all HTSTR components. $0=$ no; $1=y e s . ~$	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
MHTVI	0 or 1	Option for input specifying wall-to-gas heat-transfer multiplicative design factors for the inner surface of all HTSTR components. $\begin{aligned} & 0=\text { no } ; \\ & 1=\text { yes. } \end{aligned}$	0
MHTVO	0 or 1	Option for input specifying wall-to-gas heat-transfer multiplicative design factors for the outer surface of all HTSTR components. $\begin{aligned} & 0=\text { no } ; \\ & 1=\text { yes. } . \end{aligned}$	0
MWFL	0 or 1	Option for input specifying wall-to-liquid wall-friction multiplicative design factors. $\begin{aligned} & 0=\text { no } ; \\ & 1=\text { yes. } \end{aligned}$ Note: Additional array input is required by the PIPE, PRIZER, PUMP, SEPD, TEE, TURB, VALVE, and VESSEL components when MWFL $=1$.	0
MWFV	0 or 1	Option for input specifying wall-to-gas wall-friction multiplicative design factors $\begin{aligned} & 0=\text { no; } \\ & 1=\text { yes. } \end{aligned}$ Note: Additional array input is required by the PIPE, PRIZER, PUMP, SEPD, TEE, TURB, VALVE, and VESSEL components when MWFV $=1$.	0
NCGASSPECIES	$\begin{aligned} & \text { "air", "h2", } \\ & \text { "he", "n2', } \\ & \text { "ar", "xe", } \\ & \text { "kr" } \end{aligned}$	This parameter specifies those gases that comprise the non-condensible gas field when the user has chosen it to be a mixture (IGAS > 11). In that case, IGAS10 actual values are expected.	N/A
NCONTANT	0 or 1	$0=$ No containment calculation $1=$ perform containment calculations using the CONTAN component.	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
NDIA1	1 or 2	Option used to input the heat-transfer diameter as well as the hydraulic diameter (HD), for all 1D hydraulic components for the evaluation of the wall heat-transfer coefficient. When NDIA1 = 2, the dimension of the HD array is doubled to $2 \times($ NCELLS+1). The HD-array data must be defined with NCELLS+1 values for the hydraulic diameter that end with an "e" followed by another record with NCELLS+1 values for the heat-transfer diameter that end with an "e". $1=$ only hydraulic diameters are input; $2=$ hydraulic and heat-transfer diameters are input.	1
NENCLOSURE	≥ 0	>0	NFLPOWER

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT $=1$ (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
NFRC1	1 or 2	This option can be used to require input of forward and reverse loss coefficients for all 1 D components. When it is set to 2 , the dimension of the FRIC array is doubled to $2 \times($ NCELLS +1$)$. The input data must be defined to provide two consecutive arrays of loss coefficients, each dimensioned NCELLS +1 . Each array is in LOAD format and must be terminated with an "E." The first array provides loss coefficients that are used with positive velocities, and the second array provides loss coefficients that are used with negative velocities. To input these coefficients as K factors, use the IKFAC option. $1=$ FRIC loss coefficients (default); $2=$ FRIC and RFRIC two-way loss coefficients. Note: NFRC1 must not be changed when performing a restart calculation.	1
NFRC3	1 or 2	This option can be used to require input of forward and reverse loss coefficients for all 3D vessel components. When it is set to 2 , input must be augmented to include the additional reverse loss coefficients. The variables CFZL-T, CFZL-Z, CFZL-R, CFZV-T, CFZV-Z and CFZV-R are input as before to provide forward (positive velocity) loss coefficients. This block of input is immediately followed by a corresponding block containing the reverse loss coefficients CFRL-T, CFRLZ, CFRL-R, CFRV-T, CFRV-Z, and CFRL-R. To input these coefficients as standard K factors, use the IKFAC option. Note: NFRC3 must not be changed when performing a restart calculation.	1

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
NIFSH	0 or 1	Interfacial shear option. $\begin{aligned} 0= & \text { normal interfacial-shear } \\ & \text { calculation; } \\ 1= & \text { constant interfacial-shear } \\ & \text { coefficients. } \end{aligned}$	0
NLT	≥ 1	Number of hydraulic-component loops.	10
NOAIR	0 or 1	Option that controls the calculation of noncondensable-gas partial pressure in hydraulic components. $0=$ noncondensable-gas partial pressures solved for (this is less efficient when there is no noncondensable-gas in the system); 1 = noncondensable-gas partial pressures are not solved for (the noncondensable-gas partial-pressure array PA must be input with a value of 0.0 when NOAIR $=1$). Note: TRACE sets PA to 0.0 when ALP is 0.0 .	1
NOFAT	.TRUE. or .FALSE.	Suppresses JUN1 and JUN2 flow area matching test in fluid components.	.FALSE.

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
NOLT1D	1,0 or -1	Option controlling use of the 1D level tracking model 1 = disable level tracking for all 1D components. $0=$ allow level tracking to occur but requires the input of array ILEV for all 1D cells. Each value in the ILEV array for each component determines whether level tracking is turned on or off for specific cells. $-1=$ force level tracking to be used everywhere without requiring additional component input .	1
NOLT3D	1,0 or -1	Option controlling use of the 1D level tracking model 1 = disable level tracking for all vessel components. $0=$ require the input of array ILEV for all vessel cells. Values of ILEV array determine whether level tracking is turned on or off $-1=$ force level tracking to be used everywhere without requiring additional component input .	1
NOSETS	0 or 1	Flag for using either the SETS or SemiImplict Numerical Methods to solve the two-phase flow equations $\begin{aligned} & 0=\text { use SETS } \\ & 1=\text { use Semi-Implicit. } \end{aligned}$	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
NRSLV	0 or 1	Axial-direction conduction heat-transfer calculation numerics in all HTSTR/ CHAN components having IAXCND $=1$. $0=$ explicit numerics; $1=$ implicit numerics.	0
NSDL	≥-1	The first timestep number in the range NSDL to NSDU at which a short edit and additional diagnostics are printed to the trcout file and IDIAG $=3$ diagnostics are printed to the tremsg file for every timestep in the range NSDL to NSDU. $-1=$ no additional output edits; $\geq 0=$ short edits and additional diagnostics at the selected timesteps NSDL to NSDU. Note: The diagnostics include information on what is controlling the timestep size, the value of the largest ratio of iterate pressure change to total pressure (VARERM), and the differences between the basic and stabilizer macroscopic densities.	-1
NSDU	≥-1	The last timestep number in the range NSDL to NSDU at which a short edit and additional diagnostics are printed to the trcout file and IDIAG $=3$ diagnostics are printed to the tremsg files for every timestep in the range NSDL to NSDU. $-1=$ no additional output edits; $\geq 0=$ short edits and additional diagnostics at the selected timesteps NSDL to NSDU.	-1
NSEND	≥-1	Parameter used to stop the calculation at timestep NSEND. This parameter is useful for setting the boundaries for runs that might bog down with small timesteps. $\begin{aligned} & -1=\text { off; } \\ & \geq 0=\text { on. } \end{aligned}$	-1

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
NSOLVER	0 or 1	Enables the use of the optional SuperLU direct sparse matrix solver (nsolver=1) for all linear systems associated with flow equations. With this available, it is possible to create decks with 1D flow loops connecting to different directions in a vessel (e.g. one end of a loop connected to a vessel axial face and the other to a radial face). In this instance a message is printed indicating that nsolver=1.	0
NSPL	≥-1	The first timestep number in the range NSPL to NSPU at which a large edit is printed to the trcout file for every timestep in the range NSPL to NSPU. $-1=$ no additional large edits; $\geq 0=$ large edits at the selected timesteps NSPL to NSPU. Note: Additional information may be included on all large edits if IDIAG >0.	-1
NSPU	≥-1	The last timestep number in the range NSPL to NSPU at which a large edit is printed to the trcout file for every timestep in the range NSPL to NSPU. $-1=$ no additional large edits; $\geq 0=$ large edits at the selected timesteps NSPL to NSPU.	-1
NUMGENTBL	≥ 0	Number of general tables to be read from the TRACE input and/or restart files	0
NVGRAV	0 or 1	Option for user-specified orientation of 3D vessel components relative to the gravity-vector direction. $0=$ gravity vector is in the negative z-direction of the vessel component; $1=$ general orientation defined through input for each vessel component.	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
P	$\begin{aligned} & \hline 1.0 \mathrm{~Pa} \text { to } \\ & 4.5 \times 10^{7} \mathrm{~Pa} \\ & \left(1.45 \times 10^{-4}\right. \\ & \text { psia to } 6.53 \\ & \left.\times 10^{3} \mathrm{psia}\right) \end{aligned}$	Default value for the initial pressures $(\mathrm{Pa}$, psia) (real format). Used when ISTOPT = 1 or 2.	$\begin{aligned} & 10^{20} \mathrm{~Pa} \\ & (1.45 \times 1 \\ & 0^{16} \\ & \text { psia }) \end{aligned}$
PA	$\begin{aligned} & 0.0 \mathrm{~Pa} \text { to } \\ & 4.5 \times 10^{7} \mathrm{~Pa} \\ & (0.0 \mathrm{psia} \text { to } \\ & 6.53 \times 10^{3} \\ & \text { psia }) \end{aligned}$	Default value for the initial noncondensable-gas partial pressures (Pa , psia) (real format). PA $>\mathrm{P}$ is invalid. Used when ISTOPT $=1$ or 2 .	$\begin{aligned} & 10^{20} \mathrm{~Pa} \\ & (1.45 \times 1 \\ & 0^{16} \\ & \text { psia }) \end{aligned}$
QPPP	≥ 0.0	Default value for the heat-source distribution $(-)$ in the walls of 1D hydraulic components (real format). Used when ISTOPT $=1$ or 2 . If this array is filled with the same nonzero constant, a uniform heat-source distribution results.	10^{20}
R5DH	0 or 1	Use RELAP5 ANS 94 Decay Heat data when $\mathrm{R} 5 \mathrm{DH}=1$.	0
R5FDBK	0 or 1	Use RELAP5 reactivity feedback when $\mathrm{R} 5 \mathrm{FDBK}=1$.	0
TDMRRAMP	≥ 0	Use steady-state spatial kinetics code power ramp.	0
TIMDL	$\begin{aligned} & -1.0 \\ & \geq 0.0 \mathrm{~s} \end{aligned}$	Time (s) to begin the debug printout over the time range TIMDL to TIMDU (real format). $\begin{aligned} -1.0 & =\text { off } \\ \geq 0.0 \mathrm{~s} & =\text { on. } \end{aligned}$	-1.0
TIMDU	$\begin{aligned} & -1.0, \\ & \geq 0.0 \mathrm{~s} \end{aligned}$	Time (s) to end the debug printout over the time range TIMDL to TIMDU (real format). $\begin{aligned} -1.0 & =\text { off } \\ \geq 0.0 \mathrm{~s} & =\text { on. } \end{aligned}$	-1.0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
TL	$\begin{aligned} & 2.7315 \\ & \times 10^{2} \mathrm{~K} \\ & \text { to } 7.1395 \\ & \times 10^{2} \mathrm{~K} \\ & \left(32.0^{\circ} \mathrm{F}\right. \\ & \text { to } 8.2544 \\ & \left.\times 10^{2^{\circ} \mathrm{F}}\right) \end{aligned}$	Default value for the initial liquid temperatures (K, ${ }^{\circ} \mathrm{F}$) (real format). Used when ISTOPT $=1$ or 2 .	$\begin{aligned} & 10^{20} \mathrm{~K} \\ & (1.8 \times \\ & \left.10^{20} \mathrm{~F}\right) \end{aligned}$
TPOWR	≥ 0.0 s	Time (s) at which the steady-state power is set on under the control of NAMELIST variable IPOWR (real format).	$10^{30} \mathrm{~s}$
TRACBOUT	0 or 1	For each BWR component, write some additional information (that TRAC-B provides in its own OUTPUT file) to trcout.	0
TRCDIF	0 or 1	Flag which specifies if a trcdif file should be generated. tredif file contains information, used to determine if a code modification alters the numerical result. If 0 no file is created.	0
TSDLS	≥ 0	First timestep for timestep diagnostic and edits to be output to TRCMSG)	-1
TSDLT	≥ 0.0 s	Problem time to begin detailed timestep size diagnostic edits.	-1.0
TSDUS	> TSDLS	Last timestep for timestep diagnostic and edits to be output to TRCMSG)	-1
TSDUT	> TSDLT	Problem time to end detailed timestep size diagnostic edits.	-1.0
TV	$\begin{aligned} & 2.7315 \\ & \times 10^{2} \mathrm{~K} \text { to } \\ & 3.0000 \\ & \times 10^{3} \mathrm{~K} \\ & \left(32.0^{\circ} \mathrm{F}\right. \text { to } \\ & 4.9403 \\ & \left.\times 10^{3} \mathrm{~F}\right) \end{aligned}$	Default value for the initial vapor temperatures (K, ${ }^{\circ} \mathrm{F}$) (real format). Used when ISTOPT $=1$ or 2 .	$\begin{aligned} & 10^{20} \mathrm{~K} \\ & (1.8 \times \\ & \left.10^{20} \mathrm{~F}\right) \end{aligned}$

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
TW	$\begin{aligned} & >0.0 \mathrm{~K} \\ & \left(>-459.7^{\circ} \mathrm{F}\right) \end{aligned}$	Default value for the initial wall temperatures ($\mathrm{K},{ }^{\circ} \mathrm{F}$) (real format). Used when ISTOPT $=1$ or 2 .	$\begin{aligned} & 10^{20} \mathrm{~K} \\ & (1.8 \times \\ & \left.10^{20} \mathrm{~F}\right) \end{aligned}$
USE_IAPWS_ST	.TRUE. or FALSE	Flag to indicate which steam table formulation should be used. .TRUE. $=$ Use steam tables based on the IF97 standard from the International Association for the Properties of Water and Steam (IAPWS). This is essentially the same system as used by RELAP5. .FALSE. $=$ Calculate water properties using legacy internal curve fits to water property data. This scheme may tend to be faster with some sacrifice in overall accuracy in some regions of the pressuretemperature phase diagram. This is the default option. When .TRUE., TRACE, by default, uses IAPWS-IF97 data that has been hardcoded into the executable. However, if the presence of an external steam table property file (called tpfh2onew, trch2o, or $<\mathbf{p r e f i x}>. \mathbf{h 2 0}$) is detected in the working directory at the time the simulation is performed, TRACE will preferentially use the data from that file instead. See Chapter 1 for the details regarding this feature.	.FALSE.

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
USESJC	$0,1,2$ or 3	Single Junction Components (SJC) can be made by setting NCELLS $=0$ in PIPES, VALVES, and PUMPS when USESJC > 0. $0=$ Default value. No SJC. $1=$ PIPE,VALVE and PUMP can be used as a SJC by setting NCELLS $=0$; $2=$ PIPE,VALVE and PUMP can have side junctions if NCELLS >0. USESJC $=2$ requires inputting NSIDES cards. Connects at 90°. 3 = Same as 2 above except that USESJC = 3 requires additional side junction angle input.	0
VL	$\begin{aligned} & \|\mathrm{VL}\|<10^{4} \\ & \mathrm{~m} / \mathrm{s},(3.28 \\ & \left.\times 10^{4} \mathrm{ft} / \mathrm{s}\right) \end{aligned}$	Default value for the initial liquid velocities (m / s, ft / s) (real format). Used when $\operatorname{ISTOPT}=1$ or 2 .	$\begin{aligned} & 10^{20} \mathrm{~m} / \mathrm{s} \\ & (3.28 \times 1 \\ & 0^{20} \\ & \mathrm{ft} / \mathrm{s}) \end{aligned}$
VV	$\begin{aligned} & \|\mathrm{VV}\|<10^{4} \\ & \mathrm{~m} / \mathrm{s},(3.28 \\ & \left.\times 10^{4} \mathrm{ft} / \mathrm{s}\right) \end{aligned}$	Default value for the initial vapor velocities (m / s, ft / s) (real format). Used when ISTOPT $=1$ or 2 .	$\begin{aligned} & 10^{20} \mathrm{~m} / \mathrm{s} \\ & (3.28 \times 1 \\ & 0^{20} \\ & \mathrm{ft} / \mathrm{s}) \end{aligned}$
XTVAPPEND	0,1, or 2	Flag for appending graphics output to an old trextv file. $0=$ create new file, 1 = append to old file overwriting duplicate timesteps, 2 = copy old trextv and append new values to end.	0

Main-Data Card 4. NAMELIST Data Cards for Group INOPTS (NAMELIST format.).

Note: Input NAMELIST data cards if INOPT = 1 (Word 3 on Main-Data Card 2).			
Variable	Value Range	Description	Default Value
XTVRES	4 or 8	This option controls the numerical precision of numbers in the graphics file. Lower precision will minimize the size of the graphics file, but may be insufficient for some off-normal uses. = Graphics file output in single precision (appropriate for normal graphics file use). Graphics file output in double precision	4

Main-Data Card 5. (Format 4E14.4)
Solubility-Parameters Card. CNTLMN, CNMIN, CNTLM, CNMAX

Note:	
Input this card only when NAMELIST parameter ISOLCN $=1$	
CNTLMN	Description
CNMIN	Solubility concentration ratio $\left(\mathrm{kg}(\right.$ solute $) / \mathrm{kg}$ (liquid), lb_{m} (solute) $/ / \mathrm{lb}_{\mathrm{m}}$ (liquid) when liquid temperature is at or below CNTLMN.
CNTLMX	Maximum liquid temperature $\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)$ to use linear fit.
CNMAX	Solubility concentration ratio $\left(\mathrm{kg}(\right.$ solute $) / \mathrm{kg}($ liquid $), \mathrm{lb}_{\mathrm{m}}($ solute $) / / \mathrm{b}_{\mathrm{m}}$ (liquid) when liquid temperature is at or above CNTLMX.

Main-Data Card 6. (Format I14,E14.4) DSTEP, TIMET

Variable	Description
DSTEP	Timestep number of the trcdmp-file data dump to be read from the trcrst file for a restart calculation. If DSTEP is less than zero, the last data dump found will be used. Input DSTEP $=0$ for an initial calculation where all the input data is defined by the tracin file.
TIMET	Problem start time (s). If DSTEP or TIMET is less than zero, the time obtained from the retrieved data dump overrides the TIMET input value.

Main-Data Card 7. (Format 5I14)
STDYST, TRANSI, NCOMP, NJUN, IPAK

Variable	Description
STDYST	Steady-state calculation indicator. $0=$ no steady-state calculation; $1=$ generalized steady-state (GSS) calculation; $2=$ CSS calculation; $3=$ GSS calculation with hydraulic-path steady-state initialization (HPSSI); $4=$ CSS calculation with HPSSI; $5=$ static-check steady-state (SSS) calculation (checks to see if zero flow can be achieved with the pumps turned off and no heat transfer).
TRANSI	Transient calculation indicator. $0=$ no transient calculation; $1=$ transient calculation.
NCOMP	Total number of hydraulic and HTSTR components.
NJUN	Total number of junctions between hydraulic components. Not used by the code.
IPAK	$\begin{aligned} & \text { Water-packing option }(\text { suggested value }=1) . \\ & \quad 0=\text { off; } \\ & 1=\text { on. } \end{aligned}$

Main-Data Card 8. (Format 2E14.4) EPSO, EPSS

Variable	Description
EPSO	Convergence criterion for the outer-iteration pressure calculation (suggested value $=1.0 \times 10^{-4}$).
EPSS	Convergence criterion for the steady-state calculation (suggested value $=$ 1.0×10^{-4}).

Main-Data Card 9. (Format 5I14)
OITMAX, SITMAX, ISOLUT, NCONTR, NCCFL

Variable	Description
OITMAX	Maximum number of outer iterations for pressure calculation (suggested value $=10$).

Main-Data Card 9. (Format 5I14)
OITMAX, SITMAX, ISOLUT, NCONTR, NCCFL

Variable	Description
SITMAX	Maximum number of outer iterations for steady-state calculation (suggested value $=10)$.
ISOLUT	Solute-tracking option (for example, orthoboric acid solute in liquid coolant). ISOLUT must not be changed when performing a restart calculation. $0=$ off; $1=$ on. $-1=$ use the value of ISOLUT from the restart file
NCONTR	Number of CSS controllers (NCONTR ≥ 1 when STDYST $=2$ or 4; NCONTR $=0$ when STDYST $\neq 2$ and $\neq 4)$.
NCCFL	Number of countercurrent flow-limitation parameter sets to be input.

Main-Data Card 10. (Format 5I14)
NTSV, NTCB, NTCF, NTRP, NTCP

Variable	Description
NTSV	Number of signal variables from input and the restart file (NTSV ≥ 0) (used to dimension variable storage).
NTCB	Number of control blocks from input and the restart file (NTCB $\geq 0)$ (used to dimension variable storage).
NTCF	Total number of table entries for the tabular control blocks from input and the restart file (NTCF $\geq 0)$ (used to dimension variable storage).
NTRP	Number of trips from input and the restart file (NTRP $\geq 0)$ (used to dimension variable storage).
NTCP	Number of passes made each timestep through the control-parameter evaluation of signal variables, control blocks, and trips (NTCP $\geq 0) ~(t w o ~ o r ~ m o r e ~ p a s s e s ~ m a y ~$ be needed when the signal or set status of a trip is a signal-variable or control- block input parameter or when a control procedure contains an implicit control- block evaluation loop).

Main-Data Card 11. (Format 2I14) NTRACEG, NTRACEL

Note: If NAMELIST variable ITRACE >0 read this card.	
Variable	Description
NTRACEG	Number of gas trace species.

Main-Data Card 11. (Format 2I14) NTRACEG, NTRACEL

Note: If NAMELIST variable ITRACE >0 read this card.	
Variable	Description
NTRACEL	Number of liquid trace species.

Main-Data Card 12. (Format 5(3X,I11)) TRACEGPHASE Array (TRACEGPHASE(I), I = 1, NTRACEG) Load Format.

Note: If NAMELIST variable ITRACE >0, input this card.		
Variable	Dimension	Description
TRACEGPHASE	NTRACEG	For each TRACEGPHASE(I) array value, input 0 if trace species is in the gas phase and input a 1 if trace species is in the liquid phase.

Main-Data Card 13. (Format 5(3X,I11)) TRACELPHASE Array. (TRACELPHASE(I), I = 1, NTRACEL) Load Format

Note: If NAMELIST variable ITRACE >0 input this card.		
Variable	Dimension	Description
TRACELPHASE	NTRACEL	For each TRACELPHASE(I) array value, input 0 if trace species is in the liquid phase and input a 1 if trace species is in the gas phase.

Main-Data Card 14. (Format 5(3X,I11)) IORDER array (IORDER(I), I = 1, NCOMP) Load Format.

Variable	Dimension	Description
IORDER	NCOMP	Component ID numbers. All component identification numbers (input variable NUM on card number 1 of each component input) are listed in LOAD format. The list can be in any order.

Countercurrent Flow Limitation Data

If NCCFL = 0 (Word 5 on Main-Data Card 9), do not input any of the CCFL data cards.

Card Set Number	Variable	Dimension	Description

Note: Use Load Format: (Format 5E14.4) CBETA (I), I = 1, NCCFL.			
1	CBETA	NCCFL	Bankoff interpolation constant for interpolating between Wallis characteristic length dimension to Kutateladze characteristic length dimension. CBETA is used in the following equation, $O M E G A=D^{(1.0-}$ ${ }^{\text {CBETA) }} \times$ L $^{\text {CBETA }}$, where OMEGA is the length scale used in the Bankoff nondimensional volumetric fluxes $\mathrm{Hg} * \& \mathrm{Hf}^{*}, \mathrm{D}$ is the hydraulic diameter which is the Wallis scaling parameter, and L is the Kutateladze scaling parameter. CBETA $=0.0$ yields Wallis scaling; CBETA $=1.0$ yields Kutateladze scaling; CBETA <0.0 implies that the complete Bankoff correlation will be input to calculate CBETA as a function of geometry and thermodynamic properties.
Note: Use Load Format: (Format 5E14.4) CCFLM(I), I = 1, NCCFL.			
2	CCFLM	NCCFL	The slope for the CCFL correlation. Default is 1.07 if CBETA is <0.0 and 1.0 if CBETA is ≥ 0. The general form of the correlation for CBETA ≥ 0 is: $\sqrt{H g^{*}}+\mathbf{C C F L M} \times \sqrt{H f^{*}}=\mathbf{C C F L C}$ The general form of the correlation for CBETA <0.0 is: $\begin{gathered} \sqrt{H g^{*}}+\sqrt{H f^{*}}=\text { CCFLM }+ \text { CCFLC } \times \\ \text { AMIN1 }(\text { BOND }, \text { CTRANS }) \end{gathered}$
Note: Use Load Format: (Format 5E14.4) CCFLC(I), I = 1, NCCFL.			
3	CCFLC	NCCFL	The constant for the CCFL correlation. See the general form of the correlation given above. Default is 0.00433 if CBETA <0.0 and 1.0 if CBETA ≥ 0.

Card Number 4. (Format I14,4E14.4) NHOLES, TP, GAMMA, DIAH, CTRANS

Note:					
For each CBETA(I) <0.0 (Card Set 1), the following input is required to					
calculate CBETA based on Bankoff's correlation.		$	\quad$ Description	Variable	
:---	:---				
NHOLES	Number of holes in the perforated plate.				
TP	Plate thickness (m, ft).				
GAMMA	Ratio of open-plate flow area to total-plate flow area.				
DIAH	Diameter of one hole (m, ft).				
CTRANS	Bond number above which the CCFL constant is independent of the Bond number. See Card Set $\mathbf{2}$ for the general formulation of the Bankoff's correlation (default is 200.0).				

Material Property Data

A user may use existing materials (built-in) or may define new materials.

Built-in Materials

Some material properties are already built-in the TRACE code. These material properties with their identification numbers are listed in Table 6-1. The user identifies these material properties in appropriate cards.

Table 6-1. Built-in material types.

Material Type Number	Material Type
1	mixed oxide
2	zircaloy
3	fuel-clad gap gases
4	boron nitride insulation
5	constantan/Nichrome heater wire
6	stainless steel, type 304
7	stainless steel, type 316
8	carbon steel, type A508
9	inconel, type 718
10	zircaloy dioxide
11	inconel, type 600
12	

User Defined Materials

If the built-in material properties are inappropriate, users may input their own data. Data for new material properties may be input by setting NMAT >0 (Word 4 on Main-Data Card 2). For each new material, the user must provide:

- a unique material identifier ($\mathbf{M A T B}>50$),
- the number of data-point sets provided for each material (PTBLN), and
- the data tables and/or functional fits that specify the material properties ($\rho, \mathrm{cp}, \mathrm{k}$, and ε) as a function of temperature (T).

If tabular fits are used, linear interpolation is employed to obtain property values for intermediate values of temperature. Extrapolation is not allowed (an error message results). The materialproperties tables are not included in the dump file; therefore, it is up to the user to ensure that the tables are supplied in the input file during a restart run.

The material properties can be input as data tables or functional fits or a mixture of data tables and functional fits. The required input cards and the order of these input cards depends on the value of PTBLN (number of data-point sets). In other words, the number of data points is used as a flag to indicate which form will be used to provide the material properties:

- If PTBLN for a material is positive ($\mathbf{P L B L N}(\mathbf{I})>0$), this indicates that the material properties will be defined as temperature-dependent data tables. The material properties are entered using the PRPTB arrays (Card Set 3). The functional-fit input (Card Number 4 through Card Number 6) are not used at all.
- If PTBLN for a material is zero ($\mathbf{P L B L N}(\mathbf{I})=0$), this indicates that functional fits will be used to define each material property. The PRPTB data-table array is not entered at all. Instead, the functional-fit input (Card Number 4 through Card Number 6) are used to define the material properties.
- If PTBLN for a material is negative (PLBLN(I) <0), this indicates that some of the properties of the material will be entered as data table arrays and others will be entered using functional fit input. The functional-fit Card Number 4 is read in before the PRPTB array (Card Set 3). Card Number 4 input defines the number of functional fits for each of the required material property types (density, specific heat, thermal conductivity, and emissivity). An input of zero for a functional fit indicates that the material property data is to be input using the PRPTB data tables. Following Card Number 4, the PRPTB data table (Card Set 3) is then read in for those material properties that have the number of functional fits set to zero. The size of the PRPTB data table is indicated by the absolute value of PLBLN(I). Following the PRPTB data tables (Card Set 3) the functional-fit data (Card Number 5 and Card Number 6) is input for those material properties that have the number of functional fits set greater than zero. The order of the material properties in these two categories is: material density first, specific heat second, thermal conducitivty third, and emissivity fourth. For example, if data tables are to be provided for material density and thermal conductivity and functional fits for specific heat and emissivity, then the material property tables for density and thermal conductivity are input first and then the functional fits for specific heat and emissivity.

Card Set Number	Variable	Dimension	Description
[Format 5(3X,I11)] [MATB(I), I = 1, NMAT]. Load Format			
1	MATB	NMAT	ID numbers, MATB(I) $\geq 50, \mathrm{I}=(1$, NMAT $)$, of new materials. These are the material ID numbers used in the component input to reference the input material properties instead of the built-in properties.
[Format 5(3X,I11)] (PTBLN(I), I = 1, NMAT). Load Format			
2	PTBLN	NMAT	Number of data-point sets provided for each of NMAT materials; material MATB(I) consists of PTBLN(I) data-point sets. $<0=$ Material properties are mixture of data tables and functional fits. $0=$ Material properties are in form of functional fits. $>0=$ Material properties are in form of tables. The actual number indicates the number of data-point pair sets to be provided for each of NMAT materials; material MATB(I) consists of PTBLN(I) datapoint sets.

Temperature-Dependent Data Table Input

Card Set Number	Variable	Dimension	Description
Note: Input NMAT data tables, one for each material (MATB(I), I $=1$, NMAT).			
Note: Use Load Format [Format 5(3X,E11.4)] [PRPTB(J), J $=1,5 \times$ PTBLN(I) $].$			

Card Set Number	Variable	Dimension	Description
3	PRPTB(I)	$\begin{aligned} & 5 * \operatorname{PTBLN}(\mathrm{I} \\ &) \end{aligned}$	The material-properties data for material MATB(I), each point of which consists of the two to five variables in order $T, \rho, \mathrm{C}_{\mathrm{p}}, \mathrm{k}$, and ε [where T is the temperature $\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right), \rho$ is the density $\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$, C_{p} is the specific heat $\left[\mathrm{J} /(\mathrm{kg} \mathrm{K}), \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{F}\right)\right], \mathrm{k}$ is the thermal conductivity [$\left.\mathrm{W} /\left(\mathrm{m}^{-1} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]$, and ε is the emissivity $(-)]$. Each card contains five material variables; i.e., T is the independent variable and $\rho, \mathrm{C}_{\mathrm{p}}, \mathrm{k}$ and ε are dependent variables. The following card contains again five variables corresponding to the next data-point pair. Each material MATB(I) consists of PTBLN(I) points with the values of T increasing monotonically. The table array appears as $\mathrm{T}_{1}, \rho_{1}, \mathrm{C}_{\mathrm{p} 1}, \mathrm{k}_{1}, \varepsilon_{1}, \mathrm{~T}_{2}, \rho_{2}, \mathrm{C}_{\mathrm{p} 2}, \mathrm{k}_{2}, \varepsilon_{2}$, $\mathrm{T}_{3}, \ldots ., \mathrm{T}_{\text {PTBLN(I) }}, \rho_{\text {PTBLN(I) }}, \mathrm{C}_{\text {pPTBLN(I) }}, \mathrm{k}_{\text {PTBLN(I) }}$, $\varepsilon_{\text {PTBLN(I) }}$. For those material properties that will be input as functional fits, they are removed from this input array; however, the order of the array is maintained with the functional fit properties removed. A one point table results in a constant table. Extrapolation is not allowed.

Functional-Fit Data Input

Card Number 4. [Format 5114]
RHONUM, SPHTNUM, CONDNUM, EMISNUM

Note: Input this card if PTBLN $(\mathrm{I}) \leq 0$	
Variable	Description
RHONUM	Number of functional fit sets for the material density.
SPHTNUM	Number of functional fit sets for the material specific heat.
CONDNUM	Number of functional fit sets for the material thermal conductivity.
EMISNUM	Number of functional fit sets for the material emissivity.

There will be RHONUM sets of the functional fit Card Number 5 and Card Number 6, followed by SPHTNUM sets of the functional fit Card Number 5 and Card Number 6,
followed by CONDNUM sets of the functional fit Card Number 5 and Card Number 6, followed by EMISNUM sets of the functional fit Card Number 5 and Card Number 6, when PTBLN(I) ≤ 0. If more than one functional set is input for a given material property, then the TUPPER for the previous set must equal the TLOWER for the current set. The temperature range from first lower temperature limit to the upper temperature limit defined by the last function fit set must be contiguous (i.e., no undefined gaps). A fatal error will occur if material property evaluation is attempted outside of the temperature ranged defined by the first lower temperature limit and the last upper temperature limit.

Note: Input RHONUM + SPHTNUM + CONDNUM + EMISNUM sets of Card Number 5 and Card Number 6. The form of the functional fit is: $\mathrm{Y}=\mathrm{A} 0+\mathrm{A} 1$ * $\mathrm{Z}+\mathrm{A} 2 * \mathrm{Z}^{2}+\mathrm{A} 3 * \mathrm{Z}^{3}+\mathrm{A} 4 * \mathrm{Z}^{4}+\mathrm{A} 5 / \mathrm{Z}$: where $\mathrm{Z}=\mathrm{T}-$ TOFFSET

Card Number 5. [Format 5(3XE11.4)] TOFFSET, TLOWER, TUPPER, A0, A1

Variable	Description
TOFFSET	Offset for the Z independent variable in the functional fit.
TLOWER	Lower temperature limit (T) for applying this functional fit.
TUPPER	Upper temperature limit (T) for applying this functional fit.
A0	Coefficient A0 in the functional fit.
A1	Coefficient A1 in the functional fit.

Card Number 6. [Format 4(3XE11.4)] A2, A3, A4, A5.

Note: Input RHNOM + SPHTNUM + CONDNUM + EMISNUM sets of Card Number 5 and Card Number 6.	
Variable	Description
A2	Coefficient A2 in the functional fit.
A3	Coefficient A3 in the functional fit.
A4	Coefficient A4 in the functional fit of the form.
A5	Coefficient A5 in the functional fit of the form.

The following is an input example for each of the material properties options. Note that for this example, NMAT on Main-Data Card 2 is assumed to be 3.

```
****************************
* material-properties data
******************************
* Card Set 1 and Card Set 2
* matb * 51 52 53e
* ptbln * 2 0 -1e
******input for matb 51 - ptbln(1)
* Card Set 3
* prptb(1,i) prptb(2,i) prptb(3,i) prptb(4,i)
prptb(5,i)
* temp
    rho cp
                                    cond
emis
            2.0000e+01 1.0000e+00 1.0000e+00 2.0000e+00 1.0000e+00
        4.0000e+05 1.0000e+00 1.0000e+00 2.0000e+00 1.0000e+00e
*
******input for matb 52 - ptbln(2) = 0, all properties as functional fits
* Card Number 4
                rhonum 1 sphtnum condnum 2 emisnum
*
* rho function
Card Number 5
```



```
                400000.0
                    1.0 0.0
Card Number 6
* a2
                                a2
                0.0
                    a3
                    0.0
                    a4
                                a5
                                    0.0
* Cp function 1
* 
Card Number 5
    toffset
                            tlower tupper
                        0.0
                        0.0
                        100.0
                                    a0
                                    1.0
                                    a1
.
a 4
                a2
                    a3
                    a4
                                    0.0
* Card Number 6
                        0.0
\[
\text { a } 5
\]
* Cp function
*
Card Number 5
* Card Number 5 toffset t
* Card Number 5 toffset t
            0
            tlower tupper
                M00
Card Number 6
* Card Number a2
        a2
                        a3
                        0.0
                                a4
                                a5
                                    0.0
                                    0.0
* Cond function 1
* Card Number 5
\begin{tabular}{lcccr} 
* toffset & tlower & tupper & a0 & a1 \\
* Card Number 6 & 0.0 & 100.0 & 2.0 & 0.0 \\
* & a2 & & & \\
& 0.0 & 0.0 & a4 & a5
\end{tabular}
```

```
* 
```

* Cond function 2

```
        Cond function 2
```

* Card Number 5
* toffset
tlower
a0
a1 100.0 0.0

$$
\begin{array}{r}
a 0 \\
2.0
\end{array}
$$

$$
0.0
$$

* Card Number 6
a2
$*$
0.0
a5

$$
0.0
$$

$$
\text { * Cond function } 3
$$

$$
\text { * Card Number } 5
$$

```
* toffset
    toffset
    toffset
tlower
                0.0
* Card Number 6
a0
\[
1000.0
\]
\[
400000.0
\]
\[
2.0^{a l}
\]
\[
0.0^{a 1}
\]
* a2
        0.0
a4
a5
\[
0.0
\]
        Emis function 1
* Card Number 5
        toffset
        0 tlower
                        200.0
                        a3
                        0.0
                            tupper
                            400000.0
                            1.0
                            0.01
                                a 4
                                0.0
\(\begin{array}{rr}\text { toffset } & \text { tlower } \\ 0.0 & 200.0\end{array}\)
a3
0.0
* \(\quad\) a
\(\times\)
0.0
* Card Number 6
\(\star\)
******input for matb 53 fits
* are used to enter material properties
\(\star\)
* Card Number 4

rhonum 3 sphtnum


0
emisnum
1
*
* Data table for cp and emis
* Card Set 3
* 4 temp cp emis
    \(4.0000 \mathrm{e}+03 \quad 1.0000 \mathrm{e}+00^{\mathrm{cp}} \quad 1.0000 \mathrm{e}+00 \mathrm{e}\)
* Functional fits input for rho
* rho function 1
* rho function 1
* Card Number 5
\begin{tabular}{rrrrr} 
* Card Number 5 & tlower & tupper & a0 & al \\
toffset & 0.0 & 0.0 & 100.0 & 2.0
\end{tabular}
* Card Number 6
* Number
\begin{tabular}{lrr} 
a3 & a. & a \\
0.0 & 0.0 & 0.0
\end{tabular}
        a 5
        \(0.0 \quad 0.0\)
                    \(0.0 \quad 0.0\)
* rho function 2
* Card Number 5
* toffset
tlower
    tupper
    a0 al
                        0.0
                        100.0
                                    1000.0
                                    2.0
                                    0.0
* Card Number 6
                a2
            0.0
                    a3
                    0.0
                    a 4
                                a5
                            \(0.0 \quad 0.0\)
\(\star\)
* rho function 3
* Card Number 5
* Card Number 5
    toffset
                                    tlower
tupper 400000.0
\(2.0^{a 0}\)
\(0.0^{a 1}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline * & \[
\begin{array}{r}
\text { Card Number } 6 \\
a 2 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
\text { a3 } \\
0.0
\end{array}
\] & \[
\begin{array}{r}
\text { a4 } \\
0.0
\end{array}
\] & \[
\begin{array}{r}
\text { a5 } \\
0.0
\end{array}
\] & \\
\hline * & \multicolumn{5}{|l|}{Functional fits input for conductivity} \\
\hline * & \multicolumn{5}{|l|}{cond function 1} \\
\hline * & \multicolumn{5}{|l|}{Card Number 5} \\
\hline * & \[
\begin{aligned}
& \text { toffset } \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& \text { tlower } \\
& 200.0
\end{aligned}
\] & tupper
\[
400000.0
\] & \[
1.0^{\mathrm{a} 0}
\] & \[
\begin{aligned}
& \quad \mathrm{a} \\
& 0.0
\end{aligned}
\] \\
\hline \multicolumn{6}{|c|}{Card Number 6} \\
\hline * & a2 & a3 & a 4 & a5 & \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}

\section*{Hydraulic-Path Steady-State Initialization Data}

Card Number 1. (Format 3I14)
NPATHS, NFPI, NTP
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If STDYST = 3 or 4 (Word 1 on Main-Data Card 7), input this card and NPATHS of Card Number 2 through Card Number 4 (if NTPI \(=0\) ).} \\
\hline Variable & Description \\
\hline NPATHS & Number of 1D hydraulic paths in the system model. The internal-junction interface between the main and side tubes of SEPD and TEE components defines the starting or ending interface of a 1D hydraulic path. The internal-junction interface of SEPD and TEE components and the junction interfaces of PLENUM and VESSEL components define the path end of a 1D hydraulic path. A userdefined hydraulic-path connection interface within a 1D hydraulic component or at a junction between two 1 D hydraulic components provides a connection point for two hydraulic paths. \\
\hline NFPI & PMVL and PMVV (Words 1 and 2 on Card Number 3) flow-parameter input option.
\[
\begin{aligned}
& 0=\text { liquid and vapor mass flows; } \\
& 1=\text { liquid and vapor velocities. }
\end{aligned}
\] \\
\hline NTPI & \begin{tabular}{l}
Total and noncondensable-gas pressure input option. \\
\(0=\) specify pressures on Card Number 4 and use these pressures to define the pressure for all mesh cells in the hydraulic path; \\
\(1=\) get pressures from the donor cell of the thermal-hydraulic condition location IDCLOC (Word 3 on Card Number 2) in the component data and use these pressures to define the pressures for all mesh cells of the hydraulic path; \\
\(2=\) get pressures from each mesh cell of the component data for the hydraulic path.
\end{tabular} \\
\hline
\end{tabular}

Note: Potential hydraulic paths that are appropriately defined by the component data do not need to be specified (for example, the emergency-coolant system side-leg channel with stagnant coolant).

Card Number 2. (Format 5I14)
IDCINF, IDCOUF, IDCLOC, IDCPWI, IDCPWO
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline IDCINF & Hydraulic path N inflow location number defined by the composite value (component ID number)* \(1000+\) interface number where its thermal-hydraulic condition is donor-cell convected through the mesh-cell interface (except for VESSEL-component source connections where the thermal-hydraulic condition is assumed donored from the 1D cell). Make the composite value negative if the location is on the side tube of a SEPD or TEE component and either IDCINF or IDCOUF must define the SEPD or TEE internal-junction interface number NCELL1+2. Each PLENUM-component junction interface must be defined by IDCINF or IDCOUF of a hydraulic path. \\
\hline IDCOUF & Hydraulic path N outflow location number defined by the composite value (component ID number)* \(1000+\) interface number where its thermal-hydraulic condition is donor-cell convected through the mesh-cell interface (except for VESSEL-component source connections where the thermal-hydraulic condition is assumed donored from the 1 D cell). Make the composite value negative if the location is on the side tube of a SEPD or TEE component and either IDCINF or IDCOUF must define the SEPD or TEE internal-junction interface number NCELL1+2. Each PLENUM-component junction interface must be defined by IDCINF or IDCOUF of a hydraulic path. \\
\hline IDCLOC & Hydraulic path N thermal-hydraulic condition location number defined by the composite value (component ID number)* \(1000+\) interface number where the defined thermal-hydraulic condition is donor-cell convected through the meshcell inter-face. Make the composite value negative if the location is on the side tube of a SEPD or TEE component. In this case, the interface location must be the SEPD or TEE internal-junction interface defined by IDCINF or IDCOUF while IDCLOC has a special defining form where instead its interface number is the JCELL cell number on the main tube of the SEPD or TEE component. IDCLOC must be defined the same as IDCINF or IDCOUF for a PLENUM-component junction interface. The donor cell's thermal-hydraulic parameters are defined on Card Number 3 and Card Number 4. Don't define interface IDCLOC within the heat source or sink cell range from IDCPWI to IDCPWO. \\
\hline IDCPWI & Hydraulic path N inflow location number defined by the composite value (component ID number)* \(1000+\) cell number for the first cell in the hydraulicpath flow direction having heat-transfer to or from it. Input 0 if there is no heat source or sink in the hydraulic path that needs to be considered. \\
\hline IDCPWO & Hydraulic path N outflow location number defined by the composite value (component ID number)* \(1000+\) cell number for the last cell in the hydraulic-path flow direction having heat-transfer to or from it. Input 0 if there is no heat source or sink in the hydraulic path that needs to be considered. \\
\hline
\end{tabular}

Card Number 3. (Format 5E14.4)
PMVL, PMVV, PTL, PTV, PPOWER
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline PMVL & Initial liquid mass flow ( \(\mathrm{kg} / \mathrm{s}^{\text {or }} \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\) ) when NFPI \(=0\) (Word 2 on Card Number 1) or velocity ( \(\mathrm{m} / \mathrm{s}\) or \(\mathrm{ft} / \mathrm{s}\) ) when NFPI \(=1\) at the IDCLOC interface of hydraulic path N . \\
\hline PMVV & Initial vapor mass flow ( \(\mathrm{kg} / \mathrm{s}\) or \(\mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\) ) when NFPI \(=0\) (Word 2 on Card Number 1) or velocity ( \(\mathrm{m} / \mathrm{s}\) or \(\mathrm{ft} / \mathrm{s}\) ) when NFPI \(=1\) at the IDCLOC interface of hydraulic path N . \\
\hline PTL & Initial liquid temperature ( K or \({ }^{\circ} \mathrm{F}\) ) in the donor cell of the IDCLOC interface of hydraulic path N [input 0.0 K or \(-459.67^{\circ} \mathrm{F}\) to specify the saturation temperature based on the vapor pressure]. \\
\hline PTV & Initial vapor temperature ( K or \({ }^{\circ} \mathrm{F}\) ) in the donor cell of the IDCLOC interface of hydraulic path N (input 0.0 K or \(-459.67^{\circ} \mathrm{F}\) to specify the saturation temperature based on the vapor pressure). \\
\hline PPOWER & Total heat-transfer power to [PPOWER \((\mathrm{n})>0.0\) ] or from [PPOWER \((\mathrm{n})<0.0]\) all mesh cells between and including location numbers IDCPWI and IDCPWO (W or \(\mathrm{Btu} / \mathrm{hr}\) ) (input 0.0 W or \(0.0 \mathrm{Btu} / \mathrm{hr}\) if there is no heat source or sink in the hydraulic path such that IDCPWI \(=0\) and \(\mathbf{I D C P W O}=0\) ). \\
\hline
\end{tabular}

Card Number 4. (Format 2E14.4) PP, PPA
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: Input Path Card Number 3 if NTPI = 0 (Word 3 on Card Number 1) } \\
\hline Variable & \multicolumn{1}{c|}{\(\quad\) Description } \\
\hline \hline PP & \begin{tabular}{l} 
Total pressure (Pa or psia) that is defined to be constant over all mesh cells of \\
hydraulic path N.
\end{tabular} \\
\hline PPA & \begin{tabular}{l} 
Noncondensable-gas pressure (Pa or psia) that is defined to be constant over all \\
mesh cells of hydraulic path N.
\end{tabular} \\
\hline
\end{tabular}

\section*{Steady-State Controller Data}

When STDYST \(=2\) or 4 (Word 1 on Main-Data Card 7), a CSS calculation is performed using NCONTR \(\geq 1\) (Word 4 on Main-Data Card 9) controllers that are specified by CSS controller data. These controllers are internally programmed PI controllers that adjust specific parameter actions to achieve desired steady-state values for specific monitored parameters. Transientcalculation control procedures for some of these component actions are specified in the component input data; however, these CSS controllers override those procedures and control their parameter actions during the CSS calculation. Four types of controllers are available to the TRACE user:

\section*{- Type 1 Controller:}

A Type 1 controller adjusts a PUMP component's rotational speed (rad/s, rpm) to achieve a desired coolant mass flow ( \(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\) ) through the PUMP. The desired coolant mass flow is specified initially in the PUMP component data at the PUMP interface by the input coolant mass flow (NMPCSS \(=-1\) ) or velocity ( \(\mathbf{N M P C S S}=0\) ), which is summed over the liquid and vapor coolant (see the CSS Controller Card below).

\section*{- Type 2 Controller:}

A Type 2 controller adjusts a VALVE component's flow-area fraction to achieve a desired pressure ( \(\mathrm{Pa}, \mathrm{psia}\) ) in the mesh cell upstream of the VALVE interface (NMPCSS \(=1)\) or a desired coolant mass flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\) through the VALVE (NMPCSS = 2) (see the CSS Controller Card below). The desired pressure is the input upstream-cell pressure or the input pressure in the lower-numbered cell adjacent to the VALVE interface if the initial velocity is zero. The desired mass flow, which is determined from the input velocity at the VALVE interface, is summed over the liquid and vapor coolant. These desired parameter values are specified initially in the VALVE component data.

\section*{- Type 3 Controller:}

A Type 3 controller adjusts: a PUMP component's rotational speed ( \(\mathrm{rad} / \mathrm{s}\), rpm) (NAPCSS = -1), a VALVE component's flow-area fraction (NAPCSS = 0), or a FILL component's mass flow ( \(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\) ) with a direct-equality controller that defines mass flow out of (NAPCSS \(=1\) ) or into (NAPCSS \(=2\) ) the FILL (see the CSS Controller Card below). This achieves a desired coolant mass flow at the FILL junction that equals the coolant mass flow at interface location NMPCSS elsewhere in the modeled system. The monitored mass flow at location NMPCSS, specified initially by the velocity in its component data, can vary during the CSS calculation.

\section*{- Type-4 Controller:}

A Type-4 controller adjusts with a factor a HTSTR component's (a) inner or outer surface coupled hydraulic-channel pressure; (b) inner, outer, or both surface heat-transfer areas (heat-transfer coefficients); (c) inner, outer, or both surface nodes or all nodes of the entire wall thermal conductivities; or (d) both surface heat-transfer areas (heat-transfer coefficients) and all nodes of the entire wall thermal conductivities. This is done to
achieve a desired single-phase coolant temperature ( \(\mathrm{K},{ }^{\circ} \mathrm{F}\) ) or two-phase gas volume fraction at location NMPCSS defined (a) initially in the component data for NMPCSS \(>\) 1000 , (b) by a signal variable with ID \(0<\) NMPCSS \(<1000\), or (c) by a control block with ID NMPCSS \(<0\) (see the CSS Controller Card below). If this controller adjusts a coupled hydraulic-channel pressure, a similar adjustment is applied to all the hydraulically coupled VALVE-component upstream pressures that are controlled by a Type 2 CSS controller and all break pressures.

The monitored-parameter location number NMPCSS at a component location for the last three controller types is a composite value that is defined by:

Location number NMPCSS \(=(\) component number \() \times 1000+(\) cell or interface number \()\).
The desired steady-state value for the monitored parameter is specified initially in input as part of the component data at the PUMP interface, VALVE interface, or NMPCSS location.

For a Type-4 controller, its signal-variable value is evaluated in the first timestep based on the input parameters of the modeled system, or its control-block value is specified in one of two ways: by the control-block input value of CBCON \(2 \neq 0\) or by its evaluation in the first timestep based on the input parameters of the modeled system.

When restarting a CSS calculation, the CSS-Controller Cards need to be re-input in the tracin file. These cards must be input in the same order as in the original tracin file. If a composite number or a signal variable defines the monitored parameter NMPCSS, its desired value cannot be changed when performing the restart. Because of this limitation, the Type- 4 controller also allows the user to specify the monitored parameter by a control block. The control block's desired value can be changed during a restart by re-inputting the control block that defines NMPCSS and defining its CBCON2 with the new desired value.

Each of the NCONTR (Word 4 on Main-Data Card 9) controllers is specified by the TRACE user with four (controller Types 1 and 2) or five (controller Types 3 and 4) values on the following card.

\section*{CSS Controller Card}

Card Number 1. (Format I14,2E14.4,2I14) NUMCSS, AMNCSS, AMXCSS, NMPCSS, NACSS
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NUMCSS & Component number whose parameter action is adjusted by the CSS controller. \\
\hline AMNCSS & \begin{tabular}{l} 
Minimum value to which the parameter action can be adjusted by the CSS \\
controller (units based on NMPCSS and NAPCSS defining the controller type).
\end{tabular} \\
\hline AMXCSS & \begin{tabular}{l} 
Maximum value to which the parameter action can be adjusted by the CSS \\
controller (units based on NMPCSS and NAPCSS defining the controller type).
\end{tabular} \\
\hline
\end{tabular}

Card Number 1. (Format I14,2E14.4,2I14) NUMCSS, AMNCSS, AMXCSS, NMPCSS, NACSS
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NMPCSS & \begin{tabular}{l} 
Monitored-parameter number that is defined for each CSS controller type as \\
follows: \\
Type 1: the desired mass flow through the PUMP is defined by its input- \\
specified initial liquid plus gas mass flow (NMPCSS \(=-1\) ) or velocity \\
(NMPCSS = 0) at the pump-impeller interface, \\
Type 2: the desired upstream pressure (NMPCSS = 1) or liquid plus gas mass \\
flow through the VALVE interface (NMPCSS = 2) is defined by its input- \\
specified initial value,
\end{tabular} \\
& \begin{tabular}{l} 
Type 3: the desired liquid plus gas mass flow is defined each timestep during the \\
calculation at interface-location number NMPCSS,
\end{tabular} \\
\begin{tabular}{l} 
Type 4: the desired single-phase coolant temperature or two-phase coolant gas \\
volume fraction is defined by its input-specified initial value at composite cell- \\
location number NMPCSS \(\geq 1000\), by signal variable with ID number 0 \\
NMPCSS < 1000, or by control block with ID number NMPCSS \(<0\).
\end{tabular} \\
\hline NAPCSS & \begin{tabular}{l} 
Adjusted-parameter number that is defined for the last two controller types as \\
follows:
\end{tabular} \\
\begin{tabular}{l} 
Type 1: NAPCSS is not used; \\
Type 2: NAPCSS is not used; \\
Type 3: adjusts the PUMP's impeller rotational speed (NAPCSS = -1), the \\
VALVE flow-area fraction (NAPCSS = 0), the mass flow out of a FILL
\end{tabular} \\
(NAPCSS = 1), or the mass flow into a FILL (NAPCSS = 2);
\end{tabular}

\section*{Signal Variable Data}

Signal-variable data are specified when NTSV \(>0\) (Word 1 on Main-Data Card 10). Signal variables define directly the input parameters for control blocks, the parameters for trip signals, the independent variable parameter for component-action tables, and the component action. Either NTSV or fewer signal variables are input. When fewer than NTSV signal variables are input, conclude the data with a card having parameter IDSV set to 0 ( 0 must be entered explicitly if the free-format option is used). The remaining signal variables (for a total of NTSV) are obtained from the restart file. They are the signal variables on the restart file whose IDSV ID numbers differ from those defined here on input. After all signal-variable data are read from input and obtained from the restart file, the signal variables are reordered with their ID numbers increasing monotonically. Each signal variable is defined by the following card.

Card Number 1. (Format 5I14)
IDSV, ISVN, ILCN, ICN1, ICN2
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IDSV & \(\begin{array}{l}\text { Signal-variable ID number }(1 \leq \text { IDSV } \leq 99000) \text { (signal variables used to define a } \\
\text { trip-signal expression require that } 1 \leq \text { IDSV } \leq 399) \text {. All ID numbers in an input } \\
\text { deck must be unique. }\end{array}\) \\
\hline ISVN & \(\begin{array}{l}\text { Signal-variable parameter number. The possible values are }-123 \leq \text { ISVN } \leq-57,- \\
54 \leq \text { ISVN } \leq-16, ~ I S V N ~\end{array}\) \\
list of the signal-variable parameter numbers available for use and their parameter \\
descriptions. The numerical sign of ISVN (for ISVN \(\neq 0)\) specifies the behavior of \\
the signal parameter. See the guidelines described in Signal variable input \\
guidelines.
\end{tabular}\(\}\)

Card Number 1. (Format 5I14)
IDSV, ISVN, ILCN, ICN1, ICN2
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICN2 & \begin{tabular}{l} 
In general, the cell, interface, or node number of the second location in component \\
ILCN where the signal-variable parameter is defined. If ILCN corresponds to a \\
TEE, VESSEL or HTSTR component, ICN2 must be specified in valid \\
composite number format. See Signal variable input guidelines for a description \\
of what "composite number format" means.
\end{tabular} \\
\hline
\end{tabular}

Card Number 2. (Format A14). VARREQSTRING
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If ISVN is not equal to 3, do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline VARREQSTRING & \begin{tabular}{l} 
This parameter pertains only to the generic signal variable type (ISVN \\
3). It is an ascii string denoting the TRACE internal parameter name \\
the user wants to extract from the code each timestep. It must be \\
prepended with the string "lu" in order to get through input processing. \\
For example, a user requesting pressure (pn) would use "lupn".
\end{tabular} \\
\hline
\end{tabular}

\section*{Signal variable input guidelines}

The most important thing to understand about the signal variable input is that there is no single set of rules that can be consistently applied to each and every signal variable type. By their very nature, signal variable parameters are unique entities which may or may not behave similarly with respect to other signal parameters. As a result, the user should keep in mind that depending upon the specific signal variable type of interest, the entity from which the signal is retrieved, and exactly which functional form he or she would like that signal to take on, the meaning and/or requirements of the input variables IDSV, ISVN, ILCN, ICN1 and ICN2 may change (see Card Number 1 above).

The signal variable capability has been designed so that, in general, each signal parameter type can take on, at least, one of six different functional forms (depending upon how the input is structured). For every signal type, the user is able to retrieve an exact, singular value for that parameter each timestep (the Exact form). In addition certain signal types, but by no means all, lend themselves to taking on some subset of five other functional forms. For these signals, the user has at his or her disposal, the ability to take:
- the difference in some parameter between two different cells in a component (the CellDiff form, always implemented as the value in the low index cell minus the value in the high index cell, regardless of how these cell indicies are entered in ICN1 and ICN2 ),
- the difference in a parameter since the last timestep (the TimeDiff form),
- the minimum or maximum over some range of cells in a single component (the Min \& Max forms),
- the volume average of a parameter over some range of cells in a single component (the VolAvg form)

Table 6-2 defines all the various functional forms that any given signal type may have.
A summary of the input rules for each input variable are as follows:
Concerning the IDSV variable:
- It must be less than 99000 (values greater than or equal to 99000 are reserved internally for CSS controllers to spawn
- It must be unique
- It must be positive

Concerning the ISVN variable:
- It must correspond to a valid signal parameter number (i.e. \(-123 \leq\) ISVN \(\leq-57,-54 \leq\) \(\mathbf{I S V N} \leq-8, \mathbf{I S V N}=0,1,2,3\), and \(8 \leq \mathbf{I S V N} \leq 123\) )
- For positive ISVN values, the signal variable will take on the Min, Max, or Exact functional forms, depending upon how ICN1 and ICN2 are defined. Refer to Table 6-2 to determine exactly which specific functional forms are allowed for a given signal variable type (columns 7-12)
- For negative ISVN values, the signal variable will take on either the CellDiff, TimeDiff or VolAvg functional forms, depending upon how ICN1 and ICN2 are defined. Refer to Table 6-2 to determine exactly which specific functional forms are allowed for a given signal variable type (columns 7-12)
- It cannot be set to \(-55,-56,-1,-2\), or -3 since the VolAvg, TimeDiff, and CellDiff forms make no sense in these cases.

Concerning the ILCN variable:
- For ISVN = 0 :
- ILCN can only be \(-1,0\) or +1 . -1 corresponds to the previous timestep size, \(\Delta \mathrm{t}_{\text {old }} ; 0\) corresponds to the current problem time (the internal etime variable); +1 corresponds to the current timestep size, \(\Delta \mathrm{t}\)
- For ISVN = 1 :
- ILCN must equal 0
- For ISVN = 3:
- If ILCN is greater than 0 , it must correspond to a valid component number.
- If ILCN is less than 0 , it must correspond to a valid control block number.
- ILCN can be equal to 0 if VARREQSTRING corresponds to a valid global parameter)
- For \(\mathbf{I S V N}=2,16,17\) :
- ILCN must correspond to a valid control block number
- For \(|\mathbf{I S V N}|=18,19,44\) through 54, 57, 58, or 108, 118 :
- ILCN must only correspond to a POWER component or a heat structure component that spawns a POWER component
- For \(|\mathbf{I S V N}|=25,26,58\) through \(60,91,92\), or 123 :
- ILCN must only correspond to a HS component
- For \(|\mathbf{I S V N}|=20-23,27-40,65-87,90,95-101,104,105\), or 121:
- ILCN must only correspond to a 1D or 3D component
- For \(\mid\) ISVN \(\mid=24,93\), or 94 :
- ILCN must only correspond to a 1D component
- For \(\mid\) ISVN \(\mid=41,61,62\), or 63 :
- ILCN must correspond to a pump component
- For \(\mid\) ISVN \(\mid=42,43\), or 64 :
- ILCN must correspond to a valve component
- For \(\mathbf{I S V N}=55\) or 56:
- ILCN must correspond to a valid trip id number
- For \(\mid\) ISVN \(\mid=88,89,102,103\) :
- ILCN must only correspond to a 1D or HS component
- For \(\mid\) ISVN \(\mid=106\) :
- ILCN must only correspond to a 3D component
- For \(|\mathbf{I S V N}|=107\) :
- ILCN must correspond to a feedwater heater

Concerning the ICN1 and/or ICN2 variables:
- The numerical sign and/or magnitude of ICN1 and ICN2 are used to define the functional form of the signal variable.
- ICN1 and ICN2 must be specified in proper composite number format when ILCN corresponds to a TEE, VESSEL, or HTSTR. See below for a description of what "composite number format" means.
- In those instances where ICN1 or ICN2 correspond to a geometric location in a component, they must be within the allowable cell (or face, node, level, row, or rod) bounds for that component
- For \(|\mathbf{I S V N}|=0,1,2,16,17,18,19,41-64,102,103\), or 107 :
- Both ICN1 and ICN2 must always be zero. There is no need to define a cell number for these signal parameters since they are unique for a given component/trip/control block.
- When ISVN is negative, the signal variable has the TimeDiff form
- When ISVN is positive, the signal variable has the Exact form.
- For ISVN = 3:
- ICN2 must always be zero. A generic signal variable always only refers to a single location in the computational mesh
- In cases where ILCN refers to a TEE component, ICN1 should NOT be entered in composite format. See below for a description of what "composite number format" means. Rather, the user must explicitly account for the fact that a ghost cell exists between the end of the primary cells and start of secondary cells. In other words, in a TEE with 3 primary cells and 1 secondary cell, cell number 4 is a phantom cell with cell 5 referring to the secondary cell. This means if a user attempts to set ICN1 \(=4\) (for this example), the data that is printed to the output file will be erroneous. This is only true for cell-centered parameters. Cell-edged numbering behaves normally; there are no phantom edges.
- For \(\mid\) ISVN \(\mid=21-40,65-101,104\), or 105 :
- ICN1 and ICN2 may never both be zero at the same time
- When ISVN is positive,
- The signal variable is the exact parameter value (Exact form) in cell \(|\mathbf{I C N 1}|\) when \(\mathbf{I C N} \mathbf{2}=0\) or in cell \(|\mathbf{I C N} 2|\) when \(\mathbf{I C N} 1=0\);
- The signal variable is the maximum parameter value (Maximum form) between cells \(|\mathbf{I C N} 1|\) and \(|\mathbf{I C N} 2|\) when \(\mathbf{I C N} 1>0\) and \(\mathbf{I C N} 2>0\);
- The signal variable is the minimum parameter value (Minimum form) between cells |ICN1| and \(|\mathbf{I C N} 2|\) when \(\mathbf{I C N 1}<0\) and \(\mathbf{I C N 2}<0\);
- The signal variable is the volume-averaged parameter value (VolAvg form) between cells \(|\mathbf{I C N} 1|\) and \(|\mathbf{I C N} 2|\) when ICN1 and ICN2 are of opposite signs EXCEPT that volume averaging is not allowed for edge-based or surface-based signal variables
- Volume averaging logic for signal variables \(25 \& 26\) is currently not working correctly. Please do not attempt to use.
- When ISVN is negative
- ICN1 \& ICN2 must never be negative
- The signal variable is the difference in the parameter value since the last time step (TimeDiff form) in location ICN1 or ICN2 when either ICN1 or ICN2 is 0.
- The signal variable is the difference in the parameter value between locations ICN1 and ICN2 (CellDiff form) (that is, the parameter value in location corresponding to the smaller of ICN1 and ICN2 minus the parameter value in
location corresponding to the larger of ICN1 and ICN2) when both ICN1 and ICN2 are non-zero.
- for \(\mid\) ISVN \(\mid=106\) :
- ICN1 must be positive and ICN2 must always be zero
- ICN1 corresponds to the azimuthal sector id of the outmost ring of the VESSEL. 'id' is between 1 and the total number of azimuthal sectors. This value does not conform to the normal VESSEL composite number scheme followed by other signal variables
- For \(|\mathbf{I S V N}|=121\) :
- Both ICN1 and ICN2 must always be positive and non-zero
- For 1D components, the user should just specify the two cells between which the twophase level should be calculated. In 3D components, the values that the user provides for the cell number and level number (in composite format - see below for a description of what "composite number format" means), provide the code with a set of bounds to loop over when determining the location of the two-phase level. The user should take care to ensure that the cell number is identical both ICN1 and ICN2, otherwise an error will be produced (this ensures that the level is determined over a single stack of vertical 3D cells).
- The zero elevation is referenced to the bottom of the lower-most cell that you specify, not the bottom of the component. This means that if you set cell 2 as the bottom-most cell, you will need to add-in the height of cell 1 yourself if you are comparing to data that uses the bottom of the component as the zero elevation point.
- At this point, the code will not allow the user to retrieve the two-phase level from components/cells that are, in any way, horizontal (not perfectly vertical). As such, the user should take special care to not specify a range of cells that includes GRAV terms not equal to plus or minus one.
- ICN1 and ICN2 must both be contained in the same mesh segment (i.e they may not span a secondary cell and primary cell in a TEE-based component)
- For \(|\mathbf{I S V N}|=20\) :
- Both ICN1 and ICN2 must always be positive and non-zero
- For 1D components, the user should just specify the two cells between which the level should be calculated. In 3D components, the values that the user provides for the cell number and level number (in composite format - see below for a description of what "composite number format" means), provide the code with a set of bounds to loop over when calculating the collapsed level. For example, if the VESSEL being modeled has two rings and four theta cells per level ( 8 total cells), and if the user indicates cell 2 in ICN1 (ring 1, theta sector 2) and cell 7 (ring 2, theta sector 3) in ICN2, then for each of the levels the user provides, the code will calculate the collapsed level for all the cells bounded by rings 1 and 2 and theta sectors 2 and 3 (cells 2, 3, 6 and 7).
- At this point, the code will not allow the user to retrieve the collapsed liquid level from components/cells that are, in any way, horizontal (not perfectly vertical). As such, the user should take special care to not specify a range of cells that includes GRAV terms not equal to plus or minus one.
- ICN1 and ICN2 must both be contained in the same mesh segment (i.e they may not span a secondary cell and primary cell in a TEE-based component)
- For \(\mid\) ISVN \(\mid=88\) \& 89:
- Follows the same guidelines as for ISVN \(=21-40\), plus the following:
- The rod numbers must be specified as zero when ILCN corresponds to a heat structure
- The node numbers must be specified at the surface of the rod
- For rods with thermocouples (ittc \(=1\) ), the node numbers must be specified at the outer surface only
- For \(\mid\) ISVN \(\mid=91 \& 92\) :
- Follows the same guidelines as for ISVN \(=21-40\), plus the following:
- The node numbers must be specified at the surface of the rod
- For rods with thermocouples (ittc \(=1\) ), the node numbers must be specified at the outer surface only
- For \(|\mathbf{I S V N}|=119\) \& 120:
- ILCN, IOCMP, ICN2 \(=0\) :
- \(\mathrm{ICN1}\) is given in composite number format such that \(\mathrm{ICN} 1=(1000000 * \mathrm{I})+\) (1000 * J) + K

\section*{Concerning the VARREQSTRING variable:}
- This variable can only be input for signal variables with ISVN \(=3\)
- It must be prepended with the string "lu" in order to be considered valid (akin to units input parameters)

Special Input Requirements
- For \(\mid\) ISVN \(\mid=88,89,91\), and 92:
- The number of nodes in the associated component must be greater than one (otherwise indicates lumped parameter solution, hence no surface to couple the signal to.
- For ISVN = 3:
- The code will check to see if units information is available for the parameter specified by VARREQSTRING. If it is, then the proper units label will be written to the output file. If not, then a warning will be given noting that units information is not
available and it will be up to the user to ensure the units are what they expect them to be.
- For \(|\mathbf{I S V N}|=15\) :
- The ITDMR NAMELIST variable must be non-zero
- For \(|\mathbf{I S V N}|=18,19,44\) through 54, 57, and 58:
- The associated rod components must be powered
- For \(|\mathbf{I S V N}|=20\) :
- The range of cells of interest must be perfectly vertical (grav array \(=+1\) or -1 )
- For \(|\mathbf{I S V N}|=24\) :
- The number of nodes in the associated component must be greater than zero
- For \(|\mathbf{I S V N}|=25,26,88\), and 89 :
- The reflood option in the associated rod component must be turned off
- For \(|\mathbf{I S V N}|=121\) :
- The level tracking namelist options NOLT1D and NOLT3D should be 0 or -1 , otherwise the calculated level location will most likely be \(0.0 \mathrm{~m}(\mathrm{ft})\).

For the VESSEL, TEE (side tube), or HTSTR components, cells \(\mid\) ICN1 \(\mid\) and \(\mid\) ICN2 \(\mid\) are defined by a composite number format. For the VESSEL, the composite number is the horizontal-plane cell number times 1000 plus the axial level number; for the TEE side tube, it is the total number of primary-side cells plus the secondary-side cell number; for the HTSTR, it is the node number times 1000000 plus the ROD or SLAB element number times 1000 plus the axial node-row number. Refer to the TRACE Theory Manual for further information on defining cell and interface location composite numbers. It should be noted that in the case of the generic signal variable (ISVN=3), when ILCN refers to a TEE, ICN1 is NOT input in composite format. Instead it is up to the user to explicity account for the ghost cell that occurs in TEE component.

There are some fundamental differences between \(\mathbf{I S V N}=20, \mathbf{I S V N}=106\), and \(\mathbf{I S V N}=121\) that the user should be aware of. In essence, ISVN \(=20\) is determined using a volume-weighted technique whereby the volume of liquid is summed for all the specified cells, and this quantity is used to repeatedly fill the specified cells from the lowest point to the highest point, until there is not enough liquid left to completely fill the next axial volume. At that point the remaining liquid volume is divided by the axial level volume and this ratio is multiplied by the cell height to determine the physical location of the level within that axial volume. Some traits of this signal type are:
- This signal type more truly represents a real "collapsed" height of liquid (over that of ISVN = 106) because it accounts for the fact that the volumes of the axial cells/volumes may not be constant.
- In a VESSEL, the level is smeared across all specified cells within each axial level. This smearing does not take into account the effects from flow restrictions in the radial and theta directions.
- It will not accurately determine the collapsed level height if the cell where the level resides has a non-uniform flow area.

Alternatively, ISVN = 106 is calculated simply by summing the volume fraction times the cell height for each cell in the specified range of a specified VESSEL theta column in the downcomer region. The traits of this signal type are:
- The level calculation is not the true collapsed level because it takes no account for differences in flow area or volume
- it only considers one theta column at a time from the bottom of the downcomer (as defined in the VESSEL input by the IDCL variable) to the very top of the VESSEL.
- it corresponds to how the water level is actually measured in a real reactor. As a result, it is recommended that this water level signal type always be used when creating level setpoints in models of actual reactor scenarios.

ISVN \(=121\) corresponds to the location of the two-phase water level in some specified range of axial cells (either 1D or 3D), as calculated by the level tracking model. As such, this signal variable will only produce useful output if the 1 D or 3 D level tracking model is actually engaged in the component of interest (see the namelist options NOLT1D and/or NOLT3D). The user specifies a range of stacked axial cells over which to determine where the level exists. The code will loop over this range of cells, look at the values contained in the PHIL graphics variable to determine which cell contains the level and figure out the axial elevation from there. The traits of this signal variable type are
- The zero reference elevation is taken at the bottom of the specified range of cells, not the bottom of the component.
- In VESSEL components, the level is determined over a single column of theta cells whose range is specified by the user. Any attempt to specify a range of cells that includes more than one column of theta cells will generate an input error.
- No attempt is made to account for flow blockages that might exist in the axial direction (as might be the case in the outer ring of BWR vessel in which the flow area between the downcomer and lower plenum is blocked). The code simply locates the lowest predicted water level in the given range of cells and uses the bottom-most cell to establish the zero elevation reference point.
- Forgetting for a moment how unphysical it might actually be, if the conditions are such that the level tracking model predicts more than one water level in the range of specified cells (this could happen if the void fraction criteria used in the level tracking model are too loose), this signal variable will only identify the location of the bottom-most water level.
- The value for this signal variable will drop to zero if the level moves outside the range of specified cells (in either direction). This is due to a nuance of how the internal level tracking data structures operate and cannot be fixed without substantial changes to the level tracking model. This behavior can be rectified by filtering the signal variable output through a control system if it becomes a problem.
- You may, on occasion, notice minor discrepancies between the predicted maximum level location as compared to the expected value. In those cases, you should check the maximum timestep size and/or graphics edit interval to ensure there is enough resolution in those parameters to ensure the code is capturing a value with sufficient accuracy for your application.

Table 6-2 gives a summary of the input specifications for each signal variable. It can be used as a quick reference guide to decide whether a given set of input is valid, and whether a specific functional form is available to a given signal variable. Columns 3-6 denote the possible values that a given input parameter can take on. Columns 7-12 denote the specific functional forms available for each signal variable, given the input possibilities laid out in columns 3-6. For column three, a " \(+/-\) " indicates the user can specify ISVN as a positive or negative number. Column 4 indicates the types of entities a given signal variable can be associated with. Columns 5 and 6 indicate the range of possible values for ICN1 and ICN2 depending upon the sign of ISVN. In columns 7-12, a grayed out region indicates where the specific functional form is not allowed.

Note that the POWER component related signal variables (i.e. reactor power, reactivity, reactivity feedback, etc) must reference a POWER component either directly or indirectly. An indirect reference to a POWER component would be an ILCN that points to an HTSTR component that spawns a POWER component. A HTSTR component in the old HTSTR input format (i.e. rod/slab) with isFuelRod (formerly called nopowr) \(=0\), will result in a spawned POWER component. However, a HTSTR component in the new HTSTR input format cannot spawn a POWER component. Power for a HTSTR component in the new HTSTR input format must be provided by a POWER component input by the user rather than a spawned POWER component. In Table 6-2 when ILCN values are given as POWER or HTSTR, it is implied that the HTSTR spawns a POWER component.

ISVN 119 and 120 are used when coupling TRACE to a 3D kinetics code.

Table 6-2. Summary of signal variable input specifications.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ISVN} & \multirow[t]{2}{*}{Name \& Units} & \multirow[t]{2}{*}{sign of ISVN} & \multirow[t]{2}{*}{ILCN} & \multirow[t]{2}{*}{\begin{tabular}{l}
when ISVN is negative, \\
ICN1 \& ICN2
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
when ISVN is positive, \\
ICN1 \& ICN2
\end{tabular}} & \multirow[b]{2}{*}{Exact} & \multicolumn{2}{|r|}{Fun} \\
\hline & & & & & & & \begin{tabular}{l}
Cell \\
Diff
\end{tabular} & \[
\begin{aligned}
& \text { Tin } \\
& \text { Di }
\end{aligned}
\] \\
\hline 0 & Problem Time (s) & 0 & \[
\begin{gathered}
-1=\Delta \mathrm{t}_{\mathrm{old}} ; \\
0=\text { time } \\
+1=\Delta \mathrm{t}
\end{gathered}
\] & are always zero & are always zero & OK & & \\
\hline 1 & Null Signal Value & + only & 0 & are always zero & are always zero & OK & & \\
\hline 2 & Generic Control Block Output & + only & Valid cb & are always zero & are always zero & OK & & \\
\hline 3 & Generic Signal Variable & + only & 0 , any component, any control block & & icn2 must be zero, icn1 can be zero or correspond to any valid location in the computational mesh & OK & & \\
\hline 8 & \begin{tabular}{l}
Programmed Reactivity \\
( \(\Delta \mathrm{k} / \mathrm{k}\) )
\end{tabular} & +/- & 0 & are always zero & are always zero & OK & & \\
\hline 9 & Pump Motor Torque (Pa-m3, lbf-ft) & +/- & Valid Pump & are always zero & are always zero & OK & & OH \\
\hline 10 & Energy from Turbine Torque (J, Btu) & +/- & \begin{tabular}{l}
Valid \\
Turbine
\end{tabular} & are always zero & are always zero & OK & & \\
\hline 11 & Turbine angular speed ( \(\mathrm{rad} / \mathrm{s}\) ) & +/- & \begin{tabular}{l}
Valid \\
Turbine
\end{tabular} & are always zero & are always zero & OK & & \\
\hline 12 & Core Average Boron Concentration ( \(\mathrm{kg}_{\text {boron }} / \mathrm{kg}_{\text {water }}\) ) & +/- & 0 & are always zero & are always zero & OK & & \\
\hline 13 & \begin{tabular}{l}
Dynamic Reactivity (1D/3D \\
Kinetics) \\
( \(\Delta \mathrm{k} / \mathrm{k}\) )
\end{tabular} & +/- & 0 & are always zero & are always zero & OK & & Ol \\
\hline 14 & \[
\begin{aligned}
& \text { Global Eigen Value (1D/3D } \\
& \text { Kinetics) } \\
& \left(\mathrm{k}_{\text {eff }}\right)
\end{aligned}
\] & +/- & 0 & are always zero & are always zero & OK & & OH \\
\hline 15 & Total Reactor Power (0D/1D/3D Kinetics) (W, Btu/hr) & +/- & 0 & are always zero & are always zero & OK & & OH \\
\hline 16 & Control Rod Position (normalized) & + only & Valid cb & Control rod bank ID\# & are always zero & OK & & \\
\hline 17 & Control Rod Reactivity ( \(\Delta \mathrm{k} / \mathrm{k}\) ) & + only & Valid cb & are always zero & are always zero & OK & & \\
\hline 18 & Core Power (W, Btu/hr) & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 19 & \begin{tabular}{l}
Heat Structure Reactor Power Period \\
(s)
\end{tabular} & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 20 & Generalized Collapsed Level For Approximate Liquid Inventory Check (m, ft) & +/- & 1D or 3D & always positive \& non-zero & always positive \& nonzero & OK & & OH \\
\hline
\end{tabular}

Table 6-2. Summary of signal variable input specifications. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ISVN & \multirow[t]{2}{*}{Name \& Units} & \multirow[t]{2}{*}{sign of ISVN} & \multirow[t]{2}{*}{ILCN} & when ISVN is negative, & when ISVN is positive, & \multicolumn{3}{|r|}{Fun} \\
\hline & & & & ICN1 \& ICN2 & ICN1 \& ICN2 & Exact & \begin{tabular}{l}
Cell \\
Diff
\end{tabular} & Tin
Di \\
\hline 21 & \begin{tabular}{l}
Pressure \\
(Pa, psia)
\end{tabular} & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 22 & Cell Vapor Temperature
\[
\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)
\] & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 23 & Cell Liquid Temperature
\[
\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)
\] & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 24 & 1D Inner SurFace Temperature
\[
\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)
\] & +/- & HS only & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 25 & Slab/Rod SurFace Temperature
\[
\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)
\] & +/- & HS only & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 26 & Slab/Rod Temperature
\[
\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)
\] & +/- & HS only & can never be negative & at least one must be nonzero & OK & OK & OF \\
\hline 27 & Cell Vapor Volume Fraction & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 28 & YT-Face Vapor Mass Flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 29 & Z-Face Vapor Mass Flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 30 & XR-Face Vapor Mass Flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 31 & YT-Face Liquid Mass Flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 32 & Z-Face Liquid Mass Flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 33 & XR-Face Liquid Mass Flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 34 & YT-Face Vapor Velocity (m/s, ft/s) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & Of \\
\hline 35 & Z-Face Vapor Velocity (m/s, ft/s) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 36 & XR-Face Vapor Velocity ( \(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\) ) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 37 & YT-Face Liquid Velocity ( \(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\) ) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 38 & Z-Face Liquid Velocity (m/s, ft/s) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 39 & XR-Face Liquid Velocity (m/s, ft/s) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 40 & Boron Concentration \(\left(\mathrm{kg}_{\text {Boron }} / \mathrm{kg}_{\text {water }}\right)\) & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline
\end{tabular}

Table 6-2. Summary of signal variable input specifications. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ISVN} & \multirow[t]{2}{*}{Name \& Units} & \multirow[t]{2}{*}{sign of ISVN} & \multirow[t]{2}{*}{ILCN} & when ISVN is negative, & when ISVN is positive, & \multicolumn{3}{|r|}{Fun} \\
\hline & & & & ICN1 \& ICN2 & ICN1 \& ICN2 & Exact & Cell
Diff & Tin \\
\hline 41 & Pump Rotational Speed (rad/s, rpm) & +/- & Valid Pump & are always zero & are always zero & OK & & OH \\
\hline 42 & Valve-Flow-Area Fraction & +/- & Valid Valve & are always zero & are always zero & OK & & OH \\
\hline 43 & Valve Stem Position & +/- & Valid Valve & are always zero & are always zero & OK & & OH \\
\hline 44 & Reactor Mult. Constant, Keff & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 45 & Programmed Delta-K & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 46 & Total Feedback Delta-K & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 47 & Fuel Temp Feedback Delta-K & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 48 & Coolant Temp Feedback Delta-K & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 49 & Void Fraction Feedback Delta-K & +/- & POWER or HS & are always zero & are always zero & OK & & \\
\hline 50 & Boron Conc. Feedback Delta-K & +/- & HS only & are always zero & are always zero & OK & & \\
\hline 51 & Power Weighted Core Avg Fuel Temperature used for Reactivity Feedback (K, \({ }^{\circ} \mathrm{F}\) ) & +/- & POWER or HS & are always zero & are always zero & OK & & \\
\hline 52 & Power Weighted Core Avg Coolant Temperature used for Reactivity Feedback (K, \({ }^{\circ} \mathrm{F}\) ) & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 53 & Power Weighted Core Avg Void Fraction used for Reactivity Feedback & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 54 & Power Weighted Core Avg Boron Concentration used for Reactivity Feedback & +/- & POWER or HS & are always zero & are always zero & OK & & Of \\
\hline 55 & Trip Signal Value & + only & Valid trip ID & are always zero & are always zero & OK & & \\
\hline 56 & Trip Set Status Value & + only & Valid trip ID & are always zero & are always zero & OK & & \\
\hline 57 & Prompt-Fission Power (W, Btu/hr) & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 58 & Decay Heat Power (W, Btu/hr) & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 59 & Avg Slab/Rod Max SurFace Temp (K, \(\left.{ }^{\circ} \mathrm{F}\right)\) & +/- & HS only & are always zero & are always zero & OK & & OH \\
\hline
\end{tabular}

Table 6-2. Summary of signal variable input specifications. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ISVN} & \multirow[t]{2}{*}{Name \& Units} & \multirow[t]{2}{*}{sign of ISVN} & \multirow[t]{2}{*}{ILCN} & when ISVN is negative, & when ISVN is positive, & \multicolumn{3}{|r|}{Fun} \\
\hline & & & & ICN1 \& ICN2 & ICN1 \& ICN2 & Exact & \begin{tabular}{l}
Cell \\
Diff
\end{tabular} & Tin
Di \\
\hline 60 & Add. Slab/Rod Max SurFace Temp
\[
\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)
\] & +/- & HS only & are always zero & are always zero & OK & & Ol \\
\hline 61 & \[
\begin{gathered}
\text { Pump head } \\
\left(\mathrm{m}^{2} / \mathrm{s}^{2}, \mathrm{lb}_{\mathrm{f}} * \mathrm{ft} / \mathrm{lb}_{\mathrm{m}}\right)
\end{gathered}
\] & +/- & Valid Pump & are always zero & are always zero & OK & & Ol \\
\hline 62 & Pump Hydraulic Torque
\[
\left(\mathrm{Pa}^{*} \mathrm{~m}^{3}, \mathrm{lb}_{\mathrm{f}}^{*} \mathrm{ft}\right)
\] & +/- & Valid Pump & are always zero & are always zero & OK & & Ol \\
\hline 63 & Pump Momentum Source
\[
\left(\mathrm{m}^{2} / \mathrm{s}^{2}, \mathrm{lb}_{\mathrm{f}}^{*} \mathrm{ft} / \mathrm{lb}_{\mathrm{m}}\right)
\] & +/- & Valid Pump & are always zero & are always zero & OK & & Ol \\
\hline 64 & Valve Hydraulic Diameter ( \(\mathrm{m}, \mathrm{ft}\) ) & +/- & Valid Valve & are always zero & are always zero & OK & & Ol \\
\hline 65 & YT-Face Hydraulic Diameter ( \(\mathrm{m}, \mathrm{ft}\) ) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 66 & Z-Face Hydraulic Diameter (m, ft) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 67 & XR-Face Hydraulic Diameter ( \(\mathrm{m}, \mathrm{ft}\) ) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 68 & YT-Face Mix Mass Flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 69 & Z-Face Mix Mass Flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 70 & XR-Face Mix Mass Flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 71 & YT-Face Mix Avg Velocity (m/s, ft/s) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 72 & Z-Face Mix Avg Velocity (m/s, ft/s) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 73 & XR-Face Mix Avg Velocity ( \(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\) ) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 74 & Cell Vapor Density
\[
\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)
\] & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 75 & Cell Liquid Density
\[
\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)
\] & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 76 & Cell mixture Density
\[
\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)
\] & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 77 & Cell Air Density \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)\) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & Ol \\
\hline 78 & Cell Air mass (kg, \(\mathrm{lb}_{\mathrm{m}}\) ) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline
\end{tabular}

Table 6-2. Summary of signal variable input specifications. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ISVN} & \multirow[t]{2}{*}{Name \& Units} & \multirow[t]{2}{*}{sign of ISVN} & \multirow[t]{2}{*}{ILCN} & when ISVN is negative, & when ISVN is positive, & \multicolumn{3}{|r|}{Fun} \\
\hline & & & & ICN1 \& ICN2 & ICN1 \& ICN2 & Exact & \begin{tabular}{l}
Cell \\
Diff
\end{tabular} & Tin
Di \\
\hline 79 & Cell Air pressure (Pa, psia) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 80 & Cell Air internal energy \(\left(\mathrm{J} / \mathrm{kg}, \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)\) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 81 & Cell Vapor internal energy ( \(\mathrm{J} / \mathrm{kg}, \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\) ) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 82 & Cell Liquid internal energy ( \(\mathrm{J} / \mathrm{kg}, \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\) ) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 83 & Cell Sat Temp Based on Steam P (K, \(\left.{ }^{\circ} \mathrm{F}\right)\) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 84 & Cell Sat Temp Based on Total P
\[
\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)
\] & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 85 & Cell Vapor specific heat [J/(kg K), Btu/( \(\left.\mathrm{lb}_{\mathrm{m}} \mathrm{F}\right)\) ] & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 86 & Cell Liquid specific heat
\[
\left[\mathrm{J} /(\mathrm{kg} \mathrm{~K}), \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}} \mathrm{~F}\right)\right]
\] & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & & \\
\hline 87 & Cell Latent Heat of Vaporization \(\left(\mathrm{J} / \mathrm{kg}, \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)\) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & & \\
\hline 88 & Total SurFace Heat Loss to Vapor (W, Btu/hr) & +/- & 1D or HS & can never be negative & at least one must be nonzero & OK & & \\
\hline 89 & Total SurFace Heat Loss to Liquid (W, Btu/hr) & +/- & 1D or HS & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 90 & Cell Vap/Liq Interfacial Heat Flow (W, Btu/hr) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 91 & \[
\begin{gathered}
\text { Slab/rod Vapor HTC } \\
{\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2} \mathrm{~F} \mathrm{hr}\right)\right]}
\end{gathered}
\] & +/- & HS only & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 92 & Slab/rod Liquid HTC [W/(m² K), Btu/(ft \(\left.\left.{ }^{2} \mathrm{Fhr}\right)\right]\) & +/- & HS only & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 93 & Cell Slab Vapor HTC [W/( \(\left.\left.\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2} \mathrm{~F} \mathrm{hr}\right)\right]\) & +/- & 1D only & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 94 & Cell Slab Liquid HTC [W/( \(\left.\left.\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2} \mathrm{~F} \mathrm{hr}\right)\right]\) & +/- & 1D only & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 95 & Cell Interfacial Area*Vap HTC
\[
\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2} \mathrm{Fhr}\right)\right]
\] & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 96 & Cell Interfacial Area*Liq HTC
\[
\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2} \mathrm{~F} \mathrm{hr}\right)\right]
\] & +/- & 1 D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline 97 & YT-Face Interfacial Drag Coeff
\[
\left(\mathrm{kg} / \mathrm{m}^{4}, \mathrm{lbm} / \mathrm{ft}^{4}\right)
\] & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & O \\
\hline
\end{tabular}

Table 6-2. Summary of signal variable input specifications. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ISVN} & \multirow[t]{2}{*}{Name \& Units} & \multirow[t]{2}{*}{sign of ISVN} & \multirow[t]{2}{*}{ILCN} & when ISVN is negative, & when ISVN is positive, & \multicolumn{3}{|r|}{Fun} \\
\hline & & & & ICN1 \& ICN2 & ICN1 \& ICN2 & Exact & \begin{tabular}{l}
Cell \\
Diff
\end{tabular} & \[
\begin{aligned}
& \text { Tin } \\
& \text { Di }
\end{aligned}
\] \\
\hline 98 & Z-Face Interfacial Drag Coeff
\[
\left(\mathrm{kg} / \mathrm{m}^{4}, \mathrm{lbm} / \mathrm{ft}^{4}\right)
\] & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 99 & XR-Face Interfacial Drag Coeff \(\left(\mathrm{kg} / \mathrm{m}^{4}, \mathrm{lbm} / \mathrm{ft}^{4}\right)\) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 100 & Cell Plated Solute Conc
\[
\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)
\] & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 101 & Cell Vapor Gen Rate \(\left(\mathrm{kg} / \mathrm{s}-\mathrm{m}^{2}, \mathrm{lbm} / \mathrm{hr}-\mathrm{ft}^{3}\right)\) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 102 & Total Inner SurFace Heat Loss (W, Btu/hr) & +/- & 1D or HS & are always zero & are always zero & OK & & OH \\
\hline 103 & Total Outer SurFace Heat Loss (W, Btu/hr) & +/- & 1D or HS & are always zero & are always zero & OK & & OH \\
\hline 104 & Mixture Temperature
\[
\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)
\] & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 105 & Mixture Enthalpy ( \(\mathrm{J} / \mathrm{kg}, \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\) ) & +/- & 1D or 3D & can never be negative & at least one must be nonzero & OK & OK & OH \\
\hline 106 & BWR D/C Collapsed level (m, ft) & +/- & 3D only & always positive \& non-zero & are always zero & OK & & OH \\
\hline 107 & Feedwater Heater Shell-Side Level ( \(\mathrm{m}, \mathrm{ft}\) ) & +/- & Valid Heatr & are always zero & are always zero & OK & & OH \\
\hline 108 & Total Reactivity (deltak/k) & +/- & POWER or HS & are always zero & are always zero & OK & & Of \\
\hline 109 & Programmed Reactivity (deltak/k) & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 110 & Total Feedback Reactivity (deltak/k) & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 111 & \begin{tabular}{l}
Core Avg Fuel Temp Fdbk. \\
Reactivity \\
(deltak/k)
\end{tabular} & +/- & POWER or HS & are always zero & are always zero & OK & & Of \\
\hline 112 & \begin{tabular}{l}
Core Avg Coolant Temp Fdbk. \\
Reactivity \\
(deltak/k)
\end{tabular} & +/- & POWER or HS & are always zero & are always zero & OK & & OH \\
\hline 113 & \begin{tabular}{l}
Core Avg Void Fraction Fdbk. \\
Reactivity \\
(deltak/k)
\end{tabular} & +/- & POWER or HS that spawns a POWER & are always zero & are always zero & OK & & OH \\
\hline 114 & \begin{tabular}{l}
Core Avg Boron Conc. Fdbk. \\
Reactivity \\
(deltak/k)
\end{tabular} & +/- & \begin{tabular}{l}
POWER or \\
HS that \\
spawns a \\
POWER
\end{tabular} & are always zero & are always zero & OK & & OH \\
\hline
\end{tabular}

Table 6-2. Summary of signal variable input specifications. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ISVN} & \multirow[t]{2}{*}{Name \& Units} & \multirow[t]{2}{*}{sign of ISVN} & \multirow[t]{2}{*}{ILCN} & when ISVN is negative, & when ISVN is positive, & \multicolumn{3}{|r|}{Fun} \\
\hline & & & & ICN1 \& ICN2 & ICN1 \& ICN2 & Exact & Cell
Diff & Tin
Di \\
\hline 115 & Vol. Weighted Core Avg Fuel Temp (K, \({ }^{\circ} \mathrm{F}\) ) & +/- & POWER or HS that spawns a POWER & are always zero & are always zero & OK & & O \\
\hline 116 & Vol. Weighted Core Avg Coolant Temp (K, \({ }^{\circ} \mathrm{F}\) ) & +/- & POWER or HS that spawns a POWER & are always zero & are always zero & OK & & O \\
\hline 117 & Vol. Weighted Core Avg Void Fraction & +/- & POWER or HS that spawns a POWER & are always zero & are always zero & OK & & O \\
\hline 118 & Vol. Weighted Core Avg Boron Conc & +/- & POWER or HS that spawns a POWER & are always zero & are always zero & OK & & O \\
\hline 119 & 3-D kinetics nodal power distribution (W, Btu/hr) & + & PW3D & are always zero & are always zero & OK & & \\
\hline 120 & Simulated LPRM reading (W, Btu/hr) & + & PW3D & are always zero & are always zero & OK & & \\
\hline 121 & Two-phase level location ( \(\mathrm{m}, \mathrm{ft}\) ) & +/- & 1D \& 3D only & always positive \& non-zero & always positive \& nonzero & OK & & \\
\hline 122 & Axial power distribution (W, Btu/hr) & +/- & POWER or HS & are always zero & are always zero & OK & & O \\
\hline 123 & Axial surface heat flux distribution
\[
\left(\mathrm{W} / \mathrm{m}^{2}, \mathrm{Btu} / \mathrm{hr}^{2}-\mathrm{ft}^{2}\right)
\] & +/- & POWER or HS & are always zero & are always zero & OK & & O \\
\hline
\end{tabular}

\section*{User-Defined Units Data}

When one or more of the NAMELIST variables IOGRF, IOINP, IOLAB, and IOOUT [for input/output (I/O) of data with SI/English units] is nonzero such that IOALL = \(\mid\) IOGRF \(|+|\) IOINP \(|+|\) IOLAB \(|+|\) IOOUT \(\mid \neq 0\), the TRACE user is required to input the units-name labels of selected user-defined control-block and trip parameters. When IOALL \(=0\), the TRACE user does not input the units-name labels of these parameters. This allows previous input-data files to be used without modification. Because TRACE then does not know the units of these userdefined parameters, TRACE performs no units conversion on these parameters and outputs the symbol * when their units symbol is to be output (when NAMELIST variable IOOUT = 1). Table 6-3 shows the units-name labels (left-most column beginning with the letters LU) defined in TRACE which the user may use to define the units of these parameters. If the units of some userdefined control-block or trip parameters cannot be defined by this internal set, the user must then input the additionally required units-name labels.

Table 6-3. Units Names, Units, and Conversion Factors for Control Block and Trip Parameters.
\begin{tabular}{|c|c|c|c|c|}
\hline Units Name & SI Units & English Units & Factor & Number, Description \\
\hline lunounit & (-) & (-) & \(1.00000000 \mathrm{e}+00\) & 1, no units \\
\hline lutime & S & S & \(1.00000000 \mathrm{e}+00\) & 2, time \\
\hline \multicolumn{5}{|r|}{Note: lutemp has a UShift value of \(-459.67^{\circ} \mathrm{R}\). The UShift value for the other units is zero.} \\
\hline lutemp & K & F & \(1.80000000 \mathrm{e}+00\) & 3, temperature \\
\hline lutempd & K & F & \(1.80000000 \mathrm{e}+00\) & 4, differential temperature \\
\hline lulength & m & ft & \(3.28083990 \mathrm{e}+00\) & 5, length \\
\hline luarea & \(\mathrm{m}^{2}\) & \(\mathrm{ft}^{2}\) & \(1.07639104 \mathrm{e}+01\) & 6, area \\
\hline luvolume & \(\mathrm{m}^{3}\) & \(\mathrm{ft}^{3}\) & \(3.53146667 \mathrm{e}+01\) & 7, volume \\
\hline luvel & \(\mathrm{m} / \mathrm{s}\) & ft/s & \(3.28083990 \mathrm{e}+00\) & 8, velocity \\
\hline luacc & \(\mathrm{m} / \mathrm{s}^{2}\) & \(\mathrm{ft} / \mathrm{s}^{2}\) & \(3.28083990 \mathrm{e}+00\) & 9, acceleration \\
\hline lupumphd & \(\mathrm{m} 2 / \mathrm{s}^{2}\) & \(1 \mathrm{~b}_{\mathrm{f}}{ }^{*} \mathrm{ft} / \mathrm{lb}_{\mathrm{m}}\) & \(3.34552563 \mathrm{e}-01\) & 10, pump head \\
\hline
\end{tabular}

Table 6-3. Units Names, Units, and Conversion Factors for Control Block and Trip Parameters. (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Units Name & SI Units & English Units & Factor & Number, Description \\
\hline luvolflw & \(\mathrm{m}^{3} / \mathrm{s}\) & GPM & \(1.58503222 \mathrm{e}+04\) & 11, volumetric flow \\
\hline luspvol & \(\mathrm{m}^{3} / \mathrm{kg}\) & \(\mathrm{ft}^{3} / \mathrm{lbm}\) & \(1.60184634 \mathrm{e}+01\) & 12, specific volume \\
\hline lumass & kg & \(1 \mathrm{~b}_{\mathrm{m}}\) & \(2.20462262 \mathrm{e}+00\) & 13, mass \\
\hline lumassfw & kg/s & \(\mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\) & \(7.93664144 \mathrm{e}+03\) & 14, mass flow \\
\hline lumfwrat & \(\mathrm{kg} / \mathrm{s}^{2}\) & \(1 \mathrm{~b}_{\mathrm{m}} / \mathrm{s}^{2}\) & \(2.20462262 \mathrm{e}+00\) & 15 , mass flow rate \\
\hline lumassfx & \(\mathrm{kg} /\left(\mathrm{m}^{2}{ }^{*} \mathrm{~s}\right)\) & \(\mathrm{lb}_{\mathrm{m}} /\left(\mathrm{ft}^{2} * \mathrm{hr}\right)\) & \(7.37338117 \mathrm{e}+02\) & 16, mass flux \\
\hline luvapgen & \(\mathrm{kg} /\left(\mathrm{m}^{3}{ }^{\text {s }}\right.\) ) & \(\mathrm{lb}_{\mathrm{m}} /\left(\mathrm{ft}^{3} * \mathrm{hr}\right)\) & \(2.24740658 \mathrm{e}+02\) & 17, vapor generation rate \\
\hline luden & \(\mathrm{kg} / \mathrm{m}^{3}\) & \(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\) & 6.24279606e-02 & 18, density \\
\hline luddendt & \(\left(\mathrm{kg} / \mathrm{m}^{3}\right) / \mathrm{K}\) & \(\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right) / \mathrm{F}\) & \(3.46822003 \mathrm{e}-02\) & 19, density per unit temperature \\
\hline luidrag & \(\mathrm{kg} / \mathrm{m}^{4}\) & \(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{4}\) & \(1.90280424 \mathrm{e}-02\) & 20, drag \\
\hline lupressa & Pa & psia & \(1.45037738 \mathrm{e}-04\) & 21, absolute pressure \\
\hline lupressd & Pa & psid & \(1.45037738 \mathrm{e}-04\) & 22, differential pressure \\
\hline luprsrat & \(\mathrm{Pa} / \mathrm{s}\) & psi/s & \(1.45037738 \mathrm{e}-04\) & 23, derivative pressure \\
\hline luminert & \(\mathrm{kg}^{*} \mathrm{~m}^{2}\) & \(1 b_{m} * \mathrm{ft}^{2}\) & \(2.37303604 \mathrm{e}+01\) & 24, mass inertia \\
\hline lutorque & \(\mathrm{Pa}{ }^{*}{ }^{3}\) & \(\mathrm{lb}_{\mathrm{f}}{ }^{\text {ft }}\) & \(7.37562149 \mathrm{e}-01\) & 25, torque \\
\hline lubtork & \(\left(\mathrm{Pa}^{*} \mathrm{~m}^{3}\right) /(\mathrm{rad} / \mathrm{s})\) & \(\left(\mathrm{lb}_{\mathrm{f}}{ }^{\text {ftt }} / \mathrm{rpm}\right.\) & \(7.72373277 \mathrm{e}-02\) & 26 , torque per unit radial velocity \\
\hline luctork & \[
\begin{aligned}
& \left(\mathrm{Pa}^{*} \mathrm{~m}^{3}\right) /(\mathrm{rad} / \\
& \mathrm{s})^{2}
\end{aligned}
\] & \(\left(\mathrm{lb}_{\mathrm{f}} * \mathrm{ft}\right) / \mathrm{rpm}^{2}\) & 8.08827404e-03 & 27 , torque per unit radial velocity squared \\
\hline lupower & W & Btu/hr & \(3.41214163 \mathrm{e}+00\) & 28, power \\
\hline
\end{tabular}

Table 6-3. Units Names, Units, and Conversion Factors for Control Block and Trip Parameters. (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Units Name & SI Units & English Units & Factor & Number, Description \\
\hline lupowrat & W/s & (Btu/hr)/s & \(3.41214163 \mathrm{e}+00\) & 29, derivative power \\
\hline lulinhts & W/m & (Btu/hr)/ft & \(1.04002077 \mathrm{e}+00\) & 30, linear heat rate \\
\hline luheatfx & W/m \({ }^{2}\) & (Btu/hr)/ft \({ }^{2}\) & 3.16998331e-01 & 31, heat flux \\
\hline luvolhts & W/m \({ }^{3}\) & \((\mathrm{Btu} / \mathrm{hr}) / \mathrm{ft}^{3}\) & \(9.66210912 \mathrm{e}-02\) & 32 , volumetric power \\
\hline luthcond & \(\mathrm{W} /(\mathrm{m} * \mathrm{~K})\) & \(\mathrm{Btu} /\left(\mathrm{ft}^{* 0} \mathrm{~F}^{*} \mathrm{hr}\right)\) & 5.77789317e-01 & 33, thermal conductivity \\
\hline luhte & \(\mathrm{W} /\left(\mathrm{m}^{2} * \mathrm{~K}\right)\) & \(\mathrm{Btu} /\left(\mathrm{ft}^{2} * \mathrm{o} \mathrm{F}^{*} \mathrm{hr}\right)\) & \(1.76110184 \mathrm{e}-01\) & 34, convective heat transfer coefficient \\
\hline luihttf & W/K & \((\mathrm{Btu} / \mathrm{hr}) /{ }^{\circ} \mathrm{F}\) & \(1.89563424 \mathrm{e}+00\) & 35 , power per unit temperature \\
\hline luenergy & J & Btu & \(9.47817120 \mathrm{e}-04\) & 36, energy \\
\hline luspener & J/kg & \(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\) & \(4.29922614 \mathrm{e}-04\) & 37 , specific energy \\
\hline luspheat & ( \(\mathrm{J} / \mathrm{kg}\) )/K & \(\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)^{\circ}{ }^{\mathbf{F}}\) & \(2.38845897 \mathrm{e}-04\) & \begin{tabular}{l}
38 , specific energy \\
per unit temperature
\end{tabular} \\
\hline lurtime & 1/s & 1/s & \(1.00000000 \mathrm{e}+00\) & 39, per unit time \\
\hline lurtemp & 1/K & \(1 /{ }^{\circ} \mathrm{F}\) & 5.55555556e-01 & 40, per unit temperature \\
\hline lurmass & 1/kg & 1/lbm & \(4.53592370 \mathrm{e}-01\) & 41, per unit mass \\
\hline lurpress & 1/Pa & 1/psi & \(6.89475729 \mathrm{e}+03\) & 42, per unit pressure \\
\hline luspeed & \(\mathrm{rad} / \mathrm{s}\) & rpm & \(9.54929659 \mathrm{e}+00\) & 43, angular velocity \\
\hline luradace & \(\mathrm{rad} / \mathrm{s}^{2}\) & rpm/s & \(9.54929659 \mathrm{e}+00\) & 44, angular acceleration \\
\hline luangle & rad & deg & \(5.72957795 \mathrm{e}+01\) & 45, angle \\
\hline luburnup & MWd/MTU & MWd/MTU & \(1.00000000 \mathrm{e}+00\) & 46, burnup \\
\hline
\end{tabular}

Table 6-3. Units Names, Units, and Conversion Factors for Control Block and Trip Parameters. (Continued)
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Units Name } & \multicolumn{1}{|c|}{ SI Units } & English Units & \multicolumn{1}{|c|}{ Factor } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Number, \\
Description
\end{tabular}} \\
\hline luenfiss & mev/fiss & mev/fiss & \(1.00000000 \mathrm{e}+00\) & \begin{tabular}{l} 
47, energy per \\
fission
\end{tabular} \\
\hline lugapgas & g-moles & g-moles & \(1.00000000 \mathrm{e}+00\) & 48, molar density \\
\hline lurtmsq & \(1 / \mathrm{K}^{2}\) & \(1 /\left({ }^{\circ} \mathrm{F}\right)^{2}\) & \(3.08641975 \mathrm{e}-01\) & \begin{tabular}{l} 
49, inverse \\
temperature \\
squared
\end{tabular} \\
\hline lunitnam & arbitrary & \(\mathrm{arbitrary}^{2} / \mathrm{s}^{2}\) & \(\mathrm{ft}^{2} / \mathrm{s}^{2}\) & \(1.00000000 \mathrm{e}+00\)
\end{tabular}

Table 6-3. Units Names, Units, and Conversion Factors for Control Block and Trip Parameters. (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Units Name & SI Units & English Units & Factor & Number, Description \\
\hline lushtkm3 & \((\mathrm{J} / \mathrm{kg}) / \mathrm{K}^{3}\) & \(\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)^{\circ} \mathrm{F}^{3}\) & \[
\begin{aligned}
& 0.238845897 \mathrm{e}- \\
& 03 * 0.555555556^{*} \\
& * 2
\end{aligned}
\] & 61, specific energy per unit temperature**3 \\
\hline lushtkm4 & \((\mathrm{J} / \mathrm{kg}) / \mathrm{K}^{4}\) & \(\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right) /{ }^{\circ} \mathrm{F}^{4}\) & \[
\begin{aligned}
& 0.238845897 \mathrm{e}- \\
& 03 * 0.555555556 * \\
& * 3
\end{aligned}
\] & 62 , specific energy per unit temperature**4 \\
\hline lushtkm5 & \((\mathrm{J} / \mathrm{kg}) / \mathrm{K}^{5}\) & \(\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}\right)^{\circ} \mathrm{F}^{5}\) & \[
\begin{aligned}
& 0.238845897 \mathrm{e}- \\
& 03 * 0.555555556^{*} \\
& * 4
\end{aligned}
\] & 63, specific energy per unit temperature**5 \\
\hline luthedk1 & \(\mathrm{W} /\left(\mathrm{m} * \mathrm{~K}^{2}\right)\) & \(\mathrm{Btu} /\left(\mathrm{ft} * \mathrm{~F}^{2} * \mathrm{hr}\right)\) & \[
\begin{aligned}
& 0.577789317 * 0.5 \\
& 55555556
\end{aligned}
\] & 64, thermal conductivity per unit temperature \\
\hline luthedk2 & \(\mathrm{W} /\left(\mathrm{m}^{*} \mathrm{~K}^{3}\right)\) & \(\mathrm{Btu} /\left(\mathrm{ft}^{* 0} \mathrm{~F}^{3 *} \mathrm{hr}\right)\) & \[
\begin{aligned}
& 0.577789317 * 0.5 \\
& 55555556 * * 2
\end{aligned}
\] & 65, thermal conductivity per unit temperature**2 \\
\hline luthedk3 & \(\mathrm{W} /\left(\mathrm{m}^{*} \mathrm{~K}^{4}\right)\) & \(\mathrm{Btu} /\left(\mathrm{ft}^{* 0} \mathrm{~F}^{4 *} \mathrm{hr}\right)\) & \[
\begin{aligned}
& 0.577789317 * 0.5 \\
& 55555556 * * 3
\end{aligned}
\] & \[
\begin{aligned}
& \text { 66, thermal } \\
& \text { conductivity per } \\
& \text { unit } \\
& \text { temperature**3 }
\end{aligned}
\] \\
\hline luthedk4 & \(\mathrm{W} /\left(\mathrm{m}^{*} \mathrm{~K}^{5}\right)\) & \(\mathrm{Btu} /\left(\mathrm{ft}^{* 0} \mathrm{~F}^{5 *} \mathrm{hr}\right)\) & \[
\begin{aligned}
& 0.577789317 * 0.5 \\
& 55555556 * * 4
\end{aligned}
\] & 67, thermal conductivity per unit temperature**4 \\
\hline luthedk & W/m & Btu/(ft*hr) & \(0.577789317 * 1.8\) & 68, thermal conductivity * unit temperature \\
\hline luemisk3 & \(1 / \mathrm{K}^{3}\) & \(1 /{ }^{\circ} \mathrm{F}^{3}\) & \(0.555555556 * * 3\) & 69, emissivity per unit temperature**3 \\
\hline luemisk4 & \(1 / \mathrm{K}^{4}\) & \(1 /{ }^{\circ} \mathrm{F}^{4}\) & \(0.555555556 * * 4\) & 70, emissivity per unit temperature**4 \\
\hline
\end{tabular}

NAMELIST variable IUNLAB (default value is 0 ) is the user-defined number of these additional labels. When IUNLAB \(>0\), input IUNLAB of the following cards to define the additional unitname labels. User-defined units-name label data are not written to the tredmp file and not read from the trerst file so the user needs to input the user-defined units-name label data to the tracin file for all (initial and restart) TRACE calculations.

Card Number 1. (Format 6X, A8, 1X, A13, 1X, A13, 2E14.4) LULABEL, LUNITSI, LUNITENG, UFACTOR, USHIFT
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline LULABEL & Units-name label beginning with the letters LU followed by one to six nonblank characters (for example, the user might choose the units-name label LUDPDT for the derivative of pressure with respect to temperature, \(\mathrm{dP} / \mathrm{dT}\) ). \\
\hline LUNITSI & The SI-units symbol associated with the units-name label that begins with the letters LU followed by 1 to 11 non-blank characters. TRACE internally removes the LU prefix (required for preinput processing of character-string data) in defining the SI-units symbol for I/0 (for example, LUPA/K defines the SI-units symbol for the derivative of pressure with respect to temperature, dP/dT). \\
\hline LUNITENG & The English-units symbol associated with the units-name label, which begins with the letters LU followed by 1 to 11 nonblank characters. TRACE internally removes the LU prefix in defining the English-units symbol for I/0 (for example, LUPSID/F defines the English-units symbol for the derivative of pressure with respect to temperature, \(\mathrm{dP} / \mathrm{dT}\) ). \\
\hline UFACTOR & The factor value for converting a parameter value in SI units to its value in English units where Parameter(SI) * UFACTOR + USHIFT = Parameter(English) (for example, UFACTOR \(=8.05765 \mathrm{E}-05(\mathrm{PSID} \times \mathrm{K}) /\) \(\left(\mathrm{PA} \times^{\circ} \mathrm{F}\right)=1.450377 \mathrm{E}-04 \mathrm{PSID} / \mathrm{PA}\) divided by \(1.8^{\circ} \mathrm{F} / \mathrm{K}\) for the derivative of pressure with respect to temperature, \(\mathrm{dP} / \mathrm{dT}\) ). \\
\hline USHIFT & \begin{tabular}{l}
The shift value for converting a parameter value in SI units to its value in English units where Parameter(SI) *UFACTOR + USHIFT = Parameter(English) (for example, USHIFT \(=0.0 \mathrm{PSID} /{ }^{\circ} \mathrm{F}\) for the derivative of pressure with respect to temperature, \(\mathrm{dP} / \mathrm{dT}\), because pressure and temperature are both difference values rather than absolute values). \\
Note: The value of UShift \(=-459.67\) for lutemp in Table 6-3, it is zero for all others in the Table.
\end{tabular} \\
\hline
\end{tabular}

\section*{Control Block Data}

Control-block data are defined when NTCB \(>0\) (Word 2 on Main-Data Card 10). Control blocks are mathematical functions that operate on 0 or more input parameters defined by signal variables and control blocks. The control-block output signal defines an input parameter for control blocks, a parameter for trip signals, the independent-variable parameter for componentaction tables, and the component action directly. Either NTCB or fewer control blocks are input. When fewer than NTCB control blocks are input, conclude the data with a blank card or a card having a 0 defining the first input parameter, IDCB ( 0 must be entered explicitly if the freeformat option is used). The remaining control blocks (for a total of NTCB) are obtained from the restart file. They are the control blocks on the restart file whose IDCB ID numbers differ from those defined on input. After all control-block data are read from input and obtained from the restart file, the control-blocks are automatically sorted to obtain the optimal order of evaluation, even taking into account possible implicit loops that might exist. Each control block is defined by, at least, two cards. When the control block is a tabular function of 1,2 , or 3 independent variables (ICBN = 101 or 102), additional Card Number 3 data cards are needed to define the function table. When the control block is a PI or PID controller ( \(\mathbf{I C B N}=200\) or 201), an additional Card Number 4 is needed.

Card Number 1. (Format 5I14) IDCB, ICBN, ICB1, ICB2, ICB3
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IDCB & Control-block ID number \((-99000 \leq\) IDCB \(\leq-1)\). \\
\hline ICBN & \begin{tabular}{l} 
Control-block operation number \((1 \leq \mathbf{I C B N} \leq 65,76,77,100 \leq \mathbf{I C B N} \leq 104\), or \\
\(200 \leq \mathbf{I C B N} \leq 204)\). Refer to the list at the end of this section for the control-block \\
operation numbers and the mathematical description of the operation each \\
performs.
\end{tabular} \\
\hline ICB1 & \begin{tabular}{l} 
ID number for the first input parameter \(\left(\mathrm{X}_{1}\right)\) to the control block. ICB1 \(>0\) \\
defines a signal-variable parameter; \(\mathbf{I C B}<0\) defines a control-block output \\
parameter.
\end{tabular} \\
\hline ICB2 & \begin{tabular}{l} 
ID number for the second input parameter \(\left(\mathrm{X}_{2}\right)\) to the control block. ICB2 \(>0\) \\
defines a signal-variable parameter; \(\mathbf{I C B 2}<0\) defines a control-block output \\
parameter. For ICBN \(=100\) or \(101, \mathbf{I C B 2}\) is the number of entry pairs in the \\
control block's function table.
\end{tabular} \\
\hline ICB3 & \begin{tabular}{l} 
ID number for the third input parameter \(\left(\mathrm{X}_{3}\right)\) to the control block. ICB3 \(>0\) \\
defines a signal-variable parameter; \(\mathbf{I C B 3}<0\) defines a control-block output \\
parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 2. (Format 5A14) LUGAIN, LUXMIN, LUXMAX, LUC
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{l} 
Note: \\
\\
\\
\\
\\
\\
If \(\mid\) IOGRF \(|+|\) IOINP \(|+|\mathbf{I O L A B}|+|\mathbf{I O O U T}| \neq 0\) \\
this card. See Table 6-2 for a list of unit names and their SI and English units, \\
and Sa English conversion factors and shifts for these control-block
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline LUGAIN & Units-name label of the control-block gain factor. \\
\hline LUXMIN & \begin{tabular}{l} 
Units-name label of the control-block minimum value of its output parameter \\
(also defines the units of the control-block output parameter).
\end{tabular} \\
\hline LUXMAX & \begin{tabular}{l} 
Units-name label of the control-block maximum value of its output parameter \\
(also defines the units of the control-block output parameter).
\end{tabular} \\
\hline LUCON1 & Units-name label of the control-block first constant. \\
\hline LUCON2 & Units-name label of the control-block second constant. \\
\hline
\end{tabular}

\section*{Card Number 3. (Format 2A12) IDSTRING, CBTITLE}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: Input this card only if \(\mathbf{I C B N}=-9 . \quad\) ICBN \(=-9\) specifies constant value control block. Its value is allowed to change via the SNAP Runtime Intervention.} \\
\hline Variable & Description \\
\hline IDSTRING & Enter the string "CBTITLE" without quotation marks \\
\hline CBTITLE & Enter the title of the control block used for identification when using SNAP. Maximum length is 12 characters \\
\hline
\end{tabular}

Card Number 4. (Format 5E14.4) CBGAIN, CBXMIN, CBXMAX, CBCON1, CBCON2
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline CBGAIN & Control-block gain factor, G. \\
\hline CBXMIN & Control-block minimum value of its output parameter. \\
\hline CBXMAX & Control-block maximum value of its output parameter. \\
\hline
\end{tabular}

Card Number 4. (Format 5E14.4) CBGAIN, CBXMIN, CBXMAX, CBCON1, CBCON2
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline CBCON1 & \begin{tabular}{l} 
Control-block first constant. For ICBN = 102, CBCON1 is a composite number \\
defining the number of values to be input for the function table. For ICBN \(=\) \\
\(103, \mathbf{C B C O N 1}\) is the A \(_{0}\) additive constant which appears in the summation \\
expression (see ICBN number 103 below for more detail).
\end{tabular} \\
\hline CBCON2 & \begin{tabular}{l} 
Control-block second constant is required input for the ICBN \(=11,30,51,59\), \\
200, and 201 control-block functions. XOUT is initialized by TRACE to its \\
initial evaluated value for control-block functions ICBN = 11 and 59. For the \\
Laplace-transform function control blocks, ICBN = 26, 30, and 51, XOUT is \\
initialized to CBGAIN * XIN(ICB1). For the PI- and PID-controller function \\
control blocks, ICBN = 200 and 201, XOUT is initialized to the CBCON2 \\
value. For all other control-block function ICBN values, XOUT is initialized to \\
its initial evaluated value when CBCON2 is 0.0 or defined by a blank field. \\
Otherwise, XOUT is initialized to the nonzero input specified CBCON2 value.
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 4A14) LUYTAB, (LUXTAB(i), \(i=1, n)\)
Note: If ICBN \(=101\) or 102 (Word 2 on Control-Block Data Card Number 1) and IOALL \(=\mid\) IOGRF \(|+|\) IOINP \(|+|\) IOLAB \(|+|\) IOOUT \(\mid \neq 0\), input this card. The number of entries on this card depend on the number of independent variables defined by the user. An entry for LUYTAB and entries for LUXTAB must be entered. If \(\mathbf{I C B N}=101, \mathrm{n}=1\); if \(\mathbf{I C B N}=102, \mathrm{n}=2\) or 3 depending on the number of independent variables. See Table 6-2 for a list of units-name labels, their SI and English units symbols, and their SI to English conversion factors and shifts for these control-block function table parameters.

This card is units label input for table-input control blocks. There are two table-input control blocks, control block 101 and control block 102. Control block 101 is a table input where the dependent variable is a function of one independent variable; e.g., a table of flow vs. pressure or a table pump rpm vs. time. Control block 102 is a table input where the dependent variable is a function of two or three independent variables e.g., a table of fluid density as a function of pressure and temperature (two independent variables) or a table of fluid density as a function of pressure, temperature, and a composition fraction (three independent variables).

For control block 101, the user only has to input two units-name labels on this card, LUYTAB and LUXTAB(1). For example, a table of flow vs. pressure, the input for LUYTAB would be lumassfw and the input for \(\mathbf{L U X T A B}(\mathbf{1})\) would be lupressa. (See Table 6-2 for the units names).
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline LUYTAB & Units-name label of the control-block table dependent-variable values. \\
\hline LUXTAB(1) & Units-name label of the control-block table first independent-variable values. \\
\hline LUXTAB(2) & \begin{tabular}{l} 
Units-name label of the control-block table second independent-variable \\
values.
\end{tabular} \\
\hline LUXTAB(3) & Units-name label of the control-block table third independent-variable values. \\
\hline
\end{tabular}

Card Number 6. (Load Format) \(\operatorname{CBFTAB}(I), I=(1, N)\)
\begin{tabular}{|c|l|l|}
\hline \multicolumn{3}{|c|}{ Note: If ICBN = 101 or 102 (Word 2 on Control-Block Data Card Number 1), input } \\
this card.
\end{tabular}\(|\)\begin{tabular}{c|l|}
\hline Variable & Dimension
\end{tabular}

Card Number 7. (Format 4A14) LUWTA
\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l} 
If ICBN \(=103\) (Word 2 on Control-Block Data Card Number 1) and ICB2 \(=1\) \\
\\
\\
\\
\\
\\
\\
thord 4 on Control-Block Data Card Number 1), and \\
this card. See Table 6-2 for a list of unit names and their SI and English units, \\
and SI to English conversion factors and shifts for these control-block \\
parametersinput this card.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline LUWTA & \begin{tabular}{l} 
Units-name label for all N elements of the WTA array that is input by Card \\
Number 8
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. WTA(I), \(I=(1, N)\) Load Format
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Note: If ICBN = 103 (Word 2 on Control-Block Data Card Number 1), input this } \\
card.
\end{tabular}

Card Number 9. (Load Format) IDX(I), I = (1, N)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Note: If ICBN = 103 or 104 (Word 2 on Control-Block Data Card Number 1), input } \\
this card.
\end{tabular}\(\quad\) Description \begin{tabular}{|l|l|}
\hline Variable & Dimension
\end{tabular}

Card Number 10. (Format 3E14.4) CBDT, CBTAU, CBWT
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l} 
If ICBN \(=200\) or 201 (Word 2 on Control-Block Data Card Number 1), input \\
this card.
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline CBDT & \begin{tabular}{l} 
The \(\Delta \mathrm{t}_{\mathrm{d}}\) time constant (s) for removal of PI-controller or PID-controller error \\
(where convergence of the form \(\Delta \mathrm{F}(\mathrm{t})=\Delta \mathrm{F}_{\mathrm{o}} \times \exp \left[\left(\mathrm{t}_{\mathrm{o}}-\mathrm{t}\right) / \Delta \mathrm{t}_{\mathrm{d}}\right]\) is assumed).
\end{tabular} \\
\hline CBTAU & The \(\tau\) time constant (s) for the first-order lag function operation. \\
\hline CBWT & \begin{tabular}{l} 
The first constant Wt value \((-)\) for the weighted summing function operation \\
when ICBN \(=201\).
\end{tabular} \\
\hline
\end{tabular}

In the following control block function operations \(G\) is the Gain (CBGAIN word 1 on Card Number 4). X1, X2, and X3 are inputs to the control block from output of ICB1, ICB2 and ICB3; respectively; (words 3, 4 and 5 on Card Number 1). C1 and C2 are CBCON1 and CBCON2 (word 4 and 5 on Card Number 4). Users may note large gaps in the numbering scheme for the ICBN parameter. This is by design; it does not represent a problem with the manual in terms of missing control blocks types.

\section*{\(\mathbf{I C B N}=1 . \quad\) Absolute value}

Description: \(\quad X_{o u t}=G \cdot\left|X_{1}\right|\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally.
\(I C B N=2 . \quad\) Arccosine
Description: \(\quad X_{\text {out }}=G \cdot \cos ^{-1}\left(X_{1}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the units label of the output value should be an angle (radians or degrees)

\section*{\(I C B N=3 . \quad\) Add}

Description: \(\quad X_{\text {out }}=G \cdot\left(X_{1}+X_{2}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & Yes & ID number of input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{\(I C B N=4 . \quad\) Integerizer}

Description: \(\quad X_{\text {out }}=G \cdot \operatorname{REAL}\left(\operatorname{INT}\left(X_{1}\right)\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- as per the FORTRAN definition of the INT intrinsic function, if \(\left|\mathrm{X}_{1}\right|<1\), then \(\operatorname{INT}\left(\mathrm{X}_{1}\right)\) has the value 0 ; if \(\left|\mathrm{X}_{1}\right|>=1\), then \(\operatorname{INT}\left(\mathrm{X}_{1}\right)\) is the integer whose magnitude is the largest integer that does not exceed the magnitude of \(X_{1}\) and whose sign is the same as the sign of \(X_{1}\)
- the input signal should be less than or equal to 2.81474976710654 d 14 to ensure proper integerization. If it is greater than this value, the control block will simply maintain its last calculated value

\section*{\(I C B N=5 . \quad\) Logical AND}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G, \text { if }\left(X_{1}=1.0\right) . \text { AND. }\left(X_{2}=1.0\right) \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- The input values given by the ICB1 and ICB2 ID numbers must be logical in nature ( 0.0 or 1.0 )

\section*{\(I C B N=6 . \quad\) Arcsine}

Description: \(\quad X_{\text {out }}=G \cdot \sin ^{-1}\left(X_{1}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the units label of the output value should be an angle (radians or degrees)
- if the input value is not within the allowable range of -1.0 to +1.0 , the control block will simply maintain it's previously calculated value

\section*{\(\operatorname{ICBN}=7 . \quad\) Arctangent}

Description: \(\quad X_{\text {out }}=G \cdot \tan ^{-1}\left(X_{1}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON 2 ; otherwise, the control block's initial state is evaluated internally
- the units label of the output value should be an angle (radians or degrees)
\(I C B N=8 . \quad\) Arctangent 2
Description: \(\quad X_{\text {out }}=G \cdot \operatorname{ATAN2}\left(X_{1}, X_{2}\right)\)
where ATAN2 is the actual FORTRAN 90 intrinsic function used to evaluate the expression.

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- this result of this function is the principal value of the non-zero complex number \(\left(\mathrm{X}_{2}, \mathrm{X}_{1}\right)\) formed by the real arguments \(X_{1}\) and \(X_{2}\).
- A FORTRAN reference manual should be consulted for a more detailed explanation concerning the behavior of this function.
- the rules of the ATAN2 FORTRAN intrinsic function dictate that if \(X_{1}\) has the value zero, then \(X_{2}\) must not have the value zero either
\(I C B N=9 . \quad\) Constant
Description: \(\quad X_{\text {out }}=G \cdot C_{1}\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & No & \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the user can optionally set icbn to -9 and provide a control block title. This is used when coupling

TRACE to the VEDA post-processor.

\section*{\(I C B N=10 . \quad\) Cosine}

Description: \(\quad X_{\text {out }}=G \cdot \cos \left(X_{1}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the units label of the input value should be an angle (radians or degrees)

ICBN = 11. \(\quad\) Dead band
Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot\left(X_{1}-C_{2}\right), \text { if } \mathrm{X}_{1}>C_{2} \\ G \cdot\left(X_{1}-C_{1}\right), \text { if } \mathrm{X}_{1}<C_{1} \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & lower bound of the dead band zone \\
\hline CBCON2 & Yes & upper bound of the dead band zone \\
\hline
\end{tabular}
- for this control block, the user has no control for specifying the initial value. The code will evaluate it internally
- CBCON2 must be greater than CBCON1 or an input error will result

\section*{\(I C B N=12 . \quad\) Derivative}

Description: \(\quad X_{\text {out }}=G \cdot \frac{d}{d t}\left(X_{1}\right)\)
The following functional form is actually used by the computational engine:
\[
X_{o u t}=G \cdot \frac{\left(X_{1}^{n}-X_{1}^{n-1}\right)}{\Delta t}
\]

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the control block output is hardwired to 0.0 when the initial value is evaluated internally

\section*{\(I C B N=13 . \quad\) Double limited integrator}

\section*{Description:}
\[
\begin{aligned}
& X_{\text {out }}=\left\{\begin{array}{l}
G \cdot \frac{1}{2}\left(\left(\frac{1}{2} X_{1} \Delta t\right)+X_{\text {sum }}\right) \Delta t+X_{\text {out }}, \text { if } \mathrm{C}_{1}=1.0 \\
X_{\text {sum }} \Delta t+X_{\text {out }}, \text { if } \mathrm{C}_{1}=0.0
\end{array}\right. \\
& X_{\text {sum }}=\left\{\begin{array}{l}
\text { and } \\
\sum_{j=0}^{n-1} \frac{1}{2} X_{1}^{j} \Delta t^{j}, \text { if } \mathrm{C}_{1}=1.0 \\
\sum_{j=0}^{n-1} G \cdot X_{1}^{j} \Delta t^{j}, \text { if } \mathrm{C}_{1}=0.0
\end{array}\right.
\end{aligned}
\]
where \(n\) refers to the current timestep number. This means that \(X_{\text {sum }}\) is just a summation over all previous timesteps. \(\mathrm{X}_{1}\) and \(\mathrm{X}_{\text {sum }}\) are reset to 0.0 if XOUT is against a limit and the sign of \(\mathrm{X}_{1}\) does not change.

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & polynomial order of integral \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the control block output is hardwired to 0.0 when the initial value is evaluated internally
- CBCON1 (= 0.0 or 1.0\()\) is the polynomial order for approximating the time dependence of \(X_{1}\) and its integral

\section*{\(I C B N=14 . \quad\) Divide}

Description:
\[
X_{\text {out }}=\left\{\begin{array}{l}
G \cdot \frac{X_{1}}{X_{2}}, \text { if } C_{1}=0.0 \\
G \cdot \frac{C_{1}}{X_{1}}, \text { if } \mathrm{C}_{1} \neq 0.0
\end{array} .\right.
\]

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of the numerator/denominator signal \\
\hline ICB2 & Optional & \begin{tabular}{l} 
ID number of the denominator signal - required \\
when CBCON1 \(=0.0\)
\end{tabular} \\
\hline ICB3 & No & \\
\hline CBCON1 & Optional & use if constant numerator is desired \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- if a constant numerator is desired, then \(|\mathrm{CBCON} 1|\) must be greater than 1.0E-6 (accounts for numerical roundoff close to zero). Otherwise, a value of 0.0 is assumed causing the control block to default to its normal behavior of using the value given by the ICB1 ID number as the numerator

\section*{ICBN = 15. Logical exclusive OR}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G, i f\left(X_{1}+X_{2}\right)=1.0 \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- The input values given by the ICB1 and ICB2 ID numbers must be logical in nature ( 0.0 or 1.0 )

\section*{\(I C B N=16 . \quad\) Logical equivalent}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G, \text { if } X_{1}=X_{2} \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- The input values given by the ICB1 and ICB2 ID numbers must be logical in nature ( 0.0 or 1.0 )

\section*{\(\mathbf{I C B N}=17 . \quad\) Exponential Function}

Description: \(\quad X_{\text {out }}=G \cdot e^{X_{1}}\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the input value given by ICB1 must lie within the range of -675.84 and 741.67 , otherwise the previously calculated output value is used

\section*{ICBN = 18. Logical flip-flop}

\section*{Description:}
\(X_{o u t}=\mathrm{G}\) or 0.0 , flip-flop output value that changes whenever
\(X_{1}\) changes state (only if \(X_{3}=1.0\) )

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & No & \\
\hline ICB3 & Yes & ID number of second input signal \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON 2 ; otherwise, the control block's initial state is evaluated internally
- the control block output is hardwired to 0.0 when the initial value is evaluated internally
- the input values given by the ICB1 and ICB3 ID numbers must be logical in nature ( 0.0 or 1.0 )

\section*{\(\mathbf{I C B N}=19 . \quad\) Gate}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot X_{1}, \text { if } X_{2}=1.0 \\ 0.0, \text { if } X_{2}=0.0\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the input value given by the ICB2 ID number must be logical in nature ( 0.0 or 1.0 )

\section*{\(I C B N=20 . \quad\) Greater than or equal to}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G, \text { if } X_{1} \geq X_{2} \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{\(\mathbf{I C B N}=21 . \quad\) Greater than}

Description: \(\quad X_{o u t}=\left\{\begin{array}{l}G, \text { if } X_{1}>X_{2} \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{\(\mathbf{I C B N}=22 . \quad\) Input switch}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot X_{1}, \text { if } X_{3}=1.0 \\ G \cdot X_{2}, \text { if } X_{3}=0.0\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & Yes & ID number of third input signal \\
\hline CBCON1 & No & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- The input value given by the ICB3 ID number must be logical in nature ( 0.0 or 1.0 )

\section*{\(I C B N=23 . \quad\) Integrate}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot\left(\frac{1}{2} X_{1} \Delta t\right)+X_{\text {out }}, \text { if } C_{1}=1.0 \\ G \cdot\left(X_{1} \Delta t\right)+X_{\text {out }}, \text { if } C_{1}=0.0\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & polynomial order of approximation \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the control block output is hardwired to 0.0 when the initial value is evaluated internally
- CBCON1 \(=0.0\) or 1.0 is the polynomial order for approximating the time dependence of \(\mathrm{X}_{1}\)

\section*{ICBN =24. Integrate with mode control}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}0.0, \text { if }\left(X_{2}+X_{3}\right)=0.0, \text { reset mode } \\ X_{\text {out }}, \text { if }\left(X_{2}+X_{3}\right)=1.0, \text { hold mode } \\ G \cdot\left(\frac{1}{2} X_{1} \Delta t\right)+X_{\text {out }}, \text { if }\left(X_{2}+X_{3}\right)=2.0, \text { integrate mode }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & Yes & ID number of third input signal \\
\hline CBCON1 & Yes & polynomial order of approximation \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the control block output is hardwired to 0.0 when the initial value is evaluated internally
- The input values given by the ICB2 and ICB3 ID numbers must be logical in nature ( 0.0 or 1.0 )
- \(\quad\) CBCON1 \(=0.0\) or 1.0 is the polynomial order for approximating the time dependence of \(\mathrm{X}_{1}\)

\section*{ICBN \(=25 . \quad\) Logical inclusive \(O R\)}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}0.0, \text { if }\left(X_{1}+X_{2}\right)=0.0 \\ G, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- The input values given by the ICB1 and ICB2 ID numbers must be logical in nature ( 0.0 or 1.0 )

\section*{\(I C B N=26 . \quad\) First-order lag transfer function}

Description: \(\quad X_{\text {out }}=X_{O}(t)\)
where \(\mathrm{X}_{\mathrm{O}}(\mathrm{t})\) is the solution of the first order differential equation
\[
C_{1} \cdot \frac{d}{d t} X_{O}(t)+X_{O}(t)=G \cdot X_{1}(t)
\]
where \(\mathrm{C}_{1}\) is the lag constant, and G is a constant gain factor. In the Laplace transform domain, \(\mathrm{X}_{\mathrm{O}}\) is given by
\[
X_{O}(s)=\frac{G \cdot X_{1}(s)+C_{1} \cdot X_{O}(\mathrm{t}=0)}{C_{1} \cdot s+1}
\]
\(X_{O}\) is initialized to \(G^{*} X_{1}\) at \(t=0\).

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & Lag constant, must be \(>=0.0\) \\
\hline CBCON2 & No & \\
\hline
\end{tabular}
- the user is not able to specify this control block's initial value - it is given by \(\mathrm{G}^{*} \mathrm{ICB} 1\) at \(\mathrm{t}=0\)
- if CBCON \(1<0.0\), a fatal error is returned
- when CBCON1 \(=0.0, \mathrm{X}_{\text {out }}\) is given by \(\mathrm{G}^{*} \mathrm{ICB} 1\)
\(I C B N=27 . \quad\) Logic delay
Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}0.0, \text { if } X_{1}=0.0 \text { OR time }>\left(\mathrm{C}_{1}+t_{s}\right) \\ G, \text { if } X_{1}=1.0 \text { AND time } \leq\left(C_{1}+t_{s}\right)\end{array}\right.\)
where \(\mathrm{t}_{\mathrm{s}}\) is the time when \(\mathrm{L}_{1}\) switches from 0.0 to 1.0 .

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & constant denoting the delay time \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- The input value given by the ICB1 ID number must be logical in nature ( 0.0 or 1.0 )

\section*{\(\mathbf{I C B N}=28 . \quad\) Logic general-purpose counter}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}0.0, \text { if } X_{3}=0.0,(\text { reset mode }) \\ G \cdot N_{\text {state }}, \text { if } X_{3}=1.0,(\text { count mode })\end{array}\right.\)
where \(\mathrm{N}_{\text {state }}=\) number of times \(\mathrm{L}_{1}\) has changed state since enabled (when \(\mathrm{L}_{3}=1.0\) )

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & No & \\
\hline ICB3 & Yes & ID number of second input signal \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the control block output is hardwired to 0.0 when the initial value is evaluated internally
- The input values given by the ICB1 and ICB3 ID numbers must be logical in nature ( 0.0 or 1.0 )

\section*{ICBN = 29. Logic input switch}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot X_{1}, \text { if } X_{3}=1.0 \\ G \cdot X_{2}, \text { if } X_{3}=0.0\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & Yes & ID number of third input signal \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- The input values given by the ICB2, ICB3 and ICB3 ID numbers must be logical in nature ( 0.0 or 1.0)

\section*{ICBN \(=\) 30. \(\quad\) Lead-lag transfer function}

Description: \(\quad X_{\text {out }}=X_{O}(t)\)
where \(X_{O}(t)\) is the solution of the first order differential equation
\[
C_{2} \cdot \frac{d}{d t} X_{O}(t)+X_{O}(t)=G \cdot\left(C_{1} \cdot \frac{d}{d t} X_{1}(t)+X_{1}(t)\right)
\]
where \(\mathrm{C}_{1}\) is the lead constant (always \(>=0.0\) ), \(\mathrm{C}_{2}\) is the lag constant (always \(>=0.0\) ), and G is a constant gain factor. In the Laplace transform domain, \(\mathrm{X}_{\mathrm{O}}\) is given by
\[
X_{O}(s)=\frac{G \cdot X_{1}(s) \cdot\left(C_{1} \cdot s+1\right)+C_{2} \cdot X_{O}(\mathrm{t}=0)-C_{1} \cdot G \cdot X_{1}(\mathrm{t}=0)}{C_{2} \cdot s+1}
\]
\(X_{O}\) is initialized to \(G^{*} X_{1}\) at \(t=0\).

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & the lead constant, always \(>=0.0\) \\
\hline CBCON2 & Yes & the lag constant, always \(>=0.0\) \\
\hline
\end{tabular}
- the user is not able to specify this control block's initial value - it is given by \(\mathrm{G}^{*} \mathrm{X}_{1}\) at \(\mathrm{t}=0\)
- CBCON1 and CBCON2 must always be \(>=0.0\)
- if CBCON1 \(=\mathrm{CBCON} 2\), the output value is given by \(\mathrm{G}^{*} \mathrm{X}_{1}(\) unless \(\mathrm{CBCON} 2=0.0)\)

\section*{ICBN \(=31 . \quad\) Limited integrator}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot\left(\frac{1}{2} X_{1} \Delta t\right)+X_{\text {out }}, \text { if } C_{1}=1.0 \\ G \cdot\left(X_{1} \Delta t\right)+X_{\text {out }}, \text { if } C_{1}=0.0\end{array}\right.\)
\(X_{1}\) is set to 0.0 if \(X_{\text {OUT }}\) is against a limit and the sign of \(X_{1}\) does not change.

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & polynomial order of approximation \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the control block output is hardwired to 0.0 when the initial value is evaluated internally
- \(\quad\) CBCON \(1=0.0\) or 1.0 is the polynomial order for approximating the time dependence of \(X_{1}\).

\section*{\(I C B N=32 . \quad\) Natural logarithm}

Description: \(\quad X_{\text {out }}=G \cdot \ln \left(X_{1}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the signal value associated with the ICB1 ID number should always be \(>0.0\), otherwise a fatal error will be produced
\(\operatorname{ICBN}=33 . \quad\) Less than or equal to
Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G, i f\left(X_{1} \leq X_{2}\right) \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{\(I C B N=34 . \quad\) Less than}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G, i f\left(X_{1}<X_{2}\right) \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
\(I C B N=35 . \quad\) Maximum of two signals
Description: \(\quad X_{\text {out }}=\operatorname{MAX}\left(X_{1}, X_{2}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
\(I C B N=36 . \quad\) Maximum during transient

Description: \(\quad X_{o u t}=G \cdot M A X\left(X_{1}, X_{1}^{\max }\right)\)
where \(X_{1}{ }^{\text {max }}\) is the maximum value of the input signal since the start of the transient

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the control block output is hardwired to \(\mathrm{X}_{1}\) when the initial value is evaluated internally

\section*{\(I C B N=37 . \quad\) Minimum of two signals}

Description: \(\quad X_{\text {out }}=\operatorname{MIN}\left(X_{1}, X_{2}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
\(\mathbf{I C B N}=38 . \quad\) Minimum during transient

Description: \(\quad X_{\text {out }}=G \cdot \operatorname{MIN}\left(X_{1}, X_{1}^{\text {min }}\right)\)
where \(X_{1}{ }^{\text {min }}\) is the minimum value of the input signal since the start of the transient

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the control block output is hardwired to \(\mathrm{X}_{1}\) when the initial value is evaluated internally

\section*{\(\mathbf{I C B N}=39\). Multiply}

Description: \(\quad X_{\text {out }}=G \cdot X_{1} X_{2}\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{\(I C B N=40 . \quad\) Logical NOT AND}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}0.0, \text { if }\left(X_{1}+X_{2}\right)=2.0 \\ G, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- The input values given by the ICB1 and ICB2 ID numbers must be logical in nature ( 0.0 or 1.0 )

\section*{\(I C B N=41 . \quad\) Logical NOT equal}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G, i f\left(X_{1} \neq X_{2}\right) \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON 2 ; otherwise, the control block's initial state is evaluated internally
- The input values given by the ICB1 and ICB2 ID numbers must be logical in nature ( 0.0 or 1.0 )

\section*{\(I C B N=42 . \quad\) Logical NOT OR}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G, \text { if }\left(X_{1}+X_{2}\right)=0.0 \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- The input values given by the ICB1 and ICB2 ID numbers must be logical in nature ( 0.0 or 1.0 )

\section*{ICBN \(=\) 43. \(\quad\) Logical NOT}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G, \text { if } X_{1}=0.0 \\ 0.0, \text { if } X_{1}=1.0\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- The input value given by the ICB1 ID number must be logical in nature ( 0.0 or 1.0 )
\(I C B N=44 . \quad\) Positive difference
Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot\left(X_{1}-X_{2}\right), \text { if }\left(X_{1}>X_{2}\right) \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

ICBN = 45. Quantizer
Description: \(\quad X_{\text {out }}=G \cdot \operatorname{NINT}\left(X_{1}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- NINT is the actual F90 intrinsic used - it calculates the nearest integer given a real number, based on standard round-off rules.
- the input signal should be less than or equal to 2.81474976710654 d 14 to ensure proper quantization. If it is greater than this value, the code will produce a fatal error
\(I C B N=46 . \quad\) Ramp
Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot\left(\text { time }-C_{1}\right), \text { if time }>C_{1} \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & No & \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & constant denoting starting time of ramp operation \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when \(\mathrm{CBCON} 2<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

ICBN \(=\) 47. Random number generator
Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot R A N F, \text { if time } \geq C_{1} \\ 0.0, \text { otherwise }\end{array}\right.\)
where \(0.0 \leq R A N F \leq 1.0\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & No & \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & starting time of random number generation \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{\(I C B N=48 . \quad\) Sign function}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot\left|X_{1}\right|, \text { if } X_{2} \geq 0.0 \\ -G \cdot\left|X_{1}\right|, \text { if } X_{2}<0.0\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
\(I C B N=49 . \quad\) Sine

Description: \(\quad X_{\text {out }}=G \cdot \sin \left(X_{1}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- \(\quad\) the units label of input signal, \(X_{1}\), should be an angle \(=(\mathrm{rad}, \mathrm{deg})\)

ICBN \(=50 . \quad\) Sign inversion
Description: \(\quad X_{\text {out }}=-G \cdot X_{1}\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{ICBN = 51. \(\quad\) Second-order transfer function}

\section*{Description: \(\quad X_{o u t}=X_{O}(t)\)}
where \(X_{O}(t)\) is the solution of the first order differential equation
\[
C_{2} \cdot \frac{d^{2}}{d t} X_{O}(t)+C_{1} \cdot \frac{d}{d t} X_{O}(t)+X_{O}(t)=G \cdot X_{1}(t)
\]
where \(\mathrm{C}_{1}\) is the lead constant (always \(\geq 0.0\) ), \(\mathrm{C}_{2}\) is the lag constant (always \(\geq 0.0\) ), and G is a constant gain factor. In the Laplace transform domain, \(\mathrm{X}_{\mathrm{O}}\) is given by
\[
X_{O}(s)=\frac{G \cdot X_{1}(s) \cdot\left(C_{1} \cdot X_{O}(\mathrm{t}=0)\right)+C_{2} \cdot\left\{s \cdot X_{O}(\mathrm{t}=0)+\left.\frac{d}{d t} X_{O}(t)\right|_{\mathrm{t}=0}\right\}}{C_{2} \cdot s^{2}+C_{1} \cdot s+1}
\]
\(X_{O}\) is initialized to \(G^{*} X_{1}\) at \(t=0\).

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & the lead constant, always \(>=0.0\) \\
\hline CBCON2 & Yes & the lag constant, always \(>=0.0\) \\
\hline
\end{tabular}
- the user is not able to specify this control block's initial value - it is given by \(\mathrm{G}^{*}\) ICB1 at \(\mathrm{t}=0\)
- CBCON1 and CBCON2 must both be \(>=0.0\), otherwise an input error will occur

\section*{\(\mathbf{I C B N}=52 . \quad\) Square root}

Description: \(\quad X_{\text {out }}=G \cdot \sqrt{X_{1}}\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the input value given by the ICB1 ID number should never be negative. If it is, a fatal error is reported

\section*{\(I C B N=53 . \quad\) Step}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G, \text { if time } \geq C_{1} \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & No & \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & starting time of step operation \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control
block's initial state is evaluated internally

\section*{\(\mathbf{I C B N}=\) 54. \(\quad\) Subtract}

Description: \(\quad X_{\text {out }}=G \cdot\left(X_{1}-X_{2}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{\(\mathbf{I C B N}=55 . \quad\) Tangent}

Description: \(\quad X_{\text {out }}=G \cdot \operatorname{TAN}\left(X_{1}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the units label of input signal, \(\mathrm{X}_{1}\), should be an angle (radians or degrees)

\section*{ICBN \(=\) 56. \(\quad\) Sum constant}

Description: \(\quad X_{\text {out }}=G \cdot\left(X_{1}+C_{1}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & constant to be summed with the input signal \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{ICBN = 57. Sum three}

Description: \(\quad X_{\text {out }}=G \cdot\left(X_{1}+X_{2}+X_{3}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & Yes & ID number of third input signal \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot X_{2}, \text { if } X_{1}>X_{2} \\ G \cdot X_{3}, \text { if } X_{1}<X_{3} \\ G \cdot X_{1}, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & Yes & ID number of third input signal \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON 2 ; otherwise, the control block's initial state is evaluated internally

ICBN = 59. Weighted summer
Description: \(\quad X_{\text {out }}=G \cdot\left(C_{1} X_{1}+C_{2} X_{2}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & weighting factor for the first input signal \\
\hline CBCON2 & Yes & weighting factor for the second input signal \\
\hline
\end{tabular}
- for this control block, the user has no control for specifying the initial value. The code will evaluate it internally
\(\mathrm{ICBN}=60 . \quad\) Raise to power

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot X_{1}^{X_{2}}, \text { if } C_{1}=0.0 \\ G \cdot X_{1}^{C_{1}}, \text { if } \mathrm{C}_{1} \neq 0.0\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Optional & \begin{tabular}{l} 
ID number of second input signal - required when \\
CBCON1 \(=0.0\)
\end{tabular} \\
\hline ICB3 & No & \\
\hline CBCON1 & Optional & use if a constant exponent is desired \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- if a constant exponent is desired, then \(|\mathrm{CBCON} 1|\) must be greater than \(1.0 \mathrm{E}-6\). Otherwise, a value of 0.0 (to account for numerical roundoff) is assumed, causing the control block to default to its default behavior of using the ICB2 input value as the exponent

ICBN = 61. Zero-order hold

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G \cdot X_{1}, \text { if } X_{2}=1.0 \\ X_{\text {out }}, \text { otherwise }\end{array}\right.\)
Notes:
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- the control block output is hardwired to 0.0 when the initial value is evaluated internally
- The input value given by the ICB2 ID number must be logical in nature ( 0.0 or 1.0 )

\section*{\(I C B N=62 . \quad\) Trip}

Description: \(\quad X_{\text {out }}=\left\{\begin{array}{l}G, \text { if } X_{1}=+1.0 \text { or }-1.0 \\ 0.0, \text { otherwise }\end{array}\right.\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- The input value given by the ICB1 ID number must be logical in nature ( 0.0 or 1.0 ). The user should beware that the input value should correspond to a trip's set status, although the code does not enforce this rule - any input with a logical value will work.

\section*{\(I C B N=63 . \quad\) Trip Time}

\section*{Description:}
\(X_{\text {out }}=\left\{\begin{array}{l}G \cdot T_{\text {set }}, \text { if the trip signal denoted by } X_{1} \text { has a set status of } \pm 1.0 \text { (on) } \\ -1.0, \text { if the trip signal denoted by } X_{1} \text { has a set status of } 0.0 \text { (off) }\end{array}\right.\)
where \(T_{\text {set }}\) is the time the trip (denoted by input signal \(X_{1}\) ) last turned true.

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- if this control block type is added to a restart run and the trip to which it refers is already on at time zero, then the time that is used is the transient time pulled from the dump file, not when the trip actually turned on during the previous run.

\section*{ICBN = 64. \(\quad\) Minimum of multiple Inputs}

Description: \(\quad X_{\text {out }}=\operatorname{MIN}\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & \begin{tabular}{l} 
this field specifies the number of input ID table \\
entries
\end{tabular} \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when \(\mathrm{CBCON} 2<>0.0\), the control block's initial value is set to CBCON 2 ; otherwise, the control block's initial state is evaluated internally
- an additional card is required by this control block type in order for the user to specify each of the input ID numbers that are needed. The number of entries corresponds to the value provided for ICB1.

\section*{\(I C B N=65 . \quad\) Maximum of multiple inputs}

Description: \(\quad X_{\text {out }}=\operatorname{MAX}\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & \begin{tabular}{l} 
this field specifies the number of input ID table \\
entries
\end{tabular} \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON 2 ; otherwise, the control block's initial state is evaluated internally
- an additional card is required by this control block type in order for the user to specify each of the input ID numbers that are needed. The number of entries corresponds to the value provided for ICB1.

\section*{\(\mathbf{I C B N}=76 . \quad\) Pass Through}

Description: \(\quad X_{\text {out }}=X_{\text {in }}\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of the input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{ICBN = 77. Time of Change}

Description: \(\quad X_{\text {out }}=\) current time if \(\left(\Delta X_{1}>0\right)\) since last timestep

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of the input signal \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{\(I C B N=100 . \quad\) Time delay}

Description:
\[
X_{o u t}=\left\{\begin{array}{l}
G \cdot X_{1}(t=0), \text { if time } \leq C_{1} \\
G \cdot X_{1}\left(\mathrm{t}=\text { time- } \mathrm{C}_{1}\right), \text { otherwise }
\end{array}\right.
\]

To clarify, if (time .LE. \(\mathrm{C}_{1}\) ), \(\mathrm{X}_{1}\) is evaluated at the time the control block is input; otherwise \(\mathrm{X}_{1}\) is evaluated at time (time- \(\mathrm{C}_{1}\) ). The user must also provide the variable n , which is the number of storage table pairs for saving values of \(\mathrm{X}_{1}\) over the last \(\mathrm{C}_{1}\) seconds. \(\mathrm{X}_{1}\) is stored at intervals of approximately \(\mathrm{C}_{1} /(\mathrm{n}-1) \mathrm{s}\); the control block uses linear interpolation to obtain the desired value of \(\mathrm{X}_{1}\left(\right.\) time \(\left.-\mathrm{C}_{1}\right)\).

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & Yes & n, the number of storage table pairs \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
\(I C B N=101\). Function of one independent variable
Description: \(\quad X_{\text {out }}=G \cdot f\left(X_{1}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of input signal \\
\hline ICB2 & Yes & \begin{tabular}{l} 
denotes the number of table entry pairs that define \\
the lookup table
\end{tabular} \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON 2 ; otherwise, the control block's initial state is evaluated internally

\section*{ICBN \(=102\). Function of \(\mathbf{2}\) or \(\mathbf{3}\) independent variables}

Description: \(\quad X_{\text {out }}=G \cdot f\left(X_{1}, X_{2}, X_{3}\right)\)

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of first input signal \\
\hline ICB2 & Yes & ID number of second input signal \\
\hline ICB3 & Yes & ID number of third input signal \\
\hline CBCON1 & Yes & \begin{tabular}{l} 
denotes the number of table entry pairs that define \\
the lookup table (in the form of a composite \#)
\end{tabular} \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when \(\mathrm{CBCON} 2<>0.0\), the control block's initial value is set to CBCON 2 ; otherwise, the control block's initial state is evaluated internally
- CBCON1, is a composite number with the following form: \(10000.0 * \mathrm{~N}_{1}+100.0 * \mathrm{~N}_{2}+\mathrm{N}_{3}\), where \(N_{1}=\) number of \(X_{1}\) values ( \(2<=N_{1}<=99\) ), \(N_{2}=\) number of \(X_{2}\) values ( \(2<=N_{2}<=99\) ), and \(N_{3}=\) number of \(X_{3}\) values ( \(2<=N_{3}<=99\) ).
- Input zero for \(\mathrm{X}_{3}\) and \(\mathrm{N}_{3}\) for a tabular function of two independent variables.
- Input the function table in the following order: the \(\mathrm{N}_{1}\) values of \(\mathrm{X}_{1}\), the \(\mathrm{N}_{2}\) values of \(\mathrm{X}_{2}\), the \(\mathrm{N}_{3}\) values of \(\mathrm{X}_{3}\), and the \(\left[\mathrm{N}_{1} * \mathrm{~N}_{2} * \max \left(1, \mathrm{~N}_{3}\right)\right]\) function values.

\section*{\(I C B N=103\). Multiple summation}

Description:
\[
X_{\text {out }}=G \cdot\left(C_{1}+\sum_{i=1}^{n}\left(A_{i} X_{i}\right)\right)
\]

The variable n denotes the number of \(\mathrm{X}_{\mathrm{n}}\) entries which represent the control block input ID numbers. The ICB2 variable is used as a flag ( 0 or 1 ) to denote the presence of the \(A_{n}\) weighting factor data. When ICB2=1, an appropriate units label corresponding to the \(A_{n}\) factors is input immediately following control block Card Number 3. Then the weighting factors ( \(A_{1}\) through \(A_{n}\) ) are specified (in load format). If ICB2 \(=0\), then all weighting factors are internally set to 1.0 . The input ID's are included as an array of numbers (also in load format and dimension \(n\) ) immediately following the weighting factors (when ICB2=1) or Card Number 3 (when ICB2=0).

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & \begin{tabular}{l} 
the total number of input signal ID's specified in \\
the table input
\end{tabular} \\
\hline ICB2 & Yes & \begin{tabular}{l} 
flag denoting the presence of weighting factors (0 \\
or 1)
\end{tabular} \\
\hline ICB3 & No & \\
\hline CBCON1 & Optional & leading constant \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally
- Additional input variables (beyond those listed above - see Card Number 7, Card Number 8, and Card Number 9) are required by this control block type in order for the user to specify each of the input ID numbers that are needed. The number of entries corresponds to the value provided
for ICB 1 .

\section*{\(I C B N=104\). Multiple product}

Description: \(\quad X_{\text {out }}=G \cdot \prod^{n} X_{i}\)
\[
i=1
\]

The variable n denotes the number of \(\mathrm{X}_{\mathrm{i}}\) table entries which represent the control block inputs ID's. These values are entered as an array of values immediately following control block card 3.

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & \begin{tabular}{l} 
this is n, the total number of input signal ID's \\
specified in the table input
\end{tabular} \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & No & \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{\(I C B N=200\). PI controller}

\section*{Description: \(\quad X_{\text {out }}=A=A_{0}+\Delta A\)}

Refer to Figure 6-1 for a schematic of the functional form of this control block. \(X_{1}=I D\) number of \(F, X_{2}\) \(=I D\) number of \(F_{d}\) when \(F_{d}\) is an input parameter rather than a constant value; \(C_{1}=F_{d}\), a constant value; \(\mathrm{C}_{2}=\mathrm{A}_{0}\), the initial \(\mathrm{X}_{\mathrm{OUT}} ; \mathrm{G}=(\Delta \mathrm{A} / \Delta \mathrm{F}) ; \mathrm{X}_{\mathrm{MIN}}=\mathrm{A}_{\min } ;\) and \(\mathrm{X}_{\mathrm{MAX}}=\mathrm{A}_{\text {max }}\). A third input-data card is required to specify \(\Delta \mathrm{t}_{\mathrm{d}}>0.0\) and \(\tau \geq 0.0\).

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of signal to be controlled \\
\hline
\end{tabular}
\[
\Delta A_{P I}=\left(\frac{\Delta A}{\Delta F}\right)_{e s t}\left[\Delta F+\left(\frac{1}{\Delta t_{d}}\right) \int \Delta F d t\right]
\]

PI Control Block


Figure. 6-1. Proportional Plus Integral Controller Diagram.
\begin{tabular}{|l|l|l|}
\hline ICB2 & Optional & desired setpoint, if dynamic \\
\hline ICB3 & No & \\
\hline CBCON1 & Optional & desired setpoint, if constant \\
\hline CBCON2 & Yes & control block initial value \\
\hline
\end{tabular}
- in this case, the CBCON2 value is taken as the control block's initial value; it is not evaluated internally, even when \(\mathrm{CBCON} 2=0.0\)
- the user has the choice of making the desired setpoint, \(\mathrm{F}_{\mathrm{d}}\), either a constant value, or dynamically defined. If ICB2 is non-zero, then a new setpoint value is determined each timestep; otherwise a constant value defined by CBCON1 is used

\section*{\(I C B N=201 . \quad\) PID controller}

Description: \(\quad X_{\text {out }}=A=A_{0}+\Delta A\)
Refer to Figure 6-2 for a schematic of the functional form of this control block. \(\mathrm{X}_{1}=\mathrm{ID}\) number of \(\mathrm{F}, \mathrm{X}_{2}\) \(=I D\) number of \(F_{d}\) when \(F_{d}\) is an input parameter rather than a constant value; \(C_{1}=F_{d}\), a constant value; \(\mathrm{C}_{2}=\mathrm{A}_{0}\), the initial \(\mathrm{X}_{\text {OUT }} ; \mathrm{G}=(\Delta \mathrm{A} / \Delta \mathrm{F}) ; \mathrm{X}_{\mathrm{MIN}}=\mathrm{A}_{\min }\); and \(\mathrm{X}_{\mathrm{MAX}}=\mathrm{A}_{\text {max }}\). A third input-data card is required to specify \(\Delta \mathrm{t}_{\mathrm{d}}>0.0, \tau \geq 0.0\), and \(0.0 \leq \mathrm{Wt} \leq 1.0\).

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & ID number of signal to be controlled \\
\hline ICB2 & Optional & desired setpoint, if dynamic \\
\hline ICB3 & No & \\
\hline CBCON1 & Optional & the desired setpoint, if constant \\
\hline CBCON2 & Yes & the control block initial value \\
\hline
\end{tabular}
- In this case, the CBCON2 value is taken as the control block's initial value; it is not evaluated internally, even when \(\mathrm{CBCON} 2=0.0\)
- The user has the choice of making the desired setpoint, \(\mathrm{F}_{\mathrm{d}}\), either a constant value, or dynamically defined. If ICB2 is non-zero, then a new setpoint value is determined each timestep; otherwise a constant value defined by CBCON1 is used
\[
\Delta A_{P I D}=\left(\frac{\Delta A}{\Delta F}\right)_{e s t}\left[\Delta F+\left(\frac{1}{\Delta t_{d}}\right) \int \Delta F d t+\overline{\Delta t_{d}\left(\frac{d \Delta F}{d t}\right)+\Delta F}\right]
\]

PID Control Block


Figure. 6-2. Proportional Plus Integral Plus Derivative Controller Diagram.

\section*{Description: \(\quad X_{\text {out }}=f\left(X_{1}, X_{2}, X_{3}, C_{1}, C_{2}\right)\)}

This lumped controller performs BWR vessel downcomer water level control function. It can be used in both the steady state and the transient calculations. The output value of the control block is the desired feedwater mass flow rate which may be used to define the feedwater line FILL component mass flow rate. All three inputs ( \(\mathrm{X}_{1}, \mathrm{X}_{2}\) and \(\mathrm{X}_{3}\) ) require the output values from other control blocks or signal variables. \(\mathrm{X}_{1}\) corresponds to the vessel downcomer water level (which could be provided by the signal variable type 106). The units for \(X_{1}\) are in meters. \(X_{2}\) corresponds to the current time step feedwater line mass flow rate (units are in \(\mathrm{kg} / \mathrm{sec}\) ). \(\mathrm{X}_{3}\) corresponds to the current time step steam line mass flow rate (units are in kg / sec ). \(\mathrm{C}_{1}\) is the user desired vessel collapsed water level position (m) and \(\mathrm{C}_{2}\) is the nominal steady state feedwater line mass flow rate ( \(\mathrm{kg} / \mathrm{sec}\) ).

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & actual vessel collapsed level position \\
\hline ICB2 & Yes & actual feedwater flow rate \\
\hline ICB3 & Yes & actual steam line flow rate \\
\hline CBCON1 & Yes & desired collapsed level setpoint \\
\hline CBCON2 & Yes & nominal feedwater flow rate \\
\hline
\end{tabular}
- for this control block, the user has no control for specifying the initial value. The code will evaluate it internally

\section*{\(I C B N=203 . \quad\) Flow controller}

\section*{Description: \(\quad X_{\text {out }}=f\left(X_{1}, C_{1}, C_{2}\right)\)}

The output of this controller represents the required BWR recirculation pump motor torque \(\left(\mathrm{N}^{*} \mathrm{~m}\right)\) to achieve the desired mass flow rate through the jet pump discharge. \(\mathrm{X}_{1}\) provides the controller with the current jet pump discharge line mass flow rate ( \(\mathrm{kg} / \mathrm{sec}\) ). \(\mathrm{C}_{1}\) is the user desired jet pump discharge line mass flow rate, and \(\mathrm{C}_{2}\) is the rated pump motor torque. Please note the controller can only adjust the pump motor torque between \(75 \%\) to \(125 \%\) of the rated motor torque.

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & actual jet pump discharge flow rate \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & desired jet pump discharge flow rate \\
\hline CBCON2 & Yes & rated pump motor torque \\
\hline
\end{tabular}
- for this control block, the user has no control for specifying the initial value. The code will evaluate it internally

\section*{\(I C B N=204 . \quad\) Pressure controller}

Description: \(\quad X_{\text {out }}=f\left(X_{1}, C_{1}\right)\)
The output of this controller represents the required valve open area ratio to achieve the desired pressure at the up-stream of the valve. \(\mathrm{X}_{1}\) provides the controller with the valve up-stream pressure \((\mathrm{Pa}) . \mathrm{C}_{1}\) is the user desired pressure \((\mathrm{Pa}) . \mathrm{C}_{1}\) should fall between the range of \(6.5 \mathrm{E}+6 \mathrm{~Pa}\) to \(7.5 \mathrm{E}+6 \mathrm{~Pa}\).

\section*{Notes:}
\begin{tabular}{|l|l|l|}
\hline & Required? & Comment \\
\hline ICB1 & Yes & actual valve up-stream pressure \\
\hline ICB2 & No & \\
\hline ICB3 & No & \\
\hline CBCON1 & Yes & desired pressure setpoint \\
\hline CBCON2 & Optional & control block initial value, if non-zero \\
\hline
\end{tabular}
- when CBCON2 \(<>0.0\), the control block's initial value is set to CBCON2; otherwise, the control block's initial state is evaluated internally

\section*{Trip Data}

Trip data are defined when NTRP \(>0\) (Word 4 on Main-Data Card 10). There are 7 categories of trip-input data. The first category, defined by Card Number 1, is always input when NTRP \(>\) 0 . The five variables on this card and NTRP define the variable storage required for the remaining 6 trip-input data categories. In each remaining category, none, part, or all of the data can be input. Any data that are not input are obtained from the restart file.

Card Number 1. (Format 5I14) NTSE, NTCT, NTSF, NTDP,NTSD
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NTSE & \begin{tabular}{l} 
The number of different signal-expression trip signals from input and the restart \\
file (NTSE \(\geq 0\) ) (used to dimension variable storage).
\end{tabular} \\
\hline NTCT & \begin{tabular}{l} 
The number of different trip-controlled trip signals from input and the restart file \\
(NTCT \(\geq 0\) ) (used to dimension variable storage).
\end{tabular} \\
\hline NTSF & \begin{tabular}{l} 
The number of different set-point factor tables referenced by trips from input and \\
the restart file (NTSF \(\geq 0\) ) (used to dimension variable storage).
\end{tabular} \\
\hline NTDP & \begin{tabular}{l} 
The number of trips from input and the restart file that generate a restart dump and \\
possible problem termination when they are set ON (NTDP \(\geq 0\) ) (used to \\
dimension variable storage).
\end{tabular} \\
\hline NTSD & \begin{tabular}{l} 
The number of trip-controlled timestep data sets from input and the restart file that \\
are used for timestep and edit control when their defined trips are set ON (NTSD \\
\(\geq 0\) ) (used to dimension variable storage).
\end{tabular} \\
\hline
\end{tabular}

\section*{Trip-Defining Variables Cards.}

Input from 0 to NTRP (Word 4 on Main-Data Card 10) of the following card set. If fewer than NTRP card sets are input, conclude these data with a blank card or a card with a 0 for the first input parameter IDTP ( 0 must be entered explicitly if the free-format option is used). The remaining trips that have trip IDTP ID numbers different from those input will be obtained from the restart file.

Card Number 2. (Format 5I14) IDTP, ISRT, ISET, ITST, IDSG
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline IDTP & The trip ID number ( \(1 \leq \mid\) IDTP \(\mid \leq 9999\) ). Negative trip ID numbers have their trip set status evaluated during both the steady-state and transient calculations. Positive trip ID numbers have their trip set status evaluated only during the transient calculation with the input value of the trip set status, ISET, used throughout the steady-state calculation. \\
\hline ISRT & The signal-range type number. Over the value range of the trip signal, the signalrange type number ISRT defines either one (ISRT \(= \pm 6\) to \(\pm 11\) ), two (ISRT \(= \pm 1\) or \(\pm 2\) ) or three (ISRT \(= \pm 3, \pm 4\), or \(\pm 5\) ) subranges with different set-status labels ( \(\mathrm{ON}_{\text {Reverse }}\), OFF , or \(\mathrm{ON}_{\text {Forward }}\) ). Refer to Table 6-4 for a description of these subranges and their delimiting setpoint values for all possible values of ISRT ( \(1 \leq\) \(\mid\) ISRT \(\mid \leq 11\) ). \\
\hline ISET & The initial trip set-status number (only used during steady state when IDTP \(>0\) ).
\[
\begin{aligned}
-1 & =\mathrm{ON}_{\text {Reverse }} ; \\
0 & =\mathrm{OFF} ; \\
1 & =\mathrm{ON}_{\text {Forward }}
\end{aligned}
\] \\
\hline ITST & ```
The trip-signal type number.
    \pm 1 = \text { signal-variable trip,}
    \pm2 = signal-expression trip, or
    \pm3 = trip-controlled trip. Defining the ITST value negative eliminates
        writing trip-status changes to the output files (when the trip-signal
        criterion is met and when the trip set status is changed),
    \pm4 = simple setpoint trip.
``` \\
\hline IDSG & \begin{tabular}{l}
This variable can have one of three different meanings depending upon the value of ITST. \\
For ITST \(= \pm 1\) or \(\pm 4\), IDSG is the ID number for the trip-signal variable (IDSG \(>\) 0 corresponds to IDSV in the signal-variable data and IDSG \(<0\) corresponds to IDCB in the control-block data) \\
For ITST \(= \pm 2\), IDSG is the trip-signal expression ID number (IDSG corresponds to IDSE in the trip-signal-expression data that follow), \\
For ITST \(= \pm 3\), ISDG is the trip-controlled trip signal (IDSG corresponds to IDTN in the trip-controlled trip data that follow).
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format I4) ISLATCHED
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Note: If ITST \(= \pm 4\) (simple trip), then input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ISLATCHED & \begin{tabular}{l}
Integer value indicating whether this is a latched trip. Latched trips will not \\
trip OFF once they have tripped ON.
\end{tabular} \\
\hline
\end{tabular}

Card Number 4. (Format A14) LUTRPSIG
\begin{tabular}{|c|c|}
\hline Note: & If ITST \(= \pm 2\) (signal-expression trip) and IOALL \(=\mid\) IOGRF \(|+|\) IOINP \(\mid+\) \\
& \(\mid\) IOLAB \(|+|\) IOOUT \(\mid \neq 0\) (NAMELIST variables), input this card. See Table 6 -3 \\
& for a list of units-name labels, their SS and English units symbols, and their Sit to \\
& English conversion factors and shifts for the trip-signal and trip-signal setpoint \\
parameters
\end{tabular}\(|\)

Card Number 5. (Format 4E14.4) SETP(I), \(I=(1, N S P)\)
\begin{tabular}{|c|c|c|}
\hline Variable & Dimension & Description \\
\hline SETP & NSP & \begin{tabular}{l}
The trip-signal setpoint values \(\left(^{*}\right.\)) shown as \(\mathrm{S}_{\#}\) (where \# = I) in the Table 6-4 definition of ISRT (Word 2 on Card Number 2: TripDefining Variables). For ISRT \(= \pm 1\) or \(\pm 2\), NSP \(=2\); for ISRT \(= \pm 3\), \(\pm 4\), or \(\pm 5\), NSP \(=4\). For \(\operatorname{ISRT}= \pm 6, \pm 7, \pm 8, \pm 9, \pm 10\), or \(\pm 11\), NSP \(=\) 1. The setpoint values must satisfy \(\operatorname{SETP}(1)<\operatorname{SETP}(2)\) when \(\operatorname{ISRT}= \pm 1\) or \(\pm 2\) or \(\operatorname{SETP}(1)<\operatorname{SETP}(2)<\operatorname{SETP}(3)<\operatorname{SETP}(4)\) when ISRT \(= \pm 3, \pm 4\) or \(\pm 5\). \\
[Caution: For trip-controlled trips with real-value trip signals that have discrete integer values (\(0.0,1.0,2.0\), etc.), the setpoint values should be midway between the two trip-signal values that change the trip's set status. Because of numerical roundoff when set-status values assigned to the trip signal are summed or multiplied, it is better to have the trip signal cross the setpoint value rather than reach and equal it to satisfy the set-status change criterion. For example, use \(\mathrm{S}_{1}=0.4\) and \(\mathrm{S}_{2}=0.6\) rather than \(\mathrm{S}_{1}=0.0\) and \(\mathrm{S}_{2}=\) 1.0 when the trip signal goes from 0.0 to 1.0 or 1.0 to 0.0 and changes the trip's set status.]
\end{tabular} \\
\hline
\end{tabular}

Card Number 6. (Format E14.4) DTSP(I), \(\mathrm{I}=(1, \mathrm{NSP})\)
\begin{tabular}{|c|c|c|}
\hline Variable & Dimension & Description \\
\hline DTSP & NSP & The setpoint delay times (s) after the trip signal crosses the setpoint value to when the trip set status is changed. For ISRT \(= \pm 1\) or \(\pm 2\), NSP \(=2\); for \(\operatorname{ISRT}= \pm 3, \pm 4\), or \(\pm 5, \mathrm{NSP}=4\). For \(\mathrm{ISRT}= \pm 6, \pm 7\), \(\pm 8, \pm 9, \pm 10\), or \(\pm 11\), NSP \(=1\). \\
\hline
\end{tabular}

Table 6-4. Trip Signal-range Types.
ISRT Trip Signal-Range Diagrams and Description of the Relationship Between Signal-Range Trip Setpoints and Incoming Trip Signals and How the Trip Status is Type Number Determined
\begin{tabular}{|c|c|}
\hline 1* & When \(\mathrm{ON}_{\text {Forward, }}\), trip is set to OFF when the trip signal \(\geq \mathrm{SETP}_{2}\). When OFF, trip is set to \(\mathrm{ON}_{\text {Forward }}\) when the trip signal \(\leq \mathrm{SETP}_{1}\). \\
\hline 2* & When OFF, trip is set to \(\mathrm{ON}_{\text {Forward }}\) when the trip signal \(\geq \mathrm{SETP}_{2}\). When \(\mathrm{ON}_{\text {Forward }}\), trip is set to OFF when the trip signal \(\leq \mathrm{SETP}_{1}\). \\
\hline 3* & \begin{tabular}{l}
When \(\mathrm{ON}_{\text {Forward }}\), trip is set to OFF when trip signal \(\geq \mathrm{SETP}_{2}\) and \(<\mathrm{SETP}_{4}\). \\
When \(\mathrm{ON}_{\text {Forward }}\), trip is set to \(\mathrm{ON}_{\text {Reverse }}\) when the trip signal \(\geq \mathrm{SETP}_{4}\). \\
When OFF, the trip is set to \(\mathrm{ON}_{\text {Forward }}\) when the trip signal \(\leq \mathrm{SETP}_{1}\). \\
When OFF, trip is set to \(\mathrm{ON}_{\text {Reverse }}\) when the trip signal \(\geq \mathrm{SETP}_{4}\). \\
When \(\mathrm{ON}_{\text {Reverse }}\), trip is set to OFF when the trip signal \(\leq \mathrm{SETP}_{3}\) and \(>\mathrm{SETP}_{1}\). When \(\mathrm{ON}_{\text {Reverse }}\), trip is set to \(\mathrm{ON}_{\text {Forward }}\) when the trip signal \(\leq \mathrm{SETP}_{1}\).
\end{tabular} \\
\hline
\end{tabular}

Table 6-4. Trip Signal-range Types. (Continued)
ISRT Trip Signal-Range Diagrams and Description of the Relationship Between Signal-Range Type Number

Trip Setpoints and Incoming Trip Signals and How the Trip Status is Determined
\begin{tabular}{|c|c|}
\hline 4* & When OFF (left), trip is set to \(\mathrm{ON}_{\text {Forward }}\) when signal \(\geq \mathrm{SETP}_{2}\) and \(<\mathrm{SETP}_{4}\). When \(\mathrm{ON}_{\text {Forward }}\), trip is set to OFF when the trip signal \(\leq \mathrm{SETP}_{1}\) and \(\geq \mathrm{SETP}_{4}\). When OFF (right), trip is set to \(\mathrm{ON}_{\text {Forward }}\) when signal \(\leq \mathrm{SETP}_{3}\) and \(>\mathrm{SETP}_{1}\). \\
\hline 5* & \begin{tabular}{l}
arrows denote trip signal \\
When \(\mathrm{ON}_{\text {Forward }}\) (left), trip is set to OFF when the trip signal \(\geq \mathrm{SETP}_{2}\) and \(<\) \(\mathrm{SETP}_{4}\). \\
When OFF, trip is set to \(\mathrm{ON}_{\text {Forward }}\) when the trip signal \(\leq \operatorname{SETP}_{1}\) or \(\geq\) SETP \(_{4}\). When \(\mathrm{ON}_{\text {Forward }}\) (right), the trip is set to OFF when signal \(\leq \mathrm{SETP}_{3}\) and \(>\) SETP \(_{1}\).
\end{tabular} \\
\hline 6 & Trip is set to \(\mathrm{ON}_{\text {Forward }}\) if the trip signal \(=\mathrm{SETP}_{1}\). Trip is set to OFF, otherwise. \\
\hline 7 & Trip is set to \(\mathrm{ON}_{\text {Forward }}\) when the trip signal \(\neq \mathrm{SETP}_{1}\). Trip is set to OFF when the trip signal \(=\operatorname{SETP}_{1}\). \\
\hline
\end{tabular}

Table 6-4. Trip Signal-range Types. (Continued)
ISRT Trip Signal-Range Diagrams and Description of the Relationship Between Signal-Range Type Number

Trip Setpoints and Incoming Trip Signals and How the Trip Status is Determined
\begin{tabular}{|c|c|}
\hline 8 & \begin{tabular}{l}
Trip is set to \(\mathrm{ON}_{\text {Forward }}\) if the trip signal \(<\operatorname{SETP}_{1}\). \\
Trip is set to OFF if the trip signal \(\geq \operatorname{SETP}_{1}\).
\end{tabular} \\
\hline 9 & Trip is set to \(\mathrm{ON}_{\text {Forward }}\) if the trip signal \(>\mathrm{SETP}_{1}\). Trip is set to OFF if the trip signal \(\leq \operatorname{SETP}_{1}\). \\
\hline 10 & Trip is set to \(\mathrm{ON}_{\text {Forward }}\) if the trip signal \(\leq \mathrm{SETP}_{1}\). Trip is set to OFF if the trip signal \(>\operatorname{SETP}_{1}\). \\
\hline 11 & Trip is set to \(\mathrm{ON}_{\text {Forward }}\) if the trip signal \(\geq \mathrm{SETP}_{1}\). Trip is set to OFF if the trip signal \(<\operatorname{SETP}_{1}\). \\
\hline & *Making ISRT negative changes \(\mathrm{ON}_{\text {Forward }}\) to \(\mathrm{ON}_{\text {Reverse }}\) and \(\mathrm{ON}_{\text {Reverse }}\) to \(\mathrm{ON}_{\text {Forward }}\) \\
\hline
\end{tabular}

Card Number 7. (Format 4I14) IFSP(I), I = (1, NSP)
\begin{tabular}{|l|l|l|}
\hline Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline IFSP & NSP & \begin{tabular}{l}
The setpoint factor-table ID numbers. The variable IFSP(I) \\
corresponds to IDFT defined on the Trip Setpoint Factor-Table \\
Card Number 1 that follows. Input IFSP(I) \(=0\) when no setpoint \\
factor is to be applied to SETP(I); that is, the setpoint value \\
remains constant during the problem. For ISRT \(= \pm 1\) or \(\pm 2\), NSP \(=\) \\
\(2 ;\) for ISRT \(= \pm 3, \pm 4\), or \(\pm 5\), NSP \(=4\). For ISRT \(= \pm 6, \pm 7, \pm 8, \pm 9\), \\
\(\pm 10\), or \(\pm 11\), NSP \(=1\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Trip-Signal-Expression Signal Cards}

Note: If none of the trip input has ITST \(= \pm 2\) (Word 4 on Card Number 2: Trip-Defining Variables), do not input Card Number 8 through Card Number 11 (Trip-SignalExpression Signal Cards).] Otherwise, input the following card data for each different IDSG trip-signal ID number of trips with ITST \(= \pm 2\) that are input.

Card Number 8. (Format 3I14) IDSE, INSE, INCN
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IDSE & \begin{tabular}{l}
The trip-signal-expression signal ID number. This number corresponds to IDSG \\
(Word 5 on Card Number 2: Trip-Defining Variables) for one or more of the \\
input trips having ITST \(= \pm 2(1 \leq \mid\) IDSE \(\mid<9999)\).
\end{tabular} \\
\hline INSE & \begin{tabular}{l}
The number of subexpressions defining the trip-signal expression \((1 \leq\) INSE \(\leq\) \\
\(10)\).
\end{tabular} \\
\hline INCN & \begin{tabular}{l}
The number of different constants referenced in the subexpressions defining the \\
trip-signal expression \\
\((0 \leq\) INCN \(\leq 5)\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 9. (Format 3I14) ISE(I,J), \(I=(1,3)\)
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
Input INSE (Word 2 on Card Number 8) cards of this card to define the J = (1, \\
INSE) arithmetic sub-expressions
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ISE(1,J) & \begin{tabular}{l}
The arithmetic-operator ID number of the Jth arithmetic subexpression (see Table \\
Table 6-5).
\end{tabular} \\
\hline ISE(2,J) & The first argument ID number of the Jth arithmetic subexpression. \\
\hline ISE(3,J) & The second argument ID number of the Jth arithmetic subexpression. \\
\hline
\end{tabular}

The first and second argument ID numbers define values that, when operated on by the arithmetic operator, give a value to their Jth arithmetic subexpression. There are five forms for the value of the first and second argument ID numbers:
1) a signal-variable or control-block output value evaluated each timestep when their ID number is a signal-variable ID number \(1 \leq\) IDSV \(\leq 399\) (Word 1 of the Signal-Variable Card Number 1) or a control-block ID number \(-9999 \leq\) IDCB \(\leq-1\) (Word 1 of Card Number 1, Chapter 6);
2) a signal-variable value evaluated initially and at timesteps when the trip controlled by this signal expression is set to \(\mathrm{ON}_{\text {Reverse }}\) or \(\mathrm{ON}_{\text {Forward }}\) when their ID number is a sig-nal-variable ID number IDSV plus \(400(400<\) IDSV \(+400<800)\);
3) a constant input on Card Number 11 when its ID number is the ith subscript of SCN(I) plus \(800(800<\mathrm{I}+800<806)\);
4) the value of an earlier subexpression \(\mathrm{J}(0<\mathrm{j}<\mathrm{J} \leq\) INSE \()\) when their ID number is J plus \(900(900<\mathrm{J}+900<910)\); or
5) a trip output value evaluated each timestep when its ID number is a trip ID number \(10001 \leq \mid\) IDTP \(\mid+10000 \leq 19999\) (Word 1 on Card Number 2: Trip-Defining Variables).

\section*{Example: The signal expression,}
\(\max \sqrt{ }(I D S V=5)+(I D S V=33), 1.0 \times 10^{-10}\),
would be input as
\begin{tabular}{llr}
1 & 5 & 33 \\
5 & 901 & 801 \\
6 & 902 & 802
\end{tabular}
where \(\operatorname{SCN}(1)=0.5, \operatorname{SCN}(2)=1.0 \times 10^{-10}, \operatorname{INCN}=2\), and \(\operatorname{INSE}=3\).

Card Number 10. (Format A14) LSCN(I), I = (1, INCN)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Note: If INCN \(>0\) (Word 3 on Card Number 8) or IOALL \(=\mid\) IOGRF \(|+|\) IOINP \(\mid+\) \(\mid\) IOLAB \(|+|\) IOOUT \(\mid \neq 0\) (NAMELIST variables), input this card. See Table 6-3 for a list of units-name labels, their SI and English units symbols, and their SI to English conversion factors and shifts for the trip signal-expression constants.} \\
\hline Variable & Dimension & Description \\
\hline LSCN & INCN & The units-name labels of the constants used to evaluate the subexpressions. \\
\hline
\end{tabular}

Table 6-5. Arithmetic-Operator ID Numbers of the \(\mathbf{J}^{\text {th }}\) Arithmetic Subexpression
\begin{tabular}{|l|l|l|}
\hline ID Number & \multicolumn{1}{|c|}{ Operator } & \multicolumn{1}{c|}{ Arithmetic Subexpression } \\
\hline \hline 1 & Addition & \begin{tabular}{l}
(First argument ID number value) \\
+ (Second argument ID number value)
\end{tabular} \\
\hline 2 & Subtraction & \begin{tabular}{l}
(First argument ID number value) \\
\(-(\) (Second argument ID number value)
\end{tabular} \\
\hline 3 & Dultiplication & \begin{tabular}{l}
(First argument ID number value) \\
* (Second argument ID number value)
\end{tabular} \\
\hline 4 & Exponentiation & \begin{tabular}{l}
(First argument ID number value) * (Second argument ID \\
number value)
\end{tabular} \\
\hline 5 & \begin{tabular}{l}
(Second argument ID number value) \\
value
\end{tabular} & \begin{tabular}{l}
MAX [(First argument ID number value), (Second argument \\
ID number value)]
\end{tabular} \\
\hline 6 & \begin{tabular}{l}
Minimum \\
value
\end{tabular} & \begin{tabular}{l}
MIN [(First argument ID number value), \\
(Second argument ID number value)]
\end{tabular} \\
\hline 7 & \begin{tabular}{l}
Absolute value
\end{tabular} & \begin{tabular}{l}
ABS (first argument ID number value)
\end{tabular} \\
\hline 8 & expression
\end{tabular}\(\quad\)\begin{tabular}{l}
(First trip ID's status) .AND. \\
(Second trip ID's status)
\end{tabular}

Table 6-5. Arithmetic-Operator ID Numbers of the \(\mathbf{J}^{\text {th }}\) Arithmetic Subexpression
\begin{tabular}{|l|l|l|}
\hline ID Number & Operator & \multicolumn{1}{c|}{ Arithmetic Subexpression } \\
\hline \hline 11 & \begin{tabular}{l}
XOR logical \\
expression
\end{tabular} & \begin{tabular}{l}
(First trip ID's status) XOR \\
(Second trip ID's status)
\end{tabular} \\
\hline 12 & \begin{tabular}{l}
NOT XOR \\
logical \\
expression
\end{tabular} & \begin{tabular}{l}
NOT[(First trip ID's status) XOR \\
(Second trip ID's status)]
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. ((Format E14.4) \(\operatorname{SCN}(\mathrm{I}), \mathrm{I}=(1, \mathrm{INCN})\)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Note: If INCN \(>0\) (Word 3 on Card Number 8), input this card. } \\
\hline Variable & Dimension & Description \\
\hline \hline SCN & INCN & The constants used to evaluate the subexpressions. \\
\hline
\end{tabular}

\section*{Trip-Controlled-Trip Signal Cards}

Note: If none of the trips being input have ITST \(= \pm 3\) (Word 4 on Card Number 2: Trip-Defining-Variables), do not input Card Number 12 and Card Number 13 (Trip-Controlled-Trip Signal Cards).

Input the following card data for each different IDSG trip-signal ID number of trips having ITST \(= \pm 3\) that are input.

Card Number 12. (Format 2I14) IDTN,INTN
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline IDTN & \begin{tabular}{l}
The trip-controlled-trip signal ID number. This number corresponds to IDSG \\
(Word 5 on Card Number 2: Trip-Defining-Variables Card) for one or more of \\
the input trips that have ITST \(= \pm 3(1 \leq \mid\) IDTN \(\mid \leq 9999)\).
\end{tabular} \\
\hline INTN & \begin{tabular}{l}
The number of trip ID numbers whose ISET set-status values (Word 3 on Card \\
Number 2: Trip-Defining Variables Card) are summed (IDTN \(>0)\) or multiplied \\
\((\) IDTN \(<0)\) to evaluate this trip-controlled-trip signal (\(2 \leq\) INTN \(\leq 10)\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 13. (Format I14) ITN(I), I = (1, INTN)
\begin{tabular}{|l|l|l|}
\hline Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline ITN & INTN & \begin{tabular}{l}
The trip ID numbers whose ISET set-status values are summed \\
\((\) IDTN \(>0\)) or multiplied (IDTN \(<0\)) to evaluate this trip- \\
controlled-trip signal.
\end{tabular} \\
\hline
\end{tabular}

\section*{Trip Setpoint-Factor Table Cards}

Note: If all the trips have constant trip-signal set points because IFSP(I) = \(\mathbf{0}\) (TripDefining Variables Card Number 7) was input for all the setpoints, do not input Card Number 14 and Card Number 15 (Trip Setpoint-Factor Table Cards).

Input the following card data for each different setpoint factor-table ID number, IFSP(I), defined in the input trips.

Card Number 14. (Format 3I14) IDFT, IDSG, INFT
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline IDFT & \begin{tabular}{l}
The setpoint-factor table ID number. This number corresponds to IFSP(I) (Trip- \\
Defining Variables: Card Number 7) for one or more trip setpoints.
\end{tabular} \\
\hline IDSG & \begin{tabular}{l}
The signal-variable or control-block ID number defining the setpoint-factor table \\
independent variable. This number corresponds to one of the ID numbers in the \\
list of signal variables (IDSG \(>0)\) or control blocks (IDSG \(<0)\), either from input \\
or from the restart file.
\end{tabular} \\
\hline INFT & The number of setpoint-factor table entry pairs \((2 \leq\) INFT \(\leq 10)\). \\
\hline
\end{tabular}

Card Number 15. (Format E14.4) FT(I), I = (1, \(2 ¥\) INFT)
\begin{tabular}{|l|l|l|}
\hline Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline FT & \(2 \times\) INFT & \begin{tabular}{l}
Setpoint factor-table data \(\left(^{*},-\right) ;\) input INFT table-defining data \\
pairs having the following form (table-independent variable value \\
associated with parameter ID number IDSG and its setpoint-factor \\
value).
\end{tabular} \\
\hline
\end{tabular}

\section*{Trip-Initiated Restart-Dump and Problem-Termination Cards}

Note: If NTDP \(=0\) (Word 4 on Card Number 1: Trip-Dimension Variables Card), do not input Card Number 16 and Card Number 17 (Trip-Initiated Restart-Dump and Problem-Termination Cards).

Card Number 16. (Format I14) NDMP
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NDMP & \begin{tabular}{l}
The total number of trips from the input file and the restart dump that generate a \\
restart dump and possible problem termination when any one of the trips is set to \\
ON \(_{\text {Reverse }}\) or \(\mathrm{ON}_{\text {Forward }}(0 \leq\) NDMP \(\leq\) NTDP \()\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 17. (Format I14) IDMP(I), I = (1, NDMP)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } & \begin{tabular}{l}
The input deck defines NDMP trip ID numbers, and the NTDP-NDMP \\
remaining trip ID numbers will be obtained from the restart file. If NDMP \(=0\), \\
do not input this card because all NTDP trip ID numbers will be obtained from \\
the restart file.
\end{tabular} \\
\hline Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline IDMP & NDMP & \begin{tabular}{l}
The absolute value of the trip ID numbers that generate a restart \\
data dump when any one of the trips is set to \(\mathrm{ON}_{\text {Reverse }}\) or \(\mathrm{ON}_{\text {Forward }}\). \\
If IDMP(I) is given a negative sign, problem termination will \\
occur after the restart data dump is generated.
\end{tabular} \\
\hline
\end{tabular}

\section*{Trip-Initiated Timestep Data Cards}

Note: If NTSD = 0 (Word 5 on Card Number 1: Trip-Dimension Variables Card), do not input Card Number 18 through Card Number 21 (Trip-Initiated Timestep Data card set).

Input from zero to NTSD of the following card set. If fewer than NTSD sets are input, conclude these data with a blank card or a card having an integer zero defining the first parameter, NDID (a zero must be entered if the free-format option is used). The remaining Card Sets will be obtained from the restart file.

Card Number 18. (Format 2I14) NDID, NTID
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NDID & The ID number for the following set of trip-initiated timestep data. \\
\hline NTID & \begin{tabular}{l}
The number of trip ID numbers that initiates the use of this timestep data set when \\
any one of the trips is set to \(\mathrm{ON}_{\text {Reverse }}\) or \(\mathrm{ON}_{\text {Forward }}(1 \leq\) NTID \(\leq 5)\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 19. (Format I14) ITID(I), I = (1, NTID)
\begin{tabular}{|l|l|l|}
\hline Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline ITID & NTID & \begin{tabular}{l}
The trip ID numbers that initiate use of this timestep data set when \\
any one of the trips is set to \(\mathrm{ON}_{\text {Reverse }}\) or \(\mathrm{ON}_{\text {Forward. }}\)
\end{tabular} \\
\hline
\end{tabular}

Card Number 20. (Format 4E14.4) DTMIN, DTMAX, DTEND, DTSOF
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{|c|}{ Description } \\
\hline \hline DTMIN & The minimum timestep size (s). \\
\hline DTMAX & The maximum timestep size (s). \\
\hline DTEND & The problem time interval (s) during which these timestep data are used. \\
\hline DTSOF & \begin{tabular}{l}
The next timestep DTSOF (s) (when DTSOF \(>0.0)\) or the factor -DTSOF \((-)\) to \\
be applied to the existing timestep (when DTSOF \(<0.0)\) in defining the timestep \\
to be used at the start of the DTEND (Word 3 above) time interval when \\
implementing these special timestep data.
\end{tabular} \\
\hline
\end{tabular}

Card Number 21. (Format 4E14.4) EDINT, GFINT, DMPIT, SEDINT
\begin{tabular}{|l|ll|}
\hline Variable & & Description \\
\hline \hline EDINT & Long-print edit interval (s). \\
\hline GFINT & Graphics edit interval (s). \\
\hline DMPIT & Restart-dump edit interval (s). \\
\hline SEDINT & Short-print edit interval (s). \\
\hline
\end{tabular}

Timestep data on Card Number 20 and Card Number 21 replace the timestep data defined later in Chapter 6 for a time interval DTEND (Word 3 on Card Number 20) after any one of the timestep data set assigned trip is set to \(\mathrm{ON}_{\text {Reverse }}\) or \(\mathrm{ON}_{\text {Forward. }}\). This timestep data can be replaced by this or any other trip-controlled timestep data if any trip assigned to that timestep data set is set to \(\mathrm{ON}_{\text {Reverse }}\) or \(\mathrm{ON}_{\text {Forward }}\) before the time interval DTEND of this set ends.

\section*{General Table Data}

The general heat structure table data can be used by the HTSTR component (See Chapter 6, Card Set 11, Card Set 16, Card Set 17, Card Set 23, and Card Set 24). If the NAMELIST variable NUMGENTBL is greater than zero, then the general heat structure data must be input. If general heat structure tables are used and restarts are made, NAMELIST variable NUMGENTBL and GENTABLENUMBER (Card Number 1) are required in the restart input file.

The GENTABLENUMBER array contains the general table numbers for the general tables that will be read from the TRACE input and/or restart file. The GENTABLENUMBER array is NUMGENTBL elements long and is defined below:

Card Number 1. [Format 5(3X,I11)]
GENTABLENUMBER (IORDER(I), I = 1, NCOMP) Load Format.
\begin{tabular}{|c|c|l|}
\hline Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline GENTABLENUMBER & NUMGENTBL & \begin{tabular}{l}
General table numbers for the general tables \\
that will be read from the TRACE input and/or \\
restart file.
\end{tabular} \\
\hline
\end{tabular}

The GENTABLENUMBER array input is followed by 1 to NUMGENTBL sets of general table data (Card Number 2, Card Number 3, and Card Set 4). All, some, or none of the general heat structure table data may be changed at restart. If data is changed in some of the tables at restart, input Card Number 2, Card Number 3, and Card Set 4 for those changed tables and terminate table input with a negative number if less than NUMGENTBL sets are input. The remaining tables will be read from the restart file. If none of the table data is changed at restart put a negative number in the card following Card Number 1 in the TRACE restart input file. In this case all of the tables will be read from the restart file.

Card Number 2. (Format I14) TABLENUMBER
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline TABLENUMBER & \begin{tabular}{l}
General table number (GENTABLENUMBER, Card Number 1). \\
Must be a unique number. Must not be zero.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 5I14) NPTS, TABLETYPE, XCBSVID, TRIPID, OUTBOUNDS
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline NPTS & Number of points (i.e. \(x-y\) pairs) in this general table. If NPTS is one, then this general table is a constant table. The \(y(1)\) table value will always be the result independent of the x independent value used to evaluate this table. \\
\hline TABLETYPE & \begin{tabular}{l}
Table type. \\
\(1=\) Power (W, Btu/hr) versus Time table. \\
\(2=\) Heat transfer rate [W/s, (Btu/hr)/s] versus Time table . \\
\(3=\) Heat transfer coefficient(HTC) [W/(m2 K), Btu/(ft2 oF hr)] versus Time table. \\
\(4=\mathrm{HTC}[\mathrm{W} /(\mathrm{m} 2 \mathrm{~K}), \mathrm{Btu} /(\mathrm{ft} 2 \mathrm{oF} \mathrm{hr})]\) versus Surface temperature (\(\mathrm{K}, \mathrm{oF}\)) table. \\
\(5=\mathrm{HTC}[\mathrm{W} /(\mathrm{m} 2 \mathrm{~K}), \mathrm{Btu} /(\mathrm{ft} 2 \mathrm{oF} \mathrm{hr})]\) versus Surface temperature (ST) (K, oF) table. \\
\(6=\) Temperature (K, oF) versus Time table. \\
7 = Reactivity versus Time table. \\
\(8=\) Normalized valve flow area versus Valve stem position table. \\
\(9=\mathrm{HTC}[\mathrm{W} /(\mathrm{m} 2 \mathrm{~K}), \mathrm{Btu} /(\mathrm{ft} 2 \mathrm{oF} \mathrm{hr})]\) versus Control block/Signal variable table. \\
\(10=\) Heat flux [W/m2, (Btu/hr)/ft2] versus Control block/Signal variable table. \\
11 = Surface temperature (K, oF) versus Control block/Signal variable table.
\end{tabular} \\
\hline XCBSVID & Control block/signal variable id. Positive number implies a signal variable id. Negative number implies a control block id. XCBSVID cannot be zero. \\
\hline TRIPID & Trip id. Only used if x independent variable for this table is time. \\
\hline OUTBOUNDS & \begin{tabular}{l}
Out of bounds flag. The out of bounds flag determines the action that will be taken when an out of bounds error occurs. \\
\(-2=\) out of table bounds error will result in fatal error. \\
\(-1=\) out of table bounds error will result in a warning message and last point in table will be used for the \(y\) dependent variable result. \\
\(0=\) out of table bounds error will result in last point in table will be used for the y dependent variable result. \\
\(1=\) out of table bounds error will result in linear extrapolation based on the last two points in the table to determine the \(y\) dependent variable result.
\end{tabular} \\
\hline
\end{tabular}

\section*{General Table Array Card.}

One array card will be input for each general table data set.
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline 4 & TABLE1D & \(2 \times\) NPTS & \begin{tabular}{l}
General table data consisting of NPTS of x-y pairs. \\
The x independent value is followed by the \\
corresponding y dependent value for the table.
\end{tabular} \\
\hline
\end{tabular}

The following examples illustrate the use of the general heat structure table data.
Example 1: New input file
```

free format
$\star$
*************

* main data *
*************
* 

$\begin{array}{rrrr}\text { * numtcr } & \text { ieos } & \text { inopt } & \text { nmat } \\ 14 & 0 & 1 & 0\end{array}$
*-*-*TEST PROBLEM idbc3
Testing constant heat flux (from table) bc
Replaces pipe wall with new heat structure
Pipe wall includes power $=50$ kw
Coolant is liquid at Tliq $=300 \mathrm{~K}$.
Flow rate through pipe is $=1 \mathrm{~kg} / \mathrm{sec}$.
Pipe has a flow area of $0.2 \mathrm{m**}$, four cells long with,
each cell 0.5 m long, volume of each cell is $0.1 \mathrm{m**}$.
Pipe wall thickness is 0.05 m and has 4 nodes in pipe wall.
Pipe outside wall heat flux is $22586.7 \mathrm{~W} / \mathrm{m} 2==50 \mathrm{~kW}$ input.
Total energy input: 100 kW
Pipe inner diameter $=0.25231 \mathrm{~m}$ and a radius of 0.12616 m
Asurf-inner $=$ pi*D*L $=$ pi*0.25231*2 $=1.58531 \mathrm{~m} * * 2$
*
*****************

* namelist data
*****************
* \&inopts
nhtstr=1, cpuflg=1, npower=1, numGenTbl =4, (see Main-Data Card 4)
\&end
$\star$
$\begin{array}{lrrrrr}\text { * } & \text { dstep } & \text { timet } & & \\ \text { * } & 0 & 0.0000 \mathrm{e}+00 & & \text { njun } & \text { ipak } \\ & \text { stdyst } & \text { transi } & \text { ncomp } & 2 & 1\end{array}$

```

\begin{tabular}{rr}
100.0 & 22586.7 s \\
300.0 & 0.0 s \\
500.0 & 22586.7 s \\
2500.0 & 22586.7 e
\end{tabular}

power
\(\times \quad\) npowr
* htnid 4 e
\begin{tabular}{|c|c|c|}
\hline * & \begin{tabular}{l}
irpwty \\
5
\end{tabular} & \begin{tabular}{l}
ndgx \\
0
\end{tabular} \\
\hline * & izpwtr & izpwsv \\
\hline & 0 & 1 \\
\hline * & ipwrad & ipwdep \\
\hline & 0 & 0 \\
\hline * & nzpwz & nzpwi \\
\hline & 0 & 0 \\
\hline * & react & tneut \\
\hline & \(0.0000 \mathrm{e}+00\) & \(0.0000 \mathrm{e}+00\) \\
\hline * & rpowri & zpwin \\
\hline & \(5.0000 e+04\) & \(0.0000 \mathrm{e}+00\) \\
\hline * & extsou & pldr \\
\hline & \(0.0000 e+00\) & \(0.0000 \mathrm{e}+00\) \\
\hline
\end{tabular}
* rdpwr * f \(1.0000 \mathrm{e}+00 \mathrm{e}\)
* cpowr * \(1.0000 \mathrm{e}+00 \mathrm{e}\)
* zpwtb * f \(1.0000 e+00 e\)
\(\star\)
*
\(\star\)
end
*

* time-step data *

\(\star\)
```

dtmin
$1.0000 \mathrm{e}-02$
edint
$1.0000 \mathrm{e}+02$
******************

* time-step data *
******************
$\star$
* endflag
$-1.0000 \mathrm{e}+00$

```
\(5.0000 \mathrm{e}+00\)
gfint
\(1.0000 \mathrm{e}+01\)
\[
\begin{array}{r}
\text { ndhx } \\
-11 \\
\text { nzpwtb } \\
1 \\
\text { nfbpwt } \\
0
\end{array}
\]
rpwoff
0.0000 e 00
rrpwmx
rpwscl
zpwoff
\(0.0000 \mathrm{e}+00 \quad 1.0000 e+00\)
rzpwmx
\(0.0000 \mathrm{e}+00\)
fucrac
\(7.0000 e-01\)
nhist
901 power data input test1
nrts
5
nzpwsv
0
0
nzpwrf

0
0

\section*{pdrat}
\begin{tabular}{rr}
tend & rtwfp \\
\(3.0000 \mathrm{e}+03\) & \(1.0000 \mathrm{e}+02\) \\
dmpint & sedint \\
\(1.0000 \mathrm{e}+03\) & \(5.0000 \mathrm{e}+01\)
\end{tabular}

Example 2: Restart with general heat structure table data. No changes to the general table data.
```

free format
*
*************

* main data *
*************
* 
* numtcr meos inopt nmat
*_*_*TEST PROBLEM idbc3r
Replaces pipe wall with new heat structure
Pipe wall includes power = 50 kw
Coolant is liquid at Tliq = 300 K.
Flow rate through pipe is = 1 kg/sec.

```
```

    Pipe has a flow area of 0.2 m**2, four cells long with,
    each cell 0.5 m long, volume of each cell is 0.1 m**2.
    Pipe wall thickness is 0.05 m and has 4 nodes in pipe wall.
    Pipe outside wall heat flux is 22586.7 W/m2 == 50 kW input.
    Total energy input: 100 kW
    Pipe inner diameter = 0.25231 m and a radius of 0.12616 m
    Asurf-inner = pi*D*L = pi*0.25231*2 = 1.58531 m**2
    * 

******************

* namelist data *
******************
* \&inopts
nhtstr=1, cpuflg=1, npower=1, numGenTbl = 4, (NAMELIST variable, Main-
Data Card 4)
\&end
**

*	dstep	timet			
*	-1	$0.0000 \mathrm{e}+00$		njun	ipak
	stdyst	transi	ncomp	1	
*	0	epso	epss	5	
	$1.0000-03$	$1.0000 \mathrm{e}-10$		ncontr	
*	oitmax	sitmax	isolut	0	ntcp
	10	10	0	ntrp	1

* 

***************************

* component-number data *
**************************
* 
* iorder* 1 2 4 901e
* 

**************************

* control-parameter data *
***************************
* 
* 
* signal variables

*	isvn	ilcn	icn1	icn2
idsv	0	0	0	0

* trips

$*$	ntct	ntsf	ntdp	ntsd	
$*$	0	0	0	0	
	idtp	isrt	iset	itst	idsg
	0	0	1	1	

* 
* General tables to be obtained from the restart file.
* Card Number 1
12304e
* read the general table data from the restart file
* End of general table input.
-1
* 

******************

* component data *
*******************
* 
* 

end
*
*******************

```
```

* time-step data *
*******************
* 

```


Example 3: Restart with general heat structure table data. Changes to general table 1 and read table 2, 30, and 4 from the restat file.
```

free format
*
*************

* main data *
*************
* 
* numtcr ieos inopt n
*_*_*TEST PROBLEM idbc3r2
Replaces pipe wall with new heat structure
Pipe wall includes power = 50 kw
Coolant is liquid at Tliq = 300 K.
Flow rate through pipe is = 1 kg/sec.
Pipe has a flow area of 0.2 m**2, four cells long with,
each cell 0.5 m long, volume of each cell is 0.1 m**2.
Pipe wall thickness is 0.05 m and has 4 nodes in pipe wall.
Pipe outside wall heat flux is 22586.7 W/m2 == 50 kW input.
Total energy input: 100 kW
Pipe inner diameter = 0.25231 m and a radius of 0.12616 m
Asurf-inner = pi*D*L = pi*0.25231*2 = 1.58531 m**2
* 

*****************

* namelist data *
*****************
* \&inopts
nhtstr=1, cpuflg=1, npower=1, numGenTbl = 4, (NAMELIST variable, Main-
Data Card 4)
\&end
* 
* dstep timet
* stdyst
* epso epss
1.0000e-03 1.0000e-10
* oitmax
10 sitmax

```

```

        isolut 
    ```


\(\star\)
\(\star *\)
```

* component-number data *
***************************
* 
* iorder* 1
* 

**************************

* control-parameter data *
**************************
* 
* 
* signal variables
* idsv rrarrern
* 
* trips

| * | ntse | ntsf | ntdp | ntsd |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $*$ | 0 | 0 | 0 | 0 |  |
|  | idtp | isrt | iset | itst | idsg |
|  | 0 | 0 | 1 | 1 |  |

* 
* General tables to be obtained from the restart file.
* Card Number 1
1 2 30 4e
* Card Number 2
* tableNumber
Card Number 3
* nPoints
* Card Set 4
* Table Data
* Time(s) QFlux(w/m^2)
0.0 22586.7s
100.0 22586.7s
300.0 0.0s
500.0 22586.7s
3000.0 22586.7e
* read the general table data from the restart file
* End of general table input.
-1
* 

******************

* component data *
*******************
* 
* 

end
*
*******************

* time-step data *
******************
* 

```


\section*{BREAK Component Data}

Note: A BREAK component cannot be connected directly to a FILL, PLENUM, or VESSEL component.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (BREAK left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq \mathrm{NUM} \leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{r}
Note: \\
Only input this card when the number of inputs for FLUIDS (a NAMELIST \\
variable) is more than one.
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EOS & EOS identifier for this component (i.e. "h2o" or "r5h2o", etc.). \\
\hline PHASECHANGE & \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
this component. Input FALSE or false, if phase change is not allowed for \\
this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 4I14) JUN1, IBTY, ISAT, IOFF, ADJPRESS
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline JUN1 & Junction number to which the BREAK is connected. \\
\hline
\end{tabular}

Card Number 3. (Format 4I14) JUN1, IBTY, ISAT, IOFF, ADJPRESS (Continued)
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline IBTY & \begin{tabular}{l}
BREAK-type option. \\
\(0=\) no tables input and not a Generalized BREAK (see IBTY \(=6\)); \\
1 = input pressure table (array PTB, Card Set 14); \\
2 = input pressure and temperature tables (arrays PTB and TLTB, and \\
TVTB if ISAT \(=4\), Card Set 14, Card Set 15, and Card Set 16); \\
3 = input above tables plus gas volume-fraction table (array ALPTB, Card Set 17); \\
4 = input above tables plus noncondensable-gas partial-pressure table (array PATB, Card Set 18); \\
\(5=\) input above tables plus solute-to-coolant mass-ratio table (array CONCTB, Card Set 19), [requires ISOLUT = 1 (Word 3 on Main-Data Card 9)]; \\
\(6=\) Generalized-BREAK fluid parameters defined individually by a signal variable or control block (see Card Number 10). \\
Note: this option is not under direct control by trip ID number IBTR (Word 1 on Card Number 4) and the rate of change of the fluid parameters is not constrained by RBMX (Word 3 on Card Number 6). \\
\(7=\) Connected with CONTAN component. All BREAK fluid parameters are defined by the connecting CONTAN compartment.
\end{tabular} \\
\hline ISAT & \begin{tabular}{l}
BREAK temperature table use options. \\
\(0=\) use TIN or single table for liquid and gas temperatures; \\
\(1=\) use TIN or table for liquid and set gas to \(\mathrm{T}_{\text {sat }}\); \\
\(2=\) use TIN or table for gas and set liquid to \(\mathrm{T}_{\text {sat }}\); \\
\(3=\) set liquid and gas to \(\mathrm{T}_{\text {sat }}\); \\
\(4=\) use separate tables or separate signal variables and control blocks for the liquid and gas; \\
\(5=\) set liquid and gas to input-specified offsets from \(\mathrm{T}_{\text {sat }}\) (see Card Number 4). \\
For IBTY = 6 (Word 2 on Card Number 3), ISAT \(=1\), 2, and 3 has same effect (liquid and/or gas temperature set to \(\mathrm{T}_{\text {sat }}\)). \(I S A T=\) 0 or 4 behave as follows: user can have TIN, signal variable, or control block for liquid and/or gas temperature, depending on values of IBTLSV and IBTVSV (see Card Number 10).
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 4I14) JUN1, IBTY, ISAT, IOFF, ADJPRESS (Continued)
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline IOFF & \begin{tabular}{l}
The BREAK fluid-state option (defines the fluid state when the BREAK table's controlling-trip is OFF after being ON) [define IOFF when IBTR \(\neq 0\) or 6 (Word 1 on Card Number 4); Set IOFF \(=0\) for BREAK-type options IBTY \(=0\) or 6 (Word 2 on Card Number 3)]. \\
\(0=\) the last BREAK table's interpolated fluid state is held constant; \\
\(1=\) define the initial fluid state; \\
2 = input the pressure to be used, but maintain the fluid condition that existed when the trip was set OFF; \\
3 = input a complete fluid-state definition for when the controlling trip is OFF after being ON .
\end{tabular} \\
\hline ADJPRESS & \begin{tabular}{l}
Active break option \\
\(0=\) no relation between break pressure and adjacent pressure; \\
\(1=\) break pressure is equal to the pressure in the adjacent cell.
\end{tabular} \\
\hline
\end{tabular}

Card Number 4. (Format 2E14.4) DELTL, DELTV
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If ISAT \(\neq 5\) (Word 3 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{ll}
\hline DELTL & \begin{tabular}{l}
Liquid temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) offset from the BREAK-fluid saturation temperature. \\
The BREAK-cell liquid temperature is set to \(\mathrm{T}_{\text {sat }}+\) DELTL where DELTL is \\
positive or negative valued.
\end{tabular} \\
\hline \hline DELTV & \begin{tabular}{l}
Gas temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) offset from the BREAK-fluid saturation temperature. The \\
BREAK-cell gas temperature is set to \(\mathrm{T}_{\text {sat }}+\) DELTV where DELTV is positive or \\
negative valued.
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 5I14) IBTR, IBSV, NBTB, NBSV, NBRF
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If IBTY \(=0\) or 7 (Word 2 on Card Number 3), do not input this card. If IBTY \(=6\), the 5 fields of this card should be input with 0 .} \\
\hline Variable & Description \\
\hline IBTR & The trip ID number that controls evaluation of the BREAK table (\(\mid\) IBTR \(\mid \leq 9999\)). Input IBTR \(=0\) if there is no trip control or if IBTY \(=6\) (Word 2 on Card Number 3). \\
\hline
\end{tabular}

Card Number 5. (Format 5I14) IBTR, IBSV, NBTB, NBSV, NBRF (Continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If IBTY \(=0\) or 7 (Word 2 on Card Number 3), do not input this card. If IBTY \(=6\), the 5 fields of this card should be input with 0 .} \\
\hline Variable & Description \\
\hline IBSV & The BREAK-table abscissa-coordinate variable ID number that defines the independent-variable parameter for the IBTY \(=1\) to 5 tables. IBSV \(>0\) defines the ID number for a signal-variable parameter; IBSV \(<0\) defines the ID number for a control-block output parameter. Input IBSV \(=0\) if IBTY \(=6\) (Word 2 on Card Number 3). \\
\hline NBTB & The number of BREAK-table pairs (defined by the absolute value of NBTB) for break options IBTY \(=1\) to 5 (Word 2 on Card Number 3). NBTB \(>0\) defines the independent-variable form to be the IBSV parameter value; NBTB \(<0\) defines the independent-variable form to be the sum of the change in the IBSV parameter over the last timestep times the trip set-status value ISET (when the BREAK table is trip controlled, \(\operatorname{IBTR} \neq 0\)); NBTB \(=0\) (for IBTY \(=1\) only) defines the BREAK pressure to be the IBSV parameter value. Input NBTB \(=0\) if IBVTY \(=6\) (Word 2 on Card Number 3). \\
\hline NBSV & The rate-factor table abscissa-coordinate variable ID number. NBSV \(>0\) defines the ID number for a signal-variable parameter; NBSV \(<0\) defines the ID number for a control-block output parameter; NBSV \(=0\) when NBRF \(\neq 0\) defines the difference between the trip signal and the setpoint value that turns the trip OFF (when the BREAK table or tables are trip controlled). \\
\hline NBRF & The number of rate-factor table pairs (defined by the absolute value of NBRF). The rate factor is applied as a factor to the independent variable of the BREAK table or tables when the rate factor is defined. No rate factor is defined when NBSV and NBRF are both zero. NBRF \(>0\) defines the rate-factor table abscissa coordinate to be the sum of the NBSV parameter value; NBRF \(<0\) defines it to be the change in the NBSV parameter over the last timestep times the trip set-status value ISET (when the BREAK table is trip controlled, IBTR \(\neq 0\)); NBRF \(=0\) defines the rate factor to be the NBSV parameter value. \\
\hline
\end{tabular}

Card Number 6. (Format 5E14.4) DXIN, VOLIN, ALPIN, TIN, PIN
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline DXIN & \begin{tabular}{l}
Cell length (m, ft) (generally defined to be the same as its neighboring cell in the \\
adjacent component). Used to define the BREAK-cell flow area, VOLIN/DXIN, \\
and used in stratified-flow calculations.
\end{tabular} \\
\hline VOLIN & \begin{tabular}{l}
Volume \(\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\) of the BREAK cell. Used to define the BREAK-cell flow area, \\
VOLIN/DXIN, and used in stratified-flow calculations.
\end{tabular} \\
\hline
\end{tabular}

Card Number 6. (Format 5E14.4) DXIN, VOLIN, ALPIN, TIN, PIN (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ALPIN & Initial gas volume fraction \((-)\) at the BREAK. \\
\hline TIN & Initial mixture temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) at the BREAK. \\
\hline PIN & Initial pressure (Pa, psia) at the BREAK. \\
\hline
\end{tabular}

Card Number 7. (Format 5E14.4) PAIN, CONCIN, RBMX, POFF, BELV
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline PAIN & Initial noncondensable-gas partial pressure (Pa, psia) at the BREAK. \\
\hline CONCIN & \begin{tabular}{l}
Solute mass to liquid-coolant mass ratio at the BREAK [kg(solute)/kg(liquid), \\
\(\mathrm{lb}_{\mathrm{m}}\) (solute)/lb \(\mathrm{m}_{\mathrm{m}}\) (liquid)]. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9).
\end{tabular} \\
\hline RBMX & \begin{tabular}{l}
Maximum rate of change of the BREAK pressure (Pa/s, psia/s) [0.0 \(\leq \mathrm{RBMX}]\). \\
RBMX is not used when IBTY = 6 (Word 2 on Card Number 3).
\end{tabular} \\
\hline POFF & \begin{tabular}{l}
Pressure (Pa, psia) at the BREAK when the controlling-trip is set OFF after being \\
ON. POFF is used only when IBTY \(\neq 0\) or 6 (Word 2 on Card Number 3), IBTR \\
\(\neq 0\) (Word 1 on Card Number 5) and IOFF \(\geq 2\) (Word 4 on Card Number 3).
\end{tabular} \\
\hline BELV & \begin{tabular}{l}
BREAK cell-centered elevation (\(\mathrm{m}, \mathrm{ft}\)) (used only to compute GRAV when IELV \\
\(=1\)).
\end{tabular} \\
\hline
\end{tabular}

\section*{Card Number 8. (I14) COMPID}
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IBTY \(\neq 7\), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline COMPID & \begin{tabular}{l}
|COMPID \(\mid\) represents the CONTAN compartment user defined ID. When \\
COMPID \(>0\), the BREAK is inside the vapor space of the compartment. When \\
COMPID \(<0\), the BREAK is inside the liquid space of the compartment.
\end{tabular} \\
\hline
\end{tabular}

Card Number 9. (Format 2E14.4) BDSPRAY, BDCOND
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Note: If IBTY \(\neq 7\), do not input this card. } \\
\hline Variable & Description \\
\hline
\end{tabular}

Card Number 9. (Format 2E14.4) BDSPRAY, BDCOND (Continued)
\begin{tabular}{|l|l|}
\hline BDSPRAY & \begin{tabular}{l}
If the BREAK is connected with the vapor region of a compartment and it is \\
injecting subcooled water into the containment, 'BDSPRAY' represents the \\
mass fraction of the injected liquid which reaches thermal equilibrium with the \\
fluid in the vapor space.
\end{tabular} \\
\hline BDCOND & \begin{tabular}{l}
If the BREAK is connected with the liquid region of a compartment and it is \\
injecting super-heated vapor and hot air into the containment, 'BDCOND' \\
represents the mass fraction of the injected vapor which reaches thermal \\
equilibrium with the fluid in the liquid space.
\end{tabular} \\
\hline
\end{tabular}

Card Number 10. (Format 5E14.4) ALPOFF, TLOFF, TVOFF, PAOFF, CONOFF
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If IBTY \(=0\) or 7 (Word 2 on Card Number 3), IBTR \(=0\) (Word 1 on Card Number 5), and IOFF \(\neq 3\) (Word 4 on Card Number 3), do not input this card.} \\
\hline Variable & Description \\
\hline ALPOFF & BREAK gas volume fraction (-) when the controlling-trip is set OFF after being ON (used only when IBTY \(\geq 3\)). \\
\hline TLOFF & BREAK liquid temperature (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) when the controlling-trip is set OFF after being ON (used only when IBTY \(\geq 2\)). \\
\hline TVOFF & BREAK gas temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) when the controlling-trip is set OFF after being ON (used only when IBTY \(\geq 2\)). \\
\hline PAOFF & BREAK noncondensable-gas partial pressure (\(\mathrm{Pa}, \mathrm{psia}\)) when the controlling-trip is set OFF after being ON (used only when IBTY \(\geq 4\)). \\
\hline CONOFF & BREAK solute mass to liquid-coolant mass ratio \([\mathrm{kg}\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid)] when the controlling-trip is set OFF after being ON. Used only when IBTY \(=5\) and requires ISOLUT \(=1\) (Word 3 on Main-Data Card 6). \\
\hline
\end{tabular}

Card Number 11. (Format 5E14.4) PSCL, TLSCL, TVSCL, PASCL, CONSCL
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
If IBTY \(=0\) or 7 (Word 2 on Card Number 3) and NBTB \(=0\) (Word 3 on Card \\
Number 5), do not input this card.
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline PSCL & \begin{tabular}{l}
Pressure scale factor (-). The dependent variable in the pressure table PTB is \\
multiplied by this factor to obtain absolute pressure (Pa, psia) (used only when \\
IBTY \(\geq 1\)).
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 5E14.4) PSCL, TLSCL, TVSCL, PASCL, CONSCL (Continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If IBTY \(=0\) or 7 (Word 2 on Card Number 3) and NBTB \(=0\) (Word 3 on Card Number 5), do not input this card.} \\
\hline Variable & Description \\
\hline TLSCL & Liquid-temperature scale factor (-). The dependent variable in the liquidtemperature table TLTB is converted to absolute liquid temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{R}\right)\), multi-plied by this factor to obtain the absolute liquid temperature (\(\mathrm{K},{ }^{\circ} \mathrm{R}\)), and converted back to \(\mathrm{SI} /\) English units liquid temperature (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) (used only when IBTY \(\geq 2\)). \\
\hline TVSCL & Gas-temperature scale factor (-). The dependent variable in the vapor-temperature table TVTB is converted to absolute gas temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{R}\right)\), multiplied by this factor to obtain the absolute gas temperature (\(\mathrm{K}, \times^{\circ} \mathrm{R}\)), and converted back to SI/ English units gas temperature (K, \({ }^{\circ} \mathrm{F}\)) (used only when IBTY \(\geq 2\) and ISAT \(=4\)). \\
\hline PASCL & Noncondensable-gas partial pressure scale factor (-). The dependent variable in the noncondensable-gas partial pressure table PATB is multiplied by this scale factor to obtain the absolute noncondensable-gas partial pressure (Pa, psia) (used only when IBTY \(\geq 4\)). \\
\hline CONSCL & Solute mass to liquid-mass ratio scale factor (-). The dependent variable in the solute mass to liquid-mass ratio table CONCTB is multiplied by this scale factor to obtain the absolute ratio value \(\left[\mathrm{kg}\right.\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid)]. Used only when IBTY \(=5\) and requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline
\end{tabular}

Card Number 12. (Format 5I14) IBPSV, IBTLSV, IBTVSV, IBASV, IBPASV
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If IBTY \(\neq 6\) (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IBPSV & Signal variable or control-block ID number defining the BREAK pressure. \\
\hline IBTLSV & \begin{tabular}{l}
Signal variable or control-block ID number defining the BREAK liquid \\
temperature.
\end{tabular} \\
\hline IBTVSV & Signal variable or control-block ID number defining the BREAK gas temperature. \\
\hline IBASV & \begin{tabular}{l}
Signal variable or control-block ID number defining the BREAK gas volume \\
fraction.
\end{tabular} \\
\hline
\end{tabular}

Card Number 12. (Format 5I14) IBPSV, IBTLSV, IBTVSV, IBASV, IBPASV (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IBTY \(\neq 6\) (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IBPASV & \begin{tabular}{l}
Signal variable or control-block ID number defining the BREAK noncondensable \\
gas partial pressure.
\end{tabular} \\
\hline
\end{tabular}

Card Number 13. (Format 1I14) IBCNSV
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Note: If IBTY \(\neq 6\) (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IBCNSV & \begin{tabular}{l}
Signal variable or control-block ID number defining the BREAK solute-to- \\
coolant mass ratio. Used only if ISOLUT \(=1\) (Word 3 on Main-Data Card 9).
\end{tabular} \\
\hline
\end{tabular}

\section*{BREAK Table Array Cards.}

Note: Input each of the following arrays using LOAD format for IBTY 1 through 5 (Word 2 on Card Number 3). If NBTB \(=0\) (Word 3 on Card Number 5), do not input the BREAK Array Cards. Each array has its element values defined by a Card Set of one or more cards.
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \hline \multicolumn{3}{|c|}{ Note: If IBTY \(<1\) (Word 2 on Card Number 3), do not input array PTB. } \\
\hline \(\mathbf{1 4}\) & PTB & \(2 \times \mid\) NBTB \(\mid\) & \begin{tabular}{l}
BREAK pressure vs independent-variable-form \\
table \(\left[\left({ }^{*}, P a\right),(*\right.\), psia) \(]\). Input \(\mid\) NBTB \(\mid\) (Word 3 on \\
Card Number 5) table-defining data pairs having \\
the following form [independent-variable form \\
defined by IBSV (Word 2 on Card Number 5), \\
pressure].
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 15 & TLTB & \(2 \times \mid\) NBTB \(\mid\) & BREAK liquid temperature vs independent-variable- form table \(\left[(*, K),\left(*,{ }^{\circ} \mathrm{F}\right)\right]\). Input \(|\mathrm{NBTB}|\) (Word 3 on Card Number 5) table-defining data pairs having the following form [independentvariable form defined by IBSV (Word 2 on Card Number 5), liquid temperature]. \\
\hline \multicolumn{4}{|r|}{Note: If IBTY \(<2\) (Word 2 on Card Number 3) or ISAT \(\neq 4\) (Word 3 on Card Number 3), do not input array TVTB.} \\
\hline 16 & TVTB & \(2 \times \mid\) NBTB \(\mid\) & BREAK gas temperature vs independent-variableform table [(*, K), (*, F)]. Input |NBTB| (Word 3 on Card Number 5) table-defining data pairs having the following form [independent-variable form defined by IBSV (Word 2 on Card Number 5), gas temperature]. \\
\hline \multicolumn{4}{|r|}{Note: If IBTY \(<3\) (Word 2 on Card Number 3), do not input array ALPTB.} \\
\hline 17 & ALPTB & \(2 \times\) |NBTB & BREAK gas volume-fraction vs independent-variable-form table (\({ }^{*},-\)). Input |NBTB| (Word 3 on Card Number 5) table-defining data pairs having the following form [independent-variable form defined by IBSV (Word 2 on Card Number 5), gas volume fraction]. \\
\hline \multicolumn{4}{|r|}{Note: If IBTY \(<4\) (Word 2 on Card Number 3), do not input array PATB.} \\
\hline 18 & PATB & \(2 \times\) NBTB \(\mid\) & BREAK noncondensable-gas partial pressure vs independent-variable-form table [(*, Pa), (*, psia)]. Input \(|\mathrm{NBTB}|\) (Word 3 on Card Number 5) tabledefining data pairs having the following form [independent-variable form defined by IBSV (Word 2 on Card Number 5), noncondensable-gas partial pressure]. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If IBTY \(\neq 5\) (Word 2 on Card Number 3), do not input array CONCTB.} \\
\hline 19 & \[
\begin{array}{|l}
\hline \text { CONCT } \\
\text { B }
\end{array}
\] & \(2 \times\) |NBTB \(\mid\) & BREAK solute mass to liquid coolant-mass ratio vs independent-variable-form table [\(\{*, \mathrm{~kg}\) (solute) \() / \mathrm{kg}\) (liquid) \(\},\left\{{ }^{*}, \mathrm{lb}_{\mathrm{m}}\right.\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(\left.\}\right]\). Input |NBTB| (Word 3 on Card Number 5) tabledefining data pairs having the following form [independent-variable form defined by IBSV (Word 2 on Card Number 5) and the ratio of solute mass to liquid mass]. Requires ISOLUT = 1 (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If NBRF \(=0\) (Word 5 on Card Number 5), do not input array RFTB.} \\
\hline 20 & RFTB & \(2 \times\) NBRF \({ }^{\text {l }}\) & Rate-factor table (\({ }^{*}\), -) for the BREAK function table's independent-variable form defined by IBSV (Word 2 on Card Number 5). Input \(\mid\) NBTB \(\mid\) (Word 3 on Card Number 5) table-defining data pairs having the following form [independent-variable form defined by NBSV (Word 4 on Card Number 5) and the rate factor to be applied to the BREAK function table's independent variable]. \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 21 & XGNB & NCELLS & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. If IGAS \(>11\), then sum of mass fractions for non-condensable gas species must to sum to 1.0 . \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 22 & XLNB & NCELLS & Mass fraction for liquid trace species. \\
\hline
\end{tabular}

\section*{CHAN Component Data}

The CHAN component is used for BWR applications. Set NAMELIST variables TRACBOUT \(=\) 1 , IAMBWR \(=\). TRUE., if applicable, set USESJC \(=2\) if the CHAN model contains a leak path.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (CHAN left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq \mathrm{NUM} \leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 4I14,E14.4) NCELLS, NODES, JUN1, JUN2, EPSW
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NCELLS & Number of fluid cells in this CHAN component. \\
\hline NODES & Number of radial conduction nodes in the CHAN canister wall \\
\hline JUN1 & Junction number for junction interface adjacent to cell 1. \\
\hline JUN2 & Junction number for junction interface adjacent to cell NCELLS. \\
\hline EPSW & Canister wall surface roughness (m, ft). \\
\hline
\end{tabular}

Card Number 3. (Format I14) NSIDES
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
Input Card Number 3 if NAMELIST variable USESJC \(=2\) or 3. This will allow \\
this component to have side junctions so that a leak path can be established from \\
this component to another. NSIDES leak paths are established. See SJC model.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NSIDES & \begin{tabular}{l}
Number of fluid leaks in canister wall plus 2 times the number of water rods to be \\
spawned (i.e. NUMWATERRODS; Word 4 on Card Number 9).
\end{tabular} \\
\hline
\end{tabular}

Note: If NSIDES \(>0\) then input the next three cards as sets of 1,2 , or 3 cards per NSIDES. Examples include:

If USESJC \(=2\) and JUNLK (Word 2 on Card Number 4) is \(>0\) only Card Number 4 is needed.

If USESJC \(=2\) and JUNLK is 0 input Card Number 4 and Card Number 5 in pairs.

If USESJC \(=3\) and JUNLK \(>0\) input Card Number 4 and Card Number 6 in pairs.

If USESJC \(=3\) and JUNLK is 0 input Card Number 4, Card Number 5, and Card Number 6 in sets.

Card Number 4. (Format 5I14) NCLK, JUNLK, NCMPTO, NCLKTO, NLEVTO
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
If NCELLS or NSIDES \(=0\), or USESJC \(=1\) do not input this card. Otherwise \\
input this card for each NSIDES.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NCLK & "From" cell number in the PIPE component. \\
\hline JUNLK & \begin{tabular}{l}
Junction number. Enter a zero to have the code spawn a Single Junction \\
Component internally or enter the junction number here and in the Vessel \\
source cards, if this is a leak path junction. If this is a water rod junction, then \\
enter a unique junction number for both the inlet and outlet for each water rod. \\
The first 2*NUMWATERRODS (Word 4 on Card Number 9) side junction \\
input will be associated with the water rod models for this CHAN component. \\
The last junction input must be for the CHAN to bypass leakage path.
\end{tabular} \\
\hline NCMPTO & \begin{tabular}{l}
Component number of "To" component of a leak path. \\
Enter 0 if JUNLK \(\neq 0\).
\end{tabular} \\
\hline NCLKTO & \begin{tabular}{l}
Cell number of "To" cell of a leak path \\
Enter 0 if JUNLK \(\neq 0\).
\end{tabular} \\
\hline NLEVTO & \begin{tabular}{l}
Axial level number of "To" cell of a leak path when "To" component is a \\
VESSEL. Otherwise enter 0. \\
Enter 0 if JUNLK \(\neq 0\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 5E14.4) FALK, CLOS, VLLK, VVLK, DELZLK
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
If NCELLS or NSIDES \(=0\) do not input this card. Input this card only if \\
JUNLK \(=0\). If USESJC \(=2\) or 3, input this card for each NSIDES.
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline FALK & Leak path flow area \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\) \\
\hline CLOS & Leak path loss coefficient \\
\hline VLLK & Leak path initial liquid velocity \((\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s})\) \\
\hline VVLK & Leak path initial vapor velocity (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)) \\
\hline DELZLK & \begin{tabular}{l}
Elevation difference between center of "From" cell and center of "To" cell \\
DELZLK \(>0\) when the center of the "From" cell is higher than the center of the \\
"To" cell \\
DELZLK \(<0\) when the center of the "From" cell is lower than the center of the \\
"To" cell
\end{tabular} \\
\hline
\end{tabular}

Card Number 6. (Format E14.4, I14) THETA, IENTRN
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If NCELLS or NSIDES \(=0\), or USESJC \(=1\) or 2 do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline THETA & Angle between the main direction of flow and the flow through the side junction. \\
\hline IENTRN & \begin{tabular}{c}
Offtake-model option. \\
\(0=\) off; \\
\(1=\) on (side-junction mass flow determined using offtake model)
\end{tabular} \\
\hline
\end{tabular}

Card Number 7. (Format 5I14) ICHF, ICONC, IAXCND, LIQLEV, IPVHT
\begin{tabular}{|l|c|}
\hline Variable & Description \\
\hline \hline ICHF & \begin{tabular}{c}
CHF calculation option. \\
\(0=\) convection heat transfer only, no boiling heat transfer (i.e. no wall \\
nucleation is allowed although phase change can still occur); \\
\(1=\) CHF from AECL-IPPE CHF Table, no critical quality calculated. \\
\(2=\) CHF from AECL-IPPE CHF Table, critical quality from Biasi \\
correlation.
\end{tabular} \\
\(3=\)\begin{tabular}{c}
CHF from AECL-IPPE CHF Table, critical quality from CISE-GE \\
correlation.
\end{tabular} \\
\hline ICONC & \begin{tabular}{c}
Solute in the liquid coolant option. Requires ISOLUT =1 (Word 3 on Main-Data \\
Card 9) when ICONC \(>0\). \\
\(0=\) no; \\
\(1=\) dissolved solute only; \\
\(2=\) both dissolved and plated out solute.
\end{tabular} \\
\hline IAXCND & \begin{tabular}{c}
Specification of axial conduction. \\
\(0=\) no axial heat transfer conduction calculated; \\
\(1=\) axial heat transfer conduction calculated (explicit numerics when \\
NAMELIST variable NRSLV = \(0 ;\) implicit numerics when NRSLV \\
\(=1)\).
\end{tabular} \\
\hline LIQLEV & \begin{tabular}{c}
Specification of liquid level tracking. \\
\(0=\) no \\
\(1=\) yes (this produces a more accurate axial heat transfer solution).
\end{tabular} \\
\hline IPVHT & \begin{tabular}{l}
The number of the component surrounding the CHAN.
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format 5E14.4) WIDTH, TH, HOUTL, HOUTV, TOUTL
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility \\
in calculating possible heat losses from the outside of the PIPE wall. Typically, \\
such heat losses are not important for fast transients or large-break loss-of- \\
coolant accidents (LOCAs), and HOUTL and HOUTV can be set equal to zero. \\
When heat losses are significant, they often can be approximated by a constant \\
HTC temperature for the liquid and gas fluid phases outside the pipe wall.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline WIDTH & Inside perimeter (m, ft) of the canister wall. \\
\hline TH & Wall thickness (m, ft). \\
\hline
\end{tabular}

Card Number 8. (Format 5E14.4) WIDTH, TH, HOUTL, HOUTV, TOUTL (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility \\
in calculating possible heat losses from the outside of the PIPE wall. Typically, \\
such heat losses are not important for fast transients or large-break loss-of- \\
coolant accidents (LOCAs), and HOUTL and HOUTV can be set equal to zero. \\
When heat losses are significant, they often can be approximated by a constant \\
HTC temperature for the liquid and gas fluid phases outside the pipe wall.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline HOUTL & CHAN outside wall heat transfer coefficient to liquid. \\
\hline HOUTV & CHAN outside wall heat transfer coefficient to vapor. \\
\hline TOUTL & CHAN outside constant wall liquid temperature. \\
\hline
\end{tabular}

Card Number 9. (Format E14.4, 3I14) TOUTV, ADVBWRF, QUADSYM, NUMWATERRODS, NVFRAYS
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline TOUTV & CHAN outside wall vapor temperature. \\
\hline ADVBWRF & \begin{tabular}{l}
Advanced BWR fuel design flag. ADVBWRF = 0, implies that this \\
CHAN model does not include any advanced BWR fuel design. \\
ADVBWRF = 1, implies that this CHAN model does include an \\
advanced BWR fuel design.
\end{tabular} \\
\hline QUADSYM & \begin{tabular}{l}
Symmetry flag for advanced BWR fuel design. QUADSYM = 0, \\
implies that the pitch-to-diameter ratio is constant for fuel rods within \\
this BWR fuel assembly. QUADSYM = 1, implies that the pitch-to- \\
diameter ratio is constant for fuel rods within each of the four \\
quadrants for this BWR fuel assembly. QUADSYM = 2, is the same \\
as QUADSYM = 1, except there is also a water cross present in this \\
BWR assembly. QUADSYM = 3 implies that the BWR assembly has \\
four quadrants that are symmetric with the same pitch, but the fuel rod \\
diameters may vary and a water cross water rod is present. Presence \\
of a water cross water rod implies that no rod in a given quadrant of \\
the BWR fuel assembly can be "seen" (as it relates to the view factor \\
calculation) by a rod in another quadrant of the BWR fuel assembly.
\end{tabular} \\
\hline NUMWATERRODS & \begin{tabular}{l}
Number of water rod models to be spawned by this CHAN \\
component. Note the number of actual water rods in this BWR fuel \\
assembly must be equal to or greater than NUMWATERRODS.
\end{tabular} \\
\hline
\end{tabular}

Card Number 9. (Format E14.4, 3I14) TOUTV, ADVBWRF, QUADSYM, NUMWATERRODS, NVFRAYS (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline NVFRAYS & \begin{tabular}{l}
Number of rays to be used per surface for ray tracing view factor \\
calculation. If NVFRAYS \(=0\), then the cross-string method will be \\
used except for fuel designs that have non-cylindrical water rods. For \\
non-cylindrical water rod cases, NVFRAYS will be reset to a positive \\
value. If NVFRAYS \(>0\), then the ray tracing method will be used to \\
calculate view factors. If NVFRAYS \(>0\), then NVFRAYS should be \\
at least 100,000 or larger to generate accurate view factors. For the \\
non-cylindrical water rod cases where NVFRAYS is initially set to \\
zero, NVFRAYS will be reset to 100,000 for the cases where \\
QUADSYM \(=0\) and to 25,000 for the cases where QUADSYM \(>0\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 10. (Format 5I14) NGRP, NCHANS, NODESR, NROW, NCRZ
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline NGRP & \begin{tabular}{l}
Number of rod types modeled in the rod bundle. This number will get reset \\
internally to NCRX = NRODS. The value entered here should include both \\
water rods and fuel rods.
\end{tabular} \\
\hline NCHANS & Number of fuel bundles represented by this CHAN. \\
\hline NODESR & Number of radial conduction nodes in the CHAN rods. \\
\hline NROW & Number of rods in a row. \\
\hline NCRZ & \begin{tabular}{l}
Number of axial cells between the upper and lower tie-plate. If ADVBWRF \\
(i.e. Word 2 on Card Number 9) = 1, then NCRZ is used only for the full \\
length fuel rod groups. There must be at least one full length fuel rod group \\
and the first fuel rod group must be a full length fuel rod group.
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) ICRNK, ICRLH, NMRWX, NFCI, NFCIL
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICRNK & \begin{tabular}{l}
Number of CHAN cells below the powered region. ICRNK + NCRZ (Word 5 \\
of Card Number 10) must be less than or equal to NCELLS.
\end{tabular} \\
\hline ICRLH & Number of CHAN cells below the lower tie plate. \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) ICRNK, ICRLH, NMRWX, NFCI, NFCIL (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline NMWRX & \begin{tabular}{l}
Metal-water reaction option. \\
\(0=\) off; \\
\(1=\) on.
\end{tabular} \\
\hline NFCI & \begin{tabular}{l}
Fuel clad interaction option..NFCI = 1 performs the dynamic gas-gap \\
conductance calculation. \\
\(0=\) off; \\
\(1=\) on.
\end{tabular} \\
\hline NFCIL & \begin{tabular}{l}
Maximum number of FCI calculations per time step. Input NFCIL \(=1\) when \\
NFCI =.
\end{tabular} \\
\hline
\end{tabular}

Card Number 12. (Format 5I14) FMON, REFLOODON, NZMAX, NZMAXW, IBEAM
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline FMON & Fine mesh flag. If it is non-zero, then the fine mesh algorithm is turned on. \\
\hline REFLOODON & \begin{tabular}{l}
Reflood input flag. This flag is now redundant in that it behaves identically \\
to FMON above - if it is non-zero, then the fine mesh algorithm is turned on \\
(even if FMON is set to zero). As of V4.260, the code no longer \\
distinguishes between reflood and non-reflood sets of physical models. The \\
only reason this flag still remains is to maintain backward compatibility \\
with older input decks which may have had the IRFTR flag (now called \\
FMON) set to 0 and IRFTR2 (this variable) set to a non-zero number.
\end{tabular} \\
\hline NZMAX & \begin{tabular}{l}
Maximum number of rows of nodes in the axial direction. The value \\
supplied here is governed by the requirement that
\end{tabular} \\
\(\quad N Z M A X \geq 2+\sum_{I=1} N F A Z\)
\end{tabular}

Card Number 12. (Format 5I14) FMON, REFLOODON, NZMAX, NZMAXW, IBEAM (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline IBEAM & \begin{tabular}{l}
Set IBEAM to 1 if view factors and beam lengths are included in place of \\
the MROD array (Card Set 60) and LevRod array. Otherwise set it to 0. \\
Zero is the default value.
\end{tabular} \\
\hline
\end{tabular}

Card Number 13. (Format 5E14.4) DZNHT, DZNHTW, DTXHT1, DTXHT2, UNHEATFR
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline DZNHT & \begin{tabular}{l}
Minimum \(\Delta \mathrm{Z}(\mathrm{m}, \mathrm{ft})\) axial interval between rod node rows below which no \\
additional row of nodes is inserted in the axial fine mesh heat transfer \\
calculation (this value should be based on the diffusion number when explicit \\
axial heat conduction numerics is being evaluated).
\end{tabular} \\
\hline DZNHTW & \begin{tabular}{l}
Minimum \(\Delta \mathrm{Z}(\mathrm{m}, \mathrm{ft})\) axial interval between wall node rows below which no \\
additional row of nodes is inserted in the axial fine mesh heat transfer \\
calculation (this value should be based on the diffusion number when explicit \\
axial heat conduction numerics is being evaluated).
\end{tabular} \\
\hline DTXHT1 & \begin{tabular}{l}
Maximum \(\Delta \mathrm{T}\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) surface temperature change between node rows above \\
which a row of nodes is inserted in the axial fine mesh heat transfer \\
calculation for the nucleate and transition boiling regimes [Currently not used]
\end{tabular} \\
\hline DTXHT2 & \begin{tabular}{l}
Maximum \(\Delta \mathrm{T}\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) surface temperature change between node rows above \\
which a row of nodes is inserted in the axial fine mesh heat transfer \\
calculation for all heat transfer regimes except the nucleate and transition \\
boiling regimes [Currently not used].
\end{tabular} \\
\hline UNHEATFR & \begin{tabular}{l}
Fraction of the HS surface perimeter that is not heated. This input is only used \\
when REFLOODON (Word 2 on Card Number 12) is not equal to zero.
\end{tabular} \\
\hline
\end{tabular}

Card Number 14. (Format 4E14.4, I14) HGAPO, PDRAT, PLDR, FUCRAC, NORAD
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline HGAPO & Rod gas gap HTC \(\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]\). \\
\hline PDRAT & Rod pitch-to-diameter. \\
\hline PLDR & \begin{tabular}{l}
Pellet dish radius (m, ft\()\) [no calculation of pellet dishing is performed if \\
PLDR \(=0.0]\) (currently not used).
\end{tabular} \\
\hline
\end{tabular}

Card Number 14. (Format 4E14.4, I14) HGAPO, PDRAT, PLDR, FUCRAC, NORAD (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline FUCRAC & \begin{tabular}{l}
Fraction of the fuel (-) which is not cracked [used only when NFCI \(=1\) (Word \\
4 on Card Number 11)].
\end{tabular} \\
\hline NORAD & If NORAD is equal to one, then radiation heat transfer model is turned off. \\
\hline
\end{tabular}

Card Number 15. (Format 3E14.4, 2I14) EMCIF1, EMCIF2, EMCIF3, NOANI, NGRIDSPACERS
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: Emissivity as a function of surface temperature equation: \(\epsilon=c_{1}+c_{2} T+c_{3} T^{2}\)} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EMCIF1 & Canister wall \(\mathrm{c}_{1}\) term in quadratic fit of emissivity. \\
\hline EMCIF2 & \(\mathrm{c}_{2}\) term. \\
\hline EMCIF3 & \(\mathrm{c}_{3}\) term. \\
\hline NOANI & \begin{tabular}{l}
If NOANI is equal to one, then the anisotropic view factor corrections \\
are not applied to the view factor calculation.
\end{tabular} \\
\hline NGRIDSPACERS & \begin{tabular}{l}
Number of grid spacers associated with this CHAN component. Input \\
zero for this parameter at this time. TRACE currently has no actual grid \\
spacer model - this is merely a placeholder for a future planned feature.
\end{tabular} \\
\hline
\end{tabular}

Card Number 16. (Format 3E14.4) EMCOF1, EMCOF2, EMCOF3
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EMCOF1 & Rod surface \(\mathrm{c}_{1}\) term in quadratic fit of emissivity. \\
\hline EMCOF2 & \(\mathrm{c}_{2}\) term. \\
\hline EMCOF3 & \(\mathrm{c}_{3}\) term. \\
\hline
\end{tabular}

\section*{CHAN Array Cards.}

Note: Some of the following Card Sets may be skipped depending upon the input options. Use LOAD format. Each array has its element values defined by a Card Set of one or more cards.

All junction variables must match at component interfaces.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 17 & DX & NCELLS & Cell lengths (m, ft). \\
\hline 18 & VOL & NCELLS & Cell volumes (\(\left.\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\). \\
\hline 19 & FA & NCELLS+1 & Cell-edge flow areas (\(\left.\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline \multicolumn{4}{|r|}{Note: Setting FRIC \(>10^{20}\) at a cell edge invokes the steam-separator model (only the gas phase is allowed to flow through the cell interface). Setting FRIC \(<-10^{20}\) invokes the liquid-separator model (only the liquid is allowed to flow through the cell interface). If the reverse additive loss-coefficient option (NFRC1 \(=2\) in the NAMELIST data) is chosen, steam-separator and liquid-separator models may be used separately in each forward and reverse direction.} \\
\hline 20 & FRIC & NCELLS+1 & Additive loss coefficients (-). See NAMELIST variable IKFAC for optional K factors input. \\
\hline \multicolumn{4}{|r|}{Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\).} \\
\hline 21 & FRICR & NCELLS+1 & Additive loss coefficients (-) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. \\
\hline 22 & \begin{tabular}{l}
GRAV \\
or ELEV
\end{tabular} & \begin{tabular}{l}
NCELLS+1 \\
(NCELLS \\
for ELEV)
\end{tabular} & Gravity or elevation terms (- or m, ft). GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell i and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cellcentered elevation ELEV input. \\
\hline 23 & HD & NCELLS+1 & Hydraulic diameters (m, ft). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NDIA1 \(\neq 2\) do not input array HD-HT.} \\
\hline 24 & HD-HT & NCELLS+1 & Heat transfer diameters (m, ft). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 do not input array ICFLG. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur..} \\
\hline 25 & ICFLG & NCELLS+1 & \begin{tabular}{l}
Cell edge choked flow model option. \\
\(0=\) no choked flow model calculation; \\
1 = choked flow model calculation using default multipliers; \\
2 to \(5=\) choked flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline 26 & NFF & NCELLS+1 & \begin{tabular}{l}
Friction factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous flow friction factor plus FRIC; \\
\(-1=\) homogeneous flow friction factor plus FRIC plus an abrupt flow area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow area change form loss evaluated internally by TRACE.
\end{tabular} \\
\hline
\end{tabular}

Note: If NCCFL = 0 (Word 5 Main-Data Card 9) do not input array LCCFL.
\begin{tabular}{|l|l|l|l|}
\hline \(\mathbf{2 7}\) & LCCFL & NCELLS+1 & \begin{tabular}{c}
Countercurrent flow limitation option. \\
\(0=\) no countercurrent flow limitation \\
calculation at the cell interface; \\
N the countercurrent flow limitation \\
parameter set number used to \\
evaluate countercurrent flow \\
limitation at the cell interface \([1 \leq \mathrm{N} \leq\) \\
NCCFL (Word 5 on Main-Data \\
Card 9)].
\end{tabular} \\
\hline \(\mathbf{2 8}\) & ALP & NCELLS & Initial gas volume fractions (-). \\
\hline \(\mathbf{2 9}\) & VL & NCELLS+1 & Initial liquid velocities (m/s, ft/s). \\
\hline \(\mathbf{3 0}\) & VV & NCELLS+1 & Initial gas velocities (m/s, ft/s). \\
\hline \(\mathbf{3 1}\) & TL & NCELLS & Initial liquid temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\). \\
\hline \(\mathbf{3 2}\) & TV & NCELLS & Initial gas temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & \multicolumn{1}{|c|}{ Variable } & Dimension & \\
\hline \hline \(\mathbf{3 3}\) & P & NCELLS & Initial pressures (Pa, psia). \\
\hline \(\mathbf{3 4}\) & PA & NCELLS & \begin{tabular}{l}
Initial noncondensable-gas partial pressures (Pa, \\
psia).
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Note: If NAMELIST variable NOLT1D = 1, do not input array ILEV. }
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
CardSet \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 40 & TW & \begin{tabular}{l}
NODES \(\times\) \\
NCELLS
\end{tabular} & Initial canister wall temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) at cell edges. \\
\hline \multicolumn{4}{|r|}{Note: If IPVHT = 0 (Word 5 on Card Number 7) do not input array IDROD.} \\
\hline 41 & IDROD & 1 & The (\(\mathrm{r}, \mathrm{q}\))- or (\(\mathrm{x}, \mathrm{y}\))-plane cell number of the VESSEL that the outer surface of the canister is connected to. Use 1 when connecting to a 1D component. See IDRODO description in HTSTR specification, HTSTR Component Data. \\
\hline \multicolumn{4}{|r|}{Note: If IPVHT = 0 (Word 5 on Card Number 7) do not input array NHCELO.} \\
\hline 42 & NHCELO & NCELLS & Axial cell numbers of the hydraulic cells to which the CHAN outer surface is coupled starting with the first cell. \\
\hline \multicolumn{4}{|r|}{Note: If ICONC \(=0\) (Word 2 on Card Number 7) do not input array CONC.} \\
\hline 43 & CONC & NCELLS & Initial ratio of solute mass to liquid coolant mass \(\left[\mathrm{kg}\right.\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(]\). Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC \(=0\) or 1 (Word 2 on Card Number 7), do not input array S.} \\
\hline 44 & S & NCELLS & Initial macroscopic density of plated-out solute \((\mathrm{kg} /\) \(\mathrm{m}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\)). Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 45 & XGNB & NCELLS & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 46 & XLNB & NCELLS & Mass fraction for liquid trace species. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & \multicolumn{1}{c|}{ Variable } & Dimension & \\
\hline \hline \(\mathbf{4 7}\) & RDX & NGRP & \begin{tabular}{l}
Number of actual rods in each rod group. (A 'real' \\
number). The RDX array is input for both fuel rods \\
and water rod groups. For water rod groups RDX \\
is the number of actual water rods represented by \\
the water rod group.
\end{tabular} \\
\hline \(\mathbf{4 8}\) & RADRD & NODESR & \begin{tabular}{l}
Rod radii (m, ft) from the inside surface at no \\
power cold conditions. This RADRD array will be \\
used for all fuel rods in this CHAN component, but \\
will not be used for water rods.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
CardSet \\
Number
\end{tabular} & \multicolumn{1}{|c|}{ Variable } & Dimension & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{lll}
\hline \(\mathbf{5 0}\) & NFAX & NCRZ \\
\begin{tabular}{l}
Number of permanent fine-mesh cells added in \\
each coarse mesh cell (between the upper and \\
lower tie plates) of the CHAN heat structures, \\
when the fine-mesh calculation is set ON (see \\
FMON (Word 1 on Card Number 12)). Odd \\
numbers should be used. If even numbers are used, \\
the code will change them to odd numbers \\
(NFAX=NFAX+1). The total number of node
\end{tabular} \\
(NCRZ
\end{tabular}

Note: ROD Temperature Array. Input an RFTN array for each of the NFGRP. Where NFGRP \(=\) NGRP - NUMWATERRODS
\begin{tabular}{|c|l|l|l|}
\hline \(\mathbf{5 1}\) & RFTN & \begin{tabular}{l}
NODES x \\
NCRZ \\
1 set per \\
NFGRP
\end{tabular} & \begin{tabular}{l}
Rod (radial by axial) element temperatures (K, \(\left.{ }^{\circ} \mathrm{F}\right)\). \\
For partial-length fuel rods, the RFTN input above \\
the height of the rod will be ignored.
\end{tabular} \\
\hline \(\mathbf{5 2}\) & RDPWR & NODESR & \begin{tabular}{l}
Relative rod radial power density distribution (-) at \\
the node locations defined by array RADRD (Card \\
Set 48).
\end{tabular} \\
\hline \(\mathbf{5 3}\) & CPOWR & NFGRP & \begin{tabular}{l}
Radial power peaking factor for each rod group \\
within the fuel bundle, where NFGRP = NGRP - \\
NUMWATERRODS. Water rod groups must be \\
input as the last rod groups. The values for the last \\
NUMWATERRODS rod groups must be set to
\end{tabular} \\
zero, indicating they have zero power.
\end{tabular}\(|\)\begin{tabular}{l}
54 \\
\hline RADPW \\
\hline NCRZ \\
\hline \begin{tabular}{l}
Core wide radial CHAN-to-CHAN power peaking \\
factor for each axial conduction node set in the \\
power fuel region. The numerical average of these \\
numbers is used for the core wide peaking factor \\
relative to other CHANs. This set of numbers is \\
then normalized about 1.0 and used for the axial \\
power peaking factor variation along this CHAN.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 55 & FPUO2 & NFGRP & \begin{tabular}{l}
Fraction (-) of plutonium dioxide (PuO2) in mixed oxide fuel, where NFGRP = NGRP - \\
NUMWATERRODS.
\end{tabular} \\
\hline 56 & FTD & NFGRP & Fraction (-) of theoretical fuel density, where NFGRP = NGRP - NUMWATERRODS . \\
\hline 57 & GMIX & NFGRP*7 & \begin{tabular}{l}
Mole fraction (-) of gap-gas constituents. GMIX is not used if NFCI \(=0\) (Word 4 on Card Number 11) but must be input. Enter data for NFGRP fuel rod groups for each gas in the order indicated. Where NFGRP = NGRP - NUMWATERRODS. \\
1. helium; \\
2. argon; \\
3. xenon; \\
4. krypton; \\
5. hydrogen; \\
6. air/nitrogen; \\
7. water vapor.
\end{tabular} \\
\hline 58 & PGAPT & NFGRP & Average gap-gas pressure (\(\mathrm{Pa}, \mathrm{psia}\)). PGAPT is not used if NFCI \(=0\) (Word 4 on Card Number 11), but must be input. Where NFGRP = NGRP NUMWATERRODS. \\
\hline
\end{tabular}

Note: Burnup Arrays. Input a BURN Card Set for each of the NFGRP fuel rod groups, where NFGRP \(=\) NGRP - NUMWATERRODS .
\begin{tabular}{|c|l|l|l|}
\hline \(\mathbf{5 9}\) & BURN & NCRZ & \begin{tabular}{l}
Rod axial location fuel burnup (MWD/MTU). 1 set \\
per NFGRP. Where NFGRP = NGRP - \\
NUMWATERRODS.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Bundle Map of rods. Omit next Card if NGRP \(=1\) or IBEAM \(>0\) (Word 5 on Card Number 12).} \\
\hline 60 & MROD & \[
\begin{aligned}
& \text { NROW*NR } \\
& \text { OW+1 }
\end{aligned}
\] & Layout of primary and supplemental rod positions in the bundle. The channel wall is the last radiating surface, or group. Water rod groups must come after fuel rod groups. Partial length fuel rod groups must come after full length fuel rod groups. A full length rod group must be the first rod group. This layout will be used to calculate view factors and beam lengths. Beginning in the upper left hand corner rod in Figure 6-3, the values of MROD that would be input for this particular rod grouping are:
\[
\begin{array}{lllll}
1 & 1 & 1 & 1 & \mathrm{~s} \\
1 & 2 & 2 & 1 & \mathrm{~s} \\
1 & 2 & 2 & 1 & \mathrm{~s} \\
1 & 1 & 1 & 1 & \mathrm{~s} \\
3 & \mathrm{e} & & &
\end{array}
\] \\
\hline \multicolumn{4}{|r|}{Note: Do not input VIEWGRP or BEAMGRP if IBEAM (Word 5 on Card Number 12) \(=0\). Arrays VIEWGRP and BEAMGRP are repeated NCRZ times if ADVBWRF (Word 2 Card Number 9) \(=1\).} \\
\hline 61 & VIEWGRP & \((\mathrm{NGRP}+1)^{2}\) & View factor array. For rod group 1 give NGRP+1 values representing the view factor from group 1 to all the other groups. Next enter NGRP +1 values for group 2. Repeat for all rod groups including the canister wall. \\
\hline 62 & BEAMGRP & \((\mathrm{NGRP}+1)^{2}\) & Beam length array. Enter NGRP+1 values for NGRP+1 groups. View factors and beam lengths are checked for consistency. \\
\hline
\end{tabular}

Figure. 6-3. 4-x-4 rod bundle with two rod groups (NGRP) and a canister wall.

\section*{Advanced BWR Fuel Input}

Note: The Card Numbers 63-72 are only input if ADVBWRF \(=1\) (Word 2 on Card Number 9). These Cards use a combination of scalar input (Card Numbers) and array input (Card Sets in LOAD format).

Card Number 63. (Format 3I14) I, J, LEVROD(i,j)
\begin{tabular}{|l|l|}
\hline Note: & \begin{tabular}{l}
Input next Card if IBEAM (Word 5 on Card Card Number 12) \(=0\). Input one \\
card for each i, j fuel rod location in the BWR fuel bundle that is not a full \\
length fuel rod. Input is terminated with a -1 input for the I index. If all of the \\
fuel rods for this BWR fuel assembly are full length, then input a -1 for the I \\
index input. The I, J numbering scheme for a BWR fuel assembly is defined in \\
Figure 6-4
\end{tabular} \\
\hline Variable & \\
\hline \hline I & I Index for the fuel rod with a non-default length. \\
\hline J & J Index for the fuel rod with a non-default length. \\
\hline LEVROD & \begin{tabular}{l}
CHAN component cell index that corresponds to the last cell of the fuel rod at \\
location I, J.
\end{tabular} \\
\hline
\end{tabular}

Note: The LEVROD(NROW, NROW) array is initially set to the index of the CHAN hydro cell that corresponds to the top of the full length fuel rod (i.e. NCRZ + ICRNK). The height of the first rod group is assumed to be the full length height for the BWR fuel assembly. The height of the first rod group is given by the SUM of the user input dx start at \(1+\) ICRNK and summing to NCRZ+ICRNK

Figure. 6-4. I, J Numbering Scheme for a BWR Fuel Assembly.

Card Number 64. (Format 3I14, 2E14.4) I, J, WATERRODFLG(i.j), XLOC, YLOC
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: Input next Card if IBEAM (Word 5 on Card Number 12) \(=0\)} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline I & I Index for the fuel rod with a non-zero WATERRODFLG \\
\hline J & J Index for the fuel rod with a non-zero WATERRODFLG. \\
\hline WATERRODFLG & \begin{tabular}{l}
WATERRODFLG for fuel location I, J. WATERRODFLG(I, J) \(=0\), \\
implies that location i,j is occupied by a fuel rod. WATERRODFLG(I, \\
J) \(=0\), implies that location i,j is occupied by a water rod and value of \\
WATERRODFLG(I, J) is the water rod geometry type number. \\
The WATERRODFLG(NROW, NROW) array is initially set to zero. \\
Input a flag value for each non-zero element in the WATERRODFLG \\
array.
\end{tabular} \\
\hline XLOC & \begin{tabular}{l}
x-coordinate for the center of this water rod. If a given water rod \\
occupies more than one fuel rod location, then only one x coordinate \\
should be non-zero. XLOC should be zero for all extra fuel rod \\
locations occupied by this water rod. The origin for the BWR assembly \\
is at the upper left hand corner of the channel box. All non-zero XLOC \\
must be greater than zero. If all XLOCs and YLOCs are input as zero, \\
then TRACE will attempt to locate the water rod at the center of the i,j \\
fuel rod locations associated with this water rod.
\end{tabular} \\
\hline YLOC & \begin{tabular}{l}
y-coordinate for the center of this water rod. If a given water rod \\
occupies more than one fuel rod location, then only one y coordinate \\
should be non-zero. yLoc should be zero for all extra fuel rod locations \\
occupied by this water rod. The origin for the BWR assembly is at the \\
upper left hand corner of the channel box. All non-zero yLoc must be
\end{tabular} \\
less than zero. If all XLOCs and YLOCs are input as zero, then \\
TRACE will attempt to locate the water rod at the center of the i,j fuel \\
rod locations associated with this water rod.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: Input next 2 Cards if IBEAM (Word 5 on Card Number 12) \(=1\).} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 65 & LEVRODG & NFGRP & CHAN cell index for the last fuel rod axial level for each NFGRP fuel rod group, where NFGRP = NGRP - NUMWATERRODS. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{4}{|c|}{ Note: Input next 2 Cards if IBEAM (Word 5 on Card Number 12) \(=1\)} \\
\hline \begin{tabular}{c}
CardSet \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline \(\mathbf{6 6}\) & WRODFLG & NGRP & \begin{tabular}{l}
WATERRODFLG input for each fuel rod and \\
water rod group.
\end{tabular} \\
\hline
\end{tabular}

\section*{Water Rod Variables}

Note: .Card Number 67 through Card Set 74 are repeated NUMWATERRODS (i.e. Word 4 on Card Number 9) times.

Card Number 67. (Format 2I14) IGEOM, WRNODES
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline IGEOM & \begin{tabular}{l}
Geometry type for this water rod. \\
\(1=\) eylindrical geometry. \\
\(2=\) rectangular geometry. \\
\(3=\) square geometry. \\
\(4=\) general geometry.
\end{tabular} \\
\hline WRNODES & \begin{tabular}{l}
Number of radial nodes to be used in the water rod wall. Radial node spacing \\
through the water rod will be assumed to be uniform. The water rod heat \\
structure will be a two sided HS with the inside surface in contact with the \\
fluid in the water rod PIPE component and the outside surface in contact with \\
the fluid inside the CHAN component. WRNODES must be larger than one. \\
Lumped parameter heat structure is not allowed for the water rod model.
\end{tabular} \\
\hline
\end{tabular}

Card Number 68. (Format 2I14, 3E14.4) WRINLET, WROUTLET, DIA, SIDEA, SIDEB
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline WRINLET & CHAN hydro cell index for the water rod inlet location. \\
\hline WROUTLET & CHAN hydro cell index for the water rod outlet location. \\
\hline DIA & \begin{tabular}{l}
Outer diameter of a cylindrical water rod, if IGEOM (i.e. Word 1 on Card \\
Number 67\()=1,(\mathrm{~m}, \mathrm{ft})\). Not used if IGEOM is not equal to 1.
\end{tabular} \\
\hline
\end{tabular}

Card Number 68. (Format 2I14, 3E14.4) WRINLET, WROUTLET, DIA, SIDEA, SIDEB
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline SIDEA & \begin{tabular}{l}
Length of the outside of a square water rod, if IGEOM (i.e. Word 1 on Card \\
Number 67) \(=3,(\mathrm{~m}, \mathrm{ft})\). Length of outside of side A of a rectangular water \\
rod if IGEOM \(=2,(\mathrm{~m}, \mathrm{ft})\). Not used if IGEOM equals 1 or 4.
\end{tabular} \\
\hline SIDEB & \begin{tabular}{l}
Length of outside of side B of a rectangular water rod if IGEOM \(=2,(\mathrm{~m}, \mathrm{ft})\). \\
Not used if IGEOM equals 1,3, or 4.
\end{tabular} \\
\hline
\end{tabular}

Card Number 69. (Format 5E14.4) TH, RCORNER, FLOWAREA, FLWAREAI, FLWAREAO
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline TH & Thickness of the water rod wall (m, ft\().\) TH must be larger than zero. \\
\hline RCORNER & \begin{tabular}{l}
Radius of curvature for the corners of a square or rectangular water rod, \\
\((\mathrm{m}, \mathrm{ft})\). Not used if IGEOM \(=1\) or 4.
\end{tabular} \\
\hline FLOWAREA & \begin{tabular}{l}
Average flow area of the water rod, \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). Must be greater than zero, if \\
IGEOM is equal to 4. If IGEOM is equal to 1,2, or 3, and FLOWAREA is \\
less than or equal to zero, then FLOWAREA will be calculated by TRACE.
\end{tabular} \\
\hline FLWAREAI & \begin{tabular}{l}
Flow area of the inlet of the water rod, \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). Must be greater than zero, \\
if IGEOM is equal to 4. If IGEOM is equal to 1,2, or 3, and FLWAREAI \\
is less than or equal to zero, then FLWAREAI will be calculated by \\
TRACE.
\end{tabular} \\
\hline FLWAREAO & \begin{tabular}{l}
Flow area of the outlet of the water rod, \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). Must be greater than \\
zero, if IGEOM is equal to 4. If IGEOM is equal to 1, 2, or 3, and
\end{tabular} \\
FLWAREAO is less than or equal to zero, then FLWAREAO will be \\
calculated by TRACE.
\end{tabular}

Card Number 70. (Format 5E14.4) HD, HDRI, HDRO, THRMDIAI, THRMDIAO
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline HD & \begin{tabular}{l}
Average hydraulic diameter for the water rod (m, ft). Must be greater than \\
zero, if IGEOM is equal to 4. If IGEOM is equal to 1, 2, or 3, and HD is less \\
than or equal to zero, then HD will be calculated by TRACE.
\end{tabular} \\
\hline
\end{tabular}

Card Number 70. (Format 5E14.4) HD, HDRI, HDRO, THRMDIAI, THRMDIAO (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline HDRI & \begin{tabular}{l}
Hydraulic diameter for the inlet to the water rod, (m, ft). Must be greater \\
than zero, if IGEOM is equal to 4. If IGEOM is equal to 1, 2, or 3, and \\
HDRI is less than or equal to zero, then HDRI will be calculated by \\
TRACE.
\end{tabular} \\
\hline HDRO & \begin{tabular}{l}
Hydraulic diameter for the outlet to the water rod, (m, ft). Must be greater \\
than zero, if IGEOM is equal to 4. If IGEOM is equal to 1, 2, or 3, and \\
HDRO is less than or equal to zero, then HDRO will be calculated by \\
TRACE.
\end{tabular} \\
\hline THRMDIAI & \begin{tabular}{l}
Thermal diameter for the inside surface of the water rod, (m, ft). Must be \\
greater than zero, if IGEOM is equal to 4. If IGEOM is equal to 1, 2, or 3, \\
and THRMDIAI is less than or equal to zero, then THRMDIAI will be \\
calculated by TRACE.
\end{tabular} \\
\hline THRMDIAO & \begin{tabular}{l}
Thermal diameter for the outside surface of the water rod, (m, ft). Must be \\
greater than zero, if IGEOM is equal to 4. If IGEOM is equal to 1, 2, or 3, \\
and THRMDIAO is less than or equal to zero, then THRMDIAO will be \\
calculated by TRACE.
\end{tabular} \\
\hline
\end{tabular}

Card Number 71. (Format 4E14.4) WRFLOSSI, WRFLOSSO, WRRLOSSI, WRRLOSSO
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline WRFLOSSI & \begin{tabular}{l}
Water rod inlet forward flow loss coefficient. Must be larger than or equal \\
to zero.
\end{tabular} \\
\hline WRFLOSSO & \begin{tabular}{l}
Water rod outlet forward flow loss coefficient. Must be larger than or equal \\
to zero.
\end{tabular} \\
\hline WRRLOSSI & \begin{tabular}{l}
Water rod inlet reverse flow loss coefficient. Must be larger than or equal \\
to zero.
\end{tabular} \\
\hline WRRLOSSO & \begin{tabular}{l}
Water rod outlet reverse flow loss coefficient. Must be larger than or equal \\
to zero.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline \begin{tabular}{c}
CardSet \\
Number
\end{tabular} & Variable & \multicolumn{1}{|c|}{ Dimension } & \multicolumn{1}{c|}{ Description } \\
\hline \hline 72 & MATWR & \begin{tabular}{l}
WRNODES - \\
1
\end{tabular} & \begin{tabular}{l}
Material type numbers for the radial heat structure \\
nodes across the water rod wall.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
CardSet \\
Number
\end{tabular} & Variable & \multicolumn{1}{|c|}{ Dimension } & \multicolumn{1}{c|}{ Description } \\
\hline \hline 73 & TW & \begin{tabular}{l}
WRNODES \\
\(*[(\) WROUTLE \\
T-WRINLET) \\
\(+1]\)
\end{tabular} & \begin{tabular}{l}
Initial radial temperature profile through the \\
water rod heat structure, (K, \({ }^{\circ}\) F).
\end{tabular} \\
& & \\
\hline
\end{tabular}

\section*{CHAN Grid Spacer Input}
\begin{tabular}{|c|c|c|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
Do not input this array data if NGRIDSPACERS (Word 5 on Card Number 15) \\
is equal to zero.
\end{tabular}} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{\begin{tabular}{l}
Description
\end{tabular}} \\
\hline \(\mathbf{7 4}\) & GRIDSPACERZ & NGRIDSPACERS & \begin{tabular}{l}
Grid spacer locations. Input this array \\
only if NGRIDSPACERS (Word 5 on \\
Card Number 15) is not equal to zero. \\
There should be no real need to enter \\
this array at this time since the \\
recommendation is to set
\end{tabular} \\
NGRIDSPACERS = 0. TRACE \\
currently has no actual grid spacer \\
model - this is merely a placeholder for \\
a future planned feature. Entering this \\
array should not hurt anything - the \\
code simply will not use the data in any \\
meaningful context.
\end{tabular}\(|\)

\section*{CONTAN Component Data}

Note: A CONTAN component can only be used when NAMELIST parameter NCONTANT \(=1\).

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (CONTAN left justified). \\
\hline NUM & \begin{tabular}{l}
Component ID number (must be unique for each component, \(1 \leq\) NUM \(\leq 999\) and \\
should be greater than any other component ID.
\end{tabular} \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 5I14) NCOMT, NHS, NCOOL, NJCT, NJCTF
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline NCOMT & Number of compartments in CONTAN. \\
\hline NHS & Number of containment specific heat structures. \\
\hline NCOOL & Number of coolers in the containment. \\
\hline NJCT & Number of passive junctions in the containment. \\
\hline NJCTF & Number of forced junctions in the containment. \\
\hline
\end{tabular}

Card Number 3. (Format 4I14) NJCTS, NCOMTB, NCOMTV, NNLEV
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline NJCTS & Number of source or sink junctions in the containment. \\
\hline NCOMTB & \begin{tabular}{l}
Total number of BREAK and FILL components connected with the \\
containment.
\end{tabular} \\
\hline NCOMTV & Vessel wall heat transfer inclusion flag (currently not used). \\
\hline NNLEV & Contan-Vessel Heat Transfer Card. Currently not used. Default value is 0. \\
\hline
\end{tabular}

\section*{CONTAN Array Data}

Note: Input each of the following arrays using LOAD format.

Card Set 4 - Card Set 20. Compartment Data
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline 4 & ITRKL & NCOMT & Compartment pool level tracking flag. If ITRKL = 0 , no pool depth is calculated in a compartment. If ITRKL \(=1\), the pool depth corresponding to the current liquid mass is computed. In order to utilize the heat structure level tracking option (ITRKH \(=\) 1), ITRKL must be set to 1 in both compartments attached to the heat structure. (Integer) \\
\hline 5 & ITRKS & NCOMT & Compartment spilling option. If ITRKS \(=0\), no spilling calculation is done. If ITRKS \(>0\), the compartment pool is assumed to begin "spilling" when the liquid volume reaches VMAX. At this point, additional liquid entering the compartment is transferred to the pool region of the compartment whose user ID is specified by ITRKS. (Integer) \\
\hline 6 & ICTBL & NCOMT & User ID for compartment (should be unique among all compartments. (Integer) \\
\hline 7 & VOL & NCOMT & Total compartment volume. (Real) (\(\mathrm{m}^{3}\), \(\mathrm{ft}^{3}\)) \\
\hline 8 & VMAX & NCOMT & Compartment liquid pool volume when spilling begins. (Real) \(\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\) \\
\hline 9 & P & NCOMT & Compartment initial gas pressure.(Real) (Pa, psia) \\
\hline 10 & TL & NCOMT & \begin{tabular}{l}
Initial pool liquid temperature. \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) (Real) \\
If TL \(>0\), the code will issue an ERROR message and terminate execution if the pool temperature approaches the saturation temperature corresponding to the compartment vapor region pressure to within 5 K . \\
If \(\mathrm{TL}<0\), the code will continue execution regardless of the pool temperature.(Note, however, that the containment model in TRACE performs no boiling heat or mass transfer calculations).
\end{tabular} \\
\hline
\end{tabular}

Card Set 4-Card Set 20. Compartment Data (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 11 & TV & NCOMT & Initial Vapor Space Temperature (K, \({ }^{\circ} \mathrm{F}\)) (Real) \\
\hline 12 & FRSB & NCOMT & Fraction of steam vented to pool that is not condensed in pool region. \\
\hline 13 & FRAB & NCOMT & \begin{tabular}{l}
Effectiveness of heat transfer between noncondensible gas vented through pool region and pool liquid. \\
FRAB may be given any value between 0.0 and 1.0 . \\
If \(\mathrm{FRAB}=0.0\), no heat is transferred between noncondensible gas vented through the pool region and the liquid. \\
If \(\mathrm{FRAB}=1.0\), complete temperature equilibration is assumed between vented noncondensible gas and liquid.
\end{tabular} \\
\hline
\end{tabular}

Card Set 4 - Card Set 20. Compartment Data (Continued)
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & \multicolumn{2}{|c|}{ Dimension }
\end{tabular} \begin{tabular}{l}
Description \\
\hline \hline \(\mathbf{1 4}\) \\
\hline
\end{tabular}

Card Set 4 - Card Set 20. Compartment Data (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 15 & DPDT & NCOMT & \begin{tabular}{l}
Initial estimate of time rate of change of pressure in compartment.(Real) \\
To smooth the step changes in containment back pressure during containment updates, the TRACE primary loop calculation extrapolates the containment pressure at each time step, based on the rate of change during the previous containment update. \\
For reasonable containment update intervals (\(<2.0\) seconds), DPDT may be initialized to zero without difficulty. If instabilities develop after the first containment update, it may be necessary to recommence the calculation, using the results of the
\end{tabular} \\
\hline 16 & APOOL & NCOMT & Area of interface between pool and vapor region.(Real) (must be \(>1.0 \mathrm{E}-8)\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline 17 & PA & NCOMT & \begin{tabular}{l}
Initial partial pressure (\(\mathrm{Pa}, \mathrm{psia}\)) of air in compartment. (Real) \\
(If \(\mathrm{PA}<0 . \mathrm{O}\), the code will compute the saturation pressure [PSAT(TV)] corresponding to TV and assign partial pressures of air (PA) and steam (PS):
\[
\begin{aligned}
& \mathrm{PS}=\mathrm{MIN}[\operatorname{PSAT}(\mathrm{TV}), \mathrm{P}] \\
& \mathrm{PA}=\mathrm{P}-\mathrm{PS} .
\end{aligned}
\]
\end{tabular} \\
\hline 18 & RML & NCOMT & \begin{tabular}{l}
Initial liquid mass \(\left(\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}\right)\) in compartment. (Real) \\
Every compartment is assumed to contain a pool region, and thus RML must be nonzero. During containment initialization, the partial pressure of steam in each compartment is assumed to be the saturation pressure at temperature IV. If RML becomes so large during the transient calculation that the liquid displaces the entire compartment volume, a fatal error will result.
\end{tabular} \\
\hline 19 & NWORD & NCOMT & Number of depth versus liquid volume data pair. \\
\hline
\end{tabular}

Card Set 4 - Card Set 20. Compartment Data (Continued)
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline \(\mathbf{2 0}\) & DEPTH & \begin{tabular}{l}
\(2 * \mathrm{NWORD}(\mathrm{i}\) \\
\(=1: \mathrm{NCOMT})\)
\end{tabular} & \begin{tabular}{l}
Liquid volume table versus pool depth \(\left[\left(\mathrm{m}^{3}, \mathrm{~m}\right)\right.\) or \\
\(\left.\left(\mathrm{ft}^{3}, \mathrm{ft}\right)\right]\).
\end{tabular} \\
\hline
\end{tabular}

Note: Heat structures are modeled as cylindrical shells with conduction in the radial direction only. The axis of the cylinder is assumed vertical and the inner and outer surfaces of the structure may lie in two separate compartments (e.g., a wall separating two compartments), depending on how the user specifies ICTI and ICTO.

Radial heat structure nodding is used in obtaining the heat structure temperature profile using the TRACE routine CYLHT. The axial nodding is used only to define the heat structure levels that lie in vapor and liquid regions of a compartment.

Card Set 21 - Card Set 42. Heat Structure Array Data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NHS = 0 (Word 2 on Card Number 2), do not input these card sets.} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 21 & ITRKH & NHS & \begin{tabular}{l}
Flag for level tracking on heat structure. (Integer) \\
\(0=\) the entire heat structure remains in the region specified by IREGI and IREGO throughout the containment calculation. \\
\(1=\) the depth of the liquid pool will be used in determining the heat transfer coefficient used for each vertical subdivision (level) of the heat structure. \\
If \(\operatorname{ITRKH}=1\), then ITRKL \(=1\) must also be input for the compartments specified by ICI and ICTO.
\end{tabular} \\
\hline
\end{tabular}

Card Set 21 - Card Set 42. Heat Structure Array Data (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NHS = 0 (Word 2 on Card Number 2), do not input these card sets.} \\
\hline Card Set Number & Variable & Dimension & Description \\
\hline 22 & ICTCI & NHS & \begin{tabular}{l}
User ID of compartment where inner heat structure surface is located. (Integer) \\
Heat structures are treated internally as cylindrical slabs. The user may model a heat structure that is entirely contained in a single compartment by specifying the same value for ICTI and ICTO. A heat structure that is partially in one compartment and partially in another (e.g., a wall) may be modelled by specifying appropriate different values for ICTI and ICTO. \\
Heat structures that do not have cylindrical geometry may still be modelled by choosing AREAI, AREAO, RADI, and RADO so as to represent the total surface area and characteristic thickness of the heat structure: (AREAI + AREAO \()=(\) TOTAL AREA \()\); \((\) RADO - RADI \()=(\) CHARACTERISTIC THICKNESS)].
\end{tabular} \\
\hline 23 & ICTCO & NHS & User ID of compartment where outer heat structure surface is located. (Integer) \\
\hline 24 & NODAX & NHS & \begin{tabular}{l}
Number of vertical nodes in heat structure (integer). \\
(Must be " 1 " if ITRKH \(=0\))
\end{tabular} \\
\hline 25 & NODRA & NHS & Number of radial nodes in heat structure (integer). (Must be " 1 " if ITRKH = 0) \\
\hline 26 & IHSTB & NHS & User ID of heat structure [integer \(<99\);if IHSTB \(<0\), the user inputs the heat transfer coefficients for the heat structure (see heat structure table cards); user ID's of all containment subcomponent should be unique. \\
\hline 27 & IREGI & NHS & Flag to indicate region where inner surface of heat structure is located (integer; \(1=\) liquid region, \(0=\) vapor region. If ITRKH \(=1\), input "0".) \\
\hline
\end{tabular}

Card Set 21 - Card Set 42. Heat Structure Array Data (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NHS \(=0\) (Word 2 on Card Number 2), do not input these card sets.} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 28 & IREGO & NHS & Flag to indicate region where outer surface of heat structure is located (integer; see "IREGI"). \\
\hline 29 & RADI & NHS & Radius of curvature of inner surface of heat structure (\(\mathrm{m}, \mathrm{ft}\)). \\
\hline 30 & RADO & NHS & Radius of curvature of outer surface of heat structure (\(\mathrm{m}, \mathrm{ft}\)). \\
\hline 31 & ROW & NHS & Density of heat structure material \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} /\right.\) \(\mathrm{ft}^{3}\)). \\
\hline 32 & CPW & NHS & Heat capacity of heat structure material (J/(kg K), \(\left.\mathrm{Btu} /\left(\mathrm{lbm}{ }^{\circ} \mathrm{F}\right)\right)\). \\
\hline 33 & CW & NHS & Thermal conductivity of heat structure material \(\left[\mathrm{W} /(\mathrm{m} \mathrm{K}), \mathrm{Btu} /\left(\mathrm{hr} \mathrm{ft}{ }^{\circ} \mathrm{F}\right)\right]\). \\
\hline 34 & HLIC & NHS & Elevation (\(\mathrm{m}, \mathrm{ft}\)) of lower extremity of heat structure inner surface above floor of compartment ICTI (input 0.0 if ITRKH \(=0\)). \\
\hline 35 & HUIC & NHS & Elevation (m, ft) of upper extremity of heat structure inner surface above floor of compartment ICTI (input 0.0 if ITRKH \(=0\)). \\
\hline 36 & HLOC & NHS & Elevation (\(\mathrm{m}, \mathrm{ft}\)) of lower extremity of heat structure outer surface above floor of compartment ICTO. (input 0.0 if ITRKH \(=0\)). \\
\hline 37 & HUOC & NHS & Elevation (m, ft) of upper extremity of heat structure outer surface above floor of compartment ICTO (input 0.0 if ITRKH \(=0\)). \\
\hline 38 & HDAVG & NHS & Characteristic length (\(\mathrm{m}, \mathrm{ft}\)) for computation of Grashof number for heat structure. \\
\hline 39 & AREAI & NHS & Total heat structure area of inner surface (\(\mathrm{m}^{2}, \mathrm{ft}^{2}\)). \\
\hline 40 & AREAO & NHS & Total heat structure area of outer surface (\(\mathrm{m}^{2}, \mathrm{ft}^{2}\)). \\
\hline
\end{tabular}

Card Set 21 - Card Set 42. Heat Structure Array Data (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NHS = 0 (Word 2 on Card Number 2), do not input these card sets.} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 41 & TEMPHT & \begin{tabular}{l}
NODAX*NO \\
DRA (for each heat structure)
\end{tabular} & Heat structure initial temperatures (K, \(\left.{ }^{\circ} \mathrm{F}\right)\). \\
\hline 42 & HTCHT & 4*NODAX & User-input vapor and liquid heat transfer coefficients (HTC's) [W/(\(\left.\left.\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\mathrm{o}} \mathrm{F} \mathrm{hr}\right)\right]\) for heat structure. Input only if IHSTB \(<0\). (For each heat structure, NODAX*4 are required in the following order: Level 1, inner surface to liquid HTC, inner surface to vapor HTC, outer surface to liquid HTC, outer surface to vapor HTC; Level 2,..... etc.) \\
\hline
\end{tabular}

Card Set 43 - Card Set 49. Cooler Array Data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NCOOL = 0 (Word 3 on Card Number 2), do not input these card sets.} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 43 & ICLTB & NCOOL & User ID for cooler (integer \(<=99\); user ID's of all containment and primary loop components should be unique). \\
\hline 44 & ICTCB & NCOOL & User ID of compartment where cooler is located (integer). \\
\hline 45 & IREGC & NCOOL & \begin{tabular}{l}
Fluid region cooled by cooler \\
0 = vapor region; \\
1 = liquid region.
\end{tabular} \\
\hline 46 & ITYPC & NCOOL & \begin{tabular}{l}
Cooler type \\
1 = convective heat exchanger for which coolant temperature vs. time table and heat transfer coefficients and are required; \\
\(2=\) heat source for which heating rate vs. time table is required).
\end{tabular} \\
\hline
\end{tabular}

Card Set 43 - Card Set 49. Cooler Array Data (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NCOOL = 0 (Word 3 on Card Number 2), do not input these card sets.} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 47 & HTC & NCOOL & Heat transfer coefficient times heat transfer area \(\left[\mathrm{W} / \mathrm{K}, \mathrm{Btu} /\left({ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]\) for a Type 1 cooler. (For Type 2 cooler, input 0.0.) \\
\hline 48 & NTQ & NCOOL & Number of data pairs of temperature or volumetric flow rate versus time. \\
\hline 49 & TCORQC & \[
\begin{aligned}
& 2 * \mathrm{NTQ} \\
& (\mathrm{i}=1, \mathrm{NCOOL})
\end{aligned}
\] & Data pairs of temperature or volumetric flow rate versus time \(\left[(\mathrm{s}, \mathrm{K}),\left(\mathrm{s},{ }^{\mathrm{o}} \mathrm{F}\right)\right]\) or \(\left.\left[\left(\mathrm{s}, \mathrm{m}^{3}\right), \mathrm{s}, \mathrm{ft}^{3}\right)\right]\). \\
\hline
\end{tabular}

Card Set 50 - Card Set 58. Passive Junction Array Data
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{3}{|c|}{ Note: If NJCT = 0 (Word 4 on Card Number 2), do not input these card sets. } \\
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description }
\end{tabular} \begin{tabular}{c|lll|}
\hline \hline \(\mathbf{5 0}\) & ICT1 & NJCT & \begin{tabular}{l}
User ID of first compartment connected by junction \\
(integer).
\end{tabular} \\
\hline \(\mathbf{5 1}\) & ICT2 & NJCT & \begin{tabular}{l}
User ID of second compartment connected by \\
junction (integer).
\end{tabular} \\
\hline \(\mathbf{5 2}\) & IJCTB & NJCT & \begin{tabular}{l}
User ID of passive junction (integer; user ID's of all \\
containment sub-components should be unique).
\end{tabular} \\
\hline
\end{tabular}

Card Set 50 - Card Set 58. Passive Junction Array Data (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NJCT = 0 (Word 4 on Card Number 2), do not input these card sets.} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 53 & ITYPP & NJCT & \begin{tabular}{l}
Passive junction type (integer). \\
\(1=\) a junction between the vapor regions in two compartments. Pressure-induced flow may occur in either direction. \\
\(2=\mathrm{a}\) one-way valve between the vapor regions in two compartments. Flow occurs in one direction only when the pressure difference between the two compartments reaches a critical minimum value specified by DPCR (e.g., a vacuum breaker valve or a pressure relief valve would be modeled as a passive junction with ITYPP = 2). \\
3 = a one-way flow junction between the vapor region of one compartment and the pool another. The minimum pressure difference for flow to occur is specified by DPCR (e.g., a vent pipe between the drywell and the pool region of the wetwell would be modeled as a passive junction with ITYPP = 3).
\end{tabular} \\
\hline 54 & HD & NJCT & Hydraulic diameter for flow injunction. (m, ft) \\
\hline 55 & AREA & NJCT & Cross-sectional area for flow injunction. \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\) \\
\hline 56 & RLEN & NJCT & Equivalent pipe length (\(\mathrm{m}, \mathrm{ft}\)) for flow injunction. (In calculating the pressure-induced passive flow between two compartments two junction flow rates are computed: (1) that obtained by treating the junction as if it were a pipe and (2) that obtained by treating the junction as if it were an orifice between the two compartments. The lesser of the two flow rates is then used. RLEN is the equivalent pipe length for the junction. The input value must be nonzero. \\
\hline
\end{tabular}

Card Set 50 - Card Set 58. Passive Junction Array Data (Continued)
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If NJCT = 0 (Word 4 on Card Number 2), do not input these card sets. } \\
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{c|l|l|}
\hline \(\mathbf{5 7}\) & FR & NJCT \\
\hline \hline \(\mathbf{5 8}\) & DPCR & NJCT \\
\begin{tabular}{c}
Friction factor for junction pipe flow \\
calculation.(Real) If the input value of FR is zero, \\
the code will compute an appropriate value of FR. \\
If the input value of FR is nonzero, this value will \\
be used in the junction pipe flow calculation.
\end{tabular} \\
\hline
\end{tabular}

Card Set 59 - Card Set 66. Forced Convective Junction Array Data
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{4}{|c|}{ Note: If NJCTF = 0 (Word 5 on Card Number 2), do not input these card sets. } \\
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline \(\mathbf{5 9}\) & ICTF1 & NJCTF & \begin{tabular}{l}
User ID of first compartment connected by the \\
junction. (integer).
\end{tabular} \\
\hline \(\mathbf{6 0}\) & ICTF2 & NJCTF & \begin{tabular}{l}
User ID of second compartment connected by \\
junction (integer).
\end{tabular} \\
\hline
\end{tabular}

Card Set 59 - Card Set 66. Forced Convective Junction Array Data (Continued)
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If NJCTF = 0 (Word 5 on Card Number 2), do not input these card sets. } \\
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \begin{tabular}{c}
Description
\end{tabular} \\
\hline \hline \(\mathbf{6 1}\) & IFTYP & NJCTF & \begin{tabular}{r}
Forced junction type (integer). \\
\(1=\) \\
a junction that transfers vapor from one \\
compartment to the vapor region of \\
another compartment at the volume \\
flow rate specified by the user-input \\
table for the junction. \\
a junction that transfers liquid from the \\
pool region of one compartment to the \\
pool region of another compartment.
\end{tabular} \\
a a junction that transfers liquid from the \\
pool region of one compartment to the \\
vapor region of another compartment \\
(e.g., a spray cooler).
\end{tabular}\(|\)

Card Set 67 - Card Set 73. Source/Sink Junction Array Data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NJCTS = 0 (Word 1 on Card Number 3), do not input these card sets.} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 67 & ISTYP & NJCTS & Source/sink junction type (integer);
\[
\begin{aligned}
& 1=\text { source } \\
& 2=\text { sink }
\end{aligned}
\] \\
\hline 68 & ICTS & NJCTS & User ID of compartment where junction is located.(Integer) \\
\hline 69 & IJCTS & NJCTS & User ID of source/sink junction (integer; user ID's of all containment sub-components should be unique). \\
\hline 70 & NQSO & NJCTS & Number of volumetric flow rate versus time data pairs for each source/sink. \\
\hline 71 & NTSO & NJCTS & Number of fluid temperature versus time data pairs for each source/sink. \\
\hline 72 & QSO & \[
\begin{aligned}
& 2 * \mathrm{NQSO}(\mathrm{i}=1, \\
& \text { NJCTS })
\end{aligned}
\] & Data pairs of fluid volumetric flow rate versus time \(\left[\left(\mathrm{s}, \mathrm{m}^{3}\right),\left(\mathrm{s}, \mathrm{ft}^{3}\right)\right]\). \\
\hline 73 & TSO & \[
\begin{aligned}
& 2 * \mathrm{NTSO}(\mathrm{i}=1, \\
& \text { NJCTS })
\end{aligned}
\] & Data pairs of fluid temperature versus time \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\). (TSO only affects the calculation when \(\mathrm{QSO}>0.0\)) \\
\hline
\end{tabular}

\section*{EXTERIOR Component Data}

This is just abbreviated information for a component that is modeled in another process. Presence of this component requires that the simulation is executing in multi-task mode. Include this for every component from which this process will require information. If a component on another task communicates indirectly via fluid flow through a third task to this one, it must be declared with this input, although the specific flow connections would not be listed.

The use of the Exterior Component requires the creation of a file called TaskList, which must be located in the same directory as the tracin input file. The TaskList file and details concerning multi-task processing are given in Chapter 1.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type ("EXTERIOR" left justified). \\
\hline NUM & \begin{tabular}{l}
Component ID number (must be unique for each component, and in the range of 1 \\
through 999).
\end{tabular} \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & ASCII string giving a component description. \\
\hline
\end{tabular}

Card Number 2. (Format 3I14) NJUNS, COMPTYPE, NDIM
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline NJUNS & \begin{tabular}{l}
Total number of flow junctions connecting between this exterior component \\
and actual components in this processes. Do not include flow junctions in the \\
actual component (as modeled on another process) that connect to any \\
component not in this input deck. Do not include flow junctions that connect \\
the actual component to another component listed as exterior within this \\
input deck.
\end{tabular} \\
\hline COMPTYPE & \begin{tabular}{l}
Indication of the generic type of component in the exterior process: \\
\(1=\) fluid component \\
\(2=\) heat structure (conduction) \\
\(3=\) power source (e.g. neutron kinetics) \\
\(4=\) special data processing
\end{tabular} \\
&
\end{tabular}

Card Number 2. (Format 3I14) NJUNS, COMPTYPE, NDIM (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NDIM & Number of spatial dimensions associated with the component model \\
\hline
\end{tabular}

Card Number 3. (Format 3I14) NX, NY NZ
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NX & number of computational cells in the x or radial direction \\
\hline NY & number of computational cells in the y or theta direction \\
\hline NZ & number of computational cells in the z (axial) direction \\
\hline
\end{tabular}

Card Number 4. (Format 5I14) JUNNUM, JUNIX, JUNIY, JUNIZ, JUNFACE
\begin{tabular}{|c|c|}
\hline Note: & \begin{tabular}{l}
If NJUNS \(=0\) (Word 1 on Card Number 2), do not input these exterior flow junction cards. \\
Input one card for each of the NJUNS (Word 1 on Card Number 2). exterior fluid flow junctions for this component. Only provide input for those junctions representing fluid flow between this component and other non-exterior components in this input deck.
\end{tabular} \\
\hline Variable & Description \\
\hline JUNNUM & User assigned junction number (must match the user assigned number for the actual component model on another process). \\
\hline JUNIX & junction cell index when NDIM \(=1\) or index in the x or radial direction when NDIM \(=3\) \\
\hline JUNIY & junction cell index in the y or \(\theta\) direction (omit if NDIM \(=1\)) \\
\hline JUNIZ & junction cell index in the z direction (omit if NDIM \(<3\)) \\
\hline JUNFACE & \begin{tabular}{l}
Face number associated with the connection. A positive number indicates a connection to the upper or outer face of the cell; a negative number indicates a connection to the lower or inner face of the cell. \\
\(1=\theta\) or \(y\) direction; \\
\(2=\) axial \(z\) direction; \\
\(3=r\) or \(x\) direction.
\end{tabular} \\
\hline
\end{tabular}

\section*{FILL Component Data}

A FILL component cannot be connected to a BREAK or PLENUM. It may be connected directly to a VESSEL or a side junction in a 1D component. In that case the cell volume and length (VOLIN and DXIN on Card Number 9) associated with the FILL are used to compute the flow area (FA = VOLIN/DXIN) connecting the FILL to the VESSEL or a side junction in a 1D component. For FILL options that directly specify velocities, choose VOLIN and DXIN to give a correct inlet pipe geometry and resulting correct mass flow. For FILL options specifying mass flow, choose VOLIN and DXIN to produce physically realistic velocities.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (FILL left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq \mathrm{NUM} \leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c}
Note: Only input this card when the number of inputs for FLUIDS (a NAMELIST \\
variable) is more than one.
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EOS & EOS identifier for this component (i.e. "h2o" or "r5h2o", etc.). \\
\hline PHASE-CHANGE & \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
lhis component. Input FALSE or false, if phase change is not allowed \\
for this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14) JUN1, IFTY, IOFF
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
When using IFTY \(=1\) without having ALPHA as 0 or 1 problems can result due to the momentum flux term. In essence, a slip velocity is specified which may not be equal to the one the code calculates for the given void fraction. Large pressure gradients can be induced which can lead to vaporization/condensation events not expected. The most user convenient option for a FILL is IFTY \(=2\), which sets the slip to be 1 at the FILL junction and the velocities and void fraction are set at the next junction by the code more smoothly. \\
: Negative FILL types (IFTY) \(-1,-2,-3,-4,-5,-6,-7,-8\) indicate that the FILL component is coupled with the CONTAN compartment. The FILL cell edge fluid velocity will be determined in the same way as the option with positive IFTY. The FILL fluid state variables will be defined according to the CONTAN compartment fluid conditions when the compartment functions as the donor cell.
\end{tabular} \\
\hline Variable & Description \\
\hline JUN1 & Junction number to which the FILL is connected. If NAMELIST variable USESJC \(\geq 2\), JUN1 may be zero (disconnected FILL). \\
\hline IFTY & \begin{tabular}{l}
FILL-type options: \\
\(1=\) constant velocity; \\
2 = constant mass flow; \\
3 = constant generalized state; (temperatures, pressures, void, fraction, solute ratio are specified) \\
4 = velocity vs independent-variable form table; \\
5 = mass flow vs independent-variable form table; \\
\(6=\) generalized state vs independent-variable form table; \\
\(7=\) constant velocity until the controlling trip is set ON then velocity vs independent-variable form table; \\
\(8=\) constant mass flow until the controlling trip is set ON , then mass flow vs independent-variable form table. \\
\(9=\) constant generalized state until the controlling trip is set ON, then generalized state vs independent-variable form table; \\
\(10=\) Generalized-state parameters defined individually by a signal variable or control block. \\
\(11=\) Generalized-state parameters defined individually by a signal variable or control block (This option replaces the liquid and vapor mass flow rates with the total mass flow rate assuming slip ratio=1).
\end{tabular} \\
\hline
\end{tabular}

\section*{Card Number 3. (Format 3I14) JUN1, IFTY, IOFF (Continued)}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
Note: When using IFTY \(=1\) without having ALPHA as 0 or 1 problems can result due to the momentum flux term. In essence, a slip velocity is specified which may not be equal to the one the code calculates for the given void fraction. Large pressure gradients can be induced which can lead to vaporization/condensation events not expected. The most user convenient option for a FILL is IFTY \(=2\), which sets the slip to be 1 at the FILL junction and the velocities and void fraction are set at the next junction by the code more smoothly. \\
Note: Negative FILL types (IFTY) \(-1,-2,-3,-4,-5,-6,-7,-8\) indicate that the FILL component is coupled with the CONTAN compartment. The FILL cell edge fluid velocity will be determined in the same way as the option with positive IFTY. The FILL fluid state variables will be defined according to the CONTAN compartment fluid conditions when the compartment functions as the donor cell.
\end{tabular}} \\
\hline Variable & Des \\
\hline IOFF & \begin{tabular}{l}
FILL fluid-state option (defines the fluid state when the fill-table controlling trip is OFF after being ON) [define IOFF when IFTY \(=7,8\), or 9 (Word 2 on this card)]. \\
\(0=\) the last FILL-table interpolated fluid state is held constant; \\
\(1=\) define the initial fluid state; \\
\(2=\) input the velocity [IFTY \(=7\) or 9 (Word 2 on this card)] or mass flow (IFTY \(=8\)) to be used, but maintain the fluid condition that existed when the trip was set OFF; or 3 = input a generalized fluid-state definition (IFTY \(=9\) only).
\end{tabular} \\
\hline
\end{tabular}

Card Number 4. (Format E14.4, 3I14) FALK, NCMPTO, NCLKTO, NLEVTO
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: Input this card only if JUN1=0 (Word 1 on Card Number 3). } \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline FALK & Leak flow area. \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\) \\
\hline NCMPTO & Component number this leak path connects to. \\
\hline NCLKTO & \begin{tabular}{l}
Cell number in the NCMPTO component. When leaking to a Vessel the cell \\
number is the radial-azimuthal combined number.
\end{tabular} \\
\hline NLEVTO & Vessel axial level number if leak is to a Vessel. \\
\hline
\end{tabular}

Card Number 5. (Format 5I14) IFTR, IFSV, NFTB, NFSV, NFRF
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If IFTY < 4 (Word 2 on Card Number 3), do not input this card} \\
\hline Variable & Description \\
\hline IFTR & The trip ID number for controlling the evaluation of the FILL table for FILL-type options IFTY \(=7,8\), or 9 (Word 2 on Card Number 3) (IFTR \(\mid \leq 9999)\). Input IFTR \(=0\) when IFTY \(<7\) or IFTY \(=10\) (Word 2 on Card Number 3). \\
\hline IFSV & The FILL-table abscissa-coordinate variable ID number that defines the independent-variable parameter in the IFTY \(=4\) to 9 (Word 2 on Card Number 3) tables. IFSV \(>0\) defines the ID number for a signal-variable parameter; IFSV \(<\) 0 defines the ID number for a control-block output parameter. Input IFSV \(=0\) if IFTY = 10 or 11 (Word 2 on Card Number 3). \\
\hline NFTB & The number of FILL-table data pairs (defined by the absolute value of NFTB) for FILL options IFTY \(=4\) to 9 (Word 2 on Card Number 3). NFTB \(>0\) defines the independent-variable form to be the IFSV parameter; \(\mathrm{NFTB}<0\) defines the independent-variable form to be the sum of the change in the IFSV parameter over the last timestep times the trip set-status value ISET [when the FILL is trip controlled, IFTR \(\neq 0\) (Word 1 on Card Number 5) and IFTY \(=7,8\), or 9 (Word 2 on Card Number 3)]. NFTB \(=0\) defines the FILL velocity or mass flow to be the IFSV parameter. Input NFTB \(=0\) if IFTY \(=10\) or 11 (Word 2 on Card Number 3). \\
\hline NFSV & The rate-factor table abscissa-coordinate variable ID number. NFSV >0 defines the ID number for a signal-variable parameter; NFSV \(<0\) defines the ID number for a control-block output parameter; \(\mathrm{NFSV}=0\) (when \(\mathrm{NFRF} \neq 0\)) defines the difference between the trip signal and the setpoint value that turns the trip OFF when the FILL table is trip control \\
\hline NFRF & The number of rate-factor table data pairs (defined by the absolute value of NFRF). The rate factor is applied as a factor to the FILL-table independent variable when the rate factor is defined. No rate factor is defined when NFSV and NFRF are both zero. NFRF \(>0\) defines the rate-factor table abscissa coordinate to be the NFSV parameter; NFRF \(<0\) defines it to be the sum of the change in the NFSV parameter over the last timestep times the trip set-status value ISET [when the FILL is trip controlled, IFTR \(=0\) (Word 1 on Card Number 5) and IFTY \(=7\), 8, or 9 (Word 2 on Card Number 3)]. NFRF \(=0\) defines the rate factor to be the NFSV parameter. \\
\hline
\end{tabular}

Card Number 6. (Format 4E14.4) TWTOLD, RFMX, CONCIN, FELV
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline TWTOLD & The fraction (-) of the previous FILL fluid state that is averaged with the FILL-table-defined state to determine the FILL fluid state for this timestep \((0.0 \leq\) TWTOLD \(<1.0\); it is suggested that a value of 0.0 be used). To avoid hydrodynamic instabilities, a value as large as 0.9 may be needed when the FILL table depends on a parameter (such as the adjacent component pressure) that couples strongly to the FILL velocity or a parameter that varies rapidly with time. \\
\hline RFMX & The maximum rate of change of FILL velocity (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)) or FILL mass flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{s}^{2}\right)[0.0 \leq \mathrm{RFMX}]\). For FILL-type option IFTY \(=10\) or 11 (Word 2 on Card Number 3), RFMX is not used. \\
\hline CONCIN & The initial solute mass to liquid-coolant mass ratio \(\left[\left\{{ }^{*}, \mathrm{~kg}(\right.\right.\) solute \() / \mathrm{kg}\) (liquid) \(\}\), \(\left\{*, \mathrm{lb}_{\mathrm{m}}\right.\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(\left.\}\right]\) in the FILL composition. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline FELV & FILL cell-centered elevation (m, ft) (used only to compute GRAV array when NAMELIST variable IELV = 1). \\
\hline
\end{tabular}

Card Number 7. (Format I14) COMPID
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IFTY \(<0\) (Word 2 on Card Number 3), input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline COMPID & \begin{tabular}{l}
|COMPID \(\mid\) represents the CONTAN compartment user defined ID. When \\
COMPID \(>0\), the FILL is inside the vapor space of the compartment. When \\
COMPID \(<0\), the FILL is inside the liquid space of the compartment.
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format 2E14.4) BDSPRAY, BDCOND
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IFTY \(<0\) (Word 2 on Card Number 3) input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline BDSPRAY & \begin{tabular}{l}
If the FILL is connected with the vapor region of a compartment and it is \\
injecting subcooled water into the containment, 'BDSPRAY' represents the \\
mass fraction of the injected liquid which reaches thermal equilibrium with the \\
fluid in the vapor space.
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format 2E14.4) BDSPRAY, BDCOND (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IFTY \(<0\) (Word 2 on Card Number 3) input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline BDCOND & \begin{tabular}{l}
If the FILL is connected with the liquid region of a compartment and it is \\
injecting super-heated vapor and hot air into the containment, 'BDCOND' \\
represents the mass fraction of the injected vapor which reaches thermal \\
equilibrium with the fluid in the liquid space.
\end{tabular} \\
\hline
\end{tabular}

Card Number 9. (Format 5E14.4) DXIN, VOLIN, ALPIN, VLIN, TLIN
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline DXIN & \begin{tabular}{l}
Cell length (m, ft) (generally defined to be the same as its neighboring cell in the \\
adjacent component).
\end{tabular} \\
\hline VOLIN & \begin{tabular}{l}
Cell volume \(\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\) (generally defined to be the same as its neighboring cell in \\
the adjacent component).
\end{tabular} \\
\hline ALPIN & Initial gas volume fraction (-) used for positive flow out of the fill. \\
\hline VLIN & \begin{tabular}{l}
Initial liquid velocity (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)) (a positive value indicates flow into the adjacent \\
component; a negative value indicates flow from the adjacent component) [used \\
for fill options IFTY \(=1,3,7\) or 9 (Word 2 on Card Number 3)].
\end{tabular} \\
\hline TLIN & Initial liquid temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) used for positive flow out of the fill. \\
\hline
\end{tabular}

Card Number 10. (Format 5E14.4) PIN, PAIN, FLOWIN, VVIN, TVIN
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline PIN & Initial FILL pressure (Pa, psia). \\
\hline PAIN & Initial FILL noncondensable-gas partial pressure (Pa, psia). \\
\hline FLOWIN & \begin{tabular}{l}
Initial coolant mass flow (kg/s, lb b /hr) (a positive value indicates flow into the \\
adjacent component; a negative ealue indicates flow from the adjacent \\
component) [used for FILL-type options IFTY \(=2\) or 8 (Word 2 on Card \\
Number 3)].
\end{tabular} \\
\hline VVIN & \begin{tabular}{l}
Initial gas velocity (\(\mathrm{m} / \mathrm{s}\), ft//s) (a positive value indicates flow into the adjacent \\
component; a negative value indicate flow from the adjacent component) [used \\
for FILL-type options IFTY \(=1,3,7\) or 9 (Word 2 on Card Number 3)].
\end{tabular} \\
\hline
\end{tabular}

Card Number 10. (Format 5E14.4) PIN, PAIN, FLOWIN, VVIN, TVIN (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TVIN & \begin{tabular}{l}
Initial gas temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) used for positive flow out of the FILL [used for \\
\\
\\
FILL options IFTY \(=1,3,7\) or 9 (Word 2 on Card Number 3)]. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 4E14.4) FLWOFF, VLOFF, VVOFF, ALPOFF
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If IFTY \(<7\), IFTY \(=10\) or 11, or IOFF \(<2\) (Words 2 and 3 on Card Number 3), do not input this card.} \\
\hline Variable & Description \\
\hline FLWOFF & Coolant mass flow (\(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\)) when the control-ling trip is set OFF after being ON [used when IFTY = 8 (Word 2 on Card Number 3)]. \\
\hline VLOFF & Liquid velocity (\(\mathrm{m} / \mathrm{s}\), ft/s) [IFTY \(=9\) (Word 2 on Card Number 3)] or coolantmixture velocity (\(\mathrm{IFTY}=7\)) when the controlling trip is set OFF after being ON (used when IFTY \(=7\) or 9). \\
\hline VVOFF & Gas velocity (\(\mathrm{m} / \mathrm{s}\), \(\mathrm{ft} / \mathrm{s}\)) when the controlling trip is set OFF after being ON [used when IFTY \(=9\) and IOFF \(=3\) (Words 2 and 3 on Card Number 3)]. \\
\hline ALPOFF & Gas volume fraction (-) for positive flow out of the FILL when the controlling trip is set OFF after being ON [used when IFTY \(=9\) and IOFF \(=3\) (Words 2 and 3 on Card Number 3)]. \\
\hline
\end{tabular}

Card Number 12. (Format 5E14.4) TLOFF, TVOFF, POFF, PAOFF, CONOFF
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c}
Note: \\
cif IFTY \(\neq 9\) or IOFF \(\neq 3\) (Words 2 and 3 on Card Number 3), do not input this \\
card
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TLOFF & \begin{tabular}{l}
Liquid temperature (K, \({ }^{\circ}\) F) for positive flow out of the FILL when the controlling \\
trip is set OFF after being ON.
\end{tabular} \\
\hline TVOFF & \begin{tabular}{l}
Gas temperature (K, \(\left.{ }^{\circ} \mathrm{F}\right)\) for positive flow out of the FILL when the controlling \\
trip is set OFF after being ON.
\end{tabular} \\
\hline POFF & FILL pressure (Pa, psia) when the controlling trip is set OFF after being ON. \\
\hline PAOFF & \begin{tabular}{l}
FILL noncondensable-gas partial pressure (Pa, psia) when the controlling trip is \\
set OFF after being ON.
\end{tabular} \\
\hline
\end{tabular}

Card Number 12. (Format 5E14.4) TLOFF, TVOFF, POFF, PAOFF, CONOFF (Continued)
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
If IFTY \(\neq 9\) or IOFF \(\neq 3\) (Words 2 and 3 on Card Number 3), do not input this \\
card
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline CONOFF & \begin{tabular}{l}
Solute mass to the liquid-coolant mass ratio \(\left[\mathrm{kgg}\right.\) (solute)/kg (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute)/ \\
lb \\
ISOLU \\
ISOLUid) \(=1\) (When the controlling trip is set OFF after being ON. Requires
\end{tabular} \\
\hline
\end{tabular}

Card Number 13. (Format 2E14.4) VMSCL, VVSCL
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: IFTY \(<4\) or IFTY \(=10\) or 11 (Word 2 on Card Number 3) or NFTB \(=0\) (Word 3 on Card Number 5), do not input this card.} \\
\hline Variable & Description \\
\hline VMSCL & Mixture-velocity [IFTY \(=4\) or 7 (Word 2 on Card Number 3)], liquid-velocity \([\) IFTY \(=6\) or 9], or mixture mass-flow \((\) IFTY \(=5\) or 8) scale factor \((-)\). The dependent variable in table VMTB is multiplied by this factor to obtain the absolute mixture velocity, liquid velocity, or mixture mass flow. \\
\hline VVSCL & Gas-velocity scale factor (-). The dependent variable in fill table VVTB is multiplied by this factor to obtain the absolute gas velocity [used when IFTY \(=6\) or 9 (Word 2 on Card Number 3)]. \\
\hline
\end{tabular}

Card Number 14. (Format 5E14.4) TLSCL, TVSCL, PSCL, PASCL, CONSCL
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If IFTY \(\neq 6\) and IFTY \(\neq 9\) (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TLSCL & \begin{tabular}{l}
Liquid-temperature scale factor (-). The dependent variable in table TLTB is \\
converted to absolute liquid temperature (K, \(\left.{ }^{\circ} \mathrm{R}\right)\), multiplied by this factor to \\
obtain the absolute liquid temperature (K, \(\left.{ }^{\circ} \mathrm{R}\right)\), and converted back to SI/English \\
units liquid temperature (K, \(\left.{ }^{\circ} \mathrm{F}\right)\).
\end{tabular} \\
\hline TVSCL & \begin{tabular}{l}
Gas-temperature scale factor (-). The dependent variable in table TVTB is \\
converted to absolute gas temperature (K, R), multiplied by this factor to obtain \\
the absolute gas temperature (K, \(\left.{ }^{\circ} \mathrm{R}\right)\), and converted back to SI/English units gas \\
temperature (K, \(\left.{ }^{\circ} \mathrm{F}\right)\).
\end{tabular} \\
\hline PSCL & \begin{tabular}{l}
Pressure scale factor (-). The dependent variable in table PTB is multiplied by this \\
factor to obtain absolute pressure (Pa, psia).
\end{tabular} \\
\hline
\end{tabular}

Card Number 14. (Format 5E14.4) TLSCL, TVSCL, PSCL, PASCL, CONSCL (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IFTY \(\neq 6\) and IFTY \(\neq 9\) (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline PASCL & \begin{tabular}{l}
Noncondensable-gas partial-pressure scale factor (-). The dependent variable in \\
table PATB is multiplied by this factor to obtain absolute air partial pressure (Pa, \\
psia).
\end{tabular} \\
\hline CONSCL & \begin{tabular}{l}
Solute mass to liquid-coolant mass ratio scale factor (-). The dependent variable \\
in table CONCTB is multiplied by this factor to obtain the absolute solute mass to \\
liquid-coolant mass ratio. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9).
\end{tabular} \\
\hline
\end{tabular}

Card Number 15. (Format 5I14) IFMLSV, IFMVSV, IFTLSV, IFTVSV, IFASV
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If IFTY \(\neq 10\) (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IFMLSV & \begin{tabular}{l}
Signal variable or control-block ID number defining the liquid mass flow \((\mathrm{kg} / \mathrm{s}\), \\
\(\left.\mathrm{lb}_{\mathrm{m}} / \mathrm{s}\right)\).
\end{tabular} \\
\hline IFMVSV & \begin{tabular}{l}
Signal variable or control-block ID number defining the gas mass flow \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} /\right.\) \\
\(\mathrm{s})\).
\end{tabular} \\
\hline IFTLSV & \begin{tabular}{l}
Signal variable or control-block ID number defining the liquid temperature \((\mathrm{K}\), \\
\(\left.{ }^{\circ} \mathrm{F}\right)\).
\end{tabular} \\
\hline IFTVSV & Signal variable or control-block ID number defining the gas temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\). \\
\hline IFASV & Signal variable or control-block ID number defining the gas volume fraction \((-)\). \\
\hline
\end{tabular}

Card Number 16. (Format 4I14) IFMMSV, IFTLSV, IFTVSV, IFASV
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If IFTY \(\neq 11\) (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IFMMSV & \begin{tabular}{l}
Signal variable or control-block ID number defining the total mass flow \((\mathrm{kg} / \mathrm{s}\), \\
\(\left.\mathrm{lb}_{\mathrm{m}} / \mathrm{s}\right)\).
\end{tabular} \\
\hline IFTLSV & \begin{tabular}{l}
Signal variable or control-block ID number defining the liquid temperature \((\mathrm{K}\), \\
\(\left.{ }^{\circ} \mathrm{F}\right)\).
\end{tabular} \\
\hline IFTVSV & Signal variable or control-block ID number defining the gas temperature (K, \(\left.{ }^{\circ} \mathrm{F}\right)\). \\
\hline IFASV & Signal variable or control-block ID number defining the gas volume fraction \((-)\). \\
\hline
\end{tabular}

Card Number 17. (Format 3I14) IFPSV, IFPASV, IFCNSV
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If IFTY \(\neq 10\) or 11 (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IFPSV & Signal variable or control-block ID number defining the fluid pressure (Pa, psia). \\
\hline IFPASV & \begin{tabular}{l}
Signal variable or control-block ID number defining the partial pressure of the \\
noncondensable gas (Pa, psia).
\end{tabular} \\
\hline IFCNSV & \begin{tabular}{l}
Signal variable or control-block ID number defining the solute mass to the liquid- \\
coolant mass ratio (-). Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9).
\end{tabular} \\
\hline
\end{tabular}

\section*{FILL Array Cards.}

Note: Input each of the following arrays using LOAD format. Each array has its element values defined by a Card Set of one or more cards. If IFTY \(<4\) or IFTY \(=10\) or 11 (Word 2 on Card Number 3) or NFTB \(=0\) (Word 3 on Card Number 5), do not input the FILL Array Cards.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|c|}{Note: Input this array card only if IFTY \(=4,6,7\), or 9} \\
\hline 18 & VMTBV & \(2 \times \mid\) NFTB \(\mid\) & Mixture velocity \(\left[(*, \mathrm{~m} / \mathrm{s}),\left({ }^{*}, \mathrm{ft} / \mathrm{s}\right)\right][\) IFTY \(=4\) or 7 (Word 2 on Card Number 3)], liquid velocity [(*, \(\left.\mathrm{m} / \mathrm{s}),\left({ }^{*}, \mathrm{ft} / \mathrm{s}\right)\right]\) [IFTY \(=6\) or 9\(]\), or mixture mass flow \(\left[\left({ }^{*}, \mathrm{~kg} / \mathrm{s}\right),\left({ }^{*}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\right](\) IFTY \(=5\) or 8\()\) vs independent-variable-form table. Input |NFTB| (Word 3 on Card Number 5) table-defining data pairs having the following form [independentvariable form defined by IFSV (Word 2 on Card Number 5); mixture velocity, liquid velocity, or mixture mass flow]. \\
\hline \multicolumn{4}{|c|}{Note: Input the following array card only if IFTY \(=5\) or 8} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline 19 & VMTBM & \(2 \times\) |NFTB| & Mixture velocity \(\left[\left({ }^{*}, \mathrm{~m} / \mathrm{s}\right),{ }^{*}\right.\), ft/s)] [IFTY \(=4\) or 7 (Word 2 on Card Number 3)], liquid velocity [(*, \(\mathrm{m} / \mathrm{s}),(*, \mathrm{ft} / \mathrm{s})][\) IFTY \(=6\) or 9\(]\), or mixture mass flow \(\left[\left({ }^{*}, \mathrm{~kg} / \mathrm{s}\right),\left({ }^{*}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\right](\mathrm{IFTY}=5\) or 8\()\) vs independent-variable-form table. Input |NFTB| (Word 3 on Card Number 5) table-defining data pairs having the following form [independentvariable form defined by IFSV (Word 2 on Card Number 5); mixture velocity, liquid velocity, or mixture mass flow]. \\
\hline \multicolumn{4}{|r|}{Note: If IFTY \(\neq 6\) and IFTY \(\neq 9\) (Word 2 on Card Number 3), do not input arrays VVTB, TLTB, TVTB, ALPTB, PTB, and PATB.} \\
\hline 20 & VVTB & \(2 \times\) | \(\mathrm{FFTB} \mid\) & Gas-velocity vs independent-variable-form table \(\left[\left({ }^{*}, \mathrm{~m} / \mathrm{s}\right),\left({ }^{*}, \mathrm{ft} / \mathrm{s}\right)\right]\). Input \(|\mathrm{NFTB}|\) (Word 3 on Card Number 5) table-defining data pairs having the following form [independent-variable form defined by IFSV (Word 2 on Card Number 5), gas velocity]. \\
\hline 21 & TLTB & \(2 \times\) NFTB \({ }^{\text {a }}\) & Liquid-temperature vs independent-variable-form table [(*, K), (*, \({ }^{\circ}\) F)]. Input |NFTB| (Word 3 on Card Number 5) table-defining data pairs having the following form [independent-variable form defined by IFSV (Word 2 on Card Number 5), liquid temperature]. \\
\hline 22 & TVTB & \(2 \times\) | \(\mathrm{NFTB} \mid\) & Gas-temperature vs independent-variable-form table \(\left[(*, K),\left(*,{ }^{\circ} \mathrm{F}\right)\right]\). Input \(|\mathrm{NFTB}|\) (Word 3 on Card Number 5) table-defining data pairs having the following form [independent-variable form defined by IFSV (Word 2 on Card Number 5), gas temperature]. \\
\hline 23 & ALPTB & \(2 \times\) NFTB & Gas volume-fraction vs independent-variable-form table (\({ }^{*},-\)). Input \(|\mathrm{NFTB}|\) (Word 3 on Card Number 5) table-defining data pairs having the following form [independent-variable form defined by IFSV (Word 2 on Card Number 5), gas volume fraction]. \\
\hline
\end{tabular}
\(\left.\begin{array}{|c|l|l|l|}\hline \begin{array}{c}\text { Card Set } \\ \text { Number }\end{array} & \text { Variable } & \text { Dimension } & \\ \hline \hline \mathbf{2 4} & \text { PTB } & 2 \times \mid \text { NFTB } \mid & \begin{array}{l}\text { Pressure vs independent-variable-form table [(*, } \\ \text { Pa), (*, psia)]. Input } \mid \text { NFTB } \mid \text { (Word 3 on Card } \\ \text { Number 5) table-defining data pairs having the } \\ \text { following form [independent-variable form defined } \\ \text { by IFSV (Word 2 on Card Number 5), pressure]. }\end{array} \\ \hline \mathbf{2 5} & \text { PATB } & 2 \times \mid \text { NFTB } \mid & \begin{array}{l}\text { Noncondensable-gas partial pressure vs } \\ \text { independent-variable-form table [(*, Pa), }\end{array} \\ \text { In, psia)]. } \\ \text { definting data (Ward 3 on Card Number 5) table- } \\ \text { [independent-variable form defined by IFSV (Word } \\ \text { 2 on Card Number 5), noncondensable-gas partial } \\ \text { pressure]. }\end{array}\right]\)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG \(>0\) (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 28 & XGNB & NCELLS & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 29 & XLNB & NCELLS & Mass fraction for liquid trace species. \\
\hline
\end{tabular}

\section*{FLPOWER Component Data}

To use this component the number of fluid power components must be specified by using NAMELIST variable nflpower.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (FLPOWER left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq\) NUM \(\leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2I14) NPWRB, NPWRD
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline NPWRB & \begin{tabular}{l}
Number of cells for which this fluid power component specifies in-beam power \\
data
\end{tabular} \\
\hline NPWRD & \begin{tabular}{l}
Number of cells for which this fluid power component specifies decay power \\
data.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 2I14) IPOWB, IPOWD
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Variable } & Description \\
\hline \hline IPOWB & Option to define in-beam power (Valid values are 5, 6, or 7) \\
& \(5=\) constant in-beam power \\
& \(6=\) table look-up \\
& \(7=\) trip-initiated table look-up \\
& IPOWD \\
& Option to define decay power (Valid values are 5, 6, or 7) \\
& \(5=\) constant decay power \\
& \(6=\) table look-up \\
& \(7=\) trip-initiated table look-up \\
& \\
\hline
\end{tabular}

Card Number 4. (Format 3114) IPOWBTR, IPOWBSV, NPOWBTB
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
Input this card if NPWRB (Word 1 on Card Number 2) \(>0\) and IPOWB (Word \\
1 on Card Number 3) \(=6\) or 7.
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPOWBTR & Trip ID number that controls in-beam power \\
\hline IPOWBSV & \begin{tabular}{l}
ID number of the signal variable used as the independent variable in the in- \\
beam power table
\end{tabular} \\
\hline NPOWBTB & \begin{tabular}{l}
Number of pairs in the in-beam power table (of the form [independent \\
variable, power]).
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 3I14) IPOWDTR, IPOWDSV, NPOWDTB
\begin{tabular}{|c|l|}
\hline Note: & \begin{tabular}{l}
Input this card if NPWRD (Word 2 on Card Number 2) \(>0\) and IPOWD (Word \\
2 on Card Number 3) \(=6\) or 7.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPOWDTR & Trip ID number that controls decay power. \\
\hline IPOWDSV & \begin{tabular}{l}
ID number of the signal variable used as the independent variable in the decay \\
power table.
\end{tabular} \\
\hline NPOWDTB & \begin{tabular}{l}
Number of pairs in the decay power table (of the form [independent variable, \\
power]).
\end{tabular} \\
\hline
\end{tabular}

Card Number 6. (Format 2E14.4) POWB, POWD
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline POWB & Initial in-beam power (W, Btu/hr) \\
\hline POWD & Initial decay power (W, Btu/hr) \\
\hline
\end{tabular}

Card Number 7. (Format 4I14,E14.4) NUMB, CELLIB, CELLJB, CELLKB, BFRAC
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Note: } & \begin{tabular}{l}
Input NPWRB (Word 1 on Card Number 2) sets of the following card to \\
specify distribution of total in-beam power in different fluid cells
\end{tabular} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline NUMB & Fluid component number. \\
\hline CELLIB & \begin{tabular}{l}
Cell index for 1D fluid component. Cell index in the \(\mathrm{x} / \mathrm{r}\) direction for 3D fluid \\
component.
\end{tabular} \\
\hline CELLJB & Cell index in the y/theta direction for 3D fluid component. \\
\hline CELLKB & Cell index in the z direction for 3D fluid component. \\
\hline BFRAC & Fraction of the total power to be assigned to this cell. \\
\hline
\end{tabular}

Card Number 8. (Format 4I14,E14.4) NUMD, CELLID, CELLJD, CELLKD, DFRAC
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Note: } & \begin{tabular}{l}
Input NPWRD (Word 2 on Card Number 2) sets of the following card to \\
specify distribution of total decay power in different fluid cells
\end{tabular} \\
\hline \multicolumn{1}{|c|}{ Variable } & \\
\hline NUMD & Fluid component number. \\
\hline CELLID & \begin{tabular}{l}
Cell index for 1D fluid component. Cell index in the \(\mathrm{x} / \mathrm{r}\) direction for 3D fluid \\
component.
\end{tabular} \\
\hline CELLJD & Cell index in the y/theta direction for 3D fluid component. \\
\hline CELLKD & Cell index in the \(z\) direction for 3D fluid component. \\
\hline DFRAC & Fraction of the total power to be assigned to this cell. \\
\hline
\end{tabular}

\section*{FLPOWER Array Cards}

Note: Input each of the following arrays using LOAD format.
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline \multicolumn{4}{|c|}{ Note: Input array POWBTB if NPOWBTB (Word 3 on Card Number 4) \(>0\)} \\
\hline \(\mathbf{9}\) & POWBTB & \begin{tabular}{l}
NPOWBTB \\
\(* 2\)
\end{tabular} & \begin{tabular}{l}
Table of pairs of in-beam power versus independent \\
variable. Input NPOWBTB pairs of data of the \\
form [Independent variable specified by \\
IPOWBSV, in-beam power]
\end{tabular} \\
\hline \multicolumn{5}{|c|}{ Note: Input array POWDTB if NPOWDTB (Word 3 on Card Number 5) \(>0\)}
\end{tabular}

The input listing for a sample problem is provided below. Component 123 defines a FLPOWER component, which specifies the fluid power distribution for a total of five cells in hydro components 30 and 70 . The fractions are all equal to 0.2 , meaning the power is distributed equally among the 5 cells specified. The POWB table is in terms of time, and the table has 4 pairs of data. From \(\mathrm{t}=0\) to \(\mathrm{t}=30 \mathrm{~s}\), the power is held at zero, and then it is ramped up to \(1.0 \mathrm{e}+5 \mathrm{~W}\) over an interval of 30 sec . It is held constant thereafter.
```

*************************************************************

* type num id ctitle cd 1
flpower 123 123 $123$ power for components 30 and 70
* npwrb npwrd
50
* ipowb ipowd
6
*ipowbtr ipowbsv npowbtb
0 1 4
*powb powd
0.0 0.0
*component celli cellj cellk frac
70 1 0 0 0.2
70 2 0 0 0.2
70 3 0 0 0.2
30}100000.
30 2 0 0 0.2
*powb table
0.00 0.00 30.0 0.0s
60.0 1.0e05 1.0e+10 1.0e05 e

```

\section*{HEATR Component Data}

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (HEATR left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq\) NUM \(\leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{l}
Note: \\
Variable \\
variable) is more than one.
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable number of inputs for FLUIDS (a NAMELIST } \\
\hline \hline EOS & EOS identifier for this component (i.e. "h2o" or "r5h2o", etc.). \\
\hline PHASECHANGE & \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
this component. Input FALSE or false, if phase change is not allowed for \\
this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14,2E14.4) JCELL, NODES, ICHF, COST, EPSW
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline JCELL & Main-tube cell number that has the side tube connected to it. \\
\hline NODES & \begin{tabular}{l}
Number of radial heat-transfer nodes in the wall. A value of zero specifies no wall \\
heat transfer.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14,2E14.4) JCELL, NODES, ICHF, COST, EPSW (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICHF & \begin{tabular}{c}
CHF-calculation option. \\
\(0=\) convection heat transfer only, no boiling heat transfer (i.e. no wall \\
nucleation is allowed although phase change can still occur); \\
\(1=\) CHF from AECL-IPPE CHF Table, no critical quality calculated. \\
\(2=\) CHF from AECL-IPPE CHF Table, critical quality from Biasi \\
correlation.
\end{tabular} \\
\(3=\)\begin{tabular}{l}
CHF from AECL-IPPE CHF Table, critical quality from CISE-GE \\
correlation.
\end{tabular} \\
\hline COST & \begin{tabular}{l}
Cosine of the angle from the low-numbered cell portion of the main tube to the \\
side tube.
\end{tabular} \\
\hline EPSW & Wall surface roughness (m, ft). \\
\hline
\end{tabular}

Card Number 4. (Format 5I14) ICONC1, NCELL1, JUN1, JUN2, IPOW1
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICONC1 & \begin{tabular}{l}
Solute in the main-tube coolant option. Requires ISOLUT = 1 (Word 3 on Main- \\
Data Card 9) when ICONC1 \(>0\). \\
\(0=\) no; \\
\(1=\) dissolved solute only; \\
\(2=\) both dissolved and plated-out solute.
\end{tabular} \\
\hline NCELL1 & Number of fluid cells in the main tube. \\
\hline JUN1 & Junction number for the junction interface adjacent to cell 1. \\
\hline JUN2 & \begin{tabular}{l}
Junction number for the junction interface adjacent to cell NCELL1.
\end{tabular} \\
\hline IPOW1 & \begin{tabular}{l}
Power-to-the-fluid option in the main tube. \\
\(0=\) no; \\
\(1=\) yes.
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 4I14) IVERT, NSHTB, NDCTB, NLLTB
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline IVERT & Vertical heater flag (=0 for horizontal, 1 for vertical) \\
\hline NSHTB & \begin{tabular}{l}
Number of data pairs in shell liquid heat transfer area vs. shell void fraction table \\
\((\) minimum \(=2)\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 4I14) IVERT, NSHTB, NDCTB, NLLTB (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline NDCTB & \begin{tabular}{l}
Number of data pairs in drain cooler liquid heat transfer area vs. drain cooler void \\
fraction table (minimum \(=2\)).
\end{tabular} \\
\hline NLLTB & \begin{tabular}{l}
Number of data pairs in shell liquid level vs. shell void fraction table \\
(minimum \(=2)\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 6. (Format 3E14.4) DTUBE, DBAFF, HDCIN
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline DTUBE & Outer diameter of individual tube bank tubes (m, ft). \\
\hline DBAFF & Distance between tube bank baffles (\(>0.0\) for a vertical heater) (m, ft\().\) \\
\hline HDCIN & Height of drain cooler inlet above bottom of heater shell (m, ft). \\
\hline
\end{tabular}

Card Number 7. (Format 2I14, 3E14.4) IVSV, IVPS, AVLVE, HVLVE, FAVLVE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IVSV & \begin{tabular}{l}
The independent variable ID number for the valve table. IVSV \(>0\) defines the ID \\
number for a signal-variable parameter; IVSV \(<0\) defines the ID number for a \\
control-block output parameter
\end{tabular} \\
\hline IVPS & Mesh cell interface number where the drain flow control valve area is adjusted. \\
\hline AVLVE & \begin{tabular}{l}
VALVE adjustable-interface flow area \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\) when the VALVE adjustable- \\
interface IVPS is at a flow-area fraction or relative valve-stem position of 1.0 \\
corresponding to \(100 \%\) open.
\end{tabular} \\
\hline HVLVE & \begin{tabular}{l}
VALVE adjustable-interface hydraulic diameter (m, ft) when the VALVE \\
adjustable-interface is \(100 \%\) open.
\end{tabular} \\
\hline FAVLVE & \begin{tabular}{l}
Initial flow-area fraction at the VALVE adjustable-interface IVPS \\
\((0.0 \leq\) FAVLVE \(\leq 1.0)\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format 5I14) IPWTR1, IPWSV1, NPWTB1, NPWSV1, NPWRF1
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPOW1 \(=0\) (Word 5 on Card Number 4) do not input this card } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPWTR1 & \begin{tabular}{l}
Trip ID number that controls evaluation of the power-to-the-fluid table defined by \\
Card Set 50 (array POWTB1) for the main tube (|IPWTR1| 9999). [Input \\
IPWTR1 = 0 if there is to be no trip control and the table is to be evaluated every \\
timestep during the transient calculation].
\end{tabular} \\
\hline IPWSV1 & \begin{tabular}{l}
The independent-variable ID number for the power-to-the-fluid table for the main \\
tube. IPWSV1 0 defines the ID number for a signal-variable parameter; \\
IPWSV1 < 0 defines the ID number for a control-block output parameter.
\end{tabular} \\
\hline NPWTB1 & \begin{tabular}{l}
The number of power-to-the-fluid table data pairs for the main tube (defined by \\
the absolute value of NPWTB1). NPWTB1 >0 defines the table independent- \\
variable form to be the IPWSV1 parameter; NPWTB1 < 0 defines the table \\
independent-variable form to be the sum of the change in the IPWSV1 parameter \\
each last timestep times the trip set-status value ISET during that timestep (when \\
the power-to-the-fluid table is trip controlled); NPWTB1 = 0 defines the power to \\
the fluid to be the IPWSV1 parameter.
\end{tabular} \\
\hline NPWSV1 & \begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the main- \\
tube power-to-the-fluid table independent variable. NPWSV1 0 defines the ID \\
number for a signal-variable parameter; NPWSV1 <0 defines the ID number for a \\
control-block output parameter; NPWSV1 = 0 (when NPWRF1 \(\neq 0\)) defines the \\
independent variable to be the difference between the trip signal and the setpoint \\
value that turns the trip OFF when the power-to-the-fluid table is trip controlled.
\end{tabular} \\
\hline NPWRF1 & \begin{tabular}{l}
The number of rate-factor table data pairs (defined by the absolute value of \\
NPWRF1). The rate factor is applied as a factor to the main-tube power-to-the- \\
fluid table independent variable when the rate factor is defined. No rate factor is \\
defined when NPWSV1 and NPWRF1 are both zero. NPWRF1 \(>0\) defines the \\
rate-factor table independent variable to be the NPWSV1 parameter; NPWRF1 < \\
0 defines it to be the sum of change in the NPWSV1 parameter over each timestep \\
times the trip set-status value ISET during the timestep (when the main-tube \\
power-to-the-fluid table is trip controlled); NPWRF1 = 0 defines the rate factor to \\
be the NPWSV1 parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 9. (Format 5I14) IQPTR1, IQPSV1, NQPTB1, NQPSV1, NQPRF1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input this card. If NODES \(>0\) and \(\operatorname{QPPP}(\) Card Set 41) \(>0\), this card is read. However, if QPPP \(=0\) this card is read but not used.} \\
\hline Variable & Description \\
\hline IQPTR1 & Trip ID number that controls evaluation of the power-to-the-wall table defined by Card Set 52 (array QP3TB1) for the main tube (\(\mid\) IQPTR1 \(\mid \leq 9999\)). [Input IQPTR1 \(=0\) if there is to be no trip control and the table is to be evaluated every timestep during the transient calculation]. \\
\hline IQPSV1 & The independent-variable ID number for the main-tube power-to-the-wall table. IQPSV1 \(>0\) defines the ID number for a signal-variable parameter; IQPSV1 \(<0\) defines the ID number for a control-block output parameter. \\
\hline NQPTB1 & The number of power-to-the-wall table data pairs for the main tube (defined by the absolute value of NQPTB1). NQPTB1 \(>0\) defines the table independentvariable form to be the IQPSV1 parameter; NQPTB1 \(<0\) defines the table independent-variable form to be the sum of the change in the IQPSV1 parameter over each timestep times the trip set-status value ISET during each timestep (when the power-to-the-wall table is trip controlled); NQPTB1 \(=0\) defines the power to the wall to be the IQPSV1 parameter. \\
\hline NQPSV1 & The independent-variable ID number for the rate factor that is applied to the maintube power-to-the-wall table independent variable. NQPSV1 \(>0\) defines the ID number for a signal-variable parameter; NQPSV1 \(<0\) defines the ID number for a control-block output parameter; NQPSV1 \(=0(\) when NQPRF1 \(\neq 0)\) defines the independent variable to be the difference between the trip signal and the setpoint value that turns the trip OFF when the power-to-the-wall table is trip controlled. \\
\hline NQPRF1 & The number of rate-factor table data pairs (defined by the absolute value of NQPRF1). The rate factor is applied as a factor to the main-tube power-to-the-wall table independent variable when the rate factor is defined. No rate factor is defined when NQPSV1 and NQPRF1 are both zero. NQPRF1 \(>0\) defines the rate-factor table independent variable to be the NQPSV1 parameter; NQPRF1 \(<0\) defines it to be the sum of the change in the NQPSV1 parameter over each timestep times the trip set-status value ISET during that timestep (when the main-tube power-to-the-wall table is trip controlled); NQPRF1 \(=0\) defines the rate factor to be the NQPSV1 parameter. \\
\hline
\end{tabular}

Card Number 10. (Format 5E14.4) RADIN1, TH1, HOUTL1, HOUTV1, TOUTL1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility in calculating possible heat losses from the outside of the main-tube wall. Typically, such heat losses are not important for fast transients or large-break loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set equal to zero. When heat losses are significant, they often can be approximated by a constant HTC temperature for the liquid and gas fluid phases outside the pipe wall.} \\
\hline Variable & Description \\
\hline RADIN1 & Inner radius (m, ft) of the main-tube wall. \\
\hline TH1 & Wall thickness (\(\mathrm{m}, \mathrm{ft}\)) of the main tube. \\
\hline HOUTL1 & Heat-transfer coefficient (HTC) [W/(m² K), Btu/(ft \(\left.\left.{ }^{2}{ }^{\circ} \mathrm{Fhr}\right)\right]\) between outer boundary of the main-tube wall and the liquid outside the main-tube wall. \\
\hline HOUTV1 & \(\mathrm{HTC}\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]\) between the outer boundary of the main-tube wall and the gas outside the main-tube wall. \\
\hline TOUTL1 & Liquid temperature (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) outside the main-tube wall. \\
\hline
\end{tabular}

Card Number 11. (Format 5E14.4) TOUTV1, PWIN1, PWOFF1, RPWX1, PWSCL1
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline TOUTV1 & Gas temperature (K, \({ }^{\circ}\) F) outside the main-tube wall. \\
\hline PWIN1 & \begin{tabular}{l}
Initial total power (W, Btu/hr) deposited in (to) the main-tube fluid [not used \\
when IPOW1 \(=0\) (Word 5 on Card Number 4)]. The power is distributed \\
uniformly along the HEATR main-tube length.
\end{tabular} \\
\hline PWOFF1 & \begin{tabular}{l}
Total power (W, Btu/hr) to the main-tube fluid when the controlling trip is OFF \\
after being ON [not used if IPOW1 \(=0\) (Word 5 on Card Number 4) or \\
IPWTR1 = 0 (Word 1 on Card Number 8)]. If PWOFF1 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \\
\(10^{19}\) Btu/hr), the power to the fluid is held constant at the last table-evaluated \\
power when the trip was ON.
\end{tabular} \\
\hline RPWMX1 & \begin{tabular}{l}
The maximum rate of change of the main-tube power to the fluid [W/s, (Btu/hr)/ \\
s] [RPWMX1 \(\geq 0.0]\) [not used if IPOW1 \(=0\) (Word 5 on Card Number 4)].
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 5E14.4) TOUTV1, PWIN1, PWOFF1, RPWX1, PWSCL1 (Continued)
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline PWSCL1 & \begin{tabular}{l}
Scale factor (-) for the power-to-the-fluid table. The dependent variable in the \\
table, defined by Card Set 50 (array POWTB1), is multiplied by PWSCL1 to \\
obtain absolute power (W, Btu/hr) deposited in the fluid [not used if IPOW1 \(=0\) \\
(Word 5 on Card Number 4) or NPWTB1 = 0 (Word 3 on Card Number 8)].
\end{tabular} \\
\hline
\end{tabular}

Card Number 12. (Format 4E14.4, I14) QPIN1, QPOFF1, RQPMX1, QPSCL1, NHCOM
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card.} \\
\hline Variable & Description \\
\hline QPIN1 & Initial power (W, Btu/hr) deposited in (to) the main-tube wall and distributed according to the QPPP array. If QPIN1 \(>0.0\), it is the total power to the entire wall. When QPIN1 \(<0.0\), the initial power to the wall in each cell is |QPIN1|, and the negative sign indicates the power to the wall is to be a cell-dependent array of NCELL1 (Word 2 on Card Number 4) power values. Each data pair of the power-to-the-wall table [for QPIN1 \(<0.0\)] has \(1+\) NCELL1 values (an independent-variable value and NCELL1 power values for cells 1 through NCELL1). When the power-to-the-wall table is not being evaluated, the same power value of \(|\mathrm{QPIN} 1|\) or QPOFF1 [if QPOFF1 \(>-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} /\right.\) hr)] is applied at each of the NCELL1 cells. \\
\hline QPOFF1 & Power (W, Btu/hr) to the main-tube wall when the controlling trip is OFF after being ON [not used if IQPTR1 \(=0\) (Word 1 on Card Number 9); use the last table-evaluated power when the trip was ON if QPOFF1 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \(\left.\left.10^{19} \mathrm{Btu} / \mathrm{hr}\right)\right]\). \\
\hline RQPMX1 & Maximum rate of change of the power to the wall for the main tube [W/s, (Btu/ \(\mathrm{hr}) / \mathrm{s}][\mathrm{RQPMX1} \geq 0.0]\). \\
\hline QPSCL1 & Scale factor (-) for the power-to-the-wall table for the main tube. The dependent variable in the table defined by Card Set 52 (array QP3TB1) is multiplied by QPSCL1 to obtain the absolute power (W, Btu/hr) to the wall. \\
\hline NHCOM & Component number receiving outside wall energy. \\
\hline
\end{tabular}

Card Number 13. (Format 4I14) ICONC2, NCELL2, JUN3, IPOW2
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICONC2 & \begin{tabular}{l}
Solute in the side-tube coolant option. Requires ISOLUT = 1 (Word 3 on Main- \\
Data Card 9) when ICONC2 \(>0\). \\
\(0=\) no; \\
\(1=\) dissolved solute only; \\
\(2=\) both dissolved and plated-out solute.
\end{tabular} \\
\hline NCELL2 & Number of fluid cells in the side tube. \\
\hline JUN3 & \begin{tabular}{l}
Junction number at the external-junction end of the side tube adjacent to cell \\
NCELL2.
\end{tabular} \\
\hline IPOW2 & \begin{tabular}{l}
Power-to-the-fluid option in the side tube. \\
\(0=\) no; \\
\(1=\) yes.
\end{tabular} \\
\hline
\end{tabular}

Card Number 14. (Format 5I14) IPWTR2, IPWSV2, NPWTB2, NPWSV2, NPWRF2
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPOW2 \(=0\) (Word 4 on Card Number 13), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPWTR2 & \begin{tabular}{l}
Trip ID number that controls evaluation of the power-to-the-fluid table defined by \\
Card Set 86 (array POWTB2) for the side tube (|IPWTR2| \(\leq 9999\)). [input \\
IPWTR2 00 if there is to be no trip control and the table is to be evaluated every \\
timestep of the transient calculation].
\end{tabular} \\
\hline IPWSV2 & \begin{tabular}{l}
The independent-variable ID number of the power-to-the-fluid table for the side \\
tube. IPWSV2 > 0 defines the ID number for a signal-variable parameter; \\
IPWSV2 < 0 defines the ID number for a control-block output parameter.
\end{tabular} \\
\hline NPWTB2 & \begin{tabular}{l}
The number of power-to-the-fluid table data pairs for the side tube (defined by the \\
absolute value of NPWTB2). NPWTB2 \(>0\) defines the table independent-variable \\
form to be the IPWSV2 parameter; NPWTB2 < 0 defines the table's independent- \\
variable form to be the sum of the change in the IPWSV2 parameter over the last \\
timestep times the trip set-status value ISET during that timestep (when the side- \\
tube power-to-the-fluid table is trip controlled); NPWTB2 = 0 defines the power \\
to the fluid to be the IPWSV2 parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 14. (Format 5I14) IPWTR2, IPWSV2, NPWTB2, NPWSV2, NPWRF2 (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPOW2 \(=0\) (Word 4 on Card Number 13), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular} \left\lvert\, \(\left.\begin{array}{l}\text { NPWSV2 } \\
\hline \hline\end{array} \begin{array}{l}\text { The independent-variable ID number for the rate factor that is applied to the side- } \\
\text { tube power-to-the-fluid table independent variable. NPWSV2 }>0 \text { defines the ID } \\
\text { number for a signal-variable parameter; NPWSV2 }<0 \text { defines the ID number for a } \\
\text { control-block output parameter; NPWSV2 }=0 \text { (when NPWRF2 } \neq 0 \text {) defines the } \\
\text { independent variable to be the difference between the trip signal and the setpoint } \\
\text { value that turns the trip OFF when the power-to-the-fluid table is trip controlled. }\end{array}\right.\right\}\)

Card Number 15. (Format 5I14) IQPTR2, IQPSV2, NQPTB2, NQPSV2, NQPRF2
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES } \\
& \begin{tabular}{l}
\(>0\) and QPPP (Card Set 77) \(>0\), this card is read. However, if QPPP \(=0\) this \\
card is read but not used.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{l}
Card Set 88 (array QP3TB2) for the side tube (|IQPTR2 \(\mid \leq 9999\)). (Input IQPTR2 \\
=0 if there is to be no trip control and the table is to be evaluated every timestep \\
during the transient calculation).
\end{tabular}

Card Number 15. (Format 5I14) IQPTR2, IQPSV2, NQPTB2, NQPSV2, NQPRF2 (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES \\
\(>0\) and QPPP (Card Set 77) \(>0\), this card is read. However, if QPPP \(=0\) this \\
card is read but not used.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{ll}
\hline NQPSV2 & \begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the side- \\
tube power-to-the-wall table independent variable. NQPSV2 \(>0\) defines the ID \\
number for a signal-variable parameter; NQPSV2 \(<0\) defines the ID number for a \\
control-block output parameter; NQPSV2 00 (when NQPRF2 \(\neq 0\)) defines the \\
independent variable to be the difference between the trip signal and the setpoint \\
value that turns the trip OFF when the power-to-the-wall table is trip controlled.
\end{tabular} \\
\hline NQPRF2 & \begin{tabular}{l}
The number of rate-factor table data pairs (defined by the absolute value of \\
NQPRF2). The rate factor is applied as a factor to the side-tube power-to-the-wall \\
table independent variable when the rate factor is defined. No rate factor is \\
defined when NQPSV2 and NQPRF2 are both zero. NQPRF2 \(>0\) defines the rate- \\
factor table independent variable to be the NQPSV2 parameter; NQPRF2 \(<0\) \\
defines it to be the sum of the change in the NQPSV2 parameter over each \\
timestep times the trip set-status value ISET during that timestep (when the side- \\
tube power-to-the-wall table is trip controlled); NQPRF2 \(=0\) defines the rate \\
factor to be the NQPSS2 parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 16. (Format 5E14.4) RADIN2, TH2, HOUTL2, HOUTV2, TOUTL2
\begin{tabular}{|c|c|}
\hline No & The four parameters, HOUTL2, HOUTV2, TOUTL2, and TOUTV2, allow flexibility in calculating possible heat losses from the outside of the side-tube wall. Typically, such heat losses are not important for fast transients or largebreak loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set equal to zero. When heat losses are significant, they often can be approximated by a constant HTC temperature for the liquid and gas fluid phases outside the pipe wall. \\
\hline Variable & Description \\
\hline RADIN2 & Inner radius (\(\mathrm{m}, \mathrm{ft}\)) of the side-tube wall. \\
\hline TH2 & Wall thickness (m, ft) of the side tube. \\
\hline HOUTL2 & Heat-transfer coefficient (HTC) \(\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]\) between the outer boundary of the side-tube wall and the liquid outside the side-tube wall. \\
\hline HOUTV2 & \(\mathrm{HTC}\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2} \mathrm{~F} \mathrm{hr}\right)\right]\) between the outer boundary of the side-tube wall and the gas outside the side-tube wall. \\
\hline
\end{tabular}

Card Number 16. (Format 5E14.4) RADIN2, TH2, HOUTL2, HOUTV2, TOUTL2 (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: }
\end{tabular} \begin{tabular}{l}
The four parameters, HOUTL2, HOUTV2, TOUTL2, and TOUTV2, allow \\
flexibility in calculating possible heat losses from the outside of the side-tube \\
wall. Typically, such heat losses are not important for fast transients or large- \\
break loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set \\
equal to zero. When heat losses are significant, they often can be approximated \\
by a constant HTC temperature for the liquid and gas fluid phases outside the \\
pipe wall.
\end{tabular}

Card Number 17. (Format 5E14.4) TOUTV2, PWIN2, PWOFF2, RPWX2, PWSCL2
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline TOUTV2 & Gas temperature (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) outside the side-tube wall. \\
\hline PWIN2 & Initial total power (W, Btu/hr) deposited in (to) the side-tube fluid [not used when IPOW2 \(=0\) (Word 4 on Card Number 13)]. The power is distributed uniformly along the side-tube length. \\
\hline PWOFF2 & Total power (W, Btu/hr) to the side-tube fluid when the controlling trip is OFF after being ON [not used when IPOW2 \(=0\) (Word 4 on Card Number 13) or IPWTR2 \(=0\) (Word 1 on Card Number 14)]. If PWOFF2 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \(10^{19} \mathrm{Btu} / \mathrm{hr}\)), the power to the fluid is held constant at the last table-evaluated power when the trip was ON. \\
\hline RPWMX2 & Maximum rate of change of the side-tube power to the fluid \(\left[\mathrm{W} / \mathrm{s},(\mathrm{Btu} / \mathrm{hr}) / \mathrm{s}^{-1}\right]\) [RPWMX1 \(\geq 0.0\)] [not used if IPOW2 \(=0\) (Word 4 on Card Number 13)]. \\
\hline PWSCL2 & Scale factor (-) for the power-to-the-fluid table. The dependent variable in the table defined by Card Set \(\mathbf{8 6}\) (array POWTB2) is multiplied by PWSCL2 to obtain the absolute power (W, Btu/hr) to the fluid [not used if POW2 \(=0\) (Word 4 on Card Number 13) or NPWTB \(2=0\) (Word 3 on Card Number 14)]. \\
\hline
\end{tabular}

Card Number 18. (Format 4E14.4) QPIN2, QPOFF2, RQPMX2, QPSCL2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input this card.} \\
\hline Variable & Description \\
\hline QPIN2 & Initial power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)) deposited in (to) the side-tube wall and distributed according to the QPPP array. If QPIN2 \(>0.0\), it is the total power to the entire wall. When QPIN2 \(<0.0\), the initial power to the wall in each cell is |QPIN2|, and the negative sign indicates the power to the wall is to be a cell-dependent array of NCELL2 (Word 2 on Card Number 13) power values. Each data pair of the power-to-the-wall table [for QPIN2 \(<0.0\)] has \(1+\) NCELL2 values (an independent-variable value and NCELL2 power values for cells 1 through NCELL2). When the power-to-the-wall table is not being evaluated, the same power value of \(\mid\) QPIN2| or QPOFF2 [if QPOFF2 \(>-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} /\right.\) \(\mathrm{hr})\)] is applied at each of the NCELL2 cells. \\
\hline QPOFF2 & Power (W, Btu/hr) to the side-tube wall when the controlling trip is OFF after being ON [not used if IQPTR2 \(=0\) (Word 1 on Card Number 15); the last table-evaluated power when the trip was ON if QPOFF2 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \(\left.10^{19} \mathrm{Btu} / \mathrm{hr}\right)\)]. \\
\hline RQPMX2 & Maximum rate of change of the power to the wall for the side-tube [W/s, (Btu/ \(\mathrm{hr}) / \mathrm{s}]\) [RQPMX2 \(\geq 0.0\)]. \\
\hline QPSCL2 & Scale factor (-) for the power-to-the-wall table for the side-tube. The dependent variable in table defined by Card Set 88 (array QP3TB2) is multiplied by QPSCL2 to obtain the absolute power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)) to the wall. \\
\hline
\end{tabular}

Card Number 19. (Format I14) IENTRN
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Note: If NAMELIST variable IOFFTK \(=0\), do not input this card. } \\
\hline Variable & Description \\
\hline \hline IENTRN & \begin{tabular}{c}
Offtake-model option. \\
\\
\end{tabular} \begin{tabular}{l}
\(0=\) off; \\
\(1=\) on (side tube internal-junction mass flow determined using offtake \\
model).
\end{tabular} \\
\hline
\end{tabular}

\section*{HEATR Array Cards}

Note: Input each of the following arrays using LOAD format. All junction variables must match at component interfaces. Model no flow-area change between cell JCELL and cells JCELL \(\pm 1\) and between the internal-junction interface and the side-tube first cell. A VOL/DX flow-area change between cell JCELL and cells JCELL \(\pm 1\) and their interface FA and between side-tube cell 1 and the internal-junction interface will not have any evaluated effect on flow from the current JCELLinterface momentum equations evaluated by TRACE.

\section*{Primary Side Array Cards}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description }
\end{tabular}\(⿻\)\begin{tabular}{c|l|l|l|}
\hline \hline \(\mathbf{2 0}\) & DX & NCELL1 & Main-tube cell lengths (m, ft). \\
\hline \(\mathbf{2 1}\) & VOL & NCELL1 & Main-tube cell volumes \(\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\). \\
\hline \(\mathbf{2 2}\) & FA & NCELL1+1 & Main-tube cell-edge flow areas \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\).
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 do not input array ICFLG. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur.} \\
\hline 28 & ICFLG & NCELL1+1 & \begin{tabular}{l}
Main-tube cell-edge choked-flow model option. Celledge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline 29 & NFF & NCELL1+1 & \begin{tabular}{l}
Main-tube friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE. \\
Input NFF \(\geq 0\) for the JCELL and JCELL+1 interfaces.
\end{tabular} \\
\hline
\end{tabular}

Note: If NCCFL = 0 (Word 5 on Main-Data Card 9), do not input array LCCFL.
\begin{tabular}{|l|l|l|l|}
\hline \(\mathbf{3 0}\) & LCCFL & NCELL1+1 & \multicolumn{1}{|c|}{\begin{tabular}{l}
Main-tube countercurrent flow limitation option. \\
\(0=\) no countercurrent flow limitation calculation \\
at the cell interface;
\end{tabular}} \\
\hline N = the countercurrent flow limitation parameter \\
set number used to evaluate \\
countercurrent flow limitation at the cell \\
interface [1 \(\leq \mathrm{N} \leq\) NCCFL (Word 5 on \\
Main-Data Card 9)].
\end{tabular}\(|\)
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{c|l|l|l|}
\hline \(\mathbf{3 6}\) & P & NCELL1 & Main-tube initial pressures (Pa, psia). \\
\hline \(\mathbf{3 7}\) & PA & NCELL1 & \begin{tabular}{l}
Main-tube initial noncondensable-gas partial \\
pressures (Pa, psia).
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Note: If NAMELIST variable NOLT1D =1 do not input array ILEV. }
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 42 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=1\). \\
ID Material Type \\
6 = stainless steel, type 304; \\
7 = stainless steel, type 316; \\
\(8=\) stainless steel, type 347; \\
\(9=\) carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 43 & TW & \begin{tabular}{l}
NODES \(\times\) \\
NCELL1
\end{tabular} & Initial wall temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) in the main tube, which are input in the same order as QPPP. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM > 0 (Word 5 on Card Number 12) input IDROD.} \\
\hline 44 & IDROD & 1 & Vessel radial-theta cell number or input 0 when NHCOM is a 1 D component. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM>0 (Word 5 on Card Number 12) input NHCEL.} \\
\hline 45 & NHCEL & NCELL1 & Connecting axial cell numbers in component NHCOM. \\
\hline \multicolumn{4}{|r|}{Note: If ICONC1 = 0 (Word 1 on Card Number 4), do not input array CONC.} \\
\hline 46 & CONC & NCELL1 & Initial solute mass to liquid-coolant mass ratio \(\left[\mathrm{kg}\right.\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(]\) in the main tube. Requires ISOLUT \(=1\) (Word 3 on MainData Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC1 \(=0\) or 1 (Word 1 on Card Number 4), do not input array S.} \\
\hline 47 & S & NCELL1 & Initial macroscopic density of plated-out solute (kg / \(\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}{ }^{3}\) in the main tube. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG \(>0\) (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 48 & XGNB & NCELL1 & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL \(>0\) (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 49 & XLNB & NCELL1 & Mass fraction for liquid trace species. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW1 \(=0\) (Word 5 on Card Number 4), do not input array POWTB1.} \\
\hline 50 & POWTB1 & \[
\begin{aligned}
& 2 \times \mid \text { NPWTB } \\
& 1 \mid
\end{aligned}
\] & Power-to-the-fluid vs independent-variable-form table \(\left[(*, W)\left({ }^{*}, \mathrm{Btu} / \mathrm{hr}\right)\right]\) for the main tube. Input |NPWTB1| (Word 3 on Card Number 8) tabledefining data pairs having the following form [independent-variable form defined by IPWSV1 (Word 2 on Card Number 8), power to the fluid]. The power is deposited directly into the main-tube fluid with a uniform power density along the maintube length. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW1 = 0 (Word 5 on Card Number 4), do not input array POWRF1.} \\
\hline 51 & POWRF1 & \[
\begin{aligned}
& 2 \times \mid \text { NPWRF } \\
& 1 \mid
\end{aligned}
\] & Rate-factor table (*,-) for the main-tube power-to-the-fluid table independent variable. Input |NPWRF1| (Word 5 on Card Number 8) table-defining data pairs having the following form [independentvariable form defined by NPWSV1 (Word 4 on Card Number 8), rate factor to be applied to the power-to-the-fluid table independent variable]. \\
\hline \multicolumn{4}{|r|}{Note: If NQPTB1 \(=0\) (Word 3 on Card Number 9) or if NODES \(=0\) (Word 2 on Card Number 3), do not input array QP3TB1.} \\
\hline 52 & QP3TB1 & \begin{tabular}{l}
\(2 \times\) \\
NQPTB1| \\
when \\
QPIN1 > \\
0.0; \\
(1+NCELL \\
1) \\
\(\times\) |NQPTB1| \\
when \\
QPIN1 < \\
0.0 .
\end{tabular} & Power-to-the-wall independent-variable-form table \([(*, W)(*, B t u / h r)]\) for the main tube. Input |NQPTB1| (Word 3 on Card Number 9) table-defining data pairs having the following form [independentvariable form defined by IQPSV1 (Word 2 on Card Number 9), power to the wall]. If QPIN1 > 0.0, the dependent variable specifies the total power to the entire wall; if QPIN1 \(<0.0\), the dependent variable is a power shape that specifies the power to the wall at each cell from cell 1 to NCELL1. \\
\hline \multicolumn{4}{|r|}{Note: If NSHTB = 0 (Word 2 on Card Number 5), do not input array SHLTB.} \\
\hline 53 & SHLTB & \(2 \times\) NSHTB & NSHTB pairs of shell void fraction, liquid heat transfer fraction data. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline \multicolumn{4}{|c|}{ Note: If NDCTB = 0 (Word 3 on Card Number 5), do not input array DCZTB. } \\
\hline \(\mathbf{5 4}\) & DCZTB & \(2 \times\) NDCTB & \begin{tabular}{l}
NDCTB pairs of drain cooler void fraction, liquid \\
heat transfer fraction data.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Note: If NLLTB = 0 (Word 4 on Card Number 5), do not input array LEVTB. } \\
\hline \(\mathbf{5 5}\) & LEVTB & \(2 \times\) NLLTB & \begin{tabular}{l}
NLLTB pairs of shell void fraction, shell liquid level \\
data.
\end{tabular} \\
\hline
\end{tabular}

\section*{Side Arm Array Cards}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 56 & DX & NCELL2 & Side-tube cell lengths (m, ft). \\
\hline 57 & VOL & NCELL2 & Side-tube cell volumes (\(\left.\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\). \\
\hline 58 & FA & NCELL2+1 & Side-tube cell-edge flow areas (\(\mathrm{m}^{2}, \mathrm{ft}^{2}\)). \\
\hline 59 & FRIC & NCELL2+1 & \begin{tabular}{l}
Side-tube additive loss coefficients (-). \\
See NAMELIST variable IKFAC for optional K factors input. Input FRIC \(>0.0\) for internal-junction interface 1 of the side tube when a VOL/DX flowarea change occurs between JCELL and cell 1 of the side tube.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\).} \\
\hline 60 & FRICR & NCELL2+1 & Side-tube additive loss coefficients (-) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. Input FRICR \(>0.0\) for internal-junction interface 1 of the side tube when a VOL/DX flow-area change occurs between JCELL and cell 1 of the side tube. \\
\hline 61 & GRAV or ELEV & NCELL2+1 & Side-tube gravity elevation terms [(- or m), (- or \(\mathrm{ft})]\). GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell \(i\) and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cell-centered elevation ELEV input. \\
\hline 62 & HD & NCELL2+1 & Side-tube hydraulic diameters (m, ft) (see NAMELIST variable NDIA1 for additional input of heat-transfer diameters). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NDIA1 / \(=2\) do not input array HD-HT.} \\
\hline 63 & HD-HT & NCELL2+1 & Side-tube heat transfer diameters (m, ft). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 , do not input array ICFLG.. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur..} \\
\hline 64 & ICFLG & NCELL2+1 & \begin{tabular}{l}
Side-tube cell-edge choked-flow model option. Celledge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline 65 & NFF & NCELL2+1 & \begin{tabular}{l}
Side-tube friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE. \\
Input NFF \(\geq 0\) for the JCELL and JCELL+1 interfaces.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If NCCFL \(=0\) (Word 5 Main-Data Card 9), do not input array LCCFL. } \\
\hline \(\mathbf{6 6}\) & LCCFL & NCELL2+1 & \(\begin{array}{l}\text { Side-tube countercurrent flow limitation option. } \\
0=\text { no countercurrent flow limitation calculation } \\
\text { at the cell interface; }\end{array}\) \\
N = the countercurrent flow limitation parameter \\
set number used to evaluate \\
countercurrent flow limitation at the \\
cell interface [1 \(\leq\) N \(\leq\) NCCFL (Word \\
5 on Main-Data Card 9)].
\end{tabular}\(]\)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 72 & P & NCELL2 & Side-tube initial pressures (Pa, psia). \\
\hline 73 & PA & NCELL2 & Side-tube initial noncondensable-gas partial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NOLT1D \(=1\) do not input array ILEV.} \\
\hline 74 & ILEV & NCELL2 & Level tracking flags. ILEV \(=1.0\) indicates that the two-phase level exists in the current cell. ILEV \(=0.0\) indicates that the two-phase level does not exist in the current cell. If ILEV \(=-1.0\), the level tracking calculation will be turned off for this cell. \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFL \(=0\), do not input array WFMFL.} \\
\hline 75 & WFMFL & NCELL2+1 & Side-tube wall-friction multiplier factor for the liquid phase \((0.9 \leq \mathrm{WFMFL} \leq 1.1)\). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFV \(=0\), do not input array WFMFV.} \\
\hline 76 & WFMFV & NCELL2+1 & Side-tube wall-friction multiplier factor for the gas phase (\(0.9 \leq\) WFMFL \(\leq 1.1\)). \\
\hline \multicolumn{4}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input arrays QPPP, MATID, TW, IDROD, and NHCEL.} \\
\hline 77 & QPPP & \begin{tabular}{l}
NODES \(\times\) \\
NCELL2
\end{tabular} & A relative power shape in the side-tube wall. Input values for cell 1 , node 1 through NODES; then cell 2 , node 1 through NODES; etc. If the array is filled with the same nonzero constant, a uniform volumetric heat source in the wall results. TRACE internally normalizes the power shape to have a volume-average value of unity (each QPPP(I) is normalized to have the value \(\operatorname{QPPP}(\mathrm{I}) \times\left[\Sigma_{\mathrm{K}}\right.\) \(\left.\operatorname{VOL}(\mathrm{K})] /\left[\Sigma_{\mathrm{K}} \operatorname{QPPP}(\mathrm{K}) \times \operatorname{VOL}(\mathrm{K})\right]\right)\). Filling the array with zeros results in no power being deposited in the wall regardless of the values of QPIN2, QPTB2, etc. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 78 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=\) 1. \\
ID Material Type \\
6 = stainless steel, type 304; \\
7 = stainless steel, type 316; \\
\(8=\) stainless steel, type 347; \\
\(9=\) carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 79 & TW & \begin{tabular}{l}
NODES \(\times\) \\
NCELL2
\end{tabular} & Initial wall temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) in the side tube, which are input in the same order as QPPP. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM \(>0\) (Word 5 on Card Number 12) then input array IDROD.} \\
\hline 80 & IDROD & 1 & Vessel radial-theta cell number or input 0 when NHCOM is a 1 D component. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM > 0 (Word 5 on Card Number 12) then input array NHCEL.} \\
\hline 81 & NHCEL & NCELL2 & Connecting axial cell numbers in component NHCOM. \\
\hline \multicolumn{4}{|r|}{Note: If ICONC2 \(=0\) (Word 1 on Card Number 13), do not input array CONC.} \\
\hline 82 & CONC & NCELL2 & Initial solute mass to liquid-coolant mass ratio \(\left[\mathrm{kg}\right.\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(]\) in the side tube. Requires ISOLUT \(=1\) (Word 3 on MainData Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC2 \(=0\) or 1 (Word 1 on Card Number 13), do not input array S.} \\
\hline 83 & S & NCELL2 & Initial macroscopic density of plated-out solute (kg/ \(\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\)) in the side tube. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG \(>0\) (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 84 & XGNB & NCELL2 & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 85 & XLNB & NCELL2 & Mass fraction for liquid trace species. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW2 \(=0\) (Word 5 on Card Number 13), do not input array POWTB2.} \\
\hline 86 & POWTB2 & \(2 \times\) |NPWTB2| & Power-to-the-fluid vs. independent-variable-form table \([(*, W),(*, B t u / h r)]\) for the side tube. Input |NPWTB2| (Word 3 on Card Number 14) tabledefining data pairs having the following form [independent-variable form defined by IPWSV2 (Word 2 on Card Number 14), power to the fluid]. The power is deposited directly into the side-tube fluid with a uniform volumetric power density along the HEATR side-tube length. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW2 \(=0\) (Word 5 on Card Number 13), do not input array POWRF2.} \\
\hline 87 & POWRF2 & \(2 \times\) |NPWRF2| & Rate-factor table (*,-) for the side-tube power-to-the-fluid table independent variable. Input |NPWRF2| (Word 5 on Card Number 14) tabledefining data pairs having the following form [independent-variable form defined by NPWSV2 (Word 4 on Card Number 14), rate factor to be applied to the power-to-the-fluid table independent variable]. \\
\hline \multicolumn{4}{|r|}{Note: If NQPTB2 \(=0\) (Word 3 on Card Number 15) or if NODES \(=0\) (Word 2 on Card Number 3), do not input array QP3TB2.} \\
\hline 88 & QP3TB2 & \(2 \times\) NQPTB2 when QPIN2>0.0; (1+NCELL2) \(\times\) NQPTB2 when QPIN2 \(<0.0\). & Power-to-the-wall vs. independent-variable form table \(\left[(*, W),\left({ }^{*}, \mathrm{Btu} / \mathrm{hr}\right)\right]\) for the side tube. Input |NQPTB2| (Word 3 on Card Number 15) tabledefining data pairs having the following form [independent-variable form defined by IQPSV2 (Word 2 on Card Number 15), power to the wall]. If QPIN2 \(>0.0\), the dependent variable specifies the total power to the entire wall; if QPIN2 \(<0.0\), the dependent variable is a power shape that specifies the power to the wall at each cell from cell NCELL1 +2 to cell NCELL1 + 1 + NCELL2 . \\
\hline
\end{tabular}

\section*{HTSTR Component Data}

See POWER Component Data for the POWER component input description. A sample problem which uses the HTSTR component is given at the end of this section.

If NOFUELROD \(=0\) (Word 1 in Card Number 3), and NAMELIST variable NPOWER \(>0\), power distribution must be specified via POWER component.

The HTSTR component replaces the old style ROD and SLAB heat structure component input. It is recommended old ROD and SLAB components be converted to new HTSTR components. The procedure for doing this is described in Chapter 1 (See Appendix A for old style Rod and Slab input).

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline TYPE & Component type (HTSTR left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq \mathrm{NUM} \leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 4I14) NZHTSTR, ITTC, HSCYL, ICHF
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline NZHTSTR & Number of axial levels \\
\hline ITTC & \begin{tabular}{l}
Specification of an external thermocouple (T/C) on the HTSTR element \\
surface. It must be 0 for TRACE
\end{tabular} \\
\hline HSCYL & \begin{tabular}{l}
Flag to indicate the geometry of the heat structure. \\
\(0=\) slab geometry \\
1
\end{tabular} \\
& \(2=\) cylindrical geometry \\
2
\end{tabular}

Card Number 2. (Format 4I14) NZHTSTR, ITTC, HSCYL, ICHF (Continued)
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline ICHF & \begin{tabular}{l}
CHF (Critical heat flux) flag \\
\(0=\) convection heat transfer only, no boiling heat transfer (i.e. no wall nucleation is allowed although phase change can still occur); \\
\(1=\) CHF from AECL-IPPE CHF Table, no critical quality calculated. \\
\(2=\) CHF from AECL-IPPE CHF Table, critical quality from Biasi correlation. \\
\(3=\) CHF from AECL-IPPE CHF Table, critical quality from CISE-GE correlation.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 4I14) NOFUELROD, PLANE, LIQLEV, IAXCND
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline NOFUELROD & Fuel rod option.
\[
\begin{aligned}
& 0=\text { this HTSTR models fuel rods; } \\
& 1=\text { this HTSTR does not model fuel rods. }
\end{aligned}
\] \\
\hline PLANE & \begin{tabular}{l}
Flag to indicate the direction in the fluid component that corresponds to the axial direction for the heat structure. This input will be ignored for \\
HTSTR's coupled to 1D components \\
\(1=\) the x or r direction in the fluid component is the axial direction for the heat structure. \\
\(2=\) the y or \(\theta\) direction in the fluid component is the axial direction for the heat structure. \\
\(3=\) the z direction in the fluid component is the axial direction for the heat structure.
\end{tabular} \\
\hline LIQLEV & Specification of liquid-level tracking (Currently not used). \\
\hline IAXCND & \begin{tabular}{l}
Specification of axial conduction. \\
\(0=\) no axial heat-transfer conduction calculated; \\
\(1=\) axial heat-transfer conduction calculated in the HTSTR element (explicit numerics when NAMELIST variable \(\mathrm{NRSLV}=0\); implicit numerics when NRSLV = 1).
\end{tabular} \\
\hline
\end{tabular}

Card Number 4. (Format 3I14,2E14.4) NMWRX, NFCI, NFCIL, HDRI, HDRO
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline NMWRX & \begin{tabular}{l}
Metal-water reaction option. \\
\(0=\) off; \\
\(1=\) on
\end{tabular} \\
\hline NFCI & \begin{tabular}{l}
Fuel-clad interaction (FCI) option. NFCI = 1 performs the dynamic gas-gap \\
conductance calculation. \\
\(0=\) off; \\
\(1=\) on.
\end{tabular} \\
\hline NFCIL & \begin{tabular}{l}
Maximum number of FCI calculations per timestep. Input NFCIL \(=1\) when \\
NFCI = 1.
\end{tabular} \\
\hline HDRI & \begin{tabular}{l}
Heat-transfer diameter (m, ft) used to evaluate the heat-transfer coefficient \\
(HTC) for the inside surface of the HTSTR element. HDRI is used when \\
NAMELIST variable ITHD \(=1\) and the hydraulic diameter HD is used when \\
ITHD = 0.
\end{tabular} \\
\hline HDRO & \begin{tabular}{l}
Heat-transfer diameter (m, ft) used to evaluate the heat-transfer coefficient \\
(HTC) for the outside surface of the HTSTR element. HDRO is used when \\
NAMELIST variable ITHD \(=1\) and the hydraulic diameter HD is used when
\end{tabular} \\
ITHD = 0.
\end{tabular}

Card Number 5. (Format 2I14) IFRADI, IFRADO
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: Input the following card if nEnclosure (NAMELIST input) \(>0\)} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline IFRADI & \begin{tabular}{l}
Radiation heat transfer flag for the inner heat structure surface. If IFRADI=0, \\
then there is no radiation heat transfer for the inner heat structure surface. If \\
IFRADI=1, then there is radiation heat transfer for the inner heat structure \\
surface.
\end{tabular} \\
\hline IFRADO & \begin{tabular}{l}
Radiation heat transfer flag for the outer heat structure surface. If IFRADO=0, \\
then there is no radiation heat transfer for the outer heat structure surface. If \\
IFRADO=1, then there is radiation heat transfer for the outer heat structure \\
surface.
\end{tabular} \\
\hline
\end{tabular}

Card Number 6. (Format 3E14.4) EMCIF1, EMCIF2, EMCIF3
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: Input this card if IFRADI (Word 1 of Card Number 5) \(=1\)} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline EMCIF1 & \begin{tabular}{l}
First coefficient for the inner surface emissivity fit. \\
emiss = emcif1 + emcif2*Ts + emcif3*Ts*Ts
\end{tabular} \\
\hline EMCIF2 & \begin{tabular}{l}
Second coefficient for the inner surface emissivity fit. \\
emiss = emcif1 + emcif2*Ts + emcif3*Ts*T.
\end{tabular} \\
\hline EMCIF3 & \begin{tabular}{l}
Third coefficient for the inner surface emissivity fit. \\
emiss = emcif1 + emcif2*Ts + emcif3*Ts*T.
\end{tabular} \\
\hline
\end{tabular}

Card Number 7. (Format 3E14.4) EMCOF1, EMCOF2, EMCOF3
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: Input this card if IFRADO (Word 2 of Card Number 5) \(=1\)} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline EMCOF1 & \begin{tabular}{l}
First coefficient for the outer surface emissivity fit. \\
emiss = emcof1 + emcof2*Ts + emcof3*Ts*Ts
\end{tabular} \\
\hline EMCOF2 & \begin{tabular}{l}
Second coefficient for the outer surface emissivity fit. \\
emiss = emcof1 + emcof2*Ts + emcof3*Ts*T.
\end{tabular} \\
\hline EMCOF3 & \begin{tabular}{l}
Third coefficient for the outer surface emissivity fit. \\
emiss = emcof1 + emcof2*Ts + emcof3*Ts*T.
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format E14.4, I14) WIDTH or DTHETA
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
Input this card if HSCYL=0 or 2 (Word 3 on Card Number 2). \\
\hline Variable
\end{tabular} \begin{tabular}{l}
\multicolumn{1}{c|}{ Description }
\end{tabular}} \\
\hline \begin{tabular}{l}
WIDTH \\
or \\
DTHETA
\end{tabular} & \begin{tabular}{l}
If HSCYL \(=0\), input WIDTH (m, ft) of HTSTR element surface (used to \\
compute surface area) for the slab heat structure. \\
If HSCYL = 2, input DTHETA, the number of radians in the theta direction for \\
the spherical heat structure.
\end{tabular} \\
\hline
\end{tabular}

Card Number 9. (Format 5I14) NHOT, NODES,FMON,NZMAX,REFLOODON
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline NHOT & \begin{tabular}{l}
Total number of supplemental HTSTR elements defined by this heat- \\
structure component (supplemental elements do not affect the fluid- \\
dynamic solution through heat-transfer coupling).
\end{tabular} \\
\hline NODES & \begin{tabular}{l}
Number of radial (HSCYL=1, Word 3 on Card Number 2) or thickness \\
(HSCYL=0) heat-transfer nodes in the HTSTR elements. A value of 1 \\
invokes the lumped-parameter solution (see TRACE Theory Manual).
\end{tabular} \\
\hline FMON & Fine mesh flag. If it is non-zero, then the fine mesh algorithm is turned on. \\
\hline NZMAX & \begin{tabular}{l}
Maximum number of axial nodes. NZMAX must be greater or equal to \\
NZHTSTR. With the fine mesh option on, NZMAX must be greater or \\
equal to MAX((NZHTSTR+2), SUM(MAX(3, NFAX(1:)))).
\end{tabular} \\
\hline REFLOODON & \begin{tabular}{l}
Reflood flag. This flag is now redundant in that it behaves identically to \\
FMON above - if it is non-zero, then the fine mesh algorithm is turned on \\
(even if FMON is set to zero). As of V4.260, the code no longer \\
distinguishes between reflood and non-reflood sets of physical models. The \\
only reason this flag still remains is to maintain backward compatibility \\
with older input decks which may have had the IRFTR flag (now called \\
FMON) set to 0 and IRFTR2 (now called REFLOODON) set to a non-zero \\
number.
\end{tabular} \\
\hline
\end{tabular}

Card Number 10. (Format 4E14.4) DTXHT(1), DTXHT(2), DZNHT, HGAPO
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline DTXHT(1) & \begin{tabular}{l}
Maximum \(\Delta \mathrm{T}\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) surface-temperature change between node rows above \\
which a row of nodes is inserted in the axial fine-mesh calculation for the \\
nucleate and transition boiling regimes. (No longer used).
\end{tabular} \\
\hline DTXHT(2) & \begin{tabular}{l}
Maximum \(\Delta \mathrm{T}\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) surface-temperature change between node rows above \\
which a row of nodes is inserted in the axial fine-mesh calculation for all heat \\
transfer regimes other than the nucleate and transition boiling regimes. (No \\
longer used).
\end{tabular} \\
\hline DZNHT & \begin{tabular}{l}
Minimum \(\Delta \mathrm{z}(\mathrm{m}, \mathrm{ft})\) axial interval between node rows below which no \\
additional row of nodes is inserted in the axial fine-mesh calculation.
\end{tabular} \\
\hline HGAPO & HTSTR element gas-gap HTC \(\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]\). \\
\hline
\end{tabular}

\section*{HTSTR Array Cards.}

Note: Use LOAD format. Each array has its element values defined by a Card Set of one or more cards.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 11 & IDBCIN & NZHTSTR & \begin{tabular}{l}
Inner surface boundary condition for each axial level in the heat structure. \\
\(0=\) Constant heat flux (positive direction is from solid to fluid) \\
\(1=\) Constant heat transfer coefficient, and constant sink temperature \\
\(2=\) Heat structure is coupled to the hydro component \\
\(3=\) Heat flux is specified by heat flux vs. independent variable table (positive direction is from solid to fluid) \\
\(4=\) Heat transfer coefficient is specified by table of heat transfer coefficient vs. independent variable; sink temperature is specified by sink temperature versus independent variable table. \\
\(5=\) Constant fixed surface temperature. \\
\(6=\) Constant fixed heat transfer coefficient, with fluid/sink temperature determined by the connecting Hydro component. \\
7 = Surface temperature is determined by a signal variable or control block. \\
\(8=\) Heat transfer coefficient is determined by a signal variable or control block. \\
\(9=\) Sink temperature is determined by a signal variable or control block. \\
\(10=\) Surface heat flux is determined by a signal variable or control block. (Positive direction is from solid to fluid). \\
\(11=\) Surface temperature is determined by a general table. \\
\(12=\) Surface HTC is determined by a general table.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \(\mathbf{1 2}\) & IDBCON & NZHTSTR & \begin{tabular}{l}
Outer surface boundary condition for each axial level \\
in the heat structure. \\
See above for input options.
\end{tabular} \\
\hline
\end{tabular}

\section*{Inner Surface Boundary Condition:}

Note: Include one inside surface Card Sets for each of the NZHTSTR (Word 1 on Card Number 2) axial levels of HTSTR. Use LOAD format.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCIN \(=0(\) Card Set 11) for this axial level.} \\
\hline 13 & QFLXBCI & 1 & Inner surface heat flux for axial level [W/m², (Btu/ \(\left.\mathrm{hr}) / \mathrm{ft}^{2}\right]\). \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCIN = 1 (Card Set 11) for this axial level.} \\
\hline 14 & HTCLIQI, TFLUIDI & 2 & Inner surface heat transfer coefficient \(\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)\right.\), \(\left.\mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\mathrm{o}} \mathrm{Fhr}\right)\right]\) and sink temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) for axial level. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCIN = 2 (Card Set 11) for this axial level.} \\
\hline 15 & \begin{tabular}{l}
HCOMIN, \\
HCELII, \\
HCELJI, \\
HCELKI
\end{tabular} & 4 & \begin{tabular}{l}
HCOMIN: Component number of the hydraulic cell to which the axial level of the HTSTR component is coupled. \\
HCELII,HCEJI,HCELKI: i-,j-,k-cell number of the fluid cell of component HCOMIN to which axial level of the HTSTR component is coupled. If HCOMIN is a 1D fluid component, only HCELII is used; it refers to the axial cell number in the fluid component. If NHCOMIN refers to a 3D vessel, HCELII refers to the radial cell number, HCELJI refers to the theta cell number, and HCELKI refers to the axial cell number.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next card set only if IDBCIN = 3 (Card Set 11).} \\
\hline 16 & NUMBCI1 & 1 & Number of the general table for this surface boundary condition. \(\operatorname{IDBCIN}=3\) implies the general table will be for a surface heat flux. \\
\hline \multicolumn{4}{|r|}{Note: Input next card set only if IDBCIN = 4 (Card Set 11).} \\
\hline 17 & NUMBCI1, NUMBCI2 & 2 & \begin{tabular}{l}
NUMBCI1 = general table number for the HTC BC for this inner surface at this axial level. \\
NUMBCI2 \(=\) general table number for the sink temperature BC for this inner surface at this axial level.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCIN = 5 (Card Set 11) for this axial level.} \\
\hline 18 & TSURFI & 1 & Inner surface temperature BC for this axial level (K, \({ }^{\circ} \mathrm{F}\)). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCIN = 6 (Card Set 11) for this axial level.} \\
\hline 19 & HTCLIQI, hTCVAPI, HCOMIN, HCELII, HCELJI, HCELKI & 6 & \begin{tabular}{l}
HTCLIQI: Inside surface HTC [W/(m² K), Btu/(ft \({ }^{2}\) \(\left.{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\)] for the liquid phase. \\
HTCVAPI: Inside surface HTC [W/(\(\left.\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}\right.\) \(\left.{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\)] for the vapor phase. \\
HCOMIN: Component number of the hydraulic cell to which the axial level of the HTSTR component is coupled. \\
HCELII,HCEJI,HCELKI: i-,j-,k-cell number of the fluid cell of component HCOMIN to which axial level of the HTSTR component is coupled. If HCOMIN is a 1D fluid component, only HCELII is used; it refers to the axial cell number in the fluid component. If NHCOMIN refers to a 3D vessel, HCELII refers to the radial cell number, HCELJI refers to the theta cell number, and HCELKI refers to the axial cell number. \\
Note: use s; input no more than 5 numbers per card.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCIN = 7 (Card Set 11) for this axial level.} \\
\hline 20 & NUMBCI1 & 1 & Signal variable or control block id for the inner surface temperature BC for this axial level. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCIN \(=8\), or 9 (Card Set 11) for this axial level.} \\
\hline 21 & NUMBCI1, HCOMIN, HCELII, HCELJI, HCELKI & 5 & \begin{tabular}{l}
NUMBCI1: Signal variable or control block id for the inner surface heat transfer coefficient BC for this axial level if \(\operatorname{IDBCIN}=8\). \\
NUMBCI1: Signal variable or control block id for the inner surface sink temperature BC for this axial level if \(\operatorname{IDBCIN}=9\). \\
HCOMIN: Component number of the hydraulic cell to which the axial level of the HTSTR component is coupled. \\
HCELII,HCEJI,HCELKI: i-,j-,k-cell number of the fluid cell of component HCOMIN to which axial level of the HTSTR component is coupled. If HCOMIN is a 1D fluid component, only HCELII is used; it refers to the axial cell number in the fluid component. If HCOMIN refers to a 3D vessel, HCELII refers to the radial cell number, HCELJI refers to the theta cell number and HCELKI refers to the axial cell number.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCIN = 10 (Card Set 11) for this axial level.} \\
\hline 22 & NUMBCI1 & 1 & NUMBCI1: Signal variable or control block id for the inner surface heat flux BC for this axial level. \\
\hline \multicolumn{4}{|r|}{Note: Input next card set only if IDBCIN = 11 (Card Set 11).} \\
\hline 23 & NUMBCI1 & 1 & Number of the general table for this surface boundary condition. IDBCIN \(=3\) implies the general table will be for a surface heat flux. IDBCIN \(=11\) implies the general table will be for a surface wall temperature. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline
\end{tabular}

Note: Input next Card only if IDBCIN = 12 (Card Set 11) for this axial level.
\begin{tabular}{|l|l|l|l|}
\hline 24 & \begin{tabular}{l}
NUMBCI1, \\
HCOMIN, \\
HCELII, \\
HCELJI, \\
HCELK1
\end{tabular} & \begin{tabular}{l}
NUMBCI1: General table number for the inner \\
surface HTC BC for this axial level. \\
HCOMIN: Component number of the hydraulic cell \\
to which the axial level of the HTSTR component is \\
coupled. \\
HCELII,HCEJI,HCELKI: i-,j-,k-cell number of the \\
fluid cell of component HCOMIN to which axial \\
level of the HTSTR component is coupled. If \\
HCOMIN is a 1D fluid component, only HCELII is \\
used; it refers to the axial cell number in the fluid \\
component. If HCOMIN refers to a 3D vessel, \\
HCELII refers to the radial cell number, HCELJI \\
refers to the theta cell number and HCELKI refers to \\
the axial cell number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Outer Surface Boundary Condition:}

Note: Include one outside surface Card Sets for each of the NZHTSTR (Word 1 on Card Number 2) axial levels of HTSTR. Use LOAD format.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON \(=0\) (Card Set 12) for this axial level.} \\
\hline 25 & QFLXBCO & 1 & Outer surface heat flux for axial level [W/m², (Btu/ \(\left.\mathrm{hr}) / \mathrm{ft}^{2}\right]\). \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON = 1 (Card Set 12) for this axial level.} \\
\hline 26 & \begin{tabular}{l}
HTCLIQO, \\
TFLUIDO
\end{tabular} & 2 & Outer surface heat transfer coefficient [W/(\(\left.\mathrm{m}^{2} \mathrm{~K}\right)\), \(\left.\mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{Fhr}\right)\right]\) and sink temperature for axial level. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON = 2 (Card Set 12) for this axial level.} \\
\hline 27 & \begin{tabular}{l}
HCOMON, \\
HCELIO, \\
HCELJO, \\
HCELKO
\end{tabular} & 4 & \begin{tabular}{l}
HCOMON: Component number of the hydraulic cell to which the axial level of the HTSTR component is coupled. \\
HCELIO,HCEJO,HCELKO: i-,j-,k-cell number of the fluid cell of component HCOMON to which axial level of the HTSTR component is coupled. If HCOMON is a 1D fluid component, only HCELIO is used; it refers to the axial cell number in the fluid component. If NHCOMON refers to a 3D vessel, HCELIO refers to the radial cell number, HCELJO refers to the theta cell number, and HCELKO refers to the axial cell number.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next card set only if IDBCON = 3 (Card Set 12).} \\
\hline 28 & NUMBCO1 & 1 & Number of the general table for this surface boundary condition. IDBCON \(=3\) implies the general table will be for a surface heat flux. IDBCON \(=11\) implies the general table will be for a surface wall temperature. \\
\hline \multicolumn{4}{|r|}{Note: Input next card set only if IDBCON = 4 (Card Set 12).} \\
\hline 29 & NUMBCO1, NUMBCO2 & 2 & \begin{tabular}{l}
NUMBCO1 = general table number for the HTC BC for this outer surface at this axial level. \\
NUMBCO2 \(=\) general table number for the sink temperature BC for this outer surface at this axial level.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON = 5 (Card Set 12) for this axial level.} \\
\hline 30 & TSURFO & 1 & Outer surface temperature BC for this axial level (K, \({ }^{\circ} \mathrm{F}\)). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON = 6 (Card Set 12) for this axial level.} \\
\hline 31 & HTCLIQO, HTCVAPO, HCOMON, HCELIO, HCELJO, HCELKO & 6 & \begin{tabular}{l}
HTCLIQO: Outside surface HTC [W/(\(\left.\mathrm{m}^{2} \mathrm{~K}\right)\), Btu/ \(\left.\left(\mathrm{ft}^{2}{ }^{\mathrm{o}} \mathrm{Fhr}\right)\right]\) for the liquid phase. \\
HTCVAPO: Outside surface HTC [W/(m² K), Btu/ \(\left.\left(\mathrm{ft}^{2}{ }^{\mathrm{o}} \mathrm{Fhr}\right)\right]\) for the vapor phase. \\
HCOMON: Component number of the hydraulic cell to which the axial level of the HTSTR component is coupled. \\
HCELIO,HCEJO,HCELKO: i-,j-,k-cell number of the fluid cell of component HCOMON to which axial level of the HTSTR component is coupled. If HCOMON is a 1 D fluid component, only HCELIO is used; it refers to the axial cell number in the fluid component. If NHCOMON refers to a 3D vessel, HCELIO refers to the radial cell number, HCELJO refers to the theta cell number, and HCELKO refers to the axial cell number. \\
Note: use s; input no more than 5 numbers per card.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON \(=7\) (Card Set 12) for this axial level.} \\
\hline 32 & NUMBCO1 & 1 & Signal variable or control block id for the outer surface temperature BC for this axial level. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON \(=8\), or 9 (Card Set 12) for this axial level.} \\
\hline 33 & NUMBCO1, HCOMON, HCELIO, HCELJO, HCELKO & 5 & \begin{tabular}{l}
NUMBCO1: Signal variable or control block id for the outer surface heat transfer coefficient BC for this axial level if IDBCON \(=8\). \\
NUMBCO1: Signal variable or control block id for the outer surface sink temperature BC for this axial level if \(\operatorname{IDBCON}=9\). \\
HCOMON: Component number of the hydraulic cell to which the axial level of the HTSTR component is coupled. \\
HCELIO,HCEJO,HCELKO: i-,j-,k-cell number of the fluid cell of component HCOMON to which axial level of the HTSTR component is coupled. If HCOMON is a 1 D fluid component, only HCELIO is used; it refers to the axial cell number in the fluid component. If HCOMON refers to a 3D vessel, HCELIO refers to the radial cell number, HCELJO refers to the theta cell number and HCELKO refers to the axial cell number.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON = 10 (Card Set 12) for this axial level.} \\
\hline 34 & NUMBCO1 & 1 & NUMBCO1: Signal variable or control block id for the outer surface heat flux BC for this axial level. \\
\hline \multicolumn{4}{|r|}{Note: Input next card set only if IDBCON = 11 (Card Set 12).} \\
\hline 35 & NUMBCO1 & 1 & Number of the general table for this surface boundary condition. IDBCON \(=11\) implies the general table will be for a surface wall temperature. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline
\end{tabular}
Note: Input next Card only if IDBCON = 12 (Card Set 12) for this axial level.
\begin{tabular}{|l|l|l|l|}
\hline 36 & \begin{tabular}{l}
NUMBCO1, \\
HCOMON, \\
HCELIO, \\
HCELJO, \\
HCELKO
\end{tabular} & \begin{tabular}{l}
NUMBCO1: General table number for the outer \\
surface HTC BC for this axial level. \\
HCOMON: Component number of the hydraulic \\
cell to which the axial level of the HTSTR \\
component is coupled. \\
HCELIO,HCEJO,HCELKO: i-,j-,k-cell number of \\
the fluid cell of component HCOMON to which \\
axial level of the HTSTR component is coupled. If \\
HCOMON is a 1D fluid component, only HCELIO \\
is used; it refers to the axial cell number in the fluid \\
component. If HCOMON refers to a 3D vessel, \\
HCELIO refers to the radial cell number, HCELJO \\
refers to the theta cell number and HCELKO refers \\
to the axial cell number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Additional Array Data}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MHTLI \(=0\), or \(\operatorname{IRFTR} \neq 0\) (Word 3 on Card Number 9), do not input array HTMLI.} \\
\hline 37 & HTMLI & NZHTSTR & Liquid-phase wall heat-transfer multiplier factor for the inner surface \((-)[0.9 \leq \mathrm{HTMLI} \leq 1.1]\). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MHTLO \(=0\), or \(\operatorname{IRFTR} \neq 0\) (Word 3 on Card Number 9), do not input array HTMLO.} \\
\hline 38 & HTMLO & NZHTSTR & Liquid-phase wall heat-transfer multiplier factor for the outer surface \((-)[0.9 \leq\) HTMLO \(\leq 1]\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MHTVI \(=0\), or \(\operatorname{IRFTR} \neq 0\) (Word 3 on Card Number 9), do not input array HTMVI.} \\
\hline 39 & HTMVI & NZHTSTR & Gas-phase wall heat-transfer multiplier factor for the inner surface \((-)[0.9 \leq \mathrm{HTMVI} \leq 1.1]\). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MHTVO \(=0\), or IRFTR \(\neq 0\) (Word 3 on Card Number 9), do not input array HTMVO.} \\
\hline 40 & HTMVO & NZHTSTR & Gas-phase wall heat-transfer multiplier factor for the outer surface \((-)[0.9 \leq\) HTMVO \(\leq 1.1]\). \\
\hline 41 & DHTSTRZ & NZHTSTR & Axial length of the heat structure cells (\(\mathrm{m}, \mathrm{ft}\)). \\
\hline 42 & RDX & 1 & Number of actual HTSTR elements in the heat structure. This is a real-valued number, not an integer. A value with a fractional part models with the fractional part a HTSTR element that is partly within the mesh cell. \\
\hline 43 & RADRD & NODES & HTSTR radii (HSCYL=1, Word 3 on Card Number 2) or thickness (HSCYL=0) (m, ft) from the inside surface at no power cold conditions. \\
\hline \multicolumn{4}{|r|}{Note: If ITTC=0 (Word 2 on Card Number 2), do not input this Card Set.} \\
\hline 44 & TC & 6 & \begin{tabular}{l}
The following six thermocouple parameters are input as array elements. \\
ANTC = Number of thermocouples per HTSTR element; \\
DIA \(=\) Diameter of the thermocouple (\(\mathrm{m}, \mathrm{ft}\)); \\
AW \(=\) Perimeter of the HTSTR-element surface to thermocouple weld (\(\mathrm{m}, \mathrm{ft}\)); \\
ATW \(=\) Thickness of the HTSTR element at thermocouple weld (\(\mathrm{m}, \mathrm{ft}\)); \\
CKW \(=\) The HTSTR element to thermocouple effective thermal conductivity [W/(m K), Btu/(ft \(\left.{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\)]; \\
RADT \(=\) Distance from the HTSTR-element center to the center of the thermocouple (\(\mathrm{m}, \mathrm{ft}\)).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Adjacent MATRD elements cannot both have the value of 3 and \(\operatorname{MATRD}(1)\) and MATRD(NODES -1) cannot be 3 . Additional material properties can be input.} \\
\hline 45 & MATRD & NODES -1 & \begin{tabular}{l}
HTSTR-element material ID numbers [dimension is 1 if NODES \(=1\) (Word 2 on Card Number 9)]. \\
1 = mixed oxide; \\
2 = zircaloy; \\
3 = fuel-clad gap gases; \\
4 = boron-nitride insulation; \\
\(5=\) constantan/Nichrome heater wire; \\
6 = stainless steel, type 304; \\
7 = stainless steel, type 316; \\
8 = stainless steel, type 347; \\
9 = carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
11 = zircaloy dioxide; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 46 & NFAX & NZHTSTR & Number of permanent fine-mesh cells added in each coarse mesh cell of the heat structure, when the finemesh calculation is set ON. Odd numbers should be used. If even numbers are used, the code will change them to odd numbers (\(\mathrm{NFAX}=\mathrm{NFAX}+1\)). \\
\hline \multicolumn{4}{|r|}{Note: Input next Card Set (Temperature Array) for the average power rod and each of the supplemental rods NHOT (Word 1 on Card Number 9) HTSTR elements.} \\
\hline 47 & RFTN & NODES x NZHTSTR & HTSTR (radial by axial if HSCYL=1, Word 3 on Card Number 2, and thickness by axial if HSCYL=0) element temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). If fine mesh option is used, element temperatures at the heat structure ends must be added. In this case, the dimension of RFTN is NODES \(x\) (NZHTSTR+2). \\
\hline \multicolumn{4}{|r|}{Note: Omit the remaining 8 Cards if NOFUELROD (Word 1 on Card Number 3) \(=1\)} \\
\hline 48 & FPUO2 & 1 & Fraction \((-)\) of plutonium dioxide \(\left(\mathrm{PuO}_{2}\right)\) in mixedoxide fuel. \\
\hline 49 & FTD & 1 & Fraction (-) of theoretical fuel density. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 50 & GMIX & 7 & \begin{tabular}{l}
Mole fraction (-) of gap-gas constituents. GMIX is not used if NFCI \(=0\) (Word 2 on Card Number 4) but must be input. Enter data for 1 cell for each gas in the order indicated below. These values will be applied to every cell. \\
1. helium; \\
2. argon; \\
3. xenon; \\
4. krypton; \\
5. hydrogen; \\
6. air/nitrogen; \\
7. water vapor.
\end{tabular} \\
\hline 51 & GMLES & 1 & Gram moles of gap gas (g-moles) for HTSTR element. GMLES is not used, but must be input. \\
\hline 52 & PGAPT & 1 & Average gap-gas pressure (\(\mathrm{Pa}, \mathrm{psia}\)). PGAPT is not used if NFCI \(=0\) (Word 2 on Card Number 4), but must be input. \\
\hline 53 & PLVOL & 1 & Plenum volume (\(\mathrm{m}^{3}, \mathrm{ft}^{3}\)) in the HTSTR element above the pellet stack. PLVOL is not used, but must be input. \\
\hline 54 & PSLEN & 1 & Pellet-stack length (\(\mathrm{m}, \mathrm{ft}\)). PSLEN is not used, but must be input. \\
\hline 55 & CLENN & 1 & Clad total length (\(\mathrm{m}, \mathrm{ft}\)). CLENN is not used, but must be input. \\
\hline
\end{tabular}

Note: Input this Card Set (Burnup Arrays) for the average rod and each of the NHOT (Word 1 on Card Number 9) supplemental elements of the HTSTR component.
\begin{tabular}{|c|l|l|l|}
\hline \(\mathbf{5 6}\) & BURN & NZHTSTR & \begin{tabular}{l}
HTSTR element axial-location fuel burnup (MWD/ \\
MTU).
\end{tabular} \\
\hline
\end{tabular}

\section*{Sample Input using HTSTR, POWER, and RADENC}

* dx * f 9.251 e
* vol * f 0.5168 e
* fa * f 0.055863 e
* fric * r02 0.0 0.35 e
* grav * f 0.0 e
* hd * f 0.266695 e
* nff * f
* alp * f 1.0 e
* vl * f 1.0 e
* vv * f 1.0 e
* tl * f 613.0 e
* tv * f 613.0 e
* p * f 14.5e6e
* pa * f 0.0 e
******* type
\(\begin{array}{ll}* * * * * * * & \text { type } \\ \text { break } & \\ \text { * } & \text { jun1 } \\ \text { * } & 777\end{array} \quad\) ib
*
id
888
isat
0
alpin
1.
rbmx
\(0.0000 \mathrm{e}+00\)
\begin{tabular}{rr}
ctitle \\
bottom \\
ioff & \\
0 & \\
tin & pin \\
613. & \(14.50 \mathrm{e}+06\) \\
poff & belv \\
\(0.0000 \mathrm{e}+00\) & 0.
\end{tabular}

\section*{REPEAT-HTSTR Component Data}

In order to repeat a heat structure component, the first number input for the second card must be negative.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (HTSTR left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq \mathrm{NUM} \leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format I14) NUMORG
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline NUMORG & \begin{tabular}{l}
NUMORG must be negative. Absolute value of numOrg is the ID number of \\
the original HS whose data is to be repeated.
\end{tabular} \\
\hline
\end{tabular}

\section*{HTSTR Array Cards}

Note: Use LOAD format. Each array has its element values defined by a Card Set of one or more cards.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 3 & IDBCIN & NZHTSTR & \begin{tabular}{l}
Inner surface boundary condition for each axial level in the heat structure. \\
\(0=\) Constant heat flux (positive direction is from solid to fluid) \\
\(1=\) Constant heat transfer coefficient, and constant sink temperature \\
\(2=\) Heat structure is coupled to the hydro component \\
3 = Heat flux is specified by heat flux vs. independent variable table (positive direction is from solid to fluid) \\
4 = Heat transfer coefficient is specified by table of heat transfer coefficient vs. independent variable; sink temperature is specified by sink temperature versus independent variable table. \\
\(5=\) Constant fixed surface temperature. \\
\(6=\) Constant fixed heat transfer coefficient, with fluid/sink temperature determined by the connecting Hydro component. \\
7 = Surface temperature is determined by a signal variable or control block. \\
\(8=\) Heat transfer coefficient is determined by a signal variable or control block. \\
\(9=\) Sink temperature is determined by a signal variable or control block. \\
\(10=\) Surface heat flux is determined by a signal variable or control block. (Positive direction is from solid to fluid). \\
11 = Surface temperature is determined by a general table. \\
12 = Surface HTC is determined by a general table.
\end{tabular} \\
\hline 4 & IDBCON & NZHTSTR & \begin{tabular}{l}
Outer surface boundary condition for each axial level in the heat structure. \\
See above for input options.
\end{tabular} \\
\hline
\end{tabular}

\section*{Inner Surface Boundary Condition}

Note: Include one of inside surface Card Sets for each of the NZHTSTR axial levels of HTSTR.
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & \multicolumn{2}{|c|}{ Dimension }
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: \(\quad\) Input next card set only if IDBCIN \(=4\) (Card Set 3).} \\
\hline 9 & NUMBCI1, NUMBCI2 & 2 & \begin{tabular}{l}
NUMBCI1 = general table number for the HTC BC for this inner surface at this axial level. \\
NUMBCI2 \(=\) general table number for the sink temperature BC for this inner surface at this axial level.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCIN = 5 (Card Set 3) for this axial level.} \\
\hline 10 & TSURFI & 1 & Inner surface temperature BC for this axial level. \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCIN \(=6(\) Card Set 3\()\) for this axial level.} \\
\hline 11 & HTCLIQI, hTCVAPI, HCOMIN, HCELII, HCELJI, HCELKI & 6 & \begin{tabular}{l}
HTCLIQI: Inside surface HTC for the liquid phase. \\
HTCVAPI: Inside surface HTC for the vapor phase. \\
HCOMIN: Component number of the hydraulic cell to which the axial level of the HTSTR component is coupled. \\
HCELII,HCEJI,HCELKI: i-,j-,k-cell number of the fluid cell of component HCOMIN to which axial level of the HTSTR component is coupled. If HCOMIN is a 1D fluid component, only HCELII is used; it refers to the axial cell number in the fluid component. If NHCOMIN refers to a 3D vessel, HCELII refers to the radial cell number, HCELJI refers to the theta cell number, and HCELKI refers to the axial cell number. \\
Note: Use s; input no more than 5 numbers per card.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCIN \(=7\) (Card Set 3) for this axial level.} \\
\hline 12 & NUMBCI1 & 1 & Signal variable or control block id for the inner surface temperature BC for this axial level. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline
\end{tabular}
Note: Input next Card only if IDBCIN \(=8\), or 9 (Card Set 3) for this axial level.
\begin{tabular}{|c|l|l|l|}
\hline 13 & \begin{tabular}{l}
NUMBCI1, \\
HCOMIN, \\
HCELLI, \\
HCELJI, \\
HCELKI
\end{tabular} & & \begin{tabular}{l}
NUMBCI1: Signal variable or control block id for \\
the inner surface heat transfer coefficient BC for this \\
axial level if IDBCIN = 8. \\
NUMBCI1: Signal variable or control block id for \\
the inner surface sink temperature BC for this axial \\
level if IDBCIN = 9. \\
HCOMIN: Component number of the hydraulic cell \\
to which the axial level of the HTSTR component is \\
coupled. \\
HCELII,HCEJI,HCELKI: i-,j-,k-cell number of the \\
fluid cell of component HCOMIN to which axial \\
level of the HTSTR component is coupled. If \\
HCOMIN is a 1D fluid component, only HCELII is \\
used; it refers to the axial cell number in the fluid \\
component. If HCOMIN refers to a 3D vessel, \\
HCELII refers to the radial cell number, HCELJI \\
refers to the theta cell number and HCELKI refers to \\
the axial cell number.
\end{tabular} \\
\hline Note: Input next Card only if IDBCIN = 10 (Card Set 3) for this axial level.
\end{tabular}

Note: \(\quad\) Input next card set only if IDBCIN = 11 (Card Set 3).
\begin{tabular}{|c|l|l|l|}
\hline \(\mathbf{1 5}\) & NUMBCI1 & 1 & \begin{tabular}{l}
Number of the general table for this surface \\
boundary condition. IDBCIN = 3 implies the \\
general table will be for a surface heat flux. \\
IDBCIN = 11 implies the general table will be for a \\
surface wall temperature.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{3}{|c|}{ Note: } & Input next Card only if IDBCIN = 12 (Card Set 3) for this axial level. \\
\hline \(\mathbf{1 6}\) & \begin{tabular}{l}
NUMBCI1, \\
HCOMIN, \\
HCELII, \\
HCELJI, \\
HCELK1
\end{tabular} & 5 & \begin{tabular}{l}
NUMBCII: General table number for the inner \\
surface HTC BC for this axial level.
\end{tabular} \\
\begin{tabular}{l}
HCOMIN: Component number of the hydraulic cell \\
to which the axial level of the HTSTR component is \\
coupled.
\end{tabular} \\
\begin{tabular}{l}
HCELII,HCEJI,HCELKI: i-,j-,k-cell number of the \\
fluid cell of component HCOMIN to which axial \\
level of the HTSTR component is coupled. If \\
HCOMIN is a 1D fluid component, only HCELII is \\
used; it refers to the axial cell number in the fluid \\
component. If HCOMIN refers to a 3D vessel, \\
HCELII refers to the radial cell number, HCELJI \\
refers to the theta cell number and HCELKI refers to \\
the axial cell number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Outer Surface Boundary Condition}

Note: Include one of the outside surface Card Sets for each of the NZHTSTR axial levels of HTSTR.
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & \multicolumn{1}{c|}{ Variable } & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \multicolumn{4}{|c|}{ Note: Input next Card only if IDBCON = 0 (Card Set 4) for this axial level. } \\
\hline \(\mathbf{1 7}\) & QFLXBCO & 1 & \begin{tabular}{l}
Outer surface heat flux \(\left[\mathrm{W} / \mathrm{m}^{2},(\mathrm{Btu} / \mathrm{hr}) / \mathrm{ft}^{2}\right]\) for axial \\
level.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Note: Input next Card only if IDBCON = 1 (Card Set 4) for this axial level. } \\
\hline \(\mathbf{1 8}\) & \begin{tabular}{l}
HTCLIQO, \\
TFLUIDO
\end{tabular} & 2 & \begin{tabular}{l}
Outer surface heat transfer coefficient \(\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)\right.\), \\
Btu/(ft \({ }^{2} \mathrm{~F}\) hr) \(]\) and sink temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) for \\
axial level.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON = 2 (Card Set 4) for this axial level.} \\
\hline 19 & \begin{tabular}{l}
HCOMON, \\
HCELIO, \\
HCELJO, \\
HCELKO
\end{tabular} & 4 & \begin{tabular}{l}
HCOMON: Component number of the hydraulic cell to which the axial level of the HTSTR component is coupled. \\
HCELIO,HCEJO,HCELKO: i-,j-,k-cell number of the fluid cell of component HCOMON to which axial level of the HTSTR component is coupled. If HCOMON is a 1D fluid component, only HCELIO is used; it refers to the axial cell number in the fluid component. If NHCOMON refers to a 3D vessel, HCELIO refers to the radial cell number, HCELJO refers to the theta cell number, and HCELKO refers to the axial cell number.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next card set only if IDBCON = 3 (Card Set 4).} \\
\hline 20 & NUMBCI1 & 1 & Number of the general table for this surface boundary condition. IDBCON \(=3\) implies the general table will be for a surface heat flux. IDBCON \(=11\) implies the general table will be for a surface wall temperature. \\
\hline \multicolumn{4}{|r|}{Note: Input next card set only if IDBCON = 4 (Card Set 4).} \\
\hline 21 & \begin{tabular}{l}
NUMBCO1, \\
NUMBCO2
\end{tabular} & 2 & \begin{tabular}{l}
NUMBCO1 = general table number for the HTC BC for this outer surface at this axial level. \\
NUMBCO2 \(=\) general table number for the sink temperature BC for this outer surface at this axial level.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON = 5 (Card Set 4) for this axial level.} \\
\hline 22 & TSURFO & 1 & Outer surface temperature BC for this axial level. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ Note: Input next Card only if IDBCON \(=6\) (Card Set 4) for this axial level. } \\
\hline \(\mathbf{2 3}\) & \(\begin{array}{l}\text { HTCLIQO, } \\
\text { HTCVAPO, } \\
\text { HCOMON, } \\
\text { HCELIO, } \\
\text { HCELJO, } \\
\text { HCELKO }\end{array}\) & \(\begin{array}{l}\text { HTCLIQO: Outside surface HTC for the liquid } \\
\text { phase. }\end{array}\) \\
HTCVAPO: Outside surface HTC for the vapor \\
phase. \\
HCOMON: Component number of the hydraulic \\
cell to which the axial level of the HTSTR \\
component is coupled. \\
HCELIO,HCEJO,HCELKO: i-,j-,k-cell number of \\
the fluid cell of component HCOMON to which \\
axial level of the HTSTR component is coupled. If \\
HCOMON is a 1D fluid component, only HCELIO \\
is used; it refers to the axial cell number in the fluid \\
component. If NHCOMON refers to a 3D vessel, \\
HCELIO refers to the radial cell number, HCELJO \\
refers to the theta cell number, and HCELKO refers \\
to the axial cell number.
\end{tabular}\(\}\)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON \(=8\), or 9 (Card Set 4) for this axial level.} \\
\hline 25 & NUMBCO1, HCOMON, HCELIO, HCELJO, HCELKO & 5 & \begin{tabular}{l}
NUMBCO1: Signal variable or control block id for the outer surface heat transfer coefficient BC for this axial level if IDBCON \(=8\). \\
NUMBCO1: Signal variable or control block id for the outer surface sink temperature BC for this axial level if \(\operatorname{IDBCON}=9\). \\
HCOMON: Component number of the hydraulic cell to which the axial level of the HTSTR component is coupled. \\
HCELIO,HCEJO,HCELKO: \(\mathrm{i}-\mathrm{j}\) - -k -cell number of the fluid cell of component HCOMON to which axial level of the HTSTR component is coupled. If HCOMON is a 1 D fluid component, only HCELIO is used; it refers to the axial cell number in the fluid component. If HCOMON refers to a 3D vessel, HCELIO refers to the radial cell number, HCELJO refers to the theta cell number and HCELKO refers to the axial cell number.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON = 10 (Card Set 4) for this axial level.} \\
\hline 26 & NUMBCO1 & 1 & NUMBCO1: Signal variable or control block id for the outer surface heat flux BC for this axial level. \\
\hline \multicolumn{4}{|r|}{Note: Input next card set only if IDBCON = 11 (Card Set 4).} \\
\hline 27 & NUMBCO1 & 1 & Number of the general table for this surface boundary condition. IDBCON \(=11\) implies the general table will be for a surface wall temperature. \\
\hline \multicolumn{4}{|r|}{Note: Input next Card only if IDBCON = 12 (Card Set 4) for this axial level.} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \(\begin{array}{c}\text { Card Set } \\
\text { Number }\end{array}\) & Variable & Dimension & \multicolumn{1}{c|}{ Description }
\end{tabular} \left\lvert\, \(\left.\begin{array}{c|ll}\hline \mathbf{2 8} & \begin{array}{l}\text { NUMBCO1, } \\
\text { HCOMON, } \\
\text { HCELIO, } \\
\text { HCELJO, } \\
\text { HCELKO }\end{array} & \begin{array}{l}\text { NUMBCO1: General table number for the outer } \\
\text { surface HTC BC for this axial level. }\end{array} \\
\text { HCOMON: Component number of the hydraulic } \\
\text { cell to which the axial level of the HTSTR } \\
\text { component is coupled. }\end{array}\right.\right\}\)\begin{tabular}{l}
HCELIO,HCEJO,HCELKO: i-,j-,k-cell number of \\
the fluid cell of component HCOMON to which \\
axial level of the HTSTR component is coupled. If \\
HCOMON is a 1D fluid component, only HCELIO \\
is used; it refers to the axial cell number in the fluid \\
component. If HCOMON refers to a 3D vessel, \\
HCELIO refers to the radial cell number, HCELJO \\
refers to the theta cell number and HCELKO refers \\
to the axial cell number.
\end{tabular}

\section*{JETP Component Data}

When this component is used, more than one cell should be used to model the jet pump throat region. If only one cell is used, the code may significantly under-estimate the total core flow.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (JETP left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq \mathrm{NUM} \leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c}
Note: \\
Variable) is more than one. \\
variable
\end{tabular}} \\
\hline EOS & EOS identifier for this component (i.e. "h2o" or "r5h2o", etc.). \\
\hline PHASECHANGE & \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
this component. Input FALSE or false, if phase change is not allowed \\
for this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14,2E14.4) JCELL, NODES, ICHF, COST, EPSW
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline JCELL & Main-tube cell number that has the side tube connected to it. \\
\hline NODES & \begin{tabular}{l}
Number of radial heat-transfer nodes in the wall. A value of zero specifies no wall \\
heat transfer.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14,2E14.4) JCELL, NODES, ICHF, COST, EPSW (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICHF & \begin{tabular}{c}
CHF-calculation option. \\
\(0=\) convection heat transfer only, no boiling heat transfer (i.e. no wall \\
nucleation is allowed although phase change can still occur); \\
\(1=\) CHF from AECL-IPPE CHF Table, no critical quality calculated. \\
\(2=\) CHF from AECL-IPPE CHF Table, critical quality from Biasi \\
correlation.
\end{tabular} \\
\(3=\)\begin{tabular}{c}
CHF from AECL-IPPE CHF Table, critical quality from CISE-GE \\
correlation.
\end{tabular} \\
\hline COST & \begin{tabular}{l}
Cosine of the angle from the low-numbered cell portion of the main tube to the \\
side tube.
\end{tabular} \\
\hline EPSW & Wall surface roughness (m, ft). \\
\hline
\end{tabular}

Card Number 4. (Format 5I14) ICONC1, NCELL1, JUN1, JUN2, IPOW1
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICONC1 & \begin{tabular}{l}
Solute in the main-tube coolant option. Requires ISOLUT = 1 (Word 3 on \\
Main-Data Card 9) when ICONC1 \(>0\). \\
\(0=\) no; \\
\(1=\) dissolved solute only; \\
\(2=\) both dissolved and plated-out solute.
\end{tabular} \\
\hline NCELL1 & Number of fluid cells in the main tube. \\
\hline JUN1 & Junction number for the junction interface adjacent to cell 1. \\
\hline JUN2 & Junction number for the junction interface adjacent to cell NCELL1. \\
\hline IPOW1 & \begin{tabular}{l}
Power-to-the-fluid option in the main tube. \\
\(0=\) no; \\
\(1=\) yes.
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 5I14) IPWTR1, IPWSV1, NPWTB1, NPWSV1, NPWRF1
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPOW1 = 0 (Word 5 on Card Number 4), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPWTR1 & \begin{tabular}{l}
Trip ID number that controls evaluation of the power-to-the-fluid table defined by \\
Card Set 50 (array POWTB1) for the main tube (|IPWTR1 \(\leq 9999\)). [Input \\
IPWTR1 = 0 if there is to be no trip control and the table is to be evaluated every \\
timestep during the transient calculation].
\end{tabular} \\
\hline IPWSV1 & \begin{tabular}{l}
The independent-variable ID number for the power-to-the-fluid table for the main \\
tube. IPWSV1 0 defines the ID number for a signal-variable parameter; \\
IPWSV1 < 0 defines the ID number for a control-block output parameter.
\end{tabular} \\
\hline NPWTB1 & \begin{tabular}{l}
The number of power-to-the-fluid table data pairs for the main tube (defined by \\
the absolute value of NPWTB1). NPWTB1 \(>0\) defines the table independent- \\
variable form to be the IPWSV1 parameter; NPWTB1 < 0 defines the table \\
independent-variable form to be the sum of the change in the IPWSV1 parameter \\
each last timestep times the trip set-status value ISET during that timestep (when \\
the power-to-the-fluid table is trip controlled); NPWTB1 = 0 defines the power to \\
the fluid to be the IPWSV1 parameter.
\end{tabular} \\
\hline NPWSV1 & \begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the main- \\
tube power-to-the-fluid table independent variable. NPWSV1 0 defines the ID \\
number for a signal-variable parameter; NPWSV1 <0 defines the ID number for a \\
control-block output parameter; NPWSV1 = 0 (when NPWRF1 \(\neq 0\)) defines the \\
independent variable to be the difference between the trip signal and the setpoint
\end{tabular} \\
value that turns the trip OFF when the power-to-the-fluid table is trip controlled.
\end{tabular}\(|\)

Card Number 6. (Format 5I14) IQPTR1, IQPSV1, NQPTB1, NQPSV1, NQPRF1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES \(>0\) and \(\operatorname{QPPP}(\) Card Set 41) \(>0\), this card is read. However, if \(\mathrm{QPPP}=0\) this card is read but not used.} \\
\hline Variable & Description \\
\hline IQPTR1 & Trip ID number that controls evaluation of the power-to-the-wall table defined by Card Set 52 (array QP3TB1) for the main tube (\(|\mathrm{IQPTR} 1| \leq 9999\)). [Input IQPTR1 \(=0\) if there is to be no trip control and the table is to be evaluated every timestep during the transient calculation]. \\
\hline IQPSV1 & The independent-variable ID number for the main-tube power-to-the-wall table. IQPSV1 \(>0\) defines the ID number for a signal-variable parameter; IQPSV1 \(<0\) defines the ID number for a control-block output parameter. \\
\hline NQPTB1 & The number of power-to-the-wall table data pairs for the main tube (defined by the absolute value of NQPTB1). NQPTB1 \(>0\) defines the table independentvariable form to be the IQPSV1 parameter; NQPTB1 \(<0\) defines the table independent-variable form to be the sum of the change in the IQPSV1 parameter over each timestep times the trip set-status value ISET during each timestep (when the power-to-the-wall table is trip controlled); NQPTB1 \(=0\) defines the power to the wall to be the IQPSV1 parameter. \\
\hline NQPSV1 & The independent-variable ID number for the rate factor that is applied to the maintube power-to-the-wall table independent variable. NQPSV1 \(>0\) defines the ID number for a signal-variable parameter; NQPSV1 \(<0\) defines the ID number for a control-block output parameter; NQPSV1 \(=0(\) when NQPRF1 \(\neq 0)\) defines the independent variable to be the difference between the trip signal and the setpoint value that turns the trip OFF when the power-to-the-wall table is trip controlled. \\
\hline NQPRF1 & The number of rate-factor table data pairs (defined by the absolute value of NQPRF1). The rate factor is applied as a factor to the main-tube power-to-the-wall table independent variable when the rate factor is defined. No rate factor is defined when NQPSV1 and NQPRF1 are both zero. NQPRF1 \(>0\) defines the rate-factor table independent variable to be the NQPSV1 parameter; NQPRF1 \(<0\) defines it to be the sum of the change in the NQPSV1 parameter over each timestep times the trip set-status value ISET during that timestep (when the main-tube power-to-the-wall table is trip controlled); NQPRF1 \(=0\) defines the rate factor to be the NQPSV1 parameter. \\
\hline
\end{tabular}

Card Number 7. (Format 5E14.4) RADIN1, TH1, HOUTL1, HOUTV1, TOUTL1
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility \\
in calculating possible heat losses from the outside of the main-tube wall. \\
Typically, such heat losses are not important for fast transients or large-break \\
loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set equal \\
to zero. When heat losses are significant, they often can be approximated by a \\
constant HTC temperature for the liquid and gas fluid phases outside the pipe \\
wall.
\end{tabular} \\
\hline Variable & \\
\hline \hline RADIN1 & Inner radius (m, ft) of the main-tube wall. \\
\hline TH1 & Wall thickness (m, ft) of the main tube. \\
\hline HOUTL1 & \begin{tabular}{l}
Heat-transfer coefficient \((\mathrm{HTC})\) [W/(m² K\(), ~ B t u /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right.\) hr)] between outer \\
boundary of the main-tube wall and the liquid outside the main-tube wall.
\end{tabular} \\
\hline HOUTV1 & \begin{tabular}{l}
HTC [W/(m² K\(\left.), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]\) between the outer boundary of the main-tube \\
wall and the gas outside the main-tube wall.
\end{tabular} \\
\hline TOUTL1 & \begin{tabular}{l}
Liquid temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) outside the main-tube wall. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format 5E14.4) TOUTV1, PWIN1, PWOFF1, RPWMX1, PWSCL1
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline TOUTV1 & Gas temperature (K, \({ }^{\circ}\) F) outside the main-tube wall. \\
\hline PWIN1 & \begin{tabular}{l}
Initial total power (W, Btu/hr) deposited in (to) the main-tube fluid [not used \\
when IPOW1 = (Word 5 on Card Number 4)]. The power is distributed \\
uniformly along the JETP main-tube length.
\end{tabular} \\
\hline PWOFF1 & \begin{tabular}{l}
Total power (W, Btu/hr) to the main-tube fluid when the controlling trip is OFF \\
after being ON [not used if IPOW1 \(=0\) (Word 5 on Card Number 4) or \\
IPWTR1 = 0 (Word 1 on Card Number 5)]. If PWOFF1 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \\
\(10^{19}\) Btu/hr), the power to the fluid is held constant at the last table-evaluated \\
power when the trip was ON.
\end{tabular} \\
\hline RPWMX1 & \begin{tabular}{l}
The maximum rate of change of the main-tube power to the fluid [W/s, (Btu/hr)/ \\
s] [RPWMX1 \(\geq 0.0 \mathrm{~W} / \mathrm{s}\{0.0(\mathrm{Btu} / \mathrm{hr}) / \mathrm{s}\}]\) [not used if IPOW1 \(=0\) (Word 5 on \\
Card Number 4)].
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format 5E14.4) TOUTV1, PWIN1, PWOFF1, RPWMX1, PWSCL1 (Continued)
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline PWSCL1 & \begin{tabular}{l}
Scale factor (-) for the power-to-the-fluid table. The dependent variable in the \\
table, defined by Card Set 50 (array POWTB1), is multiplied by PWSCL1 to \\
obtain absolute power (W, Btu/hr) deposited in the fluid [not used if IPOW1 \(=0\) \\
(Word 5 on Card Number 4) or NPWTB1 = 0 (Word 3 on Card Number 5)].
\end{tabular} \\
\hline
\end{tabular}

Card Number 9. (Format 4E14.4, I14) QPIN1, QPOFF1, RQPMX1, QPSCL1, NHCOM
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input this card.} \\
\hline Variable & Description \\
\hline QPIN1 & Initial power (W, Btu/hr) deposited in (to) the main-tube wall and distributed according to the QPPP array. If QPIN1 \(>0.0\), it is the total power to the entire wall. When QPIN1 \(<0.0\), the initial power to the wall in each cell is |QPIN1|, and the negative sign indicates the power to the wall is to be a cell-dependent array of NCELL1 (Word 2 on Card Number 4) power values. Each data pair of the power-to-the-wall table [for QPIN1 <0.0] has \(1+\) NCELL1 values (an independent-variable value and NCELL1 power values for cells 1 through NCELL1). When the power-to-the-wall table is not being evaluated, the same power value of \(\mid\) QPIN1 \(\mid\) or QPOFF 1 [if QPOFF1 \(>-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} /\right.\) \(\mathrm{hr})\)] is applied at each of the NCELL1 cells. \\
\hline QPOFF1 & Power (W, Btu/hr) to the main-tube wall when the controlling trip is OFF after being ON [not used if IQPTR1 \(=0\) (Word 1 on Card Number 6); use the last table-evaluated power when the trip was ON if QPOFF1 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \(\left.\left.10^{19} \mathrm{Btu} / \mathrm{hr}\right)\right]\). \\
\hline RQPMX1 & Maximum rate of change of the power to the wall for the main tube [W/s, (Btu/ \(\mathrm{hr}) / \mathrm{s}][\mathrm{RQPMX1} \geq 0.0]\). \\
\hline QPSCL1 & Scale factor (-) for the power-to-the-wall table for the main tube. The dependent variable in the table defined by Card Set 52 (array QP3TB1) is multiplied by QPSCL1 to obtain the absolute power (W, Btu/hr) to the wall. \\
\hline NHCOM & Component number receiving outside wall energy. \\
\hline
\end{tabular}

Card Number 10. (Format 4I14) ICONC2, NCELL2, JUN3, IPOW2
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICONC2 & \begin{tabular}{l}
Solute in the side-tube coolant option. Requires ISOLUT = 1 (Word 3 on Main- \\
Data Card 9) when ICONC2 \(>0\). \\
\(0=\) no; \\
\(1=\) dissolved solute only; \\
\(2=\) both dissolved and plated-out solute.
\end{tabular} \\
\hline NCELL2 & Number of fluid cells in the side tube. \\
\hline JUN3 & \begin{tabular}{l}
Junction number at the external-junction end of the side tube adjacent to cell \\
NCELL2.
\end{tabular} \\
\hline IPOW2 & \begin{tabular}{l}
Power-to-the-fluid option in the side tube. \\
\(0=\) no; \\
\(1=\) yes.
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) IPWTR2, IPWSV2, NPWTB2, NPWSV2, NPWRF2
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPOW2 \(=0\) (Word 4 on Card Number 10), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPWTR2 & \begin{tabular}{l}
Trip ID number that controls evaluation of the power-to-the-fluid table defined by \\
Card Set 83 (array POWTB2) for the side tube (|IPWTR2| \(\leq 9999\)). [input \\
IPWTR2 00 if there is to be no trip control and the table is to be evaluated every \\
timestep of the transient calculation].
\end{tabular} \\
\hline IPWSV2 & \begin{tabular}{l}
The independent-variable ID number of the power-to-the-fluid table for the side \\
tube. IPWSV2 > 0 defines the ID number for a signal-variable parameter; \\
IPWSV2 < 0 defines the ID number for a control-block output parameter.
\end{tabular} \\
\hline NPWTB2 & \begin{tabular}{l}
The number of power-to-the-fluid table data pairs for the side tube (defined by the \\
absolute value of NPWTB2). NPWTB2 > 0 defines the table independent-variable \\
form to be the IPWSV2 parameter; NPWTB2 < 0 defines the table's independent- \\
variable form to be the sum of the change in the IPWSV2 para-meter over the last \\
timestep times the trip set-status value ISET during that timestep (when the side- \\
tube power-to-the-fluid table is trip controlled); NPWTB2 = 0 defines the power \\
to the fluid to be the IPWSV2 parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) IPWTR2, IPWSV2, NPWTB2, NPWSV2, NPWRF2 (Continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If IPOW2 \(=0\) (Word 4 on Card Number 10), do not input this card.} \\
\hline Variable & Description \\
\hline NPWSV2 & The independent-variable ID number for the rate factor that is applied to the sidetube power-to-the-fluid table independent variable. NPWSV2 \(>0\) defines the ID number for a signal-variable parameter; NPWSV2 \(<0\) defines the ID number for a control-block output parameter; NPWSV2 \(=0\) (when NPWRF2 \(\neq 0\)) defines the independent variable to be the difference between the trip signal and the setpoint value that turns the trip OFF when the power-to-the-fluid table is trip controlled. \\
\hline NPWRF2 & The number of rate-factor table data pairs (defined by the absolute value of NPWRF2). The rate factor is applied as a factor to the side-tube power-to-thefluid table independent variable when the rate factor is defined. No rate factor is defined when NPWSV2 and NPWRF2 are both zero. NPWRF2 \(>0\) defines the rate-factor table independent variable to be the NPWSV2 parameter; NPWRF2 \(<\) 0 defines it to be the sum of the change in the NPWSV2 parameter over the last timestep times the trip set-status value ISET during that timestep (when the sidetube power-to-the-fluid table is trip controlled); NPWRF2 \(=0\) defines the rate factor to be the NPWSV2 parameter. \\
\hline
\end{tabular}

Card Number 12. (Format 5I14) IQPTR2, IQPSV2, NQPTB2, NQPSV2, NQPRF2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES \(>0\) and \(\operatorname{QPPP}(\) Card Set 74 \()>0\), this card is read. However, if QPPP \(=0\) this card is read but not used.} \\
\hline Variable & Description \\
\hline IQPTR2 & Trip ID number that controls evaluation of the power-to-the-wall table defined by Card Set 85 (array QP3TB2) for the side tube (\(\mid\) IQPTR2 \(\mid \leq 9999\)). (Input IQPTR2 \(=0\) if there is to be no trip control and the table is to be evaluated every timestep during the transient calculation). \\
\hline IQPSV2 & The independent-variable ID number for the side-tube power-to-the-wall table. IQPSV2 \(>0\) defines the ID number for a signal-variable parameter; IQPSV2 \(<0\) defines the ID number for a control-block output parameter. \\
\hline NQPTB2 & The number of power-to-the-wall table data pairs for the side tube (defined by the absolute value of NQPTB2). NQPTB2 \(>0\) defines the table independent-variable form to be the IQPSV2 parameter; NQPTB2 \(<0\) defines the table independentvariable form to be the sum of the change in the IQPSV2 parameter over each timestep times the trip set-status value ISET during that timestep (when the sidetube power-to-the-wall table is trip controlled); NQPTB2 \(=0\) defines the power to the wall to be the IQPSV2 parameter. \\
\hline
\end{tabular}

Card Number 12. (Format 5I14) IQPTR2, IQPSV2, NQPTB2, NQPSV2, NQPRF2 (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES \\
\(>0\) and QPPP (Card Set 74) \(>0\), this card is read. However, if QPPP \(=0\) this \\
card is read but not used.
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NQPSV2 & \begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the side- \\
tube power-to-the-wall table independent variable. NQPSV2 \(>0\) defines the ID \\
number for a signal-variable parameter; NQPSV2 \\
control-block output parameter; NQPSV2 \(=0\) (when NQPRF2 \(\neq 0\)) defines the \\
independent variable to be the difference between the trip signal and the setpoint \\
value that turns the trip OFF when the power-to-the-wall table is trip controlled.
\end{tabular} \\
\hline NQPRF2 & \begin{tabular}{l}
The number of rate-factor table data pairs (defined by the absolute value of \\
NQPRF2). The rate factor is applied as a factor to the side-tube power-to-the-wall \\
table independent variable when the rate factor is defined. No rate factor is \\
defined when NQPSV2 and NQPRF2 are both zero. NQPRF2 \(>0\) defines the rate- \\
factor table independent variable to be the NQPSV2 parameter; NQPRF2 < 0 \\
defines it to be the sum of the change in the NQPSV2 parameter over each \\
timestep times the trip set-status value ISET during that timestep (when the side- \\
tube power-to-the-wall table is trip controlled); NQPRF2 \(=0\) defines the rate \\
factor to be the NQPSSV2 parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 13. (Format 5E14.4) RADIN2, TH2, HOUTL2, HOUTV2, TOUTL2
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: }
\end{tabular} \(\left.\begin{array}{l}\text { The four parameters, HOUTL2, HOUTV2, TOUTL2, and TOUTV2, allow } \\
\text { flexibility in calculating possible heat losses from the outside of the side-tube } \\
\text { wall. Typically, such heat losses are not important for fast transients or large- } \\
\text { break loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set } \\
\text { equal to zero. When heat losses are significant, they often can be approximated } \\
\text { by a constant HTC temperature for the liquid and gas fluid phases outside the } \\
\text { pipe wall. }\end{array}\right]\)

Card Number 13. (Format 5E14.4) RADIN2, TH2, HOUTL2, HOUTV2, TOUTL2 (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: }
\end{tabular} \begin{tabular}{l}
The four parameters, HOUTL2, HOUTV2, TOUTL2, and TOUTV2, allow \\
flexibility in calculating possible heat losses from the outside of the side-tube \\
wall. Typically, such heat losses are not important for fast transients or large- \\
break loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set \\
equal to zero. When heat losses are significant, they often can be approximated \\
by a constant HTC temperature for the liquid and gas fluid phases outside the \\
pipe wall.
\end{tabular}

Card Number 14. (Format 5E14.4) TOUTV2, PWIN2, PWOFF2, RPWX2, PWSCL2
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline TOUTV2 & Gas temperature (K, \({ }^{\circ}\) F) outside the side-tube wall. \\
\hline PWIN2 & \begin{tabular}{l}
Initial total power (W, Btu/hr) deposited in (to) the side-tube fluid [not used \\
when IPOW2 00 (Word 4 on Card Number 10)]. The power is distributed \\
uniformly along the side-tube length.
\end{tabular} \\
\hline PWOFF2 & \begin{tabular}{l}
Total power (W, Btu/hr) to the side-tube fluid when the controlling trip is OFF \\
after being ON [not used when IPOW2 = (Word 4 on Card Number 10) or \\
IPWTR2 = 0 (Word 1 on Card Number 11)]. If PWOFF2 \(\leq-10^{19} \mathrm{~W} \mathrm{(}-3.41 \times\) \\
\\
\(10^{19} \mathrm{Btu} /\) /hr), the power to the fluid is held constant at the last table-evaluated \\
power when the trip was ON.
\end{tabular} \\
\hline RPWMX2 & \begin{tabular}{l}
Maximum rate of change of the side-tube power to the fluid [W/s, (Btu/hr)/s] \\
{\([\) RPWMX1 \(\geq 0.0] ~[n o t ~ u s e d ~ i f ~ I P O W 2 ~=~ 0 ~(W o r d ~ 4 ~ o n ~ C a r d ~ N u m b e r ~ 10)] . ~\)}
\end{tabular} \\
\hline PWSCL2 & \begin{tabular}{l}
Scale factor (-) for the power-to-the-fluid table. The dependent variable in the \\
table defined by Card Set 77 (array POWTB2) is multiplied by PWSCL2 to \\
obtain the absolute power (W, Btu/hr) to the fluid [not used if IPOW2=0 (Word 4 \\
on Card Number 10) or NPWTB2 = 0 (Word 3 on Card Number 11)].
\end{tabular} \\
\hline
\end{tabular}

Card Number 15. (Format 4E14.4) QPIN2, QPOFF2, RQPMX2, QPSCL2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card.} \\
\hline Variable & Description \\
\hline QPIN2 & Initial power (W, Btu/hr) deposited in (to) the side-tube wall and distributed according to the QPPP array. If QPIN2 \(>0.0\), it is the total power to the entire wall. When QPIN2 \(<0.0\), the initial power to the wall in each cell is |QPIN2|, and the negative sign indicates the power to the wall is to be a cell-dependent array of NCELL2 (Word 2 on Card Number 10) power values. Each data pair of the power-to-the-wall table [for QPIN2 \(<0.0\)] has \(1+\) NCELL2 values (an independent-variable value and NCELL2 power values for cells 1 through NCELL2). When the power-to-the-wall table is not being evaluated, the same power value of \(\mid\) QPIN2| or QPOFF2 [if QPOFF2 \(>-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} /\right.\) hr)] is applied at each of the NCELL2 cells. \\
\hline QPOFF2 & Power (W, Btu/hr) to the side-tube wall when the controlling trip is OFF after being ON [not used if IQPTR2 \(=0\) (Word 1 on Card Number 11); the last table-evaluated power when the trip was ON if QPOFF2 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \(\left.\left.10^{19} \mathrm{Btu} / \mathrm{hr}\right)\right]\). \\
\hline RQPMX2 & Maximum rate of change of the power to the wall for the side-tube [W/s, (Btu/ \(\mathrm{hr}) / \mathrm{s}][\mathrm{RQPMX} 2 \geq 0.0]\). \\
\hline QPSCL2 & Scale factor (-) for the power-to-the-wall table for the side-tube. The dependent variable in table defined by Card Set 85 (array QP3TB2) is multiplied by QPSCL2 to obtain the absolute power (W, Btu/hr) to the wall. \\
\hline
\end{tabular}

Card Number 16. (Format I14) IENTRN
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Note: If NAMELIST variable IOFFTK \(=0\), do not input this card. } \\
\hline Variable & Description \\
\hline \hline IENTRN & \begin{tabular}{c}
Offtake-model option. \\
\(0=\) off;
\end{tabular} \\
& \begin{tabular}{c}
\(1=\) on (side tube internal-junction mass flow determined using offtake \\
model).
\end{tabular} \\
\hline
\end{tabular}

Card Number 17. (Format I14) NJETP
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline NJETP & \begin{tabular}{l}
Number of actual jet pumps lumped together. The user inputs the geometry for a \\
single pump.
\end{tabular} \\
\hline
\end{tabular}

Card Number 18. (Format 4E14.4) EPSDFF, EPSDFR, EPSNZF, EPSNZR
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline EPSDFF & \begin{tabular}{l}
Relative form loss coefficient for diffuser forward flow. \\
(Default = 5.5.)
\end{tabular} \\
\hline EPSDFR & \begin{tabular}{l}
Relative form loss coefficient for diffuser reverse flow. \\
(Default = 0.38.)
\end{tabular} \\
\hline EPSNZF & \begin{tabular}{l}
Relative form loss coefficient for nozzle forward flow. \\
(Default = 5.5.)
\end{tabular} \\
\hline EPSNZR & \begin{tabular}{l}
Relative form loss coefficient for nozzle reverse flow. Note: The normal flow \\
direction in the nozzle is reverse. \\
(Default = 0.38.)
\end{tabular} \\
\hline
\end{tabular}

Card Number 19. (Format 2E14.4) FINLET, FOTLET
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline FINLET & Form loss for positive suction flow. (Default \(=0.04\).) \\
\hline FOTLET & Form loss for negative discharge flow. (Default \(=0.45\).) \\
\hline
\end{tabular}

\section*{JETP Array Cards}

Note: Input each of the following arrays using LOAD format.
All junction variables must match at component interfaces.
Model no flow-area change between cell JCELL and cells JCELL \(\pm 1\) and between the internal-junction interface and the side-tube first cell. A VOL/DX flow-area change between cell JCELL and cells JCELL \(\pm 1\) and their interface FA and between side-tube cell 1 and the internal-junction interface will not have any evaluated effect on flow from the current JCELL-interface momentum equations evaluated by TRACE.

\section*{Primary Side Array Cards}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{c|l|l|l|}
\hline \hline \(\mathbf{2 0}\) & DX & NCELL1 & Main-tube cell lengths (m, ft). \\
\hline \(\mathbf{2 1}\) & VOL & NCELL1 & Main-tube cell volumes \(\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\). \\
\hline \(\mathbf{2 2}\) & FA & NCELL1+1 & Main-tube cell-edge flow areas \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline \(\mathbf{2 3}\) & FRIC & NCELL1+1 & \begin{tabular}{l}
Main-tube additive loss coefficients \((-)\). \\
See NAMELIST variable IKFAC for optional K \\
factors input.
\end{tabular} \\
\hline \(\mathbf{2 4}\) & FRICR & NCELL1+1 & \begin{tabular}{l}
Main-tube additive loss coefficients \((-)\) in the reverse \\
flow direction. See NAMELIST variable IKFAC for \\
optional K factors input.
\end{tabular} \\
\hline \(\mathbf{2 5}\) & \begin{tabular}{l}
GRAV or \\
ELEV
\end{tabular} & \begin{tabular}{l}
NCELL1+1 \\
(NCELL1 \\
for ELEV)
\end{tabular} & \begin{tabular}{l}
Main-tube gravity or elevation terms [(- or m), (- or \\
ft \()]\). GRAV is the ratio of the elevation difference to \\
the DX flow length between the centers of cell i and \\
cell i-1 for interface i. A positive GRAV value \\
indicates increasing elevation with increasing cell \\
number. See NAMELIST variable IELV for optional \\
cell-centered elevation ELEV input.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \\
\hline \hline \(\mathbf{2 6}\) & HD & NCELL1+1 & \begin{tabular}{l}
Main-tube hydraulic diameters (m, ft). (See \\
NAMELST variable NDIAl for additional input of \\
heat-transfer diameters).
\end{tabular} \\
\hline \multicolumn{3}{|c|}{ Note: } & If NAMELIST variable NDIA1 1 2 do not input array HD-HT.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 32 & VL & NCELL1+1 & Main-tube initial liquid velocities (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)). \\
\hline 33 & VV & NCELL1+1 & Main-tube initial gas velocities (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)). \\
\hline 34 & TL & NCELL1 & Main-tube initial liquid temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 35 & TV & NCELL1 & Main-tube initial gas temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 36 & P & NCELL1 & Main-tube initial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline 37 & PA & NCELL1 & Main-tube initial noncondensable-gas partial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NOLT1D \(=1\) do not input array ILEV.} \\
\hline 38 & ILEV & NCELLS & Level tracking flags. ILEV \(=1\) indicates that the twophase level exists in the current cell. ILEV \(=0\) indicates that the two-phase level does not exist in the current cell. If ILEV \(=-1\), the level tracking calculation will be turned off for this cell. \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFL \(=0\), do not input array WFMFL.} \\
\hline 39 & WFMFL & NCELL1+1 & Main-tube wall-friction multiplier factor for the liquid phase \((0.9 \leq W F M F L \leq 1.1)\). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFV \(=0\), do not input array WFMFV} \\
\hline 40 & WFMFV & NCELL1+1 & Main-tube wall-friction multiplier factor for the gas phase (-) (\(0.9 \leq\) WFMFL \(\leq 1.1\)). \\
\hline \multicolumn{4}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input arrays QPPP, MATID, TW, IDROD, and NHCEL.} \\
\hline 41 & QPPP & \begin{tabular}{l}
NODES \(\times\) \\
NCELL1
\end{tabular} & A relative power shape (-) in the main-tube wall. Input values for cell 1 , node 1 through NODES; then cell 2 , node 1 through NODES; etc. If the array is filled with the same nonzero constant, a uniform volumetric heat source in the wall results. TRACE internally normalizes the power shape to have a volume-averaged value of unity \{each \(\operatorname{QPPP}(\mathrm{I})\) is normalized to have the value \(\operatorname{QPPP}(\mathrm{I}) \times\left[\Sigma_{\mathrm{K}}\right.\) \(\left.\operatorname{VOL}(\mathrm{K})] /\left\{\Sigma_{\mathrm{K}} \operatorname{QPPP}(\mathrm{K}) \times \operatorname{VOL}(\mathrm{K})\right]\right\}\). Filling the array with zeros results in no power being deposited in the wall regardless of the value of QPIN1, QPTB1, etc. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline 42 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=1\). \\
6 = stainless steel, type 304; \\
\(7=\) stainless steel, type 316; \\
8 = stainless steel, type 347; \\
9 = carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 43 & TW & \begin{tabular}{l}
NODES \(\times\) \\
NCELL1
\end{tabular} & Initial wall temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) in the main tube, which are input in the same order as QPPP. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM \(>0\) (Word 5 on Card Number 9) input IDROD.} \\
\hline 44 & IDROD & 1 & Vessel radial-theta cell number or input 0 when NHCOM is a 1 D component. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM \(>0\) (Word 5 on Card Number 9) input NHCEL.} \\
\hline 45 & NHCEL & NCELL1 & Connecting axial cell numbers in component NHCOM. \\
\hline \multicolumn{4}{|r|}{Note: If ICONC1 \(=0\) (Word 1 on Card Number 4), do not input array CONC.} \\
\hline 46 & CONC & NCELL1 & Initial solute mass to liquid-coolant mass ratio \(\left[\mathrm{kg}\right.\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(]\) in the main tube. Requires ISOLUT \(=1\) (Word 3 on MainData Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC1 \(=0\) or 1 (Word 1 on Card Number 4), do not input array S.} \\
\hline 47 & S & NCELL1 & Initial macroscopic density of plated-out solute (kg/ \(\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{f}^{3}{ }^{3}\) in the main tube. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 48 & XGNB & NCELL1 & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 49 & XLNB & NCELL1 & Mass fraction for liquid trace species. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW1 \(=0\) (Word 5 on Card Number 4), do not input array POWTB1.} \\
\hline 50 & POWTB1 & \[
2 \times \mid \text { NPWTB }
\] & Power-to-the-fluid vs independent-variable-form table \(\left[\left({ }^{*}, \mathrm{~W}\right)\left({ }^{*}, \mathrm{Btu} / \mathrm{hr}\right)\right]\) for the main tube. Input |NPWTB1| (Word 3 on Card Number 5) tabledefining data pairs having the following form [independent-variable form defined by IPWSV1 (Word 2 on Card Number 5), power to the fluid]. The power is deposited directly into the main-tube fluid with a uniform power density along the maintube length. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW1 \(=0\) (Word 5 on Card Number 4), do not input array POWRF1.} \\
\hline 51 & POWRF1 & \[
\begin{aligned}
& \text { 2×|NPWRF } \\
& 1 \mid
\end{aligned}
\] & Rate-factor table (\({ }^{*},-\)) for the main-tube power-to-the-fluid table independent variable. Input |NPWRF1| (Word 5 on Card Number 5) table-defining data pairs having the following form [independentvariable form defined by NPWSV1 (Word 4 on Card Number 5), rate factor to be applied to the power-to-the-fluid table independent variable]. \\
\hline \multicolumn{4}{|r|}{Note: If NQPTB1 \(=0\) (Word 3 on Card Number 6) or if NODES \(=0\) (Word 2 on Card Number 3), do not input array QP3TB1.} \\
\hline 52 & QP3TB1 & \begin{tabular}{l}
\(2 \times\) \\
NQPTB1 \\
when \\
QPIN1 > \\
0.0; \\
(1+NCELL \\
1) \\
\(\times\) NQPTB1| \\
when \\
QPIN1 < \\
0.0 .
\end{tabular} & Power-to-the-wall independent-variable-form table \(\left[(*, W)\left({ }^{*}, \mathrm{Btu} / \mathrm{hr}\right)\right]\) for the main tube. Input |NQPTB1| (Word 3 on Card Number 6) table-defining data pairs having the following form [independentvariable form defined by IQPSV1 (Word 2 on Card Number 6), power to the wall]. If QPIN1 > 0.0, the dependent variable specifies the total power to the entire wall; if QPIN1 \(<0.0\), the dependent variable is a power shape that specifies the power to the wall at each cell from cell 1 to NCELL1. \\
\hline
\end{tabular}

\section*{Side Arm Array Cards}

Note: If NCELL2 = 0 (Word 2 on Card Number 10), only input FA, FRIC, GRAV, HD, NFF, LCCFL, VL, and VV array cards.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 53 & DX & NCELL2 & Side-tube cell lengths (m, ft). \\
\hline 54 & VOL & NCELL2 & Side-tube cell volumes (\(\left.\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\). \\
\hline 55 & FA & NCELL2+1 & Side-tube cell-edge flow areas (\(\left.\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline 56 & FRIC & NCELL2+1 & \begin{tabular}{l}
Side-tube additive loss coefficients (-). \\
See NAMELIST variable IKFAC for optional K factors input. Input FRIC \(>0.0\) for internal-junction interface 1 of the side tube when a VOL/DX flowarea change occurs between JCELL and cell 1 of the side tube.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\).} \\
\hline 57 & FRICR & NCELL2+1 & Side-tube additive loss coefficients (-) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. Input FRICR \(>0.0\) for internal-junction interface 1 of the side tube when a VOL/DX flow-area change occurs between JCELL and cell 1 of the side tube. \\
\hline 58 & GRAV or ELEV & \begin{tabular}{l}
NCELL2+1 \\
(NCELLS \\
for ELEV)
\end{tabular} & Side-tube gravity elevation terms [(- or m\(),(-\) or ft\()]\). GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell i and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cell-centered elevation ELEV input. \\
\hline 59 & HD & NCELL2+1 & Side-tube hydraulic diameters (m, ft) (see NAMELIST variable NDIA1 for additional input of heat-transfer diameters). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NDIA1 / 2 do not input array HD-HT.} \\
\hline 60 & HD-HT & NCELL2+1 & Side-tube heat transfer diameters (m, ft). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 , do not input array ICFLG.. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur.} \\
\hline 61 & ICFLG & NCELL2+1 & \begin{tabular}{l}
Side-tube cell-edge choked-flow model option. Celledge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline 62 & NFF & NCELL2+1 & \begin{tabular}{l}
Side-tube friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE. \\
Input NFF \(\geq 0\) for the JCELL and JCELL+1 interfaces.
\end{tabular} \\
\hline
\end{tabular}

Note: If NCCFL \(=0\) (Word 5 Main-Data Card 9), do not input array LCCFL.
\begin{tabular}{|l|l|l|l|}
\hline \(\mathbf{6 3}\) & LCCFL & NCELL2+1 & \begin{tabular}{r}
Side-tube countercurrent flow limitation option. \\
\(0=\) no countercurrent flow limitation \\
calculation at the cell interface; \\
N \(=\) the countercurrent flow limitation \\
parameter set number used to evaluate \\
countercurrent flow limitation at the cell \\
interface \([1 \leq \mathrm{N} \leq\) NCCFL (Word 5 on \\
Main-Data Card 9)].
\end{tabular} \\
\hline \(\mathbf{6 4}\) & ALP & NCELL2 & Side-tube initial gas volume fractions (-). \\
\hline \(\mathbf{6 5}\) & VL & NCELL2+1 & Side-tube initial liquid velocities (m/s, ft/s). \\
\hline \(\mathbf{6 6}\) & VV & NCELL2+1 & Side-tube initial gas velocities (m/s,ft/s). \\
\hline \(\mathbf{6 7}\) & TL & NCELL2 & Side-tube initial liquid temperatures (K, \(\left.{ }^{\circ} \mathrm{F}\right)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \\
\hline \hline \(\mathbf{6 8}\) & TV & NCELL2 & Side-tube initial gas temperatures (K, \({ }^{\circ}\) F). \\
\hline \(\mathbf{6 9}\) & P & NCELL2 & Side-tube initial pressures (Pa, psia). \\
\hline \(\mathbf{7 0}\) & PA & NCELL2 & \begin{tabular}{l}
Side-tube initial noncondensable-gas partial pressures \\
(Pa, psia).
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Note: If NAMELIST variable NOLT1D = 1 do not input array ILEV. }
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 75 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=1\). \\
\(6=\) stainless steel, type 304; \\
7 = stainless steel, type 316; \\
\(8=\) stainless steel, type 347; \\
\(9=\) carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 76 & TW & \begin{tabular}{l}
NODES \(\times\) \\
NCELL2
\end{tabular} & Initial wall temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) in the side tube, which are input in the same order as QPPP. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM \(>0\) (Word 5 on Card Number 9) then input array IDROD.} \\
\hline 77 & IDROD & 1 & Vessel radial-theta cell number or input 0 when NHCOM is a 1D component. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM \(>0\) (Word 5 on Card Number 9) then input array NHCEL.} \\
\hline 78 & NHCEL & NCELL2 & Connecting axial cell numbers in component NHCOM. \\
\hline \multicolumn{4}{|r|}{Note: If ICONC2 \(=0\) (Word 1 on Card Number 10), do not input array CONC.} \\
\hline 79 & CONC & NCELL2 & Initial solute mass to liquid-coolant mass ratio \(\left[\mathrm{kg}\right.\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(]\) in the side tube. Requires ISOLUT \(=1\) (Word 3 on MainData Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC2 = 0 or 1 (Word 1 on Card Number 10), do not input array S.} \\
\hline 80 & S & NCELL2 & Initial macroscopic density of plated-out solute (kg / \(\left.\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)\) in the side tube. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 81 & XGNB & NCELL2 & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 82 & XLNB & NCELL2 & Mass fraction for liquid trace species. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW2 \(=0\) (Word 5 on Card Number 10), do not input array POWTB2.} \\
\hline 83 & POWTB2 & \[
\begin{aligned}
& 2 \times \mid \text { NPWTB } \\
& 2 \mid
\end{aligned}
\] & Power-to-the-fluid vs. independent-variable-form table \(\left[\left({ }^{*}, \mathrm{~W}\right),\left({ }^{*}, \mathrm{Btu} / \mathrm{hr}\right)\right]\) for the side tube. Input |NPWTB2| (Word 3 on Card Number 11) tabledefining data pairs having the following form [independent-variable form defined by IPWSV2 (Word 2 on Card Number 11), power to the fluid]. The power is deposited directly into the side-tube fluid with a uniform volumetric power density along the JETP side-tube length. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW2 \(=0\) (Word 5 on Card Number 10), do not input array POWRF2.} \\
\hline 84 & POWRF2 & \[
\begin{aligned}
& 2 \times \mid \text { NPWRF } \\
& 2 \mid
\end{aligned}
\] & Rate-factor table \(\left({ }^{*},-\right)\) for the side-tube power-to-thefluid table independent variable. Input |NPWRF2| (Word 5 on Card Number 11) table-defining data pairs having the following form [independentvariable form defined by NPWSV2 (Word 4 on Card Number 11), rate factor to be applied to the power-to-the-fluid table independent variable]. \\
\hline \multicolumn{4}{|r|}{Note: If NQPTB2 \(=0\) (Word 3 on Card Number 12) or if NODES \(=0\) (Word 2 on Card Number 3), do not input array QP3TB2.} \\
\hline 85 & QP3TB2 & \(2 \times \mathrm{NQPTB} 2 \mid\) when QPIN2 \(>0.0\); (1+NCELL 2) \(\times\) |NQPTB2| when QPIN2<0.0. & Power-to-the-wall vs independent-variable form table \(\left[\left({ }^{*}, \mathrm{~W}\right),\left(^{*}, \mathrm{Btu} / \mathrm{hr}\right)\right]\) for the side tube. Input |NQPTB2| (Word 3 on Card Number 12) table-defining data pairs having the following form [independentvariable form defined by IQPSV2 (Word 2 on Card Number 12), power to the wall]. If QPIN2 \(>0.0\), the dependent variable specifies the total power to the entire wall; if QPIN2 \(<0.0\), the dependent variable is a power shape that specifies the power to the wall at each cell from cell NCELL1 +2 to cell NCELL1 +1 + NCELL2. \\
\hline
\end{tabular}

\section*{PIPE Component Data}

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (PIPE left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq\) NUM \(\leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{r}
Note: Only input this card when the number of inputs for FLUIDS (a NAMELIST \\
variable) is more than one.
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EOS & EOS identifier for this component (i.e. "h2o" or "r5h2o", etc.). \\
\hline PHASECHANGE & \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
this component. Input FALSE or false, if phase change is not allowed \\
for this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 4I14,E14.4) NCELLS, NODES, JUN1, JUN2, EPSW
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& When NAMELIST parameter USESJC \(=1,2\), or 3 NCELLS can be set to zero. \\
& When NCELLS \(=0\), the PIPE component is treated as a single junction (no \\
should but a junction). Then, the first four parameters of Card Number 8 \\
& NODES should be set to ' 0 ' \\
If JUN1 or JUN2 is set to zero, a deadend is created with flow area and \\
velocities always set to zero
\end{tabular}

Card Number 3. (Format 4I14,E14.4) NCELLS, NODES, JUN1, JUN2, EPSW (Continued)
\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& When NAMELIST parameter USESJC \(=1,2\), or 3 NCELLS can be set to zero. \\
& \begin{tabular}{l}
When NCELLS \(=0\), the PIPE component is treated as a single junction (no \\
volume but a junction). Then, the first four parameters of Card Number 8 \\
should be set to ' 0 ', but NPIPES should be set to ' 1 '. If USESJC \(=1\), then \\
\\
NODES should be set to ' 0 ' \\
If JUN1 or JUN2 is set to zero, a deadend is created with flow area and \\
velocities always set to zero
\end{tabular} \\
\hline Variable & \\
\hline \hline NODES & \begin{tabular}{l}
Number of radial heat-transfer nodes in the PIPE wall. A value of zero specifies \\
no wall heat transfer.
\end{tabular} \\
\hline JUN1 & Junction number for the junction adjacent to cell 1. \\
\hline JUN2 & Junction number for the junction adjacent to cell NCELLS (Word 1 on this card). \\
\hline EPSW & Wall-surface roughness (m, ft). \\
\hline
\end{tabular}

Card Number 4. (Format I14) NSIDES
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
If NCELLS \(=0\) do not input this card. Input this card only if NAMELIST \\
variable USESJC \(=2\) or 3. This will allow this component to have side \\
junctions. See SJC model, Chapter 7.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NSIDES & Number of side junctions connected to this PIPE component. \\
\hline
\end{tabular}

Note: If NSIDES \(>0\) then input the next three cards as sets of 1,2 , or 3 cards per NSIDES. Examples include:

If USESJC \(=2\) and JUNLK (Word 2 on Card Number 5) is \(>0\) only Card Number 5 is needed.

If USESJC \(=2\) and JUNLK is 0 input Card Number 5 and Card Number 6 in pairs.

If USESJC \(=3\) and JUNLK > 0 input Card Number 5 and Card Number 7 in pairs.

If USESJC \(=3\) and JUNLK is 0 input Card Number 5, Card Number 6, and Card Number 7 in sets.

Card Number 5. (Format 5I14) NCLK, JUNLK, NCMPTO, NCLKTO, NLEVTO
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NCELLS or NSIDES \(=0\), or USESJC \(=1\) do not input this card. Otherwise input this card for each NSIDES.} \\
\hline Variable & Description \\
\hline NCLK & "From" cell number in the PIPE component. \\
\hline JUNLK & Junction number. Enter a zero to have the code spawn a Single Junction Component internally. Otherwise enter the junction number here. This same junction number must appear as a VESSEL source junction or a 1D component junction. \\
\hline NCMPTO & Component number of "To" component of a leak path. Enter 0 if JUNLK \(\neq 0\). \\
\hline NCLKTO & Cell number of "To" cell of a leak path Enter 0 if JUNLK \(\neq 0\). \\
\hline NLEVTO & \begin{tabular}{l}
Axial level number of "To" cell of a leak path when "To" component is a VESSEL. Otherwise enter 0 . \\
Enter 0 if JUNLK \(\neq 0\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 6. (Format 5E14.4) FALK, CLOS, VLLK, VVLK, DELZLK
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
If NCELLS or NSIDES \(=0\) do not input this card. Input this card only if \\
JUNLK \(=0\). If USESJC \(=2\) or 3, input this card for each NSIDES.
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline FALK & Leak path flow area \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline CLOS & Leak path loss coefficient \\
\hline VLLK & Leak path initial liquid velocity \((\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s})\). \\
\hline VVLK & Leak path initial vapor velocity (m/s, ft/s). \\
\hline DELZLK & \begin{tabular}{l}
Elevation difference between center of "From" cell and center of "To" cell (m, ft). \\
DELZLK \(>0\) when the center of the "From" cell is higher than the center of the \\
"To" cell \\
\begin{tabular}{l}
DELZLK \(<0\) when the center of the "From" cell is lower than the center of the \\
"To" cell
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Card Number 7. (Format E14.4, I14) THETA, IENTRN
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If NCELLS or NSIDES \(=0\), or USESJC \(=1\) or 2 do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline THETA & Angle between the main direction of flow and the flow through the side junction. \\
\hline IENTRN & \begin{tabular}{c}
Offtake-model option. \\
\(0=\) off; \\
\(1=\) on (side-junction mass flow determined using offtake model)
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format 5I14) ICHF, ICONC, PIPETYPE, IPOW, NPIPES
\begin{tabular}{|c|c|}
\hline Note: & If PIPETYPE= 1, the bulk of the tank should be modeled with one computational cell. One additional relatively small cell may be added at the bottom of the tank to improve the timing of release of nitrogen from the accumulator. \\
\hline Variable & Description \\
\hline ICHF & \begin{tabular}{l}
CHF-calculation option. \\
\(0=\) convection heat transfer only, no boiling heat transfer (i.e. no wall nucleation is allowed although phase change can still occur); \\
\(1=\) CHF from AECL-IPPE CHF Table, no critical quality calculated. \\
\(2=\) CHF from AECL-IPPE CHF Table, critical quality from Biasi correlation. \\
\(3=\) CHF from AECL-IPPE CHF Table, critical quality from CISE-GE correlation.
\end{tabular} \\
\hline ICONC & Solute in the liquid coolant option. Requires ISOLUT \(=1\) (Word 3 on MainData Card 9) when ICONC \(>0\).
\[
\begin{aligned}
& 0=\text { no; } \\
& 1=\text { dissolved solute only; } \\
& 2=\text { both dissolved and plated-out solute. }
\end{aligned}
\] \\
\hline
\end{tabular}

Card Number 8. (Format 5I14) ICHF, ICONC, PIPETYPE, IPOW, NPIPES (Continued)
\begin{tabular}{|c|c|}
\hline Note: & If PIPETYPE= 1, the bulk of the tank should be modeled with one computational cell. One additional relatively small cell may be added at the bottom of the tank to improve the timing of release of nitrogen from the accumulator. \\
\hline Variable & Description \\
\hline PIPETYPE & \begin{tabular}{l}
Pipe model option. \\
\(0=\) normal pipe; no special model options; \\
1 = Accumulator (non-spherical) modeling option; calculate of water level, volumetric flow, and liquid volume discharge, and the implementation of an interface sharpener; \\
\(2=\) same as (1) plus the application of a liquid-separator model at JUN2 (the gas phase is never allowed to flow across the JUN2 interface). Note that the PIPE representing the accumulator should be oriented such that JUN2 is the accumulator outlet junction. \\
\(3=\) model pipe as a spherical accumulator. NCELLS (Word 1 on Card Number 3) must be set to one. \\
\(4=\) model pipe as a CANDU horizontal pressure tube fuel bundle (not yet active) \\
\(5=\) model falling film condensation heat transfer in vertical tube bundles \\
\(6=\) model condensation phenomena in a suppression pool (not yet active) \\
\(7=\) this PIPE is connected to HTSTR components that have the fine mesh model turned on. Setting this option will also indicate the existence of special optional input of importance to reflood calculations (see Card Number 12). \\
\(8=\) model wall condensation phenomena as would be appropriate for a drywell
\end{tabular} \\
\hline IPOW & Power deposited in (to) the coolant option.
\[
\begin{aligned}
& 0=\text { no } ; \\
& 1=\text { yes. }
\end{aligned}
\] \\
\hline NPIPES & The number of parallel pipes of which this is one. Enter 1 for normal cases. \\
\hline
\end{tabular}

Card Number 9. (Format 5I14) IPOWTR, IPOWSV, NPOWTB, NPOWSV, NPOWRF
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If IPOW \(=0\) (Word 4 on Card Number 8), do not input this card.} \\
\hline Variable & Description \\
\hline IPOWTR & The trip ID number that controls the evaluation of the power-to-fluid table defined by Card Set 46 (array POWTB) \((\) [IPOWTR \(\mid \leq 9999)(\) input IPOWTR \(=\) 0 if there is to be no trip control and the table is to be evaluated every timestep during the transient calculation). \\
\hline IPOWSV & The independent-variable ID number for the power-to-the-fluid table. IPOWSV \(>0\) defines the ID number for a signal-variable parameter; IPOWSV \(<0\) defines the ID number for a control-block output parameter. \\
\hline NPOWTB & The number of power-to-the-fluid table data entries (defined by the absolute value of NPOWTB). NPOWTB \(>0\) defines the table independent-variable form to be the IPOWSV parameter; NPOWTB \(<0\) defines the table independentvariable form to be the sum of the change in the IPOWSV parameter over each timestep times the trip set-status value ISET during that timestep (when the power-to-the-fluid table is trip controlled); NPOWTB \(=0\) defines the power to the fluid to be the IPOWSV parameter. \\
\hline NPOWSV & The independent-variable ID number for the rate factor that is applied to the power-to-the-fluid table independent variable. NPOWSV \(>0\) defines the ID number for a signal-variable parameter; NPOWSV \(<0\) defines the ID number for a control-block output parameter; NPOWSV \(=0(\) when NPOWRF \(\neq 0)\) defines the independent variable to be the difference between the trip signal and the setpoint value that turns the trip OFF when the power-to-the-fluid table is trip controlled. \\
\hline NPOWRF & The number of rate-factor table data pairs (defined by the absolute value of NPOWRF). The rate factor is applied to the power-to-the-fluid table independent variable when the rate factor is defined. No rate factor is defined when NPOWSV and NPOWRF are both zero. NPOWRF \(>0\) defines the ratefactor table independent variable to be the NPOWSV parameter; NPOWRF \(<0\) defines it to be the sum of the change in the NPOWSV parameter over each timestep times the trip set-status value ISET during that timestep (when the power-to-the-fluid table is trip controlled); NPOWRF \(=0\) defines the rate factor to be the NPOWSV parameter. \\
\hline
\end{tabular}

Card Number 10. (Format 5I14) IQP3TR, IQP3SV, NQP3TB, NQP3SV, NQP3RF
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input this card. If NODES \(>0\) and \(\operatorname{QPPP}(\) Card Set 37\()>0\), this card is read. However, if \(\mathrm{QPPP}=0\) this card is read but not used.} \\
\hline Variable & Description \\
\hline IQP3TR & The trip ID number that controls the evaluation of the power-to-the-wall table defined by Card Set 48 (array QP3TB) \((|\mathrm{IQP} 3 \mathrm{TR}| \leq 9999)\) [input IQP3TR \(=0\) if there is to be no trip control and the table is to be evaluated every timestep during the transient calculation]. \\
\hline IQP3SV & The independent-variable ID number of the power-to-the-wall table. IQP3SV \(>0\) defines the ID number for a signal-variable parameter; IQP3SV \(<0\) defines the ID number for a control-block output parameter. \\
\hline NQP3TB & The number of power-to-the-wall table data pairs (defined by the absolute value of NQP3TB). NQP3TB \(>0\) defines the table independent-variable form to be the IQP3SV parameter; NQP3TB \(<0\) defines the table independent-variable form to be the sum of the change in the IQP3SV parameter over each timestep times the trip set-status value ISET during that timestep (when the power-to-the-wall table is trip controlled); NQP3TB \(=0\) defines the power to the wall to be the IQP3SV parameter. \\
\hline NQP3SV & The independent-variable ID number for the rate factor that is applied to the power-to-the-wall table independent variable. NQP3SV \(>0\) defines the ID number for a signal-variable parameter; NQP3SV \(<0\) defines the ID number for a control-block output parameter; NQP3SV \(=0\) (when NQP3RF \(\neq 0\)) defines the independent variable to be the difference between the trip signal and the setpoint value that turns the trip OFF when the power-to-the-wall table is trip controlled. \\
\hline NQP3RF & The number of (\(\mathrm{x}, \mathrm{y}\)) rate-factor table data pairs (defined by the absolute value of NQP3RF). The rate factor is applied to the power-to-the-wall table independent variable when the rate factor is defined. No rate factor is defined when NQP3SV and NQP3RF are both zero. NQP3RF \(>0\) defines the rate-factor table independent variable to be the NQP3SV parameter; NQP3RF \(<0\) defines it to be the sum of the change in the NQP3SV parameter over each timestep times the trip set-status value ISET during that time (when the power-to-the-wall table is trip controlled); NQP3RF \(=0\) defines the rate factor to be the NQP3SV parameter. \\
\hline
\end{tabular}

Card Number 11. (Format I14) NLLTB
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Note: Input this card only if PIPETYPE \(=3\) (Word 3 on Card Number 8). } \\
\hline Variable & Description \\
\hline \hline NLLTB & The number of data pairs for the liquid volume fraction, liquid level fraction table. \\
\hline
\end{tabular}

Card Number 12. (Format I14, E14.4) NGRIDSPACERS, UNHEATFR
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: Input this card only if PIPETYPE \(=7\) (Word 3 on Card Number 8). } \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline NGRIDSPACERS & The number of grid spacers associated with this PIPE component. \\
\hline UNHEATFR & \begin{tabular}{l}
Fraction of the HS surface that is not heated. Fraction of the HS \\
surface that could support a liquid film even though the fuel rods are in \\
post-CHF heat transfer regimes.
\end{tabular} \\
\hline
\end{tabular}

Card Number 13. (Format 5E14.4) RADIN, TH, HOUTL, HOUTV, TOUTL
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility \\
in calculating possible heat losses from the outside of the PIPE wall. Typically, \\
such heat losses are not important for fast transients or large-break loss-of- \\
coolant accidents (LOCAs), and HOUTL and HOUTV can be set equal to zero. \\
When heat losses are significant, they often can be approximated by a constant \\
HTC temperature for the liquid and gas fluid phases outside the pipe wall.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{ll}
\hline \hline RADIN & Inner radius (m, ft) of the PIPE wall. \\
\hline TH & Wall thickness \((\mathrm{m}, \mathrm{ft})\).
\end{tabular}

Card Number 14. (Format 5E14.4) TOUTV, POWIN, POWOFF, RPOWMX, POWSCL
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline TOUTV & Gas temperature (K, \({ }^{\circ}\) F) outside the PIPE wall. \\
\hline \multicolumn{2}{|c|}{ Note: \(\quad\) Words 2 - 5 are not used if IPOW = 0 (Word 4 on Card Number 8). } \\
\hline POWIN & \begin{tabular}{l}
Initial total power (W, Btu/hr) deposited in (to) the fluid. The power is \\
distributed uniformly along the PIPE length.
\end{tabular} \\
\hline POWOFF & \begin{tabular}{l}
Total power (W, Btu/hr) to the fluid when the controlling trip is OFF after being \\
ON [not used when IPOWTR = (Word 1 on Card Number 9)]. If POWOFF \(\leq\) \\
\(-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19}\right.\) Btu/hr), the power to the fluid is held constant at the last \\
table-evaluated power when the trip was ON.
\end{tabular} \\
\hline RPOWMX & \begin{tabular}{l}
The maximum rate of change of power to the fluid (W/s, Btu/(hr s)) [RPOWMX \\
\(\geq 0.0]\).
\end{tabular} \\
\hline POWSCL & \begin{tabular}{l}
Scale factor (-) for the power-to-the-fluid table. The dependent variable in the \\
table defined by Card Set 46 (array POWTB) is multiplied by POWSCL to \\
obtain the absolute power (W, Btu/hr) deposited in the fluid [not used if \\
NPOWTB \(=0\) (Word 3 on Card Number 9)].
\end{tabular} \\
\hline
\end{tabular}

Card Number 15. (Format 4E14.4, I14) QP3IN, QP3OFF, RQP3MX, QP3SCL, NHCOM
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular} \left\lvert\, \begin{tabular}{l}
QP3IN \\
\hline \hline
\end{tabular} \begin{tabular}{l}
Initial power (W, Btu/hr) deposited in (to) the wall and distributed according to \\
the QPPP array. If QP3IN \(>0.0\), it is the total power to the entire wall. When \\
QP3IN \(<0.0\), the power to the wall in each cell is |QP3IN|, and the negative sign \\
indicates the power to the wall is to be a cell-dependent array of NCELLS (Word \\
1 on Card Number 3) power values. Each data pair of the power-to-the-wall \\
table [for QP3IN \(<0.0\)] has 1 + NCELLS values [an independent-variable value \\
and NCELLS power values for cells 1 through NCELLS]. When the power-to- \\
the-wall table is not being evaluated, the same power value of |QP3IN| or \\
QP3OFF [if QP3OFF \(\left.>-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} / \mathrm{hr}\right)\right]\) is applied at each of the \\
NCELLS cells.
\end{tabular}\right.

Card Number 15. (Format 4E14.4, I14) QP3IN, QP3OFF, RQP3MX, QP3SCL, NHCOM (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline RQP3MX & \begin{tabular}{l}
Maximum rate of change of the power to the wall \\
{\([\mathrm{W} / \mathrm{s}, \mathrm{Btu} /(\mathrm{hr}\) s) \(][\mathrm{RQP} 3 \mathrm{MX} \geq 0.0)]\).}
\end{tabular} \\
\hline QP3SCL & \begin{tabular}{l}
Scale factor (-) for the power-to-the-wall table. The dependent variable in the \\
table, defined by Card Set 48 (array QP3TB), is multiplied by QP3SCL to \\
obtain the absolute power (W, Btu/hr) to the wall.
\end{tabular} \\
\hline NHCOM & Component number the outside wall energy is delivered to. \\
\hline
\end{tabular}

\section*{PIPE Array Cards.}

Note: Input each of the following arrays using LOAD format.
All junction variables must match at component interfaces.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 16 & DX & NCELLS & Cell lengths (m, ft). \\
\hline 17 & VOL & NCELLS & Cell volumes (\(\left.\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\). \\
\hline 18 & FA & NCELLS+1 & Cell-edge flow areas (\(\left.\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline \multicolumn{4}{|r|}{Note: Setting FRIC \(>10^{20}\) at a cell edge invokes the steam-separator model (only the gas phase is allowed to flow through the cell interface). Setting FRIC \(<-10^{20}\) invokes the liquid-separator model (only the liquid is allowed to flow through the cell interface). If the reverse additive loss-coefficient option (NFRC1 \(=2\) in the NAMELIST data) is chosen, steam-separator and liquid-separator models may be used separately in each forward and reverse direction.} \\
\hline 19 & FRIC & NCELLS+1 & Additive loss coefficients (-). See NAMELIST variable IKFAC for optional K factors input. \\
\hline \multicolumn{4}{|r|}{Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\).} \\
\hline 20 & FRICR & NCELLS+1 & Additive loss coefficients (-) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 21 & GRAV or ELEV & \begin{tabular}{l}
NCELLS+1 \\
(NCELLS for ELEV)
\end{tabular} & Gravity or elevation terms (- or m , ft). GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell i and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cellcentered elevation ELEV input. \\
\hline 22 & HD & NCELLS+1 & Hydraulic diameters (m, ft). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NDIA1 \(\neq 2\) do not input array HD-HT.} \\
\hline 23 & HD-HT & NCELLS+1 & Heat transfer diameters (m, ft). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 do not input array ICFLG. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur..} \\
\hline 24 & ICFLG & NCELLS+1 & \begin{tabular}{l}
Cell-edge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline 25 & NFF & NCELLS+1 & \begin{tabular}{l}
Friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \hline \multicolumn{3}{|c|}{ Note: If NCCFL = 0 (Word 5 on Main-Data Card 9), do not input array LCCFL. } \\
\hline \(\mathbf{2 6}\) & LCCFL & NCELLS+1 & \begin{tabular}{r}
Countercurrent flow limitation option. \\
\(0=\) no countercurrent flow limitation \\
calculation at the cell interface; \\
the countercurrent flow limitation \\
parameter set number used to evaluate \\
countercurrent flow limitation at the \\
cell interface [1 \(\leq\) N \(\leq\) NCCFL (Word \\
5 on Main-Data Card 9)].
\end{tabular} \\
\hline \(\mathbf{2 7}\) & ALP & NCELLS & Initial gas volume fractions (-).
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{3}{|c|}{ Note: If NAMELIST variable NOLT1D \(=1\) do not input array ILEV. } \\
\hline \(\mathbf{3 4}\) & ILEV & NCELLS & \begin{tabular}{l}
Level tracking flags. ILEV \(=1\) indicates that the \\
two-phase level exists in the current cell. ILEV \(=0\) \\
indicates that the two-phase level does not exist in \\
the current cell. If ILEV \(=-1\), the level tracking \\
calculation will be turned off for this cell.
\end{tabular} \\
\hline \(\mathbf{3 5}\) & WFMFL & NCELLS+1 & \begin{tabular}{l}
Wall-friction multiplier factor for the liquid phase \\
\((-)[0.9 \leq\) WFMFL \(\leq 1.1]\).
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Note: If NAMELIST variable MWFL = 0, do not input array WFMFL. } \\
\hline \(\mathbf{3 6}\) & Wote: If NAMELIST variable MWFV = 0, do not input array WFMFV. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input arrays QPPP, MATID, TW, IDROD, and NHCEL.} \\
\hline 37 & QPPP & NODES \(\times\) NCELLS & A relative power profile (-) in the PIPE wall. Input values for cell 1, node 1 through NODES; then for cell 2 , node 1 through NODES, etc. If the array is filled with the same nonzero constant, a uniform volumetric heat source in the wall results. TRACE internally normalizes the power profile to have a volume-averaged value of unity (each \(\operatorname{QPPPP}(\mathrm{I})\) is normalized to have the value \(\operatorname{QPPP}(\mathrm{I}) \times[\mathrm{VOL}(\mathrm{K})] /\) \([\operatorname{QPPP}(\mathrm{K}) \times \operatorname{VOL}(\mathrm{K})]\). Filling the array with zeros results in no power being deposited in the PIPE wall regardless of the values of QP3IN, QP3TB, etc. \\
\hline 38 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=\) 1. \\
6 = stainless steel, type 304; \\
7 = stainless steel, type 316; \\
\(8=\) stainless steel, type 347; \\
\(9=\) carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 39 & TW & \begin{tabular}{l}
NODES \(\times\) \\
NCELLS
\end{tabular} & Initial wall temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) (input in the same order as QPPP). \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{3}{|c|}{ Note: If NHCOM \(=0\); (Word 5 on Card Number 15) do not input array IDROD. } \\
\hline \(\mathbf{4 0}\) & IDROD & 1 & \begin{tabular}{l}
Vessel radial-theta cell number or input 0 when \\
NHCOM is a 1D component.
\end{tabular} \\
\hline \multicolumn{3}{|c|}{ Note: If NHCOM \(=0\); (Word 5 on Card Number 15) do not input array NHCEL. } \\
\hline \(\mathbf{4 1}\) & NHCEL & NCELLS & \begin{tabular}{l}
Connecting axial cell numbers in component \\
NHCOM
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Note: If ICONC = 0 (Word 2 on Card Number 8), do not input array CONC. }
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If ICONC \(=0\) or 1 (Word 2 on Card Number 8), do not input array S.} \\
\hline 43 & S & NCELLS & Initial macroscopic density of plated-out solute (kg) \(\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\)). Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 44 & XGNB & NCELLS & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 45 & XLNB & NCELLS & Mass fraction for liquid trace species. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW \(=0\) (Word 4 on Card Number 8), do not input array POWTB.} \\
\hline 46 & POWTB & \(2 \times\) NPOWTB \(\mid\) & Power-to-the-fluid vs. independent-variable-form table [(*,W) \(\left(^{*}, \mathrm{Btu} / \mathrm{hr}\right)\). Input |NPOWTB| (Word 3 on Card Number 9) table-defining data pairs having the following form [independent-variable form defined by IPOWSV (Word 2 on Card Number 9), power to the fluid]. The power is deposited directly in to the fluid in the PIPE with a uniform power density along the PIPE length. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW \(=0\) (Words 4 on Card Number 8), do not input array POWRF.} \\
\hline 47 & POWRF & \(2 \times\) |NPOWRF| & Rate-factor table (\({ }^{*},-\)) for the power-to-the-fluid table independent variable. Input \(\mid\) NPOWRF \(\mid\) (Word 5 on Card Number 9) table-defining data pairs having the following form [independent-variable form defined by NPOWSV (Word 4 on Card Number 9), rate factor to be applied to the power-to-the-fluid table independent variable]. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NQP3TB \(=0\) (Word 3 on Card Number 10), do not input array QP3TB.} \\
\hline 48 & QP3TB & \[
\begin{aligned}
& \hline 2 \times|\mathrm{NQP} 3 \mathrm{~TB}| \\
& \text { when QP3IN } \\
& >0.0 ; \\
& (1+\mathrm{NCELLS}) \\
& \times|\mathrm{NQP} 3 \mathrm{~TB}| \\
& \text { when } \\
& \mathrm{QP} 3 \mathrm{IN}<0.0 \text {. }
\end{aligned}
\] & Power-to-the-wall vs independent-variable-form table [(*,W), (*,Btu/hr)]. Input |NQP3TB| (Word 3 on Card Number 10) table-defining data pairs having the following form [independent-variable form defined by IQP3SV (Word 2 on Card Number 10), power to the wall]. If QP3IN \(>0.0\), the dependent variable specifies the total power to the entire wall; if QP3IN \(<0.0\), the dependent variable is a power distribution that specifies the power to the wall at each cell from cell 1 to cell NCELLS. \\
\hline \multicolumn{4}{|r|}{Note: Input array LEVTB only if PIPETYPE = 3 (Word 3 on Card Number 8). PIPTETYPE \(=3\) designates a one celled spherical accumulator. A table of liquid volume fraction, liquid level fraction pairs is input. NLLTB is the number of data pairs for that table.} \\
\hline 49 & LEVTB & \(2 \times\) NLLTB & NLLTB pairs of accumulator liquid volume fraction versus liquid level fraction. \\
\hline \multicolumn{4}{|r|}{Note: Input array GRIDSPACERZ only if PIPETYPE \(=7\) (Word 3 on Card Number 8) and NGRIDSPACERS \(>0\) (Word 1 on Card Number 12).} \\
\hline 50 & \begin{tabular}{l}
GRIDSP \\
ACERZ
\end{tabular} & NGRIDSPAC ERS & Grid spacer axial locations. \\
\hline
\end{tabular}

\section*{PLENUM Component Data}

Note: No heat-transfer coupling of a HTSTR ROD and SLAB component to the hydraulic cell of a PLENUM component is allowed. FILL, BREAK, and VESSEL components cannot be connected to a PLENUM component junction.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (PLENUM left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq\) NUM \(\leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 4I14) NPLJN, ICONC, JUNS1, JUNS2
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline NPLJN & Number of junction interfaces on the boundary of the single-cell PLENUM component (NPLJN \(\geq 1\)). \\
\hline ICONC & Solute in the liquid coolant option. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9) when ICONC \(>0\).
\[
\begin{aligned}
& 0=\text { no; } \\
& 1=\text { dissolved solute only; } \\
& 2=\text { both dissolved and plated-out solute. }
\end{aligned}
\] \\
\hline JUNS1 & The number of junctions on side 1 of the PLENUM cell that convect momentum across the cell [side 1 junctions are the first to the JUNS1 \({ }^{\text {th }}\) junction numbers; input 0 if no momentum is to be convected across the PLENUM cell]. \\
\hline JUNS2 & The number of junctions on side 2 of the PLENUM cell that convect momentum across the cell [side 2 junctions are on the opposite side of the PLENUM cell from side 1 and the side 2 junctions are the (JUNS1 +1\()^{\text {th }}\) to the \((J U N S 1+J U N S 2)^{\text {th }}\) junction numbers; input 0 if no momentum is to be convected across the PLENUM cell and JUNS1 \(=0\)]. \\
\hline
\end{tabular}

\section*{PLENUM Array Cards.}

Note: Input each of the following arrays using LOAD format.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 3 & JUNJ & NPLJN & PLENUM junction numbers (-). \\
\hline 4 & DX & NPLJN & Effective PLENUM cell length for each junction connected to the PLENUM cell (m, ft). \\
\hline 5 & VOL & 1 & Cell volume (\(\mathrm{m}^{3}, \mathrm{ft}^{3}\)). \\
\hline 6 & ELEV & 1 & Cell-centered elevation (\(\mathrm{m}, \mathrm{ft}\)). Used only when NAME-LIST variable IELV \(=1\). However, this Card Set must always be input. \\
\hline 7 & ALP & 1 & Initial gas volume fraction (-). \\
\hline 8 & TL & 1 & Initial liquid temperature (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 9 & TV & 1 & Initial gas temperature (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 10 & P & 1 & Initial pressure (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline 11 & PA & 1 & Initial noncondensable-gas partial pressure (Pa , psia). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC = 0 (Word 2 on Card Number 2), do not input array BOR.} \\
\hline 12 & BOR & 1 & Initial ratio of solute mass to liquid-coolant mass \(\left[\mathrm{kg}\right.\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(]\). Requires ISOLUT = 1 (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC \(=0\) or 1 (Word 2 on Card Number 2), do not input array SOLID.} \\
\hline 13 & SOLID & 1 & Initial macroscopic density of plated-out solute \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)\). Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG \(>0\) (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 14 & XGNB & NCELLS & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 15 & XLNB & NCELLS & Mass fraction for liquid trace species. \\
\hline
\end{tabular}

\section*{POWER Component Data}

A sample input file which uses the POWER component is found at the end of the HTSTR component (see HTSTR Component Data)

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (POWER left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq \mathrm{NUM} \leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 5I14) NUMPWR, CHANPOW, NGTPOW, NSVPOW, NCBPOW
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NUMPWR & \begin{tabular}{l}
Number of HTSTR/CHAN components for which the power distribution is \\
input by this POWER component.
\end{tabular} \\
\hline CHANPOW & \begin{tabular}{l}
Power-to-component coupling flag \\
\(0=\) POWER component powers HTSTR component (Default value). \\
\(1=\) POWER component powers CHAN components.
\end{tabular} \\
\hline NGTPOW & \begin{tabular}{l}
Number of general power/reactivity tables used to specify the power/reactivity \\
versus time for this POWER component.
\end{tabular} \\
\hline NSVPOW & \begin{tabular}{l}
Number of signal variables used to specify the power/reactivity versus time for \\
this POWER component.
\end{tabular} \\
\hline NCBPOW & \begin{tabular}{l}
Number of control blocks used to specify the power/reactivity versus time for \\
this POWER component.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{\begin{tabular}{c}
Description
\end{tabular}} \\
\hline \hline \(\mathbf{3}\) & HTNUM & NUMPWR & \begin{tabular}{l}
Component numbers of the HTSTR/CHAN \\
components for which power distribution is being \\
input by this POWER component. If all of the \\
HTSTR/CHAN components powered by this \\
POWER component have the same geometry, \\
noding, and material types, then only one set of \\
power distributions (i.e. RDPWR, ZPWTB, etc.) \\
are expected in this input. If any one of the
\end{tabular} \\
HTSTR/CHAN components have different \\
geometry or noding or material type, then each \\
radial and axial power distribution must be input \\
for each HTSTR/CHAN component identified in \\
this list. TRACE searching through the list of \\
components in the HTNUM array to determine if \\
geometry, noding, and material types are the same \\
or different.
\end{tabular}

Card Number 4. (Format 5I14) IRPWTY, NDGX, NDHX, NRTS, NHIST
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline IRPWTY & \begin{tabular}{l}
Neutronic point-reactor kinetics or reactor-core power option for defining programmed reactivity (-) or reactor-core power (W, Btu/hr). Input parameters required for each option value are shown in parentheses. Add 10 to the value of IRPWTY if reactivity feedback is to be evaluated. For IRPWTY \(=15,16\), or 17 , reactivity feedback is evaluated and output but not used because the reactorcore power is being defined directly. \\
\(1=\) point-reactor kinetics with constant REACT programmed reactivity (requires RPOWRI and REACT); \\
\(2=\) point-reactor kinetics with table lookup of programmed reactivity (requires RPOWRI, IRPWSV, NRPWTB, and RPWTB); \\
\(3=\) point-reactor kinetics with an initial zero programmed reactivity and trip-initiated constant REACT programmed reactivity (requires RPOWRI, IRPWTR, and REACT); \\
4 = point-reactor kinetics with an initial constant REACT programmed reactivity and trip-initiated table lookup of programmed reactivity (requires RPOWRI, REACT, IRPWTR, IRPWSV, NRPWTB, and RPWTB); \\
\(5=\) constant reactor-core power (requires RPOWRI); \\
\(6=\) table lookup of reactor-core power (requires IRPWSV, NRPWTB, and RPWTB) \\
7 = initial constant reactor-core power with trip-initiated table lookup of reactor-core power (requires RPOWRI, IRPWTR, IRPWSV, NRPWTB, and RPWTB).
\end{tabular} \\
\hline NDGX & The number of delayed-neutron groups (if NDGX \(=0\) is input when IRPWTY \(=1,2,3,4,11,12,13\), or 14 , TRACE defaults to 6 delayed-neutron groups with the delayed-neutron constants defined internally; input NDGX \(=0\) when \(\operatorname{IRPWTY}=5,6,7,15,16\), or 17). \\
\hline
\end{tabular}

Card Number 4. (Format 5I14) IRPWTY, NDGX, NDHX, NRTS, NHIST (Continued)
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline NDHX & \begin{tabular}{l}
The number of decay-heat groups. Input any positive value other than 69 or 71 for NDHX when the TRACE user wishes to specify their own decay-heat parameters. The options shown below for NDHX are available to define internal decay heat data. [For IRPWTY \(=5,6,7,15,16\), or 17: input NDHX \(=\) 0] \\
69 = define the ANS-79 decay-heat standard \\
71 = define the ANS-79 decay-heat standard plus the heavy-element decay for \(\mathrm{U}^{239}\) and \(\mathrm{Np}^{239}\) \\
\(-11=\) define the ANS-73 11 decay-heat group that was the default in TRAC-P/MOD1. \\
-23 = define the ANS-79 decay-heat standard using only \(U^{235}\) data \\
\(-25=\) define the ANS-79 decay-heat standard using only \(U^{235}\) data plus the heavy-element decay for \(\mathrm{U}^{239}\) and \(\mathrm{Np}^{239}\) \\
-92 \(=\) define the ANS-94 decay-heat standard \\
-94 = define the ANS-94 decay-heat standard plus the heavy-element decay for \(\mathrm{U}^{239}\) and \(\mathrm{Np}^{239}\)
\end{tabular} \\
\hline NRTS & The number of timesteps between file output edits of the reactor-core power and reactivity-feedback changes to the trcout file (NRTS \(=10\), default). \\
\hline NHIST & \begin{tabular}{l}
The number of value pairs in the power-history table. NHIST \(=0\) when IRPWTY \(=5,6,7,15,16\), or 17 . \\
\(0=\) the user will input the delayed-neutron precursor concentrations (CDGN) and the decay-heat precursor concentrations (CDHN); WARNING: This option will result in power jumps at restart unless you are very careful with input of CDGN. \\
\(1=\mathrm{CDGN}\) and CDHN will be calculated assuming an infinite history of operation at the user input power level of RPOWRI; \\
\(\geq 2=\) a power history table will be input and used to calculate initial values for CDGN and CDHN.
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 5E14.4) Q235, Q239, Q238, QAVG, R239PF
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
If IRPWTY \(=1,2,3,4,11,12,13\), or 14 (Word 1 on Card Number 4) and \\
\\
\\
NDHX \(=69\) or 71 or \(<0\) (but not -11) (Word 3 on Card Number 4), input Card
\end{tabular} \\
\hline Number 5 through Card Number 7.
\end{tabular}

Card Number 5. (Format 5E14.4) Q235, Q239, Q238, QAVG, R239PF (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{l}
Note: \\
\\
\\
\\
\\
Number 5 through Card Number 7. \\
NDHX \(=69\) or 71 or \(<0\) (but not -11) (Word 3 on Card Number 4), input Card
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline Q239 & Energy per fission from \(\mathrm{Pu}^{239}\) (Mev per fission). \\
\hline Q238 & Energy per fission from \(\mathrm{U}^{238}\) (Mev per fission). \\
\hline QAVG & Average energy per fission (Mev per fission). \\
\hline R239PF & Atoms of \(\mathrm{U}^{239}\) produced per fission. \\
\hline
\end{tabular}

Card Number 6. (Format 4E14.4) FISPHI, RANS, FP235, FP238
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{l}
Note: \\
It is assumed that FP235 + FP238 + FP239 \(=1.0\). \\
only if NHIST \(<2\) (Word 5 on Card Number 4).
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable } & \\
\hline \hline FISPHI & Fissions per initial fissile atom. \\
\hline RANS & Multiplier (-) applied to the ANS 79 decay heat (RANS \(=1.0\), default). \\
\hline FP235 & Fraction of fission power (-) associated with \(\mathrm{U}^{235}\) fissions at time zero. \\
\hline FP238 & Fraction of fission power (-) associated with \(\mathrm{U}^{238}\) fissions at time zero. \\
\hline
\end{tabular}

Card Number 7. (Format 3E14.4) Q241, FP239, FP241
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If NAMELIST variable R5dh \(=0\), do not input this Card. } \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline Q241 & Energy per fission from \(\mathrm{Pu}^{241}(\mathrm{Mev}\) per fission). \\
\hline FP239 & Fraction of fission power \((-)\) associated with \(\mathrm{Pu}^{239}\) fissions at time zero. \\
\hline FP241 & Fraction of fission power \((-)\) associated with \(\mathrm{Pu}^{241}\) fissions at time zero. \\
\hline
\end{tabular}

Card Number 8. (Format 5I14) IRPWTR, IRPWSV, NRPWTB, NRPWSV, NRPWRF
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If IRPWTY \(=1,5,11\), or 15 (Word 1 on Card Number 4), do not input this Card.} \\
\hline Variable & Description \\
\hline IRPWTR & The trip ID number which controls the evaluation of the reactivity-power table \((0<\mid\) IRPWTR \(\mid \leq 9999\) when IRPWTY \(=3,4,7,13,14\), or \(17 ;\) IRPWTR \(=0\) otherwise). \\
\hline IRPWSV & The reactivity-power table's abscissa-coordinate variable ID number. IRPWSV defines the independent-variable parameter for the reactivity-power table. IRPWSV \(>0\) defines the ID number for a signal-variable parameter; IRPWSV \(<\) 0 defines the ID number for a control-block output parameter \((0<\mid\) IRPWSV \(\mid \leq\) 9999 when IRPWTY \(=2,4,6,7,12,14,16\), or 17; IRPWSV \(=0\) otherwise). \\
\hline NRPWTB & The number of reactivity-power table value pairs (defined by the absolute value of NRPWTB). NRPWTB \(>0\) defines the table's independent-variable form to be the IRPWSV parameter; NRPWTB \(<0\) defines the reactivity-power table independent-variable form to be the sum of the change in the IRPWSV parameter over each timestep times the trip set-status value ISET during that timestep (when the reactivity-power table is trip controlled); NRPWTB \(=0\) defines the reactivity-power table's reactivity or power to be the IRPWSV parameter. \\
\hline NRPWSV & The rate-factor table's abscissa-coordinate variable ID number. NRPWSV defines the independent-variable parameter to determine the rate factor that is applied to the reactivity-power table's independent variable. NRPWSV \(>0\) defines the ID number for a signal-variable parameter; NRPWSV \(<0\) defines the ID number for a control-block output parameter; NRPWSV \(=0\) (when NRPWRF \(\neq 0\)) defines the difference between the trip signal and the set-point value that turns the trip OFF when the reactivity-power table is trip controlled. \\
\hline NRPWRF & The number of rate-factor table value pairs (defined by the absolute value of NRPWRF). The rate factor is applied to the reactivity-power table's independent variable when the rate factor is defined. No rate factor is defined when NRPWSV and NRPWRF (Words 4 and 5 on this Card) are both zero. NRPWRF \(>0\) defines the rate-factor table's abscissa coordinate to be the NRPWSV parameter; NRPWRF \(<0\) defines it to be the sum of the change in the NRPWSV parameter over each timestep times the trip set-status value ISET during that timestep (when the reactivity-power table is trip controlled); NRPWRF \(=0\) defines the rate factor to be the NRPWSV parameter. \\
\hline
\end{tabular}

Card Number 9. (Format 5I14) IZPWTR, IZPWSV, NZPWTB, NZPWSV, NZPWRF
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline IZPWTR & \begin{tabular}{l}
The trip ID number that controls the evaluation of the axial-power-shape table \\
\((0<\mid\) IZPWTR \(\mid \leq 9999\)) (input IZPWTR = 0 when the evaluation of the axial \\
power-shape table is not trip controlled).
\end{tabular} \\
\hline IZPWSV & \begin{tabular}{l}
The axial-power-shape table's abscissa-coordinate variable ID number. \\
IZPWSV defines the independent variable-parameter for the axial-power-shape \\
table. IZPWSV > 0 defines the ID number for a signal-variable parameter; \\
IZPWSV < 0 defines the ID number for a control-block output parameter.
\end{tabular} \\
\hline NZPWTB & \begin{tabular}{l}
The number of axial-power-shape table (x, f(z) shape) value pairs (defined by \\
the absolute value of NZPWTB). Each pair consists of an abscissa-coordinate \\
value x and NZPWZ (Word 1 on Card Number 11) ordinate-coordinate values \\
of f(z) defining the axial-power shape. NZPWTB \(>0\) defines the table's \\
independent-variable form to be the IZPWSV parameter; NZPWPB < 0 defines \\
the axial-power-shape table independent-variable form to be the sum of the \\
change in the IZPWSV parameter over each timestep times the trip set-status \\
value ISET during that timestep (when the axial-power-shape table is trip \\
controlled).
\end{tabular} \\
\hline NZPWSV & \begin{tabular}{l}
The rate-factor table's abscissa-coordinate variable ID number. NZPWSV \\
defines the independent-variable parameter to determine the rate factor that is \\
applied to the axial-power-shape table's independent variable. NZPWSV \(>0\) \\
defines the ID number for a signal-variable parameter; NZPWSV <0 defines \\
the ID number for a control-block output parameter; NZPWSV = 0 (when \\
NZPWRF \(=0\)) defines the difference between the trip signal and the set-point \\
value that turns the trip OFF when the axial-power-shape table is trip controlled.
\end{tabular} \\
\hline NZPWRF & \begin{tabular}{l}
The number of rate-factor table value pairs (defined by the absolute value of \\
NZPWRF). The rate factor is applied to the axial-power-shape table's \\
independent variable when the rate factor is defined. No rate factor is defined \\
when NZPWSV and NZPWRF (Words 4 and 5 on this Card) are both zero. \\
NZPWRF \(>0\) defines the rate-factor table's abscissa coordinate to be the \\
NZPWSV parameter; NZPWRF < 0 defines it to be the sum of the change in the \\
NZPWSV parameter over each timestep times the trip set-status value ISET \\
during that timestep (when the axial-power-shape table is trip controlled); ; \\
NZPWRF = 0 defines the rate factor to be the NZPWSV parameter
\end{tabular} \\
\hline
\end{tabular}

Card Number 10. (Format 2I14,3E14) IPWRAD, IPWDEP, PROMHEAT, DECAHEAT, WTBYPASS
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline IPWRAD & \begin{tabular}{l}
Spatial power-shape option. \\
\(0=1 \mathrm{D}\) axial power-shape table (default); \\
\(1=2 \mathrm{D}\) axial-r or axial-x power-shape table.
\end{tabular} \\
\hline IPWDEP & \begin{tabular}{l}
Power-shape table-dependence option. \\
\(-1=\) the power-shape table dependence is defined for each node by a signal-variable or control-block identification number which defines the node power density and the resulting power shape is not normalized by TRACE to a spatially averaged value of unity; \\
\(0=\) the power-shape table dependence is defined by signal-variable or control-block identification number IZPWSV (Word 2 on Card Number 9) (default); \\
\(1=\) the power-shape table dependence is defined for each node by a signal-variable or control-block identification number which defines the node power density and the resulting power shape is normalized by TRACE to a spatially averaged value of unity.
\end{tabular} \\
\hline PROMHEAT & Fraction of prompt fission power applied directly to moderator. (\(0.0 \leq\) PROMHEAT \(\leq 1.0\)) \\
\hline DECAHEAT & Fraction of decay power applied directly to moderator. \((0.0 \leq\) DECAHEAT \(\leq\) 1.0) \\
\hline WTBYPASS & Fraction of the moderator heating that appears in the bypass. \((0.0 \leq\) WTBYPASS \(\leq 1.0\)) \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) NZPWZ, NZPWI, NFBPWT, NRPWR, NRPWI
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline NZPWZ & \begin{tabular}{l}
Number of axial locations defining the axial-power shape (NZPWZ \(=2\)); if \\
NZPWZ \(<2\) is input, NZPWZ is redefined to be NZHTSTR or 0 if NZHTSTR \\
\(=0\) (NZHTSTR is Word 1 on Card Number 2 of HTSTR input) and Card Set
\end{tabular} \\
& \(\mathbf{2 7}\) (array ZPWZT) is not input.
\end{tabular}

Card Number 11. (Format 5I14) NZPWZ, NZPWI, NFBPWT, NRPWR, NRPWI (Continued)
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline NZPWI & \begin{tabular}{l}
Axial-power shape integration option for the heat-transfer calculation. \\
\(-1=\) histogram with step changes at the axial locations defined by Card Set 27 (array ZPWZT); \\
\(0=\) histogram with step changes midway between the axial locations defined by ZPWZT; \\
\(1=\) trapezoidal integration [with linear variation between the axialpower shape densities defined by Card Set 29 (array ZPWTB) at the axial locations defined by ZPWZT].
\end{tabular} \\
\hline NFBPWT & Option for replacing the radial, axial, and/or horizontal-plane power shapes with another user-defined shape for volume averaging the reactivity-feedback parameters over the core region. (Add 1 for defining radial (if HSCYL=1) or thickness (if HSCYL=0) shape, 2 for defining an axial shape, and 4 for defining \(\mathrm{a}(\mathrm{r}, \theta)\) or \((\mathrm{x}, \mathrm{y})\) plane shape. For example, if radial and axial shapes are to be defined, a value of 3 (sum of 1 and 2) will be input). \\
\hline NRPWR & Number of radial (if HSCYL=1) or thickness (if HSCYL=0) locations defining the 2 D axial-r or axial-x power shape if IPWRAD \(=1\) (Word 1 on Card Number 10) and NRPWR \(>1\); if IPWRAD \(=1\) and NRPWR \(<2\), the same definition applies and NRPWR is redefined to be NODES (Word 2 on Card Number 9 of input for component number HTNID), array RPWRT (Card Set 28) is not input, and array RADRD (Card Set 41 of input for component number HTNID) defines array RPWRT. If IPWRAD \(=0\), a 1 D axial power shape and a 1D radial or Cartesian power shape are input, NRPWR is redefined by TRACE to be 1 , and array RPWRT is not input. \\
\hline NRPWI & \begin{tabular}{l}
Radial (if HSCYL=1) or thickness (if HSCYL=0) power-shape integration option for the heat-transfer calculation when IPWRAD \(=1\) (Word 1 on Card Number 10). \\
\(-1=\) histogram with step changes at the radial or thickness locations defined by array RPWRT (Card Set 28); \\
\(0=\) histogram with step changes midway between the radial or thickness locations defined by array RPWRT; \\
\(1=\) trapezoidal integration with linear variation between the radial or Cartesian geometry power-shape densities defined by array ZPWTB (Card Set 29) at the radial or thickness locations defined by array RPWRT.
\end{tabular} \\
\hline
\end{tabular}

Card Number 12. (Format 5E14) REACT, TNEUT, RPWOFF, RRPWMX, RPWSCL
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline REACT & Initial programmed reactivity (-) (IRPWTY \(=1,2,4,11,12,14\)) or tripinitiated programmed reactivity \((-)\left(\right.\) IRPWTY \(=3\) or 13) \(\left(\right.\) REACT \(=\rho_{\text {PROG }}=\) \(\left(\mathrm{K}_{\text {eff }}-1\right) \mathrm{K}_{\text {eff }}{ }^{-1}\), where \(\mathrm{K}_{\text {eff }}\) is the reactor-multiplication constant; both \(\rho_{\text {PROG }}\) and \(K_{\text {eff }}\) have no units). \\
\hline TNEUT & The prompt-neutron lifetime (s) (TNEUT \(=0.0 \mathrm{~s}\) defaults internally to TNEUT \(=1.625 \times 10^{-5} \mathrm{~s}\)). \\
\hline RPWOFF & Programmed reactivity (- (IRPWTY \(=3,4,13,14\)] or reactor-core power (W, \(\mathrm{Btu} / \mathrm{hr}\)) (IRPWTY \(=7\) or 17) when the reactivity/power controlling trip is OFF after being ON; the last value when the trip was ON is held constant when RPWOFF \(=-1.0 \times 10^{19} \mathrm{~W}\left(-3.4121 \times 10^{19} \mathrm{Btu} / \mathrm{hr}\right)\). \\
\hline RRPWMX & The maximum rate of change of programmed reactivity (\(1 / \mathrm{s}\)) or reactor power [W/s, (Btu/hr)/s]. \\
\hline RPWSCL & Reactivity-power table's scale factor for programmed reactivity (-) or reactorcore power \((-)\). The dependent variable in the table Card Set 32 (array RPWTBR or RPWTBP) is multiplied by RPWSCL to obtain its absolute value of programmed reactivity (-) or reactor-core power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)). \\
\hline
\end{tabular}

Card Number 13. (Format 4E14.4) RPOWRI, ZPWIN, ZPWOFF, RZPWMX
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline RPOWRI & \begin{tabular}{l}
Initial total reactor-core power (W, Btu/hr) of the average HTSTR elements \\
linked to this POWER component.
\end{tabular} \\
\hline ZPWIN & \begin{tabular}{l}
The axial-power-shape table's abscissa-coordinate variable value \(\left(^{*}\right)\) \\
corresponding to the initial axial-power shape.
\end{tabular} \\
\hline ZPWOFF & \begin{tabular}{l}
The axial-power-shape table's abscissa-coordinate variable value \(\left(^{*}\right)\) \\
corresponding to the axial-power shape to be used when the axial-power-shape \\
table's controlling trip is OFF after being ON; use the last evaluated axial- \\
power shape when the trip was ON when ZPWOFF \(=-1.0 \times 10^{19}\left(^{*}\right)\).
\end{tabular} \\
\hline RZPWMX & \begin{tabular}{l}
The maximum rate of change of any z-location value in the axial-power shape \\
\((1 / \mathrm{s})\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 14. (Format 4E14.4) EXTSOU, PLDR, PDRAT, FUCRAC.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline EXTSOU & \begin{tabular}{l}
The fission power (W, Btu/hr) produced by external source neutrons in the \\
reactor core (used only when the point-reactor kinetics equations are \\
evaluated: IRPWTY =1, 2, 3, 4, 11, 12, 13, or 14).
\end{tabular} \\
\hline PLDR & \begin{tabular}{l}
Pellet-dish radius (\(\mathrm{m}, \mathrm{ft}\)) [no calculation of pellet dishing is performed if \\
PLDR \(=0.0 \mathrm{~m}(0.0 \mathrm{ft})]\) (currently not used in subroutine FRODN).
\end{tabular} \\
\hline PDRAT & \begin{tabular}{l}
Element pitch-to-diameter (if hscyl=1) or element pitch-to-thickness ratio (if \\
hscyl=0) (-) (currently not used in subroutines CHEN and CHF).
\end{tabular} \\
\hline FUCRAC & \begin{tabular}{l}
Fraction of the fuel \((-)\) which is not cracked [used only when NFCI = 1 (Word \\
2 on Card Number 4 of HTSTR input)].
\end{tabular} \\
\hline
\end{tabular}

Note: If reactivity feedback is not evaluated, i.e., when IRPWTY \(<11\) (Word 1 on Card Number 4), do not input Card Number 15 to Card Number 21.

Card Number 15. (Format 5I14) (IRCJTB(I, 1), \(\mathrm{I}=(1,4)\)), \(\operatorname{IBU}(1)\).
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: This card defines the fuel-temperature reactivity-coefficient table. } \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline IRCJTB(1,1) & \begin{tabular}{l}
The number of fuel-temperature \(\mathrm{T}_{\mathrm{f}}\)-dependent entries in the fuel temperature \\
reactivity-coefficient table.
\end{tabular} \\
\hline IRCJTB(2,1) & \begin{tabular}{l}
The number coolant-temperature \(\mathrm{T}_{\mathrm{c}}\)-dependent entries in the fuel \\
temperature reactivity-coefficient table.
\end{tabular} \\
\hline IRCJTB(3,1) & \begin{tabular}{l}
The number of gas volume-fraction \(\alpha\)-dependent entries in the fuel \\
temperature reactivity-coefficient table.
\end{tabular} \\
\hline IRCJTB(4,1) & \begin{tabular}{l}
The number of solute-mass \(\mathrm{B}_{\mathrm{r}}\) or \(\mathrm{B}_{\mathrm{m}}\)-dependent entries in the fuel \\
temperature reactivity-coefficient table.
\end{tabular} \\
\hline
\end{tabular}

Card Number 15. (Format 5I14) (IRCJTB(I,1), I = (1, 4)), IBU(1). (Continued)
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline IBU(1) & \begin{tabular}{l}
The solute-units definition index for the fuel temperature reactivity coefficient:
\[
\begin{aligned}
& \operatorname{IBU}(J)=-2 \text { if } x=B_{r} \text { and } B=B_{r} \\
& \operatorname{IBU}(J)=-1 \text { if } x=B_{r} \text { and } B=B_{m} \\
& \operatorname{IBU}(J)=0 \text { if } x=B_{m} \text { and } B=B_{r} \\
& \operatorname{IBU}(J)=1 \text { if } x=B_{m} \text { and } B=B_{m}
\end{aligned}
\] \\
where \(\partial \mathrm{K}_{\text {eff }} / \partial \mathrm{x}=\mathrm{fcn}\left(\mathrm{T}_{\mathrm{f}}, \mathrm{T}_{\mathrm{c}}, \alpha, \mathrm{B}\right)\). The two solute-mass concentrations are: \(B_{m}\) density which is the mass of solute in the coolant-channel volume \((\mathrm{kg} /\) \(\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\)) and \(\mathrm{B}_{\mathrm{r}}\) ratio which is the parts solute mass per million parts liquid-coolant mass (ppm).
\end{tabular} \\
\hline
\end{tabular}

Card Number 16. (Format 5I14) (IRCJTB(I,2), \(I=(1,4)\)), \(\operatorname{IBU}(2)\)
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline IRCJTB(1,2) & The number of fuel-temperature \(\mathrm{T}_{\mathrm{f}}\)-dependent entries in the coolant temperature reactivity-coefficient table. \\
\hline IRCJTB(2,2) & The number coolant-temperature \(\mathrm{T}_{\mathrm{c}}\)-dependent entries in the coolant temperature reactivity-coefficient table. \\
\hline IRCJTB(3,2) & The number of gas volume-fraction \(\alpha\)-dependent entries in the coolant temperature reactivity-coefficient table. \\
\hline IRCJTB \((4,2)\) & The number of solute-mass \(B_{r}\) or \(B_{m}\)-dependent entries in the coolant temperature reactivity-coefficient table. \\
\hline IBU(2) & \begin{tabular}{l}
The solute-units definition index for the coolant temperature reactivity coefficient:
\[
\begin{aligned}
& \operatorname{IBU}(J)=-2 \text { if } x=B_{r} \text { and } B=B_{r}, \\
& \operatorname{IBU}(J)=-1 \text { if } x=B_{r} \text { and } B=B_{m}, \\
& \operatorname{IBU}(J)=0 \text { if } x=B_{m} \text { and } B=B_{r}, \\
& \operatorname{IBU}(J)=1 \text { if } x=B_{m} \text { and } B=B_{m},
\end{aligned}
\] \\
where \(\partial \mathrm{K}_{\text {eff }} / \partial \mathrm{x}=\mathrm{fcn}\left(\mathrm{T}_{\mathrm{f}}, \mathrm{T}_{\mathrm{c}}, \alpha, \mathrm{B}\right)\). The two solute-mass concentrations are: \(B_{m}\) density which is the mass of solute in the coolant-channel volume \(\left(\mathrm{kg} / \mathrm{m}^{3}\right.\), \(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\)) and \(\mathrm{B}_{\mathrm{r}}\) ratio which is the parts solute mass per million parts liquidcoolant mass (ppm).
\end{tabular} \\
\hline
\end{tabular}

Card Number 17. (Format 5I14) (IRCJTB(I,3), I = (1, 4)), IBU(3)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: This card defines the gas volume-fraction/moderator density reactivity-coefficient table.} \\
\hline Variable & Description \\
\hline \(\operatorname{IRCJTB}(1,3)\) & The number of fuel-temperature \(\mathrm{T}_{\mathrm{f}}\)-dependent entries in the gas volume fraction/moderator density reactivity-coefficient table. \\
\hline IRCJTB(2,3) & The number coolant-temperature \(\mathrm{T}_{\mathrm{c}}\)-dependent entries in the gas volume fraction/moderator density reactivity-coefficient table. \\
\hline IRCJTB \((3,3)\) & The number of gas volume-fraction \(\alpha\)-dependent entries in the gas volume fraction/moderator density reactivity-coefficient table [1_ IRCJTB \((3,3)]\). \\
\hline \(\operatorname{IRCJTB}(4,3)\) & The number of solute-mass \(\mathrm{B}_{\mathrm{r}}\) or \(\mathrm{B}_{\mathrm{m}}\)-dependent entries in the gas volume fraction/moderator density reactivity-coefficient table [1_IRCJTB \((4,3)]\). \\
\hline IBU(3) & \begin{tabular}{l}
The solute-units definition index for the Jth reactivity coefficient:
\[
\begin{aligned}
& \operatorname{IBU}(J)=-2 \text { if } x=B_{r} \text { and } B=B_{r} \\
& \operatorname{IBU}(J)=-1 \text { if } x=B_{r} \text { and } B=B_{m}, \\
& \operatorname{IBU}(J)=0 \text { if } x=B_{m} \text { and } B=B_{r} \\
& \operatorname{IBU}(J)=1 \text { if } x=B_{m} \text { and } B=B_{m},
\end{aligned}
\] \\
where \(\partial \mathrm{K}_{\text {eff }} / \partial \mathrm{x}=\mathrm{fcn}\left(\mathrm{T}_{\mathrm{f}}, \mathrm{T}_{\mathrm{c}}, \alpha, \mathrm{B}\right)\). The two solute-mass concentrations are: \(\mathrm{B}_{\mathrm{m}}\) density which is the mass of solute in the coolant-channel volume \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} /\right.\) \(\mathrm{ft}^{3}\)) and \(\mathrm{B}_{\mathrm{r}}\) ratio which is the parts solute mass per million parts liquid-coolant mass (ppm).
\end{tabular} \\
\hline
\end{tabular}

Card Number 18. (Format 5I14) (IRCJTB(I,4), I \(=(1,4)\)), IBU(4)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: This card defines the solute-mass concentration reactivity-coefficient table. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline IRCJTB(1,4) & \begin{tabular}{l}
The number of fuel-temperature \(T_{\mathrm{f}}\)-dependent entries in the solute-mass \\
concentration reactivity-coefficient table.
\end{tabular} \\
\hline IRCJTB(2,4) & \begin{tabular}{l}
The number coolant-temperature \(\mathrm{T}_{\mathrm{c}}\)-dependent entries in the solute-mass \\
concentration reactivity-coefficient table.
\end{tabular} \\
\hline IRCJTB(3,4) & \begin{tabular}{l}
The number of gas volume-fraction \(\alpha\)-dependent entries in the solute-mass \\
concentration reactivity-coefficient table.
\end{tabular} \\
\hline
\end{tabular}

Card Number 18. (Format 5I14) (IRCJTB(I,4), I = (1, 4)), IBU(4) (Continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: This card defines the solute-mass concentration reactivity-coefficient table.} \\
\hline Variable & Description \\
\hline IRCJTB \((4,4)\) & The number of solute-mass \(\mathrm{B}_{\mathrm{r}}\) or \(\mathrm{B}_{\mathrm{m}}\)-dependent entries in the solute-mass concentration reactivity-coefficient table. \\
\hline IBU(4) & \begin{tabular}{l}
The solute-units definition index for the Jth reactivity coefficient:
\[
\begin{aligned}
& \operatorname{IBU}(J)=-2 \text { if } x=B_{r} \text { and } B=B_{r} \\
& \operatorname{IBU}(J)=-1 \text { if } x=B_{r} \text { and } B=B_{m}, \\
& \operatorname{IBU}(J)=0 \text { if } x=B_{m} \text { and } B=B_{r} \\
& \operatorname{IBU}(J)=1 \text { if } x=B_{m} \text { and } B=B_{m},
\end{aligned}
\] \\
where \(\partial \mathrm{K}_{\text {eff }} / \partial \mathrm{x}=\mathrm{fcn}\left(\mathrm{T}_{\mathrm{f}}, \mathrm{T}_{\mathrm{c}}, \alpha, \mathrm{B}\right)\). The two solute-mass concentrations are: \(\mathrm{B}_{\mathrm{m}}\) density which is the mass of solute in the coolant-channel volume \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} /\right.\) \(\mathrm{ft}^{3}\)) and \(\mathrm{B}_{\mathrm{r}}\) ratio which is the parts solute mass per million parts liquid-coolant mass (ppm).
\end{tabular} \\
\hline
\end{tabular}

Card Number 19. (Format 3I14) (IFBTYP(J), \(\mathrm{J}=(1,3)\))
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If NAMELIST variable R5fdbk \(=0\), do not input this Card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline IFBTYP(1) & \begin{tabular}{l}
Units definition index for the dependent variable fuel temperature. (For now, \\
only IFBTYP(1) = 0 is allowed)
\end{tabular} \\
\hline IFBTYP(2) & \begin{tabular}{l}
Units definition index for the dependent variable moderator temperature. \\
IFBTYP(2) \(=0\) is used to define void-weighted moderator temperature. \\
IFBTYP(2) = 1 is used to define liquid moderator temperature.
\end{tabular} \\
\hline IFBTYP(3) & \begin{tabular}{l}
Units definition index for the dependent variable moderator density. \\
IFBTYP(3) \(=0\) is used to define void fraction. \\
IFBTYP(3) \(=1\) is used to define void-weighted moderator density.
\end{tabular} \\
\hline
\end{tabular}

Card Number 20. (Format 5I14) IRCJFM(J), \(\mathrm{J}=(1,4)\), ISNOTB
\begin{tabular}{|c|c|}
\hline Note: & \begin{tabular}{l}
The reactivity-coefficient type form numbers are defined as follows:
\[
\begin{aligned}
& \operatorname{IRCJFM}(\mathrm{J})=0 \text { for } \partial \mathrm{K}_{\text {eff }} / \partial \mathrm{x}, \\
& \operatorname{IRCJFM}(\mathrm{~J})=1 \text { for }\left(1 / \mathrm{K}_{\text {eff }} \cdot \partial \mathrm{K}_{\text {eff }} / \partial \mathrm{x},\right. \\
& \operatorname{IRCJFM}(\mathrm{J})=2 \text { for } \mathrm{x} \partial \mathrm{~K}_{\text {eff }} / \partial \mathrm{x}, \text { and } \\
& \operatorname{IRCJFM}(\mathrm{J})=3 \text { for }\left(\mathrm{x} / \mathrm{K}_{\text {eff }} \cdot \partial \mathrm{K}_{\text {eff }} / \partial \mathrm{x},\right.
\end{aligned}
\] \\
where \(\mathrm{x}=\mathrm{T}_{\mathrm{f}}\) for \(\mathrm{J}=1, \mathrm{x}=\mathrm{T}_{\mathrm{c}}\) for \(\mathrm{J}=2, \mathrm{x}=\alpha\) for \(\mathrm{J}=3\), and \(\mathrm{x}=\mathrm{B}_{\mathrm{m}}\) [when IBU(4) \(=(0,1)]\) or \(x=B_{r}[\) when \(\operatorname{IBU}(4)=(-2,-1)]\) for \(J=4\).
\end{tabular} \\
\hline Variable & Description \\
\hline IRCJFM(1) & Form number for the fuel-temperature reactivity-coefficient type. \\
\hline IRCJFM(2) & Form number for the coolant-temperature reactivity-coefficient type. \\
\hline IRCJFM(3) & Form number for the gas volume-fraction reactivity-coefficient type. \\
\hline IRCJFM(4) & Form number for the solute-mass concentration reactivity-coefficient type. \\
\hline ISNOTB & Option to exclude burnable-poison pin and control-rod boron from the solute reactivity-feedback calculation.
\[
\begin{aligned}
& 0=\text { no (the solute is assumed to be orthoboric acid); } \\
& 1=\text { yes. }
\end{aligned}
\] \\
\hline
\end{tabular}

Card Number 21. (Format 5E14.4) POWEXP, BPP0, BPP1, BCR0, BCR1
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline POWEXP & \begin{tabular}{l}
Exponent value \((-)\) to which the cell values of the power distribution are raised \\
in defining the weighting factor for volume averaging the reactivity-feedback \\
parameters over the powered reactor-core region (suggested value: 2.0\().\)
\end{tabular} \\
\hline BPP0 & \begin{tabular}{l}
Zero-order coefficient \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)\) of the first-order polynomial \(\mathrm{B}_{\mathrm{mBPP}}=\) \\
BPP0 \(+\mathrm{BPP} 1 \times \mathrm{T}_{\mathrm{c}}\) that defines the effective (smeared and shielded) core- \\
averaged concentration of burnable-poison pin boron in the coolant-channel \\
volume.
\end{tabular} \\
\hline BPP1 & \begin{tabular}{l}
First-order coefficient \(\left[\mathrm{kg} /\left(\mathrm{m}^{3} \mathrm{~K}\right), \mathrm{lb}_{\mathrm{m}} /\left(\mathrm{ft}^{3}{ }^{\circ} \mathrm{F}\right)\right]\) of the first-order polynomial \\
\(\mathrm{B}_{\mathrm{mBPP}}=\mathrm{BPP} 0+\mathrm{BPP} 1 \mathrm{x} \mathrm{T}_{\mathrm{c}}\) that defines the effective (smeared and shielded) \\
core-averaged concentration of burnable-poison pin boron in the coolant- \\
channel volume. \(\mathrm{T}_{\mathrm{c}}\) is the core-averaged coolant temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 21. (Format 5E14.4) POWEXP, BPP0, BPP1, BCR0, BCR1 (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline BCR0 & \begin{tabular}{l}
Zero-order coefficient \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)\) of the first-order polynomial \(\mathrm{B}_{\mathrm{mBCR}}=\) \\
BCR0 \(+\mathrm{BCR} 1 \times \rho_{\mathrm{PROG}}\) that defines the effective (smeared and shielded) core- \\
averaged concentration of control-rod pin boron in the coolant-channel volume.
\end{tabular} \\
\hline BCR1 & \begin{tabular}{l}
First-order coefficient \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)\) of the first-order polynomial \(\mathrm{B}_{\mathrm{mBCR}}=\) \\
\(\mathrm{BCR} 0+\mathrm{BCR} 1 \times \rho_{\mathrm{PROG}}\) that defines the effective (smeared and shielded) core- \\
averaged concentration of control-rod pin boron in the coolant-channel volume. \\
\(\rho_{\text {PROG }}\) is programmed reactivity and has no units.
\end{tabular} \\
\hline
\end{tabular}

\section*{POWER Array Cards.}

Use LOAD format. Each array has its element values defined by a Card Set of one or more cards.
In the following array cards, dimension NODES refers to the value of NODES for each of the HTSTR components linked to this POWER component. If the radial and axial noding and material IDs for each of the HS components linked to this POWER component are the same, then only one RDPWR and RS array must be input for this POWER component. If there is any variation for the radial and axial noding or for the material IDs for the HTSTR components linked to this POWER component, then the RDPWR and RS arrays must be repeated for each of the HS components linked to this POWER component.
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If IPWRAD = 1 (Word 1 on Card Number 10) or CHANPOW \(=1\) (Word 2 on Card Number 2), do not input array RDPWR.} \\
\hline 22 & RDPWR & NODES & Relative radial (if HSCYL=1) or thickness (if HSCYL \(=0\)) power-density distribution \((-)\) at the node locations defined by array RADRD (Card Set 41 of input for HTSTR). If there is variation in the HTSTR component radial or axial noding or material IDs associated with this POWER component, then this array input must be input for each of the HTSTR components associated with this POWER component. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NFBPWT (Word 3 on Card Number 11) is 0 , do not input array RS. If CHANPOW = 1 (Word 2 on Card Number 2), do not input array RS or array CPOWR} \\
\hline 23 & RS & NODES & Relative radial (if HSCYL=1) or thickness (if HSCYL=0) power-density distribution (-) at the node locations defined by array RADRD that will be used to volume average the reactivity-feedback parameters over the powered-core region. If there is variation in the HTSTR component radial or axial noding or material IDs associated with this POWER component, then this array must be input for each of the HTSTR components associated with this POWER component. \\
\hline 24 & CPOWR & NUMPWR & Relative power-density distribution (-) in the average (power) element of each of the NUMPWR HTSTR elements linked to the POWER component, and coupled by heat-transfer to the (\(\mathrm{r}, \theta\)) or (\(\mathrm{x}, \mathrm{y}\)) mesh cells of a VESSEL-component level or to one or more 1D hydraulic components. \\
\hline \multicolumn{4}{|r|}{Note: If NFBPWT (Word 3 on Card Number 11) is less than 4 or CHANPOW \(=1\) (Word 2 on Card Number 2), do not input array HS.} \\
\hline 25 & HS & NUMPWR & Relative power-density distribution (-) in the average (power) element of each of the HTSTR elements linked to the POWER component, and coupled by heat-transfer to the \((\mathrm{r}, \theta)\) or \((\mathrm{x}, \mathrm{y})\) mesh cell of a VESSEL-component level or to one or more 1D hydraulic components. This will be used to volume average the reactivity-feedback parameters over the powered-core region. \\
\hline \multicolumn{4}{|r|}{Note: If CHANPOW = 1 (Word 2 on Card Number 2), do not input array RPFK. Input an RPKF card for each of the NUMPWR components linked to this POWER component, which has NHOT(i) \(>0\)} \\
\hline 26 & RPKF & NHOT(i), where \(\mathrm{i}=1\) to NUMPWR. & Power-peaking factors (relative to the average (power) HTSTR element) for each of the NHOT(i) supplemental elements. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NZPWZ < 2 (Word 1 on Card Number 11) from input or NZPWTB \(=0\) (Word 3 on Card Number 9), do not input array ZPWZT.} \\
\hline 27 & ZPWZT & NZPWZ & The axial locations (\(\mathrm{m}, \mathrm{ft}\)) where the axial-power shape's relative power densities are defined [define ZPWZT \((1)=\) Z(1) and ZPWZT(NZPWZ) \(=\) Z(NZHTSTR) in order to have the power distribution span the axial range over which the HTSTR-element node rows are defined. If there is variation in the HS component radial or axial noding or material IDs associated with this POWER component, then this array input must be input for each of the HS components associated with this POWER component. \\
\hline \multicolumn{4}{|r|}{Note: If IPWRAD \(=0\) (Word 1 on Card Number 10) or NRPWR \(<2\) (Word 4 on Card Number 11) or NZPWTB = 0 (Word 3 on Card Number 9), do not input array RPWRT.} \\
\hline 28 & RPWRT & NRPWR & The radial (if HSCYL=1) or thickness (if HSCYL \(=0\)) locations (\(\mathrm{m}, \mathrm{ft}\)) where the power shape's relative power densities are defined [define \(\operatorname{RPWRT}(1)=\operatorname{RADRD}(1)\) and \(\operatorname{RPWRT}(N R P W R)=\) RADRD(NODES) in order to have the power distribution span the radial or Cartesian range over which the HTSTR-element node rows are defined (Card Set 41, array RADRD)].If there is variation in the HS component radial or axial noding or material IDs associated with this POWER component, then this array input must be input for each of the HS components associated with this POWER component. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NZPWTB \(=0\) (Word 3 on Card Number 9), do not input array ZPWTB.} \\
\hline 29 & ZPWTB & \begin{tabular}{l}
(1+NZPWZ \\
* NRPWR) * \\
|NZPWTB| \\
where \\
NZPWZ \\
is NZHTSTR \\
if \\
NZPWZ < 2 \\
\& NZPWI \(=0\), \\
and \\
NZPWZ= \\
NZHTSTR+1 \\
if \\
NZPWZ<2 \\
\& NZPWI is not 0 .
\end{tabular} & One-dimensional axial (if IPWRAD \(=0\), Word 1 on Card Number 10) or 2D axial-r or axial-x (if IPWRAD = 1) power-shape vs independent-variable form table (\({ }^{*},-\)). Input |NZPWTB| table-defining data pairs having the following form [independentvariable form defined by IZPWSV (Word 2 on Card Number 9), NZPWZ x NRPWR (Words 1 and 4 on Card Number 11) power-density values]. NRPWR \(=1\) when IPWRAD \(=0\). NZPWTB \(=1\) and the power-density values are real values of the signal-variable or control-block identification numbers that TRACE uses to define the actual power-density values when IPWDEP \(= \pm 1\) (Word 2 on Card Number 10). The relative power densities defining the power shape are specified at the NZPWZ axial locations of the ZPWZT array defined by Card Set 27 and at the NRPWR radial (if HSCYL=1) or thickness (if HSCYL=0) locations of the RPWRT array defined by Card Set 28. There are \(\mid\) NZPWTB| power shapes being input with an independent-variable value and NZPWZ x NRPWR power-density values for each shape. If there is variation in the HS component radial or axial noding or material IDs associated with this POWER component, then this array input must be input for each of the HS components associated with this POWER component. \\
\hline \multicolumn{4}{|r|}{Note: If NZPWTB \(=0\) (Word 3 on Card Number 9) or NZPWRF \(=0\) (Word 5 on Card Number 9), do not input array ZPWRF.} \\
\hline 30 & ZPWRF & \begin{tabular}{l}
\[
2 *
\] \\
NZPWRF
\end{tabular} & Rate-factor table (*,-) for the axial-power-shape table's independent variable. Input |NZPWRF| (Word 5 on Card Number 9) table-defining data pairs having the following form [independentvariable form defined by NZPWSV (Word 4 on Card Number 9), rate factor]. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If IRPWTY = 1, 5, 11, or 15 (Word 1 on Card Number 4) or NFBPWT = 0,1 , 4, or 5 (Word 3 on Card Number 11), do not input array ZS.} \\
\hline 31 & ZS & NZPWZ where NZPWZ is NZHTSTR if NZPWZ < 2 is input & Relative axial-power-shape density (-) used to volume average the reactivity-feedback parameters over the powered-core region. If IPWRAD \(=1\) (Word 4 on Card Number 10) and array ZS is input, array RS (Card Set 23) must be input as well. If there is variation in the HS component radial or axial noding or material IDs associated with this POWER component, then this array input must be input for each of the HS components associated with this POWER component. \\
\hline \multicolumn{4}{|r|}{Note: If IRPWTY \(=1,5,11\), or 15 (Word 1 on Card Number 4) or NRPWTB \(=0\) (Word 3 on Card Number 8), do not input array RPWTBR or RPWTBP.} \\
\hline 32 & RPWTB
R or
RPWTB
P & 2*|NRPWTB| & Programmed-reactivity (-) or reactor-core power (W or \(\mathrm{Btu} / \mathrm{hr}\)) vs independent-variable form (\({ }^{*}\)) table \(\left[\left({ }^{*},-\right.\right.\) or W) \(),\left({ }^{*},-\right.\) or Btu/hr)]. Input |NRPWTB| (Word 3 on Card Number 8) table-defining data pairs having the following form [independentvariable form defined by IRPWSV (Word 2 on Card Number 8), programmed reactivity or reactor power as defined by IRPWTY]. \\
\hline \multicolumn{4}{|r|}{Note: If NRPWTB \(=0\) (Word 3 on Card Number 8) or NRPWRF \(=0\) (Word 5 on Card Number 8), do not input array RPWRF.} \\
\hline 33 & RPWRF & \begin{tabular}{l}
\[
2 *
\] \\
|NRPWRF|
\end{tabular} & Rate-factor table (*,-) for the programmed-reactivity or reactor-power table's independent variable. Input |NRPWRF| (Word 5 on Card Number 8) tabledefining data pairs having the following form [independent-variable form defined by NRPWSV (Words 4 on Card Number 8), rate factor to be applied to the programmed-reactivity or reactorpower table's independent variable]. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{\begin{tabular}{l}
Note: If IRPWTY < 11 (Word 1 on Card Number 4), do not input arrays RCTF, RCTC, RCAL, and RCBM. \\
See User's Guide Volume 2 - Chapter 2 for detailed explanations and examples of the reactivity-coefficient tables RCTF, RCTC, RCAL, and RCBM.
\end{tabular}} \\
\hline 34 & RCTF & \begin{tabular}{l}
\(\operatorname{IRCJTB}(1,1)\) \(+\) \\
\(\operatorname{IRCJTB}(2,1)\) \(+\) \\
\(\operatorname{IRCJTB}(3,1)\) \(+\) \\
\(\operatorname{IRCJTB}(4,1)\) \(+\) \\
(IRCJTB \((1,1)\) \\
IRCJTB \((2,1)\) \\
\(\operatorname{IRCJTB}(3,1)\) \\
* \\
\(\operatorname{IRCJTB}(4,1))\)
\end{tabular} & The fuel-temperature reactivity-coefficient table. Input \(\operatorname{IRCJTB}(1,1) \mathrm{T}_{\mathrm{f}}\) values, \(\operatorname{IRCJTB}(2,1) \mathrm{T}_{\mathrm{c}}\) values, \(\operatorname{IRCJTB}(3,1) \alpha\) values, \(\operatorname{IRCJTB}(4,1) \mathrm{B}_{\mathrm{r}}\) or \(\mathrm{B}_{\mathrm{m}}\) values, and \(\operatorname{IRCJTB}(1,1) \times \operatorname{IRCJTB}(2,1) x\) \(\operatorname{IRCJTB}(3,1) \times \operatorname{IRCJTB}(4,1)\) fuel-temperature reactivity-coefficient values that define the four dimensionally dependent table. (Note: This table and the following three tables are not entered with two-value pairs as is done for the one dimensionally dependent tables.). \\
\hline 35 & RCTC & \begin{tabular}{l}
\(\operatorname{IRCJTB}(1,2)\) \(+\) \\
IRCJTB(2,2) \(+\) \\
\(\operatorname{IRCJTB}(3,2)\) \(+\) \\
\(\operatorname{IRCJTB}(4,2)\) \(+\) \\
(IRCJTB \((1,2)\) \\
IRCJTB \((2,2)\) \\
\(\operatorname{IRCJTB}(3,2)\) \\
IRCJTB(4,2))
\end{tabular} & The coolant-temperature reactivity-coefficient table. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 36 & RCAL & \(\operatorname{IRCJTB}(1,3)\)
+
\(\operatorname{IRCJTB}(2,3)\)
+
\(\operatorname{IRCJTB}(3,3)\)
+
\(\operatorname{IRCJTB}(4,3)\)
+
\((\operatorname{IRCJTB}(1,3)\)
\(*\)
\(\operatorname{IRCJTB}(2,3)\)
\(*\)
\(\operatorname{IRCJTB}(3,3)\)
\(*\)
IRCJTB(4,3)) & The gas volume-fraction reactivity-coefficient table. \\
\hline 37 & RCBM & \[
\begin{aligned}
& \hline \text { IRCJTB(1,4) } \\
& + \\
& \text { IRCJTB(2,4) } \\
& + \\
& \text { IRCJTB(3,4) } \\
& + \\
& \text { IRCJTB(4,4) } \\
& + \\
& (\operatorname{IRCJTB}(1,4) \\
& * \\
& \text { IRCJTB(2,4) } \\
& * \\
& \text { IRCJTB(3,4) } \\
& * \\
& \text { IRCJTB(4,4)) }
\end{aligned}
\] & The solute-mass concentration reactivity-coefficient table. \\
\hline \multicolumn{4}{|r|}{\begin{tabular}{l}
Note: If IRPWTY \(=5,6,7,15,16\), or 17 (Word 1 on Card Number 4), do not input arrays BETA, LAMDA, CDGN, LAMDH, EDH, CDHN, and PHIST. \\
If NDGX \(=0\) (Word 2 on Card Number 4), do not input arrays BETA and LAMDA. The default 6 -group delayed-neutron constants will be defined internally by TRACE.
\end{tabular}} \\
\hline 38 & BETA & NDGX & The effective delayed-neutron neutron fraction (-). \\
\hline 39 & LAMDA & NDGX & The delayed-neutron decay constant (1/s). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NDGX \(>0\) and NHIST \(=0\) (Words 2 and 5 on Card Number 4) input array CDGN.} \\
\hline 40 & CDGN & NDGX & The delayed-neutron precursor power (W, Btu/hr). \\
\hline & \begin{tabular}{l}
If NDHX arrays LA \\
If NDHX internally \\
If NDHX by TRAC If NDHX internally
\end{tabular} & \begin{tabular}{l}
\(<0\) or NDHX \(=\) MDH and EDH \\
\(=0\), the def by TRACE. \\
\(=69\) or 71, the E.
\[
=-92 \text { or }-94,
\] \\
by TRACE.
\end{tabular} & 69 or 71 (Word 3 on Card Number 4), do not input ult 69 -group decay-heat constants will be defined NS 79 decay-heat constants will be defined internally the ANS 94 decay heat constants will be defined \\
\hline 41 & LAMDH & NDHX & The decay-heat decay constant (1/s). \\
\hline 42 & EDH & NDHX & The effective decay-heat energy fractio \\
\hline \multicolumn{4}{|r|}{Note: If NHIST \(=0\) (Word 5 on Card Number 4), input array CDHN.} \\
\hline 43 & CDHN & NDHX & The decay-heat precursor power (W, Btu/hr). \\
\hline \multicolumn{4}{|r|}{Note: If NHIST \(=0\) or 1 (Word 5 on Card Number 4), do not input array PHIST.} \\
\hline 44 & PHIST & 2 * NHIST & Power-history table [(s,W), (s, Btu/hr)]. Input NHIST (Word 5 on Card Number 4) table-defining data pairs having the following form [time at the start of the transient minus the past time, reactor-core prompt-fission power at that past time]. The first data pair should be for the power level at the start of the transient; that is, the time at the start of the transient minus the past time, which in this case is 0.0 s , with the time difference for subsequent data pairs being positive valued and increasing monotonically for each data pair. \\
\hline \multicolumn{4}{|r|}{\begin{tabular}{l}
Note: If NDHX \(\neq(69,71,-92\), or -94\()\) and NDHX \(>0\) or NHIST \(<1\) (Words 3 and 5 on Card Number 4), do not input arrays FP235AR and FP239AR. \\
It is assumed that FP235AR(i) + FP239AR(i) + FP238AR \((\mathrm{i})=1.0\).
\end{tabular}} \\
\hline 45 & FP235AR & \[
\begin{aligned}
& \max \\
& (1, \text { NHIST-1) }
\end{aligned}
\] & Fraction (-) of fission power associated with \(\mathrm{U}^{235}\) fission during the power-history table interval from i to \(i+1\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 46 & FP239AR & \begin{tabular}{l}
max \\
(1,NHIST-1)
\end{tabular} & Fraction (-) of fission power associated with \(\mathrm{Pu}^{239}\) fission during the power-history table interval from i to \(\mathrm{i}+1\). \\
\hline \multicolumn{4}{|r|}{\begin{tabular}{l}
Note: If NDHX \(\neq(-92\), or -94\()\) and NDHX \(>0\) or NHIST \(<1\) (Words 3 and 5 on Card Number 4), do not input arrays FP238AR and FP241AR. \\
Also, if NAMELIST variable \(\mathrm{R} 5 \mathrm{dh}=0\), do not input arrays FP238AR and FP241AR.
\end{tabular}} \\
\hline 47 & FP238AR & \begin{tabular}{l}
max \\
(1,NHIST-1)
\end{tabular} & Fraction (-) of fission power associated with \(\mathrm{U}^{238}\) fission during the power-history table interval from i to \(\mathrm{i}+1\). \\
\hline 48 & FP241AR & \begin{tabular}{l}
max \\
(1,NHIST-1)
\end{tabular} & Fraction (-) of fission power associated with \(\mathrm{Pu}^{241}\) fission during the power-history table interval from i to \(\mathrm{i}+1\). \\
\hline \multicolumn{4}{|r|}{Note: Input GTBLNUMS if NGTPOW (Word 3 on Card Number 2) \(>0\).} \\
\hline 49 & \[
\begin{aligned}
& \text { GTBLNU } \\
& \text { MS }
\end{aligned}
\] & NGTPOW & General table numbers that will be used to specify the power/reactivity for this POWER component. \\
\hline \multicolumn{4}{|r|}{Note: Input SVIDS if NSVPOW (Word 4 on Card Number 2) \(>0\).} \\
\hline 50 & SVIDS & NSVPOW & Signal variable ids that will be used to specify the power/reactivity for this POWER component. \\
\hline \multicolumn{4}{|r|}{Note: Input CBIDS if NCBPOW (Word 5 on Card Number 2) \(>0\).} \\
\hline 51 & CBIDS & NCBPOW & Control block ids that will be used to specify the power/reactivity for this POWER component. \\
\hline
\end{tabular}

\section*{PRIZER Component Data}

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (PRIZER left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq\) NUM \(\leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{l}
Note: \\
Variable) is more than one.
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EOS & EOS identifier for this component (i.e. "h2o" or "r5h2o", etc.). \\
\hline PHASECHANGE & \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
this component. Input FALSE or false, if phase change is not allowed \\
for this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 4I14) NCELLS, NODES, JUN1, JUN2
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NCELLS & Number of fluid cells in the PRIZER component. \\
\hline NODES & \begin{tabular}{l}
Number of radial heat-transfer nodes in the PRIZER wall. A value of zero \\
specifies no wall heat transfer.
\end{tabular} \\
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
If JUN1 or JUN2 is set to zero, a deadend is created with flow area and \\
velocities are always set to zero.
\end{tabular}} \\
\hline JUN1 & Junction number for the junction adjacent to cell 1. \\
\hline JUN2 & Junction number for the junction adjacent to cell NCELLS (Word 1 on this card). \\
\hline
\end{tabular}

Card Number 4. (Format 2I14,E14.4) ICHF, ICONC, QP3IN
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline ICHF & \begin{tabular}{l}
CHF-calculation option. \\
\(0=\) convection heat transfer only, no boiling heat transfer (i.e. no wall nucleation is allowed although phase change can still occur); \\
\(1=\) CHF from AECL-IPPE CHF Table, no critical quality calculated. \\
\(2=\) CHF from AECL-IPPE CHF Table, critical quality from Biasi correlation. \\
\(3=\) CHF from AECL-IPPE CHF Table, critical quality from CISE-GE correlation.
\end{tabular} \\
\hline ICONC & Solute in the liquid coolant option. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9) when ICONC \(>0\).
\[
\begin{aligned}
& 0=\text { no; } \\
& 1=\text { dissolved solute only; } \\
& 2=\text { both dissolved and plated-out solute. }
\end{aligned}
\] \\
\hline QP3IN & Initial power (W, Btu/hr) deposited in (to) the wall and distributed according to the QPPP array. If QP3IN \(>0.0\), it is the total power to the entire wall. When QP3IN \(<0.0\) the initial power to the wall in each cell is \(|\mathrm{QP} 3 \mathrm{IN}|\), and the negative sign indicates the power to the wall is to be a cell-dependent array of NCELLS (Word 1 on Card Number 2) power values. Each data pair of the power-to-thewall table [for QP3IN \(<0.0\)] has \(1+\) NCELLS values (an independent-variable value and NCELLS power values for cells 1 through NCELLS). When the power-to-the-wall table is not being evaluated, the same power value of \(|\mathrm{QP} 3 \mathrm{IN}|\) or QP3OFF [if QP3OFF \(>-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} / \mathrm{hr}\right)\)] is applied at each of the NCELLS cells. \\
\hline
\end{tabular}

Card Number 5. (Format 5E14.4) RADIN, TH, HOUTL, HOUTV, TOUTL
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility \\
in calculating possible heat losses from the outside of the PRIZER wall. \\
Typically, such heat losses are not important for fast transients or large-break \\
loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set equal \\
to zero. When heat losses are significant, they often can be approximated by a \\
constant HTC temperature for the liquid and gas fluid phases outside the pipe \\
wall.
\end{tabular} \\
\hline Variable & Description \\
\hline \hline RADIN & Inner radius \((\mathrm{m}, \mathrm{ft})\) of the PRIZER wall. \\
\hline
\end{tabular}

Card Number 5. (Format 5E14.4) RADIN, TH, HOUTL, HOUTV, TOUTL (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility \\
in calculating possible heat losses from the outside of the PRIZER wall. \\
Typically, such heat losses are not important for fast transients or large-break \\
loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set equal \\
to zero. When heat losses are significant, they often can be approximated by a \\
constant HTC temperature for the liquid and gas fluid phases outside the pipe \\
wall.
\end{tabular} \\
\hline Variable & Description \\
\hline \hline TH & Wall thickness (m, ft\().\) \\
\hline HOUTL & \begin{tabular}{l}
Heat-transfer coefficient \\
boundary of the PRIZER wall and the liquid outside the PRIZER wall.
\end{tabular} \\
\hline HOUTV & \begin{tabular}{l}
HTC \(\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right.\right.\) hr) \()\) between the outer boundary of the PRIZER wall \\
and gas outside the PRIZER wall.
\end{tabular} \\
\hline TOUTL & Liquid temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) outside the PRIZER wall. \\
\hline
\end{tabular}

Card Number 6. (Format 5E14.4) TOUTV, QHEAT, PSET, DPMAX, ZHTR
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline TOUTV & Gas temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) outside the PRIZER wall. \\
\hline QHEAT & Total heater power \((\mathrm{W}, \mathrm{Btu} / \mathrm{hr})\). \\
\hline PSET & Pressure setpoint \((\mathrm{Pa}, \mathrm{psia})\) for heater/sprayer control. \\
\hline DPMAX & Pressure differential (Pa, psid) at which heater/sprayer has maximum power. \\
\hline ZHTR & Water level (m, ft) for heater cutoff. \\
\hline
\end{tabular}

\section*{PRIZER Array Cards.}

Note: Input each of the following arrays using LOAD format.

All junction variables (dimension NCELLS+1) must match at component interfaces.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 7 & DX & NCELLS & Cell lengths (m, ft). \\
\hline 8 & VOL & NCELLS & Cell volumes (\(\left.\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\). \\
\hline 9 & FA & NCELLS+1 & Cell-edge flow areas (\(\left.\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline \multicolumn{4}{|r|}{Note: Setting FRIC \(>10^{20}\) at a cell edge invokes the steam-separator model (only the gas phase is allowed to flow through the cell interface). Setting FRIC \(<-10^{20}\) invokes the liquid-separator model (only the liquid is allowed to flow through the cell interface). If the reverse additive loss-coefficient option (NFRC1 \(=2\) in the NAMELIST data) is chosen, steam-separator and liquid-separator models may be used separately in each forward and reverse direction.} \\
\hline 10 & FRIC & NCELLS+1 & Additive loss coefficients (-). See NAMELIST variable IKFAC for optional K factors input. \\
\hline \multicolumn{4}{|r|}{Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\).} \\
\hline 11 & FRICR & NCELLS+1 & Additive loss coefficients (-) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. \\
\hline 12 & GRAV or ELEV & NCELLS+1 & Gravity or elevation terms (- or m, ft). GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell i and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cellcentered elevation ELEV input. \\
\hline 13 & HD & NCELLS+1 & Hydraulic diameters (m , ft) (see NAMELIST variable NDIA1 for additional input of heat-transfer diameters). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NDIA \(1 \neq 2\) do not input array HD-HT.} \\
\hline 14 & HD-HT & NCELLS+1 & Heat transfer diameters (m, ft). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}

Note: If NAMELIST variable ICFLOW \(=0\) or 1 do not input array ICFLG. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur..
\begin{tabular}{|c|c|c|c|}
\hline 15 & ICFLG & NCELLS+1 & \begin{tabular}{l}
Cell-edge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline 16 & NFF & NCELLS+1 & \begin{tabular}{l}
Friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE.
\end{tabular} \\
\hline
\end{tabular}

Note: If NCCFL = 0 (Word 5 Main-Data Card 9), do not input array LCCFL.
\begin{tabular}{|l|l|l|l|}
\hline \(\mathbf{1 7}\) & LCCFL & NCELLS+1 & \begin{tabular}{c}
Countercurrent flow limitation option. \\
\(0=\) no countercurrent flow limitation \\
calculation at the cell interface; \\
(the countercurrent flow limitation \\
parameter set number used to evaluate \\
countercurrent flow limitation at the \\
cell interface \([1 \leq \mathrm{N} \leq\) NCCFL (Word \\
5 on Main-Data Card 9)].
\end{tabular} \\
\hline \(\mathbf{1 8}\) & ALP & NCELLS & Initial gas volume fractions (-). \\
\hline \(\mathbf{1 9}\) & VL & NCELLS+1 & Initial liquid velocities (m/s, ft/s). \\
\hline \(\mathbf{2 0}\) & VV & NCELLS+1 & Initial gas velocities (m/s, ft/s). \\
\hline \(\mathbf{2 1}\) & TL & NCELLS & Initial liquid temperatures (K, \(\left.{ }^{\circ} \mathrm{F}\right)\). \\
\hline \(\mathbf{2 2}\) & TV & NCELLS & Initial gas temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline 23 & P & NCELLS & Initial pressures (Pa, psia). \\
\hline 24 & PA & NCELLS & Initial noncondensable-gas partial pressures (Pa , psia). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NOLT1D \(=0\) or USESJC \(>0\), do not input array ILEV} \\
\hline 25 & ILEV & NCELLS & Level tracking flags. ILEV \(=1\) indicates that the two-phase level exists in the current cell. ILEV \(=0\) indicates that the two-phase level does not exist in the current cell. If ILEV \(=-1\), the level tracking calculation will be turned off for this cell. \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFL \(=0\), do not input array WFMFL.} \\
\hline 26 & WFMFL & NCELLS+1 & Wall-friction multiplier factor for the liquid phase \((-)[0.9 \leq\) WFMFL \(\leq 1.1]\). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFV \(=0\), do not input array WFMFV.} \\
\hline 27 & WFMFV & NCELLS+1 & Wall-friction multiplier factor for the gas phase (-) \([0.9 \leq\) WFMFL \(\leq 1.1]\). \\
\hline \multicolumn{4}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input array QPPP.} \\
\hline 28 & QPPP & \begin{tabular}{l}
NODES \(\times\) \\
NCELLS
\end{tabular} & A relative power profile (-) in the PRIZER wall. Input values for cell 1 , node 1 through NODES; then for cell 2 , node 1 through NODES, etc. If the array is filled with the same nonzero constant, a uniform volumetric heat source in the wall results. TRACE internally normalizes the power profile to have a volume-average value of unity (each \(\operatorname{QPPP}(\mathrm{I})\) is normalized to have the value \(\operatorname{QPPP}(\mathrm{I}) \mathrm{x}\) \([\operatorname{VOL}(\mathrm{K})] /[\mathrm{QPPP}(\mathrm{K}) \times \operatorname{VOL}(\mathrm{K})])\). Filling the array with zeros results in no power being deposited in the PRIZER wall regardless of the values of QP3IN, QP3TB, etc. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input array MATID.} \\
\hline 29 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=\) 1. \\
6 = stainless steel, type 304; \\
7 = stainless steel, type 316; \\
\(8=\) stainless steel, type 347; \\
\(9=\) carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input array TW.} \\
\hline 30 & TW & \begin{tabular}{l}
NODES \(\times\) \\
NCELLS
\end{tabular} & Initial wall temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) (input in the same order as QPPP). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC \(=0\) (Word 2 on Card Number 4), do not input array CONC.} \\
\hline 31 & CONC & NCELLS & Initial ratio of solute mass to liquid-coolant mass [kg (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(]\). Requires ISOLUT = 1 (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC \(=0\) or 1 (Word 2 on Card Number 4), do not input array SOLID.} \\
\hline 32 & SOLID & NCELLS & Initial macroscopic density of plated-out solute \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)\). Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 33 & XGNB & NCELLS & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 34 & XLNB & NCELLS & Mass fraction for liquid trace species. \\
\hline
\end{tabular}

\section*{PUMP Component Data}

The pumping action occurs at face 2 in the PUMP except for the special case where NCELLS is set to zero. Setting NCELLS to zero makes a SJC component where-by a control system can be used to specify the liquid flow rate or velocity.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (PUMP left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq \mathrm{NUM} \leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{r}
Note: \\
Variable) is more than one.
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EOS & EOS identifier for this component (i.e. "h2o" or "r5h2o", etc.). \\
\hline PHASECHANGE & \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
vis component. Input FALSE or false, if phase change is not allowed for \\
this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 4I14, E14.4) NCELLS, NODES, JUN1, JUN2, EPSW
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NCELLS & Number of fluid cells in the PUMP component (NCELLS \(\geq 2\)). \\
\hline NODES & \begin{tabular}{l}
Number of radial heat-transfer nodes in the PUMP wall. A value of zero specifies \\
no wall heat transfer.
\end{tabular} \\
\hline JUN1 & Junction number for the junction adjacent to cell 1. \\
\hline
\end{tabular}

Card Number 3. (Format 4I14, E14.4) NCELLS, NODES, JUN1, JUN2, EPSW (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline JUN2 & Junction number for the junction adjacent to cell NCELLS (Word 1 on this Card). \\
\hline EPSW & Wall surface roughness (m, ft). \\
\hline
\end{tabular}

\section*{Card Number 4. (Format I14) NSIDES}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
If NCELLS \(=0\) do not input this card. Input this card only if NAMELIST \\
variable USESJC \(=2\) or 3. This will allow this component to have side \\
junctions.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NSIDES & Number of side junctions connected to this PUMP component. \\
\hline
\end{tabular}

Note: If NSIDES \(>0\) then input the next three cards as sets of 1,2 , or 3 cards per NSIDES. Examples include:

If USESJC \(=2\) and JUNLK (Word 2 on Card Number 5) is \(>0\) only Card Number 5 is needed.

If USESJC \(=2\) and JUNLK is 0 input Card Number 5 and Card Number 6 in pairs.

If USESJC \(=3\) and JUNLK > 0 input Card Number 5 and Card Number 7 in pairs.

If USESJC \(=3\) and JUNLK is 0 input Card Number 5, Card Number 6, and Card Number 7 in sets.

Card Number 5. (Format 5I14) NCLK, JUNLK, NCMPTO, NCLKTO, NLEVTO
\begin{tabular}{|l|l|}
\hline Note: & If NCELLS or NSIDES \(=0\), or USESJC \(=1\) do not input this card. Otherwise \\
input this card for each NSIDES.
\end{tabular}\(|\)\begin{tabular}{c}
Description \\
\hline Variable \\
\hline \hline NCLK
\end{tabular} "From" cell number in the PUMP component. \(\quad\)\begin{tabular}{l}
" \\
\hline
\end{tabular}

Card Number 5. (Format 5I14) NCLK, JUNLK, NCMPTO, NCLKTO, NLEVTO (Continued)
\begin{tabular}{|c|l|}
\hline Note: & \begin{tabular}{l}
If NCELLS or NSIDES \(=0\), or USESJC \(=1\) do not input this card. Otherwise \\
input this card for each NSIDES.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline JUNLK & \begin{tabular}{l}
Junction number. Enter a zero to have the code spawn a Single Junction \\
Component internally. Otherwise enter the junction number here. This same \\
junction number must appear as a VESSEL source junction or a 1D component \\
junction.
\end{tabular} \\
\hline NCMPTO & \begin{tabular}{l}
Component number of "To" component of a leak path. \\
Enter 0 if JUNLK \(\neq 0\).
\end{tabular} \\
\hline NCLKTO & \begin{tabular}{l}
Cell number of "To" cell of a leak path \\
Enter 0 if JUNLK \(\neq 0\).
\end{tabular} \\
\hline NLEVTO & \begin{tabular}{l}
Axial level number of "To" cell of a leak path when "To" component is a \\
VESSEL. Otherwise enter 0. \\
Enter 0 if JUNLK \(\neq 0\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 6. (Format 5E14.4) FALK, CLOS, VLLK, VVLK, DELZLK
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
If NCELLS or NSIDES \(=0\) do not input this card. Input this card only if \\
JUNLK \(=0\). If USESJC \(=2\) or 3, input this card for each NSIDES.
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline FALK & Leak path flow area \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline CLOS & Leak path loss coefficient \\
\hline VLLK & Leak path initial liquid velocity (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)). \\
\hline VVLK & Leak path initial vapor velocity (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)). \\
\hline DELZLK & \begin{tabular}{l}
Elevation difference between center of "From" cell and center of "To" cell \((\mathrm{m}, \mathrm{ft})\). \\
DELZLK \(>0\) when the center of the "From" cell is higher than the center of the \\
"To" cell \\
DELZLK \(<0\) when the center of the "From" cell is lower than the center of the \\
"To" cell
\end{tabular} \\
\hline
\end{tabular}

Card Number 7. (Format E14.4, I14) THETA, IENTRN
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If NCELLS or NSIDES \(=0\), or USESJC \(=1\) or 2 do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline THETA & Angle between the main direction of flow and the flow through the side junction. \\
\hline IENTRN & \begin{tabular}{c}
Offtake-model option. \\
\(0=\) off; \\
\(1=\) on (side-junction mass flow determined using offtake model)
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format 5I14) ICHF, ICONC, IPMPTY, IRP, IPM
\begin{tabular}{|l|c|}
\hline Variable & Description \\
\hline \hline ICHF & \begin{tabular}{c}
CHF-calculation option. \\
\(0=\) convection heat transfer only, no boiling heat transfer (i.e. no wall \\
nucleation is allowed although phase change can still occur); \\
\(1=\) CHF from AECL-IPPE CHF Table, no critical quality calculated. \\
\(2=\) CHF from AECL-IPPE CHF Table, critical quality from Biasi \\
correlation.
\end{tabular} \\
& \begin{tabular}{c}
\(3=\) CHF from AECL-IPPE CHF Table, critical quality from CISE-GE \\
correlation.
\end{tabular} \\
\hline ICONC & \begin{tabular}{c}
Solute in the liquid coolant option. Requires ISOLUT = 1 (Word 3 on Main-Data \\
Card 9) when ICONC \(>0\). \\
\(0=\) no; \\
\(1=\) dissolved solute only; \\
\(2=\) both dissolved and plated-out solute.
\end{tabular} \\
&
\end{tabular}

Card Number 8. (Format 5I14) ICHF, ICONC, IPMPTY, IRP, IPM (Continued)
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline IPMPTY & \begin{tabular}{l}
Pump-type option. \\
\(0=\) pump-impeller interface fluid velocity is specified by Card Set 79 (array PMPTB) when trip IPMPTR is ON and by signal variable or control block NPMPSD (word 5 on Card Number 21) when trip IPMPTR is OFF. \\
1 = pump-impeller rotational speed is specified by Card Set 79 (array PMPTB) when trip IPMPTR is ON and by OMEGAN (word 1 on Card Number 21) or signal variable or control block NPMPSD (word 5 on Card Number 21)] when trip IPMPTR is OFF. \\
2 = pump-impeller rotational speed is calculated from Equation (4-21) when trip IPMPTR (Word 1 on Card Number 11) is set ON and defined by OMEGAN or NPMPSD when trip IPMPTR is OFF. \\
\(3=\) pump motor torque is controlled by the control system. This option requires the pump-motor torque table abscissa-coordinate variable ID number defined by IPMPSV (Word 2 on Card Number 11) and the number of motor torque action table data pairs defined by NPMPMT (Card Number 12). Card Set 81 (array PMPMT) is required for this option. \\
\(10=\) SJC pump where control blocks set the value of liquid and vapor velocity. \\
\(11=\) SJC pump where control blocks set the value of liquid and vapor mass flow rate.
\end{tabular} \\
\hline IRP & Reverse-rotation option (only used for IPMPTY = 2).
\[
\begin{aligned}
& 0=\text { no } ; \\
& 1=\text { yes. }
\end{aligned}
\] \\
\hline IPM & \begin{tabular}{l}
Degradation option. \\
\(0=\) use single-phase homologous curves; \\
1 = use combined single-phase and fully degraded two-phase homologous curves. \\
2 = read in head and torque two-phase degradation multipliers (only for Bingham and Westinghouse pumps. See OPTION, Card Number 23).
\end{tabular} \\
\hline
\end{tabular}

Card Number 9. (Format 2E14.4) ICBVL, ICBVV
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPMPTY \(<10\) do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICBVL & \begin{tabular}{l}
If ipmpty=10, this control block sets the value of the liquid velocity \((\mathrm{m} / \mathrm{s})\) \\
If ipmpty=11
\end{tabular} \\
\hline ICBVV & \begin{tabular}{l}
If ipmpty \(=10\), this control block sets the value of the vapor velocity \((\mathrm{m} / \mathrm{s})\) \\
If ipmpty= \(=11\), this control block sets the value of the vapor mass flow rate \((\mathrm{kg} / \mathrm{s})\)
\end{tabular} \\
\hline
\end{tabular}

Card Number 10. (Format 2E14.4) VLLIM, VVLIM
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPMPTY \(\neq 11\) do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline VLLIM & Bound on absolute value of the velocity associated with the liquid mass flow rate. \\
\hline VVLIM & Bound on absolute value of the velocity associated with the vapor mass flow rate. \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) IPMPTR, IPMPSV, NPMPTB, NPMPSV, NPMPRF
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPMPTY \(\geq 10\) do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPMPTR & \begin{tabular}{l}
The trip ID number that controls the evaluation of the pump-impeller rotational \\
speed (IPMPTR=0 implies a constant pump speed) (|IPMPTR \(\leq 9999\)). If the trip \\
set status is OFF initially, the pump-impeller rotational speed is defined by a \\
signal variable or control block with ID number NPMPSD (Word 5 on Card \\
Number 21) or by a constant pump-impeller rotational speed OMEGAN (Word 1 \\
on Card Number 21 when NPMPSD = 0.
\end{tabular} \\
\hline IPMPSV & \begin{tabular}{l}
The pump-speed or pump-motor torque table abscissa-coordinate variable ID \\
number. IPMPSV defines the independent-variable parameter in the IPMPTY = 1 \\
pump-speed table and IPMPTY=3 pump motorque table. \\
IPMPSV \(>0\) defines the ID number for a signal-variable parameter; \\
IPMPSV < 0 defines the ID number for a control-block output parameter [if \\
IPMPTY = 2 (Word 3 on Card Number 8), input IPMPSV = 0].
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) IPMPTR, IPMPSV, NPMPTB, NPMPSV, NPMPRF (Continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If IPMPTY \(\geq 10\) do not input this card.} \\
\hline Variable & Description \\
\hline NPMPTB & \begin{tabular}{l}
The number of pump-speed table data pairs (defined by the absolute value of NPMPTB). \\
NPMPTB \(>0\) defines the table independent-variable form to be the IPMPSV parameter; \\
NPMPTB \(<0\) defines the table independent-variable form to be the sum of the change in the IPMPSV parameter over each timestep times the trip set-status value ISET during that timestep (when the pump-speed table is trip controlled); NPMPTB \(=0\) defines the pump-impeller rotational speed to be the IPMPSV parameter [if IPMPTY \(=2\) (Word 3 on Card Number 8), input NPMPTB = 0].
\end{tabular} \\
\hline NPMPSV & \begin{tabular}{l}
The rate-factor table abscissa-coordinate variable ID number. NPMPSV defines the independent-variable parameter for the rate factor that is applied to the pumpspeed table independent variable. \\
NPMPSV \(>0\) defines the ID number for a signal-variable parameter; \\
NPMPSV \(<0\) defines the ID number for a control-block output parameter; \\
NPMPSV \(=0(\) when NPMPRF \(\neq 0)\) defines the difference between the trip signal and the setpoint value that turns the trip OFF [if IPMPTY \(=2\) (Word 3 on Card Number 8), input NPMPSV \(=0]\).
\end{tabular} \\
\hline NPMPRF & \begin{tabular}{l}
The number of rate-factor table data pairs (defined by the absolute value of NPMPRF). The rate factor is applied to the pump-speed table independent variable when the rate factor is defined. No rate factor is defined when NPMPSV and NPMPRF are both zero. \\
NPMPRF \(>0\) defines the rate-factor table's abscissa coordinate to be the NPMPSV parameter; \\
NPMPRF \(<0\) defines it to be the sum of the change in the NPMPSV parameter over each timestep times the trip set-status value ISET during that timestep (when the pump-speed table is trip controlled); \\
NPMPRF \(=0\) defines the rate factor to be the NPMPSV parameter [if IPMPTY \(=\) 2 (Word 3 on Card Number 8), input NPMPRF \(=0\)].
\end{tabular} \\
\hline
\end{tabular}

Card Number 12. (Format I14) NPMPMT
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: Input only when IPMPTY \(=3\)} \\
\hline Variable & Description \\
\hline \hline NPMPMT & Number of pump motor torque data pairs for TABLE PMPMT. \\
\hline
\end{tabular}

Card Number 13. (Format 5I14) IQP3TR, IQP3SV, NQP3TB, NQP3SV, NQP3RF
\begin{tabular}{|c|c|}
\hline & If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES \(>0\) and QPPP \((\) Card Set 70) \(>0\), this card is read. However, if QPPP \(=0\) this card is read but not used. \\
\hline Variable & Description \\
\hline IQP3TR & \begin{tabular}{l}
The trip ID number that controls the evaluation of the power-to-the-wall table defined by Card Set 75 (array QP3TB) \((|\mathrm{IQP} 3 \mathrm{TR}| \leq 9999)\) \\
Input IQP3TR \(=0\) if there is to be no trip control and the table is to be evaluated every timestep during the transient calculation.
\end{tabular} \\
\hline IQP3SV & The independent-variable ID number for the power-to-the-wall table. IQP3SV \(>0\) defines the ID number for a signal-variable parameter; IQP3SV \(<0\) defines the ID number for a control-block output parameter. \\
\hline NQP3TB & \begin{tabular}{l}
The number of power-to-the-wall table data pairs (defined by the absolute value of NQP3TB). \\
NQP3TB \(>0\) defines the table independent-variable form to be the IQP3SV parameter; \\
NQP3TB \(<0\) defines the table independent-variable form to be the sum of the change in the IQP3SV parameter over each timestep times the trip set-status value ISET during that timestep (when the power-to-the-wall table is trip controlled); NQP3TB \(=0\) defines the power to the wall to be the IQP3SV parameter.
\end{tabular} \\
\hline NQP3SV & \begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the power-to-the-wall table independent variable. NQP3SV \(>0\) defines the ID number for a signal-variable parameter; \\
NQP3SV \(<0\) defines the ID number for a control-block output parameter; NQP3SV \(=0(\) when NQP3RF \(\neq 0)\) defines the independent variable to be the difference between the trip signal and the setpoint value that turns the trip OFF when the power-to-the-wall table is trip controlled.
\end{tabular} \\
\hline NQP3RF & \begin{tabular}{l}
The number of rate-factor table data pairs (defined by the absolute value of NQP3RF). The rate factor is applied to the power-to-the-wall tables (QP3TB) independent variable when the rate factor is defined. No rate factor is defined when NQP3SV and NQP3RF are both zero. \\
NQP3RF \(>0\) defines the rate-factor table independent variable to be the NQP3SV parameter; \\
NQP3RF \(<0\) defines it to be the change in the NQP3SV parameter over the last timestep times the trip set-status value ISET (when the power-to-the-wall table is trip controlled); NQP3RF \(=0\) defines the rate factor to be the NQP3SV parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 14. (Format 5E14.4) RADIN, TH, HOUTL, HOUTV, TOUTL
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility in calculating possible heat losses from the outside of the PIPE wall. Typically, such heat losses are not important for fast transients or large-break loss-ofcoolant accidents (LOCAs), and HOUTL and HOUTV can be set equal to zero. When heat losses are significant, they often can be approximated by a constant HTC temperature for the liquid and gas fluid phases outside the pipe wall.} \\
\hline Variable & Description \\
\hline RADIN & Inner radius (\(\mathrm{m}, \mathrm{ft}\)) of the PUMP wall. \\
\hline TH & Wall thickness (m, ft). \\
\hline HOUTL & Heat-transfer coefficient (HTC) [W/(m² K), Btu/(ft \(\left.\left.{ }^{\circ}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]\) between the outer boundary of the PUMP wall and liquid outside the PUMP wall. \\
\hline HOUTV & \(\mathrm{HTC}\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]\) between the outer boundary of the PUMP wall and the gas outside the PUMP wall. \\
\hline TOUTL & Liquid temperature (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) outside the PUMP wall. \\
\hline
\end{tabular}

Card Number 15. (Format 2E14.4) TOUTV, EFFMI
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TOUTV & Gas temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) outside the PUMP wall. \\
\hline EFFMI & \begin{tabular}{l}
Effective moment of inertia \(\left(\mathrm{kg} \mathrm{m}^{2}, \mathrm{lb}_{\mathrm{m}} \mathrm{ft}^{2}\right)\). Input a negative value if an alternate \\
effective moment of inertia EFFMI1 (Word 1 on Card Number 18) is to be used \\
for pump-impeller rotational speeds below OMTEST (Word 5 on Card Number \\
\(\mathbf{1 8})\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 16. (Format 5E14.4) TFR0, TFR1, TFR2, TFR3, TFRB
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline TFR0 & \begin{tabular}{l}
Zero-order coefficient in the PUMP frictional torque correlation \(\left[\mathrm{Pa} \mathrm{m}^{3}(\mathrm{~N} \mathrm{~m}), \mathrm{bb}_{\mathrm{f}}\right.\) \\
\(\mathrm{ft}]\).
\end{tabular} \\
\hline TFR1 & First-order coefficient in the PUMP frictional torque correlation \(\left(\mathrm{Pa} \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{f}} \mathrm{ft}\right)\). \\
\hline TFR2 & Second-order coefficient in the PUMP frictional torque correlation \(\left(\mathrm{Pa} \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{f}} \mathrm{ft}\right)\). \\
\hline
\end{tabular}

Card Number 16. (Format 5E14.4) TFR0, TFR1, TFR2, TFR3, TFRB (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TFR3 & Third-order coefficient in the PUMP frictional torque correlation \(\left(\mathrm{Pa} \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{f}} \mathrm{ft}\right)\). \\
\hline TFRB & \begin{tabular}{l}
Low-speed frictional torque break speed (PUMP speed below which TRACE \\
switches to low-speed frictional torque correlation defined on the next card) (rad/ \\
\(\mathrm{s}, \mathrm{rpm})\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 17. (Format 4E14.4) TFRL0, TFRL1, TFRL2, TFRL3
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TFRL0 & \begin{tabular}{l}
Zero-order coefficient in the low-speed PUMP frictional torque correlation \((\mathrm{Pa}\) \\
\(\left.\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{f}} \mathrm{ft}\right)\).
\end{tabular} \\
\hline TFRL1 & \begin{tabular}{l}
First-order coefficient in the low-speed PUMP frictional torque correlation \((\mathrm{Pa} \mathrm{m}\) \\
3
\end{tabular} \\
\(\left.\mathrm{lb}_{\mathrm{f}} \mathrm{ft}\right)\).
\end{tabular}

Card Number 18. (Format 5E14.4) EFFMI1, AEFFMI, BEFFMI, CEFFMI, OMTEST
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: Input this card if variable EFFMI (Word 2 on Card Number 15) is negative } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline EFFMI1 & \begin{tabular}{l}
The alternate effective moment of inertia that is used after the pump-impeller \\
rotational speed falls below OMTEST \(\left(\mathrm{kg} \mathrm{m}^{2}, \mathrm{lb}_{\mathrm{m}} \mathrm{ft}^{2}\right)\).
\end{tabular} \\
\hline AEFFMI & \begin{tabular}{l}
The coefficient for the \((\mathrm{OMEGA} / \mathrm{ROMEGA})^{2}\) term in the calculation of the \\
variable moment of inertia \(\left(\mathrm{kg} \mathrm{m}^{2}, \mathrm{lb}_{\mathrm{m}} \mathrm{ft}^{2}\right)\).
\end{tabular} \\
\hline BEFFMII & \begin{tabular}{l}
The coefficient for the \(\left(\mathrm{OMEGA} / \mathrm{ROMEGA}^{2}\right)\) term in the calculation of the \\
variable moment of inertia \(\left(\mathrm{kg} \mathrm{m}^{2}, \mathrm{lb}_{\mathrm{m}} \mathrm{ft}\right)\).
\end{tabular} \\
\hline CEFFMI & \begin{tabular}{l}
The constant term in the calculation of the variable moment of inertia \((\mathrm{kg} \mathrm{m}\) \\
\(\mathrm{lb}^{2}\), \\
\(\left.\mathrm{lb}_{\mathrm{m}} \mathrm{ft}^{2}\right)\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 18. (Format 5E14.4) EFFMI1, AEFFMI, BEFFMI, CEFFMI, OMTEST (Continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Note: Input this card if variable EFFMI (Word 2 on Card Number 15) is negative } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline OMTEST & \begin{tabular}{l}
The pump-impeller rotational speed below which EFFMI1 (the alternate \\
effective moment of inertia) is used (rad/s, rpm).
\end{tabular} \\
\hline
\end{tabular}

Card Number 19. (Format I14) IPMPS
Note: Input this card if variable EFFMI (Word 2 on Card Number 15) is negative
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPMPS & \begin{tabular}{l}
Variable flag to indicate whether or not the pump-impeller rotational speed \\
previously has dropped below OMTEST (Word 5 on Card Number 18). \\
\\
\end{tabular} \begin{tabular}{l}
\(0=\) the pump-impeller rotational speed has been greater than OMTEST; \\
\(1=\) the pump-impeller rotational speed at some time has dropped below OMTEST.
\end{tabular} \\
\hline
\end{tabular}

Card Number 20. (Format 5E14.4) RHEAD, RTORK, RFLOW, RRHO, ROMEGA
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline RHEAD & Rated head \(\left\{\left[\left(\mathrm{Pa} \mathrm{m}^{3}\right) / \mathrm{kg}, \mathrm{m}^{2} / \mathrm{s}^{2}\right.\right.\), or \(\left.\left.\mathrm{N} \mathrm{m} / \mathrm{kg}\right], \mathrm{lb}_{\mathrm{f}} \mathrm{ft} / \mathrm{lb}_{\mathrm{m}}\right\}\). Head is defined as \(\Delta \mathrm{P} / \mathrm{\rho}\). \\
\hline RTORK & Rated torque \(\left(\mathrm{Pa} \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{f}} \mathrm{ft}\right)\). \\
\hline RFLOW & Rated volumetric flow \(\left(\mathrm{m}^{3} / \mathrm{s}, \mathrm{gpm}\right)\). \\
\hline RRHO & Rated density \(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)\). \\
\hline ROMEGA & Rated pump-impeller rotational speed \((\mathrm{rad} / \mathrm{s}, \mathrm{rpm})\). \\
\hline
\end{tabular}

Card Number 21. (Format 4E14.4,I14) OMEGAN, OMGOFF, ROMGMX, OMGSCL, NPMPSD
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline OMEGAN & Initial pump-impeller rotational speed (rad/s, rpm) when NPMPSD \(=0\) (Word \\
5 on Card Number 21). \\
\hline
\end{tabular}

Card Number 21. (Format 4E14.4,I14) OMEGAN, OMGOFF, ROMGMX, OMGSCL, NPMPSD
\begin{tabular}{|c|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline OMGOFF & \begin{tabular}{l}
Pump-impeller rotational speed (rad/s, rpm) when the controlling trip is OFF \\
after being ON [maintain the last pump-impeller rotational speed evaluated \\
when the trip was ON if OMGOFF \(\left.\leq-10^{19} \mathrm{rad} / \mathrm{s}\left(-9.55 \times 10^{19} \mathrm{rpm}\right)\right]\) [used \\
only when IPMPTR \(\neq 0\) (Card Number 11)].
\end{tabular} \\
\hline ROMGMX & \begin{tabular}{l}
The maximum rate of change of the pump-impeller rotational speed (rad/s \({ }^{2}\), \\
rpm/s).
\end{tabular} \\
\hline OMGSCL & \begin{tabular}{l}
Scale factor for the pump-impeller rotational-speed table (-). The dependent \\
variable in the table, defined by Card Set 79 (array PMPTB), is multiplied by \\
OMGSCL to obtain the absolute pump-impeller rotational speed (rad/s, rpm).
\end{tabular} \\
\hline NPMPSD & \begin{tabular}{l}
The ID number of the signal-variable parameter or control-block parameter \\
that defines the pump-impeller rotational speed initially when the controlling \\
trip is OFF [input NPMPSD = 0 if the initial pump-impeller rotational speed is \\
to be defined by OMEGAN (Word 1 on Card Number 21)].
\end{tabular} \\
\hline
\end{tabular}

Card Number 22. (Format 4E14.4, I14) QP3IN, QP3OFF, RQP3MX, QP3SCL, NHCOM
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If NODES=0, do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline QP3IN & \begin{tabular}{l}
Initial power (W, Btu/hr) deposited in (to) the wall and distributed according to \\
the QPPP array. If QP3IN \(>0.0\), it is the total power to the entire wall. When \\
QP3IN \(<0.0\), the initial power to the wall in each cell is |QP3IN \(\mid\) and the \\
negative sign indicates the power to the wall is to be a cell-dependent array of \\
NCELLS (Word 1 on Card Number 2) power values. Each data pair of the \\
power-to-the-wall table [for QP3IN < 0.0] has 1+NCELLS values [an \\
independent-variable value and NCELLS power values for cells 1 through \\
NCELLS]. When the power-to-the-wall table is not being evaluated, the same \\
power value of \(\mid\) QP3IN \(\mid\) or QP3OFF [if QP3OFF \(>-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} /\right.\) \\
hr)] is applied at each of the NCELLS cells.
\end{tabular} \\
\hline QP3OFF & \begin{tabular}{l}
Power (W, Btu/hr) to the wall when the controlling trip is OFF after being ON \\
[not used when IQP3TR \(=0\) (Word 1 on Card Number 13); use the last table- \\
evaluated power when the trip was ON if QP3OFF \(\leq-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} /\right.\) \\
hr)].
\end{tabular} \\
\hline RQP3MX & \begin{tabular}{l}
The maximum rate of change of the power to the wall [W/s, (Btu/hr) \(/ \mathrm{s}]\) \\
{\([R Q P 3 M X \geq 0.0]\).}
\end{tabular} \\
\hline
\end{tabular}

Card Number 22. (Format 4E14.4, I14) QP3IN, QP3OFF, RQP3MX, QP3SCL, NHCOM (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If NODES=0, do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline QP3SCL & \begin{tabular}{l}
Scale factor (-) for the power-to-the-wall table. The dependent variable in the \\
table, defined by Card Set 82 (array QP3TB), is multiplied by QP3SCL to \\
obtain the absolute power (W, Btu/hr) to the wall.
\end{tabular} \\
\hline NHCOM & Component number receiving outside wall energy. \\
\hline
\end{tabular}

Card Number 23. (Format I14) OPTION
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline \hline OPTION & Pump-curve option. \\
& \(0=\) user-specified pump curves input defined by Card Set 24 through \\
& \(\quad\) Card Set 45; \\
& \(1=\) use built-in semiscale pump curves; \\
& \(2=\) use built-in LOFT pump curves. \\
& \(3=\) use built-in Bingham pump curves. \\
& \(4=\) use built-in Westinghouse pump curves. \\
& \\
\hline
\end{tabular}

Card Number 24 through Card Set 45 are input only if OPTION \(=0\). If OPTION \(>0\), go to Card Number 46. The user is referred to the pump model description in Chapter 4 for definitions of the terms used below. Each homologous curve is defined by four curve segments. Each curve segment is denoted by the number appended to the curve name. The segments are defined by Table 4-1 in Chapter 4.

Under certain conditions for OPTION \(=0\), some curves will not be used. However, to avoid confusion, we recommend that all curves be defined. NDATA(i) must be greater than zero for at least \(\mathrm{i}=1,4\).

For IPMPTY \(=1\) and IPM \(=0\), curves HSP1 through HSP4 are required and the remaining curves are not used.

For IPMPTY = 1 and IPM = 1, curves HSP1 through HSP4, HTP1 through HTP4, and HDM are required, and the remaining curves are not used.

For IPMPTY \(=2\) and IPM \(=0\), curves HSP1 through HSP4 and TSP1 through TSP4 are required, and the remaining curves are not used.

For IPMPTY \(=2\) and IPM \(=1\), all curves are required.

For IPMPTY \(=3\), the default pump curves are used.

Card Number 24. (Format 5I14) NDATA(I), \(I=1,5\)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{|c|}{ Description } \\
\hline \hline NDATA(1) & Number of data pairs defining the HSP1 curve. \\
\hline NDATA(2) & Number of data pairs defining the HSP2 curve. \\
\hline NDATA(3) & Number of data pairs defining the HSP3 curve. \\
\hline NDATA(4) & Number of data pairs defining the HSP4 curve. \\
\hline NDATA(5) & Number of data pairs defining the HTP1 curve. \\
\hline
\end{tabular}

Card Number 25. (Format 5I14) NDATA(I), \(I=6,10\)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{|c|}{ Description } \\
\hline \hline NDATA(6) & Number of data pairs defining the HTP2 curve. \\
\hline NDATA(7) & Number of data pairs defining the HTP3 curve. \\
\hline NDATA(8) & Number of data pairs defining the HTP4 curve. \\
\hline NDATA(9) & Number of data pairs defining the TSP1 curve. \\
\hline NDATA(10) & Number of data pairs defining the TSP2 curve. \\
\hline
\end{tabular}

Card Number 26. (Format 5I14) NDATA(I), \(I=11,15\)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{|c|}{ Description } \\
\hline \hline NDATA(11) & Number of data pairs defining the TSP3 curve. \\
\hline NDATA(12) & Number of data pairs defining the TSP4 curve. \\
\hline NDATA(13) & Number of data pairs defining the TTP1 curve. \\
\hline NDATA(14) & Number of data pairs defining the TTP2 curve. \\
\hline NDATA(15) & Number of data pairs defining the TTP3 curve. \\
\hline
\end{tabular}

Card Number 27. (Format 3I14) NDATA(I), \(I=16\), NHDM, NTDM
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline NDATA(16) & Number of data pairs defining the TTP4 curve. \\
\hline NHDM & Number of data pairs defining the HDM curve. \\
\hline NTDM & Number of data pairs defining the TDM curve. \\
\hline
\end{tabular}

\section*{PUMP Curve Cards}

Input up to 18 Card Sets, one set for each curve listed in Card Set 24 through Card Set 27 that has a positive number of data pairs. Use LOAD format. Data are entered in pairs \((x, y)_{i}, i=(1\), NDATA), where \(x\) is the independent variable and \(y\) is the dependent variable. The \(x_{i}\) values must increase monotonically from -1.0 to 1.0 for the homologous curves and from 0.0 to 1.0 for the multiplier curves. If information for a particular curve does not exist or if you desire to input a curve that will not be used, we suggest that the four points \((-1.0,0.0,1.0,0.0)\) be input. The suggested two data pairs for HDM and TDM are (\(0.0,0.0,1.0,0.0\)).
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{|c|}{ Dimension } & \\
\hline \hline \multicolumn{3}{|c|}{ Single-phase homologous head curves. } \\
\hline \(\mathbf{2 8}\) & HSP1 & \(2 \times\) NDATA(1) & HSP1 curve \\
\hline \(\mathbf{2 9}\) & HSP2 & \(2 \times\) NDATA(2) & HSP2 curve \\
\hline \(\mathbf{3 0}\) & HSP3 & \(2 \times\) NDATA(3) & HSP3 curve \\
\hline \(\mathbf{3 1}\) & HSP4 & \(2 \times\) NDATA(4) & HSP4 curve \\
\hline Fully-degraded homologous head curves. \\
\hline \(\mathbf{3 2}\) & HTP1 & \(2 \times\) NDATA(5) & HTP1 curve \\
\hline \(\mathbf{3 3}\) & HTP2 & \(2 \times\) NDATA(6) & HTP2 curve \\
\hline \(\mathbf{3 4}\) & HTP3 & \(2 \times\) NDATA(7) & HTP3 curve \\
\hline \(\mathbf{3 5}\) & HTP4 & \(2 \times\) NDATA(8) & HTP4 curve \\
\hline Single-phase homologous torque curves. \\
\hline \(\mathbf{3 6}\) & TSP1 & \(2 \times\) NDATA(9) & TSP1 curve \\
\hline \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & \multicolumn{1}{|c|}{ Dimension } & \\
\hline \hline \(\mathbf{3 7}\) & TSP2 & \(2 \times\) NDATA(10) & TSP2 curve \\
\hline 38 & TSP3 & \(2 \times\) NDATA(11) & TSP3 curve \\
\hline 39 & TSP4 & \(2 \times\) NDATA(12) & TSP4 curve \\
\hline Fully-degraded homologous torque curves. \\
\hline 40 & TTP1 & \(2 \times\) NDATA(13) & TTP1 curve \\
\hline 41 & TTP2 & \(2 \times\) NDATA(14) & TTP2 curve \\
\hline 42 & TTP3 & \(2 \times\) NDATA(15) & TTP3 curve \\
\hline 43 & TTP4 & \(2 \times\) NDATA(16) & TTP4 curve \\
\hline Head-degradation multiplier curve. \\
\hline 44 & HDM & \(2 \times\) NHDM & \\
\hline \multicolumn{4}{|l|}{} \\
\hline Torque-degradation multiplier curve. \\
\hline 45 & \multicolumn{1}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}

Note: Input Card Number 46 through Card Set 48 only for Bingham or Westinghouse built-in pumps (see Card Number 23), and IPM=2 (Word 5 on Card Number 8)

Card Number 46. (Format 2I14), NHDM, NTDM
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline NHDM & Number of data pairs defining the HDM curve. \\
\hline NTDM & Number of data pairs defining the TDM curve. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & \multicolumn{1}{|c|}{ Dimension } & \multicolumn{1}{c|}{ Description } \\
\hline \hline 47 & HDM & \(2 \times\) NHDM & Head-degradation multiplier curve. \\
\hline 48 & TDM & \(2 \times\) NTDM & Torque-degradation multiplier curve. \\
\hline
\end{tabular}

\section*{PUMP Array Cards}

Note: Input each of the following arrays using LOAD format.
All junction variables must match at component interfaces.
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & \multicolumn{1}{|c|}{ Dimension } & \multicolumn{1}{c|}{ Description }
\end{tabular} \begin{tabular}{c|l|l|l|}
\hline \hline \(\mathbf{4 9}\) & DX & NCELLS & Cell lengths (m, ft). \\
\hline \(\mathbf{5 0}\) & VOL & NCELLS & Cell volumes \(\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\).
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 do not input array ICFLG. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur.} \\
\hline 57 & ICFLG & NCELLS+1 & \begin{tabular}{l}
Cell-edge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline 58 & NFF & NCELLS+1 & \begin{tabular}{l}
Friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If NCCFL \(=0\) (Word 5 on Main-Data Card 9) do not input array LCCFL. } \\
\hline \(\mathbf{5 9}\) & LCCFL & NCELLS+1 & \begin{tabular}{c}
Countercurrent flow limitation option. \\
\(0=\) no countercurrent flow limitation \\
calculation at the cell interface; \\
N the countercurrent flow limitation \\
parameter set number used to evaluate \\
countercurrent flow limitation at the \\
cell interface \([1 \leq \mathrm{N} \leq\) NCCFL (Word \\
5 on Main-Data Card 9)].
\end{tabular} \\
\hline \(\mathbf{6 0}\) & ALP & NCELLS & Initial gas volume fractions (-). \\
\hline \(\mathbf{6 1}\) & VL & NCELLS+1 & Initial liquid velocities (m/s, ft/s). \\
\hline \(\mathbf{6 2}\) & VV & NCELLS+1 & Initial gas velocities (m/s, ft/s). \\
\hline \(\mathbf{6 3}\) & TL & NCELLS & Initial liquid temperatures (K, \(\left.{ }^{\circ} \mathrm{F}\right)\). \\
\hline \(\mathbf{6 4}\) & TV & NCELLS & Initial gas temperatures (K, \(\left.{ }^{\circ} \mathrm{F}\right)\). \\
\hline \(\mathbf{6 5}\) & \(\mathbf{P}\) & NCELLS & Initial pressures (Pa, psia). \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{\begin{tabular}{c}
Description
\end{tabular}} \\
\hline \hline \(\mathbf{6 6}\) & PA & NCELLS & \begin{tabular}{l}
Initial noncondensable-gas partial pressures (Pa, \\
psia).
\end{tabular} \\
\hline \multicolumn{3}{|c|}{ Note: If NAMELIST variable NOLT1D = 1 do not input array ILEV. }
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 71 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=\) 1. \\
IDMaterial Type \\
6 = stainless steel, type 304; \\
7 = stainless steel, type 316; \\
\(8=\) stainless steel, type 347 ; \\
9 = carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 72 & TW & \begin{tabular}{l}
NODES \(\times\) \\
NCELL
\end{tabular} & Initial wall temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) (input in the same order as QPPP). \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM = 0 (Word 5 on Card Number 22) do not input array IDROD.} \\
\hline 73 & IDROD & 1 & Vessel radial-theta cell number or input 0 when NHCOM is a 1D component. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM = 0 (Word 5 on Card Number 22) do not input array NHCEL.} \\
\hline 74 & NHCEL & NCELLS & Connecting axial cell numbers in component NHCOM. \\
\hline \multicolumn{4}{|r|}{Note: If ICONC \(=0\) (Word 2 on Card Number 8) do not input array CONC.} \\
\hline 75 & CONC & NCELLS & Initial ratio of solute mass to liquid coolant mass [kg (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(]\). Requires ISOLUT = 1 (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC \(=0\) or 1 (Word 2 on Card Number 8), do not input array S.} \\
\hline 76 & S & NCELLS & Initial macroscopic density of plated-out solute (kg/ \(\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\)). Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: IInput array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 77 & XGNB & NCELLS & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 78 & XLNB & NCELLS & Mass fraction for liquid trace species. \\
\hline \multicolumn{4}{|r|}{Note: If NPMPTB = 0 (Word 3 on Card Number 11), do not input array PMPTB.} \\
\hline 79 & PMPTB & \(2 \times\) NPMPTB| & Pump-impeller rotational speed vs. independent-variable-form table \(\left[(*, \mathrm{rad} / \mathrm{s}),\left({ }^{*}, \mathrm{rpm}\right)\right]\). Input |NPMPTB| (Word 3 on Card Number 11) tabledefining data pairs having the following form [independent-variable form defined by IPMPSV (Word 2 on Card Number 11), pump-impeller rotational speed]. \\
\hline \multicolumn{4}{|r|}{Note: If NPMPTB \(=0\) (Word 3 on Card Number 11) or NPMPRF \(=0\) (Word 5 on Card Number 11), do not input array PMPRF.} \\
\hline 80 & PMPRF & \(2 \times\) NPMPRF| & Rate-factor table (\({ }^{*},-\)) for the pump-impeller rotational-speed table's independent variable. Input |NPMPRF| (Word 5 on Card Number 11) tabledefining data pairs having the following form [independent-variable form defined by NPMPSV (Word 4 on Card Number 11), rate factor to be applied to the pump-impeller rotational-speed table independent variable]. \\
\hline \multicolumn{4}{|r|}{Note: If NPMPMT \(>0\) (Card Number 12) and IPMPTY \(=3\) (Word 3 on Card Number 8) input array PMPMT} \\
\hline 81 & PMPMT & \[
\begin{aligned}
& 2 \times \mid \text { NPMPMT } \\
&
\end{aligned}
\] & Pump motor torque vs. independent-variable-form table (*, N-m or *, \(\mathrm{lb}_{\mathrm{f}} \mathrm{ft}\)) \\
\hline \multicolumn{4}{|r|}{Note: If NQP3TB \(=0\) (Word 3 on Card Number 13), do not input array QP3TB.} \\
\hline 82 & QP3TB & \[
\begin{aligned}
& \hline 2 \times|\mathrm{NQP} 3 \mathrm{~TB}| \\
& \text { when } \\
& \mathrm{QP} 3 \mathrm{IN}>0.0 ; \\
& (1+\mathrm{NCELLS}) \\
& \times|\mathrm{NQP} 3 \mathrm{~TB}| \\
& \text { when QP3IN } \\
& <0.0 .
\end{aligned}
\] & Power-to-the-wall vs. independent-variable-form table [(*, W), (*, Btu/hr)]. Input |NQP3TB| (Word 3 on Card Number 13) table-defining data pairs having the following form [independent-variable form defined by IQP3SV (Word 2 on Card Number 13), power to the wall]. If QP3IN \(>0.0\), the dependent variable specifies the total power to the entire wall; if QP3IN \(<0.0\), the dependent variable is a power shape that specifies the power to the wall at each cell from cell 1 to cell NCELLS. \\
\hline
\end{tabular}

\section*{RADENC Component Data}

A sample input file which uses the RADENC component is found at the end of the HTSTR component (see Chapter 6).

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & RADENC. \\
\hline NUM & \begin{tabular}{l}
Component ID number (must be unique for each component, \(1 \leq\) NUM \(\leq 999\) and \\
greater than the ID numbers of all hydraulic components).
\end{tabular} \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2I14) NZLEVEL, NHSS
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline NZLEVEL & Number of axial levels for this radiation enclosure (NZLEVEL \(>0\)) \\
\hline NHSS & \begin{tabular}{l}
Number of heat transfer surfaces that define the radiation heat transfer for each \\
axial level. (NHSS \(>1)\)
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14) NUMHSS, RNHSS, ZNHSS
\begin{tabular}{|c|c|}
\hline Note: & \begin{tabular}{l}
This card defines the location parameters of each heat structure surface. This card set is repeated NHSS*NZLEVEL times. The input for this card is according to the following order: \\
((NUMHSS(\(\mathrm{i}, \mathrm{k}\)), RNHSS(\(\mathrm{i}, \mathrm{k}\)), ZNHSS(\(\mathrm{i}, \mathrm{k})\)) for \(\mathrm{i}=1\), NHSS) and \(\mathrm{k}=1\), NZLEVEL \\
The first card is for radiation heat transfer enclosure level 1 and heat structure surface 1 . The next card is for radiation heat transfer enclosure level 1 and heat structure surface 2. If NZLEVEL > 1 (Word 1 on Card Number 2), then the NHSS+1 Card Number 3 input is for radiation heat transfer enclosure level 2 and heat structure surface 1 .
\end{tabular} \\
\hline Variable & Description \\
\hline NUMHSS & Heat structure component number \\
\hline RNHSS & \begin{tabular}{l}
Radial or thickness node index of heat structure surface. RNHSS \(=1\) indicates the heat structure surface is the inner surface of heat structure component NUMHSS. \\
RNHSS = NODES of heat structure surface is outer surface of heat structure component NUMHSS.
\end{tabular} \\
\hline ZNHSS & Axial level of heat structure component NUMHSS \\
\hline
\end{tabular}

\section*{RADENC Array Cards}

Note: Input each of the following arrays using LOAD format.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Parameter & Dimension & Description \\
\hline 4 & VIEWFACT & \[
\begin{aligned}
& \text { NHSS * } \\
& \text { NHSS * } \\
& \text { NZLEVEL }
\end{aligned}
\] & \(\operatorname{VIEWFACT}(\mathrm{i}, \mathrm{j}, \mathrm{k})\) is the view factor from surface i to surface j for level k. [\(0 \leq\) \(\operatorname{VIEWFACT}(\mathrm{i}, \mathrm{j}, \mathrm{k}) \leq 1]\). See notes below. \\
\hline 5 & PATHL & \[
\begin{aligned}
& \text { NHSS * } \\
& \text { NHSS * } \\
& \text { NZLEVEL }
\end{aligned}
\] & \(\operatorname{PATHL}(\mathrm{i}, \mathrm{j}, \mathrm{k})\) is the path length from surface i to surface j for level k. [\(0 \leq \operatorname{PATHL}(\mathrm{i}, \mathrm{j}, \mathrm{k})]\). See notes below. \\
\hline
\end{tabular}

Note: Card Set 4 is repeated NZLEVEL*(NHSS-1) times. The complete view factor matrix is not required as input. For each axial level NHSS*(NHSS-1)/2 values must be input. The total number of inputs for the view factor matrix is NZLEVEL*NHSS*(NHSS-1)/2. Only the upper off-diagonal elements of the view factor matrix are required for input. The lower off-diagonal elements will be calculated based on reciprocity and diagonal elements will be calculated based on the view factor definition that the sum all view factors from a given surface is one. The VIEWFACT array is dimensioned by (NHSS, NHSS, NZLEVEL).
VIEWFACT (\(\mathrm{i}, \mathrm{j}, \mathrm{k}\)) is the view factor from surface i to surface j for level k .
The number of view factors input for the \(j\) th RADENC surface is NHSS - \(j\). Note for \(\mathrm{j}=\) NHSS no view factors are input. For Card Set 4, first input using load format VIEWFACT (\(\mathrm{j}, \mathrm{j}+1\) :NHSS, 1) for \(\mathrm{j}=1\), then terminate with an \(\mathbf{e}\). Then input VIEWFACT(\(\mathrm{j}, \mathrm{j}+1\) :NHSS, 1), for \(\mathrm{j}=2\) and terminate with an e. Continue until \(\mathrm{j}=\) NHSS-1, then go to the next level. The following example is for a NHSS \(=3\) and NZLEVEL \(=2\).
*for level 1
F12 F13 e
F23e
*for level 2
F12 F13 e
F23 e
Where F12 is the factor from surface 1 to 2, F13 is the view factor from surface 1 to 3 , and F23 is the view factor from surface 2 to 3 . TRACE will internally calculate the lower off-diagonal elements of the view factor matrix (i.e., for this example, \(\mathrm{F} 21=\mathrm{F} 12 * \mathrm{~A} 2 / \mathrm{A} 1, \mathrm{~F} 31 * \mathrm{~A} 3 / \mathrm{A} 1\), and \(\mathrm{F} 32=\mathrm{F} 23 * \mathrm{~A} 3 / \mathrm{A} 2\)) and the diagonal elements of the view factor matrix (i.e., for this example, F11 = 1-F12F13, F22 = 1-F21-F23, and F33 = 1-F31-F32). Where A1 is the area of radiation heat transfer enclosure surface 1 and A2 is the area of radiation heat transfer enclosure surface 2 and A3 is the area of radiation heat transfer enclosure surface 3.

Note for NHSS \(=2\) only one view factor must be input per axial level (i.e., VIEWFACT(1.2,k))

Card Set 5 is repeated NZLEVEL*NHSS times. The complete path length matrix is not required as input. For each axial level NHSS*(NHSS+1)/2 values must be input. The total number of inputs for the path length matrix is NZLEVEL*NHSS*(NHSS+1)/2. Only the diagonal and upper off-diagonal elements of the path length matrix are required for input. The lower off-diagonal
elements of the path length matrix are required for input. The lower off-diagonal elements will be calculated based on reciprocity. The PATHL array is dimensioned by (NHSS, NHSS, NZLEVEL). PATHL(i, \(j, k\)) is the path length from surface i to surface j for axial level k .

For the \(j\) th RADENC HS surface for a given axial level the number of path lengths input for that surface is NHSS \(-\mathrm{j}+1\). Input using load format path \((\mathrm{j}, \mathrm{j}: \mathrm{NHSS}, 1)\), for \(\mathrm{j}=1\), then terminate with an \(\mathbf{e}\). Then input path (\(\mathrm{j}, \mathrm{j}: \mathrm{NHSS}, 1\)) for \(\mathrm{j}=2\) and terminate with an e. Continue until \(\mathrm{j}=\) NHSS, then go to the next level. The following example is for a NHSS \(=3\) and NZLEVEL \(=2\).
* for level 1

PL11 PL12 PL13 e
PL22 PL23 e
PL33 e
* for level 2

PL11 PL12 PL13 e

\section*{PL22 PL23 e}

PL33 e
Where PL12 is the path length from surface 1 to 2 , etc. PL11 is average path length for radiation heat transfer if surface 1 can see itself. Note a zero path length paired with a non-zero view factor implies that the fluid between the two surfaces does not participate in the radiation heat transfer (i.e., no absorption or emission of radiation HT along that path length due to the presence of fluid such as steam, water droplets, etc.).

\section*{SEPD Component Data}

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (SEPD left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq\) NUM \(\leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{r}
Note: Only input this card when the number of inputs for FLUIDS (a NAMELIST \\
variable) is more than one.
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EOS & EOS identifier for this component (i.e. "h2o" or "r5h2o", etc.). \\
\hline PHASECHANGE & \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
this component. Input FALSE or false, if phase change is not allowed for \\
this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14,2E14.4) JCELL, NODES, ICHF, COST, EPSW
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline JCELL & Main-tube cell number that has the side tube connected to it. \\
\hline NODES & \begin{tabular}{l}
Number of radial heat-transfer nodes in the wall. A value of zero specifies no wall \\
heat transfer.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14,2E14.4) JCELL, NODES, ICHF, COST, EPSW (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICHF & \begin{tabular}{c}
CHF-calculation option. \\
\(0=\) convection heat transfer only, no boiling heat transfer (i.e. no wall \\
nucleation is allowed although phase change can still occur); \\
\(1=\) CHF from AECL-IPPE CHF Table, no critical quality calculated. \\
\(2=\) CHF from AECL-IPPE CHF Table, critical quality from Biasi \\
correlation.
\end{tabular} \\
\(3=\)\begin{tabular}{c}
CHF from AECL-IPPE CHF Table, critical quality from CISE-GE \\
correlation.
\end{tabular} \\
\hline COST & \begin{tabular}{l}
Cosine of the angle from the low-numbered cell portion of the main tube to the \\
side tube.
\end{tabular} \\
\hline EPSW & Wall surface roughness (m, ft). \\
\hline
\end{tabular}

Card Number 4. (Format 3I14,2E14.4) NSEPS, NDRYR, ISTAGE, XCO, XCU
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline NSEPS & Number of physical separators modeled. This value must always be greater than 0. \\
\hline NDRYR & Dryer activation flag. NDRYR \(=0\) implies that dryers are not modeled. Dryers are modeled when NDRYR \(\neq 0\). \\
\hline ISTAGE & \begin{tabular}{l}
Separator-type option. \\
\(-3=\) three-stage mechanistic separator that uses default geometric data (three-stage GE-BWR separator); \\
\(-2=\) two-stage mechanistic separator that uses default geometric data (twostage GE-BWR separator); \\
\(0=\) ideal separator, uses constant user-input values of XCO and XCU; \\
\(1=\) separator carryover and carryunder determined by control-block variables ICBS1 and ICBS2 on Card Number 7. \\
Note: The user must provide the performance data for the modeled separators; \\
\(2=\) two-stage mechanistic separator where the user inputs the geometric data (two-stage GE-BWR separator); \\
\(3=\) three-stage mechanistic separator where the user inputs the geometric data (three-stage GE-BWR separator).
\end{tabular} \\
\hline XCO & Separator carryover (-), the liquid mass flow divided by the total mass flow evaluated at the JCELL +1 interface. If XCO \(<0.0\), the default value of 0.03 is used. \\
\hline
\end{tabular}

Card Number 4. (Format 3I14,2E14.4) NSEPS, NDRYR, ISTAGE, XCO, XCU (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline \(\mathbf{X C U}\) & \begin{tabular}{l}
Separator carryunder (-), the vapor mass flow divided by the total mass flow, \\
evaluated at the NCELL1 +2 internal-junction interface. If XCU \(<0.0\), the default \\
value of 0.005 is used.
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 2E14.4) ALPSMN, ALPSMX
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If ISTAGE \(=0\) input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ALPSMN & Minimum void fraction set for the separator barrel \\
\hline ALPSMX & Maximum void fraction set for the separator barrel \\
\hline
\end{tabular}

Card Number 6. (Format 3E14.4) VDRYL, DVRYU, DELDIM
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
If NDRYR \(=0\) (Word 2 on Card Number 4), do not input this card. If 0.0 is \\
entered for VDRYL, DVRYU, or DELDIM then a default value is used. The \\
default values are: 1000.0, 1001.0 and 1.0 for VDRYL, VDRYU and DELDIM, \\
respectively.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline VDRYL & Vapor velocity in dryer below which dryer capacity is \(1.0(\mathrm{~m} / \mathrm{s}, \mathrm{ft} / \mathrm{s})\). \\
\hline VDRYU & Vapor velocity in dryer above which dryer capacity is \(0.0(\mathrm{~m} / \mathrm{s}, \mathrm{ft} / \mathrm{s})\). \\
\hline DELDIM & \begin{tabular}{l}
Range of dryer inlet liquid quality over which dryer capacity degrades from 1.0 to \\
0.0 at fixed inlet vapor velocity.
\end{tabular} \\
\hline
\end{tabular}

Card Number 7. (Format 2I14) ICBS1, ICBS2
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If ISTAGE \(=0\) (Word 3 on Card Number 4), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{ll}
ICBS1 & \begin{tabular}{l}
When ISTAGE=1, ICBS1 is the control-block ID number (ICBS1 \(<0\)) which \\
defines the separator carryover [the liquid mass flow divided by the total mass \\
flow evaluated at the JCELL +1 (Word 1 on Card Number 3) interface]. When \\
ISTAGE \(=-3,-2,2\) or 3 (mechanistic separator), ICBS1 is the signal variable for \\
the water level surrounding the separator barrel.
\end{tabular} \\
\hline \hline ICBS2 & \begin{tabular}{l}
When ISTAGE=1, ICBS2 is the control-block ID number (ICBS2 \(<0\)) which \\
defines the separator carryunder [the vapor mass flow divided by the total mass \\
flow evaluated at the NCELL1 + 2 (Word 2 on Card Number 9) internal-junction \\
interface]. For other values of ISTAGE, this parameter has no meaning.
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format 5E14.4) AI, AN, RH, THETA, RR1
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If ISTAGE \(<2(\) Word 3 on Card Number 4\()\), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{ll}
\hline AI & \begin{tabular}{l}
Standpipe flow area \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). If AI \(\leq 0.0 \mathrm{~m}^{2}\left(0.0 \mathrm{ft}^{2}\right)\), the default value of \(1.8637 \times\) \\
\(10^{-2} \mathrm{~m}^{2}\left(2.0061 \times 10^{-1} \mathrm{ft}^{2}\right)\) is used.
\end{tabular} \\
\hline AN & \begin{tabular}{l}
Nozzle-exit area \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). If AN \(\leq 0.0\), the default value of \(1.4411 \times 10^{-2} \mathrm{~m}^{2}\) \\
\(\left(1.5512 \times 10^{-1} \mathrm{ft}^{2}\right)\) is used.
\end{tabular} \\
\hline RH & \begin{tabular}{l}
Radius \((\mathrm{m}, \mathrm{ft})\) of separator hub at inlet. If \(\mathrm{RH} \leq 0.0\), the default value of \(8.09585 \times\) \\
\(10^{-2} \mathrm{~m}\left(2.65612 \times 10^{-1} \mathrm{ft}\right)\) is used.
\end{tabular} \\
\hline THETA & \begin{tabular}{l}
Angle \((\mathrm{rad}\), deg \()\) of separator swirling vane. If THETA \(\leq 0.0\), the default value of \\
\(8.3776 \times 10^{-1} \mathrm{rad}\left(4.8000 \times 10^{1}\right.\) deg \()\) is used.
\end{tabular} \\
\hline RR1 & \begin{tabular}{l}
Radius \((\mathrm{m}, \mathrm{ft})\) of separator pickoff ring. If RR \(\leq 0.0\), the default value of 8.57208 \\
\(\times 10^{-2} \mathrm{~m}\left(2.81236 \times 10^{-1} \mathrm{ftt}\right)\) is used.
\end{tabular} \\
\hline
\end{tabular}

Card Number 9. (Format 5I14) ICONC1, NCELL1, JUN1, JUN2, IPOW1
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICONC1 & \begin{tabular}{c}
Solute in the main-tube coolant option. Requires ISOLUT \(=1\) (Word 3 on \\
Main-Data Card 9) when ICONC1 \(>0\). \\
\(0=\) no; \\
\(1=\) dissolved solute only; \\
\(2=\) both dissolved and plated-out solute.
\end{tabular} \\
\hline NCELL1 & Number of fluid cells in the main tube. \\
\hline JUN1 & Junction number for the junction interface adjacent to cell 1. \\
\hline JUN2 & Junction number for the junction interface adjacent to cell NCELL1. \\
\hline IPOW1 & \begin{tabular}{c}
Power-to-the-fluid option in the main tube. \\
\(0=\) no; \\
\(1=\) yes.
\end{tabular} \\
\hline
\end{tabular}

Card Number 10. (Format 5I14) IPWTR1, IPWSV1, NPWTB1, NPWSV1, NPWRF1
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPOW1 = 0 (Word 5 on Card Number 9), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPWTR1 & \begin{tabular}{l}
Trip ID number that controls evaluation of the power-to-the-fluid table defined by \\
Card Set 52 (array POWTB1) for the main tube (|IPWTR1 \(\mid \leq 9999\)). [Input \\
IPWTR1 \(=0\) if there is to be no trip control and the table is to be evaluated every \\
timestep during the transient calculation].
\end{tabular} \\
\hline IPWSV1 & \begin{tabular}{l}
The independent-variable ID number for the power-to-the-fluid table for the main \\
tube. IPWSV1 0 defines the ID number for a signal-variable parameter; \\
IPWSV1 <0 defines the ID number for a control-block output parameter.
\end{tabular} \\
\hline NPWTB1 & \begin{tabular}{l}
The number of power-to-the-fluid table data pairs for the main tube (defined by \\
the absolute value of NPWTB1). NPWTB1 >0 defines the table independent- \\
variable form to be the IPWSV1 parameter; NPWTB1 < 0 defines the table \\
independent-variable form to be the sum of the change in the IPWSV1 parameter \\
each last timestep times the trip set-status value ISET during that timestep (when \\
the power-to-the-fluid table is trip controlled); NPWTB1 = 0 defines the power to \\
the fluid to be the IPWSV1 parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 10. (Format 5I14) IPWTR1, IPWSV1, NPWTB1, NPWSV1, NPWRF1 (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPOW1 = 0 (Word 5 on Card Number 9), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NPWSV1 & \begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the main- \\
tube power-to-the-fluid table independent variable. NPWSV1 \(>0\) defines the ID \\
number for a signal-variable parameter; NPWSV1 \(<0\) defines the ID number for a \\
control-block output parameter; NPWSV1 \(=0\) (when NPWRF1 \(\neq 0\)) defines the \\
independent variable to be the difference between the trip signal and the setpoint \\
value that turns the trip OFF when the power-to-the-fluid table is trip controlled.
\end{tabular} \\
\hline NPWRF1 & \begin{tabular}{l}
The number of rate-factor table data pairs (defined by the absolute value of \\
NPWRF1). The rate factor is applied as a factor to the main-tube power-to-the- \\
fluid table independent variable when the rate factor is defined. No rate factor is \\
defined when NPWSV1 and NPWRF1 are both zero. NPWRF1 \(>0\) defines the \\
rate-factor table independent variable to be the NPWSV1 parameter; NPWRF1 \\
0 defines it to be the sum of change in the NPWSV1 parameter over each timestep \\
times the trip set-status value ISET during the timestep (when the main-tube \\
power-to-the-fluid table is trip controlled); NPWRF1 = 0 defines the rate factor to \\
be the NPWSV1 parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) IQPTR1, IQPSV1, NQPTB1, NQPSV1, NQPRF1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES \(>0\) and QPPP \((\) Card Set 43 \()>0\), this card is read. However, if QPPP \(=0\) this card is read but not used.} \\
\hline Variable & Description \\
\hline IQPTR1 & Trip ID number that controls evaluation of the power-to-the-wall table defined by Card Set 54 (array QP3TB1) for the main tube (|IQPTR1| \(\leq 9999\)). [Input IQPTR1 \(=0\) if there is to be no trip control and the table is to be evaluated every timestep during the transient calculation]. \\
\hline IQPSV1 & The independent-variable ID number for the main-tube power-to-the-wall table. IQPSV1 \(>0\) defines the ID number for a signal-variable parameter; IQPSV1 \(<0\) defines the ID number for a control-block output parameter. \\
\hline NQPTB1 & The number of power-to-the-wall table data pairs for the main tube (defined by the absolute value of NQPTB1). NQPTB1 \(>0\) defines the table independentvariable form to be the IQPSV1 parameter; NQPTB1 \(<0\) defines the table independent-variable form to be the sum of the change in the IQPSV1 parameter over each timestep times the trip set-status value ISET during each timestep (when the power-to-the-wall table is trip controlled); NQPTB1 \(=0\) defines the power to the wall to be the IQPSV1 parameter. \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) IQPTR1, IQPSV1, NQPTB1, NQPSV1, NQPRF1 (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES \\
\(>0\) and QPPP (Card Set 43) \(>0\), this card is read. However, if QPPP \(=0\) this \\
card is read but not used.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{ll}
\hline NQPSV1 & \begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the main- \\
tube power-to-the-wall table independent variable. NQPSV1 \(>0\) defines the ID \\
number for a signal-variable parameter; NQPSV1 \(<0\) defines the ID number for a \\
control-block output parameter; NQPSV1 \(=0\) (when NQPRF1 \(\neq 0\)) defines the \\
independent variable to be the difference between the trip signal and the setpoint \\
value that turns the trip OFF when the power-to-the-wall table is trip controlled.
\end{tabular} \\
\hline NQPRF1 & \begin{tabular}{l}
The number of rate-factor table data pairs (defined by the absolute value of \\
NQPRF1). The rate factor is applied as a factor to the main-tube power-to-the-wall \\
table independent variable when the rate factor is defined. No rate factor is defined \\
when NQPSV1 and NQPRF1 are both zero. NQPRF1 \(>0\) defines the rate-factor \\
table independent variable to be the NQPSV1 parameter; NQPRF1 \(<0\) defines it \\
to be the sum of the change in the NQPSV1 parameter over each timestep times \\
the trip set-status value ISET during that timestep (when the main-tube power-to- \\
the-wall table is trip controlled); NQPRF1 \(=0\) defines the rate factor to be the \\
NQPSS1 parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 12. (Format 5E14.4) RADIN1, TH1, HOUTL1, HOUTV1, TOUTL1
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility \\
in calculating possible heat losses from the outside of the main-tube wall. \\
Typically, such heat losses are not important for fast transients or large-break \\
loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set equal \\
to zero. When heat losses are significant, they often can be approximated by a \\
constant HTC temperature for the liquid and gas fluid phases outside the pipe \\
wall.
\end{tabular} \\
\hline Variable & \\
\hline \hline RADIN1 & Inner radius (m, ft) of the main-tube wall. \\
\hline TH1 & Wall thickness (m, ft) of the main tube.
\end{tabular}

Card Number 12. (Format 5E14.4) RADIN1, TH1, HOUTL1, HOUTV1, TOUTL1 (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: }
\end{tabular} \begin{tabular}{l}
The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility \\
in calculating possible heat losses from the outside of the main-tube wall. \\
Typically, such heat losses are not important for fast transients or large-break \\
loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set equal \\
to zero. When heat losses are significant, they often can be approximated by a \\
constant HTC temperature for the liquid and gas fluid phases outside the pipe \\
wall.
\end{tabular}

Card Number 13. (Format 5E14.4) TOUTV1, PWIN1, PWOFF1, RPWMX1, PWSCL1
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline TOUTV1 & Gas temperature (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) outside the main-tube wall. \\
\hline PWIN1 & Initial total power (W, Btu/hr) deposited in (to) the main-tube fluid [not used when IPOW1 \(=0\) (Word 5 on Card Number 9)]. The power is distributed uniformly along the JETP main-tube length. \\
\hline PWOFF1 & Total power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)) to the main-tube fluid when the controlling trip is OFF after being ON [not used if IPOW1 \(=0\) (Word 5 on Card Number 9) or IPWTR1 \(=0\) (Word 1 on Card Number 10)]. If PWOFF1 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \(\left.10^{19} \mathrm{Btu} / \mathrm{hr}\right)\), the power to the fluid is held constant at the last table-evaluated power when the trip was ON. \\
\hline RPWMX1 & The maximum rate of change of the main-tube power to the fluid (W/s, [Btu/ \(\mathrm{hr}) / \mathrm{s}\)] [RPWMX1 \(\geq 0.0\)] [not used if IPOW1 \(=0\) (Word 5 on Card Number 9)]. \\
\hline PWSCL1 & Scale factor (-) for the power-to-the-fluid table. The dependent variable in the table, defined by Card Set 52 (array POWTB1), is multiplied by PWSCL1 to obtain absolute power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)) deposited in the fluid [not used if IPOW1 = 0 (Word 5 on Card Number 9) or NPWTB1 \(=0\) (Word 3 on Card Number 10)]. \\
\hline
\end{tabular}

Card Number 14. (Format 4E14.4, I14) QPIN1, QPOFF1, RQPMX1, QPSCL1, NHCOM
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input this card.} \\
\hline Variable & Description \\
\hline QPIN1 & Initial power (W, Btu/hr) deposited in (to) the main-tube wall and distributed according to the QPPP array. If QPIN1 \(>0.0\), it is the total power to the entire wall. When QPIN1 \(<0.0\), the initial power to the wall in each cell is |QPIN1|, and the negative sign indicates the power to the wall is to be a cell-dependent array of NCELL1 (Word 2 on Card Number 9) power values. Each data pair of the power-to-the-wall table [for QPIN1 \(<0.0\)] has \(1+\) NCELL1 values (an independent-variable value and NCELL1 power values for cells 1 through NCELL1). When the power-to-the-wall table is not being evaluated, the same power value of \(|\mathrm{QPIN} 1|\) or QPOFF1 [if QPOFF \(1>-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} /\right.\) \(\mathrm{hr})\)] is applied at each of the NCELL1 cells. \\
\hline QPOFF1 & Power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)) to the main-tube wall when the controlling trip is OFF after being ON [not used if IQPTR1 \(=0\) (Word 1 on Card Number 11); use the last table-evaluated power when the trip was ON if QPOFF1 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \(\left.10^{19} \mathrm{Btu} / \mathrm{hr}\right)\)]. \\
\hline RQPMX1 & Maximum rate of change of the power to the wall for the main tube [W/s, (Btu/ \(\mathrm{hr}) / \mathrm{s}][\) RQPMX1 \(\geq 0.0]\). \\
\hline QPSCL1 & Scale factor (-) for the power-to-the-wall table for the main tube. The dependent variable in the table defined by Card Set 54 (array QP3TB1) is multiplied by QPSCL1 to obtain the absolute power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)) to the wall. \\
\hline NHCOM & Component number receiving outside wall energy. \\
\hline
\end{tabular}

Card Number 15. (Format 4I14) ICONC2, NCELL2, JUN3, IPOW2
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICONC2 & \begin{tabular}{l}
Solute in the side-tube coolant option. Requires ISOLUT = 1 (Word 3 on Main- \\
Data Card 9) when ICONC2 \(>0\). \\
\(0=\) no; \\
\(1=\) dissolved solute only; \\
\(2=\) both dissolved and plated-out solute.
\end{tabular} \\
\hline NCELL2 & Number of fluid cells in the side tube. \\
\hline JUN3 & \begin{tabular}{l}
Junction number at the external-junction end of the side tube adjacent to cell \\
NCELL2.
\end{tabular} \\
\hline
\end{tabular}

Card Number 15. (Format 4I14) ICONC2, NCELL2, JUN3, IPOW2 (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPOW2 & \begin{tabular}{c}
Power-to-the-fluid option in the side tube. \\
\\
\\
\\
\\
\\
\(1=\) no; \\
\end{tabular} \\
\hline
\end{tabular}

Card Number 16. (Format 5I14) IPWTR2, IPWSV2, NPWTB2, NPWSV2, NPWRF2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If IPOW2 \(=0\) (Word 4 on Card Number 15), do not input this card.} \\
\hline Variable & Description \\
\hline IPWTR2 & Trip ID number that controls evaluation of the power-to-the-fluid table defined by Card Set 85 (array POWTB2) for the side tube (|IPWTR2| \(\leq 9999\)). [input IPWTR2 \(=0\) if there is to be no trip control and the table is to be evaluated every timestep of the transient calculation]. \\
\hline IPWSV2 & The independent-variable ID number of the power-to-the-fluid table for the side tube. IPWSV2 \(>0\) defines the ID number for a signal-variable parameter; IPWSV2 \(<0\) defines the ID number for a control-block output parameter. \\
\hline NPWTB2 & The number of power-to-the-fluid table data pairs for the side tube (defined by the absolute value of NPWTB2). NPWTB2 \(>0\) defines the table independent-variable form to be the IPWSV2 parameter; NPWTB2 \(<0\) defines the table's independentvariable form to be the sum of the change in the IPWSV2 para-meter over the last timestep times the trip set-status value ISET during that timestep (when the sidetube power-to-the-fluid table is trip controlled); NPWTB2 \(=0\) defines the power to the fluid to be the IPWSV2 parameter. \\
\hline NPWSV2 & The independent-variable ID number for the rate factor that is applied to the sidetube power-to-the-fluid table independent variable. NPWSV2 \(>0\) defines the ID number for a signal-variable parameter; NPWSV2 \(<0\) defines the ID number for a control-block output parameter; NPWSV2 \(=0\) (when NPWRF2 \(\neq 0\)) defines the independent variable to be the difference between the trip signal and the setpoint value that turns the trip OFF when the power-to-the-fluid table is trip controlled. \\
\hline NPWRF2 & The number of rate-factor table data pairs (defined by the absolute value of NPWRF2). The rate factor is applied as a factor to the side-tube power-to-thefluid table independent variable when the rate factor is defined. No rate factor is defined when NPWSV2 and NPWRF2 are both zero. NPWRF2 \(>0\) defines the rate-factor table independent variable to be the NPWSV2 parameter; NPWRF2 \(<\) 0 defines it to be the sum of the change in the NPWSV2 parameter over the last timestep times the trip set-status value ISET during that timestep (when the sidetube power-to-the-fluid table is trip controlled); NPWRF2 \(=0\) defines the rate factor to be the NPWSV2 parameter. \\
\hline
\end{tabular}

Card Number 17. (Format 5I14) IQPTR2, IQPSV2, NQPTB2, NQPSV2, NQPRF2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES \(>0\) and \(\operatorname{QPPP}(\) Card Set 76) \(>0\), this card is read. However, if \(\mathrm{QPPP}=0\) this card is read but not used.} \\
\hline Variable & Description \\
\hline IQPTR2 & Trip ID number that controls evaluation of the power-to-the-wall table defined by Card Set 87 (array QP3TB2) for the side tube (|IQPTR2| \(\leq 9999\)). (Input IQPTR2 \(=0\) if there is to be no trip control and the table is to be evaluated every timestep during the transient calculation). \\
\hline IQPSV2 & The independent-variable ID number for the side-tube power-to-the-wall table. IQPSV2 \(>0\) defines the ID number for a signal-variable parameter; IQPSV2 \(<0\) defines the ID number for a control-block output parameter. \\
\hline NQPTB2 & The number of power-to-the-wall table data pairs for the side tube (defined by the absolute value of NQPTB2). NQPTB2 \(>0\) defines the table independent-variable form to be the IQPSV2 parameter; NQPTB2 \(<0\) defines the table independentvariable form to be the sum of the change in the IQPSV2 parameter over each timestep times the trip set-status value ISET during that timestep (when the sidetube power-to-the-wall table is trip controlled); NQPTB2 \(=0\) defines the power to the wall to be the IQPSV2 parameter. \\
\hline NQPSV2 & The independent-variable ID number for the rate factor that is applied to the sidetube power-to-the-wall table independent variable. NQPSV2 \(>0\) defines the ID number for a signal-variable parameter; NQPSV2 \(<0\) defines the ID number for a control-block output parameter; NQPSV2 \(=0(\) when NQPRF2 \(\neq 0)\) defines the independent variable to be the difference between the trip signal and the setpoint value that turns the trip OFF when the power-to-the-wall table is trip controlled. \\
\hline NQPRF2 & The number of rate-factor table data pairs (defined by the absolute value of NQPRF2). The rate factor is applied as a factor to the side-tube power-to-the-wall table independent variable when the rate factor is defined. No rate factor is defined when NQPSV2 and NQPRF2 are both zero. NQPRF2 \(>0\) defines the ratefactor table independent variable to be the NQPSV2 parameter; NQPRF2 \(<0\) defines it to be the sum of the change in the NQPSV2 parameter over each timestep times the trip set-status value ISET during that timestep (when the sidetube power-to-the-wall table is trip controlled); NQPRF2 \(=0\) defines the rate factor to be the NQPSV2 parameter. \\
\hline
\end{tabular}

Card Number 18. (Format 5E14.4) RADIN2, TH2, HOUTL2, HOUTV2, TOUTL2
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
The four parameters, HOUTL2, HOUTV2, TOUTL2, and TOUTV2, allow \\
flexibility in calculating possible heat losses from the outside of the side-tube \\
wall. Typically, such heat losses are not important for fast transients or large- \\
break loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set \\
equal to zero. When heat losses are significant, they often can be approximated \\
by a constant HTC temperature for the liquid and gas fluid phases outside the \\
pipe wall.
\end{tabular} \\
\hline Variable & \\
\hline \hline RADIN2 & Inner radius (m, ft) of the side-tube wall. \\
\hline TH2 & Wall thickness (m, ft) of the side tube. \\
\hline HOUTL2 & \begin{tabular}{l}
Heat-transfer coefficient \((\mathrm{HTC})\) [W/(m² K\(), ~ B t u /(f t ~\) \\
\\
boundary of the side-tube wall and the liquid outside the side-tube wall.
\end{tabular} \\
\hline HOUTV2 & \begin{tabular}{l}
HTC \(\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]\) between the outer boundary of the side-tube wall \\
and the gas outside the side-tube wall.
\end{tabular} \\
\hline TOUTL2 & \begin{tabular}{l}
Liquid temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) outside the side-tube wall. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Card Number 19. (Format 5E14.4) TOUTV2, PWIN2, PWOFF2, RPWX2, PWSCL2
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline TOUTV2 & Gas temperature (K, \({ }^{\circ} \mathrm{F}\)) outside the side-tube wall. \\
\hline PWIN2 & \begin{tabular}{l}
Initial total power (W, Btu/hr) deposited in (to) the side-tube fluid [not used \\
when IPOW2 \(=0(\) Word 4 on Card Number 15)]. The power is distributed \\
uniformly along the side-tube length.
\end{tabular} \\
\hline PWOFF2 & \begin{tabular}{l}
Total power (W, Btu/hr) to the side-tube fluid when the controlling trip is OFF \\
after being ON [not used when IPOW2 = (Word 4 on Card Number 15) or \\
IPWTR2 = 0 (Word 1 on Card Number 16)]. If PWOFF2 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \\
\(\left.10^{19} \mathrm{Btu} / \mathrm{hr}\right)\), the power to the fluid is held constant at the last table-evaluated \\
power when the trip was ON.
\end{tabular} \\
\hline RPWMX2 & \begin{tabular}{l}
Maximum rate of change of the side-tube power to the fluid [W/s, (Btu/hr)/s] \\
{\([R P W M X 1 \geq 0.0][\) not used if IPOW2 \(=0\) (Word 4 on Card Number 15)]. }
\end{tabular} \\
\hline
\end{tabular}

Card Number 19. (Format 5E14.4) TOUTV2, PWIN2, PWOFF2, RPWX2, PWSCL2 (Continued)
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline PWSCL2 & \begin{tabular}{l}
Scale factor (-) for the power-to-the-fluid table. The dependent variable in the \\
table defined by Card Set 85 (array POWTB2) is multiplied by PWSCL2 to \\
obtain the absolute power (W, Btu/hr) to the fluid [not used if IPOW2=0 (Word \\
4 on Card Number 15) or NPWTB2 \(=0\) (Word 3 on Card Number 16)].
\end{tabular} \\
\hline
\end{tabular}

Card Number 20. (Format 4E14.4) QPIN2, QPOFF2, RQPMX2, QPSCL2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input this card.} \\
\hline Variable & Description \\
\hline QPIN2 & Initial power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)) deposited in (to) the side-tube wall and distributed according to the QPPP array. If QPIN2 \(>0.0\), it is the total power to the entire wall. When QPIN2 \(<0.0\), the initial power to the wall in each cell is |QPIN2|, and the negative sign indicates the power to the wall is to be a cell-dependent array of NCELL2 (Word 2 on Card Number 15) power values. Each data pair of the power-to-the-wall table [for QPIN2 \(<0.0\)] has \(1+\) NCELL2 values (an independent-variable value and NCELL2 power values for cells 1 through NCELL2). When the power-to-the-wall table is not being evaluated, the same power value of \(\mid\) QPIN2 \(\mid\) or QPOFF2 [if QPOFF2 \(>-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} /\right.\) \(\mathrm{hr})\)] is applied at each of the NCELL2 cells. \\
\hline QPOFF2 & Power (W, Btu/hr) to the side-tube wall when the controlling trip is OFF after being ON [not used if IQPTR2 \(=0\) (Word 1 on Card Number 17); the last table-evaluated power when the trip was ON if QPOFF2 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \(\left.10^{19} \mathrm{Btu} / \mathrm{hr}\right)\)]. \\
\hline RQPMX2 & Maximum rate of change of the power to the wall for the side-tube [W/s, (Btu/ \(\mathrm{hr}) / \mathrm{s}\)] [RQPMX2 \(\geq 0.0]\). \\
\hline QPSCL2 & Scale factor (-) for the power-to-the-wall table for the side-tube. The dependent variable in table defined by Card Set 87 (array QP3TB2) is multiplied by QPSCL2 to obtain the absolute power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)) to the wall. \\
\hline
\end{tabular}

Card Number 21. (Format I14) IENTRN
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Note: If NAMELIST variable IOFFTK \(=0\), do not input this card. } \\
\hline Variable & Description \\
\hline \hline IENTRN & \begin{tabular}{c}
Offtake-model option. \\
\(0=\) off; \\
\(1=\) on (side tube internal-junction mass flow determined using offtake \\
model).
\end{tabular} \\
& \\
\hline
\end{tabular}

\section*{SEPD Array Cards}

Note: Input each of the following arrays using LOAD format.
All junction variables must match at component interfaces.
Model no flow-area change between cell JCELL and cells JCELL \(\pm 1\) and between the internal-junction interface and the side-tube first cell. A VOL/DX flow-area change between cell JCELL and cells JCELL \(\pm 1\) and their interface FA and between side-tube cell 1 and the internal-junction interface will not have any evaluated effect on flow from the current JCELL-interface momentum equations evaluated by TRACE.

\section*{Primary Side Array Cards}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description }
\end{tabular}\(⿻\)\begin{tabular}{c}
\hline \hline \(\mathbf{2 2}\) \\
\(\mathbf{2 3}\)
\end{tabular} DX \(\quad\) NCELL1 \(\quad\) Main-tube cell lengths (m,ft).
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\).} \\
\hline 26 & FRICR & NCELL1+1 & Main-tube additive loss coefficients (-) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. \\
\hline 27 & GRAV or ELEV & \begin{tabular}{l}
NCELL1+1 \\
(NCELL1 \\
for ELEV)
\end{tabular} & Main-tube gravity or elevation terms [(- or m), (- or \(\mathrm{ft})\)]. GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell i and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cell-centered elevation ELEV input. \\
\hline 28 & HD & NCELL1+1 & Main-tube hydraulic diameters (m, ft). (See NAMELIST variable NDIA1 for additional input of heat-transfer diameters). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NDIA \(1 \neq 2\) do not input array HD-HT.} \\
\hline 29 & HD-HT & NCELL1+1 & Main-tube heat transfer diameters (m, ft). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 , do not input array ICFLG.. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur.} \\
\hline 30 & ICFLG & NCELLS+1 & \begin{tabular}{l}
Main-tube cell-edge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline 31 & NFF & NCELL1+1 & \begin{tabular}{l}
Main-tube friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \hline \multicolumn{3}{|c|}{ Note: If NCCFL = 0 (Word 5 on Main-Data Card 9), do not input array LCCFL. } \\
\hline \(\mathbf{3 2}\) & LCCFL & NCELL1+1 & \begin{tabular}{l}
Main-tube countercurrent flow limitation option. \\
\(0=\) no countercurrent flow limitation \\
calculation at the cell interface; \\
\(\mathrm{N}=\) the countercurrent flow limitation \\
parameter set number used to evaluate \\
countercurrent flow limitation at the cell \\
interface \([1 \leq \mathrm{N} \leq\) NCCFL (Word 5 on \\
Main-Data Card 9)].
\end{tabular} \\
\hline \(\mathbf{3 3}\) & ALP & NCELL1 & Main-tube initial gas volume fractions (-). \\
\hline \(\mathbf{3 4}\) & VL & NCELL1+1 & Main-tube initial liquid velocities (m/s, ft/s). \\
\hline \(\mathbf{3 5}\) & VV & NCELL1+1 & Main-tube initial gas velocities (m/s, ft/s). \\
\hline \(\mathbf{3 6}\) & TL & NCELL1 & Main-tube initial liquid temperatures (K, \(\left.{ }^{\circ} \mathrm{F}\right)\). \\
\hline \(\mathbf{3 7}\) & TV & NCELL1 & Main-tube initial gas temperatures (K, \({ }^{\mathrm{F}) .}\) \\
\hline \(\mathbf{3 8}\) & P & NCELL1 & Main-tube initial pressures (Pa, psia). \\
\hline \(\mathbf{3 9}\) & PA & NCELL1 & \begin{tabular}{l}
Main-tube initial noncondensable-gas partial \\
pressures (Pa, psia).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{3}{|c|}{ Note: If NAMELIST variable NOLT1D = 1 do not input array ILEV. } \\
\hline \(\mathbf{4 0}\) & ILEV & NCELL1 & \begin{tabular}{l}
Level tracking flags. ILEV \(=1.0\) indicates that the \\
two-phase level exists in the current cell. ILEV \(=0.0\) \\
indicates that the two-phase level does not exist in the \\
current cell. If ILEV \(=-1.0\), the level tracking \\
calculation will be turned off for this cell.
\end{tabular} \\
\hline \(\mathbf{4 1}\) & WFMFL & NCELL1+1 & \begin{tabular}{l}
Main-tube wall-friction multiplier factor for the \\
liquid phase \((0.9 \leq\) WFMFL \(\leq 1.1)\).
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Note: If NAMELIST variable MWFL \(=0\), do not input array WFMFL. } \\
\hline \(\mathbf{4 2}\) & WFMFV & NCELL1+1 & \begin{tabular}{l}
Main-tube wall-friction multiplier factor for the gas \\
phase \((-)(0.9 \leq\) WFMFL \(\leq 1.1)\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input arrays QPPP, MATID, TW, IDROD, and NHCEL.} \\
\hline 43 & QPPP & \begin{tabular}{l}
NODES \(\times\) \\
NCELL1
\end{tabular} & A relative power shape \((-)\) in the main-tube wall. Input values for cell 1, node 1 through NODES; then cell 2 , node 1 through NODES; etc. If the array is filled with the same nonzero constant, a uniform volumetric heat source in the wall results. TRACE internally normalizes the power shape to have a volume-averaged value of unity \{each \(\operatorname{QPPP}(\mathrm{I})\) is normalized to have the value \(\operatorname{QPPP}(\mathrm{I}) \times\left[\Sigma_{\mathrm{K}}\right.\) \(\left.\operatorname{VOL}(\mathrm{K})] /\left\{\Sigma_{\mathrm{K}} \operatorname{QPPP}(\mathrm{K}) \times \operatorname{VOL}(\mathrm{K})\right]\right\}\). Filling the array with zeros results in no power being deposited in the wall regardless of the value of QPIN1, QPTB1, etc. \\
\hline 44 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=1\). \\
6 = stainless steel, type 304; \\
7 = stainless steel, type 316; \\
\(8=\) stainless steel, type 347; \\
\(9=\) carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 45 & TW & \begin{tabular}{l}
NODES \(\times\) \\
NCELL1
\end{tabular} & Initial wall temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) in the main tube, which are input in the same order as QPPP. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM \(>0\) (Word 5 on Card Number 14) input IDROD.} \\
\hline 46 & IDROD & 1 & Vessel radial-theta cell number or input 0 when NHCOM is a 1 D component. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM>0 (Word 5 on Card Number 14) input NHCEL.} \\
\hline 47 & NHCEL & NCELL1 & Connecting axial cell numbers in component NHCOM. \\
\hline \multicolumn{4}{|r|}{Note: If ICONC1 \(=0\) (Word 1 on Card Number 9), do not input array CONC.} \\
\hline 48 & CONC & NCELL1 & Initial solute mass to liquid-coolant mass ratio \(\left[\mathrm{kg}\right.\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(]\) in the main tube. Requires ISOLUT \(=1\) (Word 3 on MainData Card 9). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If ICONC1 \(=0\) or 1 (Word 1 on Card Number 9), do not input array S.} \\
\hline 49 & S & NCELL1 & Initial macroscopic density of plated-out solute (kg/ \(\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}{ }^{3}\) in the main tube. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG \(>0\) (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 50 & XGNB & NCELL1 & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 51 & XLNB & NCELL1 & Mass fraction for liquid trace species. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW1 = 0 (Word 5 on Card Number 9), do not input array POWTB1.} \\
\hline 52 & POWTB1 & \[
\begin{aligned}
& 2 \times \mid \text { NPWTB } \\
& 1 \mid
\end{aligned}
\] & Power-to-the-fluid vs independent-variable-form table \([(*, W)(*, B t u / h r)]\) for the main tube. Input |NPWTB1| (Word 3 on Card Number 10) tabledefining data pairs having the following form [independent-variable form defined by IPWSV1 (Word 2 on Card Number 10), power to the fluid]. The power is deposited directly into the main-tube fluid with a uniform power density along the maintube length. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW1 = 0 (Word 5 on Card Number 9), do not input array POWRF1.} \\
\hline 53 & POWRF1 & \[
\begin{aligned}
& 2 \times \mid \text { NPWRF } \\
& 1 \mid
\end{aligned}
\] & Rate-factor table (*,-) for the main-tube power-to-the-fluid table independent variable. Input |NPWRF1| (Word 5 on Card Number 10) table-defining data pairs having the following form [independentvariable form defined by NPWSV1 (Word 4 on Card Number 10), rate factor to be applied to the power-to-the-fluid table independent variable]. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NQPTB1 \(=0\) (Word 3 on Card Number 11) or if NODES \(=0\) (Word 2 on Card Number 3), do not input array QP3TB1.} \\
\hline 54 & QP3TB1 & \begin{tabular}{l}
\(2 \times\) \\
NQPTB1| \\
when \\
QPIN1 > \\
0.0; \\
(1+NCELL \\
1) \\
\(\times\) |NQPTB1| \\
when \\
QPIN1 < \\
0.0 .
\end{tabular} & Power-to-the-wall independent-variable-form table \(\left[\left({ }^{*}, \mathrm{~W}\right)(*, B t u / h r)\right]\) for the main tube. Input |NQPTB1| (Word 3 on Card Number 11) table-defining data pairs having the following form [independentvariable form defined by IQPSV1 (Word 2 on Card Number 11), power to the wall]. If QPIN1 \(>0.0\), the dependent variable specifies the total power to the entire wall; if QPIN1 \(<0.0\), the dependent variable is a power shape that specifies the power to the wall at each cell from cell 1 to NCELL1. \\
\hline
\end{tabular}

\section*{Side Arm Array Cards}

Note: If NCELL2 = 0 (Word 2 on Card Number 15), only input FA, FRIC, GRAV, HD, NFF, LCCFL, VL, and VV array cards.
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \\
\hline \hline \(\mathbf{5 5}\) & DX & NCELL2 & Side-tube cell lengths \((\mathrm{m}, \mathrm{ft})\). \\
\hline \(\mathbf{5 6}\) & VOL & NCELL2 & Side-tube cell volumes \(\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\). \\
\hline \(\mathbf{5 7}\) & FA & NCELL2+1 & Side-tube cell-edge flow areas \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline \(\mathbf{5 8}\) & FRIC & NCELL2+1 & \begin{tabular}{l}
Side-tube additive loss coefficients \((-)\). \\
See NAMELIST variable IKFAC for optional K \\
factors input. Input FRIC \(>0.0\) for internal-junction \\
interface 1 of the side tube when a VOL/DX flow- \\
area change occurs between JCELL and cell 1 of the \\
side tube.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 59 & FRICR & NCELL2+1 & Side-tube additive loss coefficients (-) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. Input FRICR \(>0.0\) for internal-junction interface 1 of the side tube when a VOL/DX flow-area change occurs between JCELL and cell 1 of the side tube. \\
\hline 60 & GRAV or ELEV & \begin{tabular}{l}
NCELL2+1 \\
(NCELL2 \\
for ELEV)
\end{tabular} & Side-tube gravity elevation terms [(- or m), (- or ft)]. GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell i and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cell-centered elevation ELEV input. \\
\hline 61 & HD & NCELL2+1 & Side-tube hydraulic diameters (m, ft) (see NAMELIST variable NDIA1 for additional input of heat-transfer diameters). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NDIA1 / \(=2\) do not input array HD-HT.} \\
\hline 62 & HD-HT & NCELL2+1 & Side-tube heat transfer diameters (m, ft). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 , do not input array ICFLG. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur...} \\
\hline 63 & ICFLG & NCELL2+1 & \begin{tabular}{l}
Side-tube cell-edge choked-flow model option. Celledge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 64 & NFF & NCELL2+1 & \begin{tabular}{l}
Side-tube friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE. \\
Input NFF \(\geq 0\) for the JCELL and JCELL+1 interfaces.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: If NCCFL = 0 (Word 5 Main-Data Card 9), do not input array LCCFL.} \\
\hline 65 & LCCFL & NCELL2+1 & Side-tube countercurrent flow limitation option. \(0=\) no countercurrent flow limitation calculation at the cell interface; \(\mathrm{N}=\) the countercurrent flow limitation parameter set number used to evaluate countercurrent flow limitation at the cell interface \([1 \leq \mathrm{N} \leq\) NCCFL (Word 5 on Main-Data Card 9)]. \\
\hline 66 & ALP & NCELL2 & Side-tube initial gas volume fractions (-). \\
\hline 67 & VL & NCELL2+1 & Side-tube initial liquid velocities (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)). \\
\hline 68 & VV & NCELL2+1 & Side-tube initial gas velocities (m/s, \(\mathrm{ft} / \mathrm{s}\)) \\
\hline 69 & TL & NCELL2 & Side-tube initial liquid temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 70 & TV & NCELL2 & Side-tube initial gas temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 71 & P & NCELL2 & Side-tube initial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline 72 & PA & NCELL2 & Side-tube initial noncondensable-gas partial pressures (Pa, psia). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NOLT1D \(=1\) do not input array ILEV.} \\
\hline 73 & ILEV & NCELL2 & Level tracking flags. ILEV \(=1.0\) indicates that the two-phase level exists in the current cell. ILEV \(=0.0\) indicates that the two-phase level does not exist in the current cell. If ILEV \(=-1.0\), the level tracking calculation will be turned off for this cell. \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFL \(=0\), do not input array WFMFL.} \\
\hline 74 & WFMFL & NCELL2+1 & Side-tube wall-friction multiplier factor for the liquid phase \((-)(0.9 \leq \mathrm{WFMFL} \leq 1.1)\). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFV \(=0\), do not input array WFMFV.} \\
\hline 75 & WFMFV & NCELL2+1 & Side-tube wall-friction multiplier factor for the gas phase (-) (\(0.9 \leq\) WFMFL \(\leq 1.1\)). \\
\hline \multicolumn{4}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input arrays QPPP, MATID, TW, IDROD, and NHCEL.} \\
\hline 76 & QPPP & \begin{tabular}{l}
NODES \(\times\) \\
NCELL2
\end{tabular} & A relative power shape (-) in the side-tube wall. Input values for cell 1, node 1 through NODES; then cell 2, node 1 through NODES; etc. If the array is filled with the same nonzero constant, a uniform volumetric heat source in the wall results. TRACE internally normalizes the power shape to have a volumeaverage value of unity (each \(\operatorname{QPPP}(\mathrm{I})\) is normalized to have the value \(\operatorname{QPPP}(\mathrm{I}) \times\left[\Sigma_{\mathrm{K}} \operatorname{VOL}(\mathrm{K})\right] /\left[\Sigma_{\mathrm{K}} \operatorname{QPPP}(\mathrm{K})\right.\) \(\times \operatorname{VOL}(\mathrm{K})])\). Filling the array with zeros results in no power being deposited in the wall regardless of the values of QPIN2, QPTB2, etc. \\
\hline 77 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=1\). \\
6 = stainless steel, type 304; \\
7 = stainless steel, type 316; \\
\(8=\) stainless steel, type 347; \\
\(9=\) carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 78 & TW & \begin{tabular}{l}
NODES \(\times\) \\
NCELL2
\end{tabular} & Initial wall temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) in the side tube, which are input in the same order as QPPP. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM \(>0\) (Word 5 on Card Number 14) then input array IDROD.} \\
\hline 79 & IDROD & 1 & Vessel radial-theta cell number or input 0 when NHCOM is a 1 D component. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM > 0 (Word 5 on Card Number 14) then input array NHCEL.} \\
\hline 80 & NHCEL & NCELL2 & Connecting axial cell numbers in component NHCOM. \\
\hline \multicolumn{4}{|r|}{Note: If ICONC2 \(=0\) (Word 1 on Card Number 15), do not input array CONC.} \\
\hline 81 & CONC & NCELL2 & Initial solute mass to liquid-coolant mass ratio \(\left[\mathrm{kg}\right.\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(]\) in the side tube. Requires ISOLUT \(=1\) (Word 3 on MainData Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC2 \(=0\) or 1 (Word 1 on Card Number 15), do not input array S.} \\
\hline 82 & S & NCELL2 & Initial macroscopic density of plated-out solute (kg/ \(\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\)) in the side tube. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 83 & XGNB & NCELL2 & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 84 & XLNB & NCELL2 & Mass fraction for liquid trace species. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If IPOW2 = 0 (Word 5 on Card Number 15), do not input array POWTB2.} \\
\hline 85 & POWTB2 & \[
\begin{aligned}
& 2 \times \mid \text { NPWTB } \\
& 2 \mid
\end{aligned}
\] & Power-to-the-fluid vs. independent-variable-form table \([(*, W),(*, B t u / h r)]\) for the side tube. Input |NPWTB2| (Word 3 on Card Number 16) tabledefining data pairs having the following form [independent-variable form defined by IPWSV2 (Word 2 on Card Number 16), power to the fluid]. The power is deposited directly into the side-tube fluid with a uniform volumetric power density along the JETP side-tube length. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW2 = 0 (Word 5 on Card Number 15), do not input array POWRF2.} \\
\hline 86 & POWRF2 & \[
\begin{aligned}
& 2 \times \mid \mathrm{NPWRF} \\
& 2 \mid
\end{aligned}
\] & Rate-factor table (*,-) for the side-tube power-to-thefluid table independent variable. Input |NPWRF2| (Word 5 on Card Number 16) table-defining data pairs having the following form [independentvariable form defined by NPWSV2 (Word 4 on Card Number 16), rate factor to be applied to the power-to-the-fluid table independent variable]. \\
\hline \multicolumn{4}{|r|}{Note: If NQPTB2 \(=0\) (Word 3 on Card Number 17) or if NODES \(=0\) (Word 2 on Card Number 3), do not input array QP3TB2.} \\
\hline 87 & QP3TB2 & \begin{tabular}{l}
\(2 \times\) NQPTB2 \\
when \\
QPIN2 \(>00\); \\
(1+NCELL \\
2) \\
\(\times\) |NQPTB2| \\
when \\
QPIN2 \(<0.0\).
\end{tabular} & Power-to-the-wall vs independent-variable form table \([(*, W),(*, B t u / h r)]\) for the side tube. Input |NQPTB2| (Word 3 on Card Number 17) table-defining data pairs having the following form [independentvariable form defined by IQPSV2 (Word 2 on Card Number 17), power to the wall]. If QPIN2 \(>0.0\), the dependent variable specifies the total power to the entire wall; if QPIN2 \(<0.0\), the dependent variable is a power shape that specifies the power to the wall at each cell from cell NCELL1 +2 to cell NCELL1 +1 + NCELL2. \\
\hline
\end{tabular}

\section*{Separator Array Data}

Note: If ISTAGE = 2 or 3 (Word 3 on Card Number 4), input Card Set 88 through Card Set 95. Otherwise do not enter these cards.
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline \(\mathbf{8 8}\) & RWS & 2 or 3 & Inner radius (m, ft) of the wall. \\
\hline \(\mathbf{8 9}\) & RRS & 2 or 3 & Inner radius (m, ft) of the pickoff ring. \\
\hline \(\mathbf{9 0}\) & ADS & 2 or 3 & Flow area \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\) of the discharge passage. \\
\hline \(\mathbf{9 1}\) & DDS & 2 or 3 & Hydraulic diameter (\(\mathrm{m}, \mathrm{ft}\)) of the discharge passage. \\
\hline \(\mathbf{9 2}\) & HBS & 2 or 3 & Length (m, ft) of the barrel. \\
\hline \(\mathbf{9 3}\) & HSK & 2 or 3 & \begin{tabular}{l}
Axial distance \((\mathrm{m}, \mathrm{ft})\) between the discharge and the \\
swirling vane.
\end{tabular} \\
\hline \(\mathbf{9 4}\) & CKS & 2 or 3 & Loss coefficient \((-)\) in the discharge passage. \\
\hline \(\mathbf{9 5}\) & EFFLD & 2 or 3 & Effective L/D coefficient \((-)\) at the pickoff ring. \\
\hline
\end{tabular}

\section*{TEE Component Data}

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (TEE left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq\) NUM \(\leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{r}
Note: Only input this card when the number of inputs for FLUIDS (a NAMELIST \\
variable) is more than one.
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EOS & EOS identifier for this component (i.e. "h2o" or "r5h2o", etc.). \\
\hline PHASECHANGE & \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
this component. Input FALSE or false, if phase change is not allowed for \\
this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14,2E14.4) JCELL, NODES, ICHF, COST, EPSW
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline JCELL & Main-tube cell number that has the side tube connected to it. \\
\hline NODES & \begin{tabular}{l}
Number of radial heat-transfer nodes in the wall. A value of zero specifies no wall \\
heat transfer.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14,2E14.4) JCELL, NODES, ICHF, COST, EPSW (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICHF & \begin{tabular}{c}
CHF-calculation option. \\
\(0=\) convection heat transfer only, no boiling heat transfer (i.e. no wall \\
nucleation is allowed although phase change can still occur); \\
\(1=\) CHF from AECL-IPPE CHF Table, no critical quality calculated. \\
\(2=\) CHF from AECL-IPPE CHF Table, critical quality from Biasi \\
correlation.
\end{tabular} \\
\(3=\)\begin{tabular}{c}
CHF from AECL-IPPE CHF Table, critical quality from CISE-GE \\
correlation.
\end{tabular} \\
\hline COST & \begin{tabular}{l}
Cosine of the angle from the low-numbered cell portion of the main tube to the \\
side tube.
\end{tabular} \\
\hline EPSW & Wall surface roughness (m, ft). \\
\hline
\end{tabular}

Card Number 4. (Format 5I14) ICONC1, NCELL1, JUN1, JUN2, IPOW1
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICONC1 & \begin{tabular}{l}
Solute in the main-tube coolant option. Requires ISOLUT = 1 (Word 3 on Main- \\
Data Card 9) when ICONC1 \(>0\). \\
\(0=\) no; \\
\(1=\) dissolved solute only; \\
\(2=\) both dissolved and plated-out solute.
\end{tabular} \\
\hline NCELL1 & Number of fluid cells in the main tube. \\
\hline JUN1 & Junction number for the junction interface adjacent to cell 1. \\
\hline JUN2 & \begin{tabular}{l}
Junction number for the junction interface adjacent to cell NCELL1.
\end{tabular} \\
\hline IPOW1 & \begin{tabular}{c}
Power-to-the-fluid option in the main tube. \\
\(0=\) no; \\
\(1=\) yes.
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 5I14) IPWTR1, IPWSV1, NPWTB1, NPWSV1, NPWRF1
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPOW1 = 0 (Word 5 on Card Number 4), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPWTR1 & \begin{tabular}{l}
Trip ID number that controls evaluation of the power-to-the-fluid table defined by \\
Card Set 47 (array POWTB1) for the main tube (|IPWTR1 \(\leq 9999\)). [Input \\
IPWTR1 = 0 if there is to be no trip control and the table is to be evaluated every \\
timestep during the transient calculation].
\end{tabular} \\
\hline IPWSV1 & \begin{tabular}{l}
The independent-variable ID number for the power-to-the-fluid table for the main \\
tube. IPWSV1 0 defines the ID number for a signal-variable parameter; \\
IPWSV1 < 0 defines the ID number for a control-block output parameter.
\end{tabular} \\
\hline NPWTB1 & \begin{tabular}{l}
The number of power-to-the-fluid table data pairs for the main tube (defined by \\
the absolute value of NPWTB1). NPWTB1 \(>0\) defines the table independent- \\
variable form to be the IPWSV1 parameter; NPWTB1 < 0 defines the table \\
independent-variable form to be the sum of the change in the IPWSV1 parameter \\
each last timestep times the trip set-status value ISET during that timestep (when \\
the power-to-the-fluid table is trip controlled); NPWTB1 = 0 defines the power to \\
the fluid to be the IPWSV1 parameter.
\end{tabular} \\
\hline NPWSV1 & \begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the main- \\
tube power-to-the-fluid table independent variable. NPWSV1 0 defines the ID \\
number for a signal-variable parameter; NPWSV1 <0 defines the ID number for a \\
control-block output parameter; NPWSV1 = 0 (when NPWRF1 \(\neq 0\)) defines the \\
independent variable to be the difference between the trip signal and the setpoint
\end{tabular} \\
value that turns the trip OFF when the power-to-the-fluid table is trip controlled.
\end{tabular}\(|\)

Card Number 6. (Format 5I14) IQPTR1, IQPSV1, NQPTB1, NQPSV1, NQPRF1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input this card. If NODES \(>0\) and QPPP \((\) Card Set 38) \(>0\), this card is read. However, if QPPP \(=0\) this card is read but not used.} \\
\hline Variable & Description \\
\hline IQPTR1 & Trip ID number that controls evaluation of the power-to-the-wall table defined by Card Set 49 (array QP3TB1) for the main tube (|IQPTR1| \(\leq 9999\)). [Input IQPTR1 \(=0\) if there is to be no trip control and the table is to be evaluated every timestep during the transient calculation]. \\
\hline IQPSV1 & The independent-variable ID number for the main-tube power-to-the-wall table. IQPSV1 \(>0\) defines the ID number for a signal-variable parameter; IQPSV1 \(<0\) defines the ID number for a control-block output parameter. \\
\hline NQPTB1 & The number of power-to-the-wall table data pairs for the main tube (defined by the absolute value of NQPTB1). NQPTB1 \(>0\) defines the table independentvariable form to be the IQPSV1 parameter; NQPTB1 \(<0\) defines the table independent-variable form to be the sum of the change in the IQPSV1 parameter over each timestep times the trip set-status value ISET during each timestep (when the power-to-the-wall table is trip controlled); NQPTB1 \(=0\) defines the power to the wall to be the IQPSV1 parameter. \\
\hline NQPSV1 & The independent-variable ID number for the rate factor that is applied to the maintube power-to-the-wall table independent variable. NQPSV1 \(>0\) defines the ID number for a signal-variable parameter; NQPSV1 \(<0\) defines the ID number for a control-block output parameter; NQPSV1 \(=0(\) when NQPRF \(1 \neq 0)\) defines the independent variable to be the difference between the trip signal and the setpoint value that turns the trip OFF when the power-to-the-wall table is trip controlled. \\
\hline NQPRF1 & The number of rate-factor table data pairs (defined by the absolute value of NQPRF1). The rate factor is applied as a factor to the main-tube power-to-the-wall table independent variable when the rate factor is defined. No rate factor is defined when NQPSV1 and NQPRF1 are both zero. NQPRF1 \(>0\) defines the rate-factor table independent variable to be the NQPSV1 parameter; NQPRF1 \(<0\) defines it to be the sum of the change in the NQPSV1 parameter over each timestep times the trip set-status value ISET during that timestep (when the main-tube power-to-the-wall table is trip controlled); NQPRF1 \(=0\) defines the rate factor to be the NQPSV1 parameter. \\
\hline
\end{tabular}

Card Number 7. (Format 5E14.4) RADIN1, TH1, HOUTL1, HOUTV1, TOUTL1
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility \\
in calculating possible heat losses from the outside of the main-tube wall. \\
Typically, such heat losses are not important for fast transients or large-break \\
loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set equal \\
to zero. When heat losses are significant, they often can be approximated by a \\
constant HTC temperature for the liquid and gas fluid phases outside the pipe \\
wall.
\end{tabular} \\
\hline Variable & \\
\hline \hline RADIN1 & Inner radius (m, ft) of the main-tube wall. \\
\hline TH1 & Wall thickness (m, ft) of the main tube. \\
\hline HOUTL1 & \begin{tabular}{l}
Heat-transfer coefficient \((\mathrm{HTC})\) [W/(m² K\(), ~ B t u /\left(f t^{2}{ }^{\circ} \mathrm{F}\right.\) hr)] between outer \\
boundary of the main-tube wall and the liquid outside the main-tube wall.
\end{tabular} \\
\hline HOUTV1 & \begin{tabular}{l}
HTC \(\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right.\right.\) hr)] between the outer boundary of the main-tube \\
wall and the gas outside the main-tube wall.
\end{tabular} \\
\hline TOUTL1 & Liquid temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) outside the main-tube wall. \\
\hline
\end{tabular}

Card Number 8. (Format 5E14.4) TOUTV1, PWIN1, PWOFF1, RPWMX1, PWSCL1
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline TOUTV1 & Gas temperature (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) outside the main-tube wall. \\
\hline PWIN1 & Initial total power (W, Btu/hr) deposited in (to) the main-tube fluid [not used when IPOW1 \(=0\) (Word 5 on Card Number 4)]. The power is distributed uniformly along the TEE main-tube length. \\
\hline PWOFF1 & Total power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)) to the main-tube fluid when the controlling trip is OFF after being ON [not used if IPOW1 \(=0\) (Word 5 on Card Number 4) or IPWTR1 \(=0\) (Word 1 on Card Number 5)]. If PWOFF1 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \(\left.10^{19} \mathrm{Btu} / \mathrm{hr}\right)\), the power to the fluid is held constant at the last table-evaluated power when the trip was ON. \\
\hline RPWMX1 & The maximum rate of change of the main-tube power to the fluid [W/s, Btu/(hr s)] [RPWMX1 \(\geq 0.0\) [not used if IPOW1 \(=0\) (Word 5 on Card Number 4)]. \\
\hline
\end{tabular}

Card Number 8. (Format 5E14.4) TOUTV1, PWIN1, PWOFF1, RPWMX1, PWSCL1 (Continued)
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline PWSCL1 & \begin{tabular}{l}
Scale factor (-) for the power-to-the-fluid table. The dependent variable in the \\
table, defined by Card Set 41 (array POWTB1), is multiplied by PWSCL1 to \\
obtain absolute power (W, Btu/hr) deposited in the fluid [not used if IPOW1 \(=0\) \\
(Word 5 on Card Number 4) or NPWTB1 = 0 (Word 3 on Card Number 5)].
\end{tabular} \\
\hline
\end{tabular}

Card Number 9. (Format 4E14.4, I14) QPIN1, QPOFF1, RQPMX1, QPSCL1, NHCOM
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input this card.} \\
\hline Variable & Description \\
\hline QPIN1 & Initial power (W, Btu/hr) deposited in (to) the main-tube wall and distributed according to the QPPP array. If QPIN1 \(>0.0 \mathrm{~W}(0.0 \mathrm{Btu} / \mathrm{hr})\), it is the total power to the entire wall. When QPIN1 \(<0.0 \mathrm{~W}(0.0 \mathrm{Btu} / \mathrm{hr})\), the initial power to the wall in each cell is |QPIN1|, and the negative sign indicates the power to the wall is to be a cell-dependent array of NCELL1 (Word 2 on Card Number 4) power values. Each data pair of the power-to-the-wall table [for QPIN1 < 0.0 W (0.0 Btu/hr)] has \(1+\) NCELL1 values (an independent-variable value and NCELL1 power values for cells 1 through NCELL1). When the power-to-the-wall table is not being evaluated, the same power value of |QPIN1| or QPOFF1 [if QPOFF1 \(>-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} / \mathrm{hr}\right)\)] is applied at each of the NCELL1 cells. \\
\hline QPOFF1 & Power (W, Btu/hr) to the main-tube wall when the controlling trip is OFF after being ON [not used if IQPTR1 \(=0\) (Word 1 on Card Number 6); use the last table-evaluated power when the trip was ON if QPOFF \(1 \leq-10^{19} \mathrm{~W}(-3.41 \times\) \(\left.\left.10^{19} \mathrm{Btu} / \mathrm{hr}\right)\right]\). \\
\hline RQPMX1 & Maximum rate of change of the power to the wall for the main tube [W/s, Btu/ (hr s)] [RQPMX1 \(\geq 0.0\). \\
\hline QPSCL1 & Scale factor (-) for the power-to-the-wall table for the main tube. The dependent variable in the table defined by Card Set 49 (array QP3TB1) is multiplied by QPSCL1 to obtain the absolute power (W, Btu/hr) to the wall. \\
\hline NHCOM & Component number receiving outside wall energy. \\
\hline
\end{tabular}

Card Number 10. (Format 4I14) ICONC2, NCELL2, JUN3, IPOW2
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICONC2 & \begin{tabular}{l}
Solute in the side-tube coolant option. Requires ISOLUT \(=1\) (Word 3 on Main- \\
Data Card 9) when ICONC2 \(>0\). \\
\(0=\) no; \\
\(1=\) dissolved solute only; \\
\(2=\) both dissolved and plated-out solute.
\end{tabular} \\
\hline NCELL2 & \begin{tabular}{l}
Number of fluid cells in the side tube. If zero, the side leg is a single junction with \\
no input of volume array data.
\end{tabular} \\
\hline JUN3 & \begin{tabular}{l}
Junction number at the external-junction end of the side tube adjacent to cell \\
NCELL2.
\end{tabular} \\
\hline IPOW2 & \begin{tabular}{l}
Power-to-the-fluid option in the side tube. \\
\(0=\) no; \\
\(1=\) yes.
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) IPWTR2, IPWSV2, NPWTB2, NPWSV2, NPWRF2
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPOW2 \(=0\) (Word 4 on Card Number 10), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IPWTR2 & \begin{tabular}{l}
Trip ID number that controls evaluation of the power-to-the-fluid table defined by \\
Card Set 80 (array POWTB2) for the side tube (|IPWTR2| \(\leq 9999\)). [input \\
IPWTR2 0 if there is to be no trip control and the table is to be evaluated every \\
timestep of the transient calculation].
\end{tabular} \\
\hline IPWSV2 & \begin{tabular}{l}
The independent-variable ID number of the power-to-the-fluid table for the side \\
tube. IPWSV2 > 0 defines the ID number for a signal-variable parameter; \\
IPWSV2 < 0 defines the ID number for a control-block output parameter.
\end{tabular} \\
\hline NPWTB2 & \begin{tabular}{l}
The number of power-to-the-fluid table data pairs for the side tube (defined by the \\
absolute value of NPWTB2). NPWTB2 \(>0\) defines the table independent-variable \\
form to be the IPWSV2 parameter; NPWTB2 \\
variable form to be the sum of the change in the IPWSV2 para-meter over the last \\
timestep times the trip set-status value ISET during that timestep (when the side- \\
tube power-to-the-fluid table is trip controlled); NPWTB2 = 0 defines the power \\
to the fluid to be the IPWSV2 parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) IPWTR2, IPWSV2, NPWTB2, NPWSV2, NPWRF2 (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If IPOW2 \(=0\) (Word 4 on Card Number 10), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{l}
\hline \hline NPWSV2 \\
\begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the side- \\
tube power-to-the-fluid table independent variable. NPWSV2 00 defines the ID \\
number for a signal-variable parameter; NPWSV2 \(<0\) defines the ID number for a \\
control-block output parameter; NPWSV2 \(=0\) (when NPWRF2 \(=0\)) defines the \\
independent variable to be the difference between the trip signal and the setpoint \\
value that turns the trip OFF when the power-to-the-fluid table is trip controlled.
\end{tabular} \\
\hline NPWRF2 \\
\begin{tabular}{l}
The number of rate-factor table data pairs (defined by the absolute value of \\
NPWRF2). The rate factor is applied as a factor to the side-tube power-to-the- \\
fluid table independent variable when the rate factor is defined. No rate factor is \\
defined when NPWSV2 and NPWRF2 are both zero. NPWRF2 \(>0\) defines the \\
rate-factor table independent variable to be the NPWSV2 parameter; NPWRF2 \(<\) \\
0 defines it to be the sum of the change in the NPWSV2 parameter over the last \\
timestep times the trip set-status value ISET during that timestep (when the side- \\
tube power-to-the-fluid table is trip controlled); NPWRF2 = 0 defines the rate \\
factor to be the NPWSV2 parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 12. (Format 5I14) IQPTR2, IQPSV2, NQPTB2, NQPSV2, NQPRF2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES \(>0\) and \(\operatorname{QPPP}(\) Card Set 71 \()>0\), this card is read. However, if QPPP \(=0\) this card is read but not used.} \\
\hline Variable & Description \\
\hline IQPTR2 & Trip ID number that controls evaluation of the power-to-the-wall table defined by Card Set 82 (array QP3TB2) for the side tube (IIQPTR2| \(\leq 9999\)). (Input IQPTR2 \(=0\) if there is to be no trip control and the table is to be evaluated every timestep during the transient calculation). \\
\hline IQPSV2 & The independent-variable ID number for the side-tube power-to-the-wall table. IQPSV2 \(>0\) defines the ID number for a signal-variable parameter; IQPSV2 \(<0\) defines the ID number for a control-block output parameter. \\
\hline NQPTB2 & The number of power-to-the-wall table data pairs for the side tube (defined by the absolute value of NQPTB2). NQPTB2 \(>0\) defines the table independent-variable form to be the IQPSV2 parameter; NQPTB2 \(<0\) defines the table independentvariable form to be the sum of the change in the IQPSV2 parameter over each timestep times the trip set-status value ISET during that timestep (when the sidetube power-to-the-wall table is trip controlled); NQPTB2 \(=0\) defines the power to the wall to be the IQPSV2 parameter. \\
\hline
\end{tabular}

Card Number 12. (Format 5I14) IQPTR2, IQPSV2, NQPTB2, NQPSV2, NQPRF2 (Continued)
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES \\
\(>0\) and QPPP (Card Set 71) \(>0\), this card is read. However, if QPPP \(=0\) this \\
card is read but not used.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{ll}
\hline NQPSV2 & \begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the side- \\
tube power-to-the-wall table independent variable. NQPSV2 \(>0\) defines the ID \\
number for a signal-variable parameter; NQPSV2 \(<0\) defines the ID number for a \\
control-block output parameter; NQPSV2 00 (when NQPRF2 \(\neq 0\)) defines the \\
independent variable to be the difference between the trip signal and the setpoint \\
value that turns the trip OFF when the power-to-the-wall table is trip controlled.
\end{tabular} \\
\hline NQPRF2 & \begin{tabular}{l}
The number of rate-factor table data pairs (defined by the absolute value of \\
NQPRF2). The rate factor is applied as a factor to the side-tube power-to-the-wall \\
table independent variable when the rate factor is defined. No rate factor is \\
defined when NQPSV2 and NQPRF2 are both zero. NQPRF2 \(>0\) defines the rate- \\
factor table independent variable to be the NQPSV2 parameter; NQPRF2 \(<0\) \\
defines it to be the sum of the change in the NQPSV2 parameter over each \\
timestep times the trip set-status value ISET during that timestep (when the side- \\
tube power-to-the-wall table is trip controlled); NQPRF2 \(=0\) defines the rate \\
factor to be the NQPSS2 parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 13. (Format 5E14.4) RADIN2, TH2, HOUTL2, HOUTV2, TOUTL2
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
The four parameters, HOUTL2, HOUTV2, TOUTL2, and TOUTV2, allow \\
flexibility in calculating possible heat losses from the outside of the side-tube \\
wall. Typically, such heat losses are not important for fast transients or large- \\
break loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set \\
equal to zero. When heat losses are significant, they often can be approximated \\
by a constant HTC temperature for the liquid and gas fluid phases outside the \\
pipe wall.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline RADIN2 & Inner radius (m, ft\()\) of the side-tube wall. \\
\hline TH2 & Wall thickness (m, ft) of the side tube.
\end{tabular}

Card Number 13. (Format 5E14.4) RADIN2, TH2, HOUTL2, HOUTV2, TOUTL2 (Continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Note: } \\
The four parameters, HOUTL2, HOUTV2, TOUTL2, and TOUTV2, allow \\
flexibility in calculating possible heat losses from the outside of the side-tube \\
wall. Typically, such heat losses are not important for fast transients or large- \\
break loss-of-coolant accidents (LOCAs), and HOUTL and HOUTV can be set \\
equal to zero. When heat losses are significant, they often can be approximated \\
by a constant HTC temperature for the liquid and gas fluid phases outside the \\
pipe wall.
\end{tabular}

Card Number 14. (Format 5E14.4) TOUTV2, PWIN2, PWOFF2, RPWMX2, PWSCL2
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline TOUTV2 & Gas temperature (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) outside the side-tube wall. \\
\hline PWIN2 & Initial total power (W, Btu/hr) deposited in (to) the side-tube fluid [not used when IPOW2 \(=0\) (Word 4 on Card Number 10)]. The power is distributed uniformly along the side-tube length. \\
\hline PWOFF2 & Total power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)) to the side-tube fluid when the controlling trip is OFF after being ON [not used when IPOW2 \(=0\) (Word 4 on Card Number 10) or IPWTR2 \(=0\) (Word 1 on Card Number 11)]. If PWOFF2 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \(10^{19} \mathrm{Btu} / \mathrm{hr}\)), the power to the fluid is held constant at the last table-evaluated power when the trip was ON. \\
\hline RPWMX2 & Maximum rate of change of the side-tube power to the fluid [W/s, Btu/(hr s)] [RPWMX1 \(\geq 0.0\) [not used if IPOW2 \(=0\) (Word 4 on Card Number 10)]. \\
\hline PWSCL2 & Scale factor (-) for the power-to-the-fluid table. The dependent variable in the table defined by Card Set \(\mathbf{8 0}\) (array POWTB2) is multiplied by PWSCL2 to obtain the absolute power (\(\mathrm{W}, \mathrm{Btu} / \mathrm{hr}\)) to the fluid [not used if IPOW2 \(=0\) (Word 4 on Card Number 10) or NPWTB2 \(=0\) (Word 3 on Card Number 11)]. \\
\hline
\end{tabular}

Card Number 15. (Format 4E14.4) QPIN2, QPOFF2, RQPMX2, QPSCL2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card.} \\
\hline Variable & Description \\
\hline QPIN2 & Initial power (W, Btu/hr) deposited in (to) the side-tube wall and distributed according to the QPPP array. If QPIN2 \(>0.0\), it is the total power to the entire wall. When QPIN2 \(<0.0\), the initial power to the wall in each cell is |QPIN2|, and the negative sign indicates the power to the wall is to be a cell-dependent array of NCELL2 (Word 2 on Card Number 10) power values. Each data pair of the power-to-the-wall table [for QPIN2 \(<0.0\) has \(1+\) NCELL2 values (an independent-variable value and NCELL2 power values for cells 1 through NCELL2). When the power-to-the-wall table is not being evaluated, the same power value of \(\mid\) QPIN2 \(\mid\) or QPOFF2 [if QPOFF2 \(>-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} /\right.\) hr)] is applied at each of the NCELL2 cells. \\
\hline QPOFF2 & Power (W, Btu/hr) to the side-tube wall when the controlling trip is OFF after being ON [not used if IQPTR2 \(=0\) (Word 1 on Card Number 12); the last table-evaluated power when the trip was ON if QPOFF2 \(\leq-10^{19} \mathrm{~W}(-3.41 \times\) \(\left.10^{19} \mathrm{Btu} / \mathrm{hr}\right)\)]. \\
\hline RQPMX2 & Maximum rate of change of the power to the wall for the side-tube [W/s, (Btu/ \(\mathrm{hr}) / \mathrm{s}][\) RQPMX \(2 \geq 0.0]\). \\
\hline QPSCL2 & Scale factor (-) for the power-to-the-wall table for the side-tube. The dependent variable in table defined by Card Set 82 (array QP3TB2) is multiplied by QPSCL2 to obtain the absolute power (W, Btu/hr) to the wall. \\
\hline
\end{tabular}

Card Number 16. (Format I14) IENTRN
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Note: If NAMELIST variable IOFFTK \(=0\), do not input this card. } \\
\hline Variable & Description \\
\hline \hline IENTRN & \begin{tabular}{c}
Offtake-model option. \\
\(0=\) off; \\
\(1=\) on (side tube internal-junction mass flow determined using offtake \\
model).
\end{tabular} \\
& \\
\hline
\end{tabular}

\section*{TEE Array Cards}

Note: Input each of the following arrays using LOAD format.
All junction variables must match at component interfaces.
Model no flow-area change between cell JCELL and cells JCELL \(\pm 1\) and between the internal-junction interface and the side-tube first cell. A VOL/DX flow-area change between cell JCELL and cells JCELL \(\pm 1\) and their interface FA and between side-tube cell 1 and the internal-junction interface will not have any evaluated effect on flow from the current JCELL-interface momentum equations evaluated by TRACE.

\section*{Primary Side Array Cards}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 17 & DX & NCELL1 & Main-tube cell lengths (m, ft). \\
\hline 18 & VOL & NCELL1 & Main-tube cell volumes (\(\mathrm{m}^{3}\), \(\mathrm{ft}^{3}\)). \\
\hline 19 & FA & NCELL1+1 & Main-tube cell-edge flow areas (\(\left.\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline 20 & FRIC & NCELL1+1 & Main-tube additive loss coefficients (-). See NAMELIST variable IKFAC for optional K factors input. \\
\hline \multicolumn{4}{|r|}{Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\).} \\
\hline 21 & FRICR & NCELL1+1 & Main-tube additive loss coefficients (-) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. \\
\hline 22 & GRAV or ELEV & \begin{tabular}{l}
NCELL1+1 \\
(NCELL1 \\
for ELEV)
\end{tabular} & Main-tube gravity or elevation terms [(- or m), (- or \(\mathrm{ft})\)]. GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell i and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cell-centered elevation ELEV input. \\
\hline 23 & HD & NCELL1+1 & Main-tube hydraulic diameters (m, ft). (See NAMELIST variable NDIA1 for additional input of heat-transfer diameters). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \\
\hline \hline
\end{tabular}

Note: If NAMELIST variable NDIA1 \(\neq 2\) do not input array HD-HT.
\begin{tabular}{|c|c|c|c|}
\hline 24 & HD-HT & NCELL1+1 & Main-tube heat transfer diameters (m, ft). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 , do not input array ICFLG.. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur..} \\
\hline 25 & ICFLG & NCELL1+1 & \begin{tabular}{l}
Main-tube cell-edge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline 26 & NFF & NCELL1+1 & \begin{tabular}{l}
Main-tube friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE.
\end{tabular} \\
\hline
\end{tabular}

Note: If NCCFL \(=0\) (Word 5 on Main-Data Card 9), do not input array LCCFL.
\begin{tabular}{|c|l|l|l|}
\hline \(\mathbf{2 7}\) & LCCFL & NCELLS+1 & \begin{tabular}{r}
Main-tube countercurrent flow limitation option. \\
\(0=\) no countercurrent flow limitation \\
calculation at the cell interface; \\
N the countercurrent flow limitation \\
parameter set number used to evaluate \\
countercurrent flow limitation at the cell \\
interface [1 \(\leq\) N \(\leq\) NCCFL (Word 5 on \\
Main-Data Card 9)].
\end{tabular} \\
\hline \(\mathbf{2 8}\) & ALP & NCELL1 & Main-tube initial gas volume fractions (-). \\
\hline \(\mathbf{2 9}\) & VL & NCELL1+1 & Main-tube initial liquid velocities (m/s, ft/s). \\
\hline \(\mathbf{3 0}\) & VV & NCELL1+1 & Main-tube initial gas velocities (m/s, ft/s). \\
\hline \(\mathbf{3 1}\) & TL & NCELL1 & Main-tube initial liquid temperatures (K, \(\left.{ }^{\circ} \mathrm{F}\right)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 32 & TV & NCELL1 & Main-tube initial gas temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 33 & P & NCELL1 & Main-tube initial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline 34 & PA & NCELL1 & Main-tube initial noncondensable-gas partial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NOLT1D = 1 do not input array ILEV.} \\
\hline 35 & ILEV & NCELLS & \begin{tabular}{l}
Level tracking flags. \\
\(1=\) the two-phase level exists in the current cell. \\
\(0=\) the two-phase level does not exist in the current cell. \\
\(-1=\) the level tracking calculation will be turned off for this cell.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFL = 0, do not input array WFMFL.} \\
\hline 36 & WFMFL & NCELL1+1 & Main-tube wall-friction multiplier factor for the liquid phase \((-)(0.9 \leq\) WFMFL \(\leq 1.1)\). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFV \(=0\), do not input array WFMFV.} \\
\hline 37 & WFMFV & NCELL1+1 & Main-tube wall-friction multiplier factor for the gas phase (-) (\(0.9 \leq\) WFMFL \(\leq 1.1\)). \\
\hline \multicolumn{4}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input arrays QPPP, MATID, TW, IDROD, and NHCEL.} \\
\hline 38 & QPPP & \begin{tabular}{l}
NODES \(\times\) \\
NCELL1
\end{tabular} & A relative power shape (-) in the main-tube wall. Input values for cell 1, node 1 through NODES; then cell 2 , node 1 through NODES; etc. If the array is filled with the same nonzero constant, a uniform volumetric heat source in the wall results. TRACE internally normalizes the power shape to have a volume-averaged value of unity \{each \(\operatorname{QPPP}(\mathrm{I})\) is normalized to have the value \(\operatorname{QPPP}(\mathrm{I}) \times\left[\Sigma_{\mathrm{K}}\right.\) \(\left.\operatorname{VOL}(\mathrm{K})] /\left\{\Sigma_{\mathrm{K}} \operatorname{QPPP}(\mathrm{K}) \times \operatorname{VOL}(\mathrm{K})\right]\right\}\). Filling the array with zeros results in no power being deposited in the wall regardless of the value of QPIN1, QPTB1, etc. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 39 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=1\). \\
6 = stainless steel, type 304; \\
7 = stainless steel, type 316; \\
\(8=\) stainless steel, type 347; \\
9 = carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 40 & TW & NODES \(\times\) NCELL1 & Initial wall temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) in the main tube, which are input in the same order as QPPP. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM \(>0\) (Word 5 on Card Number 9) input IDROD.} \\
\hline 41 & IDROD & 1 & Vessel radial-theta cell number or input 0 when NHCOM is a 1 D component. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM>0 (Word 5 on Card Number 9) input NHCEL.} \\
\hline 42 & NHCEL & NCELLS & Connecting axial cell numbers in component NHCOM. \\
\hline \multicolumn{4}{|r|}{Note: If ICONC1 = 0 (Word 1 on Card Number 4), do not input array CONC.} \\
\hline 43 & CONC & NCELL1 & Initial solute mass to liquid-coolant mass ratio \(\left[\mathrm{kg}\right.\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ \mathrm{lb}_{\mathrm{m}}\) (liquid) \(]\) in the main tube. Requires ISOLUT = 1 (Word 3 on MainData Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC1 \(=0\) or 1 (Word 1 on Card Number 4), do not input array S.} \\
\hline 44 & S & NCELL1 & Initial macroscopic density of plated-out solute (kg/ \(\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}{ }^{3}\) in the main tube. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 45 & XGNB & NCELL1 & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 46 & XLNB & NCELL1 & Mass fraction for liquid trace species. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW1 \(=0\) (Word 5 on Card Number 4), do not input array POWTB1.} \\
\hline 47 & POWTB1 & \[
2 \times \mid \text { NPWTB }
\] & Power-to-the-fluid vs independent-variable-form table \(\left[\left({ }^{*}, \mathrm{~W}\right)\left({ }^{*}, \mathrm{Btu} / \mathrm{hr}\right)\right]\) for the main tube. Input |NPWTB1| (Word 3 on Card Number 5) tabledefining data pairs having the following form [independent-variable form defined by IPWSV1 (Word 2 on Card Number 5), power to the fluid]. The power is deposited directly into the main-tube fluid with a uniform power density along the maintube length. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW1 \(=0\) (Word 5 on Card Number 4), do not input array POWRF1.} \\
\hline 48 & POWRF1 & \[
\begin{aligned}
& \text { 2×|NPWRF } \\
& 1 \mid
\end{aligned}
\] & Rate-factor table (\({ }^{*},-\)) for the main-tube power-to-the-fluid table independent variable. Input |NPWRF1| (Word 5 on Card Number 5) table-defining data pairs having the following form [independentvariable form defined by NPWSV1 (Word 4 on Card Number 5), rate factor to be applied to the power-to-the-fluid table independent variable]. \\
\hline \multicolumn{4}{|r|}{Note: If NQPTB1 \(=0(\) Word 3 on Card Number 6) or if NODES \(=0\) (Word 2 on Card Number 3), do not input array QP3TB1.} \\
\hline 49 & QP3TB1 & \begin{tabular}{l}
\(2 \times\) \\
NQPTB1 \\
when \\
QPIN1 > \\
0.0; \\
(1+NCELL \\
1) \\
\(\times\) NQPTB1| \\
when \\
QPIN1 < \\
0.0 .
\end{tabular} & Power-to-the-wall independent-variable-form table \([(*, W)(*, B t u / h r)]\) for the main tube. Input |NQPTB1| (Word 3 on Card Number 6) table-defining data pairs having the following form [independentvariable form defined by IQPSV1 (Word 2 on Card Number 6), power to the wall]. If QPIN1 > 0.0, the dependent variable specifies the total power to the entire wall; if QPIN1 \(<0.0\), the dependent variable is a power shape that specifies the power to the wall at each cell from cell 1 to NCELL1. \\
\hline
\end{tabular}

\section*{Side Arm Array Cards}

Note: If NCELL2 \(=0\) (Word 2 on Card Number 9), only input FA, FRIC, GRAV, HD, NFF, LCCFL, VL, and VV array cards.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 50 & DX & NCELL2 & Side-tube cell lengths (m, ft). \\
\hline 51 & VOL & NCELL2 & Side-tube cell volumes (\(\mathrm{m}^{3}\), \(\mathrm{ft}^{3}\)). \\
\hline 52 & FA & NCELL2+1 & Side-tube cell-edge flow areas (\(\left.\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline 53 & FRIC & NCELL2+1 & \begin{tabular}{l}
Side-tube additive loss coefficients (-). \\
See NAMELIST variable IKFAC for optional K factors input. Input FRIC \(>0.0\) for internal-junction interface 1 of the side tube when a VOL/DX flowarea change occurs between JCELL and cell 1 of the side tube.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\).} \\
\hline 54 & FRICR & NCELL2+1 & Side-tube additive loss coefficients (-) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. Input FRICR \(>0.0\) for internal-junction interface 1 of the side tube when a VOL/DX flow-area change occurs between JCELL and cell 1 of the side tube. \\
\hline 55 & GRAV or ELEV & \begin{tabular}{l}
NCELL2+1 \\
(NCELLS \\
for ELEV)
\end{tabular} & Side-tube gravity elevation terms [(- or m), (- or ft)]. GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell i and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cell-centered elevation ELEV input. \\
\hline 56 & HD & NCELL2+1 & Side-tube hydraulic diameters (m, ft) (see NAMELIST variable NDIA1 for additional input of heat-transfer diameters). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NDIA1 \(/=2\) do not input array HD-HT.} \\
\hline 57 & HD-HT & NCELL2+1 & Side-tube heat transfer diameters (m, ft). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 , do not input array ICFLG. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur...} \\
\hline 58 & ICFLG & NCELL2+1 & \begin{tabular}{l}
Side-tube cell-edge choked-flow model option. Celledge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline 59 & NFF & NCELL2+1 & \begin{tabular}{l}
Side-tube friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
-1 = homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE. \\
Input NFF \(\geq 0\) for the JCELL and JCELL+1 interfaces.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{3}{|c|}{ Note: If NCCFL \(=0\) (Word 5 Main-Data Card 9), do not input array LCCFL. } \\
\hline \(\mathbf{6 0}\) & LCCFL & NCELL2+1 & \begin{tabular}{r}
Side-tube countercurrent flow limitation option. \\
\(0=\) no countercurrent flow limitation \\
calculation at the cell interface; \\
N the countercurrent flow limitation \\
parameter set number used to evaluate \\
countercurrent flow limitation at the cell \\
interface [1 \(\leq\) N \(\leq\) NCCFL (Word 5 on \\
Main-Data Card 9)].
\end{tabular} \\
\hline \(\mathbf{6 1}\) & ALP & NCELL2 & Side-tube initial gas volume fractions (-). \\
\hline \(\mathbf{6 2}\) & VL & NCELL2+1 & Side-tube initial liquid velocities (m/s, ft/s). \\
\hline \(\mathbf{6 3}\) & VV & NCELL2+1 & Side-tube initial gas velocities (m/s, ft/s). \\
\hline \(\mathbf{6 4}\) & TL & NCELL2 & Side-tube initial liquid temperatures (K, \(\left.{ }^{\circ} \mathrm{F}\right)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 65 & TV & NCELL2 & Side-tube initial gas temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 66 & P & NCELL2 & Side-tube initial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline 67 & PA & NCELL2 & Side-tube initial noncondensable-gas partial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NOLT1D = 1 do not input array ILEV.} \\
\hline 68 & ILEV & NCELL2 & \begin{tabular}{l}
Level tracking flags. \\
\(1=\) the two-phase level exists in the current cell. \\
\(0=\) the two-phase level does not exist in the current cell. \\
\(-1=\) the level tracking calculation will be turned off for this cell.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFL \(=0\), do not input array WFMFL.} \\
\hline 69 & WFMFL & NCELL2+1 & Side-tube wall-friction multiplier factor for the liquid phase (-) (\(0.9 \leq\) WFMFL \(\leq 1.1\)). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFV \(=0\), do not input array WFMFV.} \\
\hline 70 & WFMFV & NCELL2+1 & Side-tube wall-friction multiplier factor for the gas phase (-) (\(0.9 \leq\) WFMFL \(\leq 1.1\)). \\
\hline \multicolumn{4}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3) do not input arrays QPPP, MATID, TW, IDROD, and NHCEL.} \\
\hline 71 & QPPP & \begin{tabular}{l}
NODES \(\times\) \\
NCELL2
\end{tabular} & A relative power shape (-) in the side-tube wall. Input values for cell 1, node 1 through NODES; then cell 2, node 1 through NODES; etc. If the array is filled with the same nonzero constant, a uniform volumetric heat source in the wall results. TRACE internally normalizes the power shape to have a volumeaverage value of unity (each QPPP(I) is normalized to have the value \(\operatorname{QPPP}(\mathrm{I}) \times\left[\Sigma_{\mathrm{K}} \operatorname{VOL}(\mathrm{K})\right] /\left[\Sigma_{\mathrm{K}} \operatorname{QPPP}(\mathrm{K})\right.\) \(\times \operatorname{VOL}(\mathrm{K})]\)). Filling the array with zeros results in no power being deposited in the wall regardless of the values of QPIN2, QPTB2, etc. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline 72 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=1\). \\
\(6=\) stainless steel, type 304; \\
\(7=\) stainless steel, type 316; \\
\(8=\) stainless steel, type 347; \\
\(9=\) carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 73 & TW & \begin{tabular}{l}
NODES \(\times\) \\
NCELL2
\end{tabular} & Initial wall temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) in the side tube, which are input in the same order as QPPP. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM \(>0\) (Word 5 on Card Number 9) then input array IDROD.} \\
\hline 74 & IDROD & 1 & Vessel radial-theta cell number or input 0 when NHCOM is a 1 D component. \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM \(>0\) (Word 5 on Card Number 9) then input array NHCEL.} \\
\hline 75 & NHCEL & NCELL2 & Connecting axial cell numbers in component NHCOM. \\
\hline \multicolumn{4}{|r|}{Note: If ICONC2 \(=0\) (Word 1 on Card Number 10) do not input array CONC.} \\
\hline 76 & CONC & NCELL2 & Initial solute mass to liquid-coolant mass ratio \(\left[\mathrm{kg}\right.\) (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ 1 \mathrm{~b}_{\mathrm{m}}\) (liquid) \(]\) in the side tube. Requires ISOLUT \(=1\) (Word 3 on MainData Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC2 \(=0\) or 1 (Word 1 on Card Number 10) do not input array S.} \\
\hline 77 & S & NCELL2 & Initial macroscopic density of plated-out solute (kg/ \(\left.\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ff}^{3}\right)\) in the side tube. Requires ISOLUT \(=1\) (Word 3 on Main-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 78 & XGNB & NCELL2 & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 79 & XLNB & NCELL2 & Mass fraction for liquid trace species. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW2 \(=0\) (Word 5 on Card Number 10), do not input array POWTB2.} \\
\hline 80 & POWTB2 & \[
\begin{aligned}
& 2 \times \mid \text { NPWTB } \\
& 2 \mid
\end{aligned}
\] & Power-to-the-fluid vs independent-variable-form table \(\left[\left({ }^{*}, \mathrm{~W}\right),\left({ }^{*}, \mathrm{Btu} / \mathrm{hr}\right)\right]\) for the side tube. Input |NPWTB2| (Word 3 on Card Number 11) tabledefining data pairs having the following form [independent-variable form defined by IPWSV2 (Word 2 on Card Number 11), power to the fluid]. The power is deposited directly into the side-tube fluid with a uniform volumetric power density along the TEE side-tube length. \\
\hline \multicolumn{4}{|r|}{Note: If IPOW2 \(=0\) (Word 5 on Card Number 10), do not input array POWRF2.} \\
\hline 81 & POWRF2 & \(2 \times \mid\) NPWRF
\[
2 \mid
\] & Rate-factor table (\({ }^{*},-\)) for the side-tube power-to-thefluid table independent variable. Input |NPWRF2| (Word 5 on Card Number 11) table-defining data pairs having the following form [independentvariable form defined by NPWSV2 (Word 4 on Card Number 11), rate factor to be applied to the power-to-the-fluid table independent variable]. \\
\hline \multicolumn{4}{|r|}{Note: If NQPTB2 \(=0\) (Word 3 on Card Number 12) or if NODES \(=0\) (Word 2 on Card Number 3), do not input array QP3TB2.} \\
\hline 82 & QP3TB2 & \begin{tabular}{l}
\(2 \times\) NQPTB2 when QPIN2>0.0; (\(1+\) NCELL 2) \\
\(\times\) |NQPTB2| when \\
QPIN2 \(<0.0\).
\end{tabular} & Power-to-the-wall vs independent-variable form table \(\left[(*, W),\left({ }^{*}, \mathrm{Btu} / \mathrm{hr}\right)\right]\) for the side tube. Input |NQPTB2| (Word 3 on Card Number 12) table-defining data pairs having the following form [independentvariable form defined by IQPSV2 (Word 2 on Card Number 12), power to the wall]. If QPIN2 \(>0.0\), the dependent variable specifies the total power to the entire wall; if QPIN2 \(<0.0\), the dependent variable is a power shape that specifies the power to the wall at each cell from cell NCELL1 +2 to cell NCELL1 +1 + NCELL2. \\
\hline
\end{tabular}

\section*{TURB Component Data}

Each turbine stage is modeled as a separate TURB component.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (TURB left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq \mathrm{NUM} \leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{r}
Note: \\
Variable) is more than one. \\
variable
\end{tabular}} \\
\hline EOS & EOS identifier for this component (i.e. "h2o" or "r5h2o", etc.). \\
\hline PHASECHANGE & \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
this component. Input FALSE or false, if phase change is not allowed for \\
this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14,2E14.4) JCELL, NODES, ICHF, COST, EPSW
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline JCELL & Main-tube cell number that has the side tube connected to it. \\
\hline NODES & \begin{tabular}{l}
Number of radial heat-transfer nodes in the wall. Currently, NODES \(=0\) is \\
required.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 3I14,2E14.4) JCELL, NODES, ICHF, COST, EPSW
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICHF & \begin{tabular}{c}
CHF-calculation option. \\
\(0=\) convection heat transfer only, no boiling heat transfer (i.e. no wall \\
nucleation is allowed although phase change can still occur); \\
\(1=\) CHF from AECL-IPPE CHF Table, no critical quality calculated. \\
\(2=\) CHF from AECL-IPPE CHF Table, critical quality from Biasi \\
correlation.
\end{tabular} \\
\(3=\)\begin{tabular}{l}
CHF from AECL-IPPE CHF Table, critical quality from CISE-GE \\
correlation.
\end{tabular} \\
\hline COST & \begin{tabular}{l}
Cosine of the angle from the low-numbered cell portion of the main tube to the \\
side tube.
\end{tabular} \\
\hline EPSW & Wall surface roughness (m, ft). \\
\hline
\end{tabular}

Card Number 4. (Format 5I14) ICONC1, NCELL1, JUN1, JUN2, IPOW1
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICONC1 & \begin{tabular}{l}
Solute in the main-tube coolant option. Requires ISOLUT = 1 (Word 3 on Main- \\
Data Card 9) when ICONC1 \(>0\). \\
\(0=\) no; 0 is required
\end{tabular} \\
\hline NCELL1 & Number of fluid cells in the main tube. \\
\hline JUN1 & Junction number for the junction interface adjacent to cell 1. \\
\hline JUN2 & Junction number for the junction interface adjacent to cell NCELL1. \\
\hline IPOW1 & \begin{tabular}{l}
Power-to-the-fluid option in the main tube. \\
\(0=\) no; Only '0' is allowed.
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 2E14.4) RADIN1, TH1
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
Since NODES \(=0\) (Word 2 on Card Number 3), RADIN1 and TH1 are \\
required but not used.
\end{tabular}\(. \quad\) Description \begin{tabular}{|l|l|}
\hline Variable & \\
\hline \hline RADIN1 & Inner radius (m, ft) of the main-tube wall. Required but not used. \\
\hline TH1 & Wall thickness (m, ft). Required but not used. \\
\hline
\end{tabular}

Card Number 6. (Format E14.4) TOUTV1
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
Since NODES \(=0\) (Word 2 on Card Number 3) is required TOUTV1 is not \\
used.
\end{tabular}} \\
\hline Variable & Description \\
\hline \hline TOUTV1 & Outside vapor temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\). Required but not used. \\
\hline
\end{tabular}

Card Number 7. (Format 4I14) ICONC2, NCELL2, JUN3, IPOW2
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline ICONC2 & \begin{tabular}{l}
Solute in the side-tube coolant option. Requires ISOLUT = 1 (Word 3 on Main- \\
Data Card 9) when ICONC2 \(>0\). \\
\(0=\) no; 0 is required.
\end{tabular} \\
\hline NCELL2 & Number of fluid cells in the side tube. \\
\hline JUN3 & \begin{tabular}{l}
Junction number at the external-junction end of the side tube adjacent to cell \\
NCELL2.
\end{tabular} \\
\hline IPOW2 & \begin{tabular}{l}
Power-to-the-fluid option in the side tube. \\
\(0=\) no; 0 is required.
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format 2E14.4) RADIN2, TH2
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
Since NODES \(=0\) (Word 2 on Card Number 3), RADIN2 and TH2 are \\
required but not used.
\end{tabular}\(\quad\) Description \begin{tabular}{|l|l|}
\hline Variable & \\
\hline \hline RADIN2 & Inner radius (m, ft) of the side-tube wall. Required but not used. \\
\hline TH2 & Wall thickness (m, ft). Required but not used. \\
\hline
\end{tabular}

Card Number 9. (Format E14.4) TOUTV2
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Note: Since NODES \(=0\) (Word 2 on Card Number 3) TOUTV2 is read but not used. } \\
\hline Variable & Description \\
\hline \hline TOUTV2 & Outside vapor temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\). Required but not used. \\
\hline
\end{tabular}

Card Number 10. (Format 5E14.4) EFF, SEPEFF, OMEGT, INERT, RMDOT
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EFISHR & Turbine efficiency, between 0.0 and 1.0. \\
\hline SEPEFF & \begin{tabular}{l}
Separator efficiency between 0.0 and 1.0. It is recommended that the user set \\
SEPEFF \(=0.0\) and ITSEP \(=0\) and use the TRACE default model for the drains \\
and steam taps by setting IKFAC \(=1\) in the NAMELIST and FRIC to \(1.0 \mathrm{e}+21\) and \\
-1.0 e +21 for steam and liquid drains respectively. This model works the best and \\
is the most stable.
\end{tabular} \\
\hline OMEGT & Initial angular velocity of rotor \((\mathrm{rad} / \mathrm{s}, \mathrm{rpm})\) \\
\hline INERT & Inertia of rotor \(\left(\mathrm{kg} \cdot \mathrm{m}^{2}, l b_{m} \cdot f t^{2}\right)\). \\
\hline RMDOT & Rated mass flow rate \(\left(\mathrm{kg} / \mathrm{s}, \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}\right)\) \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) ITSEP, NSTAGE, JROT, SATFLAG, ITURTR
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline ITSEP & \begin{tabular}{l}
ITSEP \(=0\), no TRAC-B sidearm separation model, \\
\(=1\), TRAC-B sidearm model. Recommend ITSEP \(=0\).
\end{tabular} \\
\hline NSTAGE & \begin{tabular}{l}
Number of stages lumped in series. Recommend modeling each stage \\
(NSTAGE=1) since there is no effect on time step in TRACE.
\end{tabular} \\
\hline JROT & \begin{tabular}{l}
Turbine rotor number (shaft number) used by this TURB component. A \\
number of TURBs can use the same rotor. The maximum number of rotors in \\
the problem is 10. The rotors are numbered sequentially 1 through n.
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 5I14) ITSEP, NSTAGE, JROT, SATFLAG, ITURTR (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline SATFLAG & \begin{tabular}{l}
SATFLAG \(=0\) or 1. Default is zero, user can set SATFLAG \(=1\) to get \\
saturation values out at the exit, or set SATFLAG \(=0\) and calculate the \\
junction area small enough for the nozzle to approach sonic velocity which \\
results in a flow quality calculated \(<1.0\) to give sat values for mass and energy \\
flux.
\end{tabular} \\
\hline ITURTR & \begin{tabular}{l}
ITURTR \(=0\) or 1, Default is 0 and it is recommended. ITURTR \(=1\) calculates a \\
nozzle junction area by inputting flow and the pressure drop across the \\
junction as initial conditions. Recommend not using since this model was \\
tricky in TRAC-B and will be the same in TRACE. Better to size nozzle area \\
with a number of short steady state runs by making the junction area smaller, \\
so that the gas velocity approaches sound speed.
\end{tabular} \\
\hline
\end{tabular}

Card Number 12. (Format 3E14.4) OMEGTR, CTRQTB, TORQTR
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{|c|}{ Description } \\
\hline \hline OMEGTR & Rated angular velocity (rad/s, rpm) \\
\hline CTRQTB & Bearing and windage frictional coefficient \\
\hline TORQTR & Rated turbine torque \(\left(P a \cdot m^{3}, l b_{f} \cdot f t\right)\). \\
\hline
\end{tabular}

\section*{TURB Array Cards}

Input the following Card Sets, one set for each of the following arrays. Use LOAD format. Each array has its element values defined by a Card Set of one or more cards.

\section*{Primary Side Array Cards}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline \(\mathbf{1 3}\) & DX & NCELL1 & Main-tube cell lengths (m, ft). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 14 & VOL & NCELL1 & Main-tube cell volumes (\(\left.\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\). \\
\hline 15 & FA & NCELL1+1 & Main-tube cell-edge flow areas (\(\left.\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline 16 & FRIC & NCELL1+1 & Main-tube additive loss coefficients (-). See NAMELIST variable IKFAC for optional K factors input. \\
\hline \multicolumn{4}{|r|}{Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\).} \\
\hline 17 & FRICR & NCELL1+1 & Main-tube additive loss coefficients \((-)\) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. \\
\hline 18 & GRAV or ELEV & \begin{tabular}{l}
NCELL1+1 \\
(NCELL1 \\
for ELEV)
\end{tabular} & Main-tube gravity or elevation terms [(- or m), (- or \(\mathrm{ft})\)]. GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell i and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cell-centered elevation ELEV input. \\
\hline 19 & HD & NCELL1+1 & Main-tube hydraulic diameters (m , ft). (See NAMELIST variable NDIA1 for additional input of heat-transfer diameters). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NDIA \(1 \neq 2\) do not input array HD-HT.} \\
\hline 20 & HD-HT & NCELL1+1 & Main-tube heat transfer diameters (m, ft). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 , do not input array ICFLG.. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur..} \\
\hline 21 & ICFLG & NCELL1+1 & \begin{tabular}{l}
Main-tube cell-edge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 22 & NFF & NCELL1+1 & \begin{tabular}{l}
Main-tube friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
\(1=\) homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: If NCCFL = 0 (Word 5 on Main-Data Card 9), do not input array LCCFL.} \\
\hline 23 & LCCFL & NCELL1+1 & \begin{tabular}{l}
Main-tube countercurrent flow limitation option. \(0=\) no countercurrent flow limitation calculation at the cell interface; \\
\(\mathrm{N}=\) the countercurrent flow limitation parameter set number used to evaluate countercurrent flow limitation at the cell interface \([1 \leq \mathrm{N} \leq\) NCCFL (Word 5 on Main-Data Card 9)].
\end{tabular} \\
\hline 24 & ALP & NCELL1 & Main-tube initial gas volume fractions (-). \\
\hline 25 & VL & NCELL1+1 & Main-tube initial liquid velocities (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)). \\
\hline 26 & VV & NCELL1+1 & Main-tube initial gas velocities (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)). \\
\hline 27 & TL & NCELL1 & Main-tube initial liquid temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 28 & TV & NCELL1 & Main-tube initial gas temperatures (K, \({ }^{\circ} \mathrm{F}\)). \\
\hline 29 & P & NCELL1 & Main-tube initial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline 30 & PA & NCELL1 & Main-tube initial noncondensable-gas partial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NOLT1D \(=1\) do not input array ILEV.} \\
\hline 31 & ILEV & NCELL1 & \begin{tabular}{l}
Level tracking flags. \\
ILEV \(=1\) indicates that the two-phase level exists in the current cell. \\
ILEV \(=0\) indicates that the two-phase level does not exist in the current cell. \\
ILEV \(=-1\), the level tracking calculation will be turned off for this cell.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG \(>0\) (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS > 11. If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 32 & XGNB & NCELL1 & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline \multicolumn{4}{|r|}{Note: Input array XL only if NTRACEL \(>0\) (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 33 & XLNB & NCELL1 & Mass fraction for liquid trace species. \\
\hline
\end{tabular}

\section*{Side-Tube Array Cards}
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \\
\hline \hline \(\mathbf{3 4}\) & DX & NCELL2 & Side-tube cell lengths \((\mathrm{m}, \mathrm{ft})\). \\
\hline \(\mathbf{3 5}\) & VOL & NCELL2 & Side-tube cell volumes \(\left(\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\). \\
\hline \(\mathbf{3 6}\) & FA & NCELL2+1 & Side-tube cell-edge flow areas \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 37 & FRIC & NCELL2+1 & \begin{tabular}{l}
Side-tube additive loss coefficients (-). \\
See NAMELIST variable IKFAC for optional K factors input. Input FRIC \(>0.0\) for internal-junction interface 1 of the side tube when a VOL/DX flowarea change occurs between JCELL and cell 1 of the side tube.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\).} \\
\hline 38 & FRICR & NCELL2+1 & Side-tube additive loss coefficients (-) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. Input FRICR \(>0.0\) for internal-junction interface 1 of the side tube when a VOL/DX flow-area change occurs between JCELL and cell 1 of the side tube. \\
\hline 39 & GRAV or ELEV & \begin{tabular}{l}
NCELL2+1 \\
(NCELLS \\
for ELEV)
\end{tabular} & Side-tube gravity elevation terms [(- or m), (- or ft)]. GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell i and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cell-centered elevation ELEV input. \\
\hline 40 & HD & NCELL2+1 & Side-tube hydraulic diameters (m, ft) (see NAMELIST variable NDIA1 for additional input of heat-transfer diameters). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NDIA \(1 \neq 2\) do not input array HD-HT.} \\
\hline 41 & HD-HT & NCELLS+1 & Side-tube heat transfer diameters (m, ft). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 , do not input array ICFLG.. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur..} \\
\hline 42 & ICFLG & NCELL2+1 & \begin{tabular}{l}
Side-tube cell-edge choked-flow model option. Celledge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 43 & NFF & NCELL2+1 & \begin{tabular}{l}
Side-tube friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE. \\
Input NFF \(\geq 0\) for the JCELL and JCELL+1 interfaces.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: If NCCFL = 0 (Word 5 Main-Data Card 9), do not input array LCCFL.} \\
\hline 44 & LCCFL & NCELL2+1 & Side-tube countercurrent flow limitation option. \(0=\) no countercurrent flow limitation calculation at the cell interface; \(\mathrm{N}=\) the countercurrent flow limitation parameter set number used to evaluate countercurrent flow limitation at the cell interface \([1 \leq \mathrm{N} \leq\) NCCFL (Word 5 on Main-Data Card 9)]. \\
\hline 45 & ALP & NCELL2 & Side-tube initial gas volume fractions (-). \\
\hline 46 & VL & NCELL2+1 & Side-tube initial liquid velocities (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)). \\
\hline 47 & VV & NCELL2+1 & Side-tube initial gas velocities (m/s, ft/s). \\
\hline 48 & TL & NCELL2 & Side-tube initial liquid temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 49 & TV & NCELL2 & Side-tube initial gas temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 50 & P & NCELL2 & Side-tube initial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline 51 & PA & NCELL2 & Side-tube initial noncondensable-gas partial pressures (Pa, psia). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NOLT1D = 1 do not input array ILEV.} \\
\hline 52 & ILEV & NCELL2 & \begin{tabular}{l}
Level tracking flags. \\
\(\operatorname{ILEV}=1.0\) indicates that the two-phase level exists in the current cell. \\
ILEV \(=0.0\) indicates that the two-phase level does not exist in the current cell. ILEV \(=-1.0\), the level tracking calculation will be turned off for this cell.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG \(>0\) (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 53 & XGNB & NCELL2 & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 54 & XLNB & NCELL2 & Mass fraction for liquid trace species. \\
\hline
\end{tabular}

\section*{VALVE Component Data}

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (VALVE left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq\) NUM \(\leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c}
Note: \\
Variable input this card when the number of inputs for FLUIDS (a NAMELIST \\
variable
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable one. }
\end{tabular}\(|\)\begin{tabular}{l}
Description \\
\hline \hline EOS \\
\hline PHASECHANGE \\
\hline \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
this component. Input FALSE or false, if phase change is not allowed \\
for this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 4I14,E14.4) NCELLS, NODES, JUN1, JUN2, EPSW
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
When NAMELIST parameter USESJC \(=1,2\), or 3, NCELLS can be set to zero \\
so that VALVE component can be used as a single junction component (variable \\
flow area but no volume). If NCELLS is set to 0, IVPS (Word 4 on Card \\
Number 8) should be set to 1.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular}\(|\)\begin{tabular}{lll|}
\hline \hline NCELLS & Number of fluid cells (NCELLS \(\geq 2\) or if USESJC \(=1\) or 2, NCELLS \(\geq 0\)). \\
\hline NODES & \begin{tabular}{l}
Number of radial heat-transfer nodes in the VALVE wall. A value of zero \\
specifies no wall heat transfer.
\end{tabular} \\
\hline JUN1 & Junction number for junction interface adjacent to cell 1. \\
\hline
\end{tabular}

Card Number 3. (Format 4I14,E14.4) NCELLS, NODES, JUN1, JUN2, EPSW
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
When NAMELIST parameter USESJC \(=1,2\), or 3, NCELLS can be set to zero \\
so that VALVE component can be used as a single junction component (variable \\
flow area but no volume). If NCELLS is set to 0, IVPS (Word 4 on Card \\
Number 8) should be set to 1.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline JUN2 & Junction number for junction interface adjacent to cell NCELLS. \\
\hline EPSW & Wall surface roughness (m, ft). \\
\hline
\end{tabular}

Card Number 4. (Format I14) NSIDES
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
If NCELLS \(=0\) do not input this card. Input this card only if NAMELIST \\
variable USESJC \(=2\) or 3. This will allow this component to have side \\
junctions.
\end{tabular} \\
\hline Variable & Description \\
\hline \hline NSIDES & Number of side junctions connected to this PIPE component. \\
\hline
\end{tabular}

Note: If NSIDES \(>0\) then input the next three cards as sets of 1,2 , or 3 cards per NSIDES. Examples include:

If USESJC \(=2\) and JUNLK (Word 2 on Card Number 5) is \(>0\) only Card Number 5 is needed.

If USESJC \(=2\) and JUNLK is 0 input Card Number 5 and Card Number 6 in pairs.

If USESJC \(=3\) and JUNLK \(>0\) input Card Number 5 and Card Number 7 in pairs.

If USESJC \(=3\) and JUNLK is 0 input Card Number 5, Card Number 6, and Card Number 7 in sets.

Card Number 5. (Format 5I14) NCLK, JUNLK, NCMPTO, NCLKTO, NLEVTO
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: If NCELLS or NSIDES \(=0\), or USESJC \(=1\) do not input this card. Otherwise input this card for each NSIDES.} \\
\hline Variable & Description \\
\hline NCLK & "From" cell number in the PIPE component. \\
\hline JUNLK & Junction number. Enter a zero to have the code spawn a Single Junction Component internally. Otherwise enter the junction number here. This same junction number must appear as a VESSEL source junction or a 1D component junction. \\
\hline NCMPTO & Component number of "To" component of a leak path. Enter 0 if JUNLK \(\neq 0\). \\
\hline NCLKTO & Cell number of "To" cell of a leak path Enter 0 if JUNLK \(\neq 0\). \\
\hline NLEVTO & \begin{tabular}{l}
Axial level number of "To" cell of a leak path when "To" component is a VESSEL. Otherwise enter 0 . \\
Enter 0 if JUNLK \(\neq 0\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 6. (Format 5E14.4) FALK, CLOS, VLLK, VVLK, DELZLK
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
If NCELLS or NSIDES \(=0\) do not input this card. Input this card only if \\
JUNLK \(=0\). If USESJC \(=2\) or 3, input this card for each NSIDES.
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline FALK & Leak path flow area \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline CLOS & Leak path loss coefficient \\
\hline VLLK & Leak path initial liquid velocity (m/s, ft/s). \\
\hline VVLK & Leak path initial vapor velocity (m/s, ft/s). \\
\hline DELZLK & \begin{tabular}{l}
Elevation difference between center of "From" cell and center of "To" cell (m, ft). \\
DELZLK \(>0\) when the center of the "From" cell is higher than the center of the \\
"To" cell \\
\begin{tabular}{l}
DELZLK \(<0\) when the center of the "From" cell is lower than the center of the \\
"To" cell
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Card Number 7. (Format E14.4, I14) THETA, IENTRN
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If NCELLS or NSIDES \(=0\), or USESJC \(=1\) or 2 do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline THETA & Angle between the main direction of flow and the flow through the side junction. \\
\hline IENTRN & \begin{tabular}{l}
Offtake-model option. \\
\(0=\) off; \\
\(1=\) on (side-junction mass flow determined using offtake model)
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format 5I14) ICHF, ICONC, IVTY, IVPS, NVTB2
\begin{tabular}{|c|c|}
\hline Note: & For valve-type option IVTY \(=5\) or 6, variables NVTB2 (Word 5 on this card) and IVSV, NVTB1, NVSV, and NVRF (Words 2 to 5 on Card Number 9) are defined to be zero or left blank, and the Card Set 56 through Card Set 58 (arrays VTB1, VTB2, and VRF) are not input. \\
\hline Variable & Description \\
\hline ICHF & \begin{tabular}{l}
CHF calculation option \\
\(0=\) convection heat transfer only, no boiling heat transfer (i.e. no wall nucleation is allowed although phase change can still occur); \\
\(1=\) CHF from AECL-IPPE CHF Table, no critical quality calculated. \\
\(2=\) CHF from AECL-IPPE CHF Table, critical quality from Biasi correlation. \\
\(3=\) CHF from AECL-IPPE CHF Table, critical quality from CISE-GE correlation.
\end{tabular} \\
\hline ICONC & \begin{tabular}{l}
Solute in the liquid coolant option. \\
Requires ISOLUT = 1 (Word 3 on Main-Data Card 9) when ICONC \(>0\).
\[
0=\text { no; }
\] \\
1 = dissolved solute only; \\
\(2=\) both dissolved and plated-out solute.
\end{tabular} \\
\hline IVTY & Valve Type (See Table 6-6 and Table 6-7). \\
\hline IVPS & Mesh-cell interface number where the VALVE flow area is adjusted (\(1<\) IVPS \(<\) NCELLS +1 unless a BREAK is connected to a VALVE junction; then IVPS can equal that junction interface 1 or NCELLS + 1). \\
\hline
\end{tabular}

Card Number 8. (Format 5I14) ICHF, ICONC, IVTY, IVPS, NVTB2 (Continued)
\begin{tabular}{|c|c|}
\hline Note & For valve-type option IVTY \(=5\) or 6, variables NVTB2 (Word 5 on this card) and IVSV, NVTB1, NVSV, and NVRF (Words 2 to 5 on Card Number 9) are defined to be zero or left blank, and the Card Set 56 through Card Set 58 (arrays VTB1, VTB2, and VRF) are not input. \\
\hline Variable & Description \\
\hline NVTB2 & \begin{tabular}{l}
The number of data pairs in the second valve table (defined by the absolute value of NVTB2). \\
Input NVTB2 \(=0\) when IVTY \(=0,1,2,5,6,7,8,9\) or 10 (Word 3 on this card). For IVTY \(=3\) or 4 : \\
NVTB2 \(>0\) defines the table independent-variable form to be the IVSV (Word 2 on Card Number 9) parameter; \\
NVTB2 \(<0\) defines the second valve table independent-variable form to be the sum of the change in the IVSV parameter over each timestep times the trip set-status value ISET during that timestep (when the valve table is trip controlled); \\
NVTB2 \(=0\) [when NVTB1 \(=0\) (Word 3 on Card Number 9)] defines the valve flow-area fraction or relative valve-stem position to be the IVSV parameter value. When NVTB2 \(=0\) and NVTB1 \(\neq 0\), no second valve table is defined. Only the first valve table is used. \\
When NVTB \(2 \neq 0\), then NVTB \(1 \neq 0\), then NVTB2 and NVTB1 must have the same numerical sign, and the first valve table is evaluated when the controlling trip is set to \(\mathrm{ON}_{\text {Forward, }}\), and the second valve table is evaluated when the trip is set to \(\mathrm{ON}_{\text {Reverse }}\). NVTB1 \(=0\), and NVTB2 \(\neq 0\) is invalid. \\
For IVTY \(=-1\) or 11 \\
NVTB2 \(>0\) defines table input for valve \(\mathrm{C}_{\mathrm{v}}\) data. The table input is fractional area or stem position (if NVTB1>0) versus the valve \(\mathrm{C}_{\mathrm{v}}\) value. NFF (Card Set 34) can not be -1 or -100 for the valve face (IVPS, Word 4 of this card). NVTB2 sets of data must be input for valve table VTB2 (Card Set 54). \\
NVTB2 \(<0\) or NVTB2 \(=0\) means no \(\mathrm{C}_{\mathrm{v}}\) data are provided
\end{tabular} \\
\hline
\end{tabular}

\section*{Table 6-6. Valve Types}
\begin{tabular}{|c|c|}
\hline IVTY & Description \\
\hline -1 & Valve area fraction controlled by a control system. (Initial area fraction is obtained from FAVLVE on Card Number 14). If the control block output is in terms of valve stem position, a table of fractional stem position versus area is required [set NVTB1 > 0 (Word 3 on Card Number 9) and input valve table VTB1 (Card Set 55)]. Valve flow coefficient \(\left(\mathrm{C}_{\mathrm{v}}\right)\) data can be input with this valve type. \(\mathrm{C}_{\mathrm{v}}\) input requires that the user set NVTB2 \(>0\) (Word 5 on Card Number 8) and supply Card Number 24 and VTB2 (Card Set 56). Reverse \(\mathrm{C}_{\mathrm{v}}\) flow coefficients can be input via valve table VLTB (Card Set 54). \\
\hline 0 & constant flow area; \\
\hline 1 & flow-area fraction vs independent-variable-form table is evaluated; \\
\hline 2 & relative valve-stem position (0.0 means fully closed, 1.0 means fully opened) vs independent-variable-form table is evaluated; \\
\hline 3 & constant flow area until trip IVTR (Word 1 on Card Number 9) is set ON, then flowarea fraction vs. independent-variable-form table is evaluated. This valve type requires two tables - one to define the flow area fraction when the trip status is \(\mathrm{ON}_{\text {forward }}\) and one to define the flow area fraction when the trip status is \(\mathrm{ON}_{\text {reverse }}\) - \\
\hline 4 & constant relative valve-stem position until trip IVTR (Word 1 on Card Number 9) is set ON, then relative valve-stem position vs. independent-variable-form table is evaluated. This valve type requires two tables - one to define the stem position when the trip status is \(\mathrm{ON}_{\text {forward }}\) and one to define the stem position when the trip status is \(\mathrm{ON}_{\text {reverse }}\). \\
\hline 5 & valve is to be operated by a special turbine-component signal where an increase in generator power demand opens the valve; \\
\hline 6 & similar to IVTY \(=5\) except that an increase in generator power demand closes the valve. \\
\hline 7 & Multiple banks of safety relief valves (SRV) with automatic depression system (ADS) trip. Each valve bank opens and closes independently based on its own pressure set points. Pressure is monitored in cell (IVPS-1). Trip results in valve area \(=\) AVLVE to simulate ADS activation. Valve bank areas, pressure set points, and activation status must be specified on VTB1 cards (Card Set 56). \\
\hline
\end{tabular}

Table 6-6. Valve Types (Continued)
\begin{tabular}{|c|c|}
\hline IVTY & Description \\
\hline 8 & Motor-controlled valve (TRAC-B style). Opens and closes based on the pressure in cell ISENS (Word 2 on Card Number 18). A minimum flow area ALEAKB (Word 1 on Card Number 16) may be specified to simulate leakage. MODEM (Word 1 on Card Number 18) indicates valve operation (opening, closing, or stationary), and XPOS (Word 5 on Card Number 14) is the relative position of the valve stem. BOSP, EOSP, BCSP, and ECSP (Words 2, 3, 4, and 5 on Card Number 16) are pressure setpoints controlling valve motion. IVPG (Word 4 on Card Number 18) controls the manner in which valve area is related to stem position. IVPG \(=1\), Valve area is directly proportional to stem position. IVPG \(=2\), Valve area is S-shaped function of stem position. (Guillotine cut of circular cross section.) IVPG \(=3\), Valve area is userspecified function of stem position. This function is specified by the VLTB table (Card Set 55). This valve option can not be used when USESJC \(=1\) and this component is used as a SJC (because the valve needs a mesh volume to properly set ISENS). \\
\hline 9 & Check valve (includes delta pressure needed to overcome any spring loading). \\
\hline 10 & Inertial swing check valve (solves the rotational momentum equation to determine valve flapper position vs. time). \\
\hline 11 & Motor-controlled valve (RELAP5 style). Most of the input is the normal valve input but the meaning of some of the variables has changed as shown in Table 6-7. At least one new card is needed to specify the latching capabilities of the open and close trips. (see Card Number 23) Also, a table of fractional stem position versus area may be input [set NVTB1 > 0 (Word 3 on Card Number 9) and input valve table VTB1 (Card Set 55)]. In addition, valve flow coefficient \(\left(\mathrm{C}_{\mathrm{v}}\right)\) data can be input with this valve type. \(\mathrm{C}_{\mathrm{v}}\) input requires that the user set NVTB \(2>0\) (Word 5 on Card Number 8), and supply both Card Number 24 and VTB2 (Card Set 56). Reverse C \(\mathrm{V}_{\mathrm{v}}\) flow coefficients are input in valve table VLTB (Card Set 54). \\
\hline
\end{tabular}

Table 6-7. Meaning of RELAP5 Motor Valve Input variables (IVTY = 11).
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ CTM code Variable } \\
\hline \hline Open Trip number & IVTR (Word 1 on Card Number 9) \\
\hline Close Trip number & IVTROV (Word 1 on Card Number 11) \\
\hline Opening change rate (1/s) & RVMX (Word 1 on Card Number 12) \\
\hline Initial position & FAVLVE (Word 4 on Card Number 14) \\
\hline
\end{tabular}

Table 6-7. Meaning of RELAP5 Motor Valve Input variables (IVTY = 11). (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ CTM code Variable } \\
\hline \hline Valve table number & \begin{tabular}{l}
NVTB1 (Word 3 on Card Number 9). If NVTB1 \(>0\) 0, input Card \\
Set 56. Input stem position vs. area fraction.
\end{tabular} \\
\hline Closing change rate (1/s) & RVOV (Word 2 on Card Number 12) \\
\hline
\end{tabular}

Card Number 9. (Format 5I14)
IVTR, IVSV, NVTB1, NVSV, NVRF (See note in Card Number 8 above).
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IVTR & \begin{tabular}{l}
Trip ID number for valve-type options when IVTY \(=3\) or 4 (Word 3 on Card \\
Number 8) (\(\mid\) IVTR \(\mid \leq 9999\)) or the component number of turbine stage 1 for \\
valve-type options when IVTY \(=5\) or \(6(1 \leq\) IVTR \(\leq 999)\).
\end{tabular} \\
\hline IVSV & \begin{tabular}{l}
The independent variable ID number for the valve table. IVSV \(>0\) defines the ID \\
number for a signal-variable parameter; IVSV \(<0\) defines the ID number for a \\
control-block output parameter. For IVTY \(=7\), this variable can be used to \\
override the upstream pressure of the valve location otherwise used to determine \\
the opening and closing of the SRV banks defined in Card Set 55.
\end{tabular} \\
\hline
\end{tabular}

IVTR, IVSV, NVTB1, NVSV, NVRF (See note in Card Number 8 above).
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline NVTB1 & \begin{tabular}{l}
The number of data pairs in the first valve table (defined by the absolute value of NVTB1). \\
Input NVTB1 \(=0\) when IVTY \(=0,5,6,8,9\), or \(10(\) Word 3 on Card Number 8). For IVTY = 1 to 4 : \\
NVTB1 \(>0\) defines the valve table independent-variable form to be the IVSV (Word 2 on this card) parameter; \\
NVTB1 \(<0\) defines the table independent-variable form to be the sum of the change in the IVSV parameter over each timestep times the trip setstatus value ISET during that timestep (when the valve table is trip controlled); \\
NVTB1 \(=0\) defines the valve flow-area fraction or relative valve-stem position (depending on the value of IVTY) to be the IVSV parameter. \\
For \(\mathrm{IVTY}=7\) : \\
NVTB1 \(>0\) corresponds to the number of safety relief valve banks. The user must input NVTB1 tuples of data in the VTB1 array (Card Set 56). \\
NVTB1 \(<=0\) are not allowed since one or more tuples are required for proper operation of this valve type. \\
For IVTY = -1 or 11 : \\
NVTB1 \(>0\) implies that the valve stem position is being adjusted directly and the flow area is interpolated based on a table lookup. This parameter defines the number of table pairs for the normalized stem position vs. normalized flow area fraction table required for array VTB1 (Card Set 56). \\
NVTB1 \(<=0\) means that the valve flow area, rather than stem position, is
\end{tabular} \\
\hline NVSV & \begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the first (and second when defined) valve table independent variable. \\
NVSV \(>0\) defines the ID number for a signal-variable parameter; \\
NVSV \(<0\) defines the ID number for a control-block output parameter; NVSV \(=0(\) when \(N V R F \neq 0)\) defines the difference between the trip signal and the setpoint value that turns the trip OFF when the valve table is trip controlled.
\end{tabular} \\
\hline
\end{tabular}

IVTR, IVSV, NVTB1, NVSV, NVRF (See note in Card Number 8 above).
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NVRF & \begin{tabular}{l}
The number of rate-factor table data pairs (defined by the absolute value of \\
NVRF). The rate factor is applied as a factor to the first (and second when \\
defined) valve table independent variable when the rate factor is defined. No rate \\
factor is defined when NVSV and NVRF are both zero. \\
NVRF \(>0\) defines the rate-factor table independent variable to be the NVSV \\
parameter; \\
NVRF < 0 defines it to be the sum of the change in the NVSV parameter over \\
each timestep times the trip set-status value ISET during that timestep (when the \\
valve table is trip controlled); \\
NVRF = 0 defines the rate factor to be the NVSV parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 10. (Format 5I14) IQP3TR, IQP3SV, NQP3TB, NQP3SV, NQP3RF
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. If NODES \(>0\) and QPPP \((\) Card Set 46) \(>0\), this card is read. However, if QPPP \(=0\) this card is read but not used. \\
Note:
\end{tabular}} \\
\hline Variable & Description \\
\hline IQP3TR & Trip ID number that controls the evaluation of the power-to-the-wall table defined by Card Set 59 (array QP3TB) [|IQP3TR \(\mid \leq 9999]\). [input IQP3TR \(=0\) when there is to be no trip control and the table is to be evaluated every timestep during the transient calculation]. \\
\hline IQP3SV & The independent-variable ID number for the power-to-the-wall table. IQP3SV \(>0\) defines the ID number for a signal-variable parameter; IQP3SV \(<0\) defines the ID number for a control-block output parameter. \\
\hline NQP3TB & \begin{tabular}{l}
The number of power-to-the-wall table data pairs (defined by the absolute value of NQP3TB). \\
NQP3TB \(>0\) defines the table independent-variable form to be the IQP3SV parameter; \\
NQP3TB \(<0\) defines the table independent-variable form to be the sum of the change in the IQP3SV parameter over each timestep times the trip set-status value ISET during that timestep (when the power-to-the-wall table is trip controlled); NQP3TB \(=0\) defines the power to the wall to be the IQP3SV parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 10. (Format 5I14) IQP3TR, IQP3SV, NQP3TB, NQP3SV, NQP3RF (Continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
Note: If NODES = 0 (Word 2 on Card Number 3), do not input this card. If NODES \(>0\) and QPPP \((\) Card Set 46) \(>0\), this card is read. However, if QPPP \(=0\) this card is read but not used. \\
Note:
\end{tabular}} \\
\hline Variable & Description \\
\hline NQP3SV & \begin{tabular}{l}
The independent-variable ID number for the rate factor that is applied to the power-to-the-wall table's independent variable. \\
NQP3SV \(>0\) defines the ID number for a signal-variable parameter; NQP3SV \(<0\) defines the ID number for a control-block output parameter; NQP3SV \(=0(\) when NQP3RF \(\neq 0)\) defines the independent variable to be the difference between the trip signal and the setpoint value that turns the trip OFF when the power-to-the-wall table is trip controlled.
\end{tabular} \\
\hline NQP3RF & \begin{tabular}{l}
The number of rate-factor table data pairs (defined by the absolute value of NQP3RF). The rate factor is applied as a factor to the power-to-the-wall table's (QP3TB) independent variable when the rate factor is defined. No rate factor is defined when NQP3SV and NQP3RF are both zero. \\
NQP3RF \(>0\) defines the rate-factor table's independent variable to be the NQP3SV parameter; \\
NQP3RF \(<0\) defines it to be the change in the NQP3SV parameter over the last timestep times the trip set-status value ISET when the power-to-the-wall table is trip controlled; \\
NQP3RF \(=0\) defines the rate factor to be the NQP3SV parameter.
\end{tabular} \\
\hline
\end{tabular}

Card Number 11. (Format 2I14) IVTROV, IVTYOV
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline IVTROV & Trip ID number that overrides valve adjustments with or without trip ID number IVTR (Word 1 on Card Number 9) control and opens \(\left(\mathrm{ON}_{\text {Forward }}\right)\) or closes (\(\mathrm{ON}_{\text {Reverse }}\)) the valve at the constant rate RVOV (Word 2 on Card Number 12) when trip ID number IVTROV is ON [input IVTROV \(=0\) when IVTY \(=5\) or 6 (Word 3 on Card Number 8)] (|IVTROV \(\mid \leq 9999\)). \\
\hline IVTYOV & \begin{tabular}{l}
The type of flow-area adjustment by RVOV (Word 2 on Card Number 12) when the overriding trip ID number IVTROV is ON (not used when IVTY = 5 or 6). \\
0 = flow-area fraction per second; \\
\(1=\) relative valve-stem position per second.
\end{tabular} \\
\hline IVTRLO & Trip ID number that makes a multiple-bank SRV (i.e. IVTY=7) switch from an initial set of pressure setpoints to a set of lower pressure setpoints (i.e. the low/low SRV setpoints in a BWR) \\
\hline
\end{tabular}

Card Number 12. (Format 4E14.4) RVMX, RVOV, FMINOV, FMAXOV
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline RVMX & \begin{tabular}{l}
Maximum rate of VALVE flow-area fraction or relative valve-stem position \\
adjustment (1/s).
\end{tabular} \\
\hline RVOV & \begin{tabular}{l}
Rate of VALVE flow-area adjustment (1/s) when the overriding trip ID number \\
IVTROV (Word 1 on Card Number 11) is ON (not used when IVTY = 5 or 6).
\end{tabular} \\
\hline FMINOV & \begin{tabular}{l}
The minimum flow-area fraction (IVTYOV \(=0\)) or minimum relative valve- \\
stem position (IVTYOV \(=1\)) during valve adjustment by the overriding trip ID \\
number IVTROV (0.0 \(\leq\) FMINOV \(<\) FMAXOV).
\end{tabular} \\
\hline FMAXOV & \begin{tabular}{l}
The maximum flow-area fraction (IVTYOV \(=0\)) or maximum relative valve- \\
stem position (IVTYOV \(=1)\) during valve adjustment by the overriding trip ID \\
number IVTROV (FMINOV < FMAXOV \(\leq 1.0)\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 13. (Format 5E14.4) RADIN, TH, HOUTL, HOUTV, TOUTL
\begin{tabular}{|c|c|}
\hline Note & The four parameters, HOUTL, HOUTV, TOUTL, and TOUTV, allow flexibility in calculating possible heat losses from the outside of the PIPE wall. Typically, such heat losses are not important for fast transients or large-break loss-ofcoolant accidents (LOCAs), and HOUTL and HOUTV can be set equal to zero. When heat losses are significant, they often can be approximated by a constant HTC temperature for the liquid and gas fluid phases outside the pipe wall. \\
\hline Variable & Description \\
\hline RADIN & Inner radius (\(\mathrm{m}, \mathrm{ft}\)) of the VALVE wall. \\
\hline TH & Wall thickness (m, ft) of the VALVE wall. \\
\hline HOUTL & Heat-transfer coefficient (HTC) [W/(\(\left.\left.\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]\) between the outer boundary of the VALVE wall and the liquid outside the VALVE wall. \\
\hline HOUTV & \(\mathrm{HTC}\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}{ }^{\circ} \mathrm{Fhr}\right)\right]\) between the outer boundary of the VALVE wall and the gas outside the VALVE wall. \\
\hline TOUTL & Liquid temperature (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)) outside the VALVE wall. \\
\hline
\end{tabular}

Card Number 14. (Format 5E14.4) TOUTV, AVLVE, HVLVE, FAVLVE, XPOS
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline TOUTV & Gas temperature (K, \({ }^{\circ}\) F) outside the VALVE wall. \\
\hline AVLVE & \begin{tabular}{l}
VALVE adjustable-interface flow area \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\) when the VALVE adjustable- \\
interface IVPS is at a flow-area fraction or relative valve-stem position of 1.0 \\
corresponding to \(100 \%\) open.
\end{tabular} \\
\hline FVLVE & \begin{tabular}{l}
VALVE adjustable-interface hydraulic diameter (\(\mathrm{m}, \mathrm{ft}\)) when the VALVE \\
adjustable-interface is \(100 \%\) open.
\end{tabular} \\
\hline XPOS & \begin{tabular}{l}
Initial flow-area fraction (ignoring leakage) at the VALVE adjustable-interface \\
IVPS (Word 4 on Card Number 8) \((0.0 \leq\) FAVLVE \(\leq 1.0)\) If FAVLVE \(<0.0\) or
\end{tabular} \\
\hline \begin{tabular}{l}
FAVLVE \(>1.0\) is input, a consistent value of FAVLVE is evaluated internally by \\
TRACE based on the input value of XPOS.
\end{tabular} \\
\hline \begin{tabular}{l}
Initial relative valve-stem position (ignoring leakage) at the VALVE adjustable- \\
interface IVPS \((0.0=\) no flow area, valve closed; \(1.0=\) AVLVE flow area, valve \\
\(100 \%\) opened). If \(0.0 \leq\) FAVLVE \(\leq 1.0\) is input, a consistent value for XPOS is \\
evaluated internally by TRACE based on the valve stem controlling a guillotine \\
closure of a circular flow-area cross section. Otherwise, a consistent value of \\
FAVLVE is evaluated internally by TRACE based on \(0.0 \leq\) XPOS \(\leq 1.0\) that is \\
input.
\end{tabular} \\
\hline
\end{tabular}

Card Number 15. (Format 4E14.4, I14) QP3IN, QP3OFF, RQP3MX, QP3SCL, NHCOM
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline QP3IN & \(\left.\begin{array}{l}\text { Initial power (W, Btu/hr) deposited in (to) the wall and distributed according to } \\
\text { the QPPP array. If QP3IN }>0.0, \text { it is the total power to the entire wall. When } \\
\text { QP3IN }<0.0, \text { the initial power to the wall in each cell is |QP3IN } \mid \text {, and the } \\
\text { negative sign indicates the power to the wall is to be a cell-dependent array of } \\
\text { NCELLS (Word 1 on Card Number 3) powers. Each data pair of the power-to- } \\
\text { the-wall table [for QP3IN }<0.0] \text { has } 1+\text { NCELLS values (an independent- } \\
\text { variable value and NCELLS power values for cells 1 through NCELLS). When } \\
\text { the power-to-the-wall table is not being evaluated, the same power value of } \\
|Q P 3 I N| ~ o r ~ Q P 3 O F F ~[i f ~ Q P 3 O F F ~\end{array}-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} / \mathrm{hr}\right)\right]\) is applied at \\
each of the NCELLS cells.
\end{tabular}

Card Number 15. (Format 4E14.4, I14) QP3IN, QP3OFF, RQP3MX, QP3SCL, NHCOM
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If NODES \(=0\) (Word 2 on Card Number 3), do not input this card. } \\
\hline Variable & \multicolumn{1}{c|}{ Description }
\end{tabular} \left\lvert\, \begin{tabular}{l}
QP3OFF \\
\hline \hline \\
\hline
\end{tabular} \begin{tabular}{l}
Power (W, Btu/hr) to the wall when the controlling trip is OFF after being ON \\
[not used if IQP3TR = 0 (Word 1 on Card Number 10); use the last table- \\
evaluated power when the trip was ON if QP3OFF \(\leq-10^{19} \mathrm{~W}\left(-3.41 \times 10^{19} \mathrm{Btu} /\right.\) \\
\(\mathrm{hr})]\).
\end{tabular}\right.

Note: Input Card Number 16 to Card Number 18 only if IVTY \(=8\) (Word 3 on Card Number 8)

Card Number 16. (Format 5E14.4) ALEAKB, BOSP, EOSP, BCSP, ECSP
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: It is required that \(\mathrm{BCSP} \leq \mathrm{ECSP} \leq \mathrm{EOSP} \leq \mathrm{BOSP}\)} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ALEAKB & Minimum valve flow area for leakage (Motor valve only). \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\) \\
\hline BOSP & Pressure above which valve begins to open. (Pa) \\
\hline EOSP & Pressure below which valve stops opening. (Pa) \\
\hline BCSP & Pressure below which valve begins to close. (Pa) \\
\hline ECSP & Pressure above which valve stops closing. (Pa) \\
\hline
\end{tabular}

Card Number 17. (Format 2E14.4) ROPEN, RCLOS
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ROPEN & \begin{tabular}{l}
Rate at which valve opens (fraction of total valve stem travel per second). \\
ROPEN \(\geq 0\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 17. (Format 2E14.4) ROPEN, RCLOS (Continued)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline RCLOS & \begin{tabular}{l}
Rate at which valve closes (fraction of total valve stem travel per second). \\
RCLOS \(\geq 0\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 18. (Format 4I14) MODEM, ISENS, NVTX, IVPG
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline MODEM & \begin{tabular}{l}
Defines attempted valve operation \((0=\) no movement, \\
\(+1=\) opening movement, \(-1=\) closing movement).
\end{tabular} \\
\hline ISENS & \begin{tabular}{l}
Number of cell for which pressure is checked against pressure set points defined \\
by BOSP, EOSP, BCSP and ECSP.
\end{tabular} \\
\hline NVTX & \begin{tabular}{l}
Number of VALVE table entry pairs used by VALVE type 8 (motor control \\
valve). Only used when IVPG \(=3\).
\end{tabular} \\
\hline IVPG & \begin{tabular}{l}
VALVE pressure gradient option. \\
(See explanation of IVTY = 8\()\)
\end{tabular} \\
\hline
\end{tabular}

Card Number 19. (Format I14,2F14) HYSTER, ADDDP, LEAKARAT
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: Input only if IVTY \(=9\) (Word 3 on Card Number 8), Check Valve } \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline HYSTER & \begin{tabular}{l}
Check valve type. Enter +1 for a static pressure-controlled check valve (no \\
hysteresis), 0 for a static pressure/flow-controlled check valve (has hysteresis \\
effect), or -1 for a static/dynamic pressure-controlled check valve (has \\
hysteresis effect). It is recommended that 0 be used for most calculations, as it \\
is more stable (i.e., less noisy and less oscillations) than +1 or -1.
\end{tabular} \\
\hline ADDDP & Additional delta pressure needed to open the valve (Pa, psia). \\
\hline LEAKARAT & Ratio of the leak flow area divided by the open flow area. \\
\hline
\end{tabular}

Note: Input cards Card Number 20 through Card Number 22 only if IVTY \(=10\) (Word 3 on Card Number 8) Inertial Check Valve.

Card Number 20. (Format I14,4E14) LATCHOPT, ADDDP, LEAKARAT, THETA, THETAMIN
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline LATCHOPT & \begin{tabular}{l}
Latch option. The valve can open and close repeatedly if the latch option is \\
zero. When \(\mathrm{W} 1=1\), the valve either opens or closes only once if the initial \\
angle is between the maximum and minimum. If the flapper starts at either the \\
maximum or minimum angle it will not move. When W1 W 2, the flapper will \\
latch only at the maximum position. If it starts at the maximum, it will not \\
move.
\end{tabular} \\
\hline ADDDP & Additional pressure needed to open the valve (Pa, psia). \\
\hline LEAKARAT & Ratio of the leak flow area divided by the open flow area. \\
\hline THETA & \begin{tabular}{l}
Initial flapper angle (degrees). The flapper angle must be within the minimum \\
and maximum angles specified in Words 2 and 3.
\end{tabular} \\
\hline THETAMIN & Minimum flapper angle (degrees). This must be greater than or equal to zero. \\
\hline
\end{tabular}

Card Number 21. (Format 5E14) THETAMAX, FLAPMOMI, OMEGA, FLAPLEN, FLAPRAD
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline THETAMAX & Maximum flapper angle (degrees). \\
\hline FLAPMOMI & Moment of inertia of valve flapper \(\left(\mathrm{kg} / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}^{2}\right)\). \\
\hline OMEGA & Initial angular velocity (rad \(/ \mathrm{s})\). \\
\hline FLAPLEN & Moment length of flapper (\(\mathrm{m}, \mathrm{ft}\)). \\
\hline FLAPRAD & Radius of flapper (\(\mathrm{m}, \mathrm{ft}\)). \\
\hline
\end{tabular}

Card Number 22. (Format(E14) FLAPMASS
\begin{tabular}{|c|l|}
\hline Variable & Description \\
\hline \hline FLAPMASS & Mass of flapper (kg, lb). \\
\hline
\end{tabular}

Card Number 23. (Format(E14) LATCHOPT
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note: Input this card if IVTY = 11, (Word 3 on Card Number 8)} \\
\hline Variable & Description \\
\hline LATCHOPT & \begin{tabular}{l}
Interpreted as the latch option for the open and closing trips for the RELAP5 type Motor Valve. \\
\(0=\) No latched trips \\
\(1=\) Only latch the open trip. \\
\(2=\) Only latch the close trip. \\
\(3=\) Both trips are latchable.
\end{tabular} \\
\hline
\end{tabular}

Card Number 24. (Format 2E14, I14) NORMFAFACTOR, CSUBVFACTOR, NVTX
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(\begin{array}{c}\text { Note: } \\
\text { Variable } \\
\text { variable }\end{array}\) NFRC1 \(=2\)}
\end{tabular}\(\left.\quad \begin{array}{l}\text { Description }\end{array}\right]\)

\section*{VALVE Array Cards}

Input each of the following arrays using LOAD format.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 25 & DX & NCELLS & Cell lengths (m, ft). \\
\hline 26 & VOL & NCELLS & Cell volumes (\(\left.\mathrm{m}^{3}, \mathrm{ft}^{3}\right)\). \\
\hline 27 & FA & NCELLS+1 & Cell-edge flow areas (\(\left.\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline \multicolumn{4}{|r|}{Note: Setting FRIC \(>10^{20}\) at a cell edge invokes the steam-separator model (only the gas phase is allowed to flow through the cell interface). Setting FRIC \(<-10^{20}\) invokes the liquid-separator model (only the liquid is allowed to flow through the cell interface). If the reverse additive loss-coefficient option (NFRC1 \(=2\) in the NAMELIST data) is chosen, steam-separator and liquid-separator models may be used separately in each forward and reverse direction.} \\
\hline 28 & FRIC & NCELLS+1 & Additive loss coefficients (-). See NAMELIST variable IKFAC for optional K factors input. \\
\hline \multicolumn{4}{|r|}{Note: Input array FRICR only if NFRC1 (NAMELIST variable) \(=2\).} \\
\hline 29 & FRICR & NCELLS+1 & Additive loss coefficients (-) in the reverse flow direction. See NAMELIST variable IKFAC for optional K factors input. \\
\hline 30 & GRAV or ELEV & \begin{tabular}{l}
NCELLS+1 \\
(NCELLS \\
for ELEV)
\end{tabular} & Gravity or elevation terms (- or \(\mathrm{m}, \mathrm{ft}\)). GRAV is the ratio of the elevation difference to the DX flow length between the centers of cell \(i\) and cell i-1 for interface i. A positive GRAV value indicates increasing elevation with increasing cell number. See NAMELIST variable IELV for optional cell-centered elevation ELEV input. \\
\hline 31 & HD & NCELLS+1 & Hydraulic diameters (m , ft) (see NAMELIST variable NDIA1 for additional input of heat-transfer diameters). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NDIA1 \(\neq 2\) do not input array HD-HT.} \\
\hline 32 & HD-HT & NCELLS+1 & Heat transfer diameters (m, ft). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable ICFLOW \(=0\) or 1 do not input array ICFLG. Setting ICFLG \(>0\) at adjacent cell-edges can lead to numerical difficulties. Use only where choked flow can be realistically expected to occur..} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 33 & ICFLG & NCELLS+1 & \begin{tabular}{l}
Cell-edge choked-flow model option. \\
\(0=\) no choked-flow model calculation; \\
1 = choked-flow model calculation using default multipliers; \\
2 to \(5=\) choked-flow model calculation using NAMELIST variable defined multipliers.
\end{tabular} \\
\hline 34 & NFF & NCELLS+1 & \begin{tabular}{l}
Friction-factor correlation option. \\
\(0=\) constant friction factor based on FRIC input; \\
1 = homogeneous-flow friction factor plus FRIC; \\
\(-1=\) homogeneous-flow friction factor plus FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE; \\
\(-100=\) FRIC plus an abrupt flow-area change form loss evaluated internally by TRACE.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: If NCCFL \(=0\) (Word 5 on Main-Data Card 9), do not input array LCCFL.} \\
\hline 35 & LCCFL & NCELLS+1 & \begin{tabular}{l}
Countercurrent flow limitation option. \\
\(0=\) no countercurrent flow limitation calculation at the cell interface; \\
\(\mathrm{N}=\) the countercurrent flow limitation parameter set number used to evaluate countercurrent flow limitation at the cell interface \([1 \leq \mathrm{N} \leq\) NCCFL (Word 5 on Main-Data Card 9)].
\end{tabular} \\
\hline 36 & ALP & NCELLS & Initial gas volume fractions (-). \\
\hline 37 & VL & NCELLS+1 & Initial liquid velocities (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)). \\
\hline 38 & VV & NCELLS+1 & Initial gas velocities (\(\mathrm{m} / \mathrm{s}\), ft/s). \\
\hline 39 & TL & NCELLS & Initial liquid temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 40 & TV & NCELLS & Initial gas temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 41 & P & NCELLS & Initial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline 42 & PA & NCELLS & Initial noncondensable-gas partial pressure (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable NOLT1D \(=0\), input array ILEV. Otherwise, leave it out.} \\
\hline 43 & ILEV & NCELLS & Level tracking flags. ILEV \(=1\) indicates that the twophase level exists in the current cell. ILEV \(=0\) indicates that the two-phase level does not exist in the current cell. If ILEV \(=-1\), the level tracking calculation will be turned off for this cell. \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFL \(=0\), do not input array WFMFL.} \\
\hline 44 & WFMFL & NCELLS+1 & Wall-friction multiplier factor for the liquid phase \([0.9 \leq\) WFMFL \(\leq 1.1]\). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFV \(=0\), do not input array WFMFV.} \\
\hline 45 & WFMFV & NCELLS+1 & Wall-friction multiplier factor for the gas phase \([0.9 \leq\) \(\mathrm{WFMFV} \leq 1.1]\). \\
\hline \multicolumn{4}{|r|}{Note: If NODES = 0 (Word 2 on Card Number 3), do not input arrays QPPP, MATID, TW, IDROD, and NHCEL.} \\
\hline 46 & QPPP & NODES \(\times\) NCELLS & A relative power shape (-) in the VALVE wall. Input values for cell 1, node 1 through NODES; then cell 2, node 1 through NODES; etc. If the array is filled with the same nonzero constant, a uniform volumetric heat source in the wall results. TRACE internally normalizes the shape to have a volume-average value of unity \{each \(\operatorname{QPPP}(\mathrm{I})\) is normalized to have the value \(\operatorname{QPPP}(\mathrm{I}) \times\left[\Sigma_{\mathrm{K}} \operatorname{VOL}(\mathrm{K})\right] /\left[\Sigma_{\mathrm{K}} \operatorname{QPPP}(\mathrm{K}) \times\right.\) \(\operatorname{VOL}(\mathrm{K})]\}\). Filling the array with zeros results in no power being deposited in the wall regardless of the values of QP3IN, QP3TB, etc. \\
\hline 47 & MATID & NODES-1 & \begin{tabular}{l}
Wall-material ID array, which specifies material ID between radial nodes. Dimension is 1 if NODES \(=1\). \\
6 = stainless steel, type 304; \\
7 = stainless steel, type 316; \\
\(8=\) stainless steel, type 347; \\
\(9=\) carbon steel, type A508; \\
\(10=\) inconel, type 718; \\
\(12=\) inconel, type 600.
\end{tabular} \\
\hline 48 & TW & NODES \(\times\) NCELLS & Initial wall temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) in the VALVE that are input in the same order as QPPP. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NHCOM = 0 (Word 5 on Card Number 15), do not input arrays IDROD and NHCEL.} \\
\hline 49 & IDROD & 1 & Vessel radial-theta cell number or input 0 when NHCOM is a 1D component. \\
\hline 50 & NHCEL & NCELLS & Connecting axial cell numbers in component NHCOM. \\
\hline \multicolumn{4}{|r|}{Note: If ICONC \(=0\) (Word 2 on Card Number 8), do not input array CONC.} \\
\hline 51 & CONC & NCELLS & Initial solute mass to liquid-coolant mass ratios [kg (solute) \(/ \mathrm{kg}\) (liquid), \(\mathrm{lb}_{\mathrm{m}}\) (solute) \(/ 1 \mathrm{~b}_{\mathrm{m}}\) (liquid) \(]\). Requires ISOLUT = 1 (Word 3 onMain-Data Card 9). \\
\hline \multicolumn{4}{|r|}{Note: If ICONC \(=0\) or 1 , (Word 2 on Card Number 8), or the NAMELIST parameter USESJC \(>0\), do not input array \(S\).} \\
\hline 52 & S & NCELLS & Initial macroscopic densities of plated-out solute \((\mathrm{kg} /\) \(\mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\)). Requires ISOLUT \(=1\) (Word 3 on MainData Card 9) \\
\hline \multicolumn{4}{|r|}{Note: Input array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.} \\
\hline 53 & XGNB & NCELLS & Mass fraction for gas trace species or if IGAS \(>11\), then mass fraction for each non-condensable gas species. Non-condensable gas species index is defined by the order in which gas species are input in the NCGasSpecies array (a Namelist input). \\
\hline \multicolumn{4}{|r|}{Note: Input array XLNB only if NTRACEL > 0 (Word 2 on Main-Data Card 11). Repeat this card set NTRACEL times.} \\
\hline 54 & XLNB & NCELLS & Mass fraction for liquid trace species. \\
\hline
\end{tabular}

\section*{Valve Tables}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: Input array VLTB if NVTX \(>0\) (Word 3 on Card Number 18), IVTY \(=8\) (Word 3 on Card Number 8) and IVPG \(=3\) (Word 4 on Card Number 18). Input array VLTB if IVTY \(=-1\) or 11 (Word 3 on Card Number 8), NVTB \(2>0\) (Word 5 on Card Number 8), and NVTX \(>0\) (Word 3 on Card Number 24).} \\
\hline 55 & VLTB & \(2 *\) NVTX & \begin{tabular}{l}
If IVTY \(=8\), input fractional valve stem position, valve area fraction pairs \\
If IVTY \(=-1\) or 11 and NVTX \(>0\), then enter fractional valve area or fractional stem position vs. reverse flow \(\mathrm{C}_{\mathrm{v}}\) pairs where \(\mathrm{C}_{\mathrm{v}}\) has units of \(\frac{\mathrm{m}^{3} / \mathrm{s}}{\sqrt{P a}}\) for SI input and \(\frac{(g a l) /(\min)}{\sqrt{\left(l b_{f}\right) /\left(i n^{2}\right)}}\) for British input.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NVTB1 = 0 (Word 3 on Card Number 9), do not input array VTB1. Table VTB1 is used when IVTY \(=-1,1\) to 4,7 or 11 .} \\
\hline 56 & VTB1 & \(2 * \mid\) NVTB1| for IVTY \(\neq 7\), \(M^{*}|\mathrm{NVTB} 1|\) for IVTY=7, where \(M=5\) for IVTRLO=0 and \(M=7\) for IVTRLO \(=\) 0 & \begin{tabular}{l}
First valve-adjustment table (\({ }^{*},-\)). Interpretation of table entries depends on the value of IVTY. In all cases, |NVTB1| (Word 3 on Card Number 9) tuples are required. \\
For IVTY \(\neq 7\), the table is defined by pairs having the following form [independent-variable, dependent variable \#1, dependent variable \#2, ...]. The independent variable form is defined by one of three values, depending upon the specific valve type (IVTY) that is being defined: IVSV (Word 2 on Card Number 9), flow-area fraction, or relative valve-stem position. If IVTY \(=-1\) or 11 , input stem position vs. area fraction.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \begin{tabular}{l}
Description \\
For IVTY=7, the table is defined by tuples having the following form [independent-variable, dependent variable \#1, dependent variable \#2, ...]. One tuple is provided for each discrete bank of relief valves. The independent variable is defined by the IVSV variable and corresponds to the pressure used to determine the opening and closing of the SRV bank. The dependent variables are defined as follows:
\end{tabular} \\
\hline & & & \begin{tabular}{l}
6) Valve bank fraction area relative to AVLVE. \\
7) Valve bank initial opening pressure. \\
8) Valve bank initial closing pressure. \\
9) Valve bank form loss coefficient. \\
10) Valve bank fractional hyd diameter relative to HVLVE. \\
11) Valve bank low/low opening pressure. \\
12) Valve bank low/low closing pressure.and IVTRLO \\
The number of dependent values depends upon the value of IVTRLO. For IVTRLO \(=0\), the first five words are required for each valve bank. For IVTY = 7 and IVTRLO \(\neq 0\) all seven words are required for each valve bank. \\
The form loss coefficient (i.e. the fourth word of this card set) is used to compute an equivalent form loss for the open valve banks assuming that the banks open starting with the lowest numbered bank and close starting with the highest numbered bank. The sixth and seventh words become active only after the trip defined by IVTRLO is ON
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Card Set Number & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NVTB2 \(=0\) (Word 5 on Card Number 6), do not input array VTB2.} \\
\hline 57 & VTB2 & \(2 \times\) |NVTB2| & \begin{tabular}{l}
Second valve-adjustment table (*,-). \\
If IVTY \(=3\) or 4 and NVTB \(2 \neq 0\), then input |NVTB2| (Word 5 on Card Number 8) table-defining data pairs having the following form [independentvariable form defined by IVSV (Word 2 on Card Number 9), flow-area fraction or relative valve-stem position]. Define the flow-area fraction or relative valve-stem position values in the second valveadjustment table to vary in the same direction as they do in the first valve adjustment table VTB1; that is, if the flow-area fraction or relative valve-stem position increases in going from left to right in the first valveadjustment table, define them in the second valveadjustment table to increase in going from left to right as well. \\
If IVTY \(=-1\) or 11 and NVTB2 \(>0\), then enter fractional valve area or fractional stem position vs. forward flow \(\mathrm{C}_{\mathrm{v}}\) pairs where \(\mathrm{C}_{\mathrm{v}}\) has units of \(\frac{\mathrm{m}^{3} / \mathrm{s}}{\sqrt{P a}}\) for SI input and \(\frac{(\text { gal }) /(\text { min })}{\sqrt{\left(l b_{f}\right) /\left(i n^{2}\right)}}\) for British input.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: If NVTB1 \(=0\) or NVRF \(=0\) (Words 3 and 5 on Card Number 9), do not input array VRF.} \\
\hline 58 & VRF & \(2 \times\) NVRF| & Rate-factor table (*,-) for the first (and second if NVTB2 \(\neq 0\)) valve-adjustment table independent variable. Input |NVRF| (Word 5 on Card Number 9) table-defining data pairs having the following form [independent-variable form defined by NVSV (Word 4 on Card Number 9), rate factor to be applied to the valve-adjustment table independent variable]. \\
\hline \multicolumn{4}{|r|}{Note: If NQP3TB \(=0\) (Word 3 on Card Number 10), do not input array QP3TB.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 59 & QP3TB & \[
\begin{aligned}
& \hline 2 \times \mathrm{NQP} 3 \mathrm{~TB} \mid \\
& \text { when } \\
& \mathrm{QP3IN}> \\
& 0.0 ; \\
& (1+\mathrm{NCELL} \\
& \mathrm{S}) \\
& \times|\mathrm{NQP} 3 \mathrm{~TB}| \\
& \text { when } \\
& \mathrm{QP} 3 \mathrm{IN}< \\
& 0.0 .
\end{aligned}
\] & Power-to-the-wall independent-variable-form table \(\left[(*, W),\left({ }^{*}, \mathrm{Btu} / \mathrm{hr}\right)\right]\). Input |NQP3TB| (Word 3 on Card Number 10) table-defining data pairs having the following form [independent-variable form defined by IQP3SV (Word 2 on Card Number 10), power to the wall]. If QP3IN \(>0.0\), the dependent variable specifies the total power to the entire wall; if QP3IN \(<0.0\), the dependent variable is a power shape that specifies the power to the wall at each cell from cell 1 to cell NCELLS. \\
\hline
\end{tabular}

\section*{VESSEL Component Data}

Note: BREAK and PLENUM components cannot be connected to VESSEL component source-connection junctions. The FILL component can connect to the VESSEL component using the FILL leak path junction.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline TYPE & Component type (VESSEL left justified). \\
\hline NUM & Component ID number (must be unique for each component, \(1 \leq \mathrm{NUM} \leq 999\)). \\
\hline ID & User ID number (arbitrary). \\
\hline CTITLE & Hollerith component description. \\
\hline
\end{tabular}

Card Number 2. (Format 2A14) EOS, PHASECHANGE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{r}
Note: Only input this card when the number of inputs for FLUIDS (a NAMELIST \\
variable) is more than one.
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EOS & EOS identifier for this component (i.e. "h2o" or "r5h2o", etc.). \\
\hline PHASECHANGE & \begin{tabular}{l}
Phase change flag. Input TRUE or true, if phase change is allowed for \\
this component. Input FALSE or false, if phase change is not allowed for \\
this component.
\end{tabular} \\
\hline
\end{tabular}

Card Number 3. (Format 5I14) NASX, NRSX, NTSX, NCSR, IVSSBF
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{|c|}{ Description } \\
\hline \hline NASX & Number of axial (z-direction) cells (levels). \\
\hline NRSX & \begin{tabular}{l}
Number of radial (r-direction) cells (rings) or x-direction cells. [IGEOM (Word 1 \\
on Card Number 6) defines cylindrical or Cartesian geometry].
\end{tabular} \\
\hline NTSX & Number of azimuthal (\(\theta\)-direction) cells (sectors) or y-direction cells. \\
\hline
\end{tabular}

Card Number 3. (Format 5I14) NASX, NRSX, NTSX, NCSR, IVSSBF (Continued)
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline NCSR & \begin{tabular}{l}
Number of 1D hydraulic-component (but not BREAK or PLENUM component) \\
junction connections to VESSEL-component cell interfaces. Each of the six
\end{tabular} \\
\begin{tabular}{l}
VESSEL-cell interfaces can have any number of 1D hydraulic-component \\
junction connections.
\end{tabular} \\
\hline IVSSBF & \begin{tabular}{l}
Axial boundary-condition option [IVSSBF > 0 requires additional input of level \\
data for axial cells (levels) 0 and NASX + 1 to define their constant FILL or \\
BREAK cell boundary condition].
\end{tabular} \\
\begin{tabular}{l}
The r- or x-directional and the \(\theta-\) or y-directional boundaries below axial cell \\
(level) 1 and above axial cell (level) NASX are no-flow walls. 0 = no-flow wall \\
below axial cell (level), 1 and above axial cell (level) NASX (default); 2 = axial \\
cell (level) 0 defines a FILL and axial cell (level) NASX + 1 defines a BREAK \\
boundary condition; 20 = axial cell (level) 0 defines a BREAK boundary \\
condition and axial cell (level) NASX + 1 defines a FILL boundary condition; 22 \\
= both axial cells (levels) 0 and NASX+1 define a BREAK.
\end{tabular} \\
\hline
\end{tabular}

Card Number 4. (Format 5I14) IDCU, IDCL, IDCR, ICRU, ICRL
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IDCU & \begin{tabular}{l}
Axial cell (level) number at which its upper interface is the downcomer upper- \\
boundary elevation. If no downcomer is present, input IDCU \(=0\) (this is the \\
necessary and sufficient condition to indicate no downcomer is present in the \\
VESSEL component as far as TRACE setting downcomer-interface flow areas to \\
zero internally).
\end{tabular} \\
\hline IDCL & \begin{tabular}{l}
Axial-cell (level) number at which its upper interface is the downcomer lower- \\
boundary elevation. If IDCU = 0, input IDCL \(=0\).
\end{tabular} \\
\hline IDCR & \begin{tabular}{l}
Radial-cell (ring) number at which its outer interface is the downcomer inner- \\
radial boundary. If IDCU \(=0\), input IDCR \(=0\).
\end{tabular} \\
\hline ICRU & \begin{tabular}{l}
Axial-cell (level) number at which its upper interface is the reactor-core region \\
upper-boundary elevation. If no reactor-core region is present, input ICRU \(=0\).
\end{tabular} \\
\hline ICRL & \begin{tabular}{l}
Axial-cell (level) number at which its upper interface is the reactor-core region \\
lower-boundary elevation. If no reactor-core region is present, input ICRL \(=0\).
\end{tabular} \\
\hline
\end{tabular}

Card Number 5. (Format 5I14) ICRR, ILCSP, IUCSP, IUHP, ICONC
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICRR & \begin{tabular}{l}
Radial-cell (ring) number at which its outer interface is the reactor-core outer- \\
radial boundary. ICRR is used to define the reactor-core region with ICRU and \\
ICRL as well as with ILCSP and IUCSP. If no reactor-core region is defined by \\
both ICRU and ICRL as well as ILCSP and IUCSP, input ICRR = 0.
\end{tabular} \\
\hline ILCSP & \begin{tabular}{l}
Axial-cell (level) number at which its upper interface is the core-region lower- \\
boundary support-plate elevation to be used for evaluating graphics output. \\
Defaults to the value of ICRL (Word 5 on Card Number 4) if ILCSP = 0 is input.
\end{tabular} \\
\hline IUCSP & \begin{tabular}{l}
Axial-cell (level) number at which its upper interface is the core-region upper- \\
boundary support-plate elevation to be used for evaluating graphics output. \\
Defaults to the value of ICRU (Word 4 on Card Number 4) if IUCSP = 0 is input.
\end{tabular} \\
\hline IUHP & \begin{tabular}{l}
Axial-cell (level) at which its upper interface is the upper-head support-plate \\
elevation to be used for evaluating graphics output. Defaults to the value of IDCU \\
(Word 1 on Card Number 4) if IUHP = 0 is input.
\end{tabular} \\
\hline ICONC & \begin{tabular}{l}
Solute in the liquid coolant option. Requires ISOLUT = 1 (Word 3 on Main-Data \\
Card 9) when ICONC \(>0\). \\
\(0=\) no; \\
\(1=\) dissolved solute only; \\
\(2=\) both dissolved and plated-out solute.
\end{tabular} \\
\hline
\end{tabular}

Card Number 6. (Format 4(I14)) IGEOM, NVENT, NVVTB, NSGRID, VESSTYPE
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline IGEOM & \begin{tabular}{l}
VESSEL geometry option. \\
\(0=\) cylindrical geometry; \\
\(1=\) Cartesian geometry.
\end{tabular} \\
\hline NVENT & \begin{tabular}{l}
Number of vent valves in the VESSEL. No vent valve or a maximum of one \\
vent valve per radial interface between VESSEL cells is allowed; therefore, \\
actual valves may have to be lumped together for each cell interface.
\end{tabular} \\
\hline NVVTB & \begin{tabular}{l}
Number of vent-valve resistance table data pairs. If NVVTB = 0, the \\
maximum and minimum vent-valve pressure drops and flow-loss resistances \\
are input. If NVVTB > 0, the flow-loss resistance vs pressure drop table is \\
input on Card Set 17 (array VVTAB).
\end{tabular} \\
\hline NSGRID & \begin{tabular}{l}
Number of spacer grids present in the core region. Input zero if no grid spacers \\
are present or you don't intend to model their effect.
\end{tabular} \\
\hline
\end{tabular}

Card Number 6. (Format 4(I14)) IGEOM, NVENT, NVVTB, NSGRID, VESSTYPE (Continued)
\begin{tabular}{|c|c|}
\hline Variable & Description \\
\hline \hline VESSTYPE & The type of modelling behavior employed by this VESSEL: \\
& \(0=\) model VESSEL as an RPV (the default) \\
& \(1=\) model VESSEL as a drywell. This option uses a special wall \\
condensation model appropriate for drywells. Otherwise, it \\
& behaves the same as VESSTYPE \(=0\). \\
& \\
&
\end{tabular}

Card Number 7. (Format 2E14.4, 2I14) SHELV, EPSW, NOLT, RFLDINPUT
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline SHELV & \begin{tabular}{l}
Elevation (m, ft) of the bottom interface of axial cell (level) 1 in the \\
VESSEL (used only when NAMELIST variable IELV \(=1\) is input).
\end{tabular} \\
\hline EPSW & Wall surface roughness (m, ft). \\
\hline NOLT & \begin{tabular}{l}
Turns 3D level tracking on or off (used only when NAMELIST variable \\
NOLT3D = 0) \\
If NOLT is positive 3D level tracking is turned off in the VESSEL. \\
If NOLT = 0; 3D level tracking is turned on in the VESSEL and is controlled \\
by ILEV (see Card Set 58)
\end{tabular} \\
\hline RFLDINPUT & \begin{tabular}{l}
Flag to indicate the existence of special optional input of importance to \\
reflood calculations. If non-zero, then Card Set 13 and Card Set 14 (i.e. \\
UNHEATFR and NHSCA) are input. If zero, then card array sets 13 \& 14 \\
are not input.
\end{tabular} \\
\hline
\end{tabular}

Card Number 8. (Format I14, E14.4) MATHS, HSOUT
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: If NAMELIST variable USEROD \(\neq 1\), do not input this Card. } \\
\hline Variable & Description \\
\hline \hline MATHS & Material type for the lumped slab heat structure. \\
\hline HSOUT & \begin{tabular}{c}
Flag for vessel heat structure edit in the output file. \\
\(0=\) no, \\
\(1=\) yes.
\end{tabular} \\
\hline
\end{tabular}

Card Number 9. (Format I14,4(E14.4)) NODESD, DHOUTL, DHOUTV, DTOUTL, DTOUTV
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Note: If NAMELIST variable USEROD \(\neq 1\), do not input this Card. } \\
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline NODESD & Number of conduction heat transfer nodes in double slabs. \\
\hline DHOUTL & \begin{tabular}{l}
Heat transfer coefficient to liquid on vessel outside surface \(\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}\right.\right.\) \\
\(\left.\left.{ }^{\circ} \mathrm{F} \mathrm{hr}\right)\right]\).
\end{tabular} \\
\hline DHOUTV & \begin{tabular}{l}
Heat transfer coefficient to vapor on vessel outside surface \(\left[\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), \mathrm{Btu} /\left(\mathrm{ft}^{2}\right.\right.\) \\
\({ }^{\mathrm{o}} \mathrm{F}\) hr \(\left.)\right]\).
\end{tabular} \\
\hline DTOUTL & Liquid temperature outside vessel \(\left(\mathrm{K},{ }^{\mathrm{o}} \mathrm{F}\right)\). \\
\hline DTOUTV & Vapor temperature outside vessel \(\left(\mathrm{K},{ }^{\mathrm{o}} \mathrm{F}\right)\). \\
\hline
\end{tabular}

\section*{VESSEL Geometry Cards}

Note: There are three Card Sets, one set for each of the following arrays. Use LOAD format. Each array has its element values defined by a Card Set of one or more cards.
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c}
Card Set \\
Number
\end{tabular} & Variable & Dimension & \multicolumn{1}{c|}{ Description } \\
\hline \hline \(\mathbf{1 0}\) & \(\mathbf{Z}\) & NASX & \begin{tabular}{l}
Axial upper-interface locations (elevations) (m, \\
ft) of the z-direction axial-cells (levels) \\
[referenced to a \(0.0 \mathrm{~m}(0.0 \mathrm{ft})(\) (elevation) value \\
at the bottom interface of the first axial-cell \\
(level) in the VESSEL].
\end{tabular} \\
\hline \(\mathbf{1 1}\) & R or X & NRSX & \begin{tabular}{l}
Radii or x outer-interface locations (m, ft) of the \\
r- or x-directional cells [referenced to a 0.0 m \\
\((0.0 \mathrm{ft})\) value at the inner interface of cell 1].
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 12 & T or Y & NTSX & Azimuthal angle \(\theta\) or y outer-interface locations of the \(\theta\) - or \(y\)-direction cells (referenced to a 0.0 rad or \(\mathrm{m}(0.0 \mathrm{deg}\) or ft\()\) value at the inner interface of the first cell). For cylindrical geometry [IGEOM \(=0\) (Word 1 on Card Number 6)] and input data in SI units [NAMELIST variable IOINP \(=0\)], the azimuthal angles \(\theta\) can be input in either degree (\(0.0 \mathrm{deg}<\mathrm{T} \leq 360.0 \mathrm{deg}\)) or radian (0.0 \(\mathrm{rad}<\mathrm{T} \leq 2 \pi=6.2832 \mathrm{rad}\)) units. For cylindrical geometry [IGEOM \(=0\) (Word 1 on Card Number 6)] and input data in English units [NAMELIST variable IOINP = 1], the azimuthal angles must be input in degree units. A full-geometry cylinder VESSEL model requires that the last azimuthal angle T(NTSX) \(=360.0 \mathrm{deg}\) or 6.2832 rad . Rotational symmetries of \(30.0 \mathrm{deg}(0.5236 \mathrm{rad}), 45.0 \mathrm{deg}\) (0.7854 rad), 60.0 deg (1.0472 rad), 90.0 deg (1.5708 rad), 120.0 deg (2.0944 rad), or 180.0 deg (3.1426 rad) can be defined by inputting T(NTSX) with one of these rotational-sector angles. A partial-geometry cylinder VESSEL model with any other last azimuthal angle less than 360.0 deg or 6.2832 rad can be defined but requires that array FRFAYT (Card Set 41) input data have 0.0 values for all the NTSX azimuthal interfaces of the NRSX radial cells [(NTSX)ht value for radial cell \(1,(2 *\) NTSX \()\) th value for radial cell \(2, \ldots\), (NRSX*NTSX)th value for radial cell NRSX]. \\
\hline \multicolumn{4}{|r|}{Note: If RLFDINPUT \(=0\) (i.e. Word 4 on Card Number 7), do not input arrays UNHEATFR and NHSCA for the core-reflood model} \\
\hline 13 & UNHEATFR & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & Fractions of the HTSTR component element surface in each of the NTSX \(x\) NRSX horizontal-plane mesh-cell columns, which are unheated. \\
\hline 14 & NHSCA & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & The HTSTR component numbers that define the primary powered average (power) element in each of the NTSX \(\times\) NRSX horizontal-plane mesh-cell columns. \\
\hline
\end{tabular}

\section*{VESSEL Vent Valve Data:}

Note: If NVENT \(=0\) (Word 2 on Card Number 6), do not input Card Number 15, Card Number 16, and Card Set 17.

Card Number 15. Vent-Valve Location and Area Card: (Format 2I14,E14.4) IZV, KV, AVENT
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: Input this Card for each NVENT (Word 2 on Card Number 6) vent valves. } \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline IZV & Axial-cell (level) number of the vent-valve interface location. \\
\hline KV & \begin{tabular}{l}
Horizontal-plane relative-cell number [J + NTSX \(\times(\mathrm{I}-1)\) where I is the \(\mathrm{r}-\mathrm{or} \mathrm{x}-\) \\
direction cell number and J is the \(\theta\) - or y -direction cell number] of the vent-valve \\
interface location on the outer radial or x interface of the cell.
\end{tabular} \\
\hline AVENT & \begin{tabular}{l}
Maximum flow area \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\) of the vent valve located on the outer radial or x \\
interface of the cell.
\end{tabular} \\
\hline
\end{tabular}

Card Number 16. Vent-Valve Pressure-Drop and Friction-Loss Card: (Format 4E14.4) DPCVN, DPOVN, FRCVN, FROVN
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: \begin{tabular}{l}
If NVVTB \(\neq 0\) (Word 3 on Card Number 6), do not input this card \\
Input this Card for each NVENT (Word 2 on Card Number 6) vent valves.
\end{tabular}} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline DPCVN & \begin{tabular}{l}
Maximum pressure drop (Pa, psid) between the inner and outer radial or x- \\
direction cells when the vent valve is closed.
\end{tabular} \\
\hline DPOVN & \begin{tabular}{l}
Minimum pressure drop (Pa, psid) between the inner and outer radial or x- \\
direction cells when the vent valve is opened.
\end{tabular} \\
\hline FRCVN & Flow-loss resistance (-) of the vent valve in its closed position. \\
\hline FROVN & Flow-loss resistance \((-)\) of the vent valve in its open position. \\
\hline
\end{tabular}

\section*{VESSEL Vent-Valve Flow-Loss Resistance Table}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NVVTB \(=0\) (Word 3 on Card Number 6), do not input this card set. Input a table of vent-valve flow-loss resistance vs pressure drop across the vent valve. Use LOAD format. Only one table is input for all vent valves.} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 17 & VVTAB & \[
\begin{aligned}
& 2 \times \\
& |\mathrm{NVVTB}|
\end{aligned}
\] & Vent-valve FRIC flow-loss resistance table [(Pa,-), (psid, -)]. [input |NVVTB| (Word 3 on Card Number 6) table-defining data pairs having the following form (pressure drop across the vent valve, FRIC flow-loss resistance of the vent valve)]. \\
\hline \multicolumn{4}{|l|}{The vent-valve FRIC flow-loss resistance input must be of the form \(K_{\mathrm{i}+1 / 2} D_{\mathrm{hi}+1 / 2} /\left(\Delta r_{i}+\Delta r_{\mathrm{i}+1}\right)\) or \(K_{\mathrm{i}+1 / 2} D_{\mathrm{hi}+1 / 2} /\left(\Delta x_{\mathrm{i}}+\Delta x_{\mathrm{i}+1}\right)\), where \(K_{\mathrm{i}+1 / 2}\) is the K-factor form-loss coefficient, \(\mathrm{D}_{\mathrm{hi}+1 / 2}\) is the \(\mathrm{i}+1 / 2\) interface hydraulic diameter, and \(\Delta r_{\mathrm{i}}\) and \(\Delta r_{\mathrm{i}+1}\) or \(\Delta x_{\mathrm{i}}\) and \(\Delta x_{\mathrm{i}+1}\) are the radial or x-direction lengths of the fluid cells on each side of the vent-valve interface. Note that the NAMELIST variable IKFAC, which determines how the additive-loss coefficient is defined for input, does not affect the vent-valve FRIC flow-loss resistance form.} \\
\hline \multicolumn{4}{|l|}{The hydraulic diameter in the radial direction, HDXR (Card Set 46), must be the value corresponding to the vent valve for each cell connected to a vent valve.} \\
\hline
\end{tabular}

\section*{VESSEL Spacer Grid Elevation Cards:}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Note: If NSGRID \(=0\) (Word 4 on Card Number 6), do not input the Vessel SpacerGrid Elevation Cards. Use LOAD format. The ZSGRID array elements are defined by a Card Set of one or more cards.} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 18 & ZSGRID & NSGRID & Axial z-direction location (elevation) (m, ft) of each spacer grid in the core region as measured from the VESSEL bottom [consistent with the Z array (Card Set 10)]. \\
\hline
\end{tabular}

\section*{VESSEL Gravity Card:}

Card Number 19. (Format 4E14.4) GC, GYTC, GXRC, GZ
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
Note: If NAMELIST variable NVGRAV \(=0\), do not input this card. \\
The values of GYTC, GXRC, and GZC range between -1.0 and 1.0 and must satisfy the requirement that: GYTC*GYTC + GXRC*GXRC + GZC* GZC \(=\) 1.0 (all three input values are normalized with the same factor to satisfy this requirement). For gravity acceleration in the downward axial direction: \\
\(\mathbf{G Y T C}=0.0, \mathbf{G X R C}=0.0\), and \(\mathbf{G Z C}=-1.0\)
\end{tabular}} \\
\hline Variable & Description \\
\hline GC & Gravitational-acceleration constant [when GC \(\leq 0.0\) is input, GC is defined internally by TRACE with the value \(\left.9.80665 \mathrm{~m} / \mathrm{s}^{2}\left(32.17405 \mathrm{ft} / \mathrm{s}^{2}\right)\right]\). The GC value from the last VESSEL component input also is used for the one-dimensional components. \\
\hline GYTC & The \(\theta\) - or \(y\)-direction component (-) of the gravity unit vector located at the center of mesh cell \((1,1,1)\). \\
\hline GXRC & The r - or x -direction component (-) of the gravity unit vector located at the center of mesh cell \((1,1,1)\). \\
\hline GZC & The z-direction component (-) of the gravity unit vector located at the center of mesh cell \((1,1,1)\). \\
\hline
\end{tabular}

\section*{VESSEL Source-Connection Cards:}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Note: If NCSR \(=0\) (Word 4 on Card Number 3), do not input the Vessel SourceConnection Cards defined by this card set. Input one card for each of the NCSR source connections of a one-dimensional component to a VESSEL cell interface. See VESSEL description in Volume 2.} \\
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Description \\
\hline \multirow[t]{4}{*}{20} & LISRL & Axial-cell (level) number of the source connection. \\
\hline & LISRC & Horizontal-plane relative-cell number associated with the source connection [cell numbering in a VESSEL level counts through the NTSX (Word 3 on Card Number 3) \(\theta\) - or y-direction cells while considering each of the r- or x -direction cells from 1 to NRSX (Word 2 on Card Number 3)]. \\
\hline & LISRF & \begin{tabular}{l}
Face number associated with the source connection. A positive number indicates a connection to the upper or outer face of the cell; a negative number indicates a connection to the lower or inner face of the cell. \\
\(1=\theta\) or y direction; \\
\(2=\) axial \(z\) direction; \\
\(3=r\) or \(x\) direction.
\end{tabular} \\
\hline & LJUNS & Junction number associated with the source connection of a VESSEL cell interface to a 1D component. \\
\hline
\end{tabular}

\section*{VESSEL Level Cards:}

Input Card Set 21 through Card Set 68 using LOAD format. These Card Sets are input as a group for each axial cell (level) number in increasing numerical order from 1 to NASX (Word 1 on Card Number 3) if IVSSBF \(=0\) (Word 5 on Card Number 3) or from 0 to NASX +1 if IVSSBF \(>0\). If desired, the data from a level already input can be repeated by a single REPEAT LEVEL card for another level (see description after the level data description.)

Note: The following parameters [dimensioned NTSX x NRSX (Words 3 and 2 on Card Number 3)] are input for each (r, \(\theta\)) or (\(\mathrm{x}, \mathrm{y}\)) mesh cell in each axial level; that is, these cells extend over the entire VESSEL plane perpendicular to the axial direction for each axial cell (level). Because a separate group of 39 Card Sets is input for each axial cell (level), these parameters are specified for all mesh cells in the VESSEL. If IVSSBF \(>0\) (Word 5 on Card Number 3), input data also must be defined for the 0 and NASX +1 levels to provide boundary-condition information.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable USEROD \(=1\), lumped parameter and double-sided heat structure data are input (Card Set 21 thorough Card Set 26).} \\
\hline 21 & HSA & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & Lumped parameter heat slab area \(\left(\mathrm{m}^{2}, \mathrm{ft}^{2}\right)\). \\
\hline 22 & HSM & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & Mass of lumped parameter heat slab \(\left(\mathrm{kg}, \mathrm{lb}_{\mathrm{m}}\right)\). Must be input but not used for cells in which HSA=0. \\
\hline \multicolumn{4}{|r|}{Note: If NODESD \(=0\) (Word 1 on Card Number 9) do not input Card Set 23 thorough Card Set 26.} \\
\hline 23 & DSA & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & Double slab inside surface area (One slab per vessel cell is allowed) \(\left[\mathrm{m}^{2}, \mathrm{ft}^{2}\right]\). \\
\hline 24 & DSTH & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & Double slab thickness (\(\mathrm{m}, \mathrm{ft}\)). Must be input but not used for cells in which DSA=0. \\
\hline 25 & MATDS & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & Double slab material type. Must be input but not used for cells in which DSA=0. \\
\hline 26 & DST & \[
\begin{aligned}
& \text { NODESD } \times \\
& \text { NTSX } \times \\
& \text { NRSX }
\end{aligned}
\] & Double slab nodal temperature (K, \(\left.{ }^{\circ} \mathrm{F}\right)\). \\
\hline
\end{tabular}

Note: The forward-flow direction flow-resistance parameters are defined by arrays CFZLYT, CFZLZ, CFZLXR, CFZVYT, CFZVZ and CFZVXR. These arrays must always be supplied. If NAMELIST variable IKFAC \(=1\), K -factors rather than FRIC additive-friction-loss coefficients should be input.
Note: Abrupt Expansion/Contraction Form Loss. Providing a negative value for CFZLYT, CFZLZ, or CFZLXR results in TRACE internally evaluating an abrupt expansion/contraction form loss (for when the mesh-cell flow area changes between mesh cells adjacent to each other), which then is added to the absolute value of the input values of CFZLYT, CFZLZ, and CFZLXR and to the positive value of the input values of CFZVYT, CFRLYT, CFRVYT, CFZVZ, CFRLZ, CFRVZ, CFZVXR, CFRLXR, and CFRVXR.
\begin{tabular}{|c|l|l|l|}
\hline \(\mathbf{2 7}\) & CFZLYT & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & \begin{tabular}{l}
Liquid additive-friction-loss coefficients \((-)\) in the \\
\(\theta\) or \(y\) direction.
\end{tabular} \\
\hline \(\mathbf{2 8}\) & CFZLZ & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & \begin{tabular}{l}
Liquid additive-friction-loss coefficients \((-)\) in the \\
\(z\) direction.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 29 & CFZLXR & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & Liquid additive-friction-loss coefficients (-) in the r or x direction. \\
\hline 30 & CFZVYT & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & Gas additive-friction-loss coefficients (-) in the \(\theta\) or y direction. \\
\hline 31 & CFZVZ & NTSX \(\times\) NRSX & Gas additive-friction-loss coefficients (-) in the z direction. \\
\hline 32 & CFZVXR & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & Gas additive friction-loss coefficients (-) in the r or x direction. \\
\hline \multicolumn{4}{|r|}{Note: Input these arrays only if NAMELIST variable NFRC3 \(=2\). Reverse-flow direction flow-resistance parameters are defined by arrays CFRLYT, CFRLZ, CFRLXR, CFRVYT, CFRVZ and CFRVXR. If NAMELIST variable IKFAC \(=\) 1, K-factors rather than FRIC additive-friction-loss coefficients are input.} \\
\hline 33 & CFRLYT & NTSX \(\times\) NRSX & Liquid reverse-flow direction additive-frictionloss coefficients (-) in the \(\theta\) or y direction. \\
\hline 34 & CFRLZ & NTSX \(\times\) NRSX & Liquid reverse-flow direction additive-frictionloss coefficients \((-)\) in the z direction. \\
\hline 35 & CFRLXR & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & Liquid reverse-flow direction additive-frictionloss coefficients (-) in the r or x direction. \\
\hline 36 & CFRVYT & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & Gas reverse-flow direction additive-friction-loss coefficients (-) in the \(\theta\) or \(y\) direction. \\
\hline 37 & CFRVZ & NTSX \(\times\) NRSX & Gas reverse-flow direction additive-friction-loss coefficients (-) in the z direction. \\
\hline 38 & CFRVXR & \[
\text { NTSX } \times
\]
NRSX & Gas reverse-flow direction additive-friction-loss coefficients (-) in the r or x direction. \\
\hline \multicolumn{4}{|r|}{Note: If NCCFL \(=0\), (Word 5 Main-Data Card 9), do not input array LCCFL.} \\
\hline 39 & LCCFL & NTSX \(\times\) NRSX & \begin{tabular}{l}
Countercurrent flow limitation option. \\
\(0=\) no countercurrent flow limitation calculation at the cell interface; \(\mathrm{N}=\) the countercurrent flow limitation parameter set number used to evaluate countercurrent flow limitation at the cell interface \([1 \leq \mathrm{N}\) \(\leq\) NCCFL (Word 5 on Main-Data Card 9)].
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 40 & FRVOL & \[
\text { NTSX } \times
\]
NRSX & Cell fluid-volume fractions (-) (0.0 \(\leq\) VOL \(\leq 1.0\)). \\
\hline 41 & FRFAYT & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & Cell-edge flow-area fractions (-) in the \(\theta\) or y direction (\(0.0 \leq\) FRFAYT \(\leq 1.0\)). \\
\hline 42 & FRFAZ & \begin{tabular}{l}
NTSX × \\
NRSX
\end{tabular} & Cell-edge flow-area fractions (-) in the z direction (\(0.0 \leq\) FRFAZ \(\leq 1.0\)). \\
\hline 43 & FRFAXR & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & Cell-edge flow-area fractions (-) in the r or x direction (\(0.0 \leq\) FRFAXR \(\leq 1.0\)). \\
\hline 44 & HDYT & NTSX \(\times\) NRSX & Hydraulic diameters (\(\mathrm{m}, \mathrm{ft}\)) in the \(\theta\) or y direction. \\
\hline 45 & HDZ & \begin{tabular}{l}
NTSX × \\
NRSX
\end{tabular} & Hydraulic diameters (\(\mathrm{m}, \mathrm{ft}\)) in the z direction [for heat-transfer purposes, do not input the axialdirection hydraulic diameter with a value of 0.0]. \\
\hline 46 & HDXR & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & Hydraulic diameters (m, ft) in the r or x direction. \\
\hline 47 & ALPN & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & Initial gas volume fractions (-). \\
\hline 48 & VVNYT & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & Initial gas velocities (m/s, ft/s) in the \(\theta\) or y direction. \\
\hline 49 & VVNZ & \begin{tabular}{l}
NTSX × \\
NRSX
\end{tabular} & Initial gas velocities (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)) in the z direction. \\
\hline 50 & VVNXR & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & Initial gas velocities (\(\mathrm{m} / \mathrm{s}\), \(\mathrm{ft} / \mathrm{s}\)) in the r or x direction. \\
\hline 51 & VLNYT & \[
\begin{aligned}
& \text { NTSX } \times \\
& \text { NRSX }
\end{aligned}
\] & Initial liquid velocities (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)) in the \(\theta\) or y direction. \\
\hline 52 & VLNZ & \begin{tabular}{l}
NTSX × \\
NRSX
\end{tabular} & Initial liquid velocities (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)) in the z direction. \\
\hline 53 & VLNXR & \begin{tabular}{l}
NTSX × \\
NRSX
\end{tabular} & Initial liquid velocities (\(\mathrm{m} / \mathrm{s}, \mathrm{ft} / \mathrm{s}\)) in the r or x direction. \\
\hline 54 & TVN & \[
\begin{aligned}
& \text { NTSX } \times \\
& \text { NRSX }
\end{aligned}
\] & Initial gas temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline 55 & TLN & \[
\begin{aligned}
& \text { NTSX } \times \\
& \text { NRSX }
\end{aligned}
\] & Initial liquid temperatures (\(\mathrm{K},{ }^{\circ} \mathrm{F}\)). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline 56 & PN & \[
\text { NTSX } \times
\]
NRSX & Initial pressures (\(\mathrm{Pa}, \mathrm{psia}\)). \\
\hline 57 & PAN & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & Initial noncondensable-gas partial pressure (Pa , psia). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST parameter NOLT3D \(=0\) and NOLT \(=0\) (Word 3 on Card Number 7), input array ILEV.} \\
\hline 58 & ILEV & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & \begin{tabular}{l}
ILEV \(=1\) indicates that the two-phase level exists in the current cell. \\
ILEV \(=0\) indicates that the two-phase level does not exist in the current cell. \\
If ILEV \(=-1\), the level tracking calculation will be turned off for this cell.
\end{tabular} \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFL \(=0\), do not input arrays VWFMLY, VWFMLZ, and VWFMLX.} \\
\hline 59 & VWFMLY & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & Wall-friction multiplier factor for the liquid phase in the \(\theta\) or \(y\) direction \((-)(0.9 \leq\) VWFMLY \(\leq 1.1)\). \\
\hline 60 & VWFMLZ & \[
\text { NTSX } \times
\]
NRSX & Wall-friction multiplier factor for the liquid phase in the z direction \((-)(0.9 \leq\) VWFMLZ \(\leq 1.1)\). \\
\hline 61 & VWFMLX & \[
\text { NTSX } \times
\]
NRSX & Wall-friction multiplier factor for the liquid phase in the r or x direction \((-)(0.9 \leq\) VWFMLX \(\leq 1.1)\). \\
\hline \multicolumn{4}{|r|}{Note: If NAMELIST variable MWFV \(=0\), do not input arrays VWFMVY, VWFMVZ, and VWFMVX.} \\
\hline 62 & VWFMVY & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & Wall-friction multiplier factor for the gas phase in the \(\theta\) or \(y\) direction \((-)[0.9 \leq V W F M V Y \leq 1.1]\). \\
\hline 63 & VWFMVZ & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & Wall-friction multiplier factor for the gas phase in the z direction \((-)[0.9 \leq\) VWFMVZ \(\leq 1.1]\). \\
\hline 64 & VWFMVX & \begin{tabular}{l}
\[
\text { NTSX } \times
\] \\
NRSX
\end{tabular} & Wall-friction multiplier factor for the gas phase in the r or x direction \((-)[0.9 \leq\) VWFMVX \(\leq 1.1]\). \\
\hline
\end{tabular}

Note: If ICONC \(=0\) (Word 5 on Card Number 5), do not input array CONC.
\begin{tabular}{|c|l|l|l|}
\hline \(\mathbf{6 5}\) & CONC & NTSX \(\times\) & Initial solute mass to liquid-coolant mass ratios \\
& & & \begin{tabular}{l}
NRSX \\
\\
\end{tabular} \\
& & Requires ISOLUT \(=1\) (Word 3 on Main-Data \\
Card 9).
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Card Set \\
Number
\end{tabular} & Variable & Dimension & Description \\
\hline \hline
\end{tabular}

Note: If ICONC \(=0\) or 1 (Word 5 on Card Number 5), do not input array S.
\begin{tabular}{|c|l|l|l|}
\hline 66 & S & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & \begin{tabular}{l}
Initial macroscopic densities of plated-out solute \\
\(\left(\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)\). Requires ISOLUT \(=1\) (Word 3 \\
on Main-Data Card 9).
\end{tabular} \\
\hline
\end{tabular}

Note: Input array XGNB only if NTRACEG>0 (Word 1 on Main-Data Card 11) or IGAS \(>11\) (a Namelist input). Repeat this card set NTRACEG times or repeat IGAS-10 times if IGAS \(>11\). If IGAS \(>11\), then NTRACEG cannot be greater than zero and the sum of XGNB for each cell must be 1.0.
\begin{tabular}{|l|l|l|l|}
\hline 67 & XGNB & \begin{tabular}{l}
NTSX \(\times\) \\
NRSX
\end{tabular} & \begin{tabular}{l}
Mass fraction for gas trace species or if IGAS \(>11\), \\
then mass fraction for each non-condensable gas \\
species. Non-condensable gas species index is \\
defined by the order in which gas species are \\
input in the NCGasSpecies array (a Namelist \\
input).
\end{tabular} \\
\hline \(\mathbf{6 8}\) & Note: Input array XLNB only if NTRACEL>0 (Word 2 on Main-Data Card 11). \\
Repeat this card set NTRACEL times.
\end{tabular}

\section*{VESSEL Level Repeat Card.}

Card Number 69. REPEAT LEVEL Card. (Format A12,2X,I4)
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Note: } \\
& \begin{tabular}{l}
This card can be used to repeat the data from a level already input or repeated to \\
define the data for the next level. Each REPEAT LEVEL card can repeat only the \\
data from a level with a lesser level number that was input before it (level \\
numbers are specified sequentially). These cards may be used consecutively.
\end{tabular} \\
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline AREP & The character string: "REPEAT
\end{tabular}

\section*{End-of-Component Input Card}

After all the component data input is read, a single card containing the characters "end" in columns 1 to 3 must be input for both initial and restart calculations. An "end" card is only needed when the input data is in the FREE format (see Main-Data Card 1) for an initial calculation (which is pretty much true for all input decks).

\section*{Timestep Data}

The last data block of input information is the timestep data cards for controlling the calculation and output edits. The problem time span to be evaluated is separated into time domains. Each domain (specified by two cards) may have different minimum and maximum timestep sizes and output-edit time intervals. Any number of time domains may be input. TEND from the previous time domain is the ending time of the calculation when DTMIN \(<0.0\). The format of each set of two timestep cards follows.

Card Number 1. (Format 5E14.4) DTMIN, DTMAX, TEND, RTWFP, POWERC
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline DTMIN & Minimum timestep size (s) for this time domain. \\
\hline DTMAX & Maximum timestep size (s) for this time domain. \\
\hline TEND & End time (s) for this time domain. \\
\hline RTWFP & \begin{tabular}{l}
Ratio between heat-transfer and fluid-dynamics timestep sizes (a positive value \\
is used during steady-state calculations; a negative value results in \(\mid\) RTWFP \(\mid\) \\
being used during transient as well as steady-state calculations; suggested value \\
= 10.0).
\end{tabular} \\
\hline POWERC & \begin{tabular}{l}
Maximum convection-power difference (W, Btu \(h^{-1}\)) between what goes into \\
the fluid and what comes from the wall in the convection heat-transfer \\
calculation. Define POWERC \(>0.0 \mathrm{~W}\) or Btu \(\mathrm{h}^{-1}\). If its value is \(\leq 0.0\) or not \\
input (the field is left blank), its value is set to \(1.0 \times 10^{20} \mathrm{~W}\) or Btu \(\mathrm{h}^{-1}\), which \\
effectively sets no control over the convection-power difference. This \\
convection-energy-error controller reduces the timestep size until the \\
convection-power difference for all HTSTR-component surface nodes is less \\
than POWERC. Specifying too small a value for POWERC may result in a \\
significant increase in the calculative effort.
\end{tabular} \\
\hline
\end{tabular}

Card Number 2. (Format 4E14.4) EDINT, GFINT, DMPINT, SEDINT
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EDINT & Long-printout-edit time interval (s) for this time domain. \\
\hline GFINT & Graphics-edit time interval (s) for this time domain. \\
\hline DMPINT & Dump/restart-edit time interval (s) for this time domain. \\
\hline
\end{tabular}

Card Number 2. (Format 4E14.4) EDINT, GFINT, DMPINT, SEDINT
\begin{tabular}{|c|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline SEDINT & Short-printout-edit time interval (s) for this time domain. \\
\hline
\end{tabular}

\section*{End-of-Input End Flag Card}

The TRACE input is terminated by an endflag card that has the value of -1.0 .

\section*{A}

\title{
Deprecated Functionality
}

\section*{ROD or SLAB Components}
(no longer applicable as of V3.690)
These sections (and included card specifications) represent deprecated functionality with respect to the current specification for TRACE input decks. They are included here to assist the user in being able to understand old legacy TRAC-P/TRACE decks.

Note: The input data for HTSTR components with ROD or SLAB elements must follow the input data of all hydraulic components in the TRACIN input-data file.

Card Number 1. (Format A14,2I14,A30) TYPE, NUM, ID, CTITLE
Columns
Variable
Description
\begin{tabular}{lll}
\(1-4\) & TYPE & Component type (ROD or SLAB). \\
\(15-28\) & NUM & \begin{tabular}{l}
Component ID number (must be unique for each component, \\
\(1 \leq\) NUM \(\leq 999\) and greater than the ID numbers of all \\
hydraulic components).
\end{tabular} \\
\(29-42\) & ID & User ID number (arbitrary). \\
\(43-72\) & CTITLE & Hollerith component description.
\end{tabular}

Card Number 2. (Format 5I14) NCRX, NCRZ, ITTC, IEXT, M1D

Columns Variable
1-14 NCRX

Number of different average (power) ROD or SLAB elements (they may be coupled to NCRX different hydraulic cells in the level of a VESSEL component or coupled to NCRX different 1D hydraulic components).
\begin{tabular}{|c|c|c|}
\hline Columns & Variable & Description \\
\hline 15-28 & NCRZ & Number of axial intervals between node rows in the ROD or SLAB element.* \\
\hline 29-42 & ITTC & Specification of an external thermocouple (T/C) on the ROD- or SLAB-element surface.
\[
\begin{aligned}
& 0=\text { no } ; \\
& 1=\text { yes } .
\end{aligned}
\] \\
\hline 43-56 & IEXT & \begin{tabular}{l}
Specifies if this component input was generated by the postprocessor EXTRACT \\
0 = no (default); \\
\(1=\) yes.
\end{tabular} \\
\hline 57-70 & M1D & Option for multiple 1D hydraulic-component coupling to this HTSTR component by inputting M1D \(>0\). First input M1D \(=0\) for all HTSTRs that do not have multiple 1D hydraulic-component coupling. Then input M1D \(=1\) for the first, M1D \(=2\) for the second, M1D \(=3\) for the third, etc. HTSTRs that have multiple 1D hydraulic-component coupling and input these HTSTRs in that order. \\
\hline
\end{tabular}

Card Number 3. (Format 5I14) NOPOWR, NRIDR, MODEZ, LIQLEV, IAXCND

Columns
Variable
NOPOWR Power-source presence option.
\(0=\) yes; \(1=\) no.

15-28 NRIDR Specification of the hydraulic-cell location that is coupled to the inner and/or outer surfaces of the ROD or SLAB element.
\(0=\) define the IDROD array (Card Set 44) for the supplemental ROD or SLAB elements [last NRODS-NCRX ROD or SLAB elements where NRODS (Word 1 on Card Number 12) is the total number of different ROD or SLAB elements evaluated], the average (power) rods are automatically distributed among the NCRX coolant paths.;
\(1=\) define the IDROD array (Card Set 44) for all NRODS ROD or SLAB elements; or
*Currently, NCRZ + 1 must be \(\leq 250\); see variable NZMAX (Word 4 on Card Number 12) for a discussion on this limit.

Columns Variable Description
\(2=\) define the IDROD array for all NRODS ROD or
SLAB elements for both surfaces of the HTSTR component. Card Set 44 (array IDROD) defines the hydraulic-cell coupling to the inner surface and Card Set 45 (array IDRODO) defines the hydraulic-cell coupling to the outer surface.

57-70 IAXCND Specification of axial conduction.

29-42

43-56
LIQLEV
MODEZ

LQLEV

Specification of the axial cell-edge locations of the node rows or the axial cell lengths between node rows. \(0=\) input NCRZ +1 axial cell-edge locations; \(1=\) input NCRZ axial cell lengths.

Specification of liquid-level tracking.
\(0=\) no liquid level calculated on ROD- or SLABelement surface;
1 = liquid level tracked on ROD- or SLAB-element surface (this produces a more accurate axial heat-transfer solution).
\(0=\) no axial heat-transfer conduction calculated;
\(1=\) axial heat-transfer conduction calculated in the ROD or SLAB element (explicit numerics when NAMELIST variable NRSLV \(=0\); implicit numerics when NRSLV = 1).

\section*{Card Number 4. (Format 2I14,2E14.4) IDBCI, IDBCO, HDRI, HDRO}

Note: If ITTC \(=1\) (Word 3 on Card Number 2), input IDBCI \(=2\) (to define the outer clad-surface hydraulic-cell coupling) and IDBCO \(=2\) (to define the thermocouplesurface hydraulic-cell coupling).Variables HDRI and HDRD are only used if NAMELIST variable ITHD \(=1\), when the user wishes to specify an appropriate heated perimeter for heat transfer coefficient calculation.

Columns
1-14 IDBCI

\section*{Description}

Boundary-condition option for the inner surface of the ROD or SLAB element.
\(0=\) adiabatic boundary condition;
\(1=\) constant HTCs and external temperatures;
2 = coupled to specified cells in one or more hydraulic components.
\begin{tabular}{|c|c|c|}
\hline 15-28 & IDBCO & \begin{tabular}{l}
Boundary-condition option for the outer surface of the HTSTR ROD or SLAB element. \\
\(0=\) adiabatic boundary condition; \\
\(1=\) constant HTCs and external temperatures; \\
2 = coupled to specified cells in one or more hydraulic components.
\end{tabular} \\
\hline Columns & Variable & Description \\
\hline 29-42 & HDRI & Heat-transfer diameter (\(\mathrm{m}, \mathrm{ft}\)) used to evaluate the heattransfer coefficient (HTC) for the inside surface of the ROD or SLAB element. HDRI is used when NAMELIST variable ITHD \(=1\) and the hydraulic diameter HD is used when ITHD \(=0\). \\
\hline 43-56 & HDRO & Heat-transfer diameter (\(\mathrm{m}, \mathrm{ft}\)) used to evaluate the heattransfer coefficient (HTC) for the outside surface of the ROD or SLAB element. HDRO is used when NAMELIST variable ITHD = 1 and the hydraulic diameter HD is used when \(\mathrm{ITHD}=0\). \\
\hline
\end{tabular}

Note: Thermal Radiation Heat Transfer Model (Card Numbers 5 through 7).
Currently, the thermal radiation heat transfer model is only available in TRACE/F77. For TRACE/F90, Cards 5 to 7 must be omitted.

Card Number 5. (Format 2I14) IFRADI, IFRADO
Note: If NAMELIST variable NENCL \(=0\), do not input Card Number 5
Columns. Variable. Description.

1-14 IFRADI Inner surface is part of a radiation enclosure option.
\[
\begin{aligned}
& 0=\text { no } \\
& 1=\text { yes }
\end{aligned}
\]

15-28 IFRADO Outer surface is part of a radiation enclosure option.
0 = no;
\(1=\) yes.

Card Number 6.(Format 3E14.4) EMCIF1, EMCIF2, EMCIF3. Note:Note
If NAMELIST variable NENCL \(=0\), do not input Card Number 6 .
Note: Note

Note: Input Card Number 6 if IFRADI = 1 (Word 1 on Card Number 5). The following quadratic-polynomial coefficients define the inner-surface emissivity as a function of the inner-surface temperature.
\begin{tabular}{|c|c|c|}
\hline Columns & Variable & Description \\
\hline 1-14 & EMCIF1 & Zero-order term in the quadratic fit of inner-surface emissivity as a function of the inner-surface temperature (-). \\
\hline 15-28 & EMCIF2 & First-order term in the quadratic fit of inner-surface emissivity as a function of the inner-surface temperature (\(\mathrm{K}^{-}\) \({ }^{1},{ }^{\circ} \mathrm{F}^{-1}\)). \\
\hline 29-42 & EMCIF3 & Second-order term in the quadratic fit of inner-surface emissivity as a function of the inner-surface temperature (\(\mathrm{K}^{-}\) \({ }^{2},{ }^{\circ} \mathrm{F}^{-2}\)). \\
\hline
\end{tabular}

Card Number 7. (Format 3E14.4) EMCOF1, EMCOF2, EMCOF3
Note: Note

If NAMELIST variable NENCL \(=0\), do not input Card Number 7 .
Note: Note
Note: Input Card Number 7 if IFRADO = 1 (Word 2 on Card Number 5). The following quadratic-polynomial coefficients define the outer-surface emissivity as a function of the outer-surface temperature.
\begin{tabular}{|c|c|c|}
\hline Columns & Variable & Description \\
\hline 1-14 & EMCOF1 & Zero-order term in the quadratic fit of outer-surface emissivity as a function of the outer-surface temperature (-). \\
\hline 15-28 & EMCOF2 & First-order term in the quadratic fit of outer-surface emissivity as a function of the outer-surface temperature (\(\mathrm{K}^{-}\) \({ }^{1},{ }^{\circ} \mathrm{F}^{-1}\)). \\
\hline 29-42 & EMCOF3 & Second-order term in the quadratic fit of outer-surface emissivity as a function of the outer-surface temperature (\(\mathrm{K}^{-}\) \({ }^{2},{ }^{\circ} \mathrm{F}^{-2}\)). \\
\hline
\end{tabular}

Card Number 8. (Format E14.4,I14) WIDTH, IPATCH
Note: Note
Input Card Number 8 for a SLAB (Word 1 on Card Number 1).

Columns
Variable
WIDTH

Description
Width (m, ft) of SLAB-element surface (used to compute surface area).

\section*{Columns}

15-28

\section*{Variable}

IPATCH

\section*{Description}

Hot-patch modeling. Used only if NAMELIST variable NEWRFD \(=1\).
\[
0=\text { no; }
\]
\[
1 \text { = yes. }
\]

Card Number 9. (Format 4E14.4) ZUPTOP, ZUPBOT, ZLPTOP, ZLPBOT Note: Note

If IPATCH \(=0\) (Word 2 on Card Number 8), do not input Card Number 9 .
Note: Note
These axial locations are defined to be consistent with Card Set 35 (array Z) or SHELV (Word 5 on Card Number 13) and Card Set 36 (array DZ).
\begin{tabular}{lll}
\multicolumn{1}{c}{ Columns } & \multicolumn{1}{c}{ Variable } & \multicolumn{1}{c}{ Description } \\
\(1-14\) & ZUPTOP & Axial location \((\mathrm{m}, \mathrm{ft})\) of the top of the upper hot patch. \\
\(15-28\) & ZUPBOT & Axial location \((\mathrm{m}, \mathrm{ft})\) of the bottom of the upper hot patch. \\
\(29-42\) & ZLPTOP & Axial location \((\mathrm{m}, \mathrm{ft})\) of the top of the lower hot patch. \\
\(43-70\) & ZLPBOT & Axial location \((\mathrm{m}, \mathrm{ft})\) of the bottom of the lower hot patch.
\end{tabular}

Card Number 10. (Format 4E14.4) TLI, TVI, HLI, HVI
Note: Note

Input Card Number 10 if IDBCI = 1 (Word 1 on Card Number 4).

Columns Variable
\begin{tabular}{lll}
\(1-14\) & TLI & \begin{tabular}{l}
Constant liquid temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) at the inner surface of \\
the ROD or SLAB element.
\end{tabular} \\
15-28 & TVI & \begin{tabular}{l}
Constant vapor temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) at the inner surface of \\
the ROD or SLAB element.
\end{tabular} \\
\(43-56\) & HLI & \begin{tabular}{l}
Constant liquid heat-transfer coefficient \((\mathrm{HTC})\left(\mathrm{W} \mathrm{m} \mathrm{m}^{-2} \mathrm{~K}^{-1}\right.\) \\
Btu \(\left.\mathrm{ft}^{-2} \mathrm{~F}^{-1} \mathrm{~h}^{-1}\right)\) at the inner surface of the ROD or SLAB \\
element.
\end{tabular} \\
HVI & \begin{tabular}{l}
Constant vapor \(\mathrm{HTC}\left(\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-1} \mathrm{Btu} \mathrm{ft}^{-2}{ }^{\circ} \mathrm{F}^{-1} \mathrm{~h}^{-1}\right)\) at the inner \\
surface of the ROD or SLAB element.
\end{tabular}
\end{tabular}

Card Number 11. (Format 4E14.4) TLO, TVO, HLO, HVO
Note: Note

Input Card Number 11 if IDBCO \(=1\) (Word 2 on Card Number 4).
Columns Variable Description
\begin{tabular}{lll}
\(1-14\) & TLO & \begin{tabular}{l}
Constant liquid temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) at the outer surface of \\
the ROD or SLAB element.
\end{tabular} \\
\(15-28\) & TVO & \begin{tabular}{l}
Constant vapor temperature \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) at the outer surface of \\
the ROD or SLAB element.
\end{tabular} \\
\(29-42\) & HLO & \begin{tabular}{l}
Constant liquid HTC \(\left(\mathrm{W} \mathrm{m} \mathrm{m}^{-2} \mathrm{~K}^{-1} \mathrm{Btu} \mathrm{ft}^{-2}{ }^{\circ} \mathrm{F}^{-1} \mathrm{~h}^{-1}\right)\) at the outer \\
surface of the ROD or SLAB element.
\end{tabular} \\
\(43-70\) & HVO & \begin{tabular}{l}
Constant vapor HTC \(\left(\mathrm{W} \mathrm{m} \mathrm{m}^{-2} \mathrm{~K}^{-1} \mathrm{Btu} \mathrm{ft}^{-2}{ }^{\circ} \mathrm{F}^{-1} \mathrm{~h}^{-1}\right)\) at the outer \\
surface of the ROD or SLAB element.
\end{tabular}
\end{tabular}

Card Number 12. (Format 5I14) NRODS, NODES, IRFTR, NZMAX, IRFTR2

\section*{Columns Variable}

1-14 NRODS

15-28 NODES

29-42 IRFTR

\section*{Description}

Total number of calculational ROD or SLAB elements defined by this HTSTR component (NRODS \(\geq\) NCRX). If NRODS \(>\) NCRX (Word 1 on Card Number 2), the last NRODS-NCRX supplemental ROD or SLAB elements do not affect the fluid-dynamic solution through heat-transfer coupling.

Number of ROD-radial or SLAB-thickness heat-transfer nodes in the ROD or SLAB elements. A value of 1 invokes the lumped-parameter solution (see TRACE/F90 Theory Manual). Its value should include the thermocouple if ITTC \(=1\) (Word 3 on Card Number 2).NODES must be \(\leq\) NRFMX, where NRFMX is a parameter constant set in module VessCon (header file PARSET1 for TRACE/F77), currently to 20 .

Trip ID number for implementing the axial fine-mesh calculation (no axial fine-mesh calculation is performed if IRFTR \(=0\) or if trip IRFTR is not set ON).
\begin{tabular}{|c|c|c|}
\hline Columns & Variable & Description \\
\hline 43-56 & NZMAX & \begin{tabular}{l}
Maximum number of rows of nodes in the axial direction
\[
(N C R Z+1)+\sum_{I} N F A X(I) \leq \text { NZMAX } \leq \text { NZFMX },
\] \\
where array NFAX is input on HTSTR Card Set 50, and NZFMX ia a parameter constant set in TRACE/F90 module VessCon (header file PARSET1 for TRACE/F77). If NZMAX is greater than NZFMX, the code internally sets NZMAX \(=\) NZFMX. Currently, NZFMX \(=250\). If NZMAX is less than NCRZ +1 , the code internally sets NZMAX \(=\) NCRZ +1 . Users should use small values of NZMAX if possible and especially if axial-conduction heat transfer will not be calculated. Large values of NZMAX lead to very large graphics files and a large HTSTR computer-memory requirement.
\end{tabular} \\
\hline 57-70 & IRFTR2 & Trip ID number for evaluating the core reflood model when the trip set status is ON and NEWRFD \(=1\) [the reflood model is not evaluated when IRFTR2 \(=0\) or when the IRFTR2: 0 trip set status is OFF]. \\
\hline \multicolumn{3}{|l|}{Card Number 13. (Format 5E14.4) DTXHT(1), DTXHT(2), DZNHT, HGAPO, SHELV} \\
\hline Columns & Variable & Description \\
\hline 1-14 & DTXHT(1) & Maximum \(\Delta \mathrm{T}\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) surface-temperature change between node rows above which a row of nodes is inserted in the axial fine-mesh heat-transfer calculation for the nucleate and transition boiling regimes [suggested value: DTXHT(1) = 3.0 K \(\left.\left(5.4^{\circ} \mathrm{F}\right)\right]\). \\
\hline 15-28 & DTXHT(2) & Maximum \(\Delta \mathrm{T}\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\) surface-temperature change between node rows above which a row of nodes is inserted in the axial fine-mesh heat-transfer calculation for all heat-transfer regimes except the nucleate and transition-boiling regimes [suggested value: DTXHT (2) = \(10.0 \mathrm{~K}\left(18.0^{\circ} \mathrm{F}\right)\)]. \\
\hline 29-42 & DZNHT & Minimum ýZ (\(\mathrm{m}, \mathrm{ft}\)) axial interval between node rows below which no additional row of nodes is inserted in the axial fine-mesh heat-transfer calculation (this value should be based on the diffusion number when explicit axial heatconduction numerics is being evaluated). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 43-56 & HGAPO & ROD or SLAB element gas-gap HTC (\(\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-1}\), Btu \(\mathrm{ft}^{-2}{ }^{\circ} \mathrm{F}^{-1} \mathrm{~h}^{-1}\)). HGAPO must be set to a non-zero value. HGAPO is used as the gap conductance when NFCI \(=0\) (Word 2 on Card 19); it is used as an initial guess for the gap conductance when \(\mathrm{NFCI}=1\). \\
\hline 57-70 & SHELV & Axial location (\(\mathrm{m}, \mathrm{ft}\)) of the first (bottom) node row [use to define \(Z(1)\) when MODEZ \(=1\) (Word 3 on Card Number 3) and DZ axial cell-interval lengths are input with Card Set 36]. \\
\hline Note: & Note & \\
\hline Note: & If NOPOW component NOPOWR powered & Word 1 on Card Number 3) for an unpowered HTSTR he array-data beginning with Card Set 27 (NHCOMI, etc.). If ut the following scalar parameters that need to be defined for omponent ROD or SLAB elements. \\
\hline \multicolumn{3}{|l|}{Card Number 14. (Format 5I14) IRPWTY, NDGX, NDHX, NRTS, NHIST} \\
\hline Columns & Varia & Description \\
\hline
\end{tabular}

1-14 IRPWTY

15-28 NDGX

Neutronic point-reactor kinetics or reactor-core power option for defining programmed reactivity (-) or reactorcore power (\(\mathrm{W}, \mathrm{Btu} \mathrm{h}^{-1}\)). Input parameters required for each option value are shown in parentheses. Add 10 to the value of IRPWTY if reactivity feedback is to be evaluated. For IRPWTY \(=15,16\), or 17 , reactivity feedback is evaluated and output but not used because the reactor-core power is being defined directly.

1 = point-reactor kinetics with constant REACT programmed reactivity (requires RPOWRI and REACT);
2 = point-reactor kinetics with table lookup of programmed reactivity (requires RPOWRI, IRPWSV, NRPWTB, and RPWTB);
3 = point-reactor kinetics with an initial zero programmed reactivity and trip-initiated constant REACT programmed reactivity (requires RPOWRI, IRPWTR, and REACT);
4 = point-reactor kinetics with an initial constant REACT programmed reactivity and tripinitiated table lookup of programmed reactivity (requires RPOWRI, REACT, IRPWTR, IRPWSV, NRPWTB, and RPWTB);
\(5=\) constant reactor-core power (requires RPOWRI);
6 = table lookup of reactor-core power (requires IRPWSV, NRPWTB, and RPWTB);
7 = initial constant reactor-core power with trip-initiated table lookup of reactor-core power (requires RPOWRI, IRPWTR, IRPWSV, NRPWTB, and RPWTB).

The number of delayed-neutron groups (if NDGX \(\leq 0\) is input when IRPWTY \(=1,2,3,4,11,12,13\), or 14 , TRAC-P defaults to 6 delayed-neutron groups with the delayedneutron constants defined internally; input NDGX \(=0\) when \(\operatorname{IRPWTY}=5,6,7,15,16\), or 17).

Columns
Variable

29-42
NDHX

43-56

57-70

NHIST The number of value pairs in the power-history table. NHIST \(=0\) when IRPWTY \(=5,6,7,15,16\), or 17 .
\(0=\) the user will input the delayed-neutron precursor concentrations (CDGN) and the decay-heat precursor concentrations (CDHN);
\(1=\mathrm{CDGN}\) and CDHN will be calculated assuming an infinite history of operation at the user input power level of RPOWRI;
\(\geq 2\) = a power history table will be input and used to calculate initial values for CDGN and CDHN.

Card Number 15. (Format 5E14.4) Q235, Q239, Q238, QAVG, R239PF
Note: Note
Note: If IRPWTY \(=1,2,3,4,11,12,13\), or 14 (Word 1 on Card Number 14) and NDHX \(=69\) or 71 or \(<0\) (but not -11) (Word 3 on Card Number 14), input Card Number 15 ; otherwise, skip this card.
\begin{tabular}{lll}
\multicolumn{1}{c}{ Column } & \multicolumn{1}{c}{ Variable } & \multicolumn{1}{c}{ Description } \\
\(1-14\) & Q235 & Energy per fission from \({ }^{235} \mathrm{U}\) (Mev per fission). \\
\(15-28\) & Q239 & Energy per fission from \({ }^{239} \mathrm{Pu}\) (Mev per fission). \\
\(29-42\) & Q238 & Energy per fission from \({ }^{238} \mathrm{U}\) (Mev per fission). \\
\(43-56\) & QAVG & Average energy per fission (Mev per fission). \\
\(57-70\) & R239PF & Atoms of \({ }^{239} \mathrm{U}\) produced per fission.
\end{tabular}

Card Number 16. (Format 4E14.4) FISPHI, RANS, FP235, FP238
Note: Note

If IRPWTY \(=1,2,3,4,11,12,13\), or 14 (Word 1 on Card Number 14) and NDHX \(=69\) or 71 or \(<0\) (but not -11) (Word 3 on Card Number 14), input Card Number 16; otherwise, skip this card.

Note: Note
Note: It is assumed that FP235 + FP238 + FP239 = 1.0, where FP239 is the corresponding \({ }^{239} \mathrm{Pu}\) fraction. FP235 and FP238 are used only if NHIST \(<2\) (Word 5 on Card Number 14).
\begin{tabular}{lll}
\multicolumn{1}{c}{ Columns } & \multicolumn{1}{c}{ Variable } & \multicolumn{1}{c}{ Description } \\
\(1-14\) & FISPHI & Fissions per initial fissile atom. \\
\(15-28\) & RANS & \begin{tabular}{l}
Multiplier (-) applied to the ANS 79 decay heat (RANS = \\
1.0, default).
\end{tabular} \\
\(29-42\) & FP235 & \begin{tabular}{l}
Fraction of fission power \((-)\) associated with \({ }^{235} \mathrm{U}\) fissions at \\
time zero.
\end{tabular} \\
\(43-56\) & FP238 & \begin{tabular}{l}
Fraction of fission power \((-)\) associated with \({ }^{238} \mathrm{U}\) fissions at \\
time zero.
\end{tabular}
\end{tabular}

Card Number 17. (Format 5I14) IRPWTR, IRPWSV, NRPWTB, NRPWSV, NRPWRF
Note: If IRPWTY \(=1,5,11\), or 15 (Word 1 on Card Number 11), do not input Card Number 17.

\section*{Columns}

Variable
1-14 IRPWTR

15-28 IRPWSV The reactivity-power table's abscissa-coordinate independent variable ID number. IRPWSV defines the independent-variable parameter for the reactivity-power table. IRPWSV \(>0\) defines the ID number for a signalvariable parameter; IRPWSV \(<0\) defines the ID number for a control-block output parameter \((0<\mid\) IRPWSV \(\mid \leq 9999\) when \(\operatorname{IRPWTY}=2,4,6,7,12,14,16\), or 17 ; \(\operatorname{IRPWSV}=0\) otherwise).

29-42 NRPWTB The number of reactivity-power table value pairs (defined by the absolute value of NRPWTB). NRPWTB \(>0\) defines the table's independent-variable form to be the IRPWSV parameter; NRPWTB \(<0\) defines the reactivity-power table independent-variable form to be the sum of the change in the IRPWSV parameter over each timestep times the trip setstatus value ISET during that timestep (when the reactivitypower table is trip controlled); NRPWTB \(=0\) defines the reactivity-power table's reactivity or power to be the IRPWSV parameter.

\section*{Card Number 18. (Format 5I14) IZPWTR, IZPWSV, NZPWTB, NZPWSV, NZPWRF}

\section*{Columns Variable}

1-14
IZPWTR

15-28 IZPWSV

\section*{Columns}

43-56 NRPWSV

57-70 NRPWRF The number of rate-factor table value pairs (defined by the absolute value of NRPWRF). The rate factor is applied to the reactivity-power table's independent variable when the rate factor is defined. No rate factor is defined when NRPWSV and NRPWRF (Words 4 and 5 on Card Number 14) are both zero. NRPWRF \(>0\) defines the rate-factor table's abscissa coordinate to be the NRPWSV parameter; NRPWRF \(<0\) defines it to be the sum of the change in the NRPWSV parameter over each timestep times the trip setstatus value ISET during that timestep (when the reactivitystatus value ISET during that timestep (when the reactivity-
power table is trip controlled); NRPWRF \(=0\) defines the rate factor to be the NRPWSV parameter.

\section*{Description}

The rate-factor table's abscissa-coordinate variable ID number. NRPWSV defines the independent-variable parameter to determine the rate factor that is applied to the reactivity-power table's independent variable. NRPWSV \(>0\) defines the ID number for a signal-variable parameter; NRPWSV \(<0\) defines the ID number for a control-block output parameter; NRPWSV \(=0\) (when NRPWRF \(\neq 0\)) defines the difference between the trip signal and the setpoint value that turns the trip OFF when the reactivitypower table is trip controlled.

\section*{Description}

The trip ID number that controls the evaluation of the axial-power-shape table \((0<\mid\) IZPWTR \(\mid \leq 9999)(\) input IZPWTR \(=\) 0 when the evaluation of the axial power-shape table is not trip controlled).
The axial-power-shape table's abscissa-coordinate variable ID number. IZPWSV defines the independent variableparameter for the axial-power-shape table. IZPWSV \(>0\) defines the ID number for a signal-variable parameter; IZPWSV \(<0\) defines the ID number for a control-block output parameter.
\begin{tabular}{|c|c|c|}
\hline Columns & Variable & Description \\
\hline 29-42 & NZPWTB & The number of axial-power-shape table [\(\mathrm{x}, \mathrm{f}(\mathrm{z})\) shape] value pairs (defined by the absolute value of NZPWTB). Each pair consists of an abscissa-coordinate value \(x\) and NZPWZ (Word 1 on Card Number 17) ordinate-coordinate values of \(f(z)\) defining the axial-power shape. NZPWTB \(>0\) defines the table's independent-variable form to be the IZPWSV parameter; NZPWPB \(<0\) defines the axial-power-shape table independent-variable form to be the sum of the change in the IZPWSV parameter over each timestep times the trip set-status value ISET during that timestep (when the axial-power-shape table is trip controlled). \\
\hline 43-56 & NZPWSV & The rate-factor table's abscissa-coordinate variable ID number. NZPWSV defines the independent-variable parameter to determine the rate factor that is applied to the axial-power-shape table's independent variable. NZPWSV > 0 defines the ID number for a signal-variable parameter; NZPWSV \(<0\) defines the ID number for a control-block output parameter; NZPWSV \(=0(\) when NZPWRF \(\neq 0)\) defines the difference between the trip signal and the setpoint value that turns the trip OFF when the axial-powershape table is trip controlled. \\
\hline 57-70 & NZPWRF & The number of rate-factor table value pairs (defined by the absolute value of NZPWRF). The rate factor is applied to the axial-power-shape table's independent variable when the rate factor is defined. No rate factor is defined when NZPWSV and NZPWRF (Words 4 and 5 on Card Number 15) are both zero. NZPWRF \(>0\) defines the rate-factor table's abscissa coordinate to be the NZPWSV parameter; NZPWRF \(<0\) defines it to be the sum of the change in the NZPWSV parameter over each timestep times the trip setstatus value ISET during that timestep (when the axial-power-shape table is trip controlled); NZPWRF \(=0\) defines the rate factor to be the NZPWSV parameter. \\
\hline
\end{tabular}

Card Number 19. (Format 5I14) NMWRX, NFCI, NFCIL, IPWRAD, IPWDEP

Columns
Variable
NMWRX Metal-water reaction option.
0 = off;
\(1=\) on.
\begin{tabular}{|c|c|c|}
\hline 15-28 & NFCI & Fuel-cladding gap conductance calculation option. \(\mathrm{NFCI}=1\) performs the dynamic gas-gap conductance calculation. When NFCI \(=0\), HGAPO (Word 4 on Card Number 13) is used as the gap conductance.
\[
\begin{aligned}
& 0=\text { off; } \\
& 1=\text { on. }
\end{aligned}
\] \\
\hline 29-42 & NFCIL & Maximum number of fuel-cladding gas-gap conductance calculations per timestep. Input \(\mathrm{NFCIL}=1\) when \(\mathrm{NFCI}=1\). \\
\hline 43-56 & IPWRAD & \begin{tabular}{l}
Spatial power-shape option. \\
\(0=1 \mathrm{D}\) axial power-shape table (default); \\
\(1=2 \mathrm{D}\) axial-r or axial-x power-shape table
\end{tabular} \\
\hline 57-70 & IPWDEP & \begin{tabular}{l}
Power-shape table-dependence option. \\
\(-1=\) the power-shape table dependence is defined for each node by a signal-variable or control-block ID number that defines the node power density, and the resulting power shape is not normalized by TRAC-P to a spatially averaged value of unity; \\
\(0=\) the power-shape table dependence is defined by signal-variable or control-block ID number IZPWSV (Word 2 on Card Number 18) (default); \\
\(1=\) the power-shape table dependence is defined for each node by a signal-variable or control-block ID number that defines the node power density, and the resulting power shape is normalized by
\end{tabular} \\
\hline
\end{tabular}

Card Number 20. (Format 5I14) NZPWZ, NZPWI, NFBPWT, NRPWR, NRPWI

Columns
1-14 NZPWZ

\section*{Description}

Number of axial locations defining the axial-power shape; if NZPWZ \(<2\) is input, NZPWZ is redefined to be NCRZ+1 (NCRZ is Word 2 on Card Number 2) and Card Set 57 (array ZPWZT) is not input.
\begin{tabular}{|c|c|c|}
\hline Columns & Variable & Description \\
\hline 15-28 & NZPWI & \begin{tabular}{l}
Axial-power shape integration option for the heat-transfer calculation. \\
\(-1=\) histogram with step changes at the axial locations defined by Card Set 57 (array ZPWZT); \\
\(0=\) histogram with step changes midway between the axial locations defined by ZPWZT; \\
\(1=\) trapezoidal integration [with linear variation between the axial-power shape densities defined by Card Set 59 (array ZPWTB) at the axial locations defined by ZPWZT].
\end{tabular} \\
\hline 29-42 & NFBPWT & Option for replacing the radial, axial, and/or horizontalplane power shapes with another user-defined shape for volume averaging the reactivity-feedback parameters over the core region. (Add 1 for defining ROD-radial or SLABthickness shape, 2 for defining an axial shape, and 4 for defining a (\(\mathrm{r}, \theta\)) or (\(\mathrm{x}, \mathrm{y}\)) plane shape). \\
\hline 43-56 & NRPWR & Number of ROD-radial or SLAB-thickness locations defining the 2 D axial-r or axial-x power shape if IPWRAD \(=\) 1 (Word 4 on Card Number 19) and NRPWR \(\geq 2\); if IPWRAD \(=1\) and NRPWR \(<2\), the same definition applies and NRPWR is redefined to be NODES (Word 2 on Card Number 12), array RPWRT (Card Set 58) is not input, and array RADRD (Card Set 47) defines array RPWRT. If IPWRAD \(=0\), a 1 D axial power shape and a 1D radial or Cartesian power shape are input, NRPWR is redefined by TRACE to be 1 , and array RPWRT is not input. \\
\hline 57-70 & NRPWI & \begin{tabular}{l}
ROD-radial or SLAB-thickness power-shape integration option for the heat-transfer calculation when IPWRAD \(=1\) (Word 4 on Card Number 19). \\
\(-1=\) histogram with step changes at the radial or thickness locations defined by array RPWRT (Card Set 58); \\
\(0=\) histogram with step changes midway between the radial or thickness locations defined by array RPWRT; \\
\(1=\) trapezoidal integration with linear variation between the radial or Cartesian geometry power-shape densities defined by array ZPWTB (Card Set 59) at the radial or thickness locations defined by array RPWRT.
\end{tabular} \\
\hline
\end{tabular}

Card Number 21. (Format 5E14.4) REACT, TNEUT, RPWOFF, RRPWMX, RPWSCL

\section*{Columns}

1-14 REACT

15-28 TNEUT

29-42

43-56

57-70
RPWSCL

\section*{Description}

Initial programmed reactivity \((-)\) (IRPWTY \(=1,2,4,11,12\), 14) or trip-initiated programmed reactivity (-) (IRPWTY \(=\) 3 or 13) \(\left[\right.\) REACT \(=\rho_{\text {PROG }}=\left(\mathrm{K}_{\text {eff }}-1\right) \mathrm{K}_{\text {eff }}{ }^{-1}\), where \(\mathrm{K}_{\text {eff }}\) is the reactor-multiplication constant; both and \(\mathrm{K}_{\text {eff }}\) have no units].

The prompt-neutron lifetime (s) (TNEUT 0.0 s defaults internally to TNEUT \(\left.=1.625 \times 10^{-5} \mathrm{~s}\right)\).

Programmed reactivity (-) (IRPWTY \(=3,4,13,14\)) or reactor-core power \(\left(\mathrm{W}, \mathrm{Btu} \mathrm{h}^{-1}\right)(\) IRPWTY \(=7\) or 17) when the reactivity/power controlling trip is OFF after being ON; the last value when the trip was ON is held constant when RPWOFF \(\leq-1.0 \times 10^{19} \mathrm{~W}\left(-3.4121 \times 10^{19} \mathrm{Btu} \mathrm{h}^{-1}\right)\).

The maximum rate of change of programmed reactivity (s-1) or reactor power \(\left(\mathrm{W} \mathrm{s}^{-1}, \mathrm{Btu} \mathrm{h}^{-1} \mathrm{~s}^{-1}\right)\) [RRPWMX \(\geq 0.0 \mathrm{~s}^{-1}\) or \(0.0 \mathrm{~W} \mathrm{~s}^{-1}\left(0.0 \mathrm{~s}^{-1}\right.\) or 0.0 Btu \(\left.\mathrm{h}^{-1} \mathrm{~s}^{-1}\right)\)].

Reactivity-power table's scale factor for programmed reactivity \((-)\) or reactor-core power (-). The dependent variable in the table Card Set 62 (array RPWTBR or RPWTBP) is multiplied by RPWSCL to obtain its absolute value of programmed reactivity \((-)\) or reactor-core power (W, Btu \({ }^{-1}\)).

\section*{Card Number 22. (Format 4E14.4) RPOWRI, ZPWIN, ZPWOFF, RZPWMX}

Columns Variable

15-28 ZPWIN

29-42

43-56

1-14 RPOWRI Initial total reactor-core power (W, Btu \(\mathrm{h}^{-1}\)) of all the average (power) ROD or SLAB elements of this HTSTR component.

\section*{Description}

The axial-power-shape table's abscissa-coordinate variable value (*) corresponding to the initial axial-power shape.

The axial-power-shape table's abscissa-coordinate variable value \(\left(^{*}\right)\) corresponding to the axial-power shape to be used when the axial-power-shape table's controlling trip is OFF after being ON; use the last evaluated axial-power shape when the trip was ON when ZPWOFF \(\leq-1.0 \times 101^{9}\left(^{*}\right)\).
The maximum rate of change of any z-location value in the axial-power shape (\(\mathrm{s}^{-1}\)) (RZPWMX \(\geq 0.0 \mathrm{~s}^{-1}\)).
\begin{tabular}{|c|c|c|}
\hline Columns & Variable & Description \\
\hline 1-14 & EXTSOU & The fission power (\(\mathrm{W}, \mathrm{Btu} \mathrm{h}^{-1}\)) produced by external source neutrons in the reactor core (used only when the pointreactor kinetics equations are evaluated: \(\operatorname{IRPWTY}=1,2,3\), \(4,11,12,13\), or 14). \\
\hline 15-28 & PLDR & Pellet-dish radius (\(\mathrm{m}, \mathrm{ft}\)) [no calculation of pellet dishing is performed if PLDR \(=0.0 \mathrm{~m}(0.0 \mathrm{ft})\)] (currently not used in subroutine FROD). \\
\hline 29-42 & PDRAT & ROD element pitch-to-diameter or SLAB element pitch-tothickness ratio (-) (currently not used in subroutines CHEN and CHF). \\
\hline 43-56 & FUCRAC & Fraction of the fue pellet radius \(1(-)\) which is not cracked [used only when NFCI = 1 (Word 2 on Card Number 19)]. \\
\hline
\end{tabular}

Card Number 24. (Format 5I14) IRCJTB(I,J), \(I=(1,4), \operatorname{IBU}(J)\) where \(J=(1,4)\)
Note: Note

If reactivity feedback is not evaluated when IRPWTY \(<11\) (Word 1 on Card Number 14), do not input Card Number 24.

Card Number 24 has a total of four cards that are input:
- the \(\mathrm{J}=1\) card defines the fuel-temperature reactivity-coefficient table,
- the \(\mathrm{J}=2\) card defines the coolant-temperature reactivity-coefficient table,
- the \(\mathrm{J}=3\) card defines the gas volume-fraction reactivity-coefficient table, and
- the \(\mathrm{J}=4\) card defines the solute-mass concentration reactivity-coefficient table.
\begin{tabular}{|c|c|c|}
\hline Columns & Variable & Description \\
\hline 1-14 & \(\operatorname{IRCJTB}(1, \mathrm{~J})\) & The number of fuel-temperature \(\mathrm{T}_{\mathrm{f}}\)-dependent entries in the Jth reactivity-coefficient table \([1 \leq \operatorname{IRCJTB}(1, \mathrm{~J})]\). \\
\hline 15-28 & \(\operatorname{IRCJTB}(2, J)\) & The number coolant-temperature \(T_{c}\)-dependent entries in the Jth reactivity-coefficient table \([1 \leq \operatorname{IRCJTB}(2, \mathrm{~J})]\). \\
\hline 29-42 & \(\operatorname{IRCJTB}(3, \mathrm{~J})\) & The number of gas volume-fraction -dependent entries in the Jth reactivity-coefficient table \([1 \leq \operatorname{IRCJTB}(3, \mathrm{~J})]\). \\
\hline 43-56 & \(\operatorname{IRCJTB}(4, \mathrm{~J})\) & The number of solute-mass \(\mathrm{B}_{\mathrm{r}}\) or \(\mathrm{B}_{\mathrm{m}}\)-dependent entries in the Jth reactivity-coefficient table \([1 \leq \operatorname{IRCJTB}(4, \mathrm{~J})]\). \\
\hline
\end{tabular}

\section*{Columns}

57-70

Variable
IBU(J)

\section*{Description}

The solute-units definition index for the Jth reactivity coefficient:
\(\operatorname{IBU}(J)=-2\) if \(x=B_{r}\) and \(B=B_{r}\),
\(\operatorname{IBU}(J)=-1\) if \(x=B_{r}\) and \(B=B_{m}\),
\(\operatorname{IBU}(J)=0\) if \(x=B_{m}\) and \(B=B_{r}\),
\(\operatorname{IBU}(J)=1\) if \(x=B_{m}\) and \(B=B_{m}\),
where \(\partial K_{\text {eff }} / \partial x=\operatorname{fcn}\left(T_{f}, T_{c}, \alpha, B\right)\). The two solute-mass concentrations are: \(B_{m}\) density, which is the mass of solute in the coolant-channel volume \(\left(\mathrm{kg} \mathrm{m}^{-3}, \mathrm{lb}_{\mathrm{m}} \mathrm{ft}^{-3}\right)\) and \(\mathrm{B}_{\mathrm{r}}\) ratio which is the parts solute mass per million parts liquidcoolant mass (ppm).

\section*{Card Number 25. (Format 5I14) IRCJFM(J), \(\mathrm{J}=(1,4)\), ISNOTB}

Note: If reactivity feedback is not evaluated when IRPWTY \(<11\) (Word 1 on Card Number 14), do not input Card Number 25.

The reactivity-coefficient type form numbers are defined as follows:
\[
\begin{aligned}
& \operatorname{IRCJFM}(\mathrm{J})=0 \text { for } \partial \mathrm{K}_{\text {eff }} / \partial \mathrm{x}, \\
& \operatorname{IRCJFM}(\mathrm{~J})=1 \text { for }\left(1 / \mathrm{K}_{\text {eff }} \neq \partial \mathrm{K}_{\text {eff }} / \partial \mathrm{x},\right. \\
& \operatorname{IRCJFM}(\mathrm{J})=2 \text { for } \mathrm{x} \partial \mathrm{~K}_{\text {eff }} / \partial \mathrm{x}, \text { and } \\
& \operatorname{IRCJFM}(\mathrm{J})=3 \text { for }\left(\mathrm{x} / \mathrm{K}_{\mathrm{eff}}\right) \neq \partial \mathrm{K}_{\mathrm{eff}} / \partial \mathrm{x},
\end{aligned}
\]
where \(\mathrm{x}=\mathrm{T}_{\mathrm{f}}\) for \(\mathrm{J}=1, \mathrm{x}=\mathrm{T}_{\mathrm{c}}\) for \(\mathrm{J}=2, \mathrm{x}=\alpha\) for \(\mathrm{J}=3\), and \(\mathrm{x}=\mathrm{B}_{\mathrm{m}}[\) when \(\operatorname{IBU}(4)=(0,1)]\) or \(x=B_{r}[\) when \(\operatorname{IBU}(4)=(-2,-1)]\) for \(\mathrm{J}=4\).

\section*{Columns \\ Variable \\ Description}

1-14 IRCJFM(1) Form number for the fuel-temperature reactivity-coefficient type.

15-28
IRCJFM(2)
Form number for the coolant-temperature reactivitycoefficient type.

\section*{Columns}

Variable
IRCJFM(3) Form number for the gas volume-fraction reactivitycoefficient type.

43-56 IRCJFM(4) Form number for the solute-mass concentration reactivitycoefficient type.

57-70 ISNOTB Option to exclude burnable-poison pin and control-rod boron from the solute reactivity-feedback calculation. \(0=\) no (the solute is assumed to be orthoboric acid); \(1=\) yes.

Card Number 26. (Format 5E14.4) POWEXP, BPP0, BPP1, BCR0, BCR 1
Note: Note
If reactivity feedback is not evaluated when IRPWTY \(<11\) (Word 1 on Card Number 14), do not input Card Number 26.
\begin{tabular}{|c|c|c|}
\hline Columns & Variable & Description \\
\hline 1-14 & POWEXP & Exponent value (-) to which the cell values of the power distribution are raised in defining the weighting factor for volume averaging the reactivity-feedback parameters over the powered reactor-core region (suggested value: 2.0). \\
\hline 15-28 & BPP0 & Zero-order coefficient \(\left(\mathrm{kg} \mathrm{m}^{-3}, \mathrm{lb}_{\mathrm{m}} \mathrm{ft}^{-3}\right)\) of the first-order polynomial \(3_{m_{B P P}}=B P P 0+B P P 1 \times T\) that defines the effective (smeared and shielded) core-averaged concentration of burnable-poison pin boron in the coolantchannel volume. \\
\hline 29-42 & BPP1 & First-order coefficient \(\left(\mathrm{kg} \mathrm{m}^{-3} \mathrm{~K}^{-1}, \mathrm{lb}_{\mathrm{m}} \mathrm{ft}^{-3}{ }^{\circ} \mathrm{F}^{-1}\right)\) of the firstorder polynomial \(3_{m_{B P P}}=B P P 0+B P P 1 \times T\) that defines the effective (smeared and shielded) core-averaged concentration of burnable-poison pin boron in the coolantchannel volume. Tc is the core-averaged coolant temperature (K, \({ }^{\circ} \mathrm{F}\)). \\
\hline 43-56 & BCR0 & Zero-order coefficient \(\left(\mathrm{kg} \mathrm{m}^{-3}, \mathrm{lb}_{\mathrm{m}} \mathrm{ft}^{-3}\right)\) of the first-order polynomial \(3_{m_{B C R}}=B C R 0+B C R 1 \times \rho_{P R O}\), that defines the effective (smeared and shielded) core-averaged concentration of control-rod pin boron in the coolantchannel volume. \\
\hline
\end{tabular}

Columns Variable
Description

57-70 BCR1 First-order coefficient \(\left(\mathrm{kg} \mathrm{m}^{-3}, \mathrm{lb}_{\mathrm{m}} \mathrm{ft}^{-3}\right)\) of the first-order polynomial \(3_{m_{B C R}}=B C R 0+B C R 1 \times \rho_{P R O}\) (that defines the effective (smeared and shielded) core-averaged concentration of control-rod pin boron in the coolantchannel volume. \(\rho_{P R O G}\) is programmed reactivity and has no units.

HTSTR Array Cards. (Use LOAD format. Each array has its element values defined by a Card Set of one or more cards.)

Note: Note

Card Sets 27 to 30. When M1D \(\neq 0\) (Word 5 on Card Number 2), input NCRX (Word 1 on Card Number 2) groups of Card Sets 27 to 30. The required order when NCRX \(>1\) for multiple 1D hydraulic component coupling is Card Sets 27 to 30 for the first average (power) ROD or SLAB element, Card Sets 27 to 30 for the second average (power) ROD or SLAB element, etc.

Note: Note

Card Sets 27 to 30. If ITTC \(=1\) (Word 3 on Card Number 2), then IDBCI \(=2\) and IDBCO \(=2\) (Words 1 and 2 on Card Number 4) and NHCOMI and NHCELI refer to the ROD or SLAB element outer-surface hydraulic coupling and NHCOMO and NHCELO refer to the thermocouple-surface hydraulic coupling.

Card Sets 27 \& 28. If IDBCI \(\neq 2\) (Word 1 on Card Number 4), do not input Card Sets 27 and 28 (arrays NHCOMI and NHCELI).

Variable Dimension Description
NHCOMI NCRZ +2 Component numbers of the hydraulic cells to which the HTSTR ROD- or SLAB-element inner surface is coupled starting with the cell below the first node row and going to the cell above the last node row. \(\mathrm{NHCOMI}(\mathrm{J})\) defines the component number of the hydraulic cell between node rows \(\mathrm{J}-1\) and J . The input values for \(\mathrm{NHCOMI}(1)\) and NHCOMI(NCRZ+2) are redefined internally.

Variable
NHCELI

Dimension
NCRZ +2

\section*{Description}

Cell numbers of the hydraulic cells to which the heatstructure ROD- or SLAB-element inner surface is coupled starting with the cell below the first node row and going to the cell above the last node row. \(\operatorname{NHCELI}(J)\) defines the cell number of the hydraulic cell between node rows \(\mathrm{J}-1\) and J . The input values for \(\operatorname{NHCELI}(1)\) and \(\mathrm{NHCELI}(\mathrm{NCRZ}+2)\) are redefined internally. Define \(\operatorname{NHCELI}(J)>0\) when the cell's higher-numbered interface is aligned with node row J ; define \(\operatorname{NHCELI}(\mathrm{J})<0\) when the cell's lower-numbered interface is aligned with node row J .

Card Sets \(29 \boldsymbol{\&}\) 30. If IDBCO \(\neq 2\) (Word 2 on Card Number 4), do not input Card Sets 29 and 30 (arrays NHCOMO and NHCELO)
\begin{tabular}{|c|c|c|}
\hline Variable & Dimension & Description \\
\hline NHCOMO & NCRZ+2 & Component numbers of the hydraulic cells to which the HTSTR ROD- or SLAB-element outer surface is coupled starting with the cell below the first node row and going to the cell above the last node row. \(\mathrm{NHCOMO}(\mathrm{J})\) defines the component number of the hydraulic cell between node rows \(\mathrm{J}-1\) and J . The input values for \(\mathrm{NHCOMO}(1)\) and \(\mathrm{NHCOMO}(\mathrm{NCRZ}+2)\) are redefined internally. \\
\hline NHCELO & NCRZ+2 & Cell numbers of the hydraulic cells to which the heatstructure ROD- or SLAB-element outer surface is coupled starting with the cell below the first node row and going to the cell above the last node row. NHCELO(J) defines the cell number of the hydraulic cell between node rows \(\mathrm{J}-1\) and J. The input values for \(\operatorname{NHCELO}(1)\) and NHCELO(NCRZ+2) are redefined internally. Define NHCELO \((\mathrm{J})>0\) when the cell's higher-numbered interface is aligned with node row J ; define \(\mathrm{NHCELO}(\mathrm{J})<0\) when the cell's lower-numbered interface is aligned with node row J . \\
\hline
\end{tabular}

Card Set 31.If NAMELIST variable MHTLI \(=0\) or \(\operatorname{IRFTR} \neq 0\), do not input Card Set 31 (array HTMLI).

\section*{Variable}

HTMLI NCRZ

\section*{Description}

Liquid-phase wall heat-transfer multiplier factor for the inner surface (-) \([0.9 \leq \mathrm{HTMLI} \leq 1.1]\).

Card Set 32. If NAMELIST variable MHTLO \(=0\) or IRFTR \(\neq 0\), do not input Card Set 32 (array HTMLO).

Variable
Dimension

\section*{Description}

HTMLO NCRZ Liquid-phase wall heat-transfer multiplier factor for the outer surface \((-)[0.9 \leq \mathrm{HTMLO} \leq 1.1]\).

Card Set 33.If NAMELIST variable MHTVI \(=0\) or \(\operatorname{IRFTR} \neq 0\), do not input this card.
Variable Dimension Description
HTMVI NCRZ Gas-phase wall heat-transfer multiplier factor for the inner surface (-) \([0.9 \leq \mathrm{HTMVI} \leq 1.1]\).

Card Set 34.If NAMELIST variable MHTVO \(=0\) or IRFTR \(\neq 0\), do not input Card Set 34 (array HTMVO).
\begin{tabular}{ccc}
\multicolumn{1}{c}{ Variable } & Dimension & \multicolumn{1}{c}{ Description } \\
HTMVO & NCRZ & \begin{tabular}{l}
Gas-phase wall heat-transfer multiplier factor for the outer \\
surface \((-)[0.9 \leq\) HTMVO \(\leq 1.1]\).
\end{tabular}
\end{tabular}

Card Set 35. If MODEZ \(=0\) (Word 3 on Card Number 3), input Card Set 35 (array Z).

Variable

Z Dimension

NCRZ+1

Description
Axial location (\(\mathrm{m}, \mathrm{ft}\)) of the hydraulic-cell edges where node rows are located in the ROD or SLAB element.

Card Set 36. If MODEZ \(=1\) (Word 3 on Card Number 3), input Card Set 36 (array DZ).

Variable
Dimension
NCRZ

\section*{Description}

Axial cell lengths (\(\mathrm{m}, \mathrm{ft)}\) of the hydraulic-cells. TRACE internally defines \(Z(1)=\) SHELV and \(Z(k+1)=\) SHELV + \(\mathrm{DZ}(1)+\mathrm{DZ}(2)+\mathrm{DZ}(\mathrm{k})\) for \(\mathrm{k}=(1, \mathrm{NCRZ})\), where SHELV is Word 5 on Card Number 13.

Note: Note:

Thermal Radiation Heat Transfer Model (Card 37, Card Sets 38 and 39, Card 40, Card Sets 41 and 42). Currently, the thermal radiation heat transfer model is only available in TRACE/F77. For TRACE/F90, Cards 37 to 42 must be omitted.

Card Number 37. (Format 3I14) IENCLU, IFACEI, IZSI
Note: Note

Card 37, Card Sets 38 and 39. If IFRADI = 1 (Word 1 on Card Number 5), input NCRZ (Word 2 on Card Number 2) groups of Card Number 37 and Card Sets 38 and 39. This group of cards is repeated on a hydraulic-cell basis to supply radiation parameters for the inner surface. The total number of ITFACI faces is defined by the Radiation-Enclosure Data Cards that were input after the Control-Parameter Data section
\begin{tabular}{ccl}
\multicolumn{1}{c}{ Columns } & \multicolumn{1}{c}{ Variable } & \multicolumn{1}{c}{ Description } \\
1-14 & IENCLU & \begin{tabular}{l}
Radiation-enclosure number to which this node-row interval \\
belongs. If the value is 0, the node-row interval does not \\
belong to any radiation enclosure, IFACEI and IZSI are not \\
used, and Card Sets 38 and 39 are not read.
\end{tabular} \\
\(15-28\) & IFACEI & \begin{tabular}{l}
Radiation face number that this node-row interval \\
represents.
\end{tabular} \\
\(29-42\) & IZSI & Hydraulic-cell level that this node-row interval represents.
\end{tabular}

\section*{Card Sets 38 \& 39.}

Note: Note

Card 37, Card Sets 38 and 39. If IFRADI = 1 (Word 1 on Card Number 5), input NCRZ (Word 2 on Card Number 2) groups of Card Number 37 and Card Sets 38 and 39. This group of cards is repeated on a hydraulic-cell basis to supply radiation parameters for the inner surface. The total number of ITFACI faces is defined by the Radiation-Enclosure Data Cards that were input after the Control-Parameter Data section
\begin{tabular}{lll}
Variable & Dimension & \multicolumn{1}{c}{ Description } \\
GVF & ITFACI & \begin{tabular}{l}
Geometric view factor \((-)\) from the IFACEI face to each of \\
the ITFACI faces of the radiation enclosure.
\end{tabular} \\
PLEN & ITFACI & \begin{tabular}{l}
Radiation path length \((\mathrm{m}, \mathrm{ft})\) from the IFACEI face to each \\
of the ITFACI faces of the radiation enclosure.
\end{tabular}
\end{tabular}

Card Number 40. (Format 3I14) IENCLU, IFACEO, IZSO
Note: Note

Card 40, Card Sets 41 and 42. If IFRADO \(=1\) (Word 2 on Card Number 5), input NCRZ (Word 2 on Card Number 2) groups of Card Number 40 and Card Sets 41 and 42. This group of cards is repeated on a hydraulic-cell basis to supply radiation parameters for the outer surface. The total
number of ITFACI faces is defined by the Radiation-Enclosure Data Cards that were input at the end of the Control-Parameter Data section.

\section*{Columns \\ Variable}
\begin{tabular}{cll}
\(1-14\) & IENCLU & \begin{tabular}{l}
Radiation-enclosure number to which this node-row interval \\
belongs. If the value is 0, the node-row interval does not \\
belong to any radiation enclosure, IFACEO and IZSO are \\
not used, and Card Sets 41 and 42 are not read.
\end{tabular} \\
\(15-28\) & IFACEO & \begin{tabular}{l}
Radiation face number that this node-row interval \\
represents.
\end{tabular} \\
\(29-42\) & IZSO & Hydraulic-cell level that this node-row interval represents.
\end{tabular}

\section*{Card Sets 41 \& 42.}

\section*{Variable}

Dimension
GVF

PLEN ITFACI

ITFACI

Geometric view factor (-) from the IFACEO face to each of the ITFACI faces of the radiation enclosure.

Radiation path length (\(\mathrm{m}, \mathrm{ft}\)) from the IFACEO face to each of the ITFACI faces of the radiation enclosure.

Card Set 44.If NRIDR \(=0\) (Word 2 on Card Number 3) and NRODS-NCRX \(=0\) (Word 1 on Card Number 12 and Word 1 on Card Number 2), do not input Card Set 44 (array IDROD).
Variable
Dimension

IDROD NRODS-NCRX When coupled to a VESSEL component, IDROD defines the when NRIDR \(=0 ; \quad(\mathrm{r}, \theta)\) - or \((\mathrm{x}, \mathrm{y})\)-plane cell numbers of a VESSEL-component NRODS when level where the supplemental (if NRIDR \(=0\)) or all (if NRIDR \(=1\) or \(2 . \quad\) NRIDR \(=1\) or 2) ROD or SLAB elements are located. When coupled to 1 D hydraulic components, IDROD defines the single average (power) and zero or more supplemental ROD- or SLAB-element numbers that couple to the same 1D hydraulic component. For 1D, this defines where the supplemental (if NRIDR \(=0\)) or average + supplemental (if NRIDR \(=1\) or 2) ROD or SLAB elements are located. NRIDR is Word 2 on Card Number 3. For coupling to a VESSEL component, this array is used to define coupling to a specific hydraulic cell within a VESSEL-component level. In a VESSEL level, cell numbers first vary by \(\theta\) or \(y\) and then by r or x . For 1D, numbers 1 through NCRX are first specified for the average rods, then appropriate numbers between 1 and NCRX for the supplemental rods. This definition is for the inner or outer surface of the ROD or SLAB element when NRIDR \(=0\) or 1 and is specifically for the inner surface of the ROD or SLAB element when NRIDR \(=2\).

Card Set 45. If NRIDR \(\neq 2\) (Word 2 on Card Number 3), do not input Card Set 45 (array IDRODO).
\begin{tabular}{lcl}
Variable & Dimension & \multicolumn{1}{c}{ Description } \\
IDRODO & NRODS & \begin{tabular}{l}
IDRODO has the same definition as IDROD (Card Set 31) \\
but is for the outer surface of the ROD or SLAB element \\
when NRIDR \(=2\).
\end{tabular}
\end{tabular}

Card Sets \(\mathbf{4 6}\) \& 47.

Variable Dimension
RDX NCRX

\section*{Description}

Number of actual physical fuel rod elements in each of the NCRX \((\mathrm{r}, \theta)\) or \((\mathrm{x}, \mathrm{y})\) mesh-cell locations of a VESSEL component or in each of the NCRX 1D hydraulic components. This is a real-valued number, not an integer. A value with a fractional part models with the fractional part a ROD or SLAB element that is partly within the mesh cell.

RADRD NODES Distances to the heat conduction noes. ROD radii or SLAB thickness (\(\mathrm{m}, \mathrm{ft}\)) from the inside surface at no power cold conditions. Note: If ITTC \(=1\) (Word 3 on Card Number 2), then RADRD(NODES) corresponds to the external thermocouple.

Card Set 48. If ITTC \(=0\) (Word 3 on Card Number 2), do not input the Card Set 48 (array TC).

\section*{Variable \\ Dimension}

6

\section*{Description}

The following six thermocouple parameters are input as array elements.

ANTC \(=\) Number of thermocouples per ROD or SLAB element;
DIA = Diameter of the thermocouple (\(\mathrm{m}, \mathrm{ft)}\);
AW = Perimeter of the ROD- or SLAB-element surface to thermocouple weld (\(\mathrm{m}, \mathrm{ft}\));

ATW = Thickness of the ROD or SLAB element at thermocouple weld (m, ft);
CKW \(=\) The ROD or SLAB element to thermocouple effective thermal conductivity (\(\mathrm{W} \mathrm{m}^{-1} \mathrm{~K}^{-1}\), Btu \(\mathrm{ft}^{-1}{ }^{\circ} \mathrm{F}^{-1} \mathrm{~h}^{-1)}\);
RADT \(=\) Distance from the ROD- or SLAB-element center to the center of the thermocouple (\(\mathrm{m}, \mathrm{ft}\)).

Card Set 49. Adjacent MATRD elements cannot both have the value 3 and \(\operatorname{MATRD}(1)\) and MATRD(NODES - 1) cannot be 3. Additional material properties can be input. Choose material properties for regions bounded by array RADRD (Card Set 47). .
\begin{tabular}{|c|c|c|}
\hline Variable & Dimension & Description \\
\hline \multirow[t]{15}{*}{MATRD} & NODES -1 & ROD- or SLAB-element material ID numbers [dimension is \\
\hline & & 1 if NODES = 1 (Word 2 on Card Number 12)]. \\
\hline & & ID Material Type \\
\hline & & 1 = mixed oxide; \\
\hline & & 2 = zircaloy; \\
\hline & & 3 = fuel-clad gap gases; \\
\hline & & 4 = boron-nitride insulation; \\
\hline & & \(5=\) constantan/Nichrome heater wire; \\
\hline & & 6 = stainless steel, type 304; \\
\hline & & 7 = stainless steel, type 316; \\
\hline & & \(8=\) stainless steel, type 347; \\
\hline & & 9 = carbon steel, type A508; \\
\hline & & \(10=\) inconel, type 718; \\
\hline & & 11 = zircaloy dioxide; \\
\hline & & \(12=\) inconel, type 600. \\
\hline
\end{tabular}

\section*{Card Set 50.}

\section*{Variable Dimension}

NFAX NCRZ

\section*{Description}

Number of permanent axial fine-mesh node rows added per axial hydraulic-cell interval at the start of the fine-mesh calculation when trip IRFTR (Word 3 on Card Number 12) is set ON. These permanent (and all temporary rezoning) axial fine-mesh node rows are removed when trip IRFTR is set OFF. [The total number of heat-transfer node rows per
ROD or SLAB element: \(N C R Z+1+\sum^{N F A X(T, \text {, must }}\) not be greater than NZMAX (Word 4 on Card Number 12)].

\section*{Card Set 51.}

Note: Temperature Array. Input an RFTN Card Set for each of the NRODS (Word 1 on Card Number 12) ROD or SLAB elements. This includes each average and supplemental ROD or SLAB element.

Variable
RFTN

Dimension
NODES \(\times\)
(NCRZ+1)

\section*{Description}

ROD (radial by axial) or SLAB (thickness by axial) element temperatures \(\left(\mathrm{K},{ }^{\circ} \mathrm{F}\right)\).

Note: Note

Unpowered HTSTR. If NOPOWR \(=1\) (Word 1 on Card Number 3) for an unpowered HTSTR component, do not input the remaining arrays, which are defined for powered HTSTR-component ROD or SLAB elements.

Card Set 52. IF IPWRAD = 1 (Word 4 on Card Number 19), do not input Card Set 52 (array RDPWR).

Variable
RDPWR

Dimension
NODES

\section*{Description}

Relative ROD-radial or SLAB-thickness power-density distribution (-) at the node locations defined by Card Set 47 (array RADRD).

Card Set 53. If NFBPWT (Word 3 on Card Number 20) is 0 or even valued, do not input Card Set 53 (array RS)
Variable Dimension Description

NODES
Relative ROD-radial or SLAB-thickness power-density distribution (-) at the node locations defined by Card Set 47 (array RADRD) that will be used to volume average the reactivity-feedback parameters over the powered-core region. If IPWRAD \(=1\) (Word 4 on Card Number 19) and array RS is input, array ZS (Card Set 61) must be input as well.

\section*{Card Set 54.}

Variable Dimension
CPOWR NCRX

\section*{Description}

Relative power-density distribution (-) in the average (power) ROD or SLAB elements heat-transfer coupled to the \((\mathrm{r}\),) or (\(\mathrm{x}, \mathrm{y}\)) mesh cells of a VESSEL-component level or to one or more 1D hydraulic components.

Card Set 55. If NFBPWT (Word 3 on Card Number 20) is less than 4, do not input Card Set 55 (array HS)

Variable
Dimension

\section*{Description}

HS
NCRX
Relative power-density distribution (-) in the average (power) ROD or SLAB elements heat-transfer coupled to the (r,) or (\(\mathrm{x}, \mathrm{y}\)) mesh cell of a VESSEL-component level or to one or more 1D hydraulic components that will be used to volume average the reactivity-feedback parameters over the powered-core region.

\section*{Card Set 56.}
\begin{tabular}{ll}
RPKF & \begin{tabular}{l}
NRODS- \\
NCRX
\end{tabular}
\end{tabular} \begin{tabular}{l}
Supplemental ROD or SLAB element power-peaking \\
factors [relative to the average (power) ROD or SLAB \\
elements. which together are coupled to the \((\mathrm{r}, \theta)\) or \((\mathrm{x}, \mathrm{y})\) \\
mesh cells of a VESSEL-component level or to one or more
\end{tabular}

Card Set 57. If NZPWZ < 2 (Word 1 on Card Number 20) from input or NZPWTB = 0 (Word 3 on Card Number 18), do not input Card Set 57 (array ZPWZT)

Variable Dimension
ZPWZT NZPWZ The axial locations (m, ft) where the axial-power shape's relative power densities are defined [define ZPWZT(1) = \(Z(1)\) and \(Z P W Z T(N Z P W Z)=Z(N C R Z+1)\) to have the power distribution span the axial range over which the ROD- or SLAB-element node rows are defined (Card Set 35 defines array \(Z\))].

Card Set 58. If IPWRAD \(=0\) (Word 4 on Card Number 19) or NRPWR \(<2\) (Word 4 on Card Number 20) or NZPWTB \(=0\) (Word 3 on Card Number 18), do not input Card Set 58 (array RPWRT).

Variable Dimension
RPWRT NRPWR

\section*{Description}

The ROD-radial or SLAB-thickness locations (m , ft) where the power shape's relative power densities are defined [define RPWRT(1) = RADRD(1) and RPWRT(NRPWR) = RADRD(NODES) to have the power distribution span the radial or Cartesian range over which the ROD- or SLABelement node rows are define (Card Set 47 defines array RADRD)].

Card Set 59. If NZPWTB \(=0\) (Word 3 on Card Number 18), do not input Card Set 59 (array ZPWTB).

Variable
ZPWTB

\section*{Description}

1D axial (if IPWRAD \(=0\), Word 4 on Card Number 19) or 2 D axial-r or axial-x (if IPWRAD = 1) power-shape vs independent-variable form table (*, -). Input |NZPWTB| table-defining data pairs having the following form [independent-variable form defined by IZPWSV (Word 2 on Card Number 18), NZPWZ \(\times\) NRPWR (Words 1 and 4 on Card Number 20) power-density values). NRPWR \(=1\) when IPWRAD \(=0\). NZPWTB \(=1\) and the power-density values are real values of the signal-variable or control-block ID numbers that TRAC-P uses to define the actual powerdensity values when IPWDEP \(= \pm 1\) (Word 5 on Card Number 19). The relative power densities defining the power shape are specified at the NZPWZ axial locations of the ZPWZT array defined by Card Set 57 and at the NRPWR ROD-radial or SLAB-thickness locations of the RPWRT array defined by Card Set 58. There are |NZPWTB| power shapes being input with an independent-variable value and NZPWZ x NRPWR power-density values for each shape.

Card Set 60. If NZPWTB \(=0\) (Word 3 on Card Number 18) or NZPWRF \(=0\) (Word 5 on Card Number 18), do not input Card Set 60 (array ZPWRF).

\section*{Variable Dimension \\ Description}

ZPWRF \(2 \times \mid\) NZPWRF|
Rate-factor table (*,-) for the axial-power-shape table's independent variable. Input |NZPWRF| (Word 5 on Card Number 18) table-defining data pairs having the following form [independent-variable form defined by NZPWSV (Word 4 on Card Number 15), rate factor].

Card Set 61. If IRPWTY \(=1,5,11\), or 15 (Word 1 on Card Number 14) or NFBPWT \(=0,1,4\), or 5 (Word 3 on Card Number 20), do not input Card Set 61 (array ZS).

Variable Dimension
ZS NZPWZ where NZPWZ is NCRZ+1 if NZPWZ \(<2\) is input

\section*{Description}

Relative axial-power-shape density (-) used to volume average the reactivity-feedback parameters over the powered-core region. If IPWRAD \(=1\) (Word 4 on Card Number 19) and array ZS is input, array RS (Card Set 53) must be input as well.

Card Set 62.If IRPWTY \(=1,5,11\), or 15 (Word 1 on Card Number 14) or NRPWTB \(=0\) (Word 3 on Card Number 17), do not input Card Set 62 (array RPWTBR or RPWTBP).
\begin{tabular}{|c|c|c|}
\hline Variable & Dimension & Description \\
\hline RPWTBR or RPWTBP & \(2 \times\) NRPWTB \(\mid\) & Programmed-reactivity (-) or reactor-core power (W or Btu \(\left.\mathrm{h}^{-1}\right)\) vs independent-variable form \(\left(^{*}\right)\) table \(\left[\left({ }^{*},-\right.\right.\) or W\(),\left({ }^{*},-\right.\) or Btu \({ }^{-1}\))]. Input |NRPWTB| (Word 3 on Card Number 17) table-defining data pairs having the following form [independent-variable form defined by IRPWSV (Word 2 on Card Number 17), programmed reactivity or reactor power as defined by IRPWTY]. \\
\hline
\end{tabular}

Card Set 63. If NRPWTB \(=0\) (Word 3 on Card Number 17) or NRPWRF \(=0\) (Word 5 on Card Number 17), do not input Card Set 63 (array RPWRF).
\begin{tabular}{|c|c|c|}
\hline Variable & Dimension & Description \\
\hline RPWRF & \(2 \times\) NRPWRF \(\mid\) & Rate-factor table (*,-) for the programmed-reactivity or reactor-power table's independent variable. Input |NRPWRF| (Word 5 on Card Number 17) table-defining data pairs having the following form [independent-variable form defined by NRPWSV (Words 4 on Card Number 17), rate factor to be applied to the programmed-reactivity or reactorpower table's independent variable]. \\
\hline
\end{tabular}

Card Sets 64 to 67. If IRPWTY < 11 (Word 1 on Card Number 14), do not input Card Sets 64 to 67 (array RCTF, RCTC, RCAL, and RCBM, respectively).

Variable Dimension
RCTF \(\quad \operatorname{IRCJTB}(1,1)+\quad\) The fuel-temperature reactivity-coefficient table. Input \(\operatorname{IRCJTB}(2,1)+\quad \operatorname{IRCJTB}(1,1) \mathrm{T}_{\mathrm{f}}\) values, \(\operatorname{IRCJTB}(2,1) \mathrm{T}_{\mathrm{c}}\) values, \(\operatorname{IRCJTB}(3,1)\) \(\operatorname{IRCJTB}(3,1)+\quad\) values, \(\operatorname{IRCJTB}(4,1) \mathrm{B}_{\mathrm{r}}\) or \(\mathrm{B}_{\mathrm{m}}\) values, and \(\operatorname{IRCJTB}(1,1) \times\) \(\operatorname{IRCJTB}(4,1)+\operatorname{IRCJTB}(2,1) \times \operatorname{IRCJTB}(3,1) \times \operatorname{IRCJTB}(4,1)\) fuel-temperature (IRCJTB \((1,1) x\) reactivity-coefficient values that define the four dimensionally \(\operatorname{IRCJTB}(2,1) \mathrm{x}\) dependent table. (Note: This table and the following three \(\operatorname{IRCJTB}(3,1) \mathrm{x} \quad\) tables are not entered with two-value pairs as is done for the \(\operatorname{IRCJTB}(4,1))\) one dimensionally dependent tables.)
\begin{tabular}{|c|c|c|}
\hline Variable & Dimension & Descriptio \\
\hline RCTC & \(\operatorname{IRCJTB}(1,2)+\) \(\operatorname{IRCJTB}(2,2)+\) \(\operatorname{IRCJTB}(3,2)+\) \(\operatorname{IRCJTB}(4,2)+\) (IRCJTB \((1,2) \mathrm{x}\) IRCJTB \((2,2) \mathrm{x}\) \(\operatorname{IRCJTB}(3,2) \mathrm{x}\) \(\operatorname{IRCJTB}(4,2)\)) & The coolant-temperature reactivity-coefficient table. \\
\hline RCAL & \(\operatorname{IRCJTB}(1,3)+\) \(\operatorname{IRCJTB}(2,3)+\) \(\operatorname{IRCJTB}(3,3)+\) \(\operatorname{IRCJTB}(4,3)+\) (IRCJTB \((1,3) \mathrm{x}\) \(\operatorname{IRCJTB}(2,3) \mathrm{x}\) \(\operatorname{IRCJTB}(3,3) \mathrm{x}\) \(\operatorname{IRCJTB}(4,3))\) & The gas volume-fraction reactivity-coefficient table. \\
\hline RCBM & \(\operatorname{IRCJTB}(1,4)+\) \(\operatorname{IRCJTB}(2,4)+\) \(\operatorname{IRCJTB}(3,4)+\) \(\operatorname{IRCJTB}(4,4)+\) (IRCJTB \((1,4) x\) \(\operatorname{IRCJTB}(2,4) \mathrm{x}\) \(\operatorname{IRCJTB}(3,4) \mathrm{x}\) \(\operatorname{IRCJTB}(4,4))\) & The solute-mass concentration reactivity-coefficient table. \\
\hline
\end{tabular}

Note: Note
Direct Definition of Reactor-Core Power. If IRPWTY \(=5,6,7,15,16\), or 17 (Word 1 on Card Number 14), do not input Card Sets 68 to 74 (arrays BETA, LAMDA, CDGN, LAMDH, EDH, CDHN, and PHIST).

Card Sets 68 \& 69. If NDGX \(\leq 0\) (Word 2 on Card Number 14), do not input Card Sets 68 and 69 (arrays BETA and LAMDA). The default 6-group delayed-neutron constants will be defined internally by TRACE.
\begin{tabular}{lll}
\multicolumn{1}{c}{ Variable } & \multicolumn{1}{c}{ Dimension } & \multicolumn{1}{c}{ Description } \\
BETA & NDGX & The effective delayed-neutron neutron fraction (-). \\
LAMDA & NDGX & The delayed-neutron decay constant \(\left(\mathrm{s}^{-1}\right)\).
\end{tabular}

Card Set 70. If NDGX \(>0\) and NHIST \(=0\) (Words 2 and 5 on Card Number 14) input Card Set 70 (array CDGN).
\begin{tabular}{ccc}
Variable & Dimension & Description \\
CDGN & NDGX & The delayed-neutron precursor power (W, Btu h \({ }^{-1}\)). \\
Note: & &
\end{tabular}

Card Sets 71 \& 72. If NDHX \(\leq 0\) or NDHX \(=69\) or 71 (Word 3 on Card Number 14), do not input Card Sets 71 and 72 (arrays LAMDH and EDH). The default 69-group decay-heat constants will be defined internally by TRACE if NDHX \(\leq 0\) or the ANS 79 decay-heat constants will be defined internally by TRACE if NDHX \(=69\) or 71 .
\begin{tabular}{lll}
\multicolumn{1}{c}{ Variable } & \multicolumn{1}{c}{ Dimension } & \multicolumn{1}{c}{ Description } \\
LAMDH & NDHX & The decay-heat decay constant \(\left(\mathrm{s}^{-1}\right)\). \\
EDH & NDHX & The effective decay-heat energy fraction \((-)\).
\end{tabular}

Card Set 73. If NDHX \(>0\) and NHIST \(=0\) (Words 3 and 5 on Card Number 14), input Card Set 73 (array CDHN).
\begin{tabular}{ccc}
\multicolumn{1}{c}{ Variable } & Dimension & Description \\
CDHN & NDHX & The decay-heat precursor power \(\left(\mathrm{W}, \mathrm{Btu} \mathrm{h}^{-1}\right)\).
\end{tabular}

Card Set 74. If NHIST \(=0\) or 1 (Word 5 on Card Number 14), do not input Card Set 74 (array PHIST).

Variable Dimension
PHIST \(2 \times\) NHIST \(\quad\) Power-history table \(\left[(\mathrm{s}, \mathrm{W}),\left(\mathrm{s}\right.\right.\), Btu \(\left.\left.^{-1}\right)\right]\). Input NHIST (Word 5 on Card Number 14) table-defining data pairs having the following form [time at the start of the transient minus the past time, reactor-core prompt-
fission power at that past time]. The first data pair should be for the power level at the start of the transient; that is, the time at the start of the transient minus the past time, which in this case is 0.0 s , with the time difference for subsequent data pairs being positive valued and increasing monotonically for each data pair.

Card Sets \(75 \&\) 76. If NDHX \(\neq 69\) and NDHX \(\neq 71\) or NHIST \(=0\) (Words 3 and 5 on Card Number 14), do not input Card Sets 75 and 76 (arrays FP235 and FP239).

Note: It is assumed that FP235 + FP239 + FP238 \(=1.0\).

\section*{Variable Dimension Description}

FP235 max(1,NHIST-1) Fraction (-) of fission power associated with \({ }^{235} \mathrm{U}\) fission during the power-history table interval from i to \(\mathrm{i}+1\).

FP239 max(1,NHIST-1) Fraction (-) of fission power associated with \({ }^{239} \mathrm{Pu}\) fission during the power-history table interval from i to \(\mathrm{i}+1\).

\section*{Card Sets 77 to 84.}
Variable Dimension
\begin{tabular}{|c|c|c|}
\hline FPUO2 & NCRX & Fraction (-) of plutonium dioxide \(\left(\mathrm{PuO}_{2}\right)\) in mixed-oxide fuel. \\
\hline FTD & NCRX & Fraction (-) of theoretical fuel density. \\
\hline GMIX & NCRX*7 & \begin{tabular}{l}
Mole fraction (-) of gap-gas constituents. GMIX is not used if \(\mathrm{NFCI}=0\) (Word 2 on Card Number 19) but must be input. Enter data for NCRX (Word 1 on Card Number 2) cells for each gas in the order indicated. \\
Index Gas
\end{tabular} \\
\hline & & \[
\begin{aligned}
& 1=\text { helium; } \\
& 2=\text { argon; } \\
& 3=\text { xenon; } \\
& 4=\text { krypton; } \\
& 5=\text { hydrogen; } \\
& 6=\text { air/nitrogen; } \\
& 7=\text { water vapor. }
\end{aligned}
\] \\
\hline GMLES & NCRX & Gram moles of gap gas (g-moles) per ROD or SLAB element. XGMILES is not used, but must be input. \\
\hline PGAPT & NCRX & Average gap-gas pressure (Pa , psia). PGAPT is not used if NFCI \(=0\) (Word 2 on Card Number 16), but must be input. \\
\hline PLVOL & NCRX & Plenum volume (\(\mathrm{m}^{3}, \mathrm{ft}^{3}\)) in each ROD or SLAB element above the pellet stack. PLVOL is not used, but must be input. \\
\hline PSLEN & NCRX & Pellet-stack length (\(\mathrm{m}, \mathrm{ft}\)). PSLEN is not used, but must be input. \\
\hline CLENN & NCRX & Clad total length (\(\mathrm{m}, \mathrm{ft}\)). CLENN is not used, but must be input. \\
\hline
\end{tabular}

\section*{Card Set 85.}

Note: Burnup Arrays. Input a BURN Card Set for each of the NRODS (Word 1 on Card Number 12) ROD or SLAB elements. This includes each average and supplemental ROD or SLAB element of the HTSTR component.

Variable Dimension Description
BURN NCRZ+1 ROD or SLAB element axial-location fuel burnup (MWD/ MTU).

\section*{Multipass Control Parameter Evaluation}
(not applicable to version \(\mathbf{3 . 8 6 0}\) or later)

Control parameters are evaluated in the following order: signal variables, control blocks, and trips. If a signal variable is to be evaluated after a control block or a trip or a control block is to be evaluated after a trip, two or more evaluation passes through the three control-parameter types are needed. For NTCP \(\geq 2\) evaluation passes (Word 5 on Main-Data Card 10), the following ControlParameter List Cards are input to define the subrange of parameters to be evaluated for each control-parameter type during each evaluation pass.

\section*{Card Number 1.}
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ISV1(1) & \begin{tabular}{l}
The smallest signal-variable ID number evaluated during the first \\
control-parameter evaluation pass [1 \(\leq\) ISV1(1)].
\end{tabular} \\
\hline ISV2(1) & \begin{tabular}{l}
The largest signal-variable ID number evaluated during the first \\
control-parameter evaluation pass [ISV1(1) \(\leq\) ISV2(1); input \\
ISV2(1) = 0 if no signal variables are to be evaluated during the \(\mathrm{i}=1\) \\
first pass].
\end{tabular} \\
\hline ICB1(1) & \begin{tabular}{l}
The smallest (in absolute value) control-block ID number evaluated \\
during the first control-parameter evaluation pass [ICB1(1) \(\leq-1]\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Card Number 1.}
\begin{tabular}{|l|l|}
\hline Variable & \multicolumn{1}{c|}{ Description } \\
\hline \hline ICB2(1) & \begin{tabular}{l}
The largest (in absolute value) control-block ID number evaluated \\
during the first control-parameter evaluation pass [ICB2(1) ICB1(1); \\
input ICB2(1) = 0 if no control blocks are to be evaluated during the \\
i = 1 first pass].
\end{tabular} \\
\hline ITP1(1) & \begin{tabular}{l}
The smallest (in absolute value) trip ID number evaluated during the \\
first control-parameter evaluation pass [1 \(\leq \mid\) ITP1(1) \(\mid]\).
\end{tabular} \\
\hline ITP2(1) & \begin{tabular}{l}
The largest (in absolute value) trip ID number evaluated during the \\
first control-parameter evaluation pass [|ITP1(1) \(|\leq|I T P 2(1)| ; ~ i n p u t ~\) \\
ITP2(1)=0 if no trips are to be evaluated during the i = 1 first pass].
\end{tabular} \\
\hline ISV1(2) & \begin{tabular}{l}
The smallest signal-variable ID number evaluated during the second \\
control-parameter evaluation pass [1 \(\leq\) ISV1(2)].
\end{tabular} \\
\hline ISV2(2) & Etc. \\
\hline
\end{tabular}

\section*{Namelist Options}

Some NAMELIST options are no longer used by the code, or their meaning has changed with respect to older versions of the code.

Table A-1.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & Value Range & \multicolumn{1}{c|}{ Description } & \begin{tabular}{c}
Default \\
Value
\end{tabular} \\
\hline \hline NAXN & 0.0 To 1.0 & Number of axial levels in the channel core & 0 \\
\hline USEROD & 0 or 1 & \begin{tabular}{l}
0 = implies do not read VESSEL wall lumped \\
or double-sided slab input. \\
= implies read VESSEL wall lumped or \\
double-sided slab input.
\end{tabular} & 0 \\
\hline
\end{tabular}

Table A-1.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & Value Range & \multicolumn{1}{c|}{ Description } & \begin{tabular}{c}
Default \\
Value
\end{tabular} \\
\hline \hline NEWRFD & 0 or 1 & \begin{tabular}{l}
This option when turned on will activate the \\
reflood model for HTSTR and CHAN \\
components coupled to VESSEL components \\
when internal tests are satisfied. \\
\(0=\) on \\
\(1=\) off \\
Note: NEWRFD must not be changed when \\
performing a restart calculation
\end{tabular} & 0 \\
\hline NHTSTR & \(\geq 0\) & \begin{tabular}{l}
Number of HTSTR components input (must \\
be defined when NHTSTR \(>0\)) after the \\
hydraulic-component data.
\end{tabular} & 0 \\
\hline NPOWER & \(\geq 0\) & \begin{tabular}{l}
Number of power components used to power \\
CHAN or HTSTR components
\end{tabular} & 0 \\
\hline
\end{tabular}

\section*{Main Card Variables}

Some variables on the main cards are no longer used by the code, or their meaning has changed with respect to older versions of the code.

Table A-2.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Description } \\
\hline \hline NTCF & \begin{tabular}{l}
Total number of table entries for the tabular control blocks from input and \\
the restart file \((\mathrm{NTCF} \geq 0\)) (used to dimension variable storage).
\end{tabular} \\
\hline NTCP & \begin{tabular}{l}
Number of passes made each timestep through the control-parameter \\
evaluation of signal variables, control blocks, and trips (NTCP \(\geq 0\)) (two \\
or more passes may be needed when the signal or set status of a trip is a \\
signal-variable or control-block input parameter or when a control \\
procedure contains an implicit control-block evaluation loop).
\end{tabular} \\
\hline
\end{tabular}

\section*{B}

\section*{Error Messages}

MESSAGE
EXPLANATION

\section*{INPUT PROCESSING MESSAGES}

\section*{ARRAY FILLED BUT OPERATION END NOT FOUND}

DUPLICATE COMP NUMBERS IN IORDER

FATAL INPUT ERROR(S)

ILLEGAL MATERIAL ID NUMBER

INOPTS NAMELIST DATA NOT FOUND

Most components (BREAK, FILL, and PLENUM are exceptions) require "array data" to specify cell lengths, volumes, areas, etc. An "e" to denote the end of the array data was not found where expected by TRACE.

Two components with the same number were found in the tracin file IORDER array.

TRACE will attempt to read the entire input-data file even if fatal errors are encountered. This message occurs after input-data processing is complete and indicates that you will need to correct all fatal errors encountered while TRACE was reading the input data (all of which have been flagged by warning messages).

The material ID number is not a valid number between 1 and 12 for internal TRACE materials or \(>50\) for user-defined materials.

The NAMELIST-data input option INOPT \(=1\) (Word 3 on Main-Data Card 2) was specified but no NAMELIST data were defined on the tracin file.

MESSAGE
INPUT ERROR DETECTED IN TRACIN. CARD NUMBER XXXX

INPUT ERROR ENCOUNTERED ON CARD NO. XXXX, - REST OF COMPONENT SKIPPED

INPUT ERROR - NEW COMPONENT WAS ENCOUNTERED UNEXPECTEDLY ON CARD NO. XXXX

\section*{EXPLANATION}

The free-format input-option preprocessor sub-routine PREINP found an input-data error. Possible causes include an invalid character (for example, the = character in \(1.0000 \mathrm{E}=07\)), the omission of Main-Data Card 1, or a simple typographical error. An immediate fatal error occurs if Main-Data Card 1 is incorrect. In all other cases, a flag is set that stops execution after the entire input-data tracin file has been processed.

Note: The card number is the last number on each card in the trcinp output file.

Array-reading subroutine LOAD found an error on a free-format defined card set. The rest of the component data are skipped. Execution of TRACE stops after the entire input-data tracin file is processed.

Note: The card number is the last number on each card in the trcinp output file.

Data for a new component were found before reading the data for the current component was finished. For example, you may have omitted a data card expected by TRACE. The card might be required by an INOPTS option or a component feature; due to a simple oversight this was not provided.

Note: The card number is the last number on each card in the trcinp output file.

INPUT ERROR ON CARD NO. XXXX - ENCOUNTERED UNEXPECTED LOAD DATA

TRACE encountered array data but was expecting non-array data. You have either too many or too few input-data cards because the card read is out of sequence.

Note: The card number is the last number on each card in the trcinp output file.

INPUT ERROR ON CARD NO. XXXX - REAL DATA ENCOUNTERED IN INTEGER ARRAY

Real array data were found where integer array data were expected. You have either too many or too few input-data cards because the card read is out of sequence.

Note: The card number is the last number on each card in the trcinp output file.

MESSAGE
NOT ENOUGH DATA TO FILL ARRAY

\section*{EXPLANATION}

Insufficient data were input to define an array.
Remember that one more value is required for celledge parameters such as flow area, hydraulic diameter, and the gravity parameter than for cellcentered parameters such as cell length and volume.

\section*{INITIALIZATION MESSAGES}
\(\left.\begin{array}{ll}\text { JUNCTION BOUNDARY ERROR } \\ \text { DETECTED }\end{array} \quad \begin{array}{l}\text { Adjacent components have mismatched geometry and } \\ \text { hydraulic input-data at their junction interface. } \\ \text { TRACE identifies the component, the mismatched } \\ \text { parameter (area, hydraulic diameter, gravity } \\ \text { parameter, etc.), and the unequal values. }\end{array}\right\}\)

\section*{STEADY-STATE OR TRANSIENT MESSAGES}

CANNOT REDUCE TIME STEP FURTHER

STEADY-STATE SOLUTION NOT CONVERGED

The timestep was reduced to the DTMIN minimum specified by the user, and the solution (outer iteration) failed to converge. This is one of the more difficult messages to handle because when it occurs at the start of a calculation, there probably is a difficulty with the input-data model.

The steady-state calculation did not reach a converged steady-state solution within the user-specified problem time for the calculation.

\section*{MESSAGE}

DUMP NOT FOUND ON RESTART
FILE

NUMBER TRIPS EXCEED DIMENSION

\section*{EXPLANATION}

On Main-Data Card 6, the DSTEP timestep number of the data dump to be used for restart was specified. The restart file (trcrst, which is tredmp from the previous calculation) was searched and this timestep number (an integer) could not be found. Refer to the trcout or tremsg file from the calculation that generated the tredmp file (renamed trerst for the current restart calculation), and check the timestep number for the data dump that is desired.

Searching the tremsg or trcout files for the word "restart" with a text editor will reveal the timestep numbers of all data dumps generated.

The number of trips defined by the tracin file and trerst file exceeds its NTRP storage-allocation number on Main-Data Card 10.```

[^0]: Warning - Be aware that the value of some input parameters cannot be changed in a restart calculation. These include NAMELIST variable IELV, IKFAC, ITHD, NDIA1, NEWRFD, NFRC1, NFRC3 (see Main-Data Card 4), and ISOLUT (Word 3 on Main-Data Card 9). If any of their values change, TRACE will generate an error message and abort the calculation.

[^1]: 1. This file is typically called tpfh2onew in RELAP5 land, and is supplied as part of the code distribution package
[^2]: 1. Some of you may also remember the old XTV graphical user interface developed by Los Alamos National Laboratory for the TRAC-PF1 code. Unfortunately, the current XTV graphics format is not compatible with that program, although many of its capabilities are now a part of SNAP.
