

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Welding and Repair Technology Center – Overview

Greg Frederick, EPRI WRTC Program Manager

Dan Patten, FENOC Program Chair

Outline - Summary

- Welding & Repair Technology Center (WRTC)
 - -WRTC Mission/Strategic Plan
 - Advisory Structure
 - Technology Roadmaps
 - Key Projects 2010/2011
 - Advisory meetings/conferences

WRTC Strategic Plan

- WRTC balances fundamental research (long-term) with tactical projects (short-term)
 - WRTC focus on tactical support and short-term, utility-requested R&D.
 - emergent repair needs
 - code cases
 - repair and welding process optimization
 - information exchange
 - Apply resources toward <u>proactive</u> resolution of major industry gaps & development of advanced solutions
 - Collaborations to develop and deploy materials joining and repair fundamental solutions
 - Align WRTC resources, program objectives, and projects for long term research

WRTC Strategic Plan

- WRTC Strategic Plan (Roadmaps)
 - Technology gaps were identified in the area of welding and repair
 - Six areas were highlighted for further development
 - Three roadmaps address fundamental R&D
 - 1. Develop new welding technology and guidance for the repair of highly irradiated material (PWR and BWR Internals)
 - 2. Alloy 52M Nickel-base filler metal weldability solution
 - Develop a new SCC resistant nickel based or alternative alloy with high weldability for dissimilar metal weld applications

WRTC Strategic Plan

- Three roadmaps address tactical applications
 - 4. Development & Implementation of Advanced Welding Technologies
 - Residual Stress Assessment Solutions
 - Welding Impact on Inspectability
 - Production Rates
 - 5. Small Bore Pipe Asset Management
 - ASME Code Issues and Support White papers and technical bases
- Other Key R&D Areas
 - Operating Experience Review
 - Root Cause Analyses
 - Best Practices and Guidelines Benchmarking
 - Information exchange

Program Matrix - Greybook

WRTC Advisory Structure

- 25 of 26 US Utility Organizations (operating BWR and PWRs) participate in WRTC
- 5 International members
 - EDF France
 - KNHP Korea (New 2011)
 - COG Canada
 - CEZ NPP (New 2011)
 - British Energy Generation Ltd.

WRTC Capabilities

- Weld Shop
 - Orbital Welding
 capabilities
 - GTAW, GMAW, SMAW, laser, friction stir
 - Weld monitoring and Data acquisitions
 - Hydrogen analyses
 - Stress evaluation

WRTC Capabilities

- Metallurgical Lab
 - Scanning Electron
 Microscope
 - Hardness evaluation
 - Corrosion evaluation
- Machine Shop
- Material Archive
 - Alloy 690, 600
 - CASS
 - Vessel material
- Welding Filler Material Archive
 - Alloy 52 type

Current Supplemental Project listing (2010/2011)

- Small bore piping issues (including socket welds)
 - Automatic socket welds
 - Autogenouse butt weld equipment verifcation/qualifications
 - Socket weld ratio 2:1 verification and guidance
 - Socket Weld test PQT- determine value.
- Guidelines for GTAW/GMAW Temper Bead repairs of Nuclear Components
 - · Scenarios and technical guidance
- Code Rules for Waveform controlled GMAW
 - optimization for typical materials in power industry
 - GMAW Joint PQR (P4, P5, SS, CS)
 - GMAW guidance for welding on thinned wall
- Issues related to Alloy 52 welding
 - Screening/Grading of IN 52 weld metal (DDC improvement, hot cracking)
 - Evaluation of Welding Parameters on CASS (TASK 3)
 - UW Laser Welding Base material issues
 - Welding for PT-White
- Data Acquisition for real-time defect mapping, repair options, root cause
- Welding Best Practices/Benchmarking (INPO ER
- Training for new Repair & Replacement Engineers
- Relaxation of requirements for Preheat, Post Bake, and NDE hold times
 - GTAW/SMAW/GMAW

RRAC – WRTC Team

- Program Manager
 - Greg Frederick; (704) 595-2571
 - <u>gfrederi@epri.com</u>
- Welding/Repair & Replacement Activities/New Plant Build
 - <u>Steve McCracken</u>, (704) 595-2627
 - <u>smccracken@epri.com</u>
- Welding/Repair & Replacement Activities/Best Practices
 - Dana Couch, (704) 595-2504
 - <u>rcouch@epri.com</u>

- Welding/Repair & Replacement Activities/New Plant Build
 - Eric Willis, (650) 855-2023
 - <u>ewillis@epri.com</u>
- Stress Measurement/Mechanical Technologies/Testing
 - **<u>Artie Peterson</u>**; (704) 595-2605
 - arpeters@epri.com
- Technical Staff Assistant
 - **<u>Stacey Burnett</u>**; (704) 595-2673
 - sburnett@epri.com

June - WRTC Advisory Meetings

June WRTC Advisory and Technical Program

- Day 1- Topical sessions
 - Utility discussions on operating experience, emerging issues and Code activities
- Day 2 Review of Key Projects
 - Status and results of Projects
 - Introduction/Discussion of new project topics to address technical gaps
- Advisory Meeting scheduled in conjunction with Welding Technology Conference

December - WRTC Advisory Meetings

- December WRTC Advisory and Code Issue Meeting
 - Day 1 Code issues meeting (invited speakers)
 - Day 2 Process Demonstrations
 - Welding and Joining equipment demo
 - Joint Welding Procedure Qualification
 - (5) GMAW PQRs performed successfully in 2010
 - Supported by Duke Energy, PSEG and Lincoln Electric
 - 2010 December Advisory Meeting
 - 54 attendees (Utilities and Code Experts)
 - 21 Utility advisors present

December WRTC Advisory Meeting

- Day 3 Project Selection
 - Discussion of Roadmaps and Technology Gaps
 - Introduction of new projects
 - New items introduced by Utility representative (open discussion)
 - Information exchange topics from prior year
 - SRA activities
 - Code activities
 - Topics from other Issues Groups
 - Advisory structure or Coordinators assigned for each project
 - Leading to a Greybook format for project descriptions, deliverables
 - Establishing connection to technology gaps and roadmaps

Welding Technology Conferences

- Established conference series for Welding and Repair Technology
 - Welding and Repair Technology for Power Plants, 9th International Conference (2010)
 - 214 Attendees with 15 Countries Represented
 - 32 Exhibitors
 - Sponsors (WEC, Euroweld, and Structural Integrity)
 - Welding and Fabrication Technology for New Power Plants and Components (June21-24, 2011, Omni Champions Gate, Orlando)
 - Sponsored by WRTC and Fossil Materials Repair (Program 87), Boiler Life and Availability (Program 63), HRSG Dependability (Program 88)

Workshops Planned for 2011 Conference

B31.1 Materials, Fabrication, & Examination - Doing It Right

- Discuss the bases for the B31.1 Power Piping Code rules for materials, fabrication, and inspection/examination. Special emphasis will be placed on rules that are different from other ASME Codes
- Course conductor: Philip D. Flenner, PE

Basics of Conducting a Failure Investigation

- Intended to educate the power plant engineer on the proper steps to take when conducting a failure analysis
- Course conductor: *Dr. Jude Foulds, P.E., Principal, Clarus Consulting, LLC*

Heat Treating Practices for Energy Construction: Quality and Consequences

- Discuss the basics of heat treatment and its growing significance in power construction. Emphasis on material quality and illustration of potential failures in base and weld material
- Course conductor: Gary Lewis and Joe Borror, Superheat FGH

EPEI ELECTRIC POWER RESEARCH INSTITUTE

WRTC – Key Activities Roadmaps

Roadmap – Weldability of Irradiated Material

Roadmap – Weldability of Irradiated Material

ISSUE STATEMENT

- Continued operation of light water reactors will require repairs or replacement of reactor internal components as degradation occurs (Welding will play an important role)
- Weldability of the materials is altered by the formation of helium (helium-induced cracking)

Roadmap – Weldability of Irradiated Material

Project Objectives and Scope

- Develop advanced welding technology required for reactor repairs
- Collaborate with industry experts (integrated approach between Industry/EPRI and the DOE/LWRS/ORNL to support reactor life extension beyond 60 years
- Development Modeling Simulation to Guide Process Development and Predictive Application on Irradiated Materials
- Validate Processes
 - Hot Lab Welding and Testing
 - Neutron Irradiated Sample Set

Industry Collaboration with DOE

Development of neutron irradiated sample set for testing advanced welding processes

- Material Type 304 SS, 316SS and Alloy 182
- Tightly controlled Boron Content
- Produces a variety of Helium contents to simulate different fluences in the reactor

Industry Collaboration with DOE (New Welding Hot Cell at ORNL)

EPRI is participating in the design and development of a New Welding Hot Cell (ORNL)

- Welding Capabilities:
 - Laser conventional and hybrid
 - Friction stir
 - Material Testing and Metallography

Roadmap – Weldability of Irradiated Material

Develop welding technology and guidance for irradiated material (PWR and BWR Internals)

Roadmap Weldability of Highly Irradiated Material

EPER ELECTRIC POWER RESEARCH INSTITUTE

WRTC – Key Activities Roadmaps

Alloy 52M Nickel-Base Filler Metal Weldability Solutions

ISSUE

- INCONEL 182 (ENiCrFe-3) filler metal extensively used in dissimilar metal welds for critical reactor coolant system components
 - Over time 182 is degraded by primary water stress corrosion cracking (PWSCC)
- Filler metal 52M (ERNiCrFe-7A) with ~30wt% Cr has high resistant to PWSCC and is currently filler metal required for;
 - Mitigation
 - Repair
 - New fabrication

Issue

- Weldability and crack susceptibility of 52 and 52M are complex and will continue to plaque the industry (outage schedule extensions and the associated lost plant availability and lost revenue).
- Adequate composition limits, narrow process controls and ranges, special requirements for isolating susceptible base materials and experience are required

- General Weldability Issues
 - Sluggish weld puddle
 - oxide build up
 - Lack of Fusion (LOF)

- Material issues:
 - Ductility-Dip Cracking (DDC)
 - Liquation Cracking
 - Hot Cracking

Alloy 52M Filler material evaluations

- Objectives Database of Alloy 52 heats of various chemistries graded for crack susceptibility
- Index number based on resistance to:
 - Solidification (hot) cracking
 - Reheat cracking (ductility-dip cracking)
- Standardize method for evaluating / measuring crack susceptibility of nickel weld filler metals (Alloy 52M and new alloys)
 - Varestraint
 - Strain-to-fracture
 - Cast-pin-tear
 - Thermal simulation (JMatPro/ ThermoCalc)
 - SS DTA (single sensor differential thermal analysis)
 - General Weldability

EPEI ELECTRIC POWER RESEARCH INSTITUTE

WRTC – Key Activities Roadmaps

Development of New SCC Resistant Nickel Based or Alternative alloy

Development of New SCC Resistant Nickel Based or Alternative alloy

ISSUE STATEMENT

- Alloys 52 and 52M currently required for DMW repairs
 - High-chromium, nickel-based weld metals developed specifically for their superior resistance to SCC
 - Alloys are susceptible to weld cracking and have less than optimum weldability.
- A new high-chromium welding alloy is needed
 - With desired mechanical properties and corrosion resistance
 - With significantly improvement in weldability and superior resistance to weld cracking.

Development of New SCC Resistant Nickel Based or Alternative alloy

SCOPE

- Fundamental research performed to understand cracking mechanisms and weldability problems
- Development of alloy composition
 - Model welding behavior and mechanical properties of target compositions
 - Validate modeled behavior with experimental weld wire heats
 - Perform mechanical, corrosion, and crack growth rate testing
- Assess welding and nondestructive evaluation of alloy composition
 - Assess process parameters for gas tungsten arc and gas metal arc welding
 - Large scale mockups and assessment of nondestructive evaluation
 - Assess feasibility of alternative advanced welding processes (laser welding, magnetic stir, hybrid, etc.)

SCC Resistant Alloys with High weldability

EPER ELECTRIC POWER RESEARCH INSTITUTE

WRTC – Key Activities Roadmaps

Development & Implementation of Advanced Welding Technologies

Development & Implementation of Advanced Welding Technologies

Objectives

- Roadmap for advance welding development
- residual stress improvements
- welding impact on inspectability
- increase production rates

Development of Advanced Welding Processes

- Welding Process Studies
 - Redistribution of heat input and auxiliary heat sources
 - Controlled dilution and material interactions
 - Evaluate processes that do not create a molten weld pool
 - Evaluation of weld filler materials interactions
- Advantages compared to traditional welding processes
 - Creation of a wider repair welding window for nonrepairable materials
 - Capable of effectively changing the local stress/strain field around the weld pool to a compressive state
 - Reduced heat affected zone (HAZ)
 - Improve inspectablity

Development & Implementation of Advanced Welding Technologies

Magnetic Stir Welding Process Evaluations

- Initial results with overlay configuration with Alloy 52M
 - Show reduction in weld metal grain size
 - Significantly improved NDE (UT) examination capability by reducing ultrasound attenuation
- Work in 2011 will evaluate
 - Potential for reduction in hot cracking
 - Capabilities to address groove welding application for new construction and repair (single sided applications)

Develop welding technology and guidance for irradiated material (PWR and BWR Internals)

- Hybrid Laser Welding
- Friction stir welding (FWS)
- Ultrasonic welding (UW)
- Underwater Laser Welding
 (ULB)

Laser Welding

Key Issue – Strategy for real-time monitoring of welding processes

ISSUE

- Welding issues, defects and equipment problems arise during repair and mitigation activities such as;
 - Overlay applications, component replacement
- Currently the supporting data is limited
 - Post-weld indication (NDE) and surface indication
- Benefits of Real-time data logging and inspection
 - Identifying contributing welding parameters or malfunctions – root cause
 - Support corrective actions (minimize delay) prior to completion of weld
 - Eliminate concern of reproducing weld defects in subsequent welds or repair

EPEI ELECTRIC POWER RESEARCH INSTITUTE

WRTC – Key Activities Roadmaps

- Leaks of small bore socket welds due to vibration continue to be a source for unscheduled outages, resulting in significant cost impact.
- Projects to evaluate and test improvements in socket weld design and alternative joining processes

- 2:1 leg size
- Weld Process limitations
- Importance of root quality
- In-situ Overlay Repair Capabilities

- Alternative Welding Process
 - Examining the use of autogenous welding process in lieu of a welds with filler material manually applied
 - Machine (automated) process
 - Autogenous welding typically is used for:
 - Small diameter components
 - Thinner schedules
 - Successful welds have been applied to 2-inch schedule 80 weld (.218-in. wall)

- Two alternative to socket welds are being evaluated
 - Butt welded configurations
 - Socket welded configurations with alternative geometry (compression ring)
- Current studies (2011)
 - High cycle fatigue resistance compared to standard socket welded configurations
 - Material interactions
 - Fit up requirements
 - Assembly practices
 - Process controls and parameters
 - Wall thickness limitations
 - Base material sensitization tests
 - Purging requirements

- Benefits of the 2x1 weld size for high cycle fatigue resistance
 - How much benefit is obtained from a weld that is larger than Code minimum but less than 2 x 1?
 - Verify that any increase in leg length on the pipe side is a benefit for resistance to high cycle fatigue
 - Distinguish between the taper angle and the benefits of an increase in throat thickness
- Goal is to establish a fatigue strength reduction factor to give credit for 2 x 1 welds vs. 1 x 1 welds in NB-3600

Small Bore Pipe Asset

Approach

- Perform finite element analysis of socket weld geometries between 1 x 1 and 2 x 1, and 1 x 1.4
- Validate results with a limited high cycle fatigue testing of variable geometries

EPER ELECTRIC POWER RESEARCH INSTITUTE

WRTC – Key Activities Roadmaps

ASME Code Support

WRTC Code Involvement

- WRTC Team and Utility representative
 - ASME B31.1
 - ASME Section III
 - ASME Section IX
 - ASME Section XI
 - Post Construction Committee (PCC)
 - Code Cases
 - AWS Weld Process Committees and Certification Committee

Together...Shaping the Future of Electricity

